scipy.signal.windows.slepian¶
- 
scipy.signal.windows.slepian(M, width, sym=True)[source]¶
- Return a digital Slepian (DPSS) window. - Used to maximize the energy concentration in the main lobe. Also called the digital prolate spheroidal sequence (DPSS). - Note - Deprecated in SciPy 1.1. - slepianwill be removed in a future version of SciPy, it is replaced by- dpss, which uses the standard definition of a digital Slepian window.- Parameters
- Mint
- Number of points in the output window. If zero or less, an empty array is returned. 
- widthfloat
- Bandwidth 
- symbool, optional
- When True (default), generates a symmetric window, for use in filter design. When False, generates a periodic window, for use in spectral analysis. 
 
- Returns
- wndarray
- The window, with the maximum value always normalized to 1 
 
 - See also - References - 1
- D. Slepian & H. O. Pollak: “Prolate spheroidal wave functions, Fourier analysis and uncertainty-I,” Bell Syst. Tech. J., vol.40, pp.43-63, 1961. https://archive.org/details/bstj40-1-43 
- 2
- H. J. Landau & H. O. Pollak: “Prolate spheroidal wave functions, Fourier analysis and uncertainty-II,” Bell Syst. Tech. J. , vol.40, pp.65-83, 1961. https://archive.org/details/bstj40-1-65 
 - Examples - Plot the window and its frequency response: - >>> from scipy import signal >>> from scipy.fft import fft, fftshift >>> import matplotlib.pyplot as plt - >>> window = signal.slepian(51, width=0.3) >>> plt.plot(window) >>> plt.title("Slepian (DPSS) window (BW=0.3)") >>> plt.ylabel("Amplitude") >>> plt.xlabel("Sample") - >>> plt.figure() >>> A = fft(window, 2048) / (len(window)/2.0) >>> freq = np.linspace(-0.5, 0.5, len(A)) >>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max()))) >>> plt.plot(freq, response) >>> plt.axis([-0.5, 0.5, -120, 0]) >>> plt.title("Frequency response of the Slepian window (BW=0.3)") >>> plt.ylabel("Normalized magnitude [dB]") >>> plt.xlabel("Normalized frequency [cycles per sample]")     
