scipy.optimize.brenth¶
-
scipy.optimize.brenth(f, a, b, args=(), xtol=2e-12, rtol=8.881784197001252e-16, maxiter=100, full_output=False, disp=True)[source]¶ Find a root of a function in a bracketing interval using Brent’s method with hyperbolic extrapolation.
A variation on the classic Brent routine to find a zero of the function f between the arguments a and b that uses hyperbolic extrapolation instead of inverse quadratic extrapolation. There was a paper back in the 1980’s … f(a) and f(b) cannot have the same signs. Generally on a par with the brent routine, but not as heavily tested. It is a safe version of the secant method that uses hyperbolic extrapolation. The version here is by Chuck Harris.
- Parameters
- ffunction
Python function returning a number. f must be continuous, and f(a) and f(b) must have opposite signs.
- ascalar
One end of the bracketing interval [a,b].
- bscalar
The other end of the bracketing interval [a,b].
- xtolnumber, optional
The computed root
x0will satisfynp.allclose(x, x0, atol=xtol, rtol=rtol), wherexis the exact root. The parameter must be nonnegative. As withbrentq, for nice functions the method will often satisfy the above condition withxtol/2andrtol/2.- rtolnumber, optional
The computed root
x0will satisfynp.allclose(x, x0, atol=xtol, rtol=rtol), wherexis the exact root. The parameter cannot be smaller than its default value of4*np.finfo(float).eps. As withbrentq, for nice functions the method will often satisfy the above condition withxtol/2andrtol/2.- maxiterint, optional
if convergence is not achieved in maxiter iterations, an error is raised. Must be >= 0.
- argstuple, optional
containing extra arguments for the function f. f is called by
apply(f, (x)+args).- full_outputbool, optional
If full_output is False, the root is returned. If full_output is True, the return value is
(x, r), where x is the root, and r is aRootResultsobject.- dispbool, optional
If True, raise RuntimeError if the algorithm didn’t converge. Otherwise the convergence status is recorded in any
RootResultsreturn object.
- Returns
- x0float
Zero of f between a and b.
- r
RootResults(present iffull_output = True) Object containing information about the convergence. In particular,
r.convergedis True if the routine converged.
See also
fmin,fmin_powell,fmin_cgfmin_bfgs,fmin_ncgmultivariate local optimizers
leastsqnonlinear least squares minimizer
fmin_l_bfgs_b,fmin_tnc,fmin_cobylaconstrained multivariate optimizers
basinhopping,differential_evolution,bruteglobal optimizers
fminbound,brent,golden,bracketlocal scalar minimizers
fsolven-dimensional root-finding
brentq,brenth,ridder,bisect,newtonone-dimensional root-finding
fixed_pointscalar fixed-point finder
Examples
>>> def f(x): ... return (x**2 - 1)
>>> from scipy import optimize
>>> root = optimize.brenth(f, -2, 0) >>> root -1.0
>>> root = optimize.brenth(f, 0, 2) >>> root 1.0
