scipy.linalg.qr¶
- 
scipy.linalg.qr(a, overwrite_a=False, lwork=None, mode='full', pivoting=False, check_finite=True)[source]¶
- Compute QR decomposition of a matrix. - Calculate the decomposition - A = Q Rwhere Q is unitary/orthogonal and R upper triangular.- Parameters
- a(M, N) array_like
- Matrix to be decomposed 
- overwrite_abool, optional
- Whether data in a is overwritten (may improve performance) 
- lworkint, optional
- Work array size, lwork >= a.shape[1]. If None or -1, an optimal size is computed. 
- mode{‘full’, ‘r’, ‘economic’, ‘raw’}, optional
- Determines what information is to be returned: either both Q and R (‘full’, default), only R (‘r’) or both Q and R but computed in economy-size (‘economic’, see Notes). The final option ‘raw’ (added in SciPy 0.11) makes the function return two matrices (Q, TAU) in the internal format used by LAPACK. 
- pivotingbool, optional
- Whether or not factorization should include pivoting for rank-revealing qr decomposition. If pivoting, compute the decomposition - A P = Q Ras above, but where P is chosen such that the diagonal of R is non-increasing.
- check_finitebool, optional
- Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. 
 
- Returns
- Qfloat or complex ndarray
- Of shape (M, M), or (M, K) for - mode='economic'. Not returned if- mode='r'.
- Rfloat or complex ndarray
- Of shape (M, N), or (K, N) for - mode='economic'.- K = min(M, N).
- Pint ndarray
- Of shape (N,) for - pivoting=True. Not returned if- pivoting=False.
 
- Raises
- LinAlgError
- Raised if decomposition fails 
 
 - Notes - This is an interface to the LAPACK routines dgeqrf, zgeqrf, dorgqr, zungqr, dgeqp3, and zgeqp3. - If - mode=economic, the shapes of Q and R are (M, K) and (K, N) instead of (M,M) and (M,N), with- K=min(M,N).- Examples - >>> from scipy import linalg >>> a = np.random.randn(9, 6) - >>> q, r = linalg.qr(a) >>> np.allclose(a, np.dot(q, r)) True >>> q.shape, r.shape ((9, 9), (9, 6)) - >>> r2 = linalg.qr(a, mode='r') >>> np.allclose(r, r2) True - >>> q3, r3 = linalg.qr(a, mode='economic') >>> q3.shape, r3.shape ((9, 6), (6, 6)) - >>> q4, r4, p4 = linalg.qr(a, pivoting=True) >>> d = np.abs(np.diag(r4)) >>> np.all(d[1:] <= d[:-1]) True >>> np.allclose(a[:, p4], np.dot(q4, r4)) True >>> q4.shape, r4.shape, p4.shape ((9, 9), (9, 6), (6,)) - >>> q5, r5, p5 = linalg.qr(a, mode='economic', pivoting=True) >>> q5.shape, r5.shape, p5.shape ((9, 6), (6, 6), (6,)) 
