scipy.linalg.eigvals¶
- 
scipy.linalg.eigvals(a, b=None, overwrite_a=False, check_finite=True, homogeneous_eigvals=False)[source]¶
- Compute eigenvalues from an ordinary or generalized eigenvalue problem. - Find eigenvalues of a general matrix: - a vr[:,i] = w[i] b vr[:,i] - Parameters
- a(M, M) array_like
- A complex or real matrix whose eigenvalues and eigenvectors will be computed. 
- b(M, M) array_like, optional
- Right-hand side matrix in a generalized eigenvalue problem. If omitted, identity matrix is assumed. 
- overwrite_abool, optional
- Whether to overwrite data in a (may improve performance) 
- check_finitebool, optional
- Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. 
- homogeneous_eigvalsbool, optional
- If True, return the eigenvalues in homogeneous coordinates. In this case - wis a (2, M) array so that:- w[1,i] a vr[:,i] = w[0,i] b vr[:,i] - Default is False. 
 
- Returns
- w(M,) or (2, M) double or complex ndarray
- The eigenvalues, each repeated according to its multiplicity but not in any specific order. The shape is (M,) unless - homogeneous_eigvals=True.
 
- Raises
- LinAlgError
- If eigenvalue computation does not converge 
 
 - See also - eig
- eigenvalues and right eigenvectors of general arrays. 
- eigvalsh
- eigenvalues of symmetric or Hermitian arrays 
- eigvals_banded
- eigenvalues for symmetric/Hermitian band matrices 
- eigvalsh_tridiagonal
- eigenvalues of symmetric/Hermitian tridiagonal matrices 
 - Examples - >>> from scipy import linalg >>> a = np.array([[0., -1.], [1., 0.]]) >>> linalg.eigvals(a) array([0.+1.j, 0.-1.j]) - >>> b = np.array([[0., 1.], [1., 1.]]) >>> linalg.eigvals(a, b) array([ 1.+0.j, -1.+0.j]) - >>> a = np.array([[3., 0., 0.], [0., 8., 0.], [0., 0., 7.]]) >>> linalg.eigvals(a, homogeneous_eigvals=True) array([[3.+0.j, 8.+0.j, 7.+0.j], [1.+0.j, 1.+0.j, 1.+0.j]]) 
