scipy.integrate.romb¶
- 
scipy.integrate.romb(y, dx=1.0, axis=-1, show=False)[source]¶
- Romberg integration using samples of a function. - Parameters
- yarray_like
- A vector of - 2**k + 1equally-spaced samples of a function.
- dxfloat, optional
- The sample spacing. Default is 1. 
- axisint, optional
- The axis along which to integrate. Default is -1 (last axis). 
- showbool, optional
- When y is a single 1-D array, then if this argument is True print the table showing Richardson extrapolation from the samples. Default is False. 
 
- Returns
- rombndarray
- The integrated result for axis. 
 
 - See also - quad
- adaptive quadrature using QUADPACK 
- romberg
- adaptive Romberg quadrature 
- quadrature
- adaptive Gaussian quadrature 
- fixed_quad
- fixed-order Gaussian quadrature 
- dblquad
- double integrals 
- tplquad
- triple integrals 
- simps
- integrators for sampled data 
- cumtrapz
- cumulative integration for sampled data 
- ode
- ODE integrators 
- odeint
- ODE integrators 
 - Examples - >>> from scipy import integrate >>> x = np.arange(10, 14.25, 0.25) >>> y = np.arange(3, 12) - >>> integrate.romb(y) 56.0 - >>> y = np.sin(np.power(x, 2.5)) >>> integrate.romb(y) -0.742561336672229 - >>> integrate.romb(y, show=True) Richardson Extrapolation Table for Romberg Integration ==================================================================== -0.81576 4.63862 6.45674 -1.10581 -3.02062 -3.65245 -2.57379 -3.06311 -3.06595 -3.05664 -1.34093 -0.92997 -0.78776 -0.75160 -0.74256 ==================================================================== -0.742561336672229 
