SciPy

This is documentation for an old release of SciPy (version 1.4.0). Search for this page in the documentation of the latest stable release (version 1.15.1).

Beta Distribution

There are two shape parameters \(a,b > 0\) and the support is \(x\in[0,1]\).

\begin{eqnarray*} f\left(x;a,b\right) & = & \frac{\Gamma\left(a+b\right)}{\Gamma\left(a\right)\Gamma\left(b\right)}x^{a-1}\left(1-x\right)^{b-1} \\ F\left(x;a,b\right) & = & \int_{0}^{x}f\left(y;a,b\right)dy=I\left(x;a,b\right)\\ G\left(q;a,b\right) & = & I^{-1}\left(q;a,b\right)\\ M\left(t\right) & = & \frac{\Gamma\left(a\right)\Gamma\left(b\right)}{\Gamma\left(a+b\right)}\,_{1}F_{1}\left(a;a+b;t\right)\\ \mu & = & \frac{a}{a+b}\\ \mu_{2} & = & \frac{ab\left(a+b+1\right)}{\left(a+b\right)^{2}}\\ \gamma_{1} & = & 2\frac{b-a}{a+b+2}\sqrt{\frac{a+b+1}{ab}}\\ \gamma_{2} & = & \frac{6\left(a^{3}+a^{2}\left(1-2b\right)+b^{2}\left(b+1\right)-2ab\left(b+2\right)\right)}{ab\left(a+b+2\right)\left(a+b+3\right)}\\ m_{d} & = & \frac{\left(a-1\right)}{\left(a+b-2\right)}\, a+b\neq2\end{eqnarray*}

where \(I\left(x;a,b\right)\) is the regularized incomplete Beta function. \(f\left(x;a,1\right)\) is also called the Power-function distribution.

\[l_{\mathbf{x}}\left(a,b\right)=-N\log\Gamma\left(a+b\right)+N\log\Gamma\left(a\right)+N\log\Gamma\left(b\right)-N\left(a-1\right)\overline{\log\mathbf{x}}-N\left(b-1\right)\overline{\log\left(1-\mathbf{x}\right)}\]

Implementation: scipy.stats.beta

Previous topic

Arcsine Distribution

Next topic

Beta Prime Distribution