This is documentation for an old release of SciPy (version 1.4.0). Read this page in the documentation of the latest stable release (version 1.15.0).
scipy.stats.tmax¶
-
scipy.stats.
tmax
(a, upperlimit=None, axis=0, inclusive=True, nan_policy='propagate')[source]¶ Compute the trimmed maximum.
This function computes the maximum value of an array along a given axis, while ignoring values larger than a specified upper limit.
- Parameters
- aarray_like
Array of values.
- upperlimitNone or float, optional
Values in the input array greater than the given limit will be ignored. When upperlimit is None, then all values are used. The default value is None.
- axisint or None, optional
Axis along which to operate. Default is 0. If None, compute over the whole array a.
- inclusive{True, False}, optional
This flag determines whether values exactly equal to the upper limit are included. The default value is True.
- nan_policy{‘propagate’, ‘raise’, ‘omit’}, optional
Defines how to handle when input contains nan. The following options are available (default is ‘propagate’):
‘propagate’: returns nan
‘raise’: throws an error
‘omit’: performs the calculations ignoring nan values
- Returns
- tmaxfloat, int or ndarray
Trimmed maximum.
Examples
>>> from scipy import stats >>> x = np.arange(20) >>> stats.tmax(x) 19
>>> stats.tmax(x, 13) 13
>>> stats.tmax(x, 13, inclusive=False) 12