This is documentation for an old release of SciPy (version 1.3.3). Read this page in the documentation of the latest stable release (version 1.15.1).
Nakagami Distribution¶
Generalization of the chi distribution. Shape parameter is \(\nu>0.\) The support is \(x\geq0.\)
\begin{eqnarray*} f\left(x;\nu\right) & = & \frac{2\nu^{\nu}}{\Gamma\left(\nu\right)}x^{2\nu-1}\exp\left(-\nu x^{2}\right)\\
F\left(x;\nu\right) & = & \frac{\gamma\left(\nu,\nu x^{2}\right)}{\Gamma\left(\nu\right)}\\
G\left(q;\nu\right) & = & \sqrt{\frac{1}{\nu}\gamma^{-1}\left(\nu,q{\Gamma\left(\nu\right)}\right)}\end{eqnarray*}
where \(\gamma\) is the lower incomplete gamma function, \(\gamma\left(\nu, x\right) = \int_0^x t^{\nu-1} e^{-t} dt\).
\begin{eqnarray*} \mu & = & \frac{\Gamma\left(\nu+\frac{1}{2}\right)}{\sqrt{\nu}\Gamma\left(\nu\right)}\\
\mu_{2} & = & \left[1-\mu^{2}\right]\\
\gamma_{1} & = & \frac{\mu\left(1-4v\mu_{2}\right)}{2\nu\mu_{2}^{3/2}}\\
\gamma_{2} & = & \frac{-6\mu^{4}\nu+\left(8\nu-2\right)\mu^{2}-2\nu+1}{\nu\mu_{2}^{2}}\end{eqnarray*}
Implementation: scipy.stats.nakagami