SciPy

This is documentation for an old release of SciPy (version 1.3.3). Read this page in the documentation of the latest stable release (version 1.15.0).

Inverted Gamma Distribution

Special case of the generalized Gamma distribution with \(c=-1\) and \(a>0\) and support \(x\geq0\).

\begin{eqnarray*} f\left(x;a\right) & = & \frac{x^{-a-1}}{\Gamma\left(a\right)}\exp\left(-\frac{1}{x}\right)\\ F\left(x;a\right) & = & \frac{\Gamma\left(a,\frac{1}{x}\right)}{\Gamma\left(a\right)}\\ G\left(q;a\right) & = & \left\{ \Gamma^{-1}\left(a,\Gamma\left(a\right)q\right)\right\} ^{-1}\end{eqnarray*}
\[\mu_{n}^{\prime}=\frac{\Gamma\left(a-n\right)}{\Gamma\left(a\right)}\quad a>n\]
\begin{eqnarray*} \mu & = & \frac{1}{a-1}\quad a>1\\ \mu_{2} & = & \frac{1}{\left(a-2\right)\left(a-1\right)}-\mu^{2}\quad a>2\\ \gamma_{1} & = & \frac{\frac{1}{\left(a-3\right)\left(a-2\right)\left(a-1\right)}-3\mu\mu_{2}-\mu^{3}}{\mu_{2}^{3/2}}\\ \gamma_{2} & = & \frac{\frac{1}{\left(a-4\right)\left(a-3\right)\left(a-2\right)\left(a-1\right)}-4\mu\mu_{3}-6\mu^{2}\mu_{2}-\mu^{4}}{\mu_{2}^{2}}-3\end{eqnarray*}
\[m_{d}=\frac{1}{a+1}\]
\[h\left[X\right]=a-\left(a+1\right)\psi\left(a\right)+\log\Gamma\left(a\right).\]

where \(\Psi\) is the digamma function \(\psi(z) = \frac{d}{dz} \log(\Gamma(z))\).

Implementation: scipy.stats.invgamma

Previous topic

Gauss Hypergeometric Distribution

Next topic

Inverse Normal (Inverse Gaussian) Distribution