This is documentation for an old release of SciPy (version 1.3.3). Read this page in the documentation of the latest stable release (version 1.15.0).
Inverted Gamma Distribution¶
Special case of the generalized Gamma distribution with \(c=-1\) and \(a>0\) and support \(x\geq0\).
\begin{eqnarray*} f\left(x;a\right) & = & \frac{x^{-a-1}}{\Gamma\left(a\right)}\exp\left(-\frac{1}{x}\right)\\
F\left(x;a\right) & = & \frac{\Gamma\left(a,\frac{1}{x}\right)}{\Gamma\left(a\right)}\\
G\left(q;a\right) & = & \left\{ \Gamma^{-1}\left(a,\Gamma\left(a\right)q\right)\right\} ^{-1}\end{eqnarray*}
\[\mu_{n}^{\prime}=\frac{\Gamma\left(a-n\right)}{\Gamma\left(a\right)}\quad a>n\]
\begin{eqnarray*} \mu & = & \frac{1}{a-1}\quad a>1\\
\mu_{2} & = & \frac{1}{\left(a-2\right)\left(a-1\right)}-\mu^{2}\quad a>2\\
\gamma_{1} & = & \frac{\frac{1}{\left(a-3\right)\left(a-2\right)\left(a-1\right)}-3\mu\mu_{2}-\mu^{3}}{\mu_{2}^{3/2}}\\
\gamma_{2} & = & \frac{\frac{1}{\left(a-4\right)\left(a-3\right)\left(a-2\right)\left(a-1\right)}-4\mu\mu_{3}-6\mu^{2}\mu_{2}-\mu^{4}}{\mu_{2}^{2}}-3\end{eqnarray*}
\[m_{d}=\frac{1}{a+1}\]
\[h\left[X\right]=a-\left(a+1\right)\psi\left(a\right)+\log\Gamma\left(a\right).\]
where \(\Psi\) is the digamma function \(\psi(z) = \frac{d}{dz} \log(\Gamma(z))\).
Implementation: scipy.stats.invgamma