SciPy

This is documentation for an old release of SciPy (version 1.3.3). Read this page in the documentation of the latest stable release (version 1.15.1).

Hyperbolic Secant Distribution

Related to the logistic distribution and used in lifetime analysis. Standard form is (defined over all \(x\) )

\begin{eqnarray*} f\left(x\right) & = & \frac{1}{\pi}\mathrm{sech}\left(x\right)\\ F\left(x\right) & = & \frac{2}{\pi}\arctan\left(e^{x}\right)\\ G\left(q\right) & = & \log\left(\tan\left(\frac{\pi}{2}q\right)\right)\end{eqnarray*}
\[M\left(t\right)=\sec\left(\frac{\pi}{2}t\right)\]
\begin{eqnarray*} \mu_{n}^{\prime} & = & \frac{1+\left(-1\right)^{n}}{2\pi2^{2n}}n!\left[\zeta\left(n+1,\frac{1}{4}\right)-\zeta\left(n+1,\frac{3}{4}\right)\right]\\ & = & \left\{ \begin{array}{cc} 0 & n \text{ odd}\\ C_{n/2}\frac{\pi^{n}}{2^{n}} & n \text{ even} \end{array} \right.\end{eqnarray*}

where \(C_{m}\) is an integer given by

\begin{eqnarray*} C_{m} & = & \frac{\left(2m\right)!\left[\zeta\left(2m+1,\frac{1}{4}\right)-\zeta\left(2m+1,\frac{3}{4}\right)\right]}{\pi^{2m+1}2^{2m}}\\ & = & 4\left(-1\right)^{m-1}\frac{16^{m}}{2m+1}B_{2m+1}\left(\frac{1}{4}\right)\end{eqnarray*}

where \(B_{2m+1}\left(\frac{1}{4}\right)\) is the Bernoulli polynomial of order \(2m+1\) evaluated at \(1/4.\) Thus

\[\begin{split}\mu_{n}^{\prime}=\left\{ \begin{array}{cc} 0 & n \text{ odd}\\ 4\left(-1\right)^{n/2-1}\frac{\left(2\pi\right)^{n}}{n+1}B_{n+1}\left(\frac{1}{4}\right) & n \text{ even} \end{array} \right.\end{split}\]
\begin{eqnarray*} m_{d}=m_{n}=\mu & = & 0\\ \mu_{2} & = & \frac{\pi^{2}}{4}\\ \gamma_{1} & = & 0\\ \gamma_{2} & = & 2\end{eqnarray*}
\[h\left[X\right]=\log\left(2\pi\right).\]

Implementation: scipy.stats.hypsecant

Previous topic

Half-Logistic Distribution

Next topic

Gauss Hypergeometric Distribution