SciPy

This is documentation for an old release of SciPy (version 1.3.3). Search for this page in the documentation of the latest stable release (version 1.15.1).

Generalized Extreme Value Distribution

Extreme value distributions with one shape parameter \(c\).

If \(c>0\), the support is \(-\infty<x\leq1/c.\) If \(c<0\), the support is \(\frac{1}{c}\leq x<\infty.\)

\begin{eqnarray*} f\left(x;c\right) & = & \exp\left(-\left(1-cx\right)^{1/c}\right)\left(1-cx\right)^{1/c-1}\\ F\left(x;c\right) & = & \exp\left(-\left(1-cx\right)^{1/c}\right)\\ G\left(q;c\right) & = & \frac{1}{c}\left(1-\left(-\log q\right)^{c}\right)\end{eqnarray*}
\[\mu_{n}^{\prime}=\frac{1}{c^{n}} \sum_{k=0}^{n} \binom{n}{k} \left(-1\right)^{k}\Gamma\left(ck+1\right)\quad\text{if } cn>-1\]

So,

\begin{eqnarray*} \mu_{1}^{\prime} & = & \frac{1}{c}\left(1-\Gamma\left(1+c\right)\right)\quad c>-1\\ \mu_{2}^{\prime} & = & \frac{1}{c^{2}}\left(1-2\Gamma\left(1+c\right)+\Gamma\left(1+2c\right)\right)\quad c>-\frac{1}{2}\\ \mu_{3}^{\prime} & = & \frac{1}{c^{3}}\left(1-3\Gamma\left(1+c\right)+3\Gamma\left(1+2c\right)-\Gamma\left(1+3c\right)\right)\quad c>-\frac{1}{3}\\ \mu_{4}^{\prime} & = & \frac{1}{c^{4}}\left(1-4\Gamma\left(1+c\right)+6\Gamma\left(1+2c\right)-4\Gamma\left(1+3c\right)+\Gamma\left(1+4c\right)\right)\quad c>-\frac{1}{4}\end{eqnarray*}

For \(c=0\) the distribution is the same as the (left-skewed) Gumbel distribution, and the support is \(\mathbb{R}\).

\begin{eqnarray*} f\left(x;0\right) & = & \exp\left(-e^{-x}\right)e^{-x}\\ F\left(x;0\right) & = & \exp\left(-e^{-x}\right)\\ G\left(q;0\right) & = & -\log\left(-\log q\right)\end{eqnarray*}
\begin{eqnarray*} \mu & = & \gamma=-\psi_{0}\left(1\right)\\ \mu_{2} & = & \frac{\pi^{2}}{6}\\ \gamma_{1} & = & \frac{12\sqrt{6}}{\pi^{3}}\zeta\left(3\right)\\ \gamma_{2} & = & \frac{12}{5}\end{eqnarray*}

Implementation: scipy.stats.genextreme

Previous topic

Generalized Exponential Distribution

Next topic

Generalized Gamma Distribution