SciPy 0.10.0 Release Notes¶
Contents
SciPy 0.10.0 is the culmination of 8 months of hard work. It contains many new features, numerous bug-fixes, improved test coverage and better documentation. There have been a limited number of deprecations and backwards-incompatible changes in this release, which are documented below. All users are encouraged to upgrade to this release, as there are a large number of bug-fixes and optimizations. Moreover, our development attention will now shift to bug-fix releases on the 0.10.x branch, and on adding new features on the development master branch.
Release highlights:
Support for Bento as optional build system.
Support for generalized eigenvalue problems, and all shift-invert modes available in ARPACK.
This release requires Python 2.4-2.7 or 3.1- and NumPy 1.5 or greater.
New features¶
Bento: new optional build system¶
Scipy can now be built with Bento. Bento has some nice features like parallel builds and partial rebuilds, that are not possible with the default build system (distutils). For usage instructions see BENTO_BUILD.txt in the scipy top-level directory.
Currently Scipy has three build systems, distutils, numscons and bento. Numscons is deprecated and is planned and will likely be removed in the next release.
Generalized and shift-invert eigenvalue problems in scipy.sparse.linalg
¶
The sparse eigenvalue problem solver functions
scipy.sparse.eigs/eigh
now support generalized eigenvalue
problems, and all shift-invert modes available in ARPACK.
Discrete-Time Linear Systems (scipy.signal
)¶
Support for simulating discrete-time linear systems, including
scipy.signal.dlsim
, scipy.signal.dimpulse
, and scipy.signal.dstep
,
has been added to SciPy. Conversion of linear systems from continuous-time to
discrete-time representations is also present via the
scipy.signal.cont2discrete
function.
Enhancements to scipy.signal
¶
A Lomb-Scargle periodogram can now be computed with the new function
scipy.signal.lombscargle
.
The forward-backward filter function scipy.signal.filtfilt
can now
filter the data in a given axis of an n-dimensional numpy array.
(Previously it only handled a 1-dimensional array.) Options have been
added to allow more control over how the data is extended before filtering.
FIR filter design with scipy.signal.firwin2
now has options to create
filters of type III (zero at zero and Nyquist frequencies) and IV (zero at zero
frequency).
Additional decomposition options (scipy.linalg
)¶
A sort keyword has been added to the Schur decomposition routine
(scipy.linalg.schur
) to allow the sorting of eigenvalues in
the resultant Schur form.
Additional special matrices (scipy.linalg
)¶
The functions hilbert
and invhilbert
were added to scipy.linalg
.
Enhancements to scipy.stats
¶
The one-sided form of Fisher’s exact test is now also implemented in
stats.fisher_exact
.The function
stats.chi2_contingency
for computing the chi-square test of independence of factors in a contingency table has been added, along with the related utility functionsstats.contingency.margins
andstats.contingency.expected_freq
.
Enhancements to scipy.special
¶
The functions logit(p) = log(p/(1-p))
and expit(x) = 1/(1+exp(-x))
have been implemented as
scipy.special.logit
and scipy.special.expit
respectively.
Basic support for Harwell-Boeing file format for sparse matrices¶
Both read and write are support through a simple function-based API, as well as a more complete API to control number format. The functions may be found in scipy.sparse.io.
The following features are supported:
Read and write sparse matrices in the CSC format
Only real, symmetric, assembled matrix are supported (RUA format)
Deprecated features¶
scipy.maxentropy
¶
The maxentropy module is unmaintained, rarely used and has not been functioning
well for several releases. Therefore it has been deprecated for this release,
and will be removed for scipy 0.11. Logistic regression in scikits.learn is a
good alternative for this functionality. The scipy.maxentropy.logsumexp
function has been moved to scipy.misc
.
scipy.lib.blas
¶
There are similar BLAS wrappers in scipy.linalg
and scipy.lib
. These
have now been consolidated as scipy.linalg.blas
, and scipy.lib.blas
is
deprecated.
Numscons build system¶
The numscons build system is being replaced by Bento, and will be removed in one of the next scipy releases.
Backwards-incompatible changes¶
The deprecated name invnorm was removed from scipy.stats.distributions
,
this distribution is available as invgauss.
The following deprecated nonlinear solvers from scipy.optimize
have been
removed:
- ``broyden_modified`` (bad performance)
- ``broyden1_modified`` (bad performance)
- ``broyden_generalized`` (equivalent to ``anderson``)
- ``anderson2`` (equivalent to ``anderson``)
- ``broyden3`` (obsoleted by new limited-memory broyden methods)
- ``vackar`` (renamed to ``diagbroyden``)
Other changes¶
scipy.constants
has been updated with the CODATA 2010 constants.
__all__
dicts have been added to all modules, which has cleaned up the
namespaces (particularly useful for interactive work).
An API section has been added to the documentation, giving recommended import guidelines and specifying which submodules are public and which aren’t.
Authors¶
This release contains work by the following people (contributed at least one patch to this release, names in alphabetical order):
Jeff Armstrong +
Matthew Brett
Lars Buitinck +
David Cournapeau
FI$H 2000 +
Michael McNeil Forbes +
Matty G +
Christoph Gohlke
Ralf Gommers
Yaroslav Halchenko
Charles Harris
Thouis (Ray) Jones +
Chris Jordan-Squire +
Robert Kern
Chris Lasher +
Wes McKinney +
Travis Oliphant
Fabian Pedregosa
Josef Perktold
Thomas Robitaille +
Pim Schellart +
Anthony Scopatz +
Skipper Seabold +
Fazlul Shahriar +
David Simcha +
Scott Sinclair +
Andrey Smirnov +
Collin RM Stocks +
Martin Teichmann +
Jake Vanderplas +
Gaël Varoquaux +
Pauli Virtanen
Stefan van der Walt
Warren Weckesser
Mark Wiebe +
A total of 35 people contributed to this release. People with a “+” by their names contributed a patch for the first time.