SciPy

minimize(method=’trust-exact’)

scipy.optimize.minimize(fun, x0, args=(), method='trust-exact', jac=None, hess=None, tol=None, callback=None, options={})

Minimization of scalar function of one or more variables using a nearly exact trust-region algorithm.

See also

For documentation for the rest of the parameters, see scipy.optimize.minimize

Options
initial_tr_radiusfloat

Initial trust-region radius.

max_tr_radiusfloat

Maximum value of the trust-region radius. No steps that are longer than this value will be proposed.

etafloat

Trust region related acceptance stringency for proposed steps.

gtolfloat

Gradient norm must be less than gtol before successful termination.

Previous topic

minimize(method=’trust-krylov’)

Next topic

scipy.optimize.NonlinearConstraint