SciPy

scipy.stats.mode

scipy.stats.mode(a, axis=0, nan_policy='propagate')[source]

Return an array of the modal (most common) value in the passed array.

If there is more than one such value, only the smallest is returned. The bin-count for the modal bins is also returned.

Parameters
aarray_like

n-dimensional array of which to find mode(s).

axisint or None, optional

Axis along which to operate. Default is 0. If None, compute over the whole array a.

nan_policy{‘propagate’, ‘raise’, ‘omit’}, optional

Defines how to handle when input contains nan. ‘propagate’ returns nan, ‘raise’ throws an error, ‘omit’ performs the calculations ignoring nan values. Default is ‘propagate’.

Returns
modendarray

Array of modal values.

countndarray

Array of counts for each mode.

Examples

>>> a = np.array([[6, 8, 3, 0],
...               [3, 2, 1, 7],
...               [8, 1, 8, 4],
...               [5, 3, 0, 5],
...               [4, 7, 5, 9]])
>>> from scipy import stats
>>> stats.mode(a)
(array([[3, 1, 0, 0]]), array([[1, 1, 1, 1]]))

To get mode of whole array, specify axis=None:

>>> stats.mode(a, axis=None)
(array([3]), array([3]))

Previous topic

scipy.stats.kurtosis

Next topic

scipy.stats.moment