SciPy

scipy.special.jacobi

scipy.special.jacobi(n, alpha, beta, monic=False)[source]

Jacobi polynomial.

Defined to be the solution of

\[(1 - x^2)\frac{d^2}{dx^2}P_n^{(\alpha, \beta)} + (\beta - \alpha - (\alpha + \beta + 2)x) \frac{d}{dx}P_n^{(\alpha, \beta)} + n(n + \alpha + \beta + 1)P_n^{(\alpha, \beta)} = 0\]

for \(\alpha, \beta > -1\); \(P_n^{(\alpha, \beta)}\) is a polynomial of degree \(n\).

Parameters
nint

Degree of the polynomial.

alphafloat

Parameter, must be greater than -1.

betafloat

Parameter, must be greater than -1.

monicbool, optional

If True, scale the leading coefficient to be 1. Default is False.

Returns
Porthopoly1d

Jacobi polynomial.

Notes

For fixed \(\alpha, \beta\), the polynomials \(P_n^{(\alpha, \beta)}\) are orthogonal over \([-1, 1]\) with weight function \((1 - x)^\alpha(1 + x)^\beta\).

Previous topic

scipy.special.chebys

Next topic

scipy.special.laguerre