SciPy

scipy.special.gegenbauer

scipy.special.gegenbauer(n, alpha, monic=False)[source]

Gegenbauer (ultraspherical) polynomial.

Defined to be the solution of

\[(1 - x^2)\frac{d^2}{dx^2}C_n^{(\alpha)} - (2\alpha + 1)x\frac{d}{dx}C_n^{(\alpha)} + n(n + 2\alpha)C_n^{(\alpha)} = 0\]

for \(\alpha > -1/2\); \(C_n^{(\alpha)}\) is a polynomial of degree \(n\).

Parameters
nint

Degree of the polynomial.

monicbool, optional

If True, scale the leading coefficient to be 1. Default is False.

Returns
Corthopoly1d

Gegenbauer polynomial.

Notes

The polynomials \(C_n^{(\alpha)}\) are orthogonal over \([-1,1]\) with weight function \((1 - x^2)^{(\alpha - 1/2)}\).

Previous topic

scipy.special.hermitenorm

Next topic

scipy.special.sh_legendre