scipy.sparse.linalg.expm_multiply¶
-
scipy.sparse.linalg.
expm_multiply
(A, B, start=None, stop=None, num=None, endpoint=None)[source]¶ Compute the action of the matrix exponential of A on B.
- Parameters
- Atransposable linear operator
The operator whose exponential is of interest.
- Bndarray
The matrix or vector to be multiplied by the matrix exponential of A.
- startscalar, optional
The starting time point of the sequence.
- stopscalar, optional
The end time point of the sequence, unless endpoint is set to False. In that case, the sequence consists of all but the last of
num + 1
evenly spaced time points, so that stop is excluded. Note that the step size changes when endpoint is False.- numint, optional
Number of time points to use.
- endpointbool, optional
If True, stop is the last time point. Otherwise, it is not included.
- Returns
- expm_A_Bndarray
The result of the action \(e^{t_k A} B\).
Notes
The optional arguments defining the sequence of evenly spaced time points are compatible with the arguments of
numpy.linspace
.The output ndarray shape is somewhat complicated so I explain it here. The ndim of the output could be either 1, 2, or 3. It would be 1 if you are computing the expm action on a single vector at a single time point. It would be 2 if you are computing the expm action on a vector at multiple time points, or if you are computing the expm action on a matrix at a single time point. It would be 3 if you want the action on a matrix with multiple columns at multiple time points. If multiple time points are requested, expm_A_B[0] will always be the action of the expm at the first time point, regardless of whether the action is on a vector or a matrix.
References
- 1
Awad H. Al-Mohy and Nicholas J. Higham (2011) “Computing the Action of the Matrix Exponential, with an Application to Exponential Integrators.” SIAM Journal on Scientific Computing, 33 (2). pp. 488-511. ISSN 1064-8275 http://eprints.ma.man.ac.uk/1591/
- 2
Nicholas J. Higham and Awad H. Al-Mohy (2010) “Computing Matrix Functions.” Acta Numerica, 19. 159-208. ISSN 0962-4929 http://eprints.ma.man.ac.uk/1451/
Examples
>>> from scipy.sparse import csc_matrix >>> from scipy.sparse.linalg import expm, expm_multiply >>> A = csc_matrix([[1, 0], [0, 1]]) >>> A.todense() matrix([[1, 0], [0, 1]], dtype=int64) >>> B = np.array([np.exp(-1.), np.exp(-2.)]) >>> B array([ 0.36787944, 0.13533528]) >>> expm_multiply(A, B, start=1, stop=2, num=3, endpoint=True) array([[ 1. , 0.36787944], [ 1.64872127, 0.60653066], [ 2.71828183, 1. ]]) >>> expm(A).dot(B) # Verify 1st timestep array([ 1. , 0.36787944]) >>> expm(1.5*A).dot(B) # Verify 2nd timestep array([ 1.64872127, 0.60653066]) >>> expm(2*A).dot(B) # Verify 3rd timestep array([ 2.71828183, 1. ])