SciPy Reference Guide
Release 1.3.2

Written by the SciPy community

November 09, 2019

CONTENTS

1 Installing and upgrading 3
2 API - importing from SciPy 5
2.1 Guidelines for importing functions from SciPy o oo oo, 5
2.2 APIdefinition e e e e 6
3 Release Notes 9
3.1 SciPy 1.3.2Release NOtES o o v v i e e e e e e e e e e e 9
32 SciPy 13.1Release Notes o e e e e 11
3.3 SciPy I.3.0Release Notes o o e e e e e e e e 12
34 SciPy 1.2.1Release NOtes i it e e 26
3.5 SciPy l.2.0Release NOtes o o i it e e e 27
3.6 SciPy [.1.0Release NOteS o v i i e e e e e e e e e e e e 44
3.7 SciPy 1.O.1 Release NOtes o o v i i i e e e e e e e e e e 60
3.8 SciPy 1.0.0Release Notes o o i i i i e e e 62
39 SciPy0.19.1 Release Notes e 82
3.10 SciPy0.19.0Release Notes o i i it e e e e e 83
3.11 SciPy 0.18.1 Release NOtes o o v it e e e e e e e e e e e e e e e 101
3.12 SciPy 0.18.0 Release NOtes o v i it e e e e e e e e e e e 102
3.13 SciPy 0.17.1 Release NOtes o o o i i e e e e e e e e e e e 121
3.14 SciPy 0.17.0 Release Notes o o i e e e e e e e e 121
3.15 SciPy0.16.1 Release Notes o oo i e e 137
3.16 SciPy 0.16.0 Release NOtes o i it e e e e e e e e e e e e e 138
3.17 SciPy 0.15.1 Release NOtes o o v i i e e e e e e e e e e e e e e 154
3.18 SciPyO.15.0Release Notes o e e e 155
3.19 SciPyO.14.1 Release Notes e 170
320 SciPy0.14.0Release Notes o i i it e e 171
321 SciPy0.13.2Release NOtes oot i e e e e 182
322 SciPy 0.13.1 Release NOteS o v v i it e e e e e e e e e e e e e e e 182
323 SciPy0.13.0Release NOtes o v i i e e e e e e e e e 182
324 SciPy0.12.1 Release Notes e 189
325 SciPy0.12.0Release Notes e 190
326 SciPy0.11.0Release Notes o o i i i e 195
3.27 SciPy 0.10.1 Release NOtes o v i i e e e e e e e e e e e e e e e e 201
3.28 SciPy 0.10.0 Release NOtes o o v i i e e e e e e e e e e e e 202
329 SciPy0.9.0Release Notes e e 206
330 SciPy0.8.0Release Notes e 210
331 SciPy0.7.2Release NOtes o ittt e e e e e 214
3.32 SciPy 0.7.1 Release NOtES o v v o e e e e e e e e e e e e e e e e 214
3.33 SciPy 0.7.0 Release NOteS o o v i i e e e e e e e e e e 216

4 Tutorial 223

4.1 SciPy Tutorial o e e e e e e e e e e e e 223
4.1.1 Introduction i . e e e e e e e e e e e e e 223
4.1.2 Basicfunctions e e e e 226
4.1.3 Special functions (scipy.special) it 229
4.1.4 Integration (scipy.integrate) i e 233
4.1.5 Optimization (scipy.optimize) v v v v i v i i i e e e e e e e 244
4.1.6 Interpolation (scipy.interpolate) v v v v i it e 268
4.1.7 Fourier Transforms (scipy.fftpack). o o o it 281
4.1.8 Signal Processing (scipy.signal) i i e 291
4.1.9 Linear Algebra (scipy.linalg) o o v v v it i i i i e e e e 311
4.1.10 Sparse Eigenvalue Problems with ARPACK 324
4.1.11 Compressed Sparse Graph Routines (scipy.sparse.csgraph) 329
4.1.12 Spatial data structures and algorithms (scipy.spatial) 333
4.1.13 Statistics (scipy.stats) . . .« o i i i e e e 338
4.1.14 Multidimensional image processing (scipy.ndimage)o oo 414
4.1.15 FileIO (SCipy.-10) . o v v v i i e e e e e e e e e e e e e e e e e 440
5 Developer’s Guide 447
5.1 SciPyCodeof Conduct e 447
52 Contributing to SCiPy L e e 449
5.3 Building from sources L e e e e e e e e e e e e 456
5.4 SciPyDeveloper Guide oL e e e e e e e e 464
5.5 SciPyprojectgovernance oL e e e e 475
56 SciPyRoadmap e 479
5.7 Detailed SciPy Roadmap e 481
5.8 Toolchain Roadmap e e e e e e e e 487
6 API Reference 491
6.1 Clustering package (scipy.cluster) ittt i 491
6.2 K-means clustering and vector quantization (scipy.cluster.vq)« v . . 491
6.3 Hierarchical clustering (scipy.cluster.hierarchy). 496
6.4 Constants (SCipy.constants) vt i i i s e e e e e e e 543
6.5 Discrete Fourier transforms (scipy.fftpack) oo 0o s e 559
6.6 Integration and ODEs (scipy.integrate) v i it 584
6.7 Interpolation (scipy.interpolate) v i i i i e e e e e 639
6.8 Inputand output (SCIPY.10) « « v v v v v v e e e e e e e e e e e e e e e 742
6.9 Linearalgebra (scipy.1inalg) . . . o v v v i i it e e e e e e e e e 762
6.10 Low-level BLAS functions (scipy.linalg.blas) it 866
6.11 Low-level LAPACK functions (scipy.linalg.lapack) v v v v v v v i v v v v 930
6.12 BLAS Functions for Cython e e e e e e e 1116
6.13 LAPACK functions for Cython e e 1120
6.14 Interpolative matrix decomposition (scipy.linalg.interpolative). 1162
6.15 Miscellaneous routines (sCipy.misc) . . . o v v v v it e e e e e e 1172
6.16 Multi-dimensional image processing (scipy .ndimage)o v v vttt e 1178
6.17 Orthogonal distance regression (SCipy.odr) . « v v v v v v v v i v v i i e e e e e e e 1268
6.18 Optimization and Root Finding (scipy.optimize) oo v v i vt v v v v .. 1278
6.19 Nonlinear soIVers L e e e e e e e e e e e e e 1411
6.20 Cython Optimize Zeros APL e e 1414
6.21 Signal processing (SCipy.signal) o v v i e e e e e 1416
6.22 Sparse matrices (SCIPY.SPALSE) . v v v v v v v v v i e e e e e e e e e e e e e 1637
6.23 Sparse linear algebra (scipy.sparse.linalg) . v . v v v v v v v vt e e e e 1775
6.24 Compressed Sparse Graph Routines (scipy.sparse.csgraph) oo .. 1816
6.25 Spatial algorithms and data structures (scipy.spatial) o oo s 1843

6.26 Distance computations (scipy.spatial .distance)
6.27 Special functions (scipy.special)
6.28 Statistical functions (Scipy.stats) o o i e e e 2082
6.29 Low-level callback functions

Bibliography 2565

Index 2595

SciPy Reference Guide, Release 1.3.2

Release
1.3.2
Date
November 09, 2019

SciPy (pronounced “Sigh Pie”) is open-source software for mathematics, science, and engineering.

CONTENTS 1

SciPy Reference Guide, Release 1.3.2

2 CONTENTS

CHAPTER
ONE

INSTALLING AND UPGRADING

Information on how to install SciPy and/or the SciPy Stack (a larger set of packages for scientific computing with Python)
can be found at https://scipy.org/install.html .

It is recommended that users use a scientific Python distribution or binaries for their platform. If building from source is
required, documentation about that can be found at Building from sources.

If you already have SciPy installed and want to upgrade to a newer version, use the same install mechanism as you have
used to install SciPy before. Before upgrading to a newer version, it is recommended to check that your own code does
not use any deprecated SciPy functionality. To do so, run your code with python -Wd.

https://scipy.org/install.html

SciPy Reference Guide, Release 1.3.2

4 Chapter 1. Installing and upgrading

CHAPTER
TWO

API - IMPORTING FROM SCIPY

In Python the distinction between what is the public API of a library and what are private implementation details is
not always clear. Unlike in other languages like Java, it is possible in Python to access “private” function or objects.
Occasionally this may be convenient, but be aware that if you do so your code may break without warning in future
releases. Some widely understood rules for what is and isn’t public in Python are:

* Methods / functions / classes and module attributes whose names begin with a leading underscore are private.

« If a class name begins with a leading underscore none of its members are public, whether or not they begin with a
leading underscore.

 If a module name in a package begins with a leading underscore none of its members are public, whether or not
they begin with a leading underscore.

* If a module or package defines __all__that authoritatively defines the public interface.

* If amodule or package doesn’tdefine __all__ then all names that don’t start with a leading underscore are public.

Note: Reading the above guidelines one could draw the conclusion that every private module or object starts with an
underscore. This is not the case; the presence of underscores do mark something as private, but the absence of underscores
do not mark something as public.

In SciPy there are modules whose names don’t start with an underscore, but that should be considered private. To clarify
which modules these are we define below what the public API is for SciPy, and give some recommendations for how to
import modules/functions/objects from SciPy.

2.1 Guidelines for importing functions from SciPy

The scipy namespace itself only contains functions imported from numpy. These functions still exist for backwards
compatibility, but should be imported from numpy directly.

Everything in the namespaces of scipy submodules is public. In general, it is recommended to import functions from sub-
module namespaces. For example, the function curve_fit (defined in scipy/optimize/minpack.py) should be imported
like this:

from scipy import optimize
result = optimize.curve_fit(...)

This form of importing submodules is preferred for all submodules except scipy.io (because io is also the name of
a module in the Python stdlib):

SciPy Reference Guide, Release 1.3.2

from scipy import interpolate
from scipy import integrate
import scipy.io as spio

In some cases, the public API is one level deeper. For example the scipy.sparse.linalg module is public, and
the functions it contains are not available in the scipy.sparse namespace. Sometimes it may result in more easily
understandable code if functions are imported from one level deeper. For example, in the following it is immediately
clear that 1omax is a distribution if the second form is chosen:

first form
from scipy import stats
stats.lomax(...)

second form
from scipy.stats import distributions
distributions.lomax(...)

In that case the second form can be chosen, if it is documented in the next section that the submodule in question is public.

2.2 API definition

Every submodule listed below is public. That means that these submodules are unlikely to be renamed or changed in an
incompatible way, and if that is necessary a deprecation warning will be raised for one SciPy release before the change is
made.

* scipy.cluster
— scipy.cluster.vg
- scipy.cluster.hierarchy
* scipy.constants
* scipy.fftpack
* scipy.integrate
* scipy.interpolate
* scipy.io
— scipy.io.arff
- scipy.io.harwell_boeing
- scipy.io.idl
— scipy.io.matlab
- scipy.io.netcdf
- scipy.io.wavfile
* scipy.linalg
— scipy.linalg.blas
- scipy.linalg.cython_blas

- scipy.linalg.lapack

6 Chapter 2. API - importing from SciPy

SciPy Reference Guide, Release 1.3.2

— scipy.linalg.cython_lapack
— scipy.linalg.interpolative
* scipy.misc
* scipy.ndimage
* scipy.odr
* scipy.optimize
* scipy.signal
— scipy.signal.windows
* scipy.sparse
— scipy.sparse.linalqg
- scipy.sparse.csgraph
* scipy.spatial
— scipy.spatial.distance
— scipy.spatial.transform
* scipy.special
* scipy.stats
— scipy.stats.distributions

— scipy.stats.mstats

2.2. API definition 7

SciPy Reference Guide, Release 1.3.2

8 Chapter 2. API - importing from SciPy

CHAPTER
THREE

3.1 SciPy 1.3.2 Release Notes

RELEASE NOTES

Contents

* SciPy 1.3.2 Release Notes

— Authors

« Issues closed for 1.3.2

Pull requests for 1.3.2

SciPy 1.3.2 is a bug-fix and maintenance release that adds support for Python 3.8.

3.1.1 Authors

CJ Carey

Dany Vohl

Martin Gauch +
Ralf Gommers
Matt Haberland
Eric Larson
Nikolay Mayorov
Sam McCormack +
Andrew Nelson
Tyler Reddy

Pauli Virtanen
Huize Wang +
Warren Weckesser

Joseph Weston +

A total of 14 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

This list of names is automatically generated, and may not be fully complete.

SciPy Reference Guide, Release 1.3.2

Issues closed for 1.3.2

#4915: Bug in unique_roots in scipy.signal.signaltools.py for roots...

#5161: Optimizers reporting success when the minimum is NaN

#5546: ValueError raised if scipy.sparse.linalg.expm recieves array. ..

#10124:
#10609:
#10658:
#10695:
#10846:
#10902:
#10967:
#10976:

linprog(method="revised simplex’) doctest bug

Graph shortest path with Floyd-Warshall removes explicit zeros.

BUG: stats: Formula for the variance of the noncentral F distribution. ..
BUG: Assignation issues in csr_matrix with fancy indexing

root_scalar fails when passed a function wrapped with functools.lru_cache
CI: travis osx build failure

macOS build failure in SuperLU on maintenance/1.3.x

Typo in sp.stats.wilcoxon docstring

Pull requests for 1.3.2

#10498:
#10536:
#10671:
#10693:
#10700:
#10709:
#10756:
#10833:
#10882:
#10891:
#10906:
#10917:
#10930:
#10938:
#10943:
#10961:
#10971:
#10977:
#11025:

TST: optimize: fixed ‘linprog® ’disp”: True‘ bug

CI: add 3.8-dev to travis

BUG: stats: Fix the formula for the variance of the noncentral...
BUG: ScalarFunction stores original array

BUG: sparse: Loosen checks on sparse fancy assignment

BUG: Fix floyd_warshall to support zero-weight edges

BUG: optimize: ensure solvers exit with success=False for nan...
BUG: Fix subspace_angles for complex values

BUG: sparse/arpack: fix incorrect code for complex hermitian...
BUG: make C-implemented root finders work with functools.lru_cache
BUG: sparse/linalg: fix expm for np.matrix inputs

CI: fix travis osx CI

MAINT: Updates for 3.8

MAINT: Add Python 3.8 to pyproject.toml

BLD: update Cython version to 0.29.13

BUG: Fix signal.unique_roots

MAINT: use 3.8 stable in CI

DOC: Fix typo in sp.stats.wilcoxon docsting

Update _peak_finding.py

10

Chapter 3.

Release Notes

https://github.com/scipy/scipy/issues/4915
https://github.com/scipy/scipy/issues/5161
https://github.com/scipy/scipy/issues/5546
https://github.com/scipy/scipy/issues/10124
https://github.com/scipy/scipy/issues/10609
https://github.com/scipy/scipy/issues/10658
https://github.com/scipy/scipy/issues/10695
https://github.com/scipy/scipy/issues/10846
https://github.com/scipy/scipy/issues/10902
https://github.com/scipy/scipy/issues/10967
https://github.com/scipy/scipy/issues/10976
https://github.com/scipy/scipy/pull/10498
https://github.com/scipy/scipy/pull/10536
https://github.com/scipy/scipy/pull/10671
https://github.com/scipy/scipy/pull/10693
https://github.com/scipy/scipy/pull/10700
https://github.com/scipy/scipy/pull/10709
https://github.com/scipy/scipy/pull/10756
https://github.com/scipy/scipy/pull/10833
https://github.com/scipy/scipy/pull/10882
https://github.com/scipy/scipy/pull/10891
https://github.com/scipy/scipy/pull/10906
https://github.com/scipy/scipy/pull/10917
https://github.com/scipy/scipy/pull/10930
https://github.com/scipy/scipy/pull/10938
https://github.com/scipy/scipy/pull/10943
https://github.com/scipy/scipy/pull/10961
https://github.com/scipy/scipy/pull/10971
https://github.com/scipy/scipy/pull/10977
https://github.com/scipy/scipy/pull/11025

SciPy Reference Guide, Release 1.3.2

3.2 SciPy 1.3.1 Release Notes

Contents

* SciPy 1.3.1 Release Notes
— Authors

« Issues closed for 1.3.1

« Pull requests for 1.3.1

SciPy 1.3.1 is a bug-fix release with no new features compared to 1.3.0.

3.2.1 Authors

* Matt Haberland

* Geordie McBain
* Yu Feng

* Evgeni Burovski
* Sturla Molden
 Tapasweni Pathak
e FEric Larson

* Peter Bell

¢ Carlos Ramos Carrefio +
» Ralf Gommers

* David Hagen

* Antony Lee

* Ayappan P

e Tyler Reddy

* Pauli Virtanen

A total of 15 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
This list of names is automatically generated, and may not be fully complete.

Issues closed for 1.3.1

e #5040: BUG: Empty data handling of (c)KDTrees

e #9901: Isoda fails to detect stiff problem when called from solve_ivp

» #102006: sparse matrices indexing with scipy 1.3

e #10232: Exception in loadarff with quoted nominal attributes in scipy...

e #10292: DOC/REL: Some sections of the release notes are not nested correctly.

» #10303: BUG: optimize: linprog failing TestLinprogSimplexBland::test_unbounded_below_no_presolve_corrected

3.2. SciPy 1.3.1 Release Notes 11

https://github.com/scipy/scipy/issues/5040
https://github.com/scipy/scipy/issues/9901
https://github.com/scipy/scipy/issues/10206
https://github.com/scipy/scipy/issues/10232
https://github.com/scipy/scipy/issues/10292
https://github.com/scipy/scipy/issues/10303

SciPy Reference Guide, Release 1.3.2

* #10376:
* #10384:
* #10398:
e #10501:
o #10514:
e #10535:
o #10572:
* #10597:

TST: Travis CI fails (with pytest 5.0 ?)

CircleClI doc build failing on new warnings

Scipy 1.3.0 build broken in AIX

BUG: scipy.spatial.Halfspacelntersection works incorrectly
BUG: cKDTree GIL handling is incorrect

TST: master branch CI failures

BUG: ckdtree query_ball_point errors on discontiguous input

BUG: No warning on Pchiplnterpolator changing from bernstein base to local power base

Pull requests for 1.3.1

e #10071:
* #10196:
* #10207:
e #10233:
* #10306:
e #10309:
* #10377:
e #10379:
* #10426:
e #10431:
o #10457:
* #10503:
* #10516:
* #10520:
* #10540:
* #10573:
* #10600:

DOC: reconstruct SuperLU permutation matrices avoiding SparseEfficiency Warning
Fewer checks on xdata for curve_fit.

BUG: Compressed matrix indexing should return a scalar

Fix for ARFF reader regression (#10232)

BUG: optimize: Fix for 10303

BUG: Pass jac=None directly to Isoda

TST, MAINT: adjustments for pytest 5.0

BUG: sparse: set writeability to be forward-compatible with numpy>=1.17

MAINT: Fix doc build bugs

Update numpy version for AIX

BUG: Allow ckdtree to accept empty data input

BUG: spatial/qghull: get Halfspacelntersection.dual_points from the correct array
BUG: Use nogil contexts in cKDTree

DOC: Proper .rst formatting for deprecated features and Backwards incompatible changes
MAINT: Fix Travis and Circle

BUG: Fix query_ball_point with discontiguous input

BUG: interpolate: fix broken conversions between PPoly/BPoly objects

3.3 SciPy 1.3.0 Release Notes

Contents

* SciPy 1.3.0 Release Notes

— Highlights of this release

— New features

* scipy.interpolate improvements

12

Chapter 3. Release Notes

https://github.com/scipy/scipy/issues/10376
https://github.com/scipy/scipy/issues/10384
https://github.com/scipy/scipy/issues/10398
https://github.com/scipy/scipy/issues/10501
https://github.com/scipy/scipy/issues/10514
https://github.com/scipy/scipy/issues/10535
https://github.com/scipy/scipy/issues/10572
https://github.com/scipy/scipy/issues/10597
https://github.com/scipy/scipy/pull/10071
https://github.com/scipy/scipy/pull/10196
https://github.com/scipy/scipy/pull/10207
https://github.com/scipy/scipy/pull/10233
https://github.com/scipy/scipy/pull/10306
https://github.com/scipy/scipy/pull/10309
https://github.com/scipy/scipy/pull/10377
https://github.com/scipy/scipy/pull/10379
https://github.com/scipy/scipy/pull/10426
https://github.com/scipy/scipy/pull/10431
https://github.com/scipy/scipy/pull/10457
https://github.com/scipy/scipy/pull/10503
https://github.com/scipy/scipy/pull/10516
https://github.com/scipy/scipy/pull/10520
https://github.com/scipy/scipy/pull/10540
https://github.com/scipy/scipy/pull/10573
https://github.com/scipy/scipy/pull/10600

SciPy Reference Guide, Release 1.3.2

* scipy.io improvements
* scipy.linalg improvements
* scipy.ndimage improvements
* scipy.optimize improvements
* scipy.signal improvements
* SCcilpy.sparse improvements
* scipy.spatial improvements
* scipy.stats improvements

— Backwards incompatible changes
* scipy.interpolate changes
#* scipy.linalg changes
* scipy.optimize changes
* scipy.stats changes

— Other changes

— Authors

« Issues closed for 1.3.0

« Pull requests for 1.3.0

SciPy 1.3.0 is the culmination of 5 months of hard work. It contains many new features, numerous bug-fixes, improved
test coverage and better documentation. There have been some API changes in this release, which are documented below.
All users are encouraged to upgrade to this release, as there are a large number of bug-fixes and optimizations. Before
upgrading, we recommend that users check that their own code does not use deprecated SciPy functionality (to do so, run
your code with python -Wd and check for DeprecationWarning s). Our development attention will now shift to
bug-fix releases on the 1.3.x branch, and on adding new features on the master branch.

This release requires Python 3.5+ and NumPy 1.13.3 or greater.

For running on PyPy, PyPy3 6.0+ and NumPy 1.15.0 are required.

3.3.1 Highlights of this release

e Three new stats functions, a rewrite of pearsonr, and an exact computation of the Kolmogorov-Smirnov
two-sample test
* A new Cython API for bounded scalar-function root-finders in scipy.optimize

 Substantial CSR and CSC sparse matrix indexing performance improvements

* Added support for interpolation of rotations with continuous angular rate and acceleration in RotationSpline

3.3.2 New features
scipy.interpolate improvements

A new class CubicHermiteSpline is introduced. It is a piecewise-cubic interpolator which matches ob-
served values and first derivatives. Existing cubic interpolators CubicSpline, PchipInterpolator and

3.3. SciPy 1.3.0 Release Notes 13

SciPy Reference Guide, Release 1.3.2

AkimalDInterpolator were made subclasses of CubicHermiteSpline.

scipy.io improvements

For the Attribute-Relation File Format (ARFF) scipy.io.arff.loadarff now supports relational attributes.

scipy.io.mmread can now parse Matrix Market format files with empty lines.

scipy.linalg improvements
Added wrappers for ? syconv routines, which convert a symmetric matrix given by a triangular matrix factorization into
two matrices and vice versa.

scipy.linalg.clarkson_woodruff transform now uses an algorithm that leverages sparsity. This may
provide a 60-90 percent speedup for dense input matrices. Truly sparse input matrices should also benefit from the
improved sketch algorithm, which now correctly runs in O (nnz (&)) time.

Added new functions to calculate symmetric Fiedler matrices and Fiedler companion matrices, named scipy.linalg.
fiedlerand scipy.linalg. fiedler_companion, respectively. These may be used for root finding.

scipy.ndimage improvements

Gaussian filter performances may improve by an order of magnitude in some cases, thanks to removal of a dependence
on np.polynomial. This may impact scipy.ndimage.gaussian_filter for example.

scipy.optimize improvements

The scipy.optimize.brute minimizer obtained a new keyword workers, which can be used to parallelize com-
putation.

A Cython API for bounded scalar-function root-finders in scipy.optimize is available in a new module scipy.
optimize.cython_optimize via cimport. This API may be used with nogil and prange to loop over an
array of function arguments to solve for an array of roots more quickly than with pure Python.

'interior-point' is now the default method for 1inprog, and 'interior—-point' now uses SuiteSparse

for sparse problems when the required scikits (scikit-umfpack and scikit-sparse) are available. On benchmark problems
(gh-10026), execution time reductions by factors of 2-3 were typical. Also, a new method="'revised simplex'
has been added. It is not as fast or robustasmethod="'interior-point ', butitis a faster, more robust, and equally
accurate substitute for the legacy method="simplex".

differential_evolution can now use a Bounds class to specify the bounds for the optimizing argument of a
function.

scipy.optimize.dual_annealing performance improvements related to vectorisation of some internal code.

scipy.signal improvements

Two additional methods of discretization are now supported by scipy.signal.cont2discrete: impulse and
foh.

scipy.signal. firlsnow uses faster solvers

scipy.signal.detrendnow has a lower physical memory footprint in some cases, which may be leveraged using
the new overwrite_data keyword argument

14 Chapter 3. Release Notes

SciPy Reference Guide, Release 1.3.2

scipy.signal.firwin pass_zero argument now accepts new string arguments that allow specification of the
desired filter type: 'bandpass’', 'lowpass', 'highpass', and 'bandstop’

scipy.signal.sosfilt may have improved performance due to lower retention of the global interpreter lock
(GIL) in algorithm

scipy.sparse improvements

A new keyword was added to csgraph.dijsktra that allows users to query the shortest path to ANY of the passed
in indices, as opposed to the shortest path to EVERY passed index.

scipy.sparse.linalg.lsmr performance has been improved by roughly 10 percent on large problems

Improved performance and reduced physical memory footprint of the algorithm used by scipy.sparse.linalg.
lobpcg

CSR and CSC sparse matrix fancy indexing performance has been improved substantially

scipy.spatial improvements

scipy.spatial.ConvexHull now has a good attribute that can be used alongsize the QGn Qhull options to
determine which external facets of a convex hull are visible from an external query point.

scipy.spatial.cKDTree.query_ball_point has been modernized to use some newer Cython features, in-
cluding GIL handling and exception translation. An issue with return_sorted=True and scalar queries was fixed,
and a new mode named return_length was added. return_length only computes the length of the returned
indices list instead of allocating the array every time.

scipy.spatial.transform.RotationSpline has been added to enable interpolation of rotations with con-
tinuous angular rates and acceleration

scipy.stats improvements

Added a new function to compute the Epps-Singleton test statistic, scipy.stats.epps_singleton_2samp,
which can be applied to continuous and discrete distributions.

New functions scipy.stats.median_absolute_deviation and scipy.stats.gstd (geometric stan-
dard deviation) were added. The scipy.stats.combine_ pvalues method now supports pearson, tippett
and mudholkar_george pvalue combination methods.

The scipy.stats.ortho_group and scipy.stats.special_ortho_group rvs (dim) functions’ al-
gorithms were updated from a O (dim”~4) implementation to a O (dim”~3) which gives large speed improvements for
dim>100.

A rewrite of scipy.stats.pearsonr touse a more robust algorithm, provide meaningful exceptions and warnings
on potentially pathological input, and fix at least five separate reported issues in the original implementation.

Improved the precision of hypergeom. logcdf and hypergeom. logsft.

Added exact computation for Kolmogorov-Smirnov (KS) two-sample test, replacing the previously approximate compu-
tation for the two-sided test stats.ks_2samp. Also added a one-sided, two-sample KS test, and a keyword alternative
to stats.ks_2samp.

3.3. SciPy 1.3.0 Release Notes 15

SciPy Reference Guide, Release 1.3.2

3.3.3 Backwards incompatible changes

scipy.interpolate changes

Functions from scipy.interpolate (spleval, spline, splmake, and spltopp) and functions from
scipy.misc (bytescale, fromimage, imfilter, imread, imresize, imrotate, imsave, imshow,
toimage)have been removed. The former set has been deprecated since v0.19.0 and the latter has been deprecated since
v1.0.0. Similarly, aliases from scipy.misc (comb, factorial, factorial?2, factorialk, logsumexp,
pade, info, source, who) which have been deprecated since v1.0.0 are removed. SciPy documentation for v1.1.0
can be used to track the new import locations for the relocated functions.

scipy.linalg changes

For pinv, pinv2, and pinvh, the default cutoff values are changed for consistency (see the docs for the actual values).

scipy.optimize changes

The default method for 1inprogisnow 'interior-point'. The method’s robustness and speed come at a cost:
solutions may not be accurate to machine precision or correspond with a vertex of the polytope defined by the constraints.
To revert to the original simplex method, include the argument method="simplex"'.

scipy.stats changes

Previously, ks_2samp (datal, data2) would run a two-sided test and return the approximated p-value. The new
signature, ks_2samp (datal, data2, alternative="two-sided", method="auto"), still runs the
two-sided test by default but returns the exact p-value for small samples and the approximated value for large samples.
method="asymp" would be equivalent to the old version but auto is the better choice.

3.3.4 Other changes

Our tutorial has been expanded with a new section on global optimizers
There has been a rework of the stats.distributions tutorials.

scipy.optimize now correctly sets the convergence flag of the result to CONVERR, a convergence error, for bounded
scalar-function root-finders if the maximum iterations has been exceeded, disp is false, and full_output is true.

scipy.optimize.curve_fit nolonger failsif xdata and ydata dtypes differ; they are both now automatically
castto float64.

scipy.ndimage functions including binary_erosion, binary_closing, and binary_dilation now
require an integer value for the number of iterations, which alleviates a number of reported issues.

Fixed normal approximation in case zero_method == "pratt"in scipy.stats.wilcoxon.

Fixes for incorrect probabilities, broadcasting issues and thread-safety related to stats distributions setting member vari-
ables inside _argcheck ().

scipy.optimize.newton now correctly raises a Runt imeError, when default arguments are used, in the case
that a derivative of value zero is obtained, which is a special case of failing to converge.

A draft toolchain roadmap is now available, laying out a compatibility plan including Python versions, C standards, and
NumPy versions.

16 Chapter 3. Release Notes

https://docs.scipy.org/doc/scipy-1.1.0/reference/misc.html

SciPy Reference Guide, Release 1.3.2

3.3.5 Authors

* ananyashreyjain +

* ApamNapat +

* Scott Calabrese Barton +
* Christoph Baumgarten

* Peter Bell +

* Jacob Blomgren +

* Doctor Bob +

* Mana Borwornpadungkitti +
* Matthew Brett

¢ Evgeni Burovski

¢ CJ Carey

* Vega Theil Carstensen +
* Robert Cimrman

¢ Forrest Collman +

¢ Pietro Cottone +

e David +

¢ Idan David +

¢ Christoph Deil

¢ Dieter Werthmiiller

* Conner DiPaolo +

* Dowon

* Michael Dunphy +

* Peter Andreas Entschev +
* Gokgen Eraslan +

¢ Johann Faouzi +

* Yu Feng

* Piotr Figiel +

¢ Matthew H Flamm
 Franz Forstmayr +

¢ Christoph Gohlke

* Richard Janis Goldschmidt +
¢ Ralf Gommers

 Lars Grueter

* Sylvain Gubian

* Matt Haberland

3.3. SciPy 1.3.0 Release Notes 17

SciPy Reference Guide, Release 1.3.2

Yaroslav Halchenko
Charles Harris
Lindsey Hiltner
JakobStruye +

He Jia +

Jwink3101 +

Greg Kiar +

Julius Bier Kirkegaard
John Kirkham +
Thomas Kluyver
Vladimir Korolev +
Joseph Kuo +
Michael Lamparski +
Eric Larson

Denis Laxalde
Katrin Leinweber
Jesse Livezey
ludcila +

Dhruv Madeka +
Magnus +

Nikolay Mayorov
Mark Mikofski
Jarrod Millman
Markus Mohrhard +
Eric Moore
Andrew Nelson
Aki Nishimura +
OGordon100 +
Petar Mlinari¢ +
Stefan Peterson
Matti Picus +

Ilhan Polat

Aaron Pries +
Matteo Ravasi +
Tyler Reddy

Ashton Reimer +

18

Chapter 3. Release Notes

SciPy Reference Guide, Release 1.3.2

Joscha Reimer
rfezzani +

Riadh +

Lucas Roberts
Heshy Roskes +
Mirko Scholz +
Taylor D. Scott +
Srikrishna Sekhar +
Kevin Sheppard +
Sourav Singh
skjerns +

Kai Striega
SyedSaif AliAlvi +
Gopi Manohar T +
Albert Thomas +
Timon +

Paul van Mulbregt
Jacob Vanderplas
Daniel Vargas +
Pauli Virtanen
VNMabus +
Stefan van der Walt
Warren Weckesser
Josh Wilson

Nate Yoder +

Roman Yurchak

A total of 97 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
This list of names is automatically generated, and may not be fully complete.

Issues closed for 1.3.0

e #1320: scipy.stats.distribution: problem with self.a, self.b if they...

#2002: members set in scipy.stats.distributions.##._argcheck (Trac #1477)

#2823: distribution methods add tmp
#3220: Scipy.opimize.fmin_powell direc argument syntax unclear
#3728: scipy.stats.pearsonr: possible bug with zero variance input

#6805: error-in-scipy-wilcoxon-signed-rank-test-for-equal-series

3.3. SciPy 1.3.0 Release Notes

19

https://github.com/scipy/scipy/issues/1320
https://github.com/scipy/scipy/issues/2002
https://github.com/scipy/scipy/issues/2823
https://github.com/scipy/scipy/issues/3220
https://github.com/scipy/scipy/issues/3728
https://github.com/scipy/scipy/issues/6805

SciPy Reference Guide, Release 1.3.2

#6873

#7117:
#7632:
#7730:
#7933:
#8033:
#8600:
#8692:
#8734:

#8861
#8915

#8980:
#9226:
#9254
#9308:
#9353:
#9359:
#9381:
#9406:
#9437:
#9518:
#9551:
#9564:
#9565:
#9581:
#9587:
#9011:
#9645:
#9734
#9786:
#9790:

#9801

#9833:
#9835:
#9864:
#9869:

: ‘stats.boxcox’ return all same values

Warn users when using float32 input data to curve_fit and friends
it’s not possible to tell the ‘optimize.least_squares solver...
stats.pearsonr: Potential division by zero for dataset of length. ..
stats.truncnorm fails when providing values outside truncation...
Add standard filter types to firwin to set pass_zero intuitively...
Ifilter.c.src zfill has erroneous header

Non-negative values of ‘stats.hypergeom.logcdf

Enable pip build isolation

: scipy.linalg.pinv gives wrong result while scipy.linalg.pinv2...

: need to fix macOS build against older numpy versions
scipy.stats.pearsonr overflows with high values of x and y

BUG: signal: SystemError: <built-in function _linear_filter>...
BUG: root finders brentq, etc, flag says “converged” even if ...
Test failure - test_initial_constraints_as_canonical
scipy.stats.pearsonr returns r=1 if r_num/r_den = inf

Planck distribution is a geometric distribution

linregress should warn user in 2x2 array case

BUG: stats: In pearsonr, when r is nan, the p-value must also...
Cannot create sparse matrix from size_t indexes

Relational attributes in loadarff

BUG: scipy.optimize.newton says the root of x2+1 is zero.
rv_sample accepts invalid input in scipy.stats

improper handling of multidimensional input in stats.rv_sample
Least-squares minimization fails silently when x and y data are...
Outdated value for scipy.constants.au

Overflow error with new way of p-value calculation in kendall...
‘scipy.stats.mode’ crashes with variable length arrays (‘dtype=object’)
PendingDeprecationWarning for np.matrix with pytest
stats.ks_2samp() misleading for small data sets.

Excessive memory usage on detrend

: dual_annealing does not set the success attribute in OptimizeResult
IntegrationWarning from mielke.stats() during build of html doc.
scipy.signal.firls seems to be inefficient versus MATLAB firls
Curve_fit does not check for empty input data if called with...

scipy.ndimage.label: Minor documentation issue

20

Chapter 3.

Release Notes

https://github.com/scipy/scipy/issues/6873
https://github.com/scipy/scipy/issues/7117
https://github.com/scipy/scipy/issues/7632
https://github.com/scipy/scipy/issues/7730
https://github.com/scipy/scipy/issues/7933
https://github.com/scipy/scipy/issues/8033
https://github.com/scipy/scipy/issues/8600
https://github.com/scipy/scipy/issues/8692
https://github.com/scipy/scipy/issues/8734
https://github.com/scipy/scipy/issues/8861
https://github.com/scipy/scipy/issues/8915
https://github.com/scipy/scipy/issues/8980
https://github.com/scipy/scipy/issues/9226
https://github.com/scipy/scipy/issues/9254
https://github.com/scipy/scipy/issues/9308
https://github.com/scipy/scipy/issues/9353
https://github.com/scipy/scipy/issues/9359
https://github.com/scipy/scipy/issues/9381
https://github.com/scipy/scipy/issues/9406
https://github.com/scipy/scipy/issues/9437
https://github.com/scipy/scipy/issues/9518
https://github.com/scipy/scipy/issues/9551
https://github.com/scipy/scipy/issues/9564
https://github.com/scipy/scipy/issues/9565
https://github.com/scipy/scipy/issues/9581
https://github.com/scipy/scipy/issues/9587
https://github.com/scipy/scipy/issues/9611
https://github.com/scipy/scipy/issues/9645
https://github.com/scipy/scipy/issues/9734
https://github.com/scipy/scipy/issues/9786
https://github.com/scipy/scipy/issues/9790
https://github.com/scipy/scipy/issues/9801
https://github.com/scipy/scipy/issues/9833
https://github.com/scipy/scipy/issues/9835
https://github.com/scipy/scipy/issues/9864
https://github.com/scipy/scipy/issues/9869

SciPy Reference Guide, Release 1.3.2

e #9882: format at the wrong paranthesis in scipy.spatial.transform

» #9889: scipy.signal.find_peaks minor documentation issue

» #9890: Minkowski p-norm Issues in cKDTree For Values Other Than 2 Or...
* #9896: scipy.stats._argcheck sets (not just checks) values

e #9905: Memory error in ndimage.binary_erosion

* #9909: binary_dilation/erosion/closing crashes when iterations is float

e #9919: BUG: ‘coo_matrix‘ does not validate the ‘shape‘ argument.

e #9982: Isq_linear hangs/infinite loop with ‘trf” method

* #10003: exponnorm.pdf returns NAN for small K

e #10011: Incorrect check for invalid rotation plane in scipy.ndimage.rotate
e #10024: Fails to build from git

e #10048: DOC: scipy.optimize.root_scalar

e #10068: DOC: scipy.interpolate.splev

e #10074: BUG: ‘expm’ calculates the wrong coefficients in the backward. ..

Pull requests for 1.3.0

o #7827: ENH: sparse: overhaul of sparse matrix indexing

e #8431: ENH: Cython optimize zeros api

» #8743: DOC: Updated linalg.pinv, .pinv2, .pinvh docstrings

» #8744: DOC: added examples to remez docstring

» #9227: DOC: update description of “direc” parameter of “fmin_powell”

» #9263: ENH: optimize: added “revised simplex” for scipy.optimize.linprog
e #9325: DEP: Remove deprecated functions for 1.3.0

» #9330: Add note on push and pull affine transformations

e #9423: DOC: Clearly state how 2x2 input arrays are handled in stats.linregress
e #9428: ENH: parallelised brute

» #9438: BUG: Initialize coo matrix with size_t indexes

» #9455: MAINT: Speed up get_(lapack,blas)_func

e #9465: MAINT: Clean up optimize.zeros C solvers interfaces/code.

e #9477: DOC: linalg: fix Istsq docstring on residues shape

e #9478: DOC: Add docstring examples for rosen functions

e #9479: DOC: Add docstring example for ai_zeros and bi_zeros

e #9480: MAINT: linalg: Istsq clean up

e #9489: DOC: roadmap update for changes over the last year.

e #9492: MAINT: stats: Improve implementation of chi2 ppf method.

e #9497: DOC: Improve docstrings sparse.linalg.isolve

3.3. SciPy 1.3.0 Release Notes 21

https://github.com/scipy/scipy/issues/9882
https://github.com/scipy/scipy/issues/9889
https://github.com/scipy/scipy/issues/9890
https://github.com/scipy/scipy/issues/9896
https://github.com/scipy/scipy/issues/9905
https://github.com/scipy/scipy/issues/9909
https://github.com/scipy/scipy/issues/9919
https://github.com/scipy/scipy/issues/9982
https://github.com/scipy/scipy/issues/10003
https://github.com/scipy/scipy/issues/10011
https://github.com/scipy/scipy/issues/10024
https://github.com/scipy/scipy/issues/10048
https://github.com/scipy/scipy/issues/10068
https://github.com/scipy/scipy/issues/10074
https://github.com/scipy/scipy/pull/7827
https://github.com/scipy/scipy/pull/8431
https://github.com/scipy/scipy/pull/8743
https://github.com/scipy/scipy/pull/8744
https://github.com/scipy/scipy/pull/9227
https://github.com/scipy/scipy/pull/9263
https://github.com/scipy/scipy/pull/9325
https://github.com/scipy/scipy/pull/9330
https://github.com/scipy/scipy/pull/9423
https://github.com/scipy/scipy/pull/9428
https://github.com/scipy/scipy/pull/9438
https://github.com/scipy/scipy/pull/9455
https://github.com/scipy/scipy/pull/9465
https://github.com/scipy/scipy/pull/9477
https://github.com/scipy/scipy/pull/9478
https://github.com/scipy/scipy/pull/9479
https://github.com/scipy/scipy/pull/9480
https://github.com/scipy/scipy/pull/9489
https://github.com/scipy/scipy/pull/9492
https://github.com/scipy/scipy/pull/9497

SciPy Reference Guide, Release 1.3.2

#9499:
#9500:
#9505:
#9511:
#9517:
#9522:
#9526:
#9529:
#9533:
#9537:
#9538:
#9539:
#9559:
#9561:
#9562:
#9563:
#9568:
#9570:
#9573:
#9577:
#9580:
#9582:
#9588:
#9592:
#9593:
#9596:
#9599:
#9601:
#9603:
#9605:
#9617:
#9619:
#9621:
#9622:
#9623:
#9625:

DOC: Replace “Scipy” with “SciPy” in the .rst doc files for consistency.
DOC: Document the toolchain and its roadmap.

DOC: specify which definition of skewness is used

DEP: interpolate: remove deprecated interpolate_wrapper

BUG: improve error handling in stats.iqr

ENH: Add Fiedler and fiedler companion to special matrices

TST: relax precision requirements in signal.correlate tests

DOC: fix missing random seed in optimize.newton example
MAINT: Use list comprehension when possible

DOC: add a “big picture” roadmap

DOC: Replace “Numpy” with “NumPy” in .py, .rst and .txt doc files. ..
ENH: add two-sample test (Epps-Singleton) to scipy.stats

DOC: add section on global optimizers to tutorial

ENH: remove noprefix.h, change code appropriately

MAINT: stats: Rewrite pearsonr.

BUG: Minor bug fix Callback in linprog(method="simplex’)
MAINT: raise runtime error for newton with zeroder if disp true,...
Correct docstring in show_options in optimize. Fixes #9407

BUG fixes range of pk variable pre-check

TST: fix minor issue in a signal.stft test.

Included blank line before list - Fixes #8658

MAINT: drop Python 2.7 and 3.4

MAINT: update ‘constants.astronomical_unit‘ to new 2012 value.
TST: Add 32-bit testing to CI

DOC: Replace cumulative density with cumulative distribution
TST: remove VC 9.0 from Azure CI

Hyperlink DOI to preferred resolver

DEV: try to limit GC memory use on PyPy

MAINT: improve logedf and logsf of hypergeometric distribution
Reference to pylops in LinearOperator notes and ARPACK example
TST: reduce max memory usage for sparse.linalg.lgmres test

FIX: Sparse matrix addition/subtraction eliminates explicit zeros
bugfix in rv_sample in scipy.stats

MAINT: Raise error in directed_hausdorft distance

DOC: Build docs with warnings as errors

Return the number of calls to ‘hessp’ (not just ‘hess’) in trust...

22

Chapter 3.

Release Notes

https://github.com/scipy/scipy/pull/9499
https://github.com/scipy/scipy/pull/9500
https://github.com/scipy/scipy/pull/9505
https://github.com/scipy/scipy/pull/9511
https://github.com/scipy/scipy/pull/9517
https://github.com/scipy/scipy/pull/9522
https://github.com/scipy/scipy/pull/9526
https://github.com/scipy/scipy/pull/9529
https://github.com/scipy/scipy/pull/9533
https://github.com/scipy/scipy/pull/9537
https://github.com/scipy/scipy/pull/9538
https://github.com/scipy/scipy/pull/9539
https://github.com/scipy/scipy/pull/9559
https://github.com/scipy/scipy/pull/9561
https://github.com/scipy/scipy/pull/9562
https://github.com/scipy/scipy/pull/9563
https://github.com/scipy/scipy/pull/9568
https://github.com/scipy/scipy/pull/9570
https://github.com/scipy/scipy/pull/9573
https://github.com/scipy/scipy/pull/9577
https://github.com/scipy/scipy/pull/9580
https://github.com/scipy/scipy/pull/9582
https://github.com/scipy/scipy/pull/9588
https://github.com/scipy/scipy/pull/9592
https://github.com/scipy/scipy/pull/9593
https://github.com/scipy/scipy/pull/9596
https://github.com/scipy/scipy/pull/9599
https://github.com/scipy/scipy/pull/9601
https://github.com/scipy/scipy/pull/9603
https://github.com/scipy/scipy/pull/9605
https://github.com/scipy/scipy/pull/9617
https://github.com/scipy/scipy/pull/9619
https://github.com/scipy/scipy/pull/9621
https://github.com/scipy/scipy/pull/9622
https://github.com/scipy/scipy/pull/9623
https://github.com/scipy/scipy/pull/9625

SciPy Reference Guide, Release 1.3.2

#9627:
#9637:
#9646:
#9648:
#9650:
#9652:
#9660:
#9601:
#9664
#9670:

#9676

#9711:
#9721:
#9723:
#9726:
#9729:
#9730:
#9731:
#9739:
#9749:
#9753:
#9755:
#9756:
#9757:
#9759:
#9760:
#9761:
#9764:
#9766:
#9769:
#9773:
#9774
#9775:
#9779:

BUG: ignore empty lines in mmio

Function to calculate the MAD of an array

BUG: stats: mode for objects w/ndim > 1

Add ‘stats.contingency* to refguide-check

ENH: many lobpcg() algorithm improvements

Move misc.doccer to _lib.doccer

ENH: add pearson, tippett, and mudholkar-george to combine_pvalues
BUG: Fix ksone right-hand endpoint, documentation and tests.

ENH: adding multi-target dijsktra performance enhancement

MAINT: link planck and geometric distribution in scipy.stats

: ENH: optimize: change default linprog method to interior-point
#9685:
#9705:

Added reference to ndimage.filters.median_filter

Fix coefficients in expm helper function

Release the GIL during sosfilt processing for simple types

ENH: Convexhull visiblefacets

BLD: Modify rv_generic._construct_doc to print out failing distribution...
BUG: Fix small issues with ‘signal Ifilter’

BUG: Typecheck iterations for binary image operations

ENH: reduce sizeof (NI_WatershedElement) by 20%

ENH: remove suspicious sequence of type castings

BUG: gr_updates fails if u is exactly in span Q

BUG: MapWrapper.__exit__ should terminate

ENH: Added exact computation for Kolmogorov-Smirnov two-sample. ..
DOC: Added example for signal.impulse, copied from impulse2

DOC: Added docstring example for iirdesign

DOC: Added examples for step functions

ENH: Allow pass_zero to act like btype

DOC: Added docstring for 1p2bs

DOC: Added docstring and example for lp2bp

BUG: Catch internal warnings for matrix

ENH: Speed up _gaussian_kernelld by removing dependence on np.polynomial
BUG: Fix Cubic Spline Read Only issues

DOC: Several docstrings

TST: bump Azure CI OpenBLAS version to match wheels

DOC: Improve clarity of cov_x documentation for scipy.optimize.leastsq

ENH: dual_annealing vectorise visit_fn

3.3.

SciPy 1.3.0 Release Notes

https://github.com/scipy/scipy/pull/9627
https://github.com/scipy/scipy/pull/9637
https://github.com/scipy/scipy/pull/9646
https://github.com/scipy/scipy/pull/9648
https://github.com/scipy/scipy/pull/9650
https://github.com/scipy/scipy/pull/9652
https://github.com/scipy/scipy/pull/9660
https://github.com/scipy/scipy/pull/9661
https://github.com/scipy/scipy/pull/9664
https://github.com/scipy/scipy/pull/9670
https://github.com/scipy/scipy/pull/9676
https://github.com/scipy/scipy/pull/9685
https://github.com/scipy/scipy/pull/9705
https://github.com/scipy/scipy/pull/9711
https://github.com/scipy/scipy/pull/9721
https://github.com/scipy/scipy/pull/9723
https://github.com/scipy/scipy/pull/9726
https://github.com/scipy/scipy/pull/9729
https://github.com/scipy/scipy/pull/9730
https://github.com/scipy/scipy/pull/9731
https://github.com/scipy/scipy/pull/9739
https://github.com/scipy/scipy/pull/9749
https://github.com/scipy/scipy/pull/9753
https://github.com/scipy/scipy/pull/9755
https://github.com/scipy/scipy/pull/9756
https://github.com/scipy/scipy/pull/9757
https://github.com/scipy/scipy/pull/9759
https://github.com/scipy/scipy/pull/9760
https://github.com/scipy/scipy/pull/9761
https://github.com/scipy/scipy/pull/9764
https://github.com/scipy/scipy/pull/9766
https://github.com/scipy/scipy/pull/9769
https://github.com/scipy/scipy/pull/9773
https://github.com/scipy/scipy/pull/9774
https://github.com/scipy/scipy/pull/9775
https://github.com/scipy/scipy/pull/9779

SciPy Reference Guide, Release 1.3.2

#9788:
#9791:
#9792:
#9795:
#9796:
#9798:
#9807:
#9808:
#9810:

#9811

#9813:
#9817:
#9829:
#9831:
#9834:
#9838:
#9854:
#9856:
#9862:
#9874
#9883:
#9884:
#9888:
#9892:
#9893:
#9894:
#9898:
#9900:
#9906:
#9911:
#9912:
#9914:

#9915

TST, BUG: f2py-related issues with NumPy < 1.14.0

BUG: fix amax constraint not enforced in scalar_search_wolfe2
ENH: Allow inplace copying in place in “detrend” function

DOC: Fix/update docstring for dstn and dst

MAINT: Allow None tolerances in least_squares

BUG: fixes abort trap 6 error in scipy issue 9785 in unit tests
MAINT: improve doc and add alternative keyword to wilcoxon in...
Fix PPoly integrate and test for CubicSpline

ENH: Add the geometric standard deviation function

: MAINT: remove invalid derphi default None value in scalar_search_wolfe2

Adapt hamming distance in C to support weights

DOC: Copy solver description to solver modules

ENH: Add FOH and equivalent impulse response discretizations. ..
ENH: Implement RotationSpline

DOC: Change mielke distribution default parameters to ensure. ..
ENH: Use faster solvers for firls

ENH: loadarff now supports relational attributes.

integrate.bvp - improve handling of nonlinear boundary conditions
TST: reduce Appveyor CI load

DOC: Update requirements in release notes

BUG: fixed parenthesis in spatial.rotation

ENH: Use Sparsity in Clarkson-Woodruff Sketch

MAINT: Replace NumPy aliased functions

BUG: Fix 9890 query_ball_point returns wrong result when p is...
BUG: curve_fit doesn’t check for empty input if called with bounds
scipy.signal.find_peaks documentation error

BUG: Set success attribute in OptimizeResult. See #9801

BUG: Restrict rv_generic._argcheck() and its overrides from setting. ..
fixed a bug in kde logpdf

DOC: replace example for “np.select” with the one from numpy...
BF(DOC): point to numpy.select instead of plain (python) .select

DOC: change ValueError message in _validate_pad of signaltools.

: cKDTree query_ball_point improvements
#9918:
#9920:
#9924:

Update ckdtree.pyx with boxsize argument in docstring
BUG: sparse: Validate explicit shape if given with dense argument...

BLD: add back pyproject.toml

24

Chapter 3.

Release Notes

https://github.com/scipy/scipy/pull/9788
https://github.com/scipy/scipy/pull/9791
https://github.com/scipy/scipy/pull/9792
https://github.com/scipy/scipy/pull/9795
https://github.com/scipy/scipy/pull/9796
https://github.com/scipy/scipy/pull/9798
https://github.com/scipy/scipy/pull/9807
https://github.com/scipy/scipy/pull/9808
https://github.com/scipy/scipy/pull/9810
https://github.com/scipy/scipy/pull/9811
https://github.com/scipy/scipy/pull/9813
https://github.com/scipy/scipy/pull/9817
https://github.com/scipy/scipy/pull/9829
https://github.com/scipy/scipy/pull/9831
https://github.com/scipy/scipy/pull/9834
https://github.com/scipy/scipy/pull/9838
https://github.com/scipy/scipy/pull/9854
https://github.com/scipy/scipy/pull/9856
https://github.com/scipy/scipy/pull/9862
https://github.com/scipy/scipy/pull/9874
https://github.com/scipy/scipy/pull/9883
https://github.com/scipy/scipy/pull/9884
https://github.com/scipy/scipy/pull/9888
https://github.com/scipy/scipy/pull/9892
https://github.com/scipy/scipy/pull/9893
https://github.com/scipy/scipy/pull/9894
https://github.com/scipy/scipy/pull/9898
https://github.com/scipy/scipy/pull/9900
https://github.com/scipy/scipy/pull/9906
https://github.com/scipy/scipy/pull/9911
https://github.com/scipy/scipy/pull/9912
https://github.com/scipy/scipy/pull/9914
https://github.com/scipy/scipy/pull/9915
https://github.com/scipy/scipy/pull/9918
https://github.com/scipy/scipy/pull/9920
https://github.com/scipy/scipy/pull/9924

SciPy Reference Guide, Release 1.3.2

#9931:
#9935:
#9936:
#9937:
#9939:
#9940:
#9945:
#9949:
#9953:
#9962
#9971
#9987:
#9990:
#9991:
#9995:
#9996:

#10004:
#10007:
#10009:
#10016:
#10017:
#10018:
#10019:
#10021:
#10022:
#10023:
#10025:
#10026:
#10027:
#10028:
#10040:

#10041

#10044:
#10047:
#10051:
#10052:

Fix empty constraint

DOC: fix references for stats.f_oneway

Revert gh-9619: “FIX: Sparse matrix addition/subtraction eliminates. ..
MAINT: fix PEPS issues and update to pycodestyle 2.5.0

DOC: correct ‘structure’ description in ‘ndimage.label‘ docstring
MAINT: remove extraneous distutils copies

ENH: differential_evolution can use Bounds object

Added ‘std’ to add doctstrings since it is a ‘known_stats". ..

DOC: Documentation cleanup for stats tutorials.

: __repr__ for Bounds

: ENH: Improve performance of Ismr

CI: pin Sphinx version to 1.8.5

ENH: constraint violation

BUG: Avoid inplace modification of input array in newton

MAINT: sparse.csgraph: Add cdef to stop build warning.

BUG: Make minimize_quadratic_1d work with infinite bounds correctly
BUG: Fix unbound local error in linprog - simplex.

BLD: fix Python 3.7 build with build isolation

Update link to airspeed-velocity

DOC: Update ‘interpolate. LSQSphereBivariateSpline‘ to include...
MAINT: special: Fix a few warnings that occur when compiling. ..
TST: Azure summarizes test failures

ENH: Introduce CubicHermiteSpline

BENCH: Increase cython version in asv to fix benchmark builds
BUG: Avoid exponnorm producing nan for small K values.

BUG: optimize: tweaked linprog status 4 error message

ENH: optimize: use SuiteSparse in linprog interior-point when. ..
MAINT: cluster: clean up the use of malloc() in the function...
Fix rotate invalid plane check

MAINT: fix pratt method of wilcox test in scipy.stats

: MAINT: special: Fix a warning generated when building the AMOS...
DOC: fix up spatial.transform.Rotation docstrings

MAINT: interpolate: Fix a few build warnings.

Add project_urls to setup

don’t set flag to “converged” if max iter exceeded

BUG: Make sure that _binary_erosion only accepts an integer number. ..

3.3.

SciPy 1.3.0 Release Notes

25

https://github.com/scipy/scipy/pull/9931
https://github.com/scipy/scipy/pull/9935
https://github.com/scipy/scipy/pull/9936
https://github.com/scipy/scipy/pull/9937
https://github.com/scipy/scipy/pull/9939
https://github.com/scipy/scipy/pull/9940
https://github.com/scipy/scipy/pull/9945
https://github.com/scipy/scipy/pull/9949
https://github.com/scipy/scipy/pull/9953
https://github.com/scipy/scipy/pull/9962
https://github.com/scipy/scipy/pull/9971
https://github.com/scipy/scipy/pull/9987
https://github.com/scipy/scipy/pull/9990
https://github.com/scipy/scipy/pull/9991
https://github.com/scipy/scipy/pull/9995
https://github.com/scipy/scipy/pull/9996
https://github.com/scipy/scipy/pull/10004
https://github.com/scipy/scipy/pull/10007
https://github.com/scipy/scipy/pull/10009
https://github.com/scipy/scipy/pull/10016
https://github.com/scipy/scipy/pull/10017
https://github.com/scipy/scipy/pull/10018
https://github.com/scipy/scipy/pull/10019
https://github.com/scipy/scipy/pull/10021
https://github.com/scipy/scipy/pull/10022
https://github.com/scipy/scipy/pull/10023
https://github.com/scipy/scipy/pull/10025
https://github.com/scipy/scipy/pull/10026
https://github.com/scipy/scipy/pull/10027
https://github.com/scipy/scipy/pull/10028
https://github.com/scipy/scipy/pull/10040
https://github.com/scipy/scipy/pull/10041
https://github.com/scipy/scipy/pull/10044
https://github.com/scipy/scipy/pull/10047
https://github.com/scipy/scipy/pull/10051
https://github.com/scipy/scipy/pull/10052

SciPy Reference Guide, Release 1.3.2

e #10054:
* #10056:
* #10058:
* #10059:
e #10061:
* #10064:
* #10065:
* #10066:
* #10067:
o #10072:
* #10075:
* #10076:
e #10077:
* #10079:
* #10080:
* #10083:
* #10088:
* #10090:
e #10091:
e #10095:
* #10116:
e #10135:

MAINT: signal: Fix a few build warnings and modernize some C...
BUG: Ensure factorial is not too large in kendaltau

Small speedup in samping from ortho and special_ortho groups
BUG: optimize: fix #10038 by increasing tol

BLD: DOC: make building docs easier by parsing python version.
ENH: Significant speedup for ortho and special ortho group

DOC: Reword parameter descriptions in ‘optimize.root_scalar*
BUG: signal: Fix error raised by savgol_coeffs when deriv > polyorder.
MAINT: Fix the cutoff value inconsistency for pinv2 and pinvh
BUG: stats: Fix boxcox_lIf to avoid loss of precision.

ENH: Add wrappers for ?syconv routines

BUG: optimize: fix curve_fit for mixed float32/float64 input

DOC: Replace undefined ‘k‘ in ‘interpolate.splev‘ docstring

DOC: Fixed typo, rearranged some doc of stats.morestats.wilcoxon.
TST: install scikit-sparse for full TravisCI tests

Clean “_clean_inputs® in optimize.linprog

ENH: optimize: linprog test CHOLMOD/UMFPACK solvers when available
MAINT: Fix CubicSplinerInterpolator for pandas

MAINT: improve logedf and logsf of hypergeometric distribution
MAINT: Clean “_clean_inputs® in linprog

MAINT: update scipy-sphinx-theme

BUG: fix linprog revised simplex docstring problem failure

3.4 SciPy 1.2.1 Release Notes

Contents

e SciPy 1.2.1 Release Notes

— Authors

SciPy 1.2.1 is a bug-fix release with no new features compared to 1.2.0. Most importantly, it solves the issue that 1.2.0

« Issues closed for 1.2.1

« Pull requests for 1.2.1

cannot be installed from source on Python 2.7 because of non-ascii character issues.

It is also notable that SciPy 1.2.1 wheels were built with OpenBLAS 0.3.5.dev, which may alleviate some linear algebra

issues observed in SciPy 1.2.0.

26

Chapter 3. Release Notes

https://github.com/scipy/scipy/pull/10054
https://github.com/scipy/scipy/pull/10056
https://github.com/scipy/scipy/pull/10058
https://github.com/scipy/scipy/pull/10059
https://github.com/scipy/scipy/pull/10061
https://github.com/scipy/scipy/pull/10064
https://github.com/scipy/scipy/pull/10065
https://github.com/scipy/scipy/pull/10066
https://github.com/scipy/scipy/pull/10067
https://github.com/scipy/scipy/pull/10072
https://github.com/scipy/scipy/pull/10075
https://github.com/scipy/scipy/pull/10076
https://github.com/scipy/scipy/pull/10077
https://github.com/scipy/scipy/pull/10079
https://github.com/scipy/scipy/pull/10080
https://github.com/scipy/scipy/pull/10083
https://github.com/scipy/scipy/pull/10088
https://github.com/scipy/scipy/pull/10090
https://github.com/scipy/scipy/pull/10091
https://github.com/scipy/scipy/pull/10095
https://github.com/scipy/scipy/pull/10116
https://github.com/scipy/scipy/pull/10135

SciPy Reference Guide, Release 1.3.2

3.4.1 Authors

* Eric Larson

* Mark Mikofski
¢ Evgeni Burovski
» Ralf Gommers
* Eric Moore

* Tyler Reddy

Issues closed for 1.2.1
» #9606: SyntaxError: Non-ASCII character ‘xe2’ in file scipy/stats/_continuous_distns.py on line 3346, but no
encoding declared
e #9608: Version 1.2.0 introduces too many indices for array error in...
» #9709: scipy.stats.gaussian_kde normalizes the weights keyword argument. ..
e #9733: scipy.linalg.qr_update gives NaN result
e #9724: CI: Is scipy.scipy Windows Python36-32bit-full working?

Pull requests for 1.2.1

» #9612: BUG: don’t use array newton unless size is greater than 1

e #9615: ENH: Add test for encoding

» #9720: BUG: stats: weighted KDE does not modify the weights array
» #9739: BUG: qr_updates fails if u is exactly in span Q

e #9725: TST: pin mingw for Azure Win CI

e #9736: TST: adjust to vmImage dispatch in Azure

* #9681: BUG: Fix failing stats tests (partial backport)

» #0662: TST: interpolate: avoid pytest deprecations

3.5 SciPy 1.2.0 Release Notes

Contents

* SciPy 1.2.0 Release Notes
— Highlights of this release
— New features

* scipy.ndimage improvements

* scipy.fftpack improvements

3.5. SciPy 1.2.0 Release Notes 27

https://github.com/scipy/scipy/issues/9606
https://github.com/scipy/scipy/issues/9608
https://github.com/scipy/scipy/issues/9709
https://github.com/scipy/scipy/issues/9733
https://github.com/scipy/scipy/issues/9724
https://github.com/scipy/scipy/pull/9612
https://github.com/scipy/scipy/pull/9615
https://github.com/scipy/scipy/pull/9720
https://github.com/scipy/scipy/pull/9739
https://github.com/scipy/scipy/pull/9725
https://github.com/scipy/scipy/pull/9736
https://github.com/scipy/scipy/pull/9681
https://github.com/scipy/scipy/pull/9662

SciPy Reference Guide, Release 1.3.2

* scipy.interpolate improvements
* scipy.cluster improvements

* scipy.special improvements

* scipy.optimize improvements

* scipy.signal improvements

* SCcilpy.sparse improvements

* scipy.spatial improvements

* scipy.stats improvements

* scipy.linalg improvements

Deprecated features

Backwards incompatible changes

Other changes

Authors

« Issues closed for 1.2.0

« Pull requests for 1.2.0

SciPy 1.2.0 is the culmination of 6 months of hard work. It contains many new features, numerous bug-fixes, improved
test coverage and better documentation. There have been a number of deprecations and API changes in this release,
which are documented below. All users are encouraged to upgrade to this release, as there are a large number of bug-fixes
and optimizations. Before upgrading, we recommend that users check that their own code does not use deprecated SciPy
functionality (to do so, run your code with python -Wd and check for DeprecationWarnings). Our development
attention will now shift to bug-fix releases on the 1.2.x branch, and on adding new features on the master branch.

This release requires Python 2.7 or 3.4+ and NumPy 1.8.2 or greater.

Note: This will be the last SciPy release to support Python 2.7. Consequently, the 1.2.x series will be a long term support
(LTS) release; we will backport bug fixes until 1 Jan 2020.

For running on PyPy, PyPy3 6.0+ and NumPy 1.15.0 are required.

3.5.1 Highlights of this release

¢ 1-D root finding improvements with a new solver, t oms 748, and a new unified interface, root_scalar
* New dual_annealing optimization method that combines stochastic and local deterministic searching

¢ A new optimization algorithm, shgo (simplicial homology global optimization) for derivative free optimization
problems

* A new category of quaternion-based transformations are available in scipy.spatial.transform

3.5.2 New features

28 Chapter 3. Release Notes

SciPy Reference Guide, Release 1.3.2

scipy.ndimage improvements

Proper spline coefficient calculations have been added for the mirror, wrap, and reflect modes of scipy.
ndimage.rotate

scipy. fftpack improvements

DCT-1V, DST-IV, DCT-I, and DST-I orthonormalization are now supported in scipy. fftpack.

scipy.interpolate improvements

scipy.interpolate.pade now accepts a new argument for the order of the numerator

scipy.cluster improvements

scipy.cluster.vqg. kmeansZ2 gained a new initialization method, kmeans++.

scipy.special improvements

The function softmax was added to scipy. special.

scipy.optimize improvements

The one-dimensional nonlinear solvers have been given a unified interface scipy.optimize.root_scalar,
similar to the scipy.optimize.root interface for multi-dimensional solvers. scipy.optimize.
root_scalar (f, bracket=[a ,b], method="brenth") 1is equivalent to scipy.optimize.
brenth(f, a ,b). If nomethod is specified, an appropriate one will be selected based upon the bracket and the
number of derivatives available.

The so-called Algorithm 748 of Alefeld, Potra and Shi for root-finding within an enclosing interval has been added as
scipy.optimize.toms?748. This provides guaranteed convergence to a root with convergence rate per function
evaluation of approximately 1.65 (for sufficiently well-behaved functions.)

differential_evolution now has the updating and workers keywords. The first chooses between contin-
uous updating of the best solution vector (the default), or once per generation. Continuous updating can lead to faster
convergence. The workers keyword accepts an int or map-like callable, and parallelises the solver (having the side
effect of updating once per generation). Supplying an int evaluates the trial solutions in N parallel parts. Supplying a
map-like callable allows other parallelisation approaches (such as mpi4py, or joblib) to be used.

dual_annealing (and shgo below) is a powerful new general purpose global optizimation (GO) algorithm.
dual_annealing uses two annealing processes to accelerate the convergence towards the global minimum of an
objective mathematical function. The first annealing process controls the stochastic Markov chain searching and the sec-
ond annealing process controls the deterministic minimization. So, dual annealing is a hybrid method that takes advantage
of stochastic and local deterministic searching in an efficient way.

shgo (simplicial homology global optimization) is a similar algorithm appropriate for solving black box and derivative free
optimization (DFO) problems. The algorithm generally converges to the global solution in finite time. The convergence
holds for non-linear inequality and equality constraints. In addition to returning a global minimum, the algorithm also
returns any other global and local minima found after every iteration. This makes it useful for exploring the solutions in
a domain.

scipy.optimize.newton can now accept a scalar or an array

3.5. SciPy 1.2.0 Release Notes 29

SciPy Reference Guide, Release 1.3.2

MINPACK usage is now thread-safe, such that MINPACK + callbacks may be used on multiple threads.

scipy.signal improvements

Digital filter design functions now include a parameter to specify the sampling rate. Previously, digital filters could only
be specified using normalized frequency, but different functions used different scales (e.g. 0 to 1 for butter vs O to
for freqz), leading to errors and confusion. With the £s parameter, ordinary frequencies can now be entered directly
into functions, with the normalization handled internally.

find_peaks and related functions no longer raise an exception if the properties of a peak have unexpected values (e.g.
a prominence of 0). A PeakPropertyWarning is given instead.

The new keyword argument plateau_size was added to find_peaks. plateau_size may be used to select
peaks based on the length of the flat top of a peak.

welch () and csd () methods in scipy.signal now support calculation of a median average PSD, using
average='mean' keyword

scipy.sparse improvements

The scipy.sparse.bsr_matrix.tocsr method is now implemented directly instead of converting via COO
format, and the scipy. sparse.bsr_matrix.tocsc method is now also routed via CSR conversion instead of
COO. The efficiency of both conversions is now improved.

The issue where SuperLU or UMFPACK solvers crashed on matrices with non-canonical format in scipy. sparse.
linalg was fixed. The solver wrapper canonicalizes the matrix if necessary before calling the SuperLU or UMFPACK
solver.

The largest option of scipy.sparse.linalg.lobpcg() was fixed to have a correct (and expected) behavior. The order of
the eigenvalues was made consistent with the ARPACK solver (eigs ()), i.e. ascending for the smallest eigenvalues,
and descending for the largest eigenvalues.

The scipy.sparse.random function is now faster and also supports integer and complex values by passing the
appropriate value to the dt ype argument.

scipy.spatial improvements

The function scipy.spatial.distance. jaccard was modified to return O instead of np.nan when two all-
zero vectors are compared.

Support for the Jensen Shannon distance, the square-root of the divergence, has been added under scipy.spatial.
distance. jensenshannon

An optional keyword was added to the function scipy.spatial.cKDTree.query_ball_point() to sort or not sort the returned
indices. Not sorting the indices can speed up calls.

A new category of quaternion-based transformations are available in scipy.spatial.transform, including
spherical linear interpolation of rotations (Slerp), conversions to and from quaternions, Euler angles, and general
rotation and inversion capabilities (spatial.transform.Rotation), and uniform random sampling of 3D rotations (spa-
tial.transform. Rotation.random).

scipy.stats improvements

The Yeo-Johnson power transformation is now supported (yeojohnson, yeojohnson_11f,
yeojohnson_normmax, yeojohnson_normplot). Unlike the Box-Cox transformation, the Yeo-Johnson
transformation can accept negative values.

30 Chapter 3. Release Notes

SciPy Reference Guide, Release 1.3.2

Added a general method to sample random variates based on the density only, in the new function
rvs_ratio_uniforms.

The Yule-Simon distribution (yulesimon) was added — this is a new discrete probability distribution.
statsandmstat s now have access to a new regression method, siegelslopes, arobust linear regression algorithm

scipy.stats.gaussian_kde now has the ability to deal with weighted samples, and should have a modest im-
provement in performance

Levy Stable Parameter Estimation, PDF, and CDF calculations are now supported for scipy.stats. levy_stable.

The Brunner-Munzel test is now available as brunnermunzel in stats and mstats

scipy.linalg improvements

scipy.linalg.lapack now exposes the LAPACK routines using the Rectangular Full Packed storage (RFP) for
upper triangular, lower triangular, symmetric, or Hermitian matrices; the upper trapezoidal fat matrix RZ decomposition
routines are now available as well.

3.5.3 Deprecated features

The functions hyp2£0, hypl£f2 and hyp3£0 in scipy.special have been deprecated.

3.5.4 Backwards incompatible changes

LAPACK version 3.4.0 or later is now required. Building with Apple Accelerate is no longer supported.

The function scipy.linalg.subspace_angles (A, B) now gives correct results for all angles. Before this, the
function only returned correct values for those angles which were greater than pi/4.

Support for the Bento build system has been removed. Bento has not been maintained for several years, and did not have
good Python 3 or wheel support, hence it was time to remove it.

The required signature of scipy.optimize.lingprog method=simplex callback function has changed. Before iteration
begins, the simplex solver first converts the problem into a standard form that does not, in general, have the same variables
or constraints as the problem defined by the user. Previously, the simplex solver would pass a user-specified callback
function several separate arguments, such as the current solution vector xk, corresponding to this standard form problem.
Unfortunately, the relationship between the standard form problem and the user-defined problem was not documented,
limiting the utility of the information passed to the callback function.

In addition to numerous bug fix changes, the simplex solver now passes a user-specified callback function a single
OptimizeResult object containing information that corresponds directly to the user-defined problem. In future
releases, this OptimizeResult object may be expanded to include additional information, such as variables cor-
responding to the standard-form problem and information concerning the relationship between the standard-form and
user-defined problems.

The implementation of scipy. sparse. randomhas changed, and this affects the numerical values returned for both
sparse.randomand sparse.rand for some matrix shapes and a given seed.

scipy.optimize.newton will no longer use Halley’s method in cases where it negatively impacts convergence

3.5. SciPy 1.2.0 Release Notes 31

SciPy Reference Guide, Release 1.3.2

3.5.5 Other changes

3.5.6 Authors

@endolith

@luzpaz

Hameer Abbasi +
akahard2dj +

Anton Akhmerov
Joseph Albert
alexthomas93 +

ashish +

atpage +

Blair Azzopardi +
Yoshiki Vazquez Baeza
Bence Bagi +
Christoph Baumgarten
Lucas Bellomo +

BH4 +

Aditya Bharti

Max Bolingbroke
Francois Boulogne
Ward Bradt +
Matthew Brett

Evgeni Burovski
Rafat Byczek +
Alfredo Canziani +
CJ Carey

Lucia Cheung +

Poom Chiarawongse +
Jeanne Choo +

Robert Cimrman
Graham Clenaghan +
cynthia-rempel +
Johannes Damp +
Jaime Fernandez del Rio

Dowon +

32

Chapter 3. Release Notes

SciPy Reference Guide, Release 1.3.2

emmi474 +

Stefan Endres +
Thomas Etherington +
Piotr Figiel

Alex Fikl +
fo40225 +

Joseph Fox-Rabinovitz
Lars G

Abhinav Gautam +
Stiaan Gerber +
C.AM. Gerlach +
Ralf Gommers
Todd Goodall

Lars Grueter +
Sylvain Gubian +
Matt Haberland
David Hagen

Will Handley +
Charles Harris

Ian Henriksen
Thomas Hisch +
Theodore Hu
Michael Hudson-Doyle +
Nicolas Hug +
jakirkham +

Jakob Jakobson +
James +

Jan Schliiter
jeanpauphilet +
josephmernst +
Kai +

Kai-Striega +
kalash04 +
Toshiki Kataoka +
Konrad0 +

Tom Krauss +

3.5.

SciPy 1.2.0 Release Notes

33

SciPy Reference Guide, Release 1.3.2

¢ Johannes Kulick

* Lars Griiter +

¢ FEric Larson

* Denis Laxalde

e Will Lee +

 Katrin Leinweber +
* YinLi+

« P. L Lim+

¢ Jesse Livezey +

* Duncan Macleod +

¢ MatthewFlamm +

¢ Nikolay Mayorov

* Mike McClurg +
 Christian Meyer +

* Mark Mikofski

* Naoto Mizuno +

e mohmmadd +

* Nathan Musoke

* Anju Geetha Nair +
e Andrew Nelson

e Ayappan P +

* Nick Papior

* Haesun Park +

* Ronny Pfannschmidt +
* pijyoi +

¢ Ilhan Polat
 Anthony Polloreno +
¢ Ted Pudlik

* puenka

¢ Eric Quintero

* Pradeep Reddy Raamana +
* Vyas Ramasubramani +
¢ Ramon Viiias +

e Tyler Reddy

* Joscha Reimer

¢ Antonio H Ribeiro

34 Chapter 3. Release Notes

SciPy Reference Guide, Release 1.3.2

richardjgowers +
Rob +

robbystk +

Lucas Roberts +
rohan +

Joaquin Derrac Rus +
Josua Sassen +
Bruce Sharpe +
Max Shinn +

Scott Sievert
Sourav Singh
Strahinja Luki¢ +
Kai Striega +
Shinya SUZUKI +
Mike Toews +
Piotr Uchwat
Miguel de Val-Borro +
Nicky van Foreest
Paul van Mulbregt
Gael Varoquaux
Pauli Virtanen
Stefan van der Walt
Warren Weckesser

Joshua Wharton +

Bernhard M. Wiedemann +

Eric Wieser

Josh Wilson

Tony Xiang +
Roman Yurchak +

Roy Zywina +

A total of 137 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
This list of names is automatically generated, and may not be fully complete.

Issues closed for 1.2.0

» #9520: signal.correlate with method="fft’ doesn’t benefit from long...

e #9547: signature of dual_annealing doesn’t match other optimizers

3.5. SciPy 1.2.0 Release Notes

35

https://github.com/scipy/scipy/issues/9520
https://github.com/scipy/scipy/issues/9547

SciPy Reference Guide, Release 1.3.2

#9540:
#1240:
#1432:
#3372:
#3678:
#4174
#5493:
#5743:
#6139:
#6358:
#6498:
#7426:
#7455:
#7456:
#7492:
#7914
#8064:
#8212:
#8256:
#8443:
#8452:
#8680:
#8686:
#8700:
#8786:
#8791:
#8843:
#8844
#8878:
#8895:
#8900:
#8904:
#8911:
#8942:
#8947:
#9020:

SciPy v1.2.0rc1 cannot be imported on Python 2.7.15

Allowing multithreaded use of minpack through scipy.optimize. ..
scipy.stats.mode extremely slow (Trac #905)

Please add Sphinx search field to online scipy html docs
_clough_tocher_2d_single direction between centroids

lobpcg “largest” option invalid?

anderson_ksamp p-values>1

slsqp fails to detect infeasible problem

scipy.optimize.linprog failed to find a feasible starting point...

stats: docstring for vonmises_line points to vonmises_line. ..
runtests.py is missing in pypi distfile

scipy.stats.ksone(n).pdf(x) returns nan for positive values of ...
scipy.stats.ksone.pdf(2,x) return incorrect values for x near...
scipy.special.smirnov and scipy.special.smirnovi have accuracy...
scipy.special.kolmogorov(x)/kolmogi(p) inefficient, inaccurate. ..
TravisCI not failing when it should for -OO run

linalg.solve test crashes on Windows

LAPACK Rectangular Full Packed routines

differential_evolution bug converges to wrong results in complex...
Deprecate hyp2f0, hyplf2, and hyp3f0?

DOC: ARPACK tutorial has two conflicting equations

scipy fails compilation when building from source

Division by zero in _trustregion.py when x0 is exactly equal...
_MINPACK_LOCK not held when calling into minpack from least_squares
erroneous moment values for t-distribution

Checking COLA condition in istft should be optional (or omitted)
imresize cannot be deprecated just yet

Inverse Wishart Log PDF Incorrect for Non-diagonal Scale Matrix?
vonmises and vonmises_line in stats: vonmises wrong and superfluous?
v1.1.0 ndi.rotate documentation — reused parameters not filled. ..
Missing complex conjugation in scipy.sparse.linalg.LinearOperator
BUG: if zero derivative at root, then Newton fails with RuntimeWarning
make_interp_spline bc_type incorrect input interpretation

MAINT: Refactor _linprog.py and _linprog_ip.py to remove...
np.int64 in scipy.fftpack.next_fast_len

BUG: linalg.subspace_angles gives wrong results

36

Chapter 3.

Release Notes

https://github.com/scipy/scipy/issues/9540
https://github.com/scipy/scipy/issues/1240
https://github.com/scipy/scipy/issues/1432
https://github.com/scipy/scipy/issues/3372
https://github.com/scipy/scipy/issues/3678
https://github.com/scipy/scipy/issues/4174
https://github.com/scipy/scipy/issues/5493
https://github.com/scipy/scipy/issues/5743
https://github.com/scipy/scipy/issues/6139
https://github.com/scipy/scipy/issues/6358
https://github.com/scipy/scipy/issues/6498
https://github.com/scipy/scipy/issues/7426
https://github.com/scipy/scipy/issues/7455
https://github.com/scipy/scipy/issues/7456
https://github.com/scipy/scipy/issues/7492
https://github.com/scipy/scipy/issues/7914
https://github.com/scipy/scipy/issues/8064
https://github.com/scipy/scipy/issues/8212
https://github.com/scipy/scipy/issues/8256
https://github.com/scipy/scipy/issues/8443
https://github.com/scipy/scipy/issues/8452
https://github.com/scipy/scipy/issues/8680
https://github.com/scipy/scipy/issues/8686
https://github.com/scipy/scipy/issues/8700
https://github.com/scipy/scipy/issues/8786
https://github.com/scipy/scipy/issues/8791
https://github.com/scipy/scipy/issues/8843
https://github.com/scipy/scipy/issues/8844
https://github.com/scipy/scipy/issues/8878
https://github.com/scipy/scipy/issues/8895
https://github.com/scipy/scipy/issues/8900
https://github.com/scipy/scipy/issues/8904
https://github.com/scipy/scipy/issues/8911
https://github.com/scipy/scipy/issues/8942
https://github.com/scipy/scipy/issues/8947
https://github.com/scipy/scipy/issues/9020

SciPy Reference Guide, Release 1.3.2

» #9033: scipy.stats.normaltest sometimes gives incorrect returns b/c...

e #9036: Bizarre times for scipy. sparse. rand function with low’ density...
e #9044: optimize.minimize(method="trust-constr) result dict does not...

e #9071: doc/linalg: add cho_solve_banded to see also of cholesky_banded

e #9082: eigenvalue sorting in scipy.sparse.linalg.eigsh

* #9086: signaltools.py:491: FutureWarning: Using a non-tuple sequence...

e #9091: test_spline_filter failure on 32-bit

e #9122: Typo on scipy minimization tutorial

* #9135: doc error at https://docs.scipy.org/doc/scipy/reference/tutorial/stats/discrete_poisson.html
» #9167: DOC: BUG: typo in ndimage LowLevelCallable tutorial example

e #9169: truncnorm does not work if b < a in scipy.stats

e #9250: scipy.special.tests.test_mpmath::TestSystematic::test_pcfw fails. ..

e #9259: rv.expect() == rv.mean() is false for rv.mean() == nan (and inf)

¢ #9286: DOC: Rosenbrock expression in optimize.minimize tutorial

e #9316: SLSQP fails in nested optimization

e #9337: scipy.signal.find_peaks key typo in documentation

» #0345: Example from documentation of scipy.sparse.linalg.eigs raises. ..

e #9383: Default value for “mode” in “ndimage.shift”

e #9419: dual_annealing off by one in the number of iterations

» #9442: Error in Defintion of Rosenbrock Function

o #9453: TST: test_eigs_consistency() doesn’t have consistent results

Pull requests for 1.2.0

» #9526: TST: relax precision requirements in signal.correlate tests

e #9507: CI: MAINT: Skip a ckdtree test on pypy

e #9512: TST: test_random_sampling 32-bit handling

o #9494: TST: test_kolmogorov xfail 32-bit

» #9486: BUG: fix sparse random int handling

e #9550: BUG: scipy/_lib/_numpy_compat: get_randint

e #9549: MAINT: make dual_annealing signature match other optimizers
» #9541: BUG: fix SyntaxError due to non-ascii character on Python 2.7
e #7352: ENH: add Brunner Munzel test to scipy.stats.

e #7373: BUG: Jaccard distance for all-zero arrays would return np.nan

e #7374: ENH: Add PDF, CDF and parameter estimation for Stable Distributions
* #8098: ENH: Add shgo for global optimization of NLPs.

e #8203: ENH: adding simulated dual annealing to optimize

3.5. SciPy 1.2.0 Release Notes 37

https://github.com/scipy/scipy/issues/9033
https://github.com/scipy/scipy/issues/9036
https://github.com/scipy/scipy/issues/9044
https://github.com/scipy/scipy/issues/9071
https://github.com/scipy/scipy/issues/9082
https://github.com/scipy/scipy/issues/9086
https://github.com/scipy/scipy/issues/9091
https://github.com/scipy/scipy/issues/9122
https://github.com/scipy/scipy/issues/9135
https://docs.scipy.org/doc/scipy/reference/tutorial/stats/discrete_poisson.html
https://github.com/scipy/scipy/issues/9167
https://github.com/scipy/scipy/issues/9169
https://github.com/scipy/scipy/issues/9250
https://github.com/scipy/scipy/issues/9259
https://github.com/scipy/scipy/issues/9286
https://github.com/scipy/scipy/issues/9316
https://github.com/scipy/scipy/issues/9337
https://github.com/scipy/scipy/issues/9345
https://github.com/scipy/scipy/issues/9383
https://github.com/scipy/scipy/issues/9419
https://github.com/scipy/scipy/issues/9442
https://github.com/scipy/scipy/issues/9453
https://github.com/scipy/scipy/pull/9526
https://github.com/scipy/scipy/pull/9507
https://github.com/scipy/scipy/pull/9512
https://github.com/scipy/scipy/pull/9494
https://github.com/scipy/scipy/pull/9486
https://github.com/scipy/scipy/pull/9550
https://github.com/scipy/scipy/pull/9549
https://github.com/scipy/scipy/pull/9541
https://github.com/scipy/scipy/pull/7352
https://github.com/scipy/scipy/pull/7373
https://github.com/scipy/scipy/pull/7374
https://github.com/scipy/scipy/pull/8098
https://github.com/scipy/scipy/pull/8203

SciPy Reference Guide, Release 1.3.2

#8259:
#8293:
#8294
#8295:
#8357:
#8397:
#8537:
#8558:
#8560:
#8614:
#8670:
#8683:
#8725:
#8726:
#8733:
#8737:
#8738:
#8740:
#8742:
#8746:
#8750:
#8753:
#8755:
#8760:
#8763:
#8765:
#8788:
#8802:
#8803:
#8804:
#8808:
#8812:
#8813:
#8816:
#8817:
#8822:

Option to follow original Storn and Price algorithm and its parallelisation
ENH add ratio-of -uniforms method for rv generation to scipy.stats
BUG: Fix slowness in stats.mode

ENH: add Jensen Shannon distance to scipy.spatial.distance
ENH: vectorize scalar zero-search-functions

Add fs= parameter to filter design functions

ENH: Implement mode parameter for spline filtering.

ENH: small speedup for stats.gaussian_kde

BUG: fix p-value calc of anderson_ksamp in scipy.stats

ENH: correct p-values for stats.kendalltau and stats.mstats.kendalltau
ENH: Require Lapack 3.4.0

Correcting kmeans documentation

MAINT: Cleanup scipy.optimize.leastsq

BUG: Fix _get_output in scipy.ndimage to support string

MAINT: stats: A bit of clean up.

BUG: Improve numerical precision/convergence failures of smirnov/kolmogorov
MAINT: stats: A bit of clean up in test_distributions.py.

BF/ENH: make minpack thread safe

BUG: Fix division by zero in trust-region optimization methods
MAINT: signal: Fix a docstring of a private function, and fix...
DOC clarified description of norminvgauss in scipy.stats

DOC: signal: Fix a plot title in the chirp docstring.

DOC: MAINT: Fix link to the wheel documentation in developer...
BUG: stats: boltzmann wasn’t setting the upper bound.

[DOC] Improved scipy.cluster.hierarchy documentation

DOC: added example for scipy.stat.mstats.tmin

DOC: fix definition of optional disp parameter

MAINT: Suppress dd_real unused function compiler warnings.
ENH: Add full_output support to optimize.newton()

MAINT: stats cleanup

DOC: add note about isinstance for frozen rvs

Updated numpydoc submodule

MAINT: stats: Fix multinomial docstrings, and do some clean up.
BUG: fixed _stats of t-distribution in scipy.stats

BUG: ndimage: Fix validation of the origin argument in correlate. ..

BUG: integrate: Fix crash with repeated t values in odeint.

38

Chapter 3.

Release Notes

https://github.com/scipy/scipy/pull/8259
https://github.com/scipy/scipy/pull/8293
https://github.com/scipy/scipy/pull/8294
https://github.com/scipy/scipy/pull/8295
https://github.com/scipy/scipy/pull/8357
https://github.com/scipy/scipy/pull/8397
https://github.com/scipy/scipy/pull/8537
https://github.com/scipy/scipy/pull/8558
https://github.com/scipy/scipy/pull/8560
https://github.com/scipy/scipy/pull/8614
https://github.com/scipy/scipy/pull/8670
https://github.com/scipy/scipy/pull/8683
https://github.com/scipy/scipy/pull/8725
https://github.com/scipy/scipy/pull/8726
https://github.com/scipy/scipy/pull/8733
https://github.com/scipy/scipy/pull/8737
https://github.com/scipy/scipy/pull/8738
https://github.com/scipy/scipy/pull/8740
https://github.com/scipy/scipy/pull/8742
https://github.com/scipy/scipy/pull/8746
https://github.com/scipy/scipy/pull/8750
https://github.com/scipy/scipy/pull/8753
https://github.com/scipy/scipy/pull/8755
https://github.com/scipy/scipy/pull/8760
https://github.com/scipy/scipy/pull/8763
https://github.com/scipy/scipy/pull/8765
https://github.com/scipy/scipy/pull/8788
https://github.com/scipy/scipy/pull/8802
https://github.com/scipy/scipy/pull/8803
https://github.com/scipy/scipy/pull/8804
https://github.com/scipy/scipy/pull/8808
https://github.com/scipy/scipy/pull/8812
https://github.com/scipy/scipy/pull/8813
https://github.com/scipy/scipy/pull/8816
https://github.com/scipy/scipy/pull/8817
https://github.com/scipy/scipy/pull/8822

SciPy Reference Guide, Release 1.3.2

#8832:
#8837:
#8839:
#8846:
#8849:
#8854:
#8865:
#8870:
#8872:
#8874
#8876:
#8882:
#8883:
#8885:
#8887:
#8889:
#8890:
#88909:
#8901:
#8907:
#8908:
#8910:
#8914
#8918:
#8919:
#8920:
#8924:
#8927:
#8932:
#8936:
#8937:
#8938:
#8940:
#8943:
#8944
#8945:

Hyperlink DOIs against preferred resolver

BUG: sparse: Ensure correct dtype for sparse comparison operations.
DOC: stats: A few tweaks to the linregress docstring.

BUG: stats: Fix logpdf method of invwishart.

DOC: signal: Fixed mistake in the firwin docstring.

DOC: fix type descriptors in Itisys documentation

Fix tiny typo in docs for chi2 pdf

Fixes related to invertibility of STFT

ENH: special: Add the softmax function

DOC correct gamma function in docstrings in scipy.stats

ENH: Added TOMS Algorithm 748 as 1-d root finder; 17 test function...
ENH: Only use Halley’s adjustment to Newton if close enough.

FIX: optimize: make jac and hess truly optional for ‘trust-constr’

TST: Do not error on warnings raised about non-tuple indexing.
MAINT: filter out np.matrix PendingDeprecationWarning’s in numpy...
DOC: optimize: separate legacy interfaces from new ones

ENH: Add optimize.root_scalar() as a universal dispatcher for...
DCT-1V, DST-IV and DCT-I, DST-I orthonormalization support in...
MAINT: Reorganize flapack.pyf.src file

BUG: ENH: Check if guess for newton is already zero before checking...
ENH: Make sorting optional for cKDTree.query_ball_point()

DOC: sparse.csgraph simple examples.

DOC: interpolate: fix equivalences of string aliases

add float_control(precise, on) to _fpumode.c

MAINT: interpolate: improve error messages for common bc_type. ..
DOC: update Contributing to SciPy to say “prefer no PEP8 only...
MAINT: special: deprecate hyp2f0, hyplf2, and hyp3f0

MAINT: special: remove errprint

Fix broadcasting scale arg of entropy

Fix (some) non-tuple index warnings

ENH: implement sparse matrix BSR to CSR conversion directly.
DOC: add @_ni_docstrings.docfiller in ndimage.rotate

Update _discrete_distns.py

DOC: Finish dangling sentence in convolve docstring

MAINT: Address tuple indexing and warnings

ENH: spatial.transform.Rotation [GSOC2018]

3.5.

SciPy 1.2.0 Release Notes

https://github.com/scipy/scipy/pull/8832
https://github.com/scipy/scipy/pull/8837
https://github.com/scipy/scipy/pull/8839
https://github.com/scipy/scipy/pull/8846
https://github.com/scipy/scipy/pull/8849
https://github.com/scipy/scipy/pull/8854
https://github.com/scipy/scipy/pull/8865
https://github.com/scipy/scipy/pull/8870
https://github.com/scipy/scipy/pull/8872
https://github.com/scipy/scipy/pull/8874
https://github.com/scipy/scipy/pull/8876
https://github.com/scipy/scipy/pull/8882
https://github.com/scipy/scipy/pull/8883
https://github.com/scipy/scipy/pull/8885
https://github.com/scipy/scipy/pull/8887
https://github.com/scipy/scipy/pull/8889
https://github.com/scipy/scipy/pull/8890
https://github.com/scipy/scipy/pull/8899
https://github.com/scipy/scipy/pull/8901
https://github.com/scipy/scipy/pull/8907
https://github.com/scipy/scipy/pull/8908
https://github.com/scipy/scipy/pull/8910
https://github.com/scipy/scipy/pull/8914
https://github.com/scipy/scipy/pull/8918
https://github.com/scipy/scipy/pull/8919
https://github.com/scipy/scipy/pull/8920
https://github.com/scipy/scipy/pull/8924
https://github.com/scipy/scipy/pull/8927
https://github.com/scipy/scipy/pull/8932
https://github.com/scipy/scipy/pull/8936
https://github.com/scipy/scipy/pull/8937
https://github.com/scipy/scipy/pull/8938
https://github.com/scipy/scipy/pull/8940
https://github.com/scipy/scipy/pull/8943
https://github.com/scipy/scipy/pull/8944
https://github.com/scipy/scipy/pull/8945

SciPy Reference Guide, Release 1.3.2

#8950:
#8953:
#8955:
#8958:
#8962:
#8963:
#8965:
#8969:
#8970:
#8971
#8972:
#8975:
#8979:
#8982:
#8984:
#8986:
#8989:
#8990:
#8991:
#8993:
#8994
#8995:
#9007:
#9013:
#9014:
#9017:
#9018:
#9021:
#9022:
#9034:
#9035
#9037:
#9039:
#9048:
#9050:
#9051:

csgraph Dijkstra function description rewording

DOC, MAINT: HTTP -> HTTPS, and other linkrot fixes

BUG: np.int64 in scipy.fftpack.next_fast len

MAINT: Add more descriptive error message for phase one simplex.

BUG: sparse.linalg: add missing conjugate to _ScaledLinearOperator.adjoint
BUG: sparse.linalg: downgrade LinearOperator TypeError to warning

ENH: Wrapped RFP format and RZ decomposition routines

MAINT: doc and code fixes for optimize.newton

Added ‘average’ keyword for welch/csd to enable median averaging

: Better imresize deprecation warning

MAINT: Switch np.where(c) for np.nonzero(c)

MAINT: Fix warning-based failures

DOC: fix description of count_sort keyword of dendrogram
MAINT: optimize: Fixed minor mistakes in test_linprog.py (#8978)
BUG: sparse.linalg: ensure expm casts integer inputs to float

BUG: optimize/slsqp: do not exit with convergence on steps where. ..
MAINT: use collections.abc in basinhopping

ENH extend p-values of anderson_ksamp in scipy.stats

ENH: Weighted kde

ENH: spatial.transform.Rotation.random [GSOC 2018]

ENH: spatial.transform.Slerp [GSOC 2018]

TST: time.time in test

Fix typo in fftpack.rst

Added correct plotting code for two sided output from spectrogram
BUG: differential_evolution with inf objective functions

BUG: fixed #8446 corner case for asformat(arrayldense)

MAINT: _lib/ccallback: remove unused code

BUG: Issue with subspace_angles

DOC: Added “See Also” section to lombscargle docstring

BUG: Fix tolerance printing behavior, remove meaningless tol...

: TST: improve signal.bsplines test coverage

ENH: add a new init method for k-means

DOC: Add examples to fftpack.irfft docstrings

ENH: scipy.sparse.random

BUG: scipy.io.hb_write: fails for matrices not in csc format

MAINT: Fix slow sparse.rand for k < mn/3 (#9036).

40

Chapter 3.

Release Notes

https://github.com/scipy/scipy/pull/8950
https://github.com/scipy/scipy/pull/8953
https://github.com/scipy/scipy/pull/8955
https://github.com/scipy/scipy/pull/8958
https://github.com/scipy/scipy/pull/8962
https://github.com/scipy/scipy/pull/8963
https://github.com/scipy/scipy/pull/8965
https://github.com/scipy/scipy/pull/8969
https://github.com/scipy/scipy/pull/8970
https://github.com/scipy/scipy/pull/8971
https://github.com/scipy/scipy/pull/8972
https://github.com/scipy/scipy/pull/8975
https://github.com/scipy/scipy/pull/8979
https://github.com/scipy/scipy/pull/8982
https://github.com/scipy/scipy/pull/8984
https://github.com/scipy/scipy/pull/8986
https://github.com/scipy/scipy/pull/8989
https://github.com/scipy/scipy/pull/8990
https://github.com/scipy/scipy/pull/8991
https://github.com/scipy/scipy/pull/8993
https://github.com/scipy/scipy/pull/8994
https://github.com/scipy/scipy/pull/8995
https://github.com/scipy/scipy/pull/9007
https://github.com/scipy/scipy/pull/9013
https://github.com/scipy/scipy/pull/9014
https://github.com/scipy/scipy/pull/9017
https://github.com/scipy/scipy/pull/9018
https://github.com/scipy/scipy/pull/9021
https://github.com/scipy/scipy/pull/9022
https://github.com/scipy/scipy/pull/9034
https://github.com/scipy/scipy/pull/9035
https://github.com/scipy/scipy/pull/9037
https://github.com/scipy/scipy/pull/9039
https://github.com/scipy/scipy/pull/9048
https://github.com/scipy/scipy/pull/9050
https://github.com/scipy/scipy/pull/9051

SciPy Reference Guide, Release 1.3.2

#9054
#9055
#9056
#9059
#9060
#9062
#9066
#9069
#9079
#9081
#9084
#9095
#9096
#9101
#9105
#9112
#9118
#9120
#9125
#9126
#9129
#9131
#9133
#9134
#9137
#9139
#9143
#9145
#9149
#9156
#9160
#9170
#9171
#9174
#9175
#9176

: MAINT: spatial: Explicitly initialize LAPACK output parameters.
: DOC: Add examples to scipy.special docstrings

: ENH: Use one thread in OpenBLAS

: DOC: Update README with link to Code of Conduct

: BLD: remove support for the Bento build system.

: DOC add sections to overview in scipy.stats

: BUG: Correct “remez” error message

: DOC: update linalg section of roadmap for LAPACK versions.

: MAINT: add spatial.transform to refguide check; complete some...
: MAINT: Add warnings if pivot value is close to tolerance in linprog(method="simplex’)
: BUG fix incorrect p-values of kurtosistest in scipy.stats

: DOC: add sections to mstats overview in scipy.stats

: BUG: Add test for Stackoverflow example from issue 8174.

: ENH: add Siegel slopes (robust regression) to scipy.stats

: allow resample_poly() to output float32 for float32 inputs.

: MAINT: optimize: make trust-constr accept constraint dict (#9043)
: Add doc entry to cholesky_banded

: eigsh documentation parameters

: interpolative: correctly reconstruct full rank matrices

: MAINT: Use warnings for unexpected peak properties

: BUG: Do not catch and silence KeyboardInterrupt

: DOC: Correct the typo in scipy.optimize tutorial page

: FIX: Avoid use of bare except

: DOC: Update of ‘return_eigenvectors’ description

: DOC: typo fixes for discrete Poisson tutorial

: FIX: Doctest failure in optimize tutorial

: DOC: missing sigma in Pearson r formula

: MAINT: Refactor linear programming solvers

: FIX: Make scipy.odr.ODR ifixx equal to its data.fix if given

: DOC: special: Mention the sigmoid function in the expit docstring.
: Fixed a latex delimiter error in levy()

: DOC: correction / update of docstrings of distributions in scipy.stats
: better description of the hierarchical clustering parameter

: domain check for a < b in stats.truncnorm

: DOC: Minor grammar fix

: BUG: CloughTocher2DInterpolator: fix miscalculation at neighborless. ..

3.5.

SciPy

1.2.0 Release Notes

https://github.com/scipy/scipy/pull/9054
https://github.com/scipy/scipy/pull/9055
https://github.com/scipy/scipy/pull/9056
https://github.com/scipy/scipy/pull/9059
https://github.com/scipy/scipy/pull/9060
https://github.com/scipy/scipy/pull/9062
https://github.com/scipy/scipy/pull/9066
https://github.com/scipy/scipy/pull/9069
https://github.com/scipy/scipy/pull/9079
https://github.com/scipy/scipy/pull/9081
https://github.com/scipy/scipy/pull/9084
https://github.com/scipy/scipy/pull/9095
https://github.com/scipy/scipy/pull/9096
https://github.com/scipy/scipy/pull/9101
https://github.com/scipy/scipy/pull/9105
https://github.com/scipy/scipy/pull/9112
https://github.com/scipy/scipy/pull/9118
https://github.com/scipy/scipy/pull/9120
https://github.com/scipy/scipy/pull/9125
https://github.com/scipy/scipy/pull/9126
https://github.com/scipy/scipy/pull/9129
https://github.com/scipy/scipy/pull/9131
https://github.com/scipy/scipy/pull/9133
https://github.com/scipy/scipy/pull/9134
https://github.com/scipy/scipy/pull/9137
https://github.com/scipy/scipy/pull/9139
https://github.com/scipy/scipy/pull/9143
https://github.com/scipy/scipy/pull/9145
https://github.com/scipy/scipy/pull/9149
https://github.com/scipy/scipy/pull/9156
https://github.com/scipy/scipy/pull/9160
https://github.com/scipy/scipy/pull/9170
https://github.com/scipy/scipy/pull/9171
https://github.com/scipy/scipy/pull/9174
https://github.com/scipy/scipy/pull/9175
https://github.com/scipy/scipy/pull/9176

SciPy Reference Guide, Release 1.3.2

#9177:
#9178:
#9186:
#9188:
#9190:
#9192:
#9200:
#9201:
#9204
#9206:
#9208:
#9210:
#9211:
#9217:
#9222:
#9229:
#9233:
#9234
#9235:
#9238:
#9239:
#9241:
#9242:
#9246:
#9255:
#9260:
#9264
#9267:
#9272:
#9277:
#9278:
#9279:
#9280
#9281:
#9282:
#9283:

BUILD: Document the “clean” target in the doc/Makefile.

MAINT: make refguide-check more robust for printed numpy arrays
MAINT: Remove np.ediff1d occurence

DOC: correct typo in extending ndimage with C

ENH: Support specifying axes for fftconvolve

MAINT: optimize: fixed @pv style suggestions from #9112

Fix make_interp_spline(..., k=0 or 1, axis<0)

BUG: sparse.linalg/gmres: use machine eps in breakdown check
MAINT: fix up stats.spearmanr and match mstats.spearmanr with...
MAINT: include benchmarks and dev files in sdist.

TST: signal: bump bsplines test tolerance for complex data

TST: mark tests as slow, fix missing random seed

ENH: add capability to specify orders in pade func

MAINT: Include success and nit in OptimizeResult returned. ..
ENH: interpolate: Use scipy.spatial.distance to speed-up Rbf

MNT: Fix Fourier filter double case

BUG: spatial/distance: fix pdist/cdist performance regression...

FIX: Proper suppression

BENCH: rationalize slow benchmarks + miscellaneous fixes
BENCH: limit number of parameter combinations in spatial. *KDTree. ..
DOC: stats: Fix LaTeX markup of a couple distribution PDFs.
ENH: Evaluate plateau size during peak finding

ENH: stats: Implement _ppf and _logpdf for crystalball, and do...
DOC: Properly render versionadded directive in HTML documentation
DOC: mention RootResults in optimization reference guide

TST: relax some tolerances so tests pass with x87 math

TST Use assert_raises “match” parameter instead of the “message”...
DOC: clarify expect() return val when moment is inf/nan

DOC: Add description of default bounds to linprog

MAINT: sparse/linalg: make test deterministic

MAINT: interpolate: pep8 cleanup in test_polyint

Fixed docstring for resample

: removed first check for float in get_sum_dtype

BUG: only accept 1d input for bartlett / levene in scipy.stats
MAINT: dense_output and t_eval are mutually exclusive inputs

MAINT: add docs and do some cleanups in interpolate.Rbf

42

Chapter 3.

Release Notes

https://github.com/scipy/scipy/pull/9177
https://github.com/scipy/scipy/pull/9178
https://github.com/scipy/scipy/pull/9186
https://github.com/scipy/scipy/pull/9188
https://github.com/scipy/scipy/pull/9190
https://github.com/scipy/scipy/pull/9192
https://github.com/scipy/scipy/pull/9200
https://github.com/scipy/scipy/pull/9201
https://github.com/scipy/scipy/pull/9204
https://github.com/scipy/scipy/pull/9206
https://github.com/scipy/scipy/pull/9208
https://github.com/scipy/scipy/pull/9210
https://github.com/scipy/scipy/pull/9211
https://github.com/scipy/scipy/pull/9217
https://github.com/scipy/scipy/pull/9222
https://github.com/scipy/scipy/pull/9229
https://github.com/scipy/scipy/pull/9233
https://github.com/scipy/scipy/pull/9234
https://github.com/scipy/scipy/pull/9235
https://github.com/scipy/scipy/pull/9238
https://github.com/scipy/scipy/pull/9239
https://github.com/scipy/scipy/pull/9241
https://github.com/scipy/scipy/pull/9242
https://github.com/scipy/scipy/pull/9246
https://github.com/scipy/scipy/pull/9255
https://github.com/scipy/scipy/pull/9260
https://github.com/scipy/scipy/pull/9264
https://github.com/scipy/scipy/pull/9267
https://github.com/scipy/scipy/pull/9272
https://github.com/scipy/scipy/pull/9277
https://github.com/scipy/scipy/pull/9278
https://github.com/scipy/scipy/pull/9279
https://github.com/scipy/scipy/pull/9280
https://github.com/scipy/scipy/pull/9281
https://github.com/scipy/scipy/pull/9282
https://github.com/scipy/scipy/pull/9283

SciPy Reference Guide, Release 1.3.2

#9288:
#9294:
#9298:
#9299:
#9301:
#9302:
#9303:
#9305:
#9306:
#9309:

#9317

#9332:
#9340:
#9343:
#9344:
#9346:
#9350:
#9351:
#9356:
#9358:
#9362:
#9364:
#9360:
#9373:
#9374:
#9376:
#9377:
#9379:

#9385

#9392:
#9399:
#9400:
#9405:

Run distance_transform_edt tests on all types

DOC: fix the formula typo

MAINT: optimize/trust-constr: restore .niter attribute for backward-compat
DOC: clarification of default rvs method in scipy.stats

MAINT: removed unused import sys

MAINT: removed unused imports

DOC: signal: Refer to fs instead of nyq in the firwin docstring.

ENH: Added Yeo-Johnson power transformation

ENH - add dual annealing

ENH add the yulesimon distribution to scipy.stats

: Nested SLSQP bug fix.
#9320:
#9326:

MAINT: stats: avoid underflow in stats.geom.ppf

Add example for Rosenbrock function

Sort file lists

Fix typo in find_peaks documentation

MAINT Use np.full when possible

DOC: added examples to docstring of dirichlet class

DOC: Fix import of scipy.sparse.linalg in example (#9345)
Fix interpolate read only

MAINT: special.erf: use the x->-x symmetry

Fix documentation typo

DOC: improve doc for ksone and kstwobign in scipy.stats
DOC: Change datatypes of A matrices in linprog

MAINT: Adds implicit none to fftpack fortran sources
DOC: minor tweak to CoC (updated NumFOCUS contact address).
Fix exception if python is called with -OO option

FIX: AIX compilation issue with NAN and INFINITY
COBLYA -> COBYLA in docs

DOC: Add examples integrate: fixed_quad and quadrature
MAINT: TST: Make tests NumPy 1.8 compatible

: CI: On Travis matrix “OPTIMIZE=-O0” flag ignored
#9387:

Fix defaut value for ‘mode’ in ‘ndimage.shift’ in the doc
BUG: rank has to be integer in rank_filter: fixed issue 9388
DOC: Misc. typos

TST: stats: Fix the expected r-value of a linregress test.

BUG: np.hstack does not accept generator expressions

3.5.

SciPy 1.2.0 Release Notes

https://github.com/scipy/scipy/pull/9288
https://github.com/scipy/scipy/pull/9294
https://github.com/scipy/scipy/pull/9298
https://github.com/scipy/scipy/pull/9299
https://github.com/scipy/scipy/pull/9301
https://github.com/scipy/scipy/pull/9302
https://github.com/scipy/scipy/pull/9303
https://github.com/scipy/scipy/pull/9305
https://github.com/scipy/scipy/pull/9306
https://github.com/scipy/scipy/pull/9309
https://github.com/scipy/scipy/pull/9317
https://github.com/scipy/scipy/pull/9320
https://github.com/scipy/scipy/pull/9326
https://github.com/scipy/scipy/pull/9332
https://github.com/scipy/scipy/pull/9340
https://github.com/scipy/scipy/pull/9343
https://github.com/scipy/scipy/pull/9344
https://github.com/scipy/scipy/pull/9346
https://github.com/scipy/scipy/pull/9350
https://github.com/scipy/scipy/pull/9351
https://github.com/scipy/scipy/pull/9356
https://github.com/scipy/scipy/pull/9358
https://github.com/scipy/scipy/pull/9362
https://github.com/scipy/scipy/pull/9364
https://github.com/scipy/scipy/pull/9369
https://github.com/scipy/scipy/pull/9373
https://github.com/scipy/scipy/pull/9374
https://github.com/scipy/scipy/pull/9376
https://github.com/scipy/scipy/pull/9377
https://github.com/scipy/scipy/pull/9379
https://github.com/scipy/scipy/pull/9385
https://github.com/scipy/scipy/pull/9387
https://github.com/scipy/scipy/pull/9392
https://github.com/scipy/scipy/pull/9399
https://github.com/scipy/scipy/pull/9400
https://github.com/scipy/scipy/pull/9405

SciPy Reference Guide, Release 1.3.2

e #9408: ENH: linalg: Shorter ill-conditioned warning message

e #9418: DOC: Fix ndimage docstrings and reduce doc build warnings
» #9421: DOC: Add missing docstring examples in scipy.spatial

e #9422: DOC: Add an example to integrate.newton_cotes

o #9427: BUG: Fixed defect with maxiter #9419 in dual annealing

e #9431: BENCH: Add dual annealing to scipy benchmark (see #9415)
e #9435: DOC: Add docstring examples for stats.binom_test

* #9443: DOC: Fix the order of indices in optimize tutorial

» #9444: MAINT: interpolate: use operator.index for checking/coercing. ..
» #9445: DOC: Added missing example to stats.mstats.kruskal

¢ #9446: DOC: Add note about version changed for jaccard distance

» #9447: BLD: version-script handling in setup.py

o #9448: TST: skip a problematic linalg test

e #9449: TST: fix missing seed in lobpcg test.

* #9456: TST: test_eigs_consistency() now sorts output

3.6 SciPy 1.1.0 Release Notes

Contents

e SciPy 1.1.0 Release Notes
— New features
* scipy.integrate improvements
* scipy.linalg improvements
* scipy.misc improvements
* scipy.ndimage improvements
* scipy.optimize improvements
* scipy.signal improvements
* scilpy.sparse improvements
* scipy.special improvements

* scipy.stats improvements

Deprecated features

Backwards incompatible changes

Other changes

Authors

« Issues closed for 1.1.0

44 Chapter 3. Release Notes

https://github.com/scipy/scipy/pull/9408
https://github.com/scipy/scipy/pull/9418
https://github.com/scipy/scipy/pull/9421
https://github.com/scipy/scipy/pull/9422
https://github.com/scipy/scipy/pull/9427
https://github.com/scipy/scipy/pull/9431
https://github.com/scipy/scipy/pull/9435
https://github.com/scipy/scipy/pull/9443
https://github.com/scipy/scipy/pull/9444
https://github.com/scipy/scipy/pull/9445
https://github.com/scipy/scipy/pull/9446
https://github.com/scipy/scipy/pull/9447
https://github.com/scipy/scipy/pull/9448
https://github.com/scipy/scipy/pull/9449
https://github.com/scipy/scipy/pull/9456

SciPy Reference Guide, Release 1.3.2

« Pull requests for 1.1.0 I

SciPy 1.1.0 is the culmination of 7 months of hard work. It contains many new features, numerous bug-fixes, improved
test coverage and better documentation. There have been a number of deprecations and API changes in this release,
which are documented below. All users are encouraged to upgrade to this release, as there are a large number of bug-fixes
and optimizations. Before upgrading, we recommend that users check that their own code does not use deprecated SciPy
functionality (to do so, run your code with python -Wd and check for DeprecationWarnings). Our development
attention will now shift to bug-fix releases on the 1.1.x branch, and on adding new features on the master branch.

This release requires Python 2.7 or 3.4+ and NumPy 1.8.2 or greater.

This release has improved but not necessarily 100% compatibility with the PyPy Python implementation. For running on
PyPy, PyPy 6.0+ and Numpy 1.15.0+ are required.

3.6.1 New features

scipy.integrate improvements

The argument t first has been added to the function scipy.integrate.odeint. This allows odeint to use
the same user functions as scipy.integrate.solve_ivpand scipy.integrate.ode without the need for
wrapping them in a function that swaps the first two arguments.

Error messages from quad () are now clearer.

scipy.linalg improvements

The function scipy.linalg.1dl has been added for factorization of indefinite symmetric/hermitian matrices into
triangular and block diagonal matrices.

Python wrappers for LAPACK sygst, hegst added in scipy.linalg. lapack.

Added scipy.linalg.null_space, scipy.linalg.cdf2rdf, scipy.linalg.rsf2csft.

scipy.misc improvements

An electrocardiogram has been added as an example dataset for a one-dimensional signal. It can be accessed through
scipy.misc.electrocardiogram.

scipy.ndimage improvements

The routines scipy.ndimage.binary_opening, and scipy.ndimage.binary_closing now support
masks and different border values.

scipy.optimize improvements

The method t rust—constr has been added to scipy.optimize.minimize. The method switches between
two implementations depending on the problem definition. For equality constrained problems it is an implementation
of a trust-region sequential quadratic programming solver and, when inequality constraints are imposed, it switches to
a trust-region interior point method. Both methods are appropriate for large scale problems. Quasi-Newton options
BFGS and SR1 were implemented and can be used to approximate second order derivatives for this new method. Also,
finite-differences can be used to approximate either first-order or second-order derivatives.

3.6. SciPy 1.1.0 Release Notes 45

https://pypy.org/

SciPy Reference Guide, Release 1.3.2

Random-to-Best/1/bin and Random-to-Best/1/exp mutation strategies were added to scipy.optimize.
differential_evolution as randtobestlbin and randtobestlexp, respectively. Note: These
names were already in use but implemented a different mutation strategy. See Backwards incompatible changes, below.
The init keyword for the scipy.optimize.differential evolution function can now accept an array.
This array allows the user to specify the entire population.

Add an adapt ive option to Nelder-Mead to use step parameters adapted to the dimensionality of the problem.

Minor improvements in scipy.optimize.basinhopping.

scipy.signal improvements

Three new functions for peak finding in one-dimensional arrays were added. scipy.signal. find_peaks searches
for peaks (local maxima) based on simple value comparison of neighbouring samples and returns those peaks whose
properties match optionally specified conditions for their height, prominence, width, threshold and distance to each other.
scipy.signal.peak_prominences and scipy.signal.peak_widths can directly calculate the promi-
nences or widths of known peaks.

Added ZPK versions of frequency transformations: scipy.signal.bilinear_zpk, scipy.signal.
1p2bp_zpk, scipy.signal.lp2bs_zpk, scipy.signal.lp2hp_zpk, scipy.signal.lp2lp_zpk.

Added scipy.signal.windows.dpss, scipy.signal.windows.general_cosine and scipy.
signal.windows.general_hamming.

scipy.sparse improvements

Previously, the reshape method only worked on scipy.sparse.lil matrix, and in-place reshaping did not
work on any matrices. Both operations are now implemented for all matrices. Handling of shapes has been made consistent
with numpy . mat rix throughout the scipy. sparse module (shape can be a tuple or splatted, negative number acts
as placeholder, padding and unpadding dimensions of size 1 to ensure length-2 shape).

scipy.special improvements

Added Owen’s T function as scipy.special.owens_t.

Accuracy improvements in chndtr, digamma, gammaincinv, lambertw, zetac.

scipy.stats improvements

The Moyal distribution has been added as scipy.stats.moyal.

Added the normal inverse Gaussian distribution as scipy.stats.norminvgauss.

3.6.2 Deprecated features

The iterative linear equation solvers in scipy. sparse. linalg had a sub-optimal way of how absolute tolerance is
considered. The default behavior will be changed in a future Scipy release to a more standard and less surprising one. To
silence deprecation warnings, set the at o 1= parameter explicitly.

scipy.signal.windows.slepian is deprecated, replaced by scipy.signal.windows.dpss.

The window functions in scipy.signal are now available in scipy.signal.windows. They will remain also
available in the old location in the scipy. signal namespace in future Scipy versions. However, importing them from
scipy.signal.windows is preferred, and new window functions will be added only there.

46 Chapter 3. Release Notes

SciPy Reference Guide, Release 1.3.2

Indexing sparse matrices with floating-point numbers instead of integers is deprecated.

The function scipy.stats. itemfreq is deprecated.

3.6.3 Backwards incompatible changes

Previously, scipy.linalg.orth used a singular value cutoff value appropriate for double precision numbers also
for single-precision input. The cutoff value is now tunable, and the default has been changed to depend on the input data
precision.

In previous versions of Scipy, the randtobestlibin and randtobestlexp mutation strategies in scipy.
optimize.differential evolution were actually implemented using the Current-to-Best/1/bin and
Current-to-Best/1/exp strategies, respectively. These strategies were renamed to currenttobestlbin and
currenttobestlexp and the implementations of randtobestlbin and randtobestlexp strategies were
corrected.

Functions in the ndimage module now always return their output array. Before this most functions only returned the
output array if it had been allocated by the function, and would return None if it had been provided by the user.

Distance metrics in scipy.spatial.distance now require non-negative weights.

scipy.special.loggamma returns now real-valued result when the input is real-valued.

3.6.4 Other changes

When building on Linux with GNU compilers, the . so Python extension files now hide all symbols except those required
by Python, which can avoid problems when embedding the Python interpreter.

3.6.5 Authors

 Saurabh Agarwal +

¢ Diogo Aguiam +
 Joseph Albert +
 Gerrit Ansmann +

* Jean-Francois B +

¢ Vahan Babayan +

¢ Alessandro Pietro Bardelli
* Christoph Baumgarten +
¢ Felix Berkenkamp

* Lilian Besson +
 Aditya Bharti +

* Matthew Brett

* Evgeni Burovski

e CJ Carey

* Martin @. Christensen +

¢ Robert Cimrman

3.6. SciPy 1.1.0 Release Notes 47

SciPy Reference Guide, Release 1.3.2

Vicky Close +

Peter Cock +

Philip DeBoer

Jaime Fernandez del Rio
Dieter Werthmiiller +
Tom Donoghue +

Matt Dzugan +

Lars G +

Jacques Gaudin +
Andriy Gelman +

Sean Gillies +

Dezmond Goff
Christoph Gohlke

Ralf Gommers

Uri Goren +

Deepak Kumar Gouda +
Douglas Lessa Graciosa +
Matt Haberland

David Hagen

Charles Harris

Jordan Heemskerk +
Danny Hermes +
Stephan Hoyer +
Theodore Hu +
Jean-Francois B. +
Mads Jensen +

Jon Haitz Legarreta Gorrofio +
Ben Jude +

Noel Kippers +

Julius Bier Kirkegaard +
Maria Knorps +

Mikkel Kristensen +
Eric Larson

Kasper Primdal Lauritzen +
Denis Laxalde

KangWon Lee +

48

Chapter 3. Release Notes

SciPy Reference Guide, Release 1.3.2

Jan Lehky +
Jackie Leng +
P.L.Lim+
Nikolay Mayorov
Mihai Capotd +
Max Mikhaylov +
Mark Mikofski +
Jarrod Millman
Raden Muhammad +
Paul Nation
Andrew Nelson
Nico Schlomer
Joel Nothman
Kyle Oman +
Egor Panfilov +
Nick Papior
Anubhav Patel +
Oleksandr Pavlyk
Ilhan Polat

Robert Pollak +
Anant Prakash +
Aman Pratik

Sean Quinn +
Giftlin Rajaiah +
Tyler Reddy
Joscha Reimer
Antonio H Ribeiro +
Antonio Horta Ribeiro
Benjamin Rose +
Fabian Rost
Divakar Roy +
Scott Sievert

Leo Singer

Sourav Singh
Martino Sorbaro +

Eric Stansifer +

3.6.

SciPy 1.1.0 Release Notes

49

SciPy Reference Guide, Release 1.3.2

Martin Thoma
Phil Tooley +
Piotr Uchwat +
Paul van Mulbregt
Pauli Virtanen
Stefan van der Walt
Warren Weckesser
Florian Weimer +
Eric Wieser

Josh Wilson

Ted Ying +
Evgeny Zhurko
Z¢ Vinicius

@ Astrofysicus +
@awakenting +
@endolith
@FormerPhysicist +
@gaulinmp +
@hugovk
@ksemb +
@kshitij12345 +
@luzpaz +
@NKrvavica +
@rafalalgo +
@samyak0210 +
@soluwalana +
@sudheerachary +
@Tokixix +
@tttthomasssss +
@vkk800 +
@xoviat

@ziejcow +

A total of 122 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

This list of names is automatically generated, and may not be fully complete.

50

Chapter 3. Release Notes

SciPy Reference Guide, Release 1.3.2

Issues closed for 1.1.0

e #979: Allow Hermitian matrices in lobpcg (Trac #452)

* #2694: Solution of iterative solvers can be less accurate than tolerance...

e #3164: RectBivariateSpline usage inconsistent with other interpolation. ..

o #4161: Missing ITMAX optional argument in scipy.optimize.nnls

» #4354: signal.slepian should use definition of digital window

e #4866: Shouldn’t scipy.linalg.sqrtm raise an error if matrix is singular?

e #4953: The dirichlet distribution unnecessarily requires strictly positive...

* #5336: sqrtm on a diagonal matrix can warn “Matrix is singular and may...
» #5922: Suboptimal convergence of Halley’s method?

¢ #6036: Incorrect edge case in scipy.stats.triang.pdf

e #6202: Enhancement: Add LDLt factorization to scipy

* #6589: sparse.random with custom rvs callable does pass on arg to subclass
 #06654: Spearman’s rank correlation coefficient slow with nan values. ..

e #6794: Remove NumarrayType struct with numarray type names from ndimage
e #7136: The dirichlet distribution unnecessarily rejects probabilities. ..

» #7169: Will it be possible to add LDL’ factorization for Hermitian indefinite...
e #7291: fsolve docs should say it doesn’t handle over- or under-determined. ..
e #7453: binary_opening/binary_closing missing arguments

» #7500: linalg.solve test failure on OS X with Accelerate

e #7555: Integratig a function with singularities using the quad routine

o #7624: allow setting both absolute and relative tolerance of sparse...

» #7724: odeint documentation refers to t0 instead of t

» #7746: False CDF values for skew normal distribution

e #7750: mstats.winsorize documentation needs clarification

» #7787: Documentation error in spherical Bessel, Neumann, modified spherical...
e #7836: Scipy mmwrite incorrectly writes the zeros for skew-symmetric,. ..

e #7839: sqrtm is unable to compute square root of zero matrix

e #7847: solve is very slow since #6775

» #7888: Scipy 1.0.0b1 prints spurious DVODE/ZVODE/Isoda messages

» #7909: bessel kv function in 0 is nan

e #7915: LinearOperator’s __init__ runs two times when instantiating the...

» #7958: integrate.quad could use better error messages when given bad. ..

» #7968: integrate.quad handles decreasing limits (b<a) inconsistently

» #7970: ENH: matching return dtype for loggamma/gammaln

o #7991: [filter segfaults for integer inputs

3.6. SciPy 1.1.0 Release Notes 51

https://github.com/scipy/scipy/issues/979
https://github.com/scipy/scipy/issues/2694
https://github.com/scipy/scipy/issues/3164
https://github.com/scipy/scipy/issues/4161
https://github.com/scipy/scipy/issues/4354
https://github.com/scipy/scipy/issues/4866
https://github.com/scipy/scipy/issues/4953
https://github.com/scipy/scipy/issues/5336
https://github.com/scipy/scipy/issues/5922
https://github.com/scipy/scipy/issues/6036
https://github.com/scipy/scipy/issues/6202
https://github.com/scipy/scipy/issues/6589
https://github.com/scipy/scipy/issues/6654
https://github.com/scipy/scipy/issues/6794
https://github.com/scipy/scipy/issues/7136
https://github.com/scipy/scipy/issues/7169
https://github.com/scipy/scipy/issues/7291
https://github.com/scipy/scipy/issues/7453
https://github.com/scipy/scipy/issues/7500
https://github.com/scipy/scipy/issues/7555
https://github.com/scipy/scipy/issues/7624
https://github.com/scipy/scipy/issues/7724
https://github.com/scipy/scipy/issues/7746
https://github.com/scipy/scipy/issues/7750
https://github.com/scipy/scipy/issues/7787
https://github.com/scipy/scipy/issues/7836
https://github.com/scipy/scipy/issues/7839
https://github.com/scipy/scipy/issues/7847
https://github.com/scipy/scipy/issues/7888
https://github.com/scipy/scipy/issues/7909
https://github.com/scipy/scipy/issues/7915
https://github.com/scipy/scipy/issues/7958
https://github.com/scipy/scipy/issues/7968
https://github.com/scipy/scipy/issues/7970
https://github.com/scipy/scipy/issues/7991

SciPy Reference Guide, Release 1.3.2

* #3076:
* #3080:
o #8127:
o #8145:
o #8158:
o #8181:
o #8228:
o #8235:
o #8271:
o #8288:
o #8298:
o #8329:
* #8346:
o #8371:
o #8382:
o #8492:
o #8532:
o #8544
o #8561:
o #8562:
o #8576:
o #8603:
o #8604:
o #8616:
o #8625:
o #8629:
o #8632:
o #8646:
o #8663:
o #8694:

* #8703

“make dist” for the docs doesn’t complete cleanly

Use JSON in special/_generate_pyx.py?

scipy.special.psi(x) very slow for some values of x

BUG: ndimage geometric_transform and zoom using deprecated NumPy...
BUG: romb print output requires correction

loadmat() raises TypeError instead of FileNotFound when reading. ..

bug for loglp on csr_matrix

scipy.stats multinomial pmf return nan

scipy.io.mmwrite raises type error for uint16

Should tests be written for scipy.sparse.linalg.isolve.minres. ..

Broken links on scipy API web page

_gels fails for fat A matrix

Avoidable overflow in scipy.special.binom(n, k)

BUG: special: zetac(x) returns 0 for x < -30.8148

collections.OrderedDict in test_mio.py

Missing documentation for brute_force parameter in scipy.ndimage.morphology
leastsq needlessly appends extra dimension for scalar problems

[feature request] Convert complex diagonal form to real block...

[Bug?] Example of Bland’s Rule for optimize.linprog (simplex)...

CI: Appveyor builds fail because it can’t import ConvexHull from...
BUG: optimize: show_options(solver="minimize’, method="Newton-CG’)...
test_roots_gegenbauer/chebyt/chebyc failures on manylinux

Test failures in scipy.sparse test_inplace_dense

special: ellpj.c code can be cleaned up a bit

scipy 1.0.1 no longer allows overwriting variables in netcdf...
gerotmk.test_atol failure with MKL

Sigma clipping on data with the same value

scipy.special.sinpi test failures in test_zero_sign on old MSVC

linprog with method=interior-point produced incorrect answer...

linalg: TestSolve.test_all_type_size_routine_combinations fails...

: Q: Does runtests.py —refguide-check need env (or other) variables. ..

Pull requests for 1.1.0

* #6590
* #7004
* #7120

: BUG: sparse: fix custom rvs callable argument in sparse.random
: ENH: scipy.linalg.eigsh cannot get all eigenvalues

: ENH: implemented Owen’s T function

52

Chapter 3.

Release Notes

https://github.com/scipy/scipy/issues/8076
https://github.com/scipy/scipy/issues/8080
https://github.com/scipy/scipy/issues/8127
https://github.com/scipy/scipy/issues/8145
https://github.com/scipy/scipy/issues/8158
https://github.com/scipy/scipy/issues/8181
https://github.com/scipy/scipy/issues/8228
https://github.com/scipy/scipy/issues/8235
https://github.com/scipy/scipy/issues/8271
https://github.com/scipy/scipy/issues/8288
https://github.com/scipy/scipy/issues/8298
https://github.com/scipy/scipy/issues/8329
https://github.com/scipy/scipy/issues/8346
https://github.com/scipy/scipy/issues/8371
https://github.com/scipy/scipy/issues/8382
https://github.com/scipy/scipy/issues/8492
https://github.com/scipy/scipy/issues/8532
https://github.com/scipy/scipy/issues/8544
https://github.com/scipy/scipy/issues/8561
https://github.com/scipy/scipy/issues/8562
https://github.com/scipy/scipy/issues/8576
https://github.com/scipy/scipy/issues/8603
https://github.com/scipy/scipy/issues/8604
https://github.com/scipy/scipy/issues/8616
https://github.com/scipy/scipy/issues/8625
https://github.com/scipy/scipy/issues/8629
https://github.com/scipy/scipy/issues/8632
https://github.com/scipy/scipy/issues/8646
https://github.com/scipy/scipy/issues/8663
https://github.com/scipy/scipy/issues/8694
https://github.com/scipy/scipy/issues/8703
https://github.com/scipy/scipy/pull/6590
https://github.com/scipy/scipy/pull/7004
https://github.com/scipy/scipy/pull/7120

SciPy Reference Guide, Release 1.3.2

#7483:
#7566:
#7592:
#7729:
#7802:
#7803:
#7821:
#7833:
#7864:

#7865
#7871

#7934
#7936:
#7937
#7941:
#7945:
#7947:
#7954:
#7964
#7967:
#7975:
#7978:
#7980:
#7981:
#7983:
#7989:
#7990:

ENH: Addition/multiplication operators for StateSpace systems
Informative exception when passing a sparse matrix

Adaptive Nelder-Mead

WIP: ENH: optimize: large-scale constrained optimization algorithms. ..
MRG: Add dpss window function

DOC: Add examples to spatial.distance

Add Returns section to the docstring

ENH: Performance improvements in scipy.linalg.special_matrices

MAINT: sparse: Simplify sputils.isintlike

: ENH: Improved speed of copy into L, U matrices
: ENH: sparse: Add 64-bit integer to sparsetools

#7879:
#7889:
#7900:
#7910:
#7911:
#7913:
#7916:
#7921:
#7927:

ENH: re-enabled old sv lapack routine as defaults

DOC: Show probability density functions as math

APT: Soft deprecate signal.* windows

ENH: allow sqrtm to compute the root of some singular matrices
MAINT: Avoid unnecessary array copies in xdist

DOC: Clarifies the meaning of initial of scipy.integrate.cumtrapz()
BUG: sparse.linalg: fix wrong use of __new__ in LinearOperator
BENCH: split spatial benchmark imports

ENH: added sygst/hegst routines to lapack

MAINT: add io/_test_fortranmodule to gitignore

DOC: Fixed typo in scipy.special.roots_jacobi documentation
MAINT: special: Mark a test that fails on 1686 as a known failure.
ENH: LDLt decomposition for indefinite symmetric/hermitian matrices
ENH: Implement reshape method on sparse matrices

DOC: update docs on releasing and installing/upgrading
Basin-hopping changes

BUG: test_falker not robust against numerical fuss in eigenvalues
QUADPACK Errors - human friendly errors to replace ‘Invalid Input’
Make sure integrate.quad doesn’t double-count singular points
TST: ensure negative weights are not allowed in distance metrics
MAINT: Truncate the warning msg about ill-conditioning

BUG: special: fix hyp2f1 behavior in certain circumstances

ENH: special: Add a real dispatch to loggamma

BUG: special: make kv return inf at a zero real argument

TST: special: test ufuncs in special at nan inputs

3.6.

SciPy 1.1.0 Release Notes

https://github.com/scipy/scipy/pull/7483
https://github.com/scipy/scipy/pull/7566
https://github.com/scipy/scipy/pull/7592
https://github.com/scipy/scipy/pull/7729
https://github.com/scipy/scipy/pull/7802
https://github.com/scipy/scipy/pull/7803
https://github.com/scipy/scipy/pull/7821
https://github.com/scipy/scipy/pull/7833
https://github.com/scipy/scipy/pull/7864
https://github.com/scipy/scipy/pull/7865
https://github.com/scipy/scipy/pull/7871
https://github.com/scipy/scipy/pull/7879
https://github.com/scipy/scipy/pull/7889
https://github.com/scipy/scipy/pull/7900
https://github.com/scipy/scipy/pull/7910
https://github.com/scipy/scipy/pull/7911
https://github.com/scipy/scipy/pull/7913
https://github.com/scipy/scipy/pull/7916
https://github.com/scipy/scipy/pull/7921
https://github.com/scipy/scipy/pull/7927
https://github.com/scipy/scipy/pull/7934
https://github.com/scipy/scipy/pull/7936
https://github.com/scipy/scipy/pull/7937
https://github.com/scipy/scipy/pull/7941
https://github.com/scipy/scipy/pull/7945
https://github.com/scipy/scipy/pull/7947
https://github.com/scipy/scipy/pull/7954
https://github.com/scipy/scipy/pull/7964
https://github.com/scipy/scipy/pull/7967
https://github.com/scipy/scipy/pull/7975
https://github.com/scipy/scipy/pull/7978
https://github.com/scipy/scipy/pull/7980
https://github.com/scipy/scipy/pull/7981
https://github.com/scipy/scipy/pull/7983
https://github.com/scipy/scipy/pull/7989
https://github.com/scipy/scipy/pull/7990

SciPy Reference Guide, Release 1.3.2

#7994
#7995:
#7999:
#8003:
#8004:
#8006:
#3011:
#8015:
#8018:
#3021
#8024:
#8027:
#8028:
#8030:
#8034:
#8035:
#8038:
#8042:
#8043:
#8044
#8049:
#8052:
#8059:
#8006:
#8072:
#8073:
#8078:
#8085:
#8088:
#8090:
#8091:
#8096:
#38101:
#8104:
#8105:
#8109:

DOC: special: fix typo in spherical Bessel function documentation
ENH: linalg: add null_space for computing null spaces via svd
BUG: optimize: Protect _minpack calls with a lock.

MAINT: consolidate 99 compatibility

TST: special: get all cython_special tests running again

MAINT: Consolidate an additional _c99compat.h

Add new example of integrate.quad

DOC: special: remove jn from the refguide (again)

BUG - Issue with uint datatypes for array in get_index_dtype

: DOC: spatial: Simplify Delaunay plotting

Documentation fix

BUG: io.matlab: fix saving unicode matrix names on py2

BUG: special: some fixes for lambertw

MAINT: Bump Cython version

BUG: sparse.linalg: fix corner-case bug in expm

MAINT: special: remove complex division hack

ENH: Cythonize pyx files if pxd dependencies change

TST: stats: reduce required precision in test_fligner

TST: Use diff. values for decimal keyword for single and doubles
TST: accuracy of tests made different for singles and doubles
Unhelpful error message when calling scipy.sparse.save_npz on...
TST: spatial: add a regression test for gh-8051

BUG: special: fix ufunc results for nan arguments

MAINT: special: reimplement inverses of incomplete gamma functions
Example for scipy.fttpack.ifft, https://github.com/scipy/scipy/issues/7168
Example for ifftn, https://github.com/scipy/scipy/issues/7168
Link to CoC in contributing.rst doc

BLD: Fix npy_isnan of integer variables in cephes

DOC: note version for which new attributes have been added to...
BUG: special: add nan check to _legacy_cast_check functions
Doxy Typos + trivial comment typos (2nd attempt)

TST: special: simplify Arg

MAINT: special: run _generate_pyx.py when add_newdocs.py...
Input checking for scipy.sparse.linalg.inverse()

DOC: special: Update the ‘euler’ docstring.

MAINT: fixing code comments and hyp2f1 docstring: see issues. ..

54

Chapter 3.

Release Notes

https://github.com/scipy/scipy/pull/7994
https://github.com/scipy/scipy/pull/7995
https://github.com/scipy/scipy/pull/7999
https://github.com/scipy/scipy/pull/8003
https://github.com/scipy/scipy/pull/8004
https://github.com/scipy/scipy/pull/8006
https://github.com/scipy/scipy/pull/8011
https://github.com/scipy/scipy/pull/8015
https://github.com/scipy/scipy/pull/8018
https://github.com/scipy/scipy/pull/8021
https://github.com/scipy/scipy/pull/8024
https://github.com/scipy/scipy/pull/8027
https://github.com/scipy/scipy/pull/8028
https://github.com/scipy/scipy/pull/8030
https://github.com/scipy/scipy/pull/8034
https://github.com/scipy/scipy/pull/8035
https://github.com/scipy/scipy/pull/8038
https://github.com/scipy/scipy/pull/8042
https://github.com/scipy/scipy/pull/8043
https://github.com/scipy/scipy/pull/8044
https://github.com/scipy/scipy/pull/8049
https://github.com/scipy/scipy/pull/8052
https://github.com/scipy/scipy/pull/8059
https://github.com/scipy/scipy/pull/8066
https://github.com/scipy/scipy/pull/8072
https://github.com/scipy/scipy/issues/7168
https://github.com/scipy/scipy/pull/8073
https://github.com/scipy/scipy/issues/7168
https://github.com/scipy/scipy/pull/8078
https://github.com/scipy/scipy/pull/8085
https://github.com/scipy/scipy/pull/8088
https://github.com/scipy/scipy/pull/8090
https://github.com/scipy/scipy/pull/8091
https://github.com/scipy/scipy/pull/8096
https://github.com/scipy/scipy/pull/8101
https://github.com/scipy/scipy/pull/8104
https://github.com/scipy/scipy/pull/8105
https://github.com/scipy/scipy/pull/8109

SciPy Reference Guide, Release 1.3.2

#8112:
#8113:
#8116:
#8120:
#8121:
#8123:
#8124:
#8126:
#8128:
#8129:
#8137:
#3141:
#8147:
#8148:
#8149:
#8159:
#8164:
#8168:
#8170:
#8171:
#8175:
#8177:
#8178:
#8179:
#8180:
#8183:
#8186:
#8194:
#8196:
#8198:
#8200:
#8201:
#8204
#82006:
#8214:
#8222:

More trivial typos

MAINT: special: generate test data npz files in setup.py and...
DOC: add build instructions

DOC: Clean up README

DOC: Add missing colons in docstrings

BLD: update Bento build config files for recent C99 changes.
Change to avoid use of fimod in scipy.signal.chebwin

Added examples for mode arg in geometric_transform

relax relative tolerance parameter in TestMinumumPhase.test_hilbert
ENH: special: use rational approximation for ‘digamma‘ on [1,...
DOC Correct matrix width

MAINT: optimize: remove unused __main__ code in L-BSGS-B
BLD: update Bento build for removal of .npz scipy.special test...
Alias hanning as an explanatory function of hann

MAINT: special: small fixes for digamma

Update version classifiers

BUG: riccati solvers don’t catch ill-conditioned problems sufficiently. ..
DOC: release note for sparse resize methods

BUG: correctly pad netCDF files with null bytes

ENH added normal inverse gaussian distribution to scipy.stats
DOC: Add example to scipy.ndimage.zoom

MAINT: diffev small speedup in ensure constraint

FIX: linalg._qz String formatter syntax error

TST: Added pdist to asv spatial benchmark suite

TST: ensure constraint test improved

0d conj correlate

BUG: special: fix derivative of spherical_jn(1, 0)

Fix warning message

BUG: correctly handle inputs with nan’s and ties in spearmanr
MAINT: stats.triang edge case fixes #6036

DOC: Completed “Examples” sections of all linalg funcs

MAINT: stats.trapz edge cases

ENH: sparse.linalg/lobpcg: change .T to .T.conj() to support...
MAINT: missed triang edge case.

BUG: Fix memory corruption in linalg._decomp_update C extension

DOC: recommend scipy.integrate.solve_ivp

3.6.

SciPy 1.1.0 Release Notes

55

https://github.com/scipy/scipy/pull/8112
https://github.com/scipy/scipy/pull/8113
https://github.com/scipy/scipy/pull/8116
https://github.com/scipy/scipy/pull/8120
https://github.com/scipy/scipy/pull/8121
https://github.com/scipy/scipy/pull/8123
https://github.com/scipy/scipy/pull/8124
https://github.com/scipy/scipy/pull/8126
https://github.com/scipy/scipy/pull/8128
https://github.com/scipy/scipy/pull/8129
https://github.com/scipy/scipy/pull/8137
https://github.com/scipy/scipy/pull/8141
https://docs.python.org/dev/library/__main__.html#module-__main__
https://github.com/scipy/scipy/pull/8147
https://github.com/scipy/scipy/pull/8148
https://github.com/scipy/scipy/pull/8149
https://github.com/scipy/scipy/pull/8159
https://github.com/scipy/scipy/pull/8164
https://github.com/scipy/scipy/pull/8168
https://github.com/scipy/scipy/pull/8170
https://github.com/scipy/scipy/pull/8171
https://github.com/scipy/scipy/pull/8175
https://github.com/scipy/scipy/pull/8177
https://github.com/scipy/scipy/pull/8178
https://github.com/scipy/scipy/pull/8179
https://github.com/scipy/scipy/pull/8180
https://github.com/scipy/scipy/pull/8183
https://github.com/scipy/scipy/pull/8186
https://github.com/scipy/scipy/pull/8194
https://github.com/scipy/scipy/pull/8196
https://github.com/scipy/scipy/pull/8198
https://github.com/scipy/scipy/pull/8200
https://github.com/scipy/scipy/pull/8201
https://github.com/scipy/scipy/pull/8204
https://github.com/scipy/scipy/pull/8206
https://github.com/scipy/scipy/pull/8214
https://github.com/scipy/scipy/pull/8222

SciPy Reference Guide, Release 1.3.2

#8223:
#8232:
#8236:
#8253:
#8264
#8273:
#8276:
#8279:
#8282:
#8287:

#8291

#8300:
#8301:
#8302:
#8313:
#8315:
#8318:
#8328:
#8330:
#8331:
#8333:
#8336:
#8337:
#8347:
#8356:
#8358:
#8374:
#8379:
#8383:
#8384
#8387:
#8393:
#8400:

ENH: added Moyal distribution to scipy.stats

BUG: sparse: Use deduped data for numpy ufuncs

Fix #8235

BUG: optimize: fix bug related with function call calculation...
ENH: Extend peak finding capabilities in scipy.signal

BUG fixed printing of convergence message in minimize_scalar...
DOC: Add notes to explain constrains on overwrite_<>

CI: fixing doctests

MAINT: weightedtau, change search for nan

Improving documentation of solve_ivp and the underlying solvers

: DOC: fix non-ascii characters in docstrings which broke the doc...
#8292:
#8296:
#8297:

CI: use numpy 1.13 for refguide check build

Fixed bug reported in issue #8181

DOC: Examples for linalg/decomp eigvals function

MAINT: Housekeeping for minimizing the linalg compiler warnings
DOC: make public API documentation cross-link to refguide.
make sure _onenorm_matrix_power_nnm actually returns a float
Change copyright to outdated 2008-2016 to 2008-year

TST: Add tests for ‘scipy.sparse.linalg.isolve.minres’

ENH: odeint: Add the argument ‘tfirst’ to odeint.

ENH: optimize: t rust-constr optimization algorithms [GSoC...
ENH: add a maxiter argument to NNLS

DOC: tweak the Moyal distribution docstring

FIX: Rewrapped ?gels and ?gels_lwork routines

MAINT: integrate: handle b < a in quad

BUG: special: Ensure zetac(1) returns inf.

BUG: Fix overflow in special.binom. Issue #8346

DOC: Corrected Documentation Issue #7750 winsorize function
ENH: stats: Use explicit MLE formulas in lognorm.fit and expon.fit
BUG: gh7854, maxiter for 1-bfgs-b closes #7854

CI: enable gcov coverage on travis

Removed collections.OrderedDict import ignore.

TravisCI: tool pep8 is now pycodestyle

MAINT: special: remove unused specfun code for Struve functions
DOC: Replace old type names in ndimage tutorial.

Fix tolerance specification in sparse.linalg iterative solvers

56

Chapter 3.

Release Notes

https://github.com/scipy/scipy/pull/8223
https://github.com/scipy/scipy/pull/8232
https://github.com/scipy/scipy/pull/8236
https://github.com/scipy/scipy/pull/8253
https://github.com/scipy/scipy/pull/8264
https://github.com/scipy/scipy/pull/8273
https://github.com/scipy/scipy/pull/8276
https://github.com/scipy/scipy/pull/8279
https://github.com/scipy/scipy/pull/8282
https://github.com/scipy/scipy/pull/8287
https://github.com/scipy/scipy/pull/8291
https://github.com/scipy/scipy/pull/8292
https://github.com/scipy/scipy/pull/8296
https://github.com/scipy/scipy/pull/8297
https://github.com/scipy/scipy/pull/8300
https://github.com/scipy/scipy/pull/8301
https://github.com/scipy/scipy/pull/8302
https://github.com/scipy/scipy/pull/8313
https://github.com/scipy/scipy/pull/8315
https://github.com/scipy/scipy/pull/8318
https://github.com/scipy/scipy/pull/8328
https://github.com/scipy/scipy/pull/8330
https://github.com/scipy/scipy/pull/8331
https://github.com/scipy/scipy/pull/8333
https://github.com/scipy/scipy/pull/8336
https://github.com/scipy/scipy/pull/8337
https://github.com/scipy/scipy/pull/8347
https://github.com/scipy/scipy/pull/8356
https://github.com/scipy/scipy/pull/8358
https://github.com/scipy/scipy/pull/8374
https://github.com/scipy/scipy/pull/8379
https://github.com/scipy/scipy/pull/8383
https://github.com/scipy/scipy/pull/8384
https://github.com/scipy/scipy/pull/8387
https://github.com/scipy/scipy/pull/8393
https://github.com/scipy/scipy/pull/8400

SciPy Reference Guide, Release 1.3.2

#8402:
#8403:
#8407:
#8409:
#8412:
#8421:
#8423:
#8426:
#8433:
#8436:
#8437:
#8440:
#8441:
#8442:
#8448:
#8457:
#8461:
#8464:
#8474
#8476:
#8479:
#8481:
#8482:
#8483:
#8484:
#8488:
#8489:
#8491:
#8496:
#8501:
#8502:
#8507:
#8509:
#8512:
#8513:
#8514:

MAINT: Some small cleanups in ndimage.

FIX: Make scipy.optimize.zeros run under PyPy

BUG: sparse.linalg: fix termination bugs for cg, cgs

MAINT: special: add a pxd file for Cephes functions

MAINT: special: remove cephes/protos.h

Setting “unknown” message in OptimizeResult when calling MINPACK.
FIX: Handle unsigned integers in mmio

DOC: correct FAQ entry on Apache license compatibility. Closes. ..
MAINT: add pytest_cache to the gitignore

MAINT: scipy.sparse: less copies at transpose method

BUG: correct behavior for skew-symmetric matrices in io.mmwrite
DOC:Add examples to integrate.quadpack docstrings

BUG: sparse.linalg/gmres: deal with exact breakdown in gmres
MAINT: special: clean up Cephes header files

TST: Generalize doctest stopwords .axis(.plot(

MAINT: special: use JSON for function signatures in _generate_pyx.py
MAINT: Simplify return value of ndimage functions.

MAINT: Trivial typos

BUG: spatial: make ghull.pyx more pypy-friendly

TST: _lib: disable refcounting tests on PyPy

BUG: io/matlab: fix issues in matlab i/o on pypy

DOC: Example for signal.cmplx_sort

TST: integrate: use integers instead of PyCapsules to store pointers
ENH: io/netcdf: make mmap=False the default on PyPy

BUG: io/matlab: work around issue in to_writeable on PyPy
MAINT: special: add const/static specifiers where possible

BUG: ENH: use common halley’s method instead of parabolic variant
DOC: fix typos

ENH: special: make Chebyshev nodes symmetric

BUG: stats: Split the integral used to compute skewnorm.cdf.

WIP: Port CircleCI to v2

DOC: Add missing description to brute_force parameter.

BENCH: forgot to add nelder-mead to list of methods

MAINT: Move spline interpolation code to spline.c

TST: special: mark a slow test as xslow

CircleCI: Share data between jobs

3.6.

SciPy 1.1.0 Release Notes

https://github.com/scipy/scipy/pull/8402
https://github.com/scipy/scipy/pull/8403
https://github.com/scipy/scipy/pull/8407
https://github.com/scipy/scipy/pull/8409
https://github.com/scipy/scipy/pull/8412
https://github.com/scipy/scipy/pull/8421
https://github.com/scipy/scipy/pull/8423
https://github.com/scipy/scipy/pull/8426
https://github.com/scipy/scipy/pull/8433
https://github.com/scipy/scipy/pull/8436
https://github.com/scipy/scipy/pull/8437
https://github.com/scipy/scipy/pull/8440
https://github.com/scipy/scipy/pull/8441
https://github.com/scipy/scipy/pull/8442
https://github.com/scipy/scipy/pull/8448
https://github.com/scipy/scipy/pull/8457
https://github.com/scipy/scipy/pull/8461
https://github.com/scipy/scipy/pull/8464
https://github.com/scipy/scipy/pull/8474
https://github.com/scipy/scipy/pull/8476
https://github.com/scipy/scipy/pull/8479
https://github.com/scipy/scipy/pull/8481
https://github.com/scipy/scipy/pull/8482
https://github.com/scipy/scipy/pull/8483
https://github.com/scipy/scipy/pull/8484
https://github.com/scipy/scipy/pull/8488
https://github.com/scipy/scipy/pull/8489
https://github.com/scipy/scipy/pull/8491
https://github.com/scipy/scipy/pull/8496
https://github.com/scipy/scipy/pull/8501
https://github.com/scipy/scipy/pull/8502
https://github.com/scipy/scipy/pull/8507
https://github.com/scipy/scipy/pull/8509
https://github.com/scipy/scipy/pull/8512
https://github.com/scipy/scipy/pull/8513
https://github.com/scipy/scipy/pull/8514

SciPy Reference Guide, Release 1.3.2

#8515:
#8520:
#8522:
#8527:
#8528:
#8533:
#8534
#8538:
#8540:
#8541
#8542:
#8546:
#8547:
#8549:
#8550:
#8551:
#8553:
#8554:
#8555:
#8557:
#8559:
#8563:
#8564:
#8568:
#8572:
#8578:
#8580:
#8584
#8586:
#8587:
#8588:
#8591:
#8594
#8595:
#8597:
#8605:

ENH: special: improve accuracy of zetac for negative arguments
TST: Decrease the array sizes for two linalg tests

TST: special: restrict range of ftest_besselk/test_besselk_int
Documentation - example added for voronoi_plot_2d

DOC: Better, shared docstrings in ndimage

BUG: Fix PEPS errors introduced in #8528.

ENH: Expose additional window functions

MAINT: Fix a couple mistakes in .pyf files.

ENH: interpolate: allow string aliases in make_interp_spline. ..

: ENH: Cythonize peak_prominences

Remove numerical arguments from convolve2d / correlate2d

ENH: New arguments, documentation, and tests for ndimage.binary_opening
Giving both size and input now raises UserWarning (#7334)

DOC: stats: invweibull is also known as Frechet or type II extreme...
add cdf2rdf function

ENH: Port of most of the dd_real part of the qd high-precision...

Note in docs to address issue #3164.

ENH: stats: Use explicit MLE formulas in uniform.fit()

MAINT: adjust benchmark config

[DOCT: fix Nakagami density docstring

DOC: Fix docstring of diric(x, n)

[DOC]: fix gamma density docstring

BLD: change default Python version for doc build from 2.7 to...

BUG: Fixes Bland’s Rule for pivot row/leaving variable, closes. ..

ENH: Add previous/next to interpld

Example for linalg.eig()

DOC: update link to asv docs

filter_design: switch to explicit arguments, keeping None as. ..

DOC: stats: Add parentheses that were missing in the exponnorm...
TST: add benchmark for newton, secant, halley

DOC: special: Remove heaviside from “functions not in special”...
DOC: cdf2rdf Added version info and “See also”

ENH: Cythonize peak_widths

MAINT/ENH/BUG/TST: cdf2rdf: Address review comments made after...
DOC: add versionadded 1.1.0 for new keywords in ndimage.morphology

MAINT: special: improve implementations of sinpi and cospi

58

Chapter 3.

Release Notes

https://github.com/scipy/scipy/pull/8515
https://github.com/scipy/scipy/pull/8520
https://github.com/scipy/scipy/pull/8522
https://github.com/scipy/scipy/pull/8527
https://github.com/scipy/scipy/pull/8528
https://github.com/scipy/scipy/pull/8533
https://github.com/scipy/scipy/pull/8534
https://github.com/scipy/scipy/pull/8538
https://github.com/scipy/scipy/pull/8540
https://github.com/scipy/scipy/pull/8541
https://github.com/scipy/scipy/pull/8542
https://github.com/scipy/scipy/pull/8546
https://github.com/scipy/scipy/pull/8547
https://github.com/scipy/scipy/pull/8549
https://github.com/scipy/scipy/pull/8550
https://github.com/scipy/scipy/pull/8551
https://github.com/scipy/scipy/pull/8553
https://github.com/scipy/scipy/pull/8554
https://github.com/scipy/scipy/pull/8555
https://github.com/scipy/scipy/pull/8557
https://github.com/scipy/scipy/pull/8559
https://github.com/scipy/scipy/pull/8563
https://github.com/scipy/scipy/pull/8564
https://github.com/scipy/scipy/pull/8568
https://github.com/scipy/scipy/pull/8572
https://github.com/scipy/scipy/pull/8578
https://github.com/scipy/scipy/pull/8580
https://github.com/scipy/scipy/pull/8584
https://github.com/scipy/scipy/pull/8586
https://github.com/scipy/scipy/pull/8587
https://github.com/scipy/scipy/pull/8588
https://github.com/scipy/scipy/pull/8591
https://github.com/scipy/scipy/pull/8594
https://github.com/scipy/scipy/pull/8595
https://github.com/scipy/scipy/pull/8597
https://github.com/scipy/scipy/pull/8605

SciPy Reference Guide, Release 1.3.2

#8607:
#38608:
#8613:
#8615:
#8617:
#8618:
#8620:
#8627:
#8630:
: BLD: fix pdf doc build. closes gh-8076
#8633:

#8631

#8635:
#8636:
#8637:
#8639:
#8640:
#8641:
#8645:
#8047:
#8657:
#8659:
#8661:
#86066:
#8667:
#8668:
#8671:
#8673:
#8674
#8676:
#8685:
#8687:
#8688:
#8689:
#8690:
#8691:
#8695:

MAINT: add 2D benchmarks for convolve

FIX: Fix int check

fix typo in doc of signal.peak_widths

TST: fix failing linalg.qz float32 test by decreasing precision.
MAINT: clean up code in ellpj.c

add fsolve docs it doesn’t handle over- or under-determined problems
DOC: add note on dtype attribute of aslinearoperator() argument
ENH: Add example 1D signal (ECG) to scipy.misc

ENH: Remove unnecessary copying in stats.percentileofscore

BUG: fix regression in io.netcdf_file with append mode.

MAINT: remove spurious warning from (z)vode and Isoda. Closes. ..
BUG: sparse.linalg/gcrotmk: avoid rounding error in termination...
For pdf build

CI: build pdf documentation on circleci

TST: fix special test that was importing np.testing.utils (deprecated)
BUG: optimize: fixed sparse redundancy removal bug

BUG: modified sigmaclip to avoid clipping of constant input in...
TST: sparse: skip test_inplace_dense for numpy<1.13

Latex reduce left margins

TST: special: skip sign-of-zero test on 32-bit win32 with old...

Fix dblquad and tplquad not accepting float boundaries

DOC: fixes #8532

BUG: optimize: fixed issue #8663

Fix example in docstring of netcdf_file

DOC: Replace deprecated matplotlib kwarg

BUG: special: Use a stricter tolerance for the chndtr calculation.
ENH: In the Dirichlet distribution allow x_i to be O if alpha_i...
BUG: optimize: partial fix to linprog fails to detect infeasibility...
DOC: Add interp1d-next/previous example to tutorial

TST: netcdf: explicit mmap=True in test

BUG: signal, stats: use Python sum() instead of np.sum for summing...
TST: bump tolerances in tests

DEP: deprecate stats.itemfreq

BLD: special: fix build vs. dd_real.h package

DOC: Improve examples in signal.find_peaks with ECG signal

3.6.

SciPy 1.1.0 Release Notes

https://github.com/scipy/scipy/pull/8607
https://github.com/scipy/scipy/pull/8608
https://github.com/scipy/scipy/pull/8613
https://github.com/scipy/scipy/pull/8615
https://github.com/scipy/scipy/pull/8617
https://github.com/scipy/scipy/pull/8618
https://github.com/scipy/scipy/pull/8620
https://github.com/scipy/scipy/pull/8627
https://github.com/scipy/scipy/pull/8630
https://github.com/scipy/scipy/pull/8631
https://github.com/scipy/scipy/pull/8633
https://github.com/scipy/scipy/pull/8635
https://github.com/scipy/scipy/pull/8636
https://github.com/scipy/scipy/pull/8637
https://github.com/scipy/scipy/pull/8639
https://github.com/scipy/scipy/pull/8640
https://github.com/scipy/scipy/pull/8641
https://github.com/scipy/scipy/pull/8645
https://github.com/scipy/scipy/pull/8647
https://github.com/scipy/scipy/pull/8657
https://github.com/scipy/scipy/pull/8659
https://github.com/scipy/scipy/pull/8661
https://github.com/scipy/scipy/pull/8666
https://github.com/scipy/scipy/pull/8667
https://github.com/scipy/scipy/pull/8668
https://github.com/scipy/scipy/pull/8671
https://github.com/scipy/scipy/pull/8673
https://github.com/scipy/scipy/pull/8674
https://github.com/scipy/scipy/pull/8676
https://github.com/scipy/scipy/pull/8685
https://github.com/scipy/scipy/pull/8687
https://github.com/scipy/scipy/pull/8688
https://github.com/scipy/scipy/pull/8689
https://github.com/scipy/scipy/pull/8690
https://github.com/scipy/scipy/pull/8691
https://github.com/scipy/scipy/pull/8695

SciPy Reference Guide, Release 1.3.2

o #8697: BUG: Fix setup.py build install egg_info, which did not previously...

o #8704: TST: linalg: drop large size from solve() test

» #8705: DOC: Describe signal.find_peaks and related functions behavior...

e #8706: DOC: Specify encoding of rst file, remove an ambiguity in an...

o #8710: MAINT: fix an import cycle sparse -> special -> integrate ->...

e #8711: ENH: remove an avoidable overflow in scipy.stats.norminvgauss.pdf()
« #8716: BUG: interpolate: allow list inputs for make_interp_spline(...,...

o #8720: np.testing import that is compatible with numpy 1.15

o #8724: CI: don’t use pyproject.toml in the CI builds

3.7 SciPy 1.0.1 Release Notes

Contents

* SciPy 1.0.1 Release Notes
— Authors

x Issues closed for 1.0.1

« Pull requests for 1.0.1

SciPy 1.0.1 is a bug-fix release with no new features compared to 1.0.0. Probably the most important change is a fix for
an incompatibility between SciPy 1.0.0 and numpy . £2py in the NumPy master branch.

3.7.1 Authors

¢ Saurabh Agarwal +
¢ Alessandro Pietro Bardelli
* Philip DeBoer

¢ Ralf Gommers

e Matt Haberland

* Eric Larson

* Denis Laxalde

¢ Mihai Capotd +

e Andrew Nelson

* Oleksandr Pavlyk
* Tlhan Polat

¢ Anant Prakash +
 Pauli Virtanen

e Warren Weckesser

60 Chapter 3. Release Notes

https://github.com/scipy/scipy/pull/8697
https://github.com/scipy/scipy/pull/8704
https://github.com/scipy/scipy/pull/8705
https://github.com/scipy/scipy/pull/8706
https://github.com/scipy/scipy/pull/8710
https://github.com/scipy/scipy/pull/8711
https://github.com/scipy/scipy/pull/8716
https://github.com/scipy/scipy/pull/8720
https://github.com/scipy/scipy/pull/8724

SciPy Reference Guide, Release 1.3.2

e @xoviat

e Ted Ying +

A total of 16 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
This list of names is automatically generated, and may not be fully complete.

Issues closed for 1.0.1

#7493
#8118
#8142
#8173
#8207
#8234
#8243
#8320

: ndimage.morphology functions are broken with numpy 1.13.0

: minimize_cobyla broken if disp=True passed

: scipy-v1.0.0 pdist with metric="minkowski‘ raises ‘ValueError:...

i scipy.stats.ortho_group produces all negative determinants. ..

: gaussian_filter seg faults on float16 numpy arrays

: scipy.optimize.linprog interior-point presolve bug with trivial...
: Make csgraph importable again via from scipy.sparse import™*

: scipy.root segfaults with optimizer ‘Im’

Pull requests for 1.0.1

#8068

#8082:
#8144:
#8150:
#8156:
#8187:
#8197:
#8215:
#8237:
#8248:
#8280:
#8322:
#8334:
#8477:
#8530:

#8566
#8573
#8581

: BUG: fix numpy deprecation test failures

BUG: fix solve_lyapunov import

MRG: Fix for cobyla

MAINT: resolve UPDATEIFCOPY deprecation errors

BUG: missing check on minkowski w kwarg

BUG: Sign of elements in random orthogonal 2D matrices in “ortho_group_gen”...
CI: uninstall oclint

Fixes Numpy datatype compatibility issues

BUG: optimize: fix bug when variables fixed by bounds are inconsistent...
BUG: declare “gfk” variable before call of terminate() in newton-cg

REV: reintroduce csgraph import in scipy.sparse

MAINT: prevent scipy.optimize.root segfault closes #8320

TST: stats: don’t use exact equality check for hdmedian test

BUG: signal/signaltools: fix wrong refcounting in PyArray_OrderFilterND
BUG: linalg: Fixed typo in flapack.pyf.src.

: CI: Temporarily pin Cython version to 0.27.3

: Backports for 1.0.1

: Fix Cython 0.28 build break of ghull.pyx

3.7.

SciPy

1.0.1 Release Notes 61

https://github.com/scipy/scipy/issues/7493
https://github.com/scipy/scipy/issues/8118
https://github.com/scipy/scipy/issues/8142
https://github.com/scipy/scipy/issues/8173
https://github.com/scipy/scipy/issues/8207
https://github.com/scipy/scipy/issues/8234
https://github.com/scipy/scipy/issues/8243
https://github.com/scipy/scipy/issues/8320
https://github.com/scipy/scipy/pull/8068
https://github.com/scipy/scipy/pull/8082
https://github.com/scipy/scipy/pull/8144
https://github.com/scipy/scipy/pull/8150
https://github.com/scipy/scipy/pull/8156
https://github.com/scipy/scipy/pull/8187
https://github.com/scipy/scipy/pull/8197
https://github.com/scipy/scipy/pull/8215
https://github.com/scipy/scipy/pull/8237
https://github.com/scipy/scipy/pull/8248
https://github.com/scipy/scipy/pull/8280
https://github.com/scipy/scipy/pull/8322
https://github.com/scipy/scipy/pull/8334
https://github.com/scipy/scipy/pull/8477
https://github.com/scipy/scipy/pull/8530
https://github.com/scipy/scipy/pull/8566
https://github.com/scipy/scipy/pull/8573
https://github.com/scipy/scipy/pull/8581

SciPy Reference Guide, Release 1.3.2

3.8 SciPy 1.0.0 Release Notes

Contents

* SciPy 1.0.0 Release Notes
— Why 1.0 now?
— Some history and perspectives
— Highlights of this release
— Upgrading and compatibility
x New features
— scipy.cluster improvements
- scipy. fftpack improvements
— scipy.integrate improvements
- scipy.linalg improvements
— scipy.ndimage improvements
— scipy.optimize improvements
— scipy.signal improvements
— scipy.sparse improvements
— scipy.sparse.linalgqg improvements
— scipy.spatial improvements
- scipy.stats improvements
« Deprecated features
« Backwards incompatible changes
« Other changes
* Authors

— Issues closed for 1.0.0

— Pull requests for 1.0.0

We are extremely pleased to announce the release of SciPy 1.0, 16 years after version 0.1 saw the light of day. It has been
a long, productive journey to get here, and we anticipate many more exciting new features and releases in the future.

3.8.1 Why 1.0 now?

A version number should reflect the maturity of a project - and SciPy was a mature and stable library that is heavily used
in production settings for a long time already. From that perspective, the 1.0 version number is long overdue.

Some key project goals, both technical (e.g. Windows wheels and continuous integration) and organisational (a governance
structure, code of conduct and a roadmap), have been achieved recently.

Many of us are a bit perfectionist, and therefore are reluctant to call something “1.0” because it may imply that it’s
“finished” or “we are 100% happy with it”. This is normal for many open source projects, however that doesn’t make it

62 Chapter 3. Release Notes

SciPy Reference Guide, Release 1.3.2

right. We acknowledge to ourselves that it’s not perfect, and there are some dusty corners left (that will probably always
be the case). Despite that, SciPy is extremely useful to its users, on average has high quality code and documentation, and
gives the stability and backwards compatibility guarantees that a 1.0 label imply.

3.8.2 Some history and perspectives

¢ 2001: the first SciPy release
* 2005: transition to NumPy
* 2007: creation of scikits
¢ 2008: scipy.spatial module and first Cython code added
¢ 2010: moving to a 6-monthly release cycle
e 2011: SciPy development moves to GitHub
* 2011: Python 3 support
¢ 2012: adding a sparse graph module and unified optimization interface
e 2012: removal of scipy.maxentropy
e 2013: continuous integration with TravisCI
¢ 2015: adding Cython interface for BLAS/LAPACK and a benchmark suite
¢ 2017: adding a unified C API with scipy.LowLevelCallable; removal of scipy.weave
e 2017: SciPy 1.0 release
Pauli Virtanen is SciPy’s Benevolent Dictator For Life (BDFL). He says:

Truthfully speaking, we could have released a SciPy 1.0 a long time ago, so I'm happy we do it now at long last. The project
has a long history, and during the years it has matured also as a software project. I believe it has well proved its merit to
warrant a version number starting with unity.

Since its conception 15+ years ago, SciPy has largely been written by and for scientists, to provide a box of basic tools that
they need. Over time, the set of people active in its development has undergone some rotation, and we have evolved towards
a somewhat more systematic approach to development. Regardless, this underlying drive has stayed the same, and I think it
will also continue propelling the project forward in future. This is all good, since not long after 1.0 comes 1.1.

Travis Oliphant is one of SciPy’s creators. He says:

I'm honored to write a note of congratulations to the SciPy developers and the entire SciPy community for the release of SciPy
1.0. This release represents a dream of many that has been patiently pursued by a stalwart group of pioneers for nearly 2
decades. Efforts have been broad and consistent over that time from many hundreds of people. From initial discussions to
efforts coding and packaging to documentation efforts to extensive conference and community building, the SciPy effort has
been a global phenomenon that it has been a privilege to participate in.

The idea of SciPy was already in multiple people’s minds in 1997 when I first joined the Python community as a young
graduate student who had just fallen in love with the expressibility and extensibility of Python. The internet was just starting
to bringing together like-minded mathematicians and scientists in nascent electronically-connected communities. In 1998,
there was a concerted discussion on the matrix-SIG, python mailing list with people like Paul Barrett, Joe Harrington, Perry
Greenfield, Paul Dubois, Konrad Hinsen, David Ascher, and others. This discussion encouraged me in 1998 and 1999 to
procrastinate my PhD and spend a lot of time writing extension modules to Python that mostly wrapped battle-tested Fortran
and C-code making it available to the Python user. This work attracted the help of others like Robert Kern, Pearu Peterson
and Eric Jones who joined their efforts with mine in 2000 so that by 2001, the first SciPy release was ready. This was long
before Github simplified collaboration and input from others and the ‘patch” command and email was how you helped a
project improve.

3.8. SciPy 1.0.0 Release Notes 63

SciPy Reference Guide, Release 1.3.2

Since that time, hundreds of people have spent an enormous amount of time improving the SciPy library and the community
surrounding this library has dramatically grown. I stopped being able to participate actively in developing the SciPy library
around 2010. Fortunately, at that time, Pauli Virtanen and Ralf Gommers picked up the pace of development supported
by dozens of other key contributors such as David Cournapeau, Evgeni Burovski, Josef Perktold, and Warren Weckesser.
While I have only been able to admire the development of SciPy from a distance for the past 7 years, I have never lost my
love of the project and the concept of community-driven development. I remain driven even now by a desire to help sustain
the development of not only the SciPy library but many other affiliated and related open-source projects. I am extremely
pleased that SciPy is in the hands of a world-wide community of talented developers who will ensure that SciPy remains an
example of how grass-roots, community-driven development can succeed.

Fernando Perez offers a wider community perspective:

The existence of a nascent Scipy library, and the incredible —if tiny by today’s standards— community surrounding it is what
drew me into the scientific Python world while still a physics graduate student in 2001. Today, I am awed when I see these
tools power everything from high school education to the research that led to the 2017 Nobel Prize in physics.

Don’t be fooled by the 1.0 number: this project is a mature cornerstone of the modern scientific computing ecosystem. I am
grateful for the many who have made it possible, and hope to be able to contribute again to it in the future. My sincere
congratulations to the whole team!

3.8.3 Highlights of this release

Some of the highlights of this release are:

¢ Major build improvements. Windows wheels are available on PyPI for the first time, and continuous integration
has been set up on Windows and OS X in addition to Linux.

¢ A set of new ODE solvers and a unified interface to them (scipy. integrate.solve_1ivp).

¢ Two new trust region optimizers and a new linear programming method, with improved performance compared to
what scipy.optimize offered previously.

e Many new BLAS and LAPACK functions were wrapped. The BLAS wrappers are now complete.

3.8.4 Upgrading and compatibility

There have been a number of deprecations and API changes in this release, which are documented below. Before up-
grading, we recommend that users check that their own code does not use deprecated SciPy functionality (to do so, run
your code with python -Wd and check for DeprecationWarnings).

This release requires Python 2.7 or >=3.4 and NumPy 1.8.2 or greater.

This is also the last release to support LAPACK 3.1.x - 3.3.x. Moving the lowest supported LAPACK version to >3.2.x
was long blocked by Apple Accelerate providing the LAPACK 3.2.1 API. We have decided that it’s time to either drop
Accelerate or, if there is enough interest, provide shims for functions added in more recent LAPACK versions so it can
still be used.

New features

3.8.5 scipy.cluster improvements

scipy.cluster.hierarchy.optimal_leaf ordering, afunction to reorder a linkage matrix to minimize
distances between adjacent leaves, was added.

64 Chapter 3. Release Notes

SciPy Reference Guide, Release 1.3.2

3.8.6 scipy.fftpack improvements

N-dimensional versions of the discrete sine and cosine transforms and their inverses were added as dctn, idctn, dstn
and idstn.

3.8.7 scipy.integrate improvements

A set of new ODE solvers have been added to scipy. integrate. The convenience function scipy. integrate.
solve_1ivp allows uniform access to all solvers. The individual solvers (RK23, RK45, Radau, BDF and LSODA) can
also be used directly.

3.8.8 scipy.linalg improvements
The BLAS wrappers in scipy.linalg.blas have been completed. Added functions are *gbmv, *hbmv, *hpmv,
*hpr, *hpr2, *spmv, *spr, *tbmv, *tbsv, *tpmv, *tpsv, *trsm, *trsv, *sbmv, *spr2,

Wrappers for the LAPACK functions *gels, *stev, *sytrd, *hetrd, *sytf2, *hetrf, *sytrf, *sycon,
*hecon, *gglse, *stebz, *stemr, *sterf, and *stein have been added.

The function scipy.linalg.subspace_angles has been added to compute the subspace angles between two
matrices.

The function scipy.linalg.clarkson_woodruff_transformhasbeen added. It finds low-rank matrix ap-
proximation via the Clarkson-Woodruff Transform.

The functions scipy.linalg.eigh_tridiagonal and scipy.linalg.eigvalsh_tridiagonal,
which find the eigenvalues and eigenvectors of tridiagonal hermitian/symmetric matrices, were added.

3.8.9 scipy.ndimage improvements

Support for homogeneous coordinate transforms has been added to scipy.ndimage.affine_transform.

The ndimage C code underwent a significant refactoring, and is now a lot easier to understand and maintain.

3.8.10 scipy.optimize improvements

The methods t rust-region-exact and trust—krylov have been added to the function scipy.optimize.
minimize. These new trust-region methods solve the subproblem with higher accuracy at the cost of more Hessian
factorizations (compared to dogleg) or more matrix vector products (compared to ncg) but usually require less nonlinear
iterations and are able to deal with indefinite Hessians. They seem very competitive against the other Newton methods
implemented in scipy.

scipy.optimize.linprog gained an interior point method. Its performance is superior (both in accuracy and
speed) to the older simplex method.

3.8.11 scipy.signal improvements

An argument £ s (sampling frequency) was added to the following functions: firwin, firwin2, firls, and remez.
This makes these functions consistent with many other functions in scipy. signal in which the sampling frequency
can be specified.

scipy.signal. freqgz has been sped up significantly for FIR filters.

3.8. SciPy 1.0.0 Release Notes 65

SciPy Reference Guide, Release 1.3.2

3.8.12 scipy.sparse improvements

Iterating over and slicing of CSC and CSR matrices is now faster by up to ~35%.
The t ocsr method of COO matrices is now several times faster.

The diagonal method of sparse matrices now takes a parameter, indicating which diagonal to return.

3.8.13 scipy.sparse.linalg improvements

A new iterative solver for large-scale nonsymmetric sparse linear systems, scipy. sparse.linalg.gcrotmk, was
added. It implements GCROT (m, k), a flexible variant of GCROT.

scipy.sparse.linalg.lsmr now accepts an initial guess, yielding potentially faster convergence.

SuperLLU was updated to version 5.2.1.

3.8.14 scipy.spatial improvements

Many distance metrics in scipy.spatial.distance gained support for weights.

The signatures of scipy.spatial.distance.pdist and scipy.spatial.distance.cdist were
changed to *args, **kwargs in order to support a wider range of metrics (e.g. string-based metrics that need
extra keywords). Also, an optional out parameter was added to pdist and cdist allowing the user to specify where
the resulting distance matrix is to be stored

3.8.15 scipy.stats improvements

The methods cdf and 1ogcdf wereaddedto scipy.stats.multivariate_normal, providing the cuamulative
distribution function of the multivariate normal distribution.

New statistical distance functions were added, namely scipy.stats.wasserstein_distance for the first
Wasserstein distance and scipy.stats.energy_distance for the energy distance.

Deprecated features

The following functions in scipy.misc are deprecated: bytescale, fromimage, imfilter, imread,
imresize, imrotate, imsave, imshow and toimage. Most of those functions have unexpected behavior (like
rescaling and type casting image data without the user asking for that). Other functions simply have better alternatives.

scipy.interpolate.interpolate_wrapper and all functions in that submodule are deprecated. This was a
never finished set of wrapper functions which is not relevant anymore.

The fillvalue of scipy.signal.convolveZ2d will be cast directly to the dtypes of the input arrays in the
future and checked that it is a scalar or an array with a single element.

scipy.spatial.distance.matching is deprecated. It is an alias of scipy.spatial.distance.
hamming, which should be used instead.

Implementation of scipy.spatial.distance.wminkowski was based on a wrong interpretation of the metric
definition. In scipy 1.0 it has been just deprecated in the documentation to keep retro-compatibility but is recommended
to use the new version of scipy.spatial.distance.minkowski that implements the correct behaviour.

Positional arguments of scipy.spatial.distance.pdist and scipy.spatial.distance.cdist
should be replaced with their keyword version.

66 Chapter 3. Release Notes

SciPy Reference Guide, Release 1.3.2

Backwards incompatible changes
The following deprecated functions have been removed from scipy.stats: betai, chisgprob, f_value,
histogram, histogram2, pdf_fromgamma, signaltonoise, square_of_sums, ss and threshold.

The following deprecated functions have been removed from scipy.stats.mstats: betai,
f_value_wilks_lambda, signaltonoise and threshold.

The deprecated a and reta keywords have been removed from scipy.stats.shapiro.

The deprecated functions sparse.csgraph.cs_graph_components and sparse.linalg.symeig have
been removed from scipy.sparse.

The following deprecated keywords have been removed in scipy.sparse.linalg: drop_tol from splu, and
xtype from bicg, bicgstab, cg, cgs, gmres, gmr and minres.

The deprecated functions expm?2 and expm3 have been removed from scipy. 1inalg. The deprecated keyword g
was removed from scipy.linalg.expm. And the deprecated submodule 1inalg.calc_lwork was removed.

The deprecated functions C2K, K2C, F2C, C2F, F2K and K2F have been removed from scipy.constants.
The deprecated pp form class was removed from scipy. interpolate.

The deprecated keyword iprint was removed from scipy.optimize. fmin_cobyla.

The default value for the zero_phase keyword of scipy.signal.decimate has been changed to True.

The kmeans and kmeans?2 functions in scipy.cluster. vg changed the method used for random initialization,
so using a fixed random seed will not necessarily produce the same results as in previous versions.

scipy.special.gammaln does not accept complex arguments anymore.

The deprecated functions sph_jn, sph_yn, sph_jnyn, sph_in, sph_kn, and sph_inkn have been removed.
Users should instead use the functions spherical_jn, spherical_yn, spherical_in, and spherical_kn.
Be aware that the new functions have different signatures.

The cross-class properties of scipy.signal. 1t i systems have been removed. The following properties/setters have
been removed:

Name - (accessing/setting has been removed) - (setting has been removed)
¢ StateSpace - (num, den, gain) - (zeros, poles)
¢ TransferFunction (2, B, C, D, gain) - (zeros, poles)
e ZerosPolesGain (A, B, C, D, num, den) - ()

signal.freqgz (b, a) withb or a >1-D raises a ValueError. This was a corner case for which it was unclear
that the behavior was well-defined.

The method var of scipy.stats.dirichlet now returns a scalar rather than an ndarray when the length of alpha
is 1.

Other changes
SciPy now has a formal governance structure. It consists of a BDFL (Pauli Virtanen) and a Steering Committee. See the
governance document for details.

It is now possible to build SciPy on Windows with MSVC + gfortran! Continuous integration has been set up for this
build configuration on Appveyor, building against OpenBLAS.

Continuous integration for OS X has been set up on TravisCI.

The SciPy test suite has been migrated from nose to pytest.

3.8. SciPy 1.0.0 Release Notes 67

https://github.com/scipy/scipy/blob/master/doc/source/dev/governance/governance.rst
https://github.com/scipy/scipy/blob/master/doc/source/dev/governance/governance.rst

SciPy Reference Guide, Release 1.3.2

scipy/_distributor_init.py was added to allow redistributors of SciPy to add custom code that needs to run

when importing SciPy (e.g. checks for hardware, DLL search paths, etc.).

Support for PEP 518 (specifying build system requirements) was added - see pyproject.toml in the root of the
SciPy repository.

In order to have consistent function names, the function scipy.linalg.solve_lyapunovisrenamedto scipy.
linalg.solve_continuous_lyapunov. The old name is kept for backwards-compatibility.

Authors

@arcady +
@xoviat +
Anton Akhmerov

Dominic Antonacci +

Alessandro Pietro Bardelli

Ved Basu +

Michael James Bedford +

Ray Bell +
Juan M. Bello-Rivas +
Sebastian Berg

Felix Berkenkamp

Jyotirmoy Bhattacharya +

Matthew Brett
Jonathan Bright
Bruno Jiménez +
Evgeni Burovski
Patrick Callier
Mark Campanelli +
CJ Carey

Robert Cimrman
Adam Cox +
Michael Danilov +
David Haberthiir +
Andras Deak +
Philip DeBoer
Anne-Sylvie Deutsch
Cathy Douglass +
Dominic Else +

Guo Fei +

68

Chapter 3. Release Notes

SciPy Reference Guide, Release 1.3.2

Roman Feldbauer +
Yu Feng

Jaime Fernandez del Rio
Orestis Floros +
David Freese +
Adam Geitgey +
James Gerity +
Dezmond Goff +
Christoph Gohlke
Ralf Gommers
Dirk Gorissen +
Matt Haberland +
David Hagen +
Charles Harris
Lam Yuen Hei +
Jean Helie +

Gaute Hope +
Guillaume Horel +
Franziska Horn +
Yevhenii Hyzyla +
Vladislav Iakovlev +
Marvin Kastner +
Mher Kazandjian
Thomas Keck
Adam Kurkiewicz +
Ronan Lamy +

J.L. Lanfranchi +
Eric Larson

Denis Laxalde
Gregory R. Lee
Felix Lenders +
Evan Limanto
Julian Lukwata +
Francois Magimel
Syrtis Major +

Charles Masson +

3.8.

SciPy 1.0.0 Release Notes

69

SciPy Reference Guide, Release 1.3.2

* Nikolay Mayorov

» Tobias Megies

* Markus Meister +

¢ Roman Mirochnik +
* Jordi Montes +

» Nathan Musoke +

* Andrew Nelson

e M.J. Nichol

¢ Juan Nunez-Iglesias
e Arno Onken +

* Nick Papior +

¢ Dima Pasechnik +

¢ Ashwin Pathak +

* Oleksandr Pavlyk +
* Stefan Peterson

* Ilhan Polat

* Andrey Portnoy +

¢ Ravi Kumar Prasad +
¢ Aman Pratik

¢ Eric Quintero

* Vedant Rathore +

e Tyler Reddy

* Joscha Reimer

* Philipp Rentzsch +
 Antonio Horta Ribeiro
* Ned Richards +

» Kevin Rose +

* Benoit Rostykus +

¢ Matt Ruffalo +

* Eli Sadoff +

* Pim Schellart

¢ Nico Schlomer +

¢ Klaus Sembritzki +
* Nikolay Shebanov +
* Jonathan Tammo Siebert

¢ Scott Sievert

70 Chapter 3. Release Notes

SciPy Reference Guide, Release 1.3.2

Max Silbiger +
Mandeep Singh +
Michael Stewart +
Jonathan Sutton +
Deep Tavker +
Martin Thoma
James Tocknell +
Aleksandar Trifunovic +
Paul van Mulbregt +
Jacob Vanderplas
Aditya Vijaykumar
Pauli Virtanen
James Webber
Warren Weckesser
Eric Wieser +

Josh Wilson
Zhiqing Xiao +
Evgeny Zhurko
Nikolay Zinov +

7€ Vinicius +

A total of 121 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
This list of names is automatically generated, and may not be fully complete.

3.8.16 Issues closed for 1.0.0

#2300: scipy.misc.toimage (and therefore imresize) converts to uint32...

#2347: Several misc.im* functions incorrectly handle 3 or 4-channeled...

#2442: scipy.misc.pilutil -> scipy.ndimage?
#2829: Mingw Gfortran on Windows?
#3154: scipy.misc.imsave creates wrong bitmap header

#3505: scipy.linalg.Istsq() residual’s help text is a lil strange

#3808: Is Brent’s method for minimizing the value of a function implemented. ..

#4121: Add cdf() method to stats.multivariate_normal
#4458: scipy.misc.imresize changes image range

#4575: Docs for L-BFGS-B mention non-existent parameter
#4893: misc.imsave does not work with file type defined

#5231: Discrepancies in scipy.optimize.minimize(method="L-BFGS-B’)

3.8. SciPy 1.0.0 Release Notes

71

https://github.com/scipy/scipy/issues/2300
https://github.com/scipy/scipy/issues/2347
https://github.com/scipy/scipy/issues/2442
https://github.com/scipy/scipy/issues/2829
https://github.com/scipy/scipy/issues/3154
https://github.com/scipy/scipy/issues/3505
https://github.com/scipy/scipy/issues/3808
https://github.com/scipy/scipy/issues/4121
https://github.com/scipy/scipy/issues/4458
https://github.com/scipy/scipy/issues/4575
https://github.com/scipy/scipy/issues/4893
https://github.com/scipy/scipy/issues/5231

SciPy Reference Guide, Release 1.3.2

#5238:
#5305:
#5823:
#6061:
#6242:
#6265:
#6370:
#6417:
#0018:
#6854
#6921:
#6930:
#6949:
#6959:
#7005:
#7010:
#7049:
#7050:
#7077:
#7093:
#7122:
#7133:
#7141:
#7181:
#7220:
#7239:
#7247:
#7248:
#7316:
#7381:
#7416:

#7421

#7475:
#7510:

Optimal leaf ordering in scipy.cluster.hierarchy.dendrogram

Wrong image scaling in scipy/misc/pilutil.py with misc.imsave?

test failure in filter_design

scipy.stats.spearmanr return values outside range -1 to 1

Inconsistency / duplication for imread and imshow, imsave

BUG: signal.iirfilter of bandpass type is unstable when high...
scipy.optimize.linear_sum_assignment hangs on undefined matrix
scipy.misc.imresize converts images to uint8

splrep and splprep inconsistent

Support PEP 519 in I/O functions

[Feature request] Random unitary matrix

uniform_filterld appears to truncate rather than round when output...
interp2d function crashes python

scipy.interpolate.LSQUnivariateSpline - check for increasing. ..
linear_sum_assignment in scipy.optimize never return if one of ...
scipy.statsbinned_statistic_2d: incorrect binnumbers returned
expm_multiply is excessively slow when called for intervals
Documenting _argcheck for rv_discrete

coo_matrix.tocsr () still slow

Wheels licensing

Sketching-based Matrix Computations

Discontinuity of a scipy special function

Improve documentation for Elliptic Integrals

A change in numpy . poly1d is causing the scipy tests to fail.

String Formatting Issue in LinearOperator.__init_

Source tarball distribution

genlaguerre polyld-object doesn’t respect ‘monic’ option at evaluation

BUG: regression in Legendre polynomials on master

dgels is missing

Krogh interpolation fails to produce derivatives for complex...

scipy.stats.kappa4(h,k) raise a ValueError for positive integer. ..

: scipy.stats.arcsine().pdf and scipy.stats.beta(0.5, 0.5).pdf ...
#7429:
#7444

test_matrix_norms () in scipy/linalg/tests/test_basic.py calls...
Doc: stats.dirichlet.var output description is wrong
Parameter amax in scalar_search_wolfe? is not used

Operations between numpy.array and scipy.sparse matrix return. ..

72

Chapter 3.

Release Notes

https://github.com/scipy/scipy/issues/5238
https://github.com/scipy/scipy/issues/5305
https://github.com/scipy/scipy/issues/5823
https://github.com/scipy/scipy/issues/6061
https://github.com/scipy/scipy/issues/6242
https://github.com/scipy/scipy/issues/6265
https://github.com/scipy/scipy/issues/6370
https://github.com/scipy/scipy/issues/6417
https://github.com/scipy/scipy/issues/6618
https://github.com/scipy/scipy/issues/6854
https://github.com/scipy/scipy/issues/6921
https://github.com/scipy/scipy/issues/6930
https://github.com/scipy/scipy/issues/6949
https://github.com/scipy/scipy/issues/6959
https://github.com/scipy/scipy/issues/7005
https://github.com/scipy/scipy/issues/7010
https://github.com/scipy/scipy/issues/7049
https://github.com/scipy/scipy/issues/7050
https://github.com/scipy/scipy/issues/7077
https://github.com/scipy/scipy/issues/7093
https://github.com/scipy/scipy/issues/7122
https://github.com/scipy/scipy/issues/7133
https://github.com/scipy/scipy/issues/7141
https://github.com/scipy/scipy/issues/7181
https://docs.scipy.org/doc/numpy/reference/generated/numpy.poly1d.html#numpy.poly1d
https://github.com/scipy/scipy/issues/7220
https://github.com/scipy/scipy/issues/7239
https://github.com/scipy/scipy/issues/7247
https://github.com/scipy/scipy/issues/7248
https://github.com/scipy/scipy/issues/7316
https://github.com/scipy/scipy/issues/7381
https://github.com/scipy/scipy/issues/7416
https://github.com/scipy/scipy/issues/7421
https://github.com/scipy/scipy/issues/7429
https://github.com/scipy/scipy/issues/7444
https://github.com/scipy/scipy/issues/7475
https://github.com/scipy/scipy/issues/7510

SciPy Reference Guide, Release 1.3.2

» #7550: DOC: signal tutorial: Typo in explanation of convolution

e #7551: stdint.h included in SuperLU header files, but does not exist...

e #7553: Build for master broken on OS X

e #7557: Error in scipy.signal.periodogram example

e #7590: OSX test fail - test_ltisys.TestPlacePoles.test_real
* #7658: optimize.BenchGlobal broken

e #7669: nan result from multivariate_normal.cdf

» #7733: Inconsistent usage of indices, indptr in Delaunay.vertex_neighbor_vertices
o #7747: Numpy changes in np.random.dirichlet cause test failures

o #7772: Fix numpy Istsq rcond= parameter

o #7776: tests require ‘nose’

* #7798: contributor names for 1.0 release notes

o #7828: 32-bit Linux test errors on TestCephes

* #7893: scipy.spatial.distance.wminkowski behaviour change in 1.0.0b1

» #7898: DOC: Window functions

e #7959: BUG maybe: fmin_bfgs possibly broken in 1.0

* #7969: scipy 1.0.0rc1 windows wheels depend on missing msvep140.d1l

3.8.17 Pull requests for 1.0.0

o #4978: WIP: add pre_center and normalize options to lombscargle

» #5796: TST: Remove all permanent filter changes from tests

» #5910: ENH: sparse.linalg: add GCROT(m,k)

* #6326: ENH: New ODE solvers

o #6480: ENH: Make signal.decimate default to zero_phase=True

e #6705: ENH: add initial guess to sparse.linalg.lsqr

e #6706: ENH: add initial guess to sparse.linalg.lsmr

» #6769: BUG: optimize: add sufficient descent condition check to CG line...

* #6855: Handle objects supporting PEP 519 in I/O functions

e #6945: MAINT: ckdtree codebase clean up

e #6953: DOC: add a SciPy Project Governance document

e #6998: fix documentation of spearman rank corrcoef

e #7017: ENH: add methods logcdf and cdf to scipy.stats.multivariate_normal
e #7027: Add random unitary matrices

e #7030: ENH: Add strictly-increasing checks for x to 1D splines

e #7031: BUG: Fix 1inear_sum_assignment hanging on an undefined matrix

e #7041: DOC: Clairfy that windows are DFT-even by default

3.8. SciPy 1.0.0 Release Notes 73

https://github.com/scipy/scipy/issues/7550
https://github.com/scipy/scipy/issues/7551
https://github.com/scipy/scipy/issues/7553
https://github.com/scipy/scipy/issues/7557
https://github.com/scipy/scipy/issues/7590
https://github.com/scipy/scipy/issues/7658
https://github.com/scipy/scipy/issues/7669
https://github.com/scipy/scipy/issues/7733
https://github.com/scipy/scipy/issues/7747
https://github.com/scipy/scipy/issues/7772
https://github.com/scipy/scipy/issues/7776
https://github.com/scipy/scipy/issues/7798
https://github.com/scipy/scipy/issues/7828
https://github.com/scipy/scipy/issues/7893
https://github.com/scipy/scipy/issues/7898
https://github.com/scipy/scipy/issues/7959
https://github.com/scipy/scipy/issues/7969
https://github.com/scipy/scipy/pull/4978
https://github.com/scipy/scipy/pull/5796
https://github.com/scipy/scipy/pull/5910
https://github.com/scipy/scipy/pull/6326
https://github.com/scipy/scipy/pull/6480
https://github.com/scipy/scipy/pull/6705
https://github.com/scipy/scipy/pull/6706
https://github.com/scipy/scipy/pull/6769
https://github.com/scipy/scipy/pull/6855
https://github.com/scipy/scipy/pull/6945
https://github.com/scipy/scipy/pull/6953
https://github.com/scipy/scipy/pull/6998
https://github.com/scipy/scipy/pull/7017
https://github.com/scipy/scipy/pull/7027
https://github.com/scipy/scipy/pull/7030
https://github.com/scipy/scipy/pull/7031
https://github.com/scipy/scipy/pull/7041

SciPy Reference Guide, Release 1.3.2

#7048:
#7056:
#7057:
#7059:
#70061:
#7070:
#7078:
#7079:
#7081:
#7082:

#7083

#7138:
#7139:
#7142:
#7143:
#7146:
#7148:
#7152:
#7153:
#7154:
#7155:
#7156:
#7159:
#7161:
#7163:
#7165:

DOC: modified docs for find_peak_cwt. Fixes #6922

Fix insufficient precision when calculating spearman/kendall. ..

MAINT: change dtype comparison in optimize.linear_sum_assignment.
TST: make Xdist_deprecated_args cover all metrics

Fix msvc 9 and 10 compile errors

ENH: sparse: optimizing CSR/CSC slicing fast paths

ENH: sparse: defer sum_duplicates to csr/csc

ENH: sparse: allow subclasses to override specific math operations

ENH: sparse: speed up CSR/CSC toarray()

MAINT: Add missing PyType_Ready (&SuperLUGlobalType) for Py3

: Corrected typo in the doc of scipy.linalg.Istsq()
#7086:
#7088:
#7094:
#7098:
#7105:
#7111:
#7113:
#7119:
#7123:
#7137:

Fix bug #7049 causing excessive slowness in expm_multiply
Documented _argcheck for rv_discrete

MAINT: Fix mistake in PR #7082

BF: return NULL from failed Py3 module check

MAINT: Customize ?TRSYL call in lyapunov solver

Fix error message typo in UnivariateSpline

FIX: Add add float to return type in documentation

ENH: sparse.linalg: remove _count_nonzero hack

ENH: added “interior-point” method for scipy.optimize.linprog
DOC: clarify stats.linregress docstring, closes gh-7074

DOC: special: Add an example to the airy docstring.

DOC: stats: Update stats tutorial

BUG: special: prevent segfault in pbwa

DOC: special: warn about alternate elliptic integral parameterizations

fix docstring of NearestNDInterpolator

DOC: special: Add Parameters, Returns and Examples to gamma docstring
MAINT: spatial: Remove two unused variables in ckdtree/src/distance.h
MAINT: special: remove deprecated variant of gammaln

MAINT: Fix some code that generates C compiler warnings

DOC: linalg: Add examples for solve_banded and solve_triangular
DOC: fix docstring of NearestNDInterpolator

BUG: special: fix sign of derivative when x < 0 in pbwa

MAINT: interpolate: make Rbf.A array a property

MAINT: special: return nan for inaccurate regions of pbwa

ENH: optimize: changes to make BFGS implementation more efficient.

74

Chapter 3.

Release Notes

https://github.com/scipy/scipy/pull/7048
https://github.com/scipy/scipy/pull/7056
https://github.com/scipy/scipy/pull/7057
https://github.com/scipy/scipy/pull/7059
https://github.com/scipy/scipy/pull/7061
https://github.com/scipy/scipy/pull/7070
https://github.com/scipy/scipy/pull/7078
https://github.com/scipy/scipy/pull/7079
https://github.com/scipy/scipy/pull/7081
https://github.com/scipy/scipy/pull/7082
https://github.com/scipy/scipy/pull/7083
https://github.com/scipy/scipy/pull/7086
https://github.com/scipy/scipy/pull/7088
https://github.com/scipy/scipy/pull/7094
https://github.com/scipy/scipy/pull/7098
https://github.com/scipy/scipy/pull/7105
https://github.com/scipy/scipy/pull/7111
https://github.com/scipy/scipy/pull/7113
https://github.com/scipy/scipy/pull/7119
https://github.com/scipy/scipy/pull/7123
https://github.com/scipy/scipy/pull/7137
https://github.com/scipy/scipy/pull/7138
https://github.com/scipy/scipy/pull/7139
https://github.com/scipy/scipy/pull/7142
https://github.com/scipy/scipy/pull/7143
https://github.com/scipy/scipy/pull/7146
https://github.com/scipy/scipy/pull/7148
https://github.com/scipy/scipy/pull/7152
https://github.com/scipy/scipy/pull/7153
https://github.com/scipy/scipy/pull/7154
https://github.com/scipy/scipy/pull/7155
https://github.com/scipy/scipy/pull/7156
https://github.com/scipy/scipy/pull/7159
https://github.com/scipy/scipy/pull/7161
https://github.com/scipy/scipy/pull/7163
https://github.com/scipy/scipy/pull/7165

SciPy Reference Guide, Release 1.3.2

#7166:
#7173:
#7179:
#7180:
#7182:
#7184
#7185:
#7186:
#7187:
#7198:
#7200:
#7208:
#7213:
#7215:
#7223:
#7224
#7225:
#7226:
#7233:
#7234:
#7236:
#7238:
#7243:
#7246:
#7249:
#7252:
#7254:
#7256:
#7263:
#7288:
#7290:
#7292:
#7296:
#7297:
#7299:
#7305:

BUG: Prevent infinite loop in optimize._lsqg.trf_linear.py
BUG: sparse: return a numpy matrix from _add_dense

DOC: Fix an error in sparse argmax docstring

MAINT: interpolate: A bit of clean up in interpolate/src/_interpolate.cpp

Allow homogeneous coordinate transforms in affine_transform
MAINT: Remove hack modifying a readonly attr

ENH: Add evaluation of periodic splines #6730

MAINT: PPoly: improve error messages for wrong shape/axis

DEP: interpolate: deprecate interpolate_wrapper

DOC: linalg: Add examples for solveh_banded and solve_toeplitz.
DOC: stats: Added tutorial documentation for the generalized. ..

DOC: Added docstrings to issparse/isspmatrix (_...) methods and...
DOC: Added examples to circmean, circvar, circstd

DOC: Adding examples to scipy.sparse.linalg.... docstrings

DOC: special: Add examples for expit and logit.

BUG: interpolate: fix integer overflow in fitpack.bispev

DOC: update 1.0 release notes for several recent PRs.

MAINT: update docs and code for mailing list move to python.org

Fix issue #7232: Do not mask exceptions in objective func evaluation
MAINT: cluster: cleaning up VQ/k-means code

DOC: Fixed typo

BUG: fix syntaxerror due to unicode character in trustregion_exact.
DOC: Update docstring in misc/pilutil.py

DEP: misc: deprecate imported names

DOC: Add plotted example to scipy.cluster.vq.kmeans

Fix 5231: docs of factr, ftol in sync w/ code

ENH: SphericalVoronoi Input Handling

fix for issue #7255 - Circular statistics functions give wrong. ..

CI: use python’s faulthandler to ease tracing segfaults

ENH: linalg: add subspace_angles function.

BUG: stats: Fix spurious warnings in genextreme.

ENH: optimize: added trust region method trust-trlib

DOC: stats: Add an example to the ttest_ind_from_stats docstring.
DOC: signal: Add examples for chirp () and sweep_poly ().

DOC: Made difference between brent and fminbound clearer

Simplify if-statements and constructor calls in integrate._ode

3.8.

SciPy 1.0.0 Release Notes

https://github.com/scipy/scipy/pull/7166
https://github.com/scipy/scipy/pull/7173
https://github.com/scipy/scipy/pull/7179
https://github.com/scipy/scipy/pull/7180
https://github.com/scipy/scipy/pull/7182
https://github.com/scipy/scipy/pull/7184
https://github.com/scipy/scipy/pull/7185
https://github.com/scipy/scipy/pull/7186
https://github.com/scipy/scipy/pull/7187
https://github.com/scipy/scipy/pull/7198
https://github.com/scipy/scipy/pull/7200
https://github.com/scipy/scipy/pull/7208
https://github.com/scipy/scipy/pull/7213
https://github.com/scipy/scipy/pull/7215
https://github.com/scipy/scipy/pull/7223
https://github.com/scipy/scipy/pull/7224
https://github.com/scipy/scipy/pull/7225
https://github.com/scipy/scipy/pull/7226
https://github.com/scipy/scipy/pull/7233
https://github.com/scipy/scipy/pull/7234
https://github.com/scipy/scipy/pull/7236
https://github.com/scipy/scipy/pull/7238
https://github.com/scipy/scipy/pull/7243
https://github.com/scipy/scipy/pull/7246
https://github.com/scipy/scipy/pull/7249
https://github.com/scipy/scipy/pull/7252
https://github.com/scipy/scipy/pull/7254
https://github.com/scipy/scipy/pull/7256
https://github.com/scipy/scipy/pull/7263
https://github.com/scipy/scipy/pull/7288
https://github.com/scipy/scipy/pull/7290
https://github.com/scipy/scipy/pull/7292
https://github.com/scipy/scipy/pull/7296
https://github.com/scipy/scipy/pull/7297
https://github.com/scipy/scipy/pull/7299
https://github.com/scipy/scipy/pull/7305

SciPy Reference Guide, Release 1.3.2

#7309:
#7313:
#7315:
#7320:
#7333:
#7337:
#7353:
#7357:
#7359:

#7361

#7362:
#7363:
#7365:
#7367:
#7368:
#7376:
#7377:
#7378:
#7383:
#7389:
#7390:
#7391:
#7394
#7398:
#7401:
#7413:
#7414
#7415:
#7423:
#7431:
#7432:
#7448:
#7454
#7460:
#7461:
#7463:

Comply with PEP 518.

REL: add python_requires to setup.py, fix Python version check.
BUG: Fixed bug with Laguerre and Legendre polynomials

DOC: clarify meaning of flags in ode.integrate

DOC: Add examples to scipy.ndimage.gaussian_filterld
ENH: add n-dimensional DCT and IDCT to fftpack

Add _gels functions

DOC: linalg: Add examples to the svdvals docstring.

Bump Sphinx version to 1.5.5

: DOC: linalg: Add some ‘See Also’ links among special matrices. ..

TST: Fix some Fedora 25 test failures.

DOC: linalg: tweak the docstring example of svd

MAINT: fix refguide_check.py for Sphinx >= 1.5

BUG: odrpack: fix invalid stride checks in d_1pkbls. f

DOC: constants: Add examples to the ‘find’ docstring.

MAINT: bundle Mathjax with built docs

MAINT: optimize: Better name for trust-region-exact method.
Improve wording in tutorial

fix KroghInterpolator.derivatives failure with complex input

FIX: Copy mutable window in resample_poly

DOC: optimize: A few tweaks of the examples in the curve_fit
DOC: Add examples to scipy.stats

“Weight” is actually mass. Add slugs and slinches/blobs to mass
DOC: Correct minor typo in optimize. { brenth,brentq }

DOC: zeta only accepts real input

BUG: fix error messages in _minimize_trustregion_exact
DOC: fix ndimage.distance_transform_bf docstring [ci skip]
DOC: fix skew docstring [ci skip]

Expand binnumbers with correct dimensions

BUG: Extend scipy.stats.arcsine.pdf to endpoints O and 1 #7427
DOC: Add examples to scipy.cluster.hierarchy

ENH: stats: Implement the survival function for pareto.

FIX Replaced np.assert_allclose with imported assert_allclose
TST: fix integrate.ivp test that fails on 32-bit Python.

Doc: Added tutorial documentation for stats distributions ksone

DOC: Fix typos and remove trailing whitespace

76

Chapter 3.

Release Notes

https://github.com/scipy/scipy/pull/7309
https://github.com/scipy/scipy/pull/7313
https://github.com/scipy/scipy/pull/7315
https://github.com/scipy/scipy/pull/7320
https://github.com/scipy/scipy/pull/7333
https://github.com/scipy/scipy/pull/7337
https://github.com/scipy/scipy/pull/7353
https://github.com/scipy/scipy/pull/7357
https://github.com/scipy/scipy/pull/7359
https://github.com/scipy/scipy/pull/7361
https://github.com/scipy/scipy/pull/7362
https://github.com/scipy/scipy/pull/7363
https://github.com/scipy/scipy/pull/7365
https://github.com/scipy/scipy/pull/7367
https://github.com/scipy/scipy/pull/7368
https://github.com/scipy/scipy/pull/7376
https://github.com/scipy/scipy/pull/7377
https://github.com/scipy/scipy/pull/7378
https://github.com/scipy/scipy/pull/7383
https://github.com/scipy/scipy/pull/7389
https://github.com/scipy/scipy/pull/7390
https://github.com/scipy/scipy/pull/7391
https://github.com/scipy/scipy/pull/7394
https://github.com/scipy/scipy/pull/7398
https://github.com/scipy/scipy/pull/7401
https://github.com/scipy/scipy/pull/7413
https://github.com/scipy/scipy/pull/7414
https://github.com/scipy/scipy/pull/7415
https://github.com/scipy/scipy/pull/7423
https://github.com/scipy/scipy/pull/7431
https://github.com/scipy/scipy/pull/7432
https://github.com/scipy/scipy/pull/7448
https://github.com/scipy/scipy/pull/7454
https://github.com/scipy/scipy/pull/7460
https://github.com/scipy/scipy/pull/7461
https://github.com/scipy/scipy/pull/7463

SciPy Reference Guide, Release 1.3.2

#7465

#7482:
#7484
#7485:
#7486:
#7498:
#7501:
#75006:
#7507:
#7509:
#7511:
#7514
#7516:
#7517:
#7523:

#7525

#7526:
#7527:
#7528:
#7529:
#7537:
#7541:
#7543:
#7544
#7545:
#7546:
#7548:
#7549:
#7552:
#7554:
#7556:

: Fix some ndimage.interpolation endianness bugs
#7468:
#7470:
#7478:
#7479:
#7480:

del redundance in interpolate.py

Initialize “info” in minpack_1lmdif

Added more testing of smirnov/smirnovi functions

MAINT: update for new FutureWarning’s in numpy 1.13.0

DOC: correctly describe output shape of dirichlet.mean() and...
signal.lti: Remove deprecated cross-system properties

MAINT: Clean-up uses of np.asarray in ndimage

ENH: support any order >=0 in ndimage .gaussian_filter
ENH: Support k!=0 for sparse.diagonal()

BUG: sparse: pass assumeSortedIndices option to scikit.umfpack
ENH: add optimal leaf ordering for linkage matrices

MAINT: remove overflow in Metropolis fixes #7495

TST: speed up full test suite by less eval points in mpmath tests.
BUG: fix issue when using python setup.py somecommand —-force.
fix some alerts found with lgtm

Add explanation what the integer returned mean.

BUG: Fix roundoff errors in ndimage.uniform_filterld.
TST: fix signal.convolve test that was effectively being skipped.

ENH: linalg: allow Istsq to work with O-shaped arrays

: TST: Warning cleanup

DOC: params in ndimage.interpolation functions not optional

MAINT: Encapsulate error message handling in NI_LineBuffer.
MAINT: Remove ndimage aliases for NPY_MAXDIMS.

MAINT: Remove NI_ (UN) LIKELY macros in favor of numpy ones.
MAINT: Use accessor function for numpy array internals

MAINT: Remove some uses of Numarray types in ndimage.

MAINT: Replace all NumarrayTypes uses in ni_fourier.c

MAINT: Replace all uses of NumarrayTypes in ni_interpolation.c
MAINT: Replace all uses of NumarrayTypes in ni_measure.c
MAINT: Replace all uses of NumarrayTypes in ni_morphology.c
DOC: make a note in benchmarks README on how to run without rebuilding.
MAINT: Get rid of NumarrayTypes.

TST: Fix new warnings -> error bugs found on OSX

Update superlu to 5.2.1 + fix stdint.h issue on MSVC

MAINT: Fix some types from #7549 + miscellaneous warnings.

3.8.

SciPy 1.0.0 Release Notes

https://github.com/scipy/scipy/pull/7465
https://github.com/scipy/scipy/pull/7468
https://github.com/scipy/scipy/pull/7470
https://github.com/scipy/scipy/pull/7478
https://github.com/scipy/scipy/pull/7479
https://github.com/scipy/scipy/pull/7480
https://github.com/scipy/scipy/pull/7482
https://github.com/scipy/scipy/pull/7484
https://github.com/scipy/scipy/pull/7485
https://github.com/scipy/scipy/pull/7486
https://github.com/scipy/scipy/pull/7498
https://github.com/scipy/scipy/pull/7501
https://github.com/scipy/scipy/pull/7506
https://github.com/scipy/scipy/pull/7507
https://github.com/scipy/scipy/pull/7509
https://github.com/scipy/scipy/pull/7511
https://github.com/scipy/scipy/pull/7514
https://github.com/scipy/scipy/pull/7516
https://github.com/scipy/scipy/pull/7517
https://github.com/scipy/scipy/pull/7523
https://github.com/scipy/scipy/pull/7525
https://github.com/scipy/scipy/pull/7526
https://github.com/scipy/scipy/pull/7527
https://github.com/scipy/scipy/pull/7528
https://github.com/scipy/scipy/pull/7529
https://github.com/scipy/scipy/pull/7537
https://github.com/scipy/scipy/pull/7541
https://github.com/scipy/scipy/pull/7543
https://github.com/scipy/scipy/pull/7544
https://github.com/scipy/scipy/pull/7545
https://github.com/scipy/scipy/pull/7546
https://github.com/scipy/scipy/pull/7548
https://github.com/scipy/scipy/pull/7549
https://github.com/scipy/scipy/pull/7552
https://github.com/scipy/scipy/pull/7554
https://github.com/scipy/scipy/pull/7556

SciPy Reference Guide, Release 1.3.2

#7558:
#7562:
#7563:
#7568:
#7571:
#7572:
#7574
#7577:
#7578:

#7581
#7582

#7594
#7596:
#7599:
#7601:
#7602:
#7605:
#7606:
#7607:
#7608:
#7609:
#7610:
#7611:
#7612:
#7613:
#7614
#7615:
#7617:
#7619:
#7621:
#7622:
#7625:
#7628:

MAINT: Use correct #define NO_IMPORT_ARRAY, not NO_ARRAY_ IMPORT...
BUG: Copy import_nose from numpy.

ENH: Add the first Wasserstein and the Cramér-von Mises statistical. ..

Test janitoring

Test janitoring pt. 2

Pytestifying

TST: Remove ignore warnings filters from stats

MAINT: Remove unused code in ndimage/ni_measure.c and .h

TST: Remove ignore warnings filters from sparse, clean up warning...

: BUG: properly deallocate memory from PyArray_IntpConverter.
: DOC: signal tutorial: Typo in explanation of convolution

#7583:
#7586:
#7587:

Remove remaining ignore warnings filters

DOC: add note to HACKING.rst on where to find build docs.
DOC: Add examples to scipy.optimize

TST: Add tests for ndimage converter functions.

Added a sanity check to signal.savgol_filter
_upfirdn_apply stopping condition bugfix

MAINT: special: remove sph_jn et al.

TST: fix test failures in trimmed statistics tests with numpy...

Be clear about required dimension order

MAINT: Remove unused function NI_NormalizeType.

TST: add osx to travis matrix

DOC: improve HACKING guide - mention reviewing PRs as contribution.
MAINT: Remove unnecessary warning filter by avoiding unnecessary...
#7557 : fix example code in periodogram

#7220 : fix TypeError while raising ValueError for invalid shape
Convert yield tests to pytest parametrized tests

Add distributor init file

fixup header

BUG: sparse: Fix assignment w/ non-canonical sparse argument
DOC: Clarify digital filter functions

ENH: scipy.sparse.spmatrix.astype: casting and copy parameter...
Expose VODE/ZVODE/LSODE IDID return code to user
MAINT: special: remove out-of-date comment for e1 1pk

TST: Add a test for “ignore” warning filters

MAINT: refactoring and cleaning distance.py/.c/.h

78

Chapter 3.

Release Notes

https://github.com/scipy/scipy/pull/7558
https://github.com/scipy/scipy/pull/7562
https://github.com/scipy/scipy/pull/7563
https://github.com/scipy/scipy/pull/7568
https://github.com/scipy/scipy/pull/7571
https://github.com/scipy/scipy/pull/7572
https://github.com/scipy/scipy/pull/7574
https://github.com/scipy/scipy/pull/7577
https://github.com/scipy/scipy/pull/7578
https://github.com/scipy/scipy/pull/7581
https://github.com/scipy/scipy/pull/7582
https://github.com/scipy/scipy/pull/7583
https://github.com/scipy/scipy/pull/7586
https://github.com/scipy/scipy/pull/7587
https://github.com/scipy/scipy/pull/7594
https://github.com/scipy/scipy/pull/7596
https://github.com/scipy/scipy/pull/7599
https://github.com/scipy/scipy/pull/7601
https://github.com/scipy/scipy/pull/7602
https://github.com/scipy/scipy/pull/7605
https://github.com/scipy/scipy/pull/7606
https://github.com/scipy/scipy/pull/7607
https://github.com/scipy/scipy/pull/7608
https://github.com/scipy/scipy/pull/7609
https://github.com/scipy/scipy/pull/7610
https://github.com/scipy/scipy/pull/7611
https://github.com/scipy/scipy/pull/7612
https://github.com/scipy/scipy/pull/7613
https://github.com/scipy/scipy/pull/7614
https://github.com/scipy/scipy/pull/7615
https://github.com/scipy/scipy/pull/7617
https://github.com/scipy/scipy/pull/7619
https://github.com/scipy/scipy/pull/7621
https://github.com/scipy/scipy/pull/7622
https://github.com/scipy/scipy/pull/7625
https://github.com/scipy/scipy/pull/7628

SciPy Reference Guide, Release 1.3.2

#7629:
#7630:
#7634:
#7635:
#7642:
#7643:
#7649:
#7650:
#7651:
#7653:
#7659:
#7662:
#7664:
#7665:
#7671:
#7672:
#7674
#7675:
#7676:
#7678:

#7681

#7703:
#7709:

#7711

#7712:
#7715:
#7716:
#7717:
#7719:

DEP: deprecate args usage in xdist

ENH: weighted metrics

Follow-up to #6855

interpolate.splprep: Test some error cases, give slightly better...
Add an example to interpolate.lagrange

ENH: Added wrappers for LAPACK <s,d>stev

Fix #7636, add PEP 519 test coverage to remaining I/O functions
DOC: signal: Add ‘Examples’ to the docstring for sosfiltfilt.

Fix up ccache usage on Travis + try enabling on OSX

DOC: transition of examples from 2 to 3. Closes #7366
BENCH: fix optimize.BenchGlobal. Closes gh-7658.

CI: speed up continuous integration builds

Update odr documentation

BUG: wolfe2 line/scalar search now uses amax parameter
MAINT: _1lib/ccallback.h: PyCapsule_GetName returns const char*
TST: interpolate: test integrating periodic b-splines against...
Tests tuning

CI: move refguide-check to faster build

DOC: bump scipy-sphinx-theme to fix copybutton. js

Note the zero-padding of the results of splrep and splprep

: MAINT: _1ib: add user-overridable available memory determination
#7684:
#7686:
#7687:
#7690:
#7691:
#7694
#7698:

TST: linalg: explicitly close opened npz files

MAINT: remove unnecessary shebang lines and executable bits

BUG: stats: don’t emit invalid warnings if moments are infinite

ENH: allow int-like parameters in several routines

DOC: Drop non-working source links from docs
fixma.rraytoma.array infunc median_cihs

BUG: stats: fix nan result from multivariate_normal.cdf (#7669)
DOC: special: Update the docstrings for noncentral F functions.

BLD: integrate: avoid symbol clash between Isoda and vode

: TST: _1ib: make test_parallel_threads to not fail falsely

TST: stats: bump test tolerance in TestMultivariateNormal.test_broadcasting

MAINT: fix deprecated use of numpy.issubdtype
TST: integrate: drop timing tests
MAINT: mstats.winsorize inclusion bug fix

DOC: stats: Add a note about the special cases of the rdist distribution.

3.8.

SciPy 1.0.0 Release Notes

https://github.com/scipy/scipy/pull/7629
https://github.com/scipy/scipy/pull/7630
https://github.com/scipy/scipy/pull/7634
https://github.com/scipy/scipy/pull/7635
https://github.com/scipy/scipy/pull/7642
https://github.com/scipy/scipy/pull/7643
https://github.com/scipy/scipy/pull/7649
https://github.com/scipy/scipy/pull/7650
https://github.com/scipy/scipy/pull/7651
https://github.com/scipy/scipy/pull/7653
https://github.com/scipy/scipy/pull/7659
https://github.com/scipy/scipy/pull/7662
https://github.com/scipy/scipy/pull/7664
https://github.com/scipy/scipy/pull/7665
https://github.com/scipy/scipy/pull/7671
https://github.com/scipy/scipy/pull/7672
https://github.com/scipy/scipy/pull/7674
https://github.com/scipy/scipy/pull/7675
https://github.com/scipy/scipy/pull/7676
https://github.com/scipy/scipy/pull/7678
https://github.com/scipy/scipy/pull/7681
https://github.com/scipy/scipy/pull/7684
https://github.com/scipy/scipy/pull/7686
https://github.com/scipy/scipy/pull/7687
https://github.com/scipy/scipy/pull/7690
https://github.com/scipy/scipy/pull/7691
https://github.com/scipy/scipy/pull/7694
https://github.com/scipy/scipy/pull/7698
https://github.com/scipy/scipy/pull/7703
https://github.com/scipy/scipy/pull/7709
https://github.com/scipy/scipy/pull/7711
https://github.com/scipy/scipy/pull/7712
https://github.com/scipy/scipy/pull/7715
https://github.com/scipy/scipy/pull/7716
https://github.com/scipy/scipy/pull/7717
https://github.com/scipy/scipy/pull/7719

SciPy Reference Guide, Release 1.3.2

#7720:
#7723:
#7727:
#7728:
#7732:
#7734:
#7736:
#7737:
#7738:
#7739:
#7740:
#7742:
#7748:
#7749:
#7751:
#7753:
#7754:
#7756:
#7757:
#7758:
#7760:
#7761:
#7765:
#7767:
#7768:
#7769:
#7770:
#7771:
#7773:
#7774:
#7777
#7780:
#7781:
#7782:
#7783:
#7790:

DOC: Add example and math to stats.pearsonr

DOC: Added Mann-Whitney U statistic reference

BUG: special/cdflib: deal with nan and nonfinite inputs

BLD: spatial: fix ckdtree depends header list

BLD: update Bento build for optimal_leaf _ordering addition
DOC: signal: Copy-edit and add examples to the Kaiser-related. ..

BUG: Fixes #7735: Prevent integer overflow in concatenated index. ..

DOC: rename indices/indptr for spatial .Delaunay vertex_neighbor_vertices

ENH: Speed up freqz computation

TST: ignore ncfdtridfn failure in win32 and warn on FPU mode changes
Fix overflow in Anderson-Darling k-sample test

TST: special: limit expm] mpmath comparison range

TST: stats: don’t pass invalid alpha to np.random.dirichlet

BUG/DOC: optimize: method is ‘interior-point’, not ‘interior. ..

BUG: optimize: show_options ('linprog', method='interior-point"')...

ENH: io: easier syntax for FortranFile read/write of mixed records
BLD:add _1ib._fpumode extension to Bento build.

DOC: Show probability density functions as math

MAINT: remove outdated OS X build scripts. Fixes pytest failure.
MAINT: stats: pep8, wrap lines

DOC: special: add instructions on how to add special functions
DOC: allow specifying Python version for Sphinx makefile

TST: fix test coverage of mstats_extras.py

DOC: update 1.0 release notes.

DOC: update notes on how to release. Also change paver file to...
Add the _sf and _logsf function for planck dist

DOC: Replace rotten links in the docstring of minres

MAINT: {2py build output cleanup

DOC: optimize: Some copy-editing of linprog docs.

MAINT: set rcond explicitly for np.linalg.lIstsq calls

remove leftover nose imports

ENH: Wrap LAPACK’s dsytrd

DOC: Link rfft

MAINT: run pyx autogeneration in cythonize & remove autogen files
FIX: Disallow Wn==1 in digital filters

Fix test errors introduced by gh-5910

80

Chapter 3.

Release Notes

https://github.com/scipy/scipy/pull/7720
https://github.com/scipy/scipy/pull/7723
https://github.com/scipy/scipy/pull/7727
https://github.com/scipy/scipy/pull/7728
https://github.com/scipy/scipy/pull/7732
https://github.com/scipy/scipy/pull/7734
https://github.com/scipy/scipy/pull/7736
https://github.com/scipy/scipy/pull/7737
https://github.com/scipy/scipy/pull/7738
https://github.com/scipy/scipy/pull/7739
https://github.com/scipy/scipy/pull/7740
https://github.com/scipy/scipy/pull/7742
https://github.com/scipy/scipy/pull/7748
https://github.com/scipy/scipy/pull/7749
https://github.com/scipy/scipy/pull/7751
https://github.com/scipy/scipy/pull/7753
https://github.com/scipy/scipy/pull/7754
https://github.com/scipy/scipy/pull/7756
https://github.com/scipy/scipy/pull/7757
https://github.com/scipy/scipy/pull/7758
https://github.com/scipy/scipy/pull/7760
https://github.com/scipy/scipy/pull/7761
https://github.com/scipy/scipy/pull/7765
https://github.com/scipy/scipy/pull/7767
https://github.com/scipy/scipy/pull/7768
https://github.com/scipy/scipy/pull/7769
https://github.com/scipy/scipy/pull/7770
https://github.com/scipy/scipy/pull/7771
https://github.com/scipy/scipy/pull/7773
https://github.com/scipy/scipy/pull/7774
https://github.com/scipy/scipy/pull/7777
https://github.com/scipy/scipy/pull/7780
https://github.com/scipy/scipy/pull/7781
https://github.com/scipy/scipy/pull/7782
https://github.com/scipy/scipy/pull/7783
https://github.com/scipy/scipy/pull/7790

SciPy Reference Guide, Release 1.3.2

#7792:
#7809:
#7810:
#7811:
#7814:
#7820:
#7823:
#7830:
#7835:
#7838:

#7841

#7851:
#7856:
#7858:
#7859:
#7861:
#7863:
#7866:
#7867:
#7869:
#7870:
#7872:
#7874
#7875:
#7876:
#7891:
#7902:
#7905:
#7908:
#7918:
#7929:
#7939:
#7948:
#7952:

MAINT: fix syntax in pyproject.toml

ENH: sketches - Clarkson Woodruff Transform

ENH: Add eig(vals)_tridiagonal

BUG: stats: Fix warnings in binned_statistics_dd
ENH: signal: Replace ‘nyq’ and ‘Hz’ arguments with fs’.
DOC: update 1.0 release notes and mailmap

BUG: memory leak in messagestream / ghull.pyx

DOC: linalg: Add an example to the Istsq docstring.

ENH: Automatic FIR order for decimate

MAINT: stats: Deprecate frechet_1 and frechet_r.

: slsqp PEPS formatting fixes, typos, etc.
#7843:
#7844:

ENH: Wrap all BLAS routines

DOC: update LICENSE.txt with licenses of bundled libs as needed.
ENH: Add wrappers for ?GGLSE, ?(HE/SY)CON, ?SYTF2, ?(HE/SY)TRF
ENH: added out argument to Xdist

BUG: special/cdflib: fix fatal loss of precision issues in cumfnc
FIX: Squash place_poles warning corner case

dummy statement for undefined WITH_THREAD

MAINT: add license texts to binary distributions

DOC, MAINT: fix links in the doc

DOC: fix up descriptions of pdf’s in distribution docstrings.

DEP: deprecate misc.pilutil functions

DEP: remove deprecated functions

TST: silence RuntimeWarning for stats.truncnorm test marked as. ..
TST: fix an optimize.linprog test that fails intermittently.

TST: filter two integration warnings in stats tests.

GEN: Add comments to the tests for clarification

ENH: backport #7879 to 1.0.x

MAINT: signal: Make freqz handling of multidim. arrays match...
REV: restore wminkowski

FIX: Avoid bad __del__ (close) behavior

TST: mark two optimize.linprog tests as xfail. See gh-7877.
MAINT: changed defaults to lower in sytf2, sytrf and hetrf

Fix umfpack solver construction for win-amd64

DOC: add note on checking for deprecations before upgrade to...

DOC: update SciPy Roadmap for 1.0 release and recent discussions.

3.8.

SciPy 1.0.0 Release Notes

https://github.com/scipy/scipy/pull/7792
https://github.com/scipy/scipy/pull/7809
https://github.com/scipy/scipy/pull/7810
https://github.com/scipy/scipy/pull/7811
https://github.com/scipy/scipy/pull/7814
https://github.com/scipy/scipy/pull/7820
https://github.com/scipy/scipy/pull/7823
https://github.com/scipy/scipy/pull/7830
https://github.com/scipy/scipy/pull/7835
https://github.com/scipy/scipy/pull/7838
https://github.com/scipy/scipy/pull/7841
https://github.com/scipy/scipy/pull/7843
https://github.com/scipy/scipy/pull/7844
https://github.com/scipy/scipy/pull/7851
https://github.com/scipy/scipy/pull/7856
https://github.com/scipy/scipy/pull/7858
https://github.com/scipy/scipy/pull/7859
https://github.com/scipy/scipy/pull/7861
https://github.com/scipy/scipy/pull/7863
https://github.com/scipy/scipy/pull/7866
https://github.com/scipy/scipy/pull/7867
https://github.com/scipy/scipy/pull/7869
https://github.com/scipy/scipy/pull/7870
https://github.com/scipy/scipy/pull/7872
https://github.com/scipy/scipy/pull/7874
https://github.com/scipy/scipy/pull/7875
https://github.com/scipy/scipy/pull/7876
https://github.com/scipy/scipy/pull/7891
https://github.com/scipy/scipy/pull/7902
https://github.com/scipy/scipy/pull/7905
https://github.com/scipy/scipy/pull/7908
https://github.com/scipy/scipy/pull/7918
https://github.com/scipy/scipy/pull/7929
https://github.com/scipy/scipy/pull/7939
https://github.com/scipy/scipy/pull/7948
https://github.com/scipy/scipy/pull/7952

SciPy Reference Guide, Release 1.3.2

#7960: BUG: optimize: revert changes to bfgs in gh-7165

o #7962: TST: special: mark a failing hyp2f1 test as xfail

* #7973: BUG: fixed keyword in ‘info’ in _get_mem_available utility
e #8001: TST: fix test failures from Matplotlib 2.1 update

e #8010: BUG: signal: fix crash in Ifilter

#8019: MAINT: fix test failures with NumPy master

3.9 SciPy 0.19.1 Release Notes

SciPy 0.19.1 is a bug-fix release with no new features compared to 0.19.0. The most important change is a fix for a severe

memory leak in integrate.quad.

3.9.1 Authors

* Evgeni Burovski
e Patrick Callier +
* Yu Feng

* Ralf Gommers
e Ilhan Polat

¢ Eric Quintero

* Scott Sievert
 Pauli Virtanen

e Warren Weckesser

A total of 9 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

This list of names is automatically generated, and may not be fully complete.

Issues closed for 0.19.1

e #7214: Memory use in integrate.quad in scipy-0.19.0
e #7258: linalg.matrix_balance gives wrong transformation matrix

o #7262: Segfault in daily testing

e #7273: scipy.interpolate._bspl.evaluate_spline gets wrong type

» #7335: scipy.signal.dlti(A,B,C,D).freqresp() fails

Pull requests for 0.19.1

e #7211: BUG: convolve may yield inconsistent dtypes with method changed
e #7216: BUG: integrate: fix refcounting bug in quad()
o #7229: MAINT: special: Rewrite a test of wrightomega

82

Chapter 3.

Release Notes

https://github.com/scipy/scipy/pull/7960
https://github.com/scipy/scipy/pull/7962
https://github.com/scipy/scipy/pull/7973
https://github.com/scipy/scipy/pull/8001
https://github.com/scipy/scipy/pull/8010
https://github.com/scipy/scipy/pull/8019
https://github.com/scipy/scipy/issues/7214
https://github.com/scipy/scipy/issues/7258
https://github.com/scipy/scipy/issues/7262
https://github.com/scipy/scipy/issues/7273
https://github.com/scipy/scipy/issues/7335
https://github.com/scipy/scipy/pull/7211
https://github.com/scipy/scipy/pull/7216
https://github.com/scipy/scipy/pull/7229

SciPy Reference Guide, Release 1.3.2

e #7261: FIX: Corrected the transformation matrix permutation

» #7265: BUG: Fix broken axis handling in spectral functions

» #7266: FIX 7262: ckdtree crashes in query_knn.

e #7279: Upcast half- and single-precision floats to doubles in BSpline. ..
» #7336: BUG: Fix signal.dfreqresp for StateSpace systems

e #7419: Fix several issues in sparse.load_npz, save_npz

e #7420: BUG: stats: allow integers as kappa4 shape parameters

3.10 SciPy 0.19.0 Release Notes

Contents

e SciPy 0.19.0 Release Notes
— New features
« Foreign function interface improvements
* scipy.linalg improvements
* scipy.spatial improvements
* scipy.ndimage improvements
* scipy.optimize improvements
* scipy.signal improvements
* scipy.fftpack improvements
* scipy.cluster improvements
* scilpy.sparse improvements
* scipy.special improvements
* scipy.stats improvements
* scipy.interpolate improvements

* scipy.integrate improvements

Deprecated features

Backwards incompatible changes

Other changes

Authors
« Issues closed for 0.19.0
« Pull requests for 0.19.0

SciPy 0.19.0 is the culmination of 7 months of hard work. It contains many new features, numerous bug-fixes, improved
test coverage and better documentation. There have been a number of deprecations and API changes in this release, which
are documented below. All users are encouraged to upgrade to this release, as there are a large number of bug-fixes and

3.10. SciPy 0.19.0 Release Notes 83

https://github.com/scipy/scipy/pull/7261
https://github.com/scipy/scipy/pull/7265
https://github.com/scipy/scipy/pull/7266
https://github.com/scipy/scipy/pull/7279
https://github.com/scipy/scipy/pull/7336
https://github.com/scipy/scipy/pull/7419
https://github.com/scipy/scipy/pull/7420

SciPy Reference Guide, Release 1.3.2

optimizations. Moreover, our development attention will now shift to bug-fix releases on the 0.19.x branch, and on adding
new features on the master branch.

This release requires Python 2.7 or 3.4-3.6 and NumPy 1.8.2 or greater.
Highlights of this release include:
* A unified foreign function interface layer, scipy. LowLevelCallable.

» Cython API for scalar, typed versions of the universal functions from the scipy. special module, via cimport
scipy.special.cython_special.

3.10.1 New features
Foreign function interface improvements

scipy.LowLevelCallable provides a new unified interface for wrapping low-level compiled callback functions
in the Python space. It supports Cython imported “api” functions, ctypes function pointers, CFFI function pointers,
PyCapsules, Numba jitted functions and more. See gh-6509 for details.

scipy.linalg improvements

The function scipy.linalg.solve obtained two more keywords assume_a and t ransposed. The underlying
LAPACK routines are replaced with “expert” versions and now can also be used to solve symmetric, hermitian and
positive definite coefficient matrices. Moreover, ill-conditioned matrices now cause a warning to be emitted with the
estimated condition number information. Old sym_pos keyword is kept for backwards compatibility reasons however
it is identical to using assume_a="'pos'. Moreover, the debug keyword, which had no function but only printing the
overwrite_<a, b> values, is deprecated.

The function scipy.linalg.matrix_balance was added to perform the so-called matrix balancing using the
LAPACK xGEBAL routine family. This can be used to approximately equate the row and column norms through diagonal
similarity transformations.

The functions scipy.linalg.solve continuous_are and scipy.linalg.solve_discrete_are
have numerically more stable algorithms. These functions can also solve generalized algebraic matrix Riccati equations.
Moreover, both gained a balanced keyword to turn balancing on and off.

scipy.spatial improvements
scipy.spatial.SphericalVoronoi.sort_vertices_of_regions has been re-written in Cython to
improve performance.

scipy.spatial.SphericalVoronoi can handle > 200 k points (at least 10 million) and has improved perfor-
mance.

The function scipy.spatial.distance.directed_hausdorff was added to calculate the directed Haus-
dorff distance.

count_neighbors method of scipy.spatial.cKDTree gained an ability to perform weighted pair counting
via the new keywords weights and cumulative. See gh-5647 for details.

scipy.spatial.distance.pdistand scipy.spatial.distance.cdist now support non-double cus-
tom metrics.

84 Chapter 3. Release Notes

https://github.com/scipy/scipy/pull/6509
https://github.com/scipy/scipy/pull/5647

SciPy Reference Guide, Release 1.3.2

scipy.ndimage improvements

The callback function C API supports PyCapsules in Python 2.7

Multidimensional filters now allow having different extrapolation modes for different axes.

scipy.optimize improvements
The scipy.optimize.basinhopping global minimizer obtained a new keyword, seed, which can be used to seed
the random number generator and obtain repeatable minimizations.

The keyword sigma in scipy.optimize.curve_fit wasoverloaded to also accept the covariance matrix of errors
in the data.

scipy.signal improvements

The function scipy.signal.correlate and scipy.signal.convolve have a new optional parameter
method. The default value of auto estimates the fastest of two computation methods, the direct approach and the Fourier
transform approach.

A new function has been added to choose the convolution/correlation method, scipy.signal.
choose_conv_method which may be appropriate if convolutions or correlations are performed on many
arrays of the same size.

New functions have been added to calculate complex short time fourier transforms of an input signal, and to invert the
transform to recover the original signal: scipy.signal.stft and scipy.signal.istft. This implementa-
tion also fixes the previously incorrect output of scipy.signal.spectrogram when complex output data were
requested.

The function scipy.signal.sosfreqgz was added to compute the frequency response from second-order sections.
The function scipy.signal.unit_impulse was added to conveniently generate an impulse function.

The function scipy.signal.iirnotch was added to design second-order IIR notch filters that can be used to
remove a frequency component from a signal. The dual function scipy.signal. iirpeak was added to compute
the coefficients of a second-order IIR peak (resonant) filter.

The function scipy.signal.minimum_phase was added to convert linear-phase FIR filters to minimum phase.

The functions scipy.signal.upfirdn and scipy.signal.resample_poly are now substantially faster
when operating on some n-dimensional arrays when n > 1. The largest reduction in computation time is realized in cases
where the size of the array is small (<1k samples or so) along the axis to be filtered.

scipy. fftpack improvements

Fast Fourier transform routines now accept np.floatl6 inputs and upcast them to np.float32. Previously, they would raise
an error.

scipy.cluster improvements

Methods "centroid" and "median" of scipy.cluster.hierarchy. linkage have been significantly sped
up. Long-standing issues with using 1 inkage on large input data (over 16 GB) have been resolved.

3.10. SciPy 0.19.0 Release Notes 85

SciPy Reference Guide, Release 1.3.2

scipy.sparse improvements
The functions scipy. sparse.save_npzand scipy.sparse.load_npz were added, providing simple seri-
alization for some sparse formats.

The prune method of classes bsr_matrix, csc_matrix, and csr_matrix was updated to reallocate backing arrays under certain
conditions, reducing memory usage.

The methods argmin and argmax were added to classes coo_matrix, csc_matrix, csr_matrix, and bsr_matrix.

New function scipy. sparse.csgraph. structural_rank computes the structural rank of a graph with a given
sparsity pattern.

New function scipy.sparse.linalg.spsolve_triangular solves a sparse linear system with a triangular
left hand side matrix.

scipy.special improvements

Scalar, typed versions of universal functions from scipy. special are available in the Cython space via cimport
from the new module scipy.special.cython_special. These scalar functions can be expected to be signifi-
cantly faster then the universal functions for scalar arguments. See the scipy. special tutorial for details.

Better control over special-function errors is offered by the functions scipy.special.geterr and scipy.
special.seterr and the context manager scipy.special.errstate.

The names of orthogonal polynomial root functions have been changed to be consistent with other functions relat-
ing to orthogonal polynomials. For example, scipy.special.j_roots has been renamed scipy.special.
roots_jacobi for consistency with the related functions scipy.special. jacobi and scipy.special.
eval_jacobi. To preserve back-compatibility the old names have been left as aliases.

Wright Omega function is implemented as scipy. special.wrightomega.

scipy.stats improvements

The function scipy.stats.weightedtau was added. It provides a weighted version of Kendall’s tau.
New class scipy.stats.multinomial implements the multinomial distribution.

New class scipy.stats.rv_histogram constructs a continuous univariate distribution with a piecewise linear
CDF from a binned data sample.

New class scipy.stats.argus implements the Argus distribution.
scipy.interpolate improvements

Newclass scipy. interpolate.BSpline represents splines. BSpline objects contain knots and coefficients and
can evaluate the spline. The format is consistent with FITPACK, so that one can do, for example:

>>> t, ¢, k = splrep(x, y, s=0)
>>> spl = BSpline(t, c, k)
>>> np.allclose(spl(x), V)

spl* functions, scipy.interpolate.splev, scipy.interpolate.splint, scipy.interpolate.
splder and scipy.interpolate.splantider, accept both BSpline objects and (t, c, k) tuples for
backwards compatibility.

86 Chapter 3. Release Notes

SciPy Reference Guide, Release 1.3.2

For multidimensional splines, c.ndim > 1, BSpline objects are consistent with piecewise polynomials, scipy.
interpolate.PPoly. This means that BSpline objects are not immediately consistent with scipy.
interpolate.splprep,andone cannotdo >>> BSpline (*splprep([x, y]) [0]). Consultthe scipy.
interpolate test suite for examples of the precise equivalence.

In new code, prefer using scipy.interpolate.BSpline objects instead of manipulating (t, c, k) tuples
directly.

New function scipy.interpolate.make_interp_spline constructs an interpolating spline given data points
and boundary conditions.

New function scipy.interpolate.make_lsqg_spline constructs a least-squares spline approximation given
data points.

scipy.integrate improvements

Now scipy.integrate. fixed_quad supports vector-valued functions.

3.10.2 Deprecated features

scipy.interpolate.splmake, scipy.interpolate.spleval and scipy.interpolate.spline are deprecated. The format used by
splmake/spleval was inconsistent with splrep/splev which was confusing to users.

scipy.special.errprint is deprecated. Improved functionality is available in scipy.special.seterr.

calling scipy.spatial.distance.pdist or scipy.spatial.distance.cdist with arguments not
needed by the chosen metric is deprecated. Also, metrics “old_cosine” and “old_cos” are deprecated.

3.10.3 Backwards incompatible changes

The deprecated scipy .weave submodule was removed.

scipy.spatial.distance.squareformnow returns arrays of the same dtype as the input, instead of always
float64.

scipy.special.errprint now returns a boolean.
The function scipy.signal.find_peaks_cwt now returns an array instead of a list.

scipy.stats.kendalltaunow computes the correct p-value in case the input contains ties. The p-value is also
identical to that computed by scipy.stats.mstats.kendalltau and by R. If the input does not contain ties
there is no change w.r.t. the previous implementation.

The function scipy.linalg.block_diag will not ignore zero-sized matrices anymore. Instead it will insert rows
or columns of zeros of the appropriate size. See gh-4908 for more details.

3.10.4 Other changes

SciPy wheels will now report their dependency on numpy on all platforms. This change was made be-
cause Numpy wheels are available, and because the pip upgrade behavior is finally changing for the better (use
——upgrade-strategy=only—-if-neededforpip >= 8. 2; that behavior will become the default in the next
major version of pip).

Numerical values returned by scipy. interpolate. interpldwithkind="cubic" and "quadratic" may
change relative to previous scipy versions. If your code depended on specific numeric values (i.e., on implementation
details of the interpolators), you may want to double-check your results.

3.10. SciPy 0.19.0 Release Notes 87

SciPy Reference Guide, Release 1.3.2

3.10.5 Authors

@endolith
Max Argus +

Hervé Audren

Alessandro Pietro Bardelli +

Michael Benfield +
Felix Berkenkamp
Matthew Brett

Per Brodtkorb
Evgeni Burovski
Pierre de Buyl

CJ Carey

Brandon Carter +
Tim Cera

Klesk Chonkin
Christian Haggstrom +
Luca Citi

Peadar Coyle +
Daniel da Silva +
Greg Dooper +

John Draper +

drlvk +

David Ellis +

Yu Feng

Baptiste Fontaine +
Jed Frey +
Siddhartha Gandhi +
Wim Glenn +

Akash Goel +
Christoph Gohlke
Ralf Gommers
Alexander Goncearenco +
Richard Gowers +
Alex Griffing
Radoslaw Guzinski +

Charles Harris

88

Chapter 3. Release Notes

SciPy Reference Guide, Release 1.3.2

Callum Jacob Hays +
Ian Henriksen
Randy Heydon +
Lindsey Hiltner +
Gerrit Holl +
Hiroki IKEDA +
jfinkels +

Mher Kazandjian +
Thomas Keck +
keuj6 +

Kornel Kielczewski +
Sergey B Kirpichev +
Vasily Kokorev +
Eric Larson

Denis Laxalde
Gregory R. Lee
Josh Lefler +

Julien Lhermitte +
Evan Limanto +
Jin-Guo Liu +
Nikolay Mayorov
Geordie McBain +
Josue Melka +
Matthieu Melot
michaelvmartinl5 +
Surhud More +
Brett M. Morris +
Chris Mutel +

Paul Nation
Andrew Nelson
David Nicholson +
Aaron Nielsen +
Joel Nothman
nrnrk +

Juan Nunez-Iglesias

Mikhail Pak +

3.10

. SciPy 0.19.0 Release Notes

89

SciPy Reference Guide, Release 1.3.2

Gavin Parnaby +
Thomas Pingel +
Ilhan Polat +

Aman Pratik +
Sebastian Pucilowski
Ted Pudlik

puenka +

Eric Quintero

Tyler Reddy

Joscha Reimer

Antonio Horta Ribeiro +

Edward Richards +
Roman Ring +
Rafael Rossi +
Colm Ryan +

Sami Salonen +

Alvaro Sanchez-Gonzalez +

Johannes Schmitz
Kari Schoonbee
Yurii Shevchuk +

Jonathan Siebert +

Jonathan Tammo Siebert +

Scott Sievert +
Sourav Singh

Byron Smith +
Srikiran +

Samuel St-Jean +
Yoni Teitelbaum +
Bhavika Tekwani
Martin Thoma
timbalam +

Svend Vanderveken +
Sebastiano Vigna +
Aditya Vijaykumar +
Santi Villalba +

Ze Vinicius

90

Chapter 3. Release Notes

SciPy Reference Guide, Release 1.3.2

Pauli Virtanen
Matteo Visconti
Yusuke Watanabe +
Warren Weckesser
Phillip Weinberg +
Nils Werner

Jakub Wilk

Josh Wilson
wirewOrm +

David Wolever +
Nathan Woods
ybeltukov +

G Young

Evgeny Zhurko +

A total of 121 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
This list of names is automatically generated, and may not be fully complete.

Issues closed for 0.19.0

#1767: Function definitions in __fitpack.h should be moved. (Trac #1240)

#1774: _kmeans chokes on large thresholds (Trac #1247)

#2089: Integer overflows cause segfault in linkage function with large. ..

#2190: Are odd-length window functions supposed to be always symmetrical?...

#2251: solve_discrete_are in scipy.linalg does (sometimes) not solve...

#2580: scipy.interpolate.UnivariateSpline (or a new superclass of it)...

#2592: scipy.stats.anderson assumes gumbel_l

#3054: scipy.linalg.eig does not handle infinite eigenvalues

#3160: multinomial pmf / logpmf

#3904: scipy.special.ellipj dn wrong values at quarter period
#4044: Inconsistent code book initialization in kmeans

#4234: scipy.signal.flattop documentation doesn’t list a source for...

#4831: Bugs in C code in __quadpack.h

#4908: bug: unnessesary validity check for block dimension in scipy.sparse.block_diag

#4917: BUG: indexing error for sparse matrix with ix_

#4938: Docs on extending ndimage need to be updated.

#5056: sparse matrix element-wise multiplying dense matrix returns dense...

#5337: Formula in documentation for correlate is wrong

3.10

. SciPy 0.19.0 Release Notes

91

https://github.com/scipy/scipy/issues/1767
https://github.com/scipy/scipy/issues/1774
https://github.com/scipy/scipy/issues/2089
https://github.com/scipy/scipy/issues/2190
https://github.com/scipy/scipy/issues/2251
https://github.com/scipy/scipy/issues/2580
https://github.com/scipy/scipy/issues/2592
https://github.com/scipy/scipy/issues/3054
https://github.com/scipy/scipy/issues/3160
https://github.com/scipy/scipy/issues/3904
https://github.com/scipy/scipy/issues/4044
https://github.com/scipy/scipy/issues/4234
https://github.com/scipy/scipy/issues/4831
https://github.com/scipy/scipy/issues/4908
https://github.com/scipy/scipy/issues/4917
https://github.com/scipy/scipy/issues/4938
https://github.com/scipy/scipy/issues/5056
https://github.com/scipy/scipy/issues/5337

SciPy Reference Guide, Release 1.3.2

#5537:
#5750:
#5755:
#5757:
#5964:
#6107:
#6278:
#6296:
#6306:
#6314:
#6340:
#6377:
#6382:
#6391:
#6397:
#6413:
#6428:
#6440:
#6441:
#6442:
#6451
#6490:
#0521:
#06530:
#6541:
#6552:
#0556:
#6559:
#6565:
#0628:
#6634:
#6657:
#6676
#6681:
#6700:
#6721:

use OrderedDict in io.netcdf

[doc] missing data index value in KDTree, cKDTree

p-value computation in scipy.stats.kendalltau() in broken in...

BUG: Incorrect complex output of signal.spectrogram

ENH: expose scalar versions of scipy.special functions to cython
scipy.cluster.hierarchy.single segmentation fault with 2**16...
optimize.basinhopping should take a RandomState object
InterpolatedUnivariateSpline: check_finite fails when w is unspecified
Anderson-Darling bad results

scipy.stats.kendaltau() p value not in agreement with R, SPSS...
Curve_fit bounds and maxfev

expm_multiply, complex matrices not working using start,stop,etc...
optimize.differential_evolution stopping criterion has unintuitive. ..
Global Benchmarking times out at 600s.

mmwrite errors with large (but still 64-bit) integers
scipy.stats.dirichlet computes multivariate gaussian differential...
scipy.stats.mstats.mode modifies input

Figure out ABI break policy for scipy.special Cython API

Using Qhull for halfspace intersection : segfault

scipy.spatial : In incremental mode volume is not recomputed

: Documentation for scipy.cluster.hierarchy.to_tree is confusing...

interpld (kind=zero) returns wrong value for rightmost interpolation...
scipy.stats.entropy does not calculate the KL divergence
scipy.stats.spearmanr unexpected NaN handling

Test runner does not run scipy._lib/tests?

BUG: misc.bytescale returns unexpected results when using cmin/cmax. ..
RectSphereBivariateSpline(u, v,) fails if min(v) >= pi
Differential_evolution maxiter causing memory overflow

Coverage of spectral functions could be improved

Incorrect parameter name in binomial documentation

Expose LAPACK’s xGESVX family for linalg.solve ill-conditioned...

Confusing documentation for scipy.special.sph_harm

: optimize: Incorrect size of Jacobian returned by ‘minimize(...,...

add a new context manager to wrap scipy.special.seterr
BUG: scipy.io.wavfile.read stays in infinite loop, warns on wav...

scipy.special.chebyt(N) throw a ‘TypeError’ when N > 64

92

Chapter 3.

Release Notes

https://github.com/scipy/scipy/issues/5537
https://github.com/scipy/scipy/issues/5750
https://github.com/scipy/scipy/issues/5755
https://github.com/scipy/scipy/issues/5757
https://github.com/scipy/scipy/issues/5964
https://github.com/scipy/scipy/issues/6107
https://github.com/scipy/scipy/issues/6278
https://github.com/scipy/scipy/issues/6296
https://github.com/scipy/scipy/issues/6306
https://github.com/scipy/scipy/issues/6314
https://github.com/scipy/scipy/issues/6340
https://github.com/scipy/scipy/issues/6377
https://github.com/scipy/scipy/issues/6382
https://github.com/scipy/scipy/issues/6391
https://github.com/scipy/scipy/issues/6397
https://github.com/scipy/scipy/issues/6413
https://github.com/scipy/scipy/issues/6428
https://github.com/scipy/scipy/issues/6440
https://github.com/scipy/scipy/issues/6441
https://github.com/scipy/scipy/issues/6442
https://github.com/scipy/scipy/issues/6451
https://github.com/scipy/scipy/issues/6490
https://github.com/scipy/scipy/issues/6521
https://github.com/scipy/scipy/issues/6530
https://github.com/scipy/scipy/issues/6541
https://github.com/scipy/scipy/issues/6552
https://github.com/scipy/scipy/issues/6556
https://github.com/scipy/scipy/issues/6559
https://github.com/scipy/scipy/issues/6565
https://github.com/scipy/scipy/issues/6628
https://github.com/scipy/scipy/issues/6634
https://github.com/scipy/scipy/issues/6657
https://github.com/scipy/scipy/issues/6676
https://github.com/scipy/scipy/issues/6681
https://github.com/scipy/scipy/issues/6700
https://github.com/scipy/scipy/issues/6721

SciPy Reference Guide, Release 1.3.2

#6727:
#6764:
#6811:
#6841:
#6869:
#6875:
#6876:
#6889:
#6898:
#6901
#6903:
#6917:
#6926:
#6961:
#6972:
#6984
#6990:
#6991:
#7011:
#7015:
#7055
#7096:
#7100:

Documentation for scipy.stats.norm.fit is incorrect

Documentation for scipy.spatial.Delaunay is partially incorrect
scipy.spatial.Spherical Voronoi fails for large number of points
spearmanr fails when nan_policy="omit’ is set

Currently in gaussian_kde, the logpdf function is calculated...

SLSQP inconsistent handling of invalid bounds

Python stopped working (Segfault?) with minimum/maximum filter. ..
dblquad gives different results under scipy 0.17.1 and 0.18.1

BUG: dblquad ignores error tolerances

: Solving sparse linear systems in CSR format with complex values

issue in spatial.distance.pdist docstring

Problem in passing drop_rule to scipy.sparse.linalg.spilu

signature mismatches for LowLevelCallable

Scipy contains shebang pointing to /usr/bin/python and /bin/bash...
BUG: special: generate_ufuncs.py is broken

Assert raises test failure for test_ill_condition_warning

BUG: sparse: Bad documentation of the k argument in sparse.linalg.eigs
Division by zero in linregress()

possible speed improvment in rv_continuous.fit()

Test failure with Python 3.5 and numpy master

: SciPy 0.19.0rcl test errors and failures on Windows

macOS test failues for test_solve_continuous_are

test_distance.test_Xdist_deprecated_args test error in 0.19.0rc2

Pull requests for 0.19.0

#2908:
#3174:
#4606:
#5608:
#5647:
#6021:
#6058:
#6059:
#6195:
#6234
#6261:

Scipy 1.0 Roadmap

add b-splines

ENH: Add a unit impulse waveform function

Adds keyword argument to choose faster convolution method
ENH: Faster count_neighour in cKDTree / + weighted input data
Netcdf append

ENH: scipy.signal - Add stft and istft

ENH: More accurate signal.freqresp for zpk systems

ENH: Cython interface for special

DOC: Fixed a typo in ward() help

ENH: add docstring and clean up code for signal.normalize

3.10

. SciPy 0.19.0 Release Notes

93

https://github.com/scipy/scipy/issues/6727
https://github.com/scipy/scipy/issues/6764
https://github.com/scipy/scipy/issues/6811
https://github.com/scipy/scipy/issues/6841
https://github.com/scipy/scipy/issues/6869
https://github.com/scipy/scipy/issues/6875
https://github.com/scipy/scipy/issues/6876
https://github.com/scipy/scipy/issues/6889
https://github.com/scipy/scipy/issues/6898
https://github.com/scipy/scipy/issues/6901
https://github.com/scipy/scipy/issues/6903
https://github.com/scipy/scipy/issues/6917
https://github.com/scipy/scipy/issues/6926
https://github.com/scipy/scipy/issues/6961
https://github.com/scipy/scipy/issues/6972
https://github.com/scipy/scipy/issues/6984
https://github.com/scipy/scipy/issues/6990
https://github.com/scipy/scipy/issues/6991
https://github.com/scipy/scipy/issues/7011
https://github.com/scipy/scipy/issues/7015
https://github.com/scipy/scipy/issues/7055
https://github.com/scipy/scipy/issues/7096
https://github.com/scipy/scipy/issues/7100
https://github.com/scipy/scipy/pull/2908
https://github.com/scipy/scipy/pull/3174
https://github.com/scipy/scipy/pull/4606
https://github.com/scipy/scipy/pull/5608
https://github.com/scipy/scipy/pull/5647
https://github.com/scipy/scipy/pull/6021
https://github.com/scipy/scipy/pull/6058
https://github.com/scipy/scipy/pull/6059
https://github.com/scipy/scipy/pull/6195
https://github.com/scipy/scipy/pull/6234
https://github.com/scipy/scipy/pull/6261

SciPy Reference Guide, Release 1.3.2

#6270:
#6271:
#6273:
#6279:
#6291:
#6294
#6297:
#6300:
#6301:
#6303:
#6307:
#6308:
#6309:
#6315:
#6317:
#6321:
#6328:
#6335:
#6337:

#6341

#6342:
#6352:
#6362:
#6369:
#6375:
#6387:
#6388:
#6394:
#6400:
#6403:
#6404:
#6406:

#6407

#6439:

MAINT: special: add tests for cdflib

Fix for scipy.cluster.hierarchy.is_isomorphic

optimize: rewrite while loops as for loops

MAINT: Bessel tweaks

Fixes gh-6219: remove runtime warning from genextreme distribution
STY: Some PEPS and cleaning up imports in stats/_continuous_distns.py
Clarify docs in misc/__init__.py

ENH: sparse: Loosen input validation for diags with empty inputs
BUG: standardizes check_finite behavior re optional weights,...
Fixing example in _lazyselect docstring.

MAINT: more improvements to gammainc/gammaincc

Clarified documentation of hypergeometric distribution.

BUG: stats: Improve calculation of the Anderson-Darling statistic.
ENH: Descending order of x in PPoly

ENH: stats: Add support for nan_policy to stats.median_test

TST: fix a typo in test name

ENH: sosfreqz

Define LinregressResult outside of linregress

In anderson test, added support for right skewed gumbel distribution.

: Accept several spellings for the curve_fit max number of function...

DOC: cluster: clarify hierarchy.linkage usage

DOC: removed brentq from its own ‘see also’

ENH: stats: Use explicit formulas for sf, logsf, etc in weibull...
MAINT: special: add a comment to hypOf1_complex

Added the multinomial distribution.

MAINT: special: improve accuracy of ellipj’s dn at quarter...
BenchmarkGlobal - getting it to work in Python3

ENH: scipy.sparse: add save and load functions for sparse matrices
MAINT: moves global benchmark run from setup_cache to track_all
ENH: seed kwd for basinhopping. Closes #6278

ENH: signal: added irrnotch and iirpeak functions.

ENH: special: extend sici/shichi to complex arguments

: ENH: Window functions should not accept non-integer or negative. ..
#6408:
#6427:

MAINT: _differentialevolution now uses _lib._util.check_random_state
MAINT: Fix gmpy build & test that mpmath uses gmpy
MAINT: ndimage: update callback function c api

94

Chapter 3.

Release Notes

https://github.com/scipy/scipy/pull/6270
https://github.com/scipy/scipy/pull/6271
https://github.com/scipy/scipy/pull/6273
https://github.com/scipy/scipy/pull/6279
https://github.com/scipy/scipy/pull/6291
https://github.com/scipy/scipy/pull/6294
https://github.com/scipy/scipy/pull/6297
https://github.com/scipy/scipy/pull/6300
https://github.com/scipy/scipy/pull/6301
https://github.com/scipy/scipy/pull/6303
https://github.com/scipy/scipy/pull/6307
https://github.com/scipy/scipy/pull/6308
https://github.com/scipy/scipy/pull/6309
https://github.com/scipy/scipy/pull/6315
https://github.com/scipy/scipy/pull/6317
https://github.com/scipy/scipy/pull/6321
https://github.com/scipy/scipy/pull/6328
https://github.com/scipy/scipy/pull/6335
https://github.com/scipy/scipy/pull/6337
https://github.com/scipy/scipy/pull/6341
https://github.com/scipy/scipy/pull/6342
https://github.com/scipy/scipy/pull/6352
https://github.com/scipy/scipy/pull/6362
https://github.com/scipy/scipy/pull/6369
https://github.com/scipy/scipy/pull/6375
https://github.com/scipy/scipy/pull/6387
https://github.com/scipy/scipy/pull/6388
https://github.com/scipy/scipy/pull/6394
https://github.com/scipy/scipy/pull/6400
https://github.com/scipy/scipy/pull/6403
https://github.com/scipy/scipy/pull/6404
https://github.com/scipy/scipy/pull/6406
https://github.com/scipy/scipy/pull/6407
https://github.com/scipy/scipy/pull/6408
https://github.com/scipy/scipy/pull/6427
https://github.com/scipy/scipy/pull/6439

SciPy Reference Guide, Release 1.3.2

#6443:
#6447:
#6448:
#6449:
#6453:
#6454
#6457:
#6459:
#6465:
#6469:
#6475:
#6477:
#6481:
#6485:
#6487:
#6493:
#6494
#6495:
#6497:
#6505:
#6507:
#6509:
#6520:
#6522:
#6524
#6527:
#6532:
#6535:
#6540:
#6544
#6546:
#6553:
#6561:
#6562:
#6563:
#6567:

BUG: Fix volume computation in incremental mode

Fixes issue #6413 - Minor documentation fix in the entropy function...
ENH: Add halfspace mode to Qhull

ENH: rtol and atol for differential_evolution termination fixes. ..

DOC: Add some See Also links between similar functions

DOC: linalg: clarify callable signature in ordgz

ENH: spatial: enable non-double dtypes in squareform

BUG: Complex matrices not handled correctly by expm_multiply...
TST DOC Window docs, tests, etc.

ENH: linalg: better handling of infinite eigenvalues in eig/eigvals
DOC: calling interp1d/interp2d with NaNs is undefined

Document magic numbers in optimize.py

TST: Supress some warnings from test_windows

DOC: spatial: correct typo in procrustes

Fix Bray-Curtis formula in pdist docstring

ENH: Add covariance functionality to scipy.optimize.curve_fit

ENH: stats: Use loglp() to improve some calculations.

BUG: Use MST algorithm instead of SLINK for single linkage clustering
MRG: Add minimum_phase filter function

reset scipy.signal.resample window shape to 1-D

BUG: linkage: Raise exception if y contains non-finite elements

ENH: _lib: add common machinery for low-level callback functions
scipy.sparse.base.__mul__ non-numpy/scipy objects with ‘shape’. ..
Replace kl_div by rel_entr in entropy

DOC: add next_fast_len to list of functions

DOC: Release notes to reflect the new covariance feature in optimize.curve_fit
ENH: Simplify _cos_win, document it, add symmetric/periodic arg
MAINT: sparse.csgraph: updating old cython loops

DOC: add to documentation of orthogonal polynomials

TST: Ensure tests for scipy._lib are run by scipy.test()

updated docstring of stats.linregress

commited changes that I originally submitted for scipy.signal.cspline...
BUG: modify signal.find_peaks_cwt() to return array and accept...
DOC: Negative binomial distribution clarification

MAINT: be more liberal in requiring numpy

MAINT: use xrange for iteration in differential_evolution fixes. ..

3.10

. SciPy 0.19.0 Release Notes

95

https://github.com/scipy/scipy/pull/6443
https://github.com/scipy/scipy/pull/6447
https://github.com/scipy/scipy/pull/6448
https://github.com/scipy/scipy/pull/6449
https://github.com/scipy/scipy/pull/6453
https://github.com/scipy/scipy/pull/6454
https://github.com/scipy/scipy/pull/6457
https://github.com/scipy/scipy/pull/6459
https://github.com/scipy/scipy/pull/6465
https://github.com/scipy/scipy/pull/6469
https://github.com/scipy/scipy/pull/6475
https://github.com/scipy/scipy/pull/6477
https://github.com/scipy/scipy/pull/6481
https://github.com/scipy/scipy/pull/6485
https://github.com/scipy/scipy/pull/6487
https://github.com/scipy/scipy/pull/6493
https://github.com/scipy/scipy/pull/6494
https://github.com/scipy/scipy/pull/6495
https://github.com/scipy/scipy/pull/6497
https://github.com/scipy/scipy/pull/6505
https://github.com/scipy/scipy/pull/6507
https://github.com/scipy/scipy/pull/6509
https://github.com/scipy/scipy/pull/6520
https://github.com/scipy/scipy/pull/6522
https://github.com/scipy/scipy/pull/6524
https://github.com/scipy/scipy/pull/6527
https://github.com/scipy/scipy/pull/6532
https://github.com/scipy/scipy/pull/6535
https://github.com/scipy/scipy/pull/6540
https://github.com/scipy/scipy/pull/6544
https://github.com/scipy/scipy/pull/6546
https://github.com/scipy/scipy/pull/6553
https://github.com/scipy/scipy/pull/6561
https://github.com/scipy/scipy/pull/6562
https://github.com/scipy/scipy/pull/6563
https://github.com/scipy/scipy/pull/6567

SciPy Reference Guide, Release 1.3.2

#6572:
#6578:
#6581:
#6582:
#6585:
#6588:
#6592:
#6593:
#6594
#6598:
#6599:
#6600:
#6601:
#6605:
#6607:
#6609:
#6616:
#6621:
#6623:
#6625:
#6626:
#6631:
#6632:
#6633:
#6638:
#6640:
#6641:
#6643:
#6645:
#6646:
#6647:
#6648:
#6649:
#6650:
#6651:
#6652:

BUG: “sp.linalg.solve_discrete_are” fails for random data

BUG: misc: allow both cmin/cmax and low/high params in bytescale
Fix some unfortunate typos

MAINT: linalg: make handling of infinite eigenvalues in ordgz. ..
DOC: interpolate: correct seealso links to ndimage

Update docstring of scipy.spatial.distance_matrix

DOC: Replace ‘first’ by ‘smallest’ in mode

MAINT: remove scipy.weave submodule

DOC: distance.squareform: fix html docs, add note about dtype...
[DOCT] Fix incorrect error message in medfilt2d

MAINT: linalg: turn a solve_discrete_are test back on

DOC: Add SOS goals to roadmap

DEP: Raise minimum numpy version to 1.8.2

MAINT: ‘new’ module is deprecated, don’t use it

DOC: add note on change in wheel dependency on numpy and pip. ..
Fixes #6602 - Typo in docs

ENH: generalization of continuous and discrete Riccati solvers. ..
DOC: improve cluster.hierarchy docstrings.

CS matrix prune method should copy data from large unpruned arrays
DOC: special: complete documentation of eval_* functions

TST: special: silence some deprecation warnings

fix parameter name doc for discrete distributions

MAINT: stats: change some instances of special to sc

MAINT: refguide: py2k long integers are equal to py3k integers
MAINT: change type declaration in cluster.linkage, prevent overflow
BUG: fix issue with duplicate values used in cluster.vq.kmeans
BUG: fix corner case in cluster.vq.kmeans for large thresholds
MAINT: clean up truncation modes of dendrogram

MAINT: special: rename *_roots functions

MAINT: clean up mpmath imports

DOC: add sqrt to Mahalanobis description for pdist

DOC: special: add a section on cython_special to the tutorial

ENH: Added scipy.spatial.distance.directed_hausdorff

DOC: add Sphinx roles for DOI and arXiv links

BUG: mstats: make sure mode(..., None) does not modify its input

DOC: special: add section to tutorial on functions not in special

96

Chapter 3.

Release Notes

https://github.com/scipy/scipy/pull/6572
https://github.com/scipy/scipy/pull/6578
https://github.com/scipy/scipy/pull/6581
https://github.com/scipy/scipy/pull/6582
https://github.com/scipy/scipy/pull/6585
https://github.com/scipy/scipy/pull/6588
https://github.com/scipy/scipy/pull/6592
https://github.com/scipy/scipy/pull/6593
https://github.com/scipy/scipy/pull/6594
https://github.com/scipy/scipy/pull/6598
https://github.com/scipy/scipy/pull/6599
https://github.com/scipy/scipy/pull/6600
https://github.com/scipy/scipy/pull/6601
https://github.com/scipy/scipy/pull/6605
https://github.com/scipy/scipy/pull/6607
https://github.com/scipy/scipy/pull/6609
https://github.com/scipy/scipy/pull/6616
https://github.com/scipy/scipy/pull/6621
https://github.com/scipy/scipy/pull/6623
https://github.com/scipy/scipy/pull/6625
https://github.com/scipy/scipy/pull/6626
https://github.com/scipy/scipy/pull/6631
https://github.com/scipy/scipy/pull/6632
https://github.com/scipy/scipy/pull/6633
https://github.com/scipy/scipy/pull/6638
https://github.com/scipy/scipy/pull/6640
https://github.com/scipy/scipy/pull/6641
https://github.com/scipy/scipy/pull/6643
https://github.com/scipy/scipy/pull/6645
https://github.com/scipy/scipy/pull/6646
https://github.com/scipy/scipy/pull/6647
https://github.com/scipy/scipy/pull/6648
https://github.com/scipy/scipy/pull/6649
https://github.com/scipy/scipy/pull/6650
https://github.com/scipy/scipy/pull/6651
https://github.com/scipy/scipy/pull/6652

SciPy Reference Guide, Release 1.3.2

#6653:
#6656:
#6658:
#6659:
#60061:
#6064:
#6665:
#6668:
#6675:
#6677:

#6679

#6715

#6733:
#6734:
#6737:
#6740:
#6741:
#6742:
#6744:
#6746:

ENH: special: add the Wright Omega function

ENH: don’t coerce input to double with custom metric in cdist...
Faster/shorter code for computation of discordances

DOC: special: make __init__ summaries and html summaries match
general.rst: Fix a typo

TST: Spectral functions’ window correction factor

[DOC] Conditions on v in RectSphereBivariateSpline

DOC: Mention negative masses for center of mass

MAINT: special: remove outdated README

BUG: Fixes computation of p-values.

: BUG: optimize: return correct Jacobian for method ‘SLSQP’ in...
#6680:
#6686:
#6687:
#6091:
#6702:
#6707:
#67009:
#6711:
#6712:

ENH: Add structural rank to sparse.csgraph

TST: Added Airspeed Velocity benchmarks for Spherical Voronoi

DOC: add section “deciding on new features” to developer guide.

ENH: Clearer error when fmin_slsqp obj doesn’t return scalar

TST: Added airspeed velocity benchmarks for scipy.spatial.distance.cdist
TST: interpolate: test fitpack wrappers, not _impl

TST: fix a number of test failures on 32-bit systems

MAINT: move function definitions from __fitpack.h to _fitpackmodule.c

MAINT: clean up wishlist in stats.morestats, and copyright statement.

: DOC: update the release notes with BSpline et al.
#6716:
#6717:
#6723:
#6726:
#6728:
#6731:
#6732:

MAINT: scipy.io.wavfile: No infinite loop when trying to read. ..
some style cleanup

BUG: special: cast to float before in-place multiplication in...
address performance regressions in interpld

DOC: made code examples in integrate tutorial copy-pasteable

DOC: scipy.optimize: Added an example for wrapping complex-valued...

MAINT: cython_special: remove errprint

MAINT: special: fix some pyflakes warnings

DOC: sparse.linalg: fixed matrix description in bicgstab doc

BLD: update cythonize.py to detect changes in pxi files

DOC: special: some small fixes to docstrings

MAINT: remove dead code in interpolate.py

BUG: fix 1inalg.block_diag to support zero-sized matrices.
ENH: interpolate: make PPoly.from_spline accept BSpline objects

DOC: special: clarify use of Condon-Shortley phase in sph_harm/lpmv

3.10

. SciPy 0.19.0 Release Notes

97

https://github.com/scipy/scipy/pull/6653
https://github.com/scipy/scipy/pull/6656
https://github.com/scipy/scipy/pull/6658
https://github.com/scipy/scipy/pull/6659
https://github.com/scipy/scipy/pull/6661
https://github.com/scipy/scipy/pull/6664
https://github.com/scipy/scipy/pull/6665
https://github.com/scipy/scipy/pull/6668
https://github.com/scipy/scipy/pull/6675
https://github.com/scipy/scipy/pull/6677
https://github.com/scipy/scipy/pull/6679
https://github.com/scipy/scipy/pull/6680
https://github.com/scipy/scipy/pull/6686
https://github.com/scipy/scipy/pull/6687
https://github.com/scipy/scipy/pull/6691
https://github.com/scipy/scipy/pull/6702
https://github.com/scipy/scipy/pull/6707
https://github.com/scipy/scipy/pull/6709
https://github.com/scipy/scipy/pull/6711
https://github.com/scipy/scipy/pull/6712
https://github.com/scipy/scipy/pull/6715
https://github.com/scipy/scipy/pull/6716
https://github.com/scipy/scipy/pull/6717
https://github.com/scipy/scipy/pull/6723
https://github.com/scipy/scipy/pull/6726
https://github.com/scipy/scipy/pull/6728
https://github.com/scipy/scipy/pull/6731
https://github.com/scipy/scipy/pull/6732
https://github.com/scipy/scipy/pull/6733
https://github.com/scipy/scipy/pull/6734
https://github.com/scipy/scipy/pull/6737
https://github.com/scipy/scipy/pull/6740
https://github.com/scipy/scipy/pull/6741
https://github.com/scipy/scipy/pull/6742
https://github.com/scipy/scipy/pull/6744
https://github.com/scipy/scipy/pull/6746

SciPy Reference Guide, Release 1.3.2

#6750:
#6751:
#6753:
#6759:
#6761:
#6762:
#6763:
#6768:
#6770:

#6775

#6830:
#6834:
#6836:
#6838:
#6844:

ENH: sparse: avoid densification on broadcasted elem-wise mult
sinm doc explained cosm

ENH: special: allow for more fine-tuned error handling

Move logsumexp and pade from scipy.misc to scipy.special and...
ENH: argmax and argmin methods for sparse matrices

DOC: Improve docstrings of sparse matrices

ENH: Weighted tau

ENH: cythonized spherical Voronoi region polygon vertex sorting

Correction of Delaunay class’ documentation

: ENH: Integrating LAPACK “expert” routines with conditioning warnings. ..
#6776:
#OTT7T:
#6778:
#6786:
#6787:
#6789:
#6790:
#6791:
#6792:
#6793:
#6796:
#6799:
#6801:
#6803:
#6804:
#68006:
#6810:
#6812:
#6814:
#6826:
#6828:

MAINT: Removing the trivial f2py warnings

DOC: Update rv_continuous.fit doc.

MAINT: cluster.hierarchy: Improved wording of error msgs

BLD: increase minimum Cython version to 0.23.4

DOC: expand on 1inalg.block_diag changes in 0.19.0 release...
ENH: Add further documentation for norm.fit

MAINT: Fix a potential problem in nn_chain linkage algorithm
DOC: Add examples to scipy.ndimage.fourier

DOC: fix some numpydoc / Sphinx issues.

MAINT: fix circular import after moving functions out of misc
TST: test importing each submodule. Regression test for gh-6793.
ENH: stats: Argus distribution

ENH: stats: Histogram distribution

TST: make sure tests for _build_utils are run.

MAINT: more fixes in loggamma

ENH: Faster linkage for ‘centroid’ and ‘median’ methods

ENH: speed up upfirdn and resample_poly for n-dimensional arrays
TST: Added ConvexHull asv benchmark code

ENH: Different extrapolation modes for different dimensions in...
Signal spectral window default fix

BUG: SphericalVoronoi Space Complexity (Fixes #6811)

RealData docstring correction

DOC: Added reference for skewtest function. See #6829

DOC: Added mode="mirror’ in the docstring for the functions accepting...
MAINT: sparse: start removing old BSR methods

handle incompatible dimensions when input is not an ndarray in...

98

Chapter 3.

Release Notes

https://github.com/scipy/scipy/pull/6750
https://github.com/scipy/scipy/pull/6751
https://github.com/scipy/scipy/pull/6753
https://github.com/scipy/scipy/pull/6759
https://github.com/scipy/scipy/pull/6761
https://github.com/scipy/scipy/pull/6762
https://github.com/scipy/scipy/pull/6763
https://github.com/scipy/scipy/pull/6768
https://github.com/scipy/scipy/pull/6770
https://github.com/scipy/scipy/pull/6775
https://github.com/scipy/scipy/pull/6776
https://github.com/scipy/scipy/pull/6777
https://github.com/scipy/scipy/pull/6778
https://github.com/scipy/scipy/pull/6786
https://github.com/scipy/scipy/pull/6787
https://github.com/scipy/scipy/pull/6789
https://github.com/scipy/scipy/pull/6790
https://github.com/scipy/scipy/pull/6791
https://github.com/scipy/scipy/pull/6792
https://github.com/scipy/scipy/pull/6793
https://github.com/scipy/scipy/pull/6796
https://github.com/scipy/scipy/pull/6799
https://github.com/scipy/scipy/pull/6801
https://github.com/scipy/scipy/pull/6803
https://github.com/scipy/scipy/pull/6804
https://github.com/scipy/scipy/pull/6806
https://github.com/scipy/scipy/pull/6810
https://github.com/scipy/scipy/pull/6812
https://github.com/scipy/scipy/pull/6814
https://github.com/scipy/scipy/pull/6826
https://github.com/scipy/scipy/pull/6828
https://github.com/scipy/scipy/pull/6830
https://github.com/scipy/scipy/pull/6834
https://github.com/scipy/scipy/pull/6836
https://github.com/scipy/scipy/pull/6838
https://github.com/scipy/scipy/pull/6844

SciPy Reference Guide, Release 1.3.2

#6847:
#6850:
#6858:
#6861:
#6862:
#6863:
#6866:
#6867:
#6868:

#6871

#6885:
#6886:
#6891:
#6892:
#6894
#6908:
#6909:

#6911

#6913:
#6914
#6916:
#6924
#6932:
#6933:
#6936:
#6938:
#6939:
#6940:
#6942:
#6943:
#6944
#6946:
#6947:

Added maxiter to golden search.

BUG: added check for optional param scipy.stats.spearmanr
MAINT: Removing redundant tests

DEP: Fix escape sequences deprecated in Python 3.6.

DOC: dx should be float, not int

updated documentation curve_fit

DOC : added some documentation to j1 referring to spherical_jn
DOC: cdist move long examples list into Notes section

BUG: Make stats.mode return a ModeResult namedtuple on empty...

: Corrected documentation.
#6874:
#6877:
#6881:

ENH: gaussian_kde.logpdf based on logsumexp

BUG: ndimage: guard against footprints of all zeros
python 3.6

Vectorized integrate.fixed_quad

fixed typo

TST: fix failures for linalg.dare/care due to tightened test...
DOC: fix a bunch of Sphinx errors.

TST: Added asv benchmarks for scipy.spatial. Voronoi
BUG: Fix return dtype for complex input in spsolve

ENH: fftpack: use float32 routines for float16 inputs.

: added min/max support to binned_statistic

Fix 6875: SLSQP raise ValueError for all invalid bounds.
DOCS: GH6903 updating docs of Spatial.distance.pdist
MAINT: fix some issues for 32-bit Python

BLD: update Bento build for scipy.LowLevelCallable
ENH: Use OrderedDict in io.netcdf. Closes gh-5537
BUG: fix LowLevelCallable issue on 32-bit Python.
BUG: sparse: handle size-1 2D indexes correctly

TST: fix test failures in special on 32-bit Python.

Added attributes list to cKDTree docstring

improve efficiency of dok_matrix.tocoo

DOC: add link to liac-arft package in the io.arff docstring.

MAINT: Docstring fixes and an additional test for linalg.solve

DOC: Add example of odeint with a banded Jacobian to the integrate. ..

ENH: hypergeom.logpmf in terms of betaln

TST: speedup distance tests

3.10

. SciPy 0.19.0 Release Notes

99

https://github.com/scipy/scipy/pull/6847
https://github.com/scipy/scipy/pull/6850
https://github.com/scipy/scipy/pull/6858
https://github.com/scipy/scipy/pull/6861
https://github.com/scipy/scipy/pull/6862
https://github.com/scipy/scipy/pull/6863
https://github.com/scipy/scipy/pull/6866
https://github.com/scipy/scipy/pull/6867
https://github.com/scipy/scipy/pull/6868
https://github.com/scipy/scipy/pull/6871
https://github.com/scipy/scipy/pull/6874
https://github.com/scipy/scipy/pull/6877
https://github.com/scipy/scipy/pull/6881
https://github.com/scipy/scipy/pull/6885
https://github.com/scipy/scipy/pull/6886
https://github.com/scipy/scipy/pull/6891
https://github.com/scipy/scipy/pull/6892
https://github.com/scipy/scipy/pull/6894
https://github.com/scipy/scipy/pull/6908
https://github.com/scipy/scipy/pull/6909
https://github.com/scipy/scipy/pull/6911
https://github.com/scipy/scipy/pull/6913
https://github.com/scipy/scipy/pull/6914
https://github.com/scipy/scipy/pull/6916
https://github.com/scipy/scipy/pull/6924
https://github.com/scipy/scipy/pull/6932
https://github.com/scipy/scipy/pull/6933
https://github.com/scipy/scipy/pull/6936
https://github.com/scipy/scipy/pull/6938
https://github.com/scipy/scipy/pull/6939
https://github.com/scipy/scipy/pull/6940
https://github.com/scipy/scipy/pull/6942
https://github.com/scipy/scipy/pull/6943
https://github.com/scipy/scipy/pull/6944
https://github.com/scipy/scipy/pull/6946
https://github.com/scipy/scipy/pull/6947

SciPy Reference Guide, Release 1.3.2

#6948:
#6950:
#6952:
#6956:
#6957:
#6962:
#6964
#6965:
#6971:
#6973:
#6975:
#6976:
#6978:
#6979:
#6985:
#6994
#6995:
#6997:
#7000:
#7007:
#7009:
#7012:
#7014
#7021:
#7026:
#7032:
#7035:
#7036:
#7040:
#7042:
#7043:
#7053:
#7060:
#7062:
#7064
#7067:

DEP: Deprecate the keyword “debug” from linalg.solve

BUG: Correctly treat large integers in MMIO (fixes #6397)
ENH: Minor user-friendliness cleanup in LowLevelCallable
DOC: improve description of ‘output’ keyword for convolve
ENH more informative error in sparse.bmat

Shebang fixes

DOC: note argmin/argmax addition

BUG: Fix issues passing error tolerances in dblquad and tplquad.
fix the docstring of signaltools.correlate

Silence expected numpy warnings in scipy.ndimage.interpolation.zoom()
BUG: special: fix regex in generate_ufuncs.py

Update docstring for griddata

Avoid division by zero in zoom factor calculation

BUG: ARE solvers did not check the generalized case carefully
ENH: sparse: add scipy.sparse.linalg.spsolve_triangular
MAINT: spatial: updates to plotting utils

DOC: Bad documentation of k in sparse.linalg.eigs See #6990
TST: Changed the test with a less singular example

DOC: clarify interpld ‘zero’ argument

BUG: Fix division by zero in linregress() for 2 data points
BUG: Fix problem in passing drop_rule to scipy.sparse.linalg.spilu
speed improvment in _distn_infrastructure.py

Fix Typo: add a single quotation mark to fix a slight typo
MAINT: stats: use machine constants from np.finfo, not machar
MAINT: update .mailmap

Fix layout of rv_histogram docs

DOC: update 0.19.0 release notes

ENH: Add more boundary options to signal.stft

TST: stats: skip too slow tests

MAINT: sparse: speed up setdiag tests

MAINT: refactory and code cleaning Xdist

Fix msve 9 and 10 compile errors

DOC: updated release notes with #7043 and #6656

MAINT: Change defaut STFT boundary kwarg to “zeros”

Fix ValueError: path is on mount ‘X:’, start on mount ‘D:’ on...

TST: Fix PermissionError: [Errno 13] Permission denied on Windows

100

Chapter 3.

Release Notes

https://github.com/scipy/scipy/pull/6948
https://github.com/scipy/scipy/pull/6950
https://github.com/scipy/scipy/pull/6952
https://github.com/scipy/scipy/pull/6956
https://github.com/scipy/scipy/pull/6957
https://github.com/scipy/scipy/pull/6962
https://github.com/scipy/scipy/pull/6964
https://github.com/scipy/scipy/pull/6965
https://github.com/scipy/scipy/pull/6971
https://github.com/scipy/scipy/pull/6973
https://github.com/scipy/scipy/pull/6975
https://github.com/scipy/scipy/pull/6976
https://github.com/scipy/scipy/pull/6978
https://github.com/scipy/scipy/pull/6979
https://github.com/scipy/scipy/pull/6985
https://github.com/scipy/scipy/pull/6994
https://github.com/scipy/scipy/pull/6995
https://github.com/scipy/scipy/pull/6997
https://github.com/scipy/scipy/pull/7000
https://github.com/scipy/scipy/pull/7007
https://github.com/scipy/scipy/pull/7009
https://github.com/scipy/scipy/pull/7012
https://github.com/scipy/scipy/pull/7014
https://github.com/scipy/scipy/pull/7021
https://github.com/scipy/scipy/pull/7026
https://github.com/scipy/scipy/pull/7032
https://github.com/scipy/scipy/pull/7035
https://github.com/scipy/scipy/pull/7036
https://github.com/scipy/scipy/pull/7040
https://github.com/scipy/scipy/pull/7042
https://github.com/scipy/scipy/pull/7043
https://github.com/scipy/scipy/pull/7053
https://github.com/scipy/scipy/pull/7060
https://github.com/scipy/scipy/pull/7062
https://github.com/scipy/scipy/pull/7064
https://github.com/scipy/scipy/pull/7067

SciPy Reference Guide, Release 1.3.2

e #7068: TST: Fix UnboundLocalError: local variable ‘data’ referenced. ..
e #7069: Fix OverflowError: Python int too large to convert to C long...
e #7071: TST: silence RuntimeWarning for nan test of stats.spearmanr

e #7072: Fix OverflowError: Python int too large to convert to C long. ..
o #7084: TST: linalg: bump tolerance in test_falker

e #7095: TST: linalg: bump more tolerances in test_falker

e #7101: TST: Relax solve_continuous_are test case 2 and 12

» #7106: BUG: stop cdist “correlation” modifying input

e #7116: Backports to 0.19.0rc2

3.11 SciPy 0.18.1 Release Notes

SciPy 0.18.1 is a bug-fix release with no new features compared to 0.18.0.

3.11.1 Authors

e @Kkleskjr

* Evgeni Burovski

* CJ Carey

¢ Luca Citi +

* Yu Feng

* Ralf Gommers

* Johannes Schmitz +
¢ Josh Wilson

» Nathan Woods

A total of 9 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
This list of names is automatically generated, and may not be fully complete.

Issues closed for 0.18.1

* #6357: scipy 0.17.1 piecewise cubic hermite interpolation does not return. ..
e #6420: circmean() changed behaviour from 0.17 to 0.18

* #6421: scipy.linalg.solve_banded overwrites input ‘b’ when the inversion. ..
e #6425: cKDTree INF bug

e #6435: scipy.stats.ks_2samp returns different values on different computers

» #6458: Error in scipy.integrate.dblquad when using variable integration. ..

3.11. SciPy 0.18.1 Release Notes 101

https://github.com/scipy/scipy/pull/7068
https://github.com/scipy/scipy/pull/7069
https://github.com/scipy/scipy/pull/7071
https://github.com/scipy/scipy/pull/7072
https://github.com/scipy/scipy/pull/7084
https://github.com/scipy/scipy/pull/7095
https://github.com/scipy/scipy/pull/7101
https://github.com/scipy/scipy/pull/7106
https://github.com/scipy/scipy/pull/7116
https://github.com/scipy/scipy/issues/6357
https://github.com/scipy/scipy/issues/6420
https://github.com/scipy/scipy/issues/6421
https://github.com/scipy/scipy/issues/6425
https://github.com/scipy/scipy/issues/6435
https://github.com/scipy/scipy/issues/6458

SciPy Reference Guide, Release 1.3.2

Pull requests for 0.18.1

o #6405: BUG: sparse: fix elementwise divide for CSR/CSC

» #6431: BUG: result for insufficient neighbours from cKDTree is wrong.

e #6432: BUG Issue #6421: scipy.linalg.solve_banded overwrites input ‘b’. ..
* #6455: DOC: add links to release notes

* #6462: BUG: interpolate: fix .roots method of PchipInterpolator

o #6492: BUG: Fix regression in dblquad: #6458

e #6543: fix the regression in circmean

o #6545: Revert gh-5938, restore ks_2samp

» #6557: Backports for 0.18.1

3.12 SciPy 0.18.0 Release Notes

Contents

e SciPy 0.18.0 Release Notes
— New features
* scipy.integrate improvements
* scipy.interpolate improvements
* scipy.fftpack improvements
* scipy.signal improvements
- Discrete-time linear systems
* scilpy.sparse improvements
* scipy.optimize improvements
* scipy.stats improvements
- Random matrices
* scipy.linalg improvements
* scipy.spatial improvements
* scipy.cluster improvements
* scipy.special improvements
— Deprecated features
— Backwards incompatible changes
* scipy.optimize

* scipy.ndimage

* scipy.stats

102 Chapter 3. Release Notes

https://github.com/scipy/scipy/pull/6405
https://github.com/scipy/scipy/pull/6431
https://github.com/scipy/scipy/pull/6432
https://github.com/scipy/scipy/pull/6455
https://github.com/scipy/scipy/pull/6462
https://github.com/scipy/scipy/pull/6492
https://github.com/scipy/scipy/pull/6543
https://github.com/scipy/scipy/pull/6545
https://github.com/scipy/scipy/pull/6557

SciPy Reference Guide, Release 1.3.2

* scipy.io
* scipy.interpolate

— Other changes

— Authors
= Issues closed for 0.18.0
« Pull requests for 0.18.0

SciPy 0.18.0 is the culmination of 6 months of hard work. It contains many new features, numerous bug-fixes, improved
test coverage and better documentation. There have been a number of deprecations and API changes in this release, which
are documented below. All users are encouraged to upgrade to this release, as there are a large number of bug-fixes and
optimizations. Moreover, our development attention will now shift to bug-fix releases on the 0.19.x branch, and on adding
new features on the master branch.

This release requires Python 2.7 or 3.4-3.5 and NumPy 1.7.1 or greater.
Highlights of this release include:
¢ A new ODE solver for two-point boundary value problems, scipy.optimize.solve_bvp.
* A new class, CubicSpline, for cubic spline interpolation of data.
* N-dimensional tensor product polynomials, scipy. interpolate.NdPPoly.
* Spherical Voronoi diagrams, scipy.spatial.SphericalVoronoi.

 Support for discrete-time linear systems, scipy.signal.dlti.

3.12.1 New features

scipy.integrate improvements

A solver of two-point boundary value problems for ODE systems has been implemented in scipy.integrate.
solve_bvp. The solver allows for non-separated boundary conditions, unknown parameters and certain singular terms.
It finds a C1 continious solution using a fourth-order collocation algorithm.

scipy.interpolate improvements

Cubic spline interpolation is now available via scipy. interpolate.CubicSpline. This class represents a piece-
wise cubic polynomial passing through given points and C2 continuous. It is represented in the standard polynomial basis
on each segment.

A representation of n-dimensional tensor product piecewise polynomials is available as the scipy.interpolate.
NdPPoly class.

Univariate piecewise polynomial classes, PPoly and Bpoly, can now be evaluated on periodic domains. Use
extrapolate="periodic" keyword argument for this.

scipy. fftpack improvements

scipy.fftpack.next_fast_1enfunction computes the next “regular” number for FFTPACK. Padding the input
to this length can give significant performance increase for scipy. fftpack. fft.

3.12. SciPy 0.18.0 Release Notes 103

SciPy Reference Guide, Release 1.3.2

scipy.signal improvements

Resampling using polyphase filtering has been implemented in the function scipy.signal.resample poly.
This method upsamples a signal, applies a zero-phase low-pass FIR filter, and downsamples using scipy.signal.
upfirdn (which is also new in 0.18.0). This method can be faster than FFT-based filtering provided by scipy.
signal.resample for some signals.

scipy.signal.firls, which constructs FIR filters using least-squares error minimization, was added.
scipy.signal.sosfiltfilt,whichdoesforward-backward filteringlike scipy.signal.filtfilt butfor
second-order sections, was added.

Discrete-time linear systems

scipy.signal.dlti provides an implementation of discrete-time linear systems. Accordingly, the StateSpace,
TransferFunction and ZerosPolesGain classes have learned a the new keyword, dt, which can be used to create discrete-
time instances of the corresponding system representation.

scipy.sparse improvements

The functions sum, max, mean, min, transpose, and reshape in scipy.sparse have had their signatures augmented
with additional arguments and functionality so as to improve compatibility with analogously defined functions in numpy.

Sparse matrices now have a count_nonzero method, which counts the number of nonzero elements in the matrix. Unlike
gemnz() and nnz property, which return the number of stored entries (the length of the data attribute), this method counts
the actual number of non-zero entries in data.

scipy.optimize improvements

The implementation of Nelder-Mead minimization, scipy.minimize(..., method="Nelder-Mead”), obtained a new keyword,
initial_simplex, which can be used to specify the initial simplex for the optimization process.

Initial step size selection in CG and BFGS minimizers has been improved. We expect that this change will improve
numeric stability of optimization in some cases. See pull request gh-5536 for details.

Handling of infinite bounds in SLSQP optimization has been improved. We expect that this change will improve numeric
stability of optimization in the some cases. See pull request gh-6024 for details.

A large suite of global optimization benchmarks has been added to scipy/benchmarks/
go_benchmark_functions. See pull request gh-4191 for details.

Nelder-Mead and Powell minimization will now only set defaults for maximum iterations or function evaluations if neither
limit is set by the caller. In some cases with a slow converging function and only 1 limit set, the minimization may continue
for longer than with previous versions and so is more likely to reach convergence. See issue gh-5966.

scipy.stats improvements

Trapezoidal distribution has been implemented as scipy.stats.trapz. Skew normal distribution has been im-
plemented as scipy.stats.skewnorm. Burr type XII distribution has been implemented as scipy.stats.
burrl2. Three- and four-parameter kappa distributions have been implemented as scipy.stats. kappa3 and
scipy.stats.kappad, respectively.

New scipy.stats. igr function computes the interquartile region of a distribution.

104 Chapter 3. Release Notes

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy

SciPy Reference Guide, Release 1.3.2

Random matrices

scipy.stats.special_ortho_group and scipy.stats.ortho_group provide generators of random
matrices in the SO(N) and O(N) groups, respectively. They generate matrices in the Haar distribution, the only uniform
distribution on these group manifolds.

scipy.stats.random correlation provides a generator for random correlation matrices, given specified
eigenvalues.

scipy.linalg improvements
scipy.linalg.svd gained a new keyword argument, lapack_driver. Available drivers are gesdd (default)
and gesvd.

scipy.linalg.lapack.ilaver returns the version of the LAPACK library SciPy links to.

scipy.spatial improvements

Boolean distances, scipy.spatial. pdist, have been sped up. Improvements vary by the function and the input size. In many
cases, one can expect a speed-up of x2—x10.

New class scipy.spatial.SphericalVoronoi constructs Voronoi diagrams on the surface of a sphere. See
pull request gh-5232 for details.

scipy.cluster improvements

A new clustering algorithm, the nearest neighbor chain algorithm, has been implemented for scipy.cluster.
hierarchy.linkage. Asaresult, one can expect a significant algorithmic improvement (O(N?) instead of O(N3))
for several linkage methods.

scipy.special improvements

The new function scipy. special.loggamma computes the principal branch of the logarithm of the Gamma func-
tion. For real input, 1oggamma is compatible with scipy.special.gammaln. For complex input, it has more
consistent behavior in the complex plane and should be preferred over gammaln.

Vectorized forms of spherical Bessel functions have been implemented as scipy.special.spherical_jn,
scipy.special.spherical_kn, scipy.special.spherical_in and scipy.special.
spherical_yn. They are recommended for use over sph_* functions, which are now deprecated.

Several special functions have been extended to the complex domain and/or have seen domain/stability improvements.
This includes spence, digamma, loglp and several others.

3.12.2 Deprecated features

The cross-class properties of /i systems have been deprecated. The following properties/setters will raise a Deprecation-
Warning:

Name - (accessing/setting raises warning) - (setting raises warning) * StateSpace - (num, den, gain) - (zeros, poles) *
TransferFunction (A, B, C, D, gain) - (zeros, poles) * ZerosPolesGain (A, B, C, D, num, den) - ()

Spherical Bessel functions, sph_in, sph_Jjn, sph_kn, sph_yn, sph_jnyn and sph_1inkn have been deprecated
in favor of scipy.special.spherical_jnand spherical_kn, spherical_yn, spherical_in.

3.12. SciPy 0.18.0 Release Notes 105

SciPy Reference Guide, Release 1.3.2

The following functions in scipy.constants are deprecated: C2K, K2C, C2F, F2C, F2K and K2F. They are su-
perceded by a new function scipy.constants.convert_temperature that can perform all those conversions
plus to/from the Rankine temperature scale.

3.12.3 Backwards incompatible changes
scipy.optimize

The convergence criterion for opt imize.bisect, optimize.brentq, optimize.brenth,and optimize.
ridder now works the same as numpy .allclose.

scipy.ndimage

The offset in ndimage.iterpolation.affine_transform is now consistently added after the matrix is ap-
plied, independent of if the matrix is specified using a one-dimensional or a two-dimensional array.

scipy.stats

stats.ks_2samp used to return nonsensical values if the input was not real or contained nans. It now raises an
exception for such inputs.

Several deprecated methods of scipy.stats distributions have been removed: est_loc_scale, vecfunc,
veccdf and vec_generic_moment.

Deprecated functions nanmean, nanstdand nanmedian have been removed from scipy. stats. These functions
were deprecated in scipy 0.15.0 in favor of their numpy equivalents.

A bug in the rvs () method of the distributions in scipy.stats has been fixed. When arguments to rvs () were
given that were shaped for broadcasting, in many cases the returned random samples were not random. A simple example
of the problemis stats.norm.rvs (loc=np.zeros (10)). Because of the bug, that call would return 10 identical
values. The bug only affected code that relied on the broadcasting of the shape, location and scale parameters.

The rvs () method also accepted some arguments that it should not have. There is a potential for backwards incom-
patibility in cases where rvs () accepted arguments that are not, in fact, compatible with broadcasting. An example
is

stats.gamma.rvs([2, 5, 10, 15], size=(2,2))

The shape of the first argument is not compatible with the requested size, but the function still returned an array with
shape (2, 2). In scipy 0.18, that call generates a ValueError.

scipy.io
scipy.io.netcdf masking now gives precedence to the _FillValue attribute over the missing_value at-

tribute, if both are given. Also, data are only treated as missing if they match one of these attributes exactly: values that
differ by roundoff from _FillValue ormissing_value are no longer treated as missing values.

scipy.interpolate

scipy.interpolate. PiecewisePolynomial class has been removed. It has been deprecated in scipy 0.14.0, and scipy.
interpolate.BPoly.from_derivatives serves as a drop-in replacement.

106 Chapter 3. Release Notes

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy

SciPy Reference Guide, Release 1.3.2

3.12.4 Other changes

Scipy now uses setuptools for its builds instead of plain distutils. This fixes usage of
install_requires='scipy' in the setup.py files of projects that depend on Scipy (see Numpy issue
gh-6551 for details). It potentially affects the way that build/install methods for Scipy itself behave though. Please report
any unexpected behavior on the Scipy issue tracker.

PR #6240 changes the interpretation of the maxfun option in L-BFGS-B based routines in the scipy.optimize
module. An L-BFGS-B search consists of multiple iterations, with each iteration consisting of one or more function
evaluations. Whereas the old search strategy terminated immediately upon reaching maxfun function evaluations, the
new strategy allows the current iteration to finish despite reaching maxfun.

The bundled copy of Qhull in the scipy. spatial subpackage has been upgraded to version 2015.2.
The bundled copy of ARPACK in the scipy. sparse. 1inalg subpackage has been upgraded to arpack-ng 3.3.0.
The bundled copy of SuperLU in the scipy. sparse subpackage has been upgraded to version 5.1.1.

3.12.5 Authors

* @endolith

* @yanxun827 +

* @Kkleskjr +

¢ @MYheavyGo +

¢ @solarjoe +

* Gregory Allen +

¢ Gilles Aouizerate +
e Tom Augspurger +
* Henrik Bengtsson +
¢ Felix Berkenkamp
* Per Brodtkorb

* Lars Buitinck

* Daniel Bunting +

¢ Evgeni Burovski

e CJ Carey

e Tim Cera

* Grey Christoforo +
¢ Robert Cimrman

* Philip DeBoer +

* Yves Delley +

* Dévid Bodnér +

* Jon Elberdin +

¢ Gabriele Farina +

3.12. SciPy 0.18.0 Release Notes 107

https://github.com/scipy/scipy/pull/6240

SciPy Reference Guide, Release 1.3.2

Yu Feng

Andrew Fowlie +
Joseph Fox-Rabinovitz
Simon Gibbons +
Neil Girdhar +
Kolja Glogowski +
Christoph Gohlke
Ralf Gommers
Todd Goodall +
Johnnie Gray +
Alex Griffing
Olivier Grisel
Thomas Haslwanter +
Michael Hirsch +
Derek Homeier
Golnaz Irannejad +
Marek Jacob +
InSuk Joung +
Tetsuo Koyama +
Eugene Krokhalev +
Eric Larson

Denis Laxalde
Antony Lee

Jerry Li +

Henry Lin +
Nelson Liu +

Loic Esteve

Lei Ma +

Osvaldo Martin +
Stefano Martina +
Nikolay Mayorov
Matthieu Melot +
Sturla Molden

Eric Moore
Alistair Muldal +

Maniteja Nandana

108

Chapter 3. Release Notes

SciPy Reference Guide, Release 1.3.2

Tavi Nathanson +
Andrew Nelson

Joel Nothman
Behzad Nouri
Nikolai Nowaczyk +
Juan Nunez-Iglesias +
Ted Pudlik

Eric Quintero

Yoav Ram

Jonas Rauber +
Tyler Reddy +

Juha Remes

Garrett Reynolds +
Ariel Rokem +
Fabian Rost +

Bill Sacks +

Jona Sassenhagen +
Kari Schoonbee +
Marcello Seri +
Sourav Singh +
Martin Spacek +
Sgren Fuglede Jgrgensen +
Bhavika Tekwani +
Martin Thoma +
Sam Tygier +

Meet Udeshi +
Utkarsh Upadhyay
Bram Vandekerckhove +
Sebastidn Vanrell +
Ze Vinicius +

Pauli Virtanen
Stefan van der Walt
Warren Weckesser
Jakub Wilk +

Josh Wilson

Phillip J. Wolfram +

3.12

. SciPy 0.18.0 Release Notes

109

SciPy Reference Guide, Release 1.3.2

¢ Nathan Woods

¢ Haochen Wu

* G Young +

A total of 99 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
This list of names is automatically generated, and may not be fully complete.

Issues closed for 0.18.0

e #1484: SVD using *GESVD lapack drivers (Trac #957)
e #1547: Inconsistent use of offset in ndimage.interpolation.affine_transform()...
» #1609: special.hypOf1 returns nan (Trac #1082)
* #1656: fmin_slsqp enhancement (Trac #1129)
» #2069: stats broadcasting in rvs (Trac #1544)
e #2165: sph_jn returns false results for some orders/values (Trac #1640)
e #2255: Incorrect order of translation and rotation in affine_transform...
e #2332: hypOf1 args and return values are unnumpyic (Trac #1813)
o #2534: The sparse .sum() method with uint8 dtype does not act like the...
e #3113: Implement ufuncs for CSPHJY, SPHJ, SPHY, CSPHIK, SPHI, SPHIK...
e #3568: SciPy 0.13.3 - CentOSS5 - Errors in test_arpack
e #3581: optimize: stepsize in fmin_bfgs is “bad”
o #4476: scipy.sparse non-native endian bug
o #4484: ftol in optimize.fmin fails to work
e #4510: sparsetools.cxx call_thunk can segfault due to out of bounds...
e #5051: ftol and xtol for _minimize_neldermead are absolute instead of ...
» #5097: proposal: spherical Voronoi diagrams
e #5123: Callto scipy. sparse.coo_matrix fails when passed Cython typed...
o #5220: scipy.cluster.hierarchy.{ward,median,centroid} does not work...
e #5379: Add a build step at the end of .travis.yml that uploads working. ..
» #5440: scipy.optimize.basinhopping: accept_test returning numpy .bool_...
e #5452: Error in scipy.integrate.nquad when using variable integration. ..
e #5520: Cannot inherit csr_matrix properly
» #5533: Kendall tau implementation uses Python mergesort
* #5553: stats.tiecorrect overflows
e #5589: Add the Type XII Burr distribution to stats.
e #5612: sparse.linalg factorizations slow for small k due to default...
* #5626: io.netcdf masking should use masked_equal rather than masked_value
e #5637: Simple cubic spline interpolation?
110 Chapter 3. Release Notes

https://github.com/scipy/scipy/issues/1484
https://github.com/scipy/scipy/issues/1547
https://github.com/scipy/scipy/issues/1609
https://github.com/scipy/scipy/issues/1656
https://github.com/scipy/scipy/issues/2069
https://github.com/scipy/scipy/issues/2165
https://github.com/scipy/scipy/issues/2255
https://github.com/scipy/scipy/issues/2332
https://github.com/scipy/scipy/issues/2534
https://github.com/scipy/scipy/issues/3113
https://github.com/scipy/scipy/issues/3568
https://github.com/scipy/scipy/issues/3581
https://github.com/scipy/scipy/issues/4476
https://github.com/scipy/scipy/issues/4484
https://github.com/scipy/scipy/issues/4510
https://github.com/scipy/scipy/issues/5051
https://github.com/scipy/scipy/issues/5097
https://github.com/scipy/scipy/issues/5123
https://github.com/scipy/scipy/issues/5220
https://github.com/scipy/scipy/issues/5379
https://github.com/scipy/scipy/issues/5440
https://github.com/scipy/scipy/issues/5452
https://github.com/scipy/scipy/issues/5520
https://github.com/scipy/scipy/issues/5533
https://github.com/scipy/scipy/issues/5553
https://github.com/scipy/scipy/issues/5589
https://github.com/scipy/scipy/issues/5612
https://github.com/scipy/scipy/issues/5626
https://github.com/scipy/scipy/issues/5637

SciPy Reference Guide, Release 1.3.2

#5683:
#5686:
#5702:
#5718:
#5745:
#5752:
#5760:
#5764
#5814
#5833:
#5853:
#5856:
#5865:
#5915:
#5916:
#5927
#5936:
#5948:
#5959:
#5972:
#5976:
#6008:
#6011:
#6016:
#6017:
#6028:
#6035:
#6056:
#6093:
#6101:
#6105
#6113:
#6128:
#6132:
#6136:
#6162:

BUG: AkimalDInterpolator may return nans given multidimensional...
scipy.stats.ttest_ind_from_stats does not accept arrays
scipy.ndimage.interpolation.affine_transform lacks documentation...
Wrong computation of weighted minkowski distance in cdist

move to setuptools for next release

DOC: solve_discrete_lyapunov equation puts transpose in wrong. ..
signal.ss2tf doesn’t handle zero-order state-space models
Hypergeometric function hypOf1 behaves incorrectly for complex. ..
stats NaN Policy Error message inconsistent with code

docstring of stats.binom_test() needs an update

Error in scipy.linalg.expm for complex matrix with shape (1,1)
Specify Nelder-Mead initial simplex

scipy.linalg.expm fails for certain numpy matrices
optimize.basinhopping - variable referenced before assignment.
LSQUnivariateSpline fitting failed with knots generated from...
unicode vs. string comparison in scipy.stats.binned_statistic_dd
faster implementation of ks_2samp

csc matrix .mean returns single element matrix rather than scalar
BUG: optimize test error for root when using Igmres

Test failures for sparse sum tests on 32-bit Python

Unexpected exception in scipy.sparse.bmat while using 0 x 0 matrix
scipy.special.kl_div not available in 0.14.1

The von-Mises entropy is broken

python crashes for linalg.interpolative.svd with certain large...
Wilcoxon signed-rank test with zero_method="pratt” or “zsplit”...
stats.distributions does not have trapezoidal distribution

Wrong link in f_oneway

BUG: signal.decimate should only accept discrete LTI objects
Precision error on Linux 32 bit with openblas

Barycentric transforms test error on Python3, 32-bit Linux

: scipy.misc.face docstring is incorrect

scipy.linalg.logm fails for a trivial matrix

Error in dot method of sparse COO array, when used with numpy...
Failures with latest MKL

Failures on master with MKL

fmin_l_bfgs_b returns inconsistent results (fmin # f(xmin)) and...

3.12

. SciPy 0.18.0 Release Notes

111

https://github.com/scipy/scipy/issues/5683
https://github.com/scipy/scipy/issues/5686
https://github.com/scipy/scipy/issues/5702
https://github.com/scipy/scipy/issues/5718
https://github.com/scipy/scipy/issues/5745
https://github.com/scipy/scipy/issues/5752
https://github.com/scipy/scipy/issues/5760
https://github.com/scipy/scipy/issues/5764
https://github.com/scipy/scipy/issues/5814
https://github.com/scipy/scipy/issues/5833
https://github.com/scipy/scipy/issues/5853
https://github.com/scipy/scipy/issues/5856
https://github.com/scipy/scipy/issues/5865
https://github.com/scipy/scipy/issues/5915
https://github.com/scipy/scipy/issues/5916
https://github.com/scipy/scipy/issues/5927
https://github.com/scipy/scipy/issues/5936
https://github.com/scipy/scipy/issues/5948
https://github.com/scipy/scipy/issues/5959
https://github.com/scipy/scipy/issues/5972
https://github.com/scipy/scipy/issues/5976
https://github.com/scipy/scipy/issues/6008
https://github.com/scipy/scipy/issues/6011
https://github.com/scipy/scipy/issues/6016
https://github.com/scipy/scipy/issues/6017
https://github.com/scipy/scipy/issues/6028
https://github.com/scipy/scipy/issues/6035
https://github.com/scipy/scipy/issues/6056
https://github.com/scipy/scipy/issues/6093
https://github.com/scipy/scipy/issues/6101
https://github.com/scipy/scipy/issues/6105
https://github.com/scipy/scipy/issues/6113
https://github.com/scipy/scipy/issues/6128
https://github.com/scipy/scipy/issues/6132
https://github.com/scipy/scipy/issues/6136
https://github.com/scipy/scipy/issues/6162

SciPy Reference Guide, Release 1.3.2

#6165
#6167

#6194
#6216:
#6217:
#0218:
#6222:
#6226:
#6227:
#6228:
#6235:
#6245:
#6263:
#6292:

#6316
#6318

: optimize.minimize infinite loop with Newton-CG

: incorrect distribution fitting for data containing boundary values.

Istsq() and others detect numpy.complex256 as real

ENH: improve accuracy of ppf cdf roundtrip for bradford

BUG: weibull_min.logpdf return nan for c=1 and x=0

Is there a method to cap shortest path search distances?
Pchiplnterpolator no longer handles a 2-element array

ENH: improve accuracy for logistic.ppf and logistic.isf

ENH: improve accuracy for rayleigh.logpdf and rayleigh.logsf...

ENH: improve accuracy of ppf cdf roundtrip for gumbel_1

BUG: alpha.pdf and alpha.logpdf returns nan for x=0

ENH: improve accuracy for ppf-cdf and sf-isf roundtrips for invgamma
BUG: stats: Inconsistency in the multivariate_normal docstring

Python 3 unorderable type errors in test_sparsetools. TestInt32Overflow
: TestCloughTocher2DInterpolator.test_dense crashes python3.5.2rc1_64bit...

: Scipy interp1d ‘nearest’ not working for high values on x-axis

Pull requests for 0.18.0

#3226

#3867:
#4191:
#4356:
#4370:
#4678:
#4881:
#4901:
#5043:
#5136:
#5186:
#5232:
#5279:
#5384
#5392:
#5394:
#5424
#5442:

: DOC: Change nb and na to conventional m and n

allow cKDTree.query taking a list input in k.

ENH: Benchmarking global optimizers

ENH: add PPoly.solve(y) for solving p (x) == y

DOC separate boolean distance functions for clarity

BUG: sparse: ensure index dtype is large enough to pass all parameters...
scipy.signal: Add the class dlti for linear discrete-time systems....
MAINT: add benchmark and improve docstring for signal Ifilter
ENH: sparse: add count_nonzero method

Attribute kurtosistest() to Anscombe & Glynn (1983)

ENH: Port upfirdn

ENH: adding spherical Voronoi diagram algorithm to scipy.spatial
ENH: Bessel filters with different normalizations, high order
BUG: Closes #5027 distance function always casts bool to double
ENH: Add zero_phase kwarg to signal.decimate

MAINT: sparse: non-canonical test cleanup and fixes

DOC: add Scipy developers guide

STY: PEP8 amendments

112

Chapter 3.

Release Notes

https://github.com/scipy/scipy/issues/6165
https://github.com/scipy/scipy/issues/6167
https://github.com/scipy/scipy/issues/6194
https://github.com/scipy/scipy/issues/6216
https://github.com/scipy/scipy/issues/6217
https://github.com/scipy/scipy/issues/6218
https://github.com/scipy/scipy/issues/6222
https://github.com/scipy/scipy/issues/6226
https://github.com/scipy/scipy/issues/6227
https://github.com/scipy/scipy/issues/6228
https://github.com/scipy/scipy/issues/6235
https://github.com/scipy/scipy/issues/6245
https://github.com/scipy/scipy/issues/6263
https://github.com/scipy/scipy/issues/6292
https://github.com/scipy/scipy/issues/6316
https://github.com/scipy/scipy/issues/6318
https://github.com/scipy/scipy/pull/3226
https://github.com/scipy/scipy/pull/3867
https://github.com/scipy/scipy/pull/4191
https://github.com/scipy/scipy/pull/4356
https://github.com/scipy/scipy/pull/4370
https://github.com/scipy/scipy/pull/4678
https://github.com/scipy/scipy/pull/4881
https://github.com/scipy/scipy/pull/4901
https://github.com/scipy/scipy/pull/5043
https://github.com/scipy/scipy/pull/5136
https://github.com/scipy/scipy/pull/5186
https://github.com/scipy/scipy/pull/5232
https://github.com/scipy/scipy/pull/5279
https://github.com/scipy/scipy/pull/5384
https://github.com/scipy/scipy/pull/5392
https://github.com/scipy/scipy/pull/5394
https://github.com/scipy/scipy/pull/5424
https://github.com/scipy/scipy/pull/5442

SciPy Reference Guide, Release 1.3.2

#5472:
#5526:
#5530:
#5536:
#5548:
#5549:
#5554
#5557:
#5581:
#5606:
#5609:
#5611:
#5615:
#5622:
#5623:
#5627:
#5628:
#5632:
#5633:
#5634:
#5640:
#5645:
#5649:
#5650:
#5651
#5652:
#5653:
#5654
#5659:
#5660:
#5662:
#5663:
#5665:
#5667:
#5669:
#5670:

Online QR in LGMRES

BUG: stats: Fix broadcasting in the rvs() method of the distributions.
MAINT: sparse: set format attr explicitly

optimize: fix up cg/bfgs initial step sizes

PERF: improves performance in stats.kendalltau

ENH: Nearest-neighbor chain algorithm for hierarchical clustering
MAINT/BUG: closes overflow bug in stats.tiecorrect

BUG: modify optimize.bisect to achieve desired tolerance

DOC: Tutorial for least_squares

ENH: differential_evolution - moving core loop of solve method...
[MRG] test against numpy dev

use setuptools for bdist_egg distributions

MAINT: linalg: tighten _decomp_update + special: remove unused. ..

Add SO(N) rotation matrix generator

ENH: special: Add vectorized spherical Bessel functions.
Response to issue #5160, implements the skew normal distribution...
DOC: Align the description and operation

DOC: special: Expanded docs for Airy, elliptic, Bessel functions.
MAINT: linalg: unchecked malloc in _decomp_update

MAINT: optimize: tighten _group_columns

Fixes for io.netcdf masking

MAINT: size 0 vector handling in cKDTree range queries
MAINT: update license text

DOC: Clarify Exponent Order in Itisys.py

DOC: Clarify Documentation for scipy.special.gammaln

DOC: Fixed scipy.special.betaln Doc

[MRG] ENH: CubicSpline interpolator

ENH: Burr12 distribution to stats module

DOC: Define BEFORE/AFTER in runtests.py -h for bench-compare
MAINT: remove functions deprecated before 0.16.0

ENH: Circular statistic optimization

MAINT: remove uses of np.testing.rand

MAINT: spatial: remove matching distance implementation
Change some HTTP links to HTTPS

DOC: zpk2sos can’t do analog, array_like, etc.

Update conf.py

3.12

. SciPy 0.18.0 Release Notes

113

https://github.com/scipy/scipy/pull/5472
https://github.com/scipy/scipy/pull/5526
https://github.com/scipy/scipy/pull/5530
https://github.com/scipy/scipy/pull/5536
https://github.com/scipy/scipy/pull/5548
https://github.com/scipy/scipy/pull/5549
https://github.com/scipy/scipy/pull/5554
https://github.com/scipy/scipy/pull/5557
https://github.com/scipy/scipy/pull/5581
https://github.com/scipy/scipy/pull/5606
https://github.com/scipy/scipy/pull/5609
https://github.com/scipy/scipy/pull/5611
https://github.com/scipy/scipy/pull/5615
https://github.com/scipy/scipy/pull/5622
https://github.com/scipy/scipy/pull/5623
https://github.com/scipy/scipy/pull/5627
https://github.com/scipy/scipy/pull/5628
https://github.com/scipy/scipy/pull/5632
https://github.com/scipy/scipy/pull/5633
https://github.com/scipy/scipy/pull/5634
https://github.com/scipy/scipy/pull/5640
https://github.com/scipy/scipy/pull/5645
https://github.com/scipy/scipy/pull/5649
https://github.com/scipy/scipy/pull/5650
https://github.com/scipy/scipy/pull/5651
https://github.com/scipy/scipy/pull/5652
https://github.com/scipy/scipy/pull/5653
https://github.com/scipy/scipy/pull/5654
https://github.com/scipy/scipy/pull/5659
https://github.com/scipy/scipy/pull/5660
https://github.com/scipy/scipy/pull/5662
https://github.com/scipy/scipy/pull/5663
https://github.com/scipy/scipy/pull/5665
https://github.com/scipy/scipy/pull/5667
https://github.com/scipy/scipy/pull/5669
https://github.com/scipy/scipy/pull/5670

SciPy Reference Guide, Release 1.3.2

#5672:
#5678:
#5679:
#5680:
#5681:
#5684:
#5690:
#5691:
#5693:

#5695

#5699:
#5701:
#5703:
#5704:
#5705:
#5707:
#5708:
#5700:
#5713:
#5717:
#5724:
#5728:
#5729:
#5732:
#5733:
#5736:
#5741:
#5742:
#5748:
#5749:
#5756:

#5761

#5762:
#5768:
#5770:
#5772:

MAINT: move a sample distribution to a subclass of rv_discrete
MAINT: stats: remove est_loc_scale method

MAINT: DRY up generic computations for discrete distributions
MAINT: stop shadowing builtins in stats.distributions

forward port ENH: Re-enable broadcasting of fill_value

BUG: Fix AkimalDInterpolator returning nans

BUG: fix stats.ttest_ind_from_stats to handle arrays.

BUG: fix generator in io._loadarff to comply with PEP 0479

ENH: use math.factorial for exact factorials

: DOC: dx might be a float, not only an integer

MAINT: io: micro-optimize Matlab reading code for size
Implement OptimizeResult.__dir__

ENH: stats: make R? printing optional in probplot

MAINT: typo ouf->out

BUG: fix typo in query_pairs

DOC:Add some explanation for ftol xtol in scipy.optimize.fmin
DOC: optimize: PEP8 minimize docstring

MAINT: optimize Cython code for speed and size

[DOC] Fix broken link to reference

DOC: curve_fit raises RuntimeError on failure.

forward port gh-5720

STY: remove a blank line

ENH: spatial: speed up boolean distances

MAINT: differential_evolution changes to default keywords break...
TST: differential_evolution - population initiation tests
Complex number support in loglp, expml, and xloglpy
MAINT: sparse: clean up extraction functions

DOC: signal: Explain fftbins in get_window

ENH: Add O(N) random matrix generator

ENH: Add polyphase resampling

RFC: Bump the minimum numpy version, drop older python versions

: DOC: Some improvements to least squares docstrings

MAINT: spatial: distance refactoring
DOC: Fix io.loadmat docstring for mdict param
BUG: Accept anything np.dtype can handle for a dtype in sparse.random

Update sparse.csgraph.laplacian docstring

114

Chapter 3.

Release Notes

https://github.com/scipy/scipy/pull/5672
https://github.com/scipy/scipy/pull/5678
https://github.com/scipy/scipy/pull/5679
https://github.com/scipy/scipy/pull/5680
https://github.com/scipy/scipy/pull/5681
https://github.com/scipy/scipy/pull/5684
https://github.com/scipy/scipy/pull/5690
https://github.com/scipy/scipy/pull/5691
https://github.com/scipy/scipy/pull/5693
https://github.com/scipy/scipy/pull/5695
https://github.com/scipy/scipy/pull/5699
https://github.com/scipy/scipy/pull/5701
https://github.com/scipy/scipy/pull/5703
https://github.com/scipy/scipy/pull/5704
https://github.com/scipy/scipy/pull/5705
https://github.com/scipy/scipy/pull/5707
https://github.com/scipy/scipy/pull/5708
https://github.com/scipy/scipy/pull/5709
https://github.com/scipy/scipy/pull/5713
https://github.com/scipy/scipy/pull/5717
https://github.com/scipy/scipy/pull/5724
https://github.com/scipy/scipy/pull/5728
https://github.com/scipy/scipy/pull/5729
https://github.com/scipy/scipy/pull/5732
https://github.com/scipy/scipy/pull/5733
https://github.com/scipy/scipy/pull/5736
https://github.com/scipy/scipy/pull/5741
https://github.com/scipy/scipy/pull/5742
https://github.com/scipy/scipy/pull/5748
https://github.com/scipy/scipy/pull/5749
https://github.com/scipy/scipy/pull/5756
https://github.com/scipy/scipy/pull/5761
https://github.com/scipy/scipy/pull/5762
https://github.com/scipy/scipy/pull/5768
https://github.com/scipy/scipy/pull/5770
https://github.com/scipy/scipy/pull/5772

SciPy Reference Guide, Release 1.3.2

#5777:
#5780:
#5781:
#5782:
#5783:
#5784:
#5787:
#5788:
#5789:
#5791
#5792
#5794
#5795:
#5797:
#5798:
#5799:
#5801:
#5803:
#5804:
#5805:
#58006:
#5808:
#5810:
#5811:
#5813:
#5815:
#5816:
#5820:
#5821:
#5825:
#5826:
#5827:
#5828:
#5829:
#5830:
#5831:

BUG: fix special.hypOf1 to work correctly for complex inputs.

DOC: Update PIL error install URL

DOC: Fix documentation on solve_discrete_lyapunov

DOC: cKDTree and KDTree now reference each other

DOC: Clarify finish behaviour in scipy.optimize.brute

MAINT: Change default tolerances of least_squares to le-8

BUG: Allow Processing of Zero Order State Space Models in signal.ss2tf
DOC, BUG: Clarify and Enforce Input Types to ‘Data’ Objects

ENH: sparse: speedup LIL matrix slicing (was #3338)

: DOC: README: remove coveralls.io

: MAINT: remove uses of deprecated np.random.random_integers

fix affine_transform (fixes #1547 and #5702)

DOC: Removed uniform method from kmeans2 doc

DOC: Clarify the computation of weighted minkowski
BUG: Ensure scipy’s _asfarray returns ndarray

TST: Mpmath testing patch

allow reading of certain IDL 8.0 .sav files

DOC: fix module name in error message

DOC: special: Expanded docs for special functions.

DOC: Fix order of returns in _spectral_helper

ENH: sparse: vectorized coo_matrix.diagonal

ENH: Added iqr function to compute IQR metric in scipy/stats/stats.py
MAINT/BENCH: sparse: Benchmark cleanup and additions
DOC: sparse.linalg: shape, not size

Update sparse ARPACK functions min ncv value

BUG: Error message contained wrong values

remove dead code from stats tests

“in”->"a” in order_filter docstring

DOC: README: INSTALL.txt was renamed in 2014
DOC: typo in the docstring of least_squares

MAINT: sparse: increase test coverage

NdPPoly rebase

Improve numerical stability of hypOf1 for large orders
ENH: sparse: Add copy parameter to all .toXXX() methods in sparse...
DOC: rework INSTALL.rst.txt

Adds plotting options to voronoi_plot_2d

3.12

. SciPy 0.18.0 Release Notes

115

https://github.com/scipy/scipy/pull/5777
https://github.com/scipy/scipy/pull/5780
https://github.com/scipy/scipy/pull/5781
https://github.com/scipy/scipy/pull/5782
https://github.com/scipy/scipy/pull/5783
https://github.com/scipy/scipy/pull/5784
https://github.com/scipy/scipy/pull/5787
https://github.com/scipy/scipy/pull/5788
https://github.com/scipy/scipy/pull/5789
https://github.com/scipy/scipy/pull/5791
https://github.com/scipy/scipy/pull/5792
https://github.com/scipy/scipy/pull/5794
https://github.com/scipy/scipy/pull/5795
https://github.com/scipy/scipy/pull/5797
https://github.com/scipy/scipy/pull/5798
https://github.com/scipy/scipy/pull/5799
https://github.com/scipy/scipy/pull/5801
https://github.com/scipy/scipy/pull/5803
https://github.com/scipy/scipy/pull/5804
https://github.com/scipy/scipy/pull/5805
https://github.com/scipy/scipy/pull/5806
https://github.com/scipy/scipy/pull/5808
https://github.com/scipy/scipy/pull/5810
https://github.com/scipy/scipy/pull/5811
https://github.com/scipy/scipy/pull/5813
https://github.com/scipy/scipy/pull/5815
https://github.com/scipy/scipy/pull/5816
https://github.com/scipy/scipy/pull/5820
https://github.com/scipy/scipy/pull/5821
https://github.com/scipy/scipy/pull/5825
https://github.com/scipy/scipy/pull/5826
https://github.com/scipy/scipy/pull/5827
https://github.com/scipy/scipy/pull/5828
https://github.com/scipy/scipy/pull/5829
https://github.com/scipy/scipy/pull/5830
https://github.com/scipy/scipy/pull/5831

SciPy Reference Guide, Release 1.3.2

#5834:
#5836:
#5837:
#5838:
#5839:
#5845:
#5847:
#5848:
#5849:
#5851:
#5852:
#5854:
#5855:
#5859:
#5862:
#5863:
#5864:
#5867:
#5869:
#5872:

#5875

#5880:
#5887:
#5894:
#5895:
#5900:
#5901:
#5904:
#5905:

#5906

#5913:

Update stats.binom_test() docstring

ENH, TST: Allow SIMO tf’s for tf2ss

DOC: Image examples

ENH: sparse: add eliminate_zeros() to coo_matrix

BUG: Fixed name of NumpyVersion.__repr__

MAINT: Fixed typos in documentation

Fix bugs in sparsetools

BUG: sparse.linalg: add locks to ensure ARPACK threadsafety
ENH: sparse.linalg: upgrade to superlu 5.1.1

ENH: expose lapack’s ilaver to python to allow lapack verion...
MAINT: runtests.py: ensure Ctrl-C interrupts the build

DOC: Minor update to documentation

Pr 5640

ENH: Add random correlation matrix generator

BUG: Allow expm for complex matrix with shape (1, 1)

FIX: Fix test

DOC: add a little note about the Normal survival function (Q-function)
Fix for #5865

extend normal distribution cdf to complex domain

DOC: Note that morlet and cwt don’t work together

: DOC: interp2d class description
#5876:
#5878:
#5879:

MAINT: spatial: remove a stray print statement

MAINT: Fixed noisy UserWarnings in ndimage tests. Fixes #5877
MAINT: sparse.linalg/superlu: add explicit casts to resolve compiler...
MAINT: signal: import gcd from math and not fractions when on. ..
Neldermead initial simplex

BUG: _CustomLinearOperator unpickalable in python3.5

DOC: special: slightly improve the multigammaln docstring

Remove duplicate assignment.

Update bundled ARPACK

ENH: Make convolve and correlate order-agnostic

ENH: sparse.linalg: further LGMRES cleanups

: Enhancements and cleanup in scipy.integrate (attempt #2)
#5907:
#5909:

ENH: Change sparse sum and mean dtype casting to match...
changes for convolution symmetry

MAINT: basinhopping remove instance test closes #5440

116

Chapter 3.

Release Notes

https://github.com/scipy/scipy/pull/5834
https://github.com/scipy/scipy/pull/5836
https://github.com/scipy/scipy/pull/5837
https://github.com/scipy/scipy/pull/5838
https://github.com/scipy/scipy/pull/5839
https://github.com/scipy/scipy/pull/5845
https://github.com/scipy/scipy/pull/5847
https://github.com/scipy/scipy/pull/5848
https://github.com/scipy/scipy/pull/5849
https://github.com/scipy/scipy/pull/5851
https://github.com/scipy/scipy/pull/5852
https://github.com/scipy/scipy/pull/5854
https://github.com/scipy/scipy/pull/5855
https://github.com/scipy/scipy/pull/5859
https://github.com/scipy/scipy/pull/5862
https://github.com/scipy/scipy/pull/5863
https://github.com/scipy/scipy/pull/5864
https://github.com/scipy/scipy/pull/5867
https://github.com/scipy/scipy/pull/5869
https://github.com/scipy/scipy/pull/5872
https://github.com/scipy/scipy/pull/5875
https://github.com/scipy/scipy/pull/5876
https://github.com/scipy/scipy/pull/5878
https://github.com/scipy/scipy/pull/5879
https://github.com/scipy/scipy/pull/5880
https://github.com/scipy/scipy/pull/5887
https://github.com/scipy/scipy/pull/5894
https://github.com/scipy/scipy/pull/5895
https://github.com/scipy/scipy/pull/5900
https://github.com/scipy/scipy/pull/5901
https://github.com/scipy/scipy/pull/5904
https://github.com/scipy/scipy/pull/5905
https://github.com/scipy/scipy/pull/5906
https://github.com/scipy/scipy/pull/5907
https://github.com/scipy/scipy/pull/5909
https://github.com/scipy/scipy/pull/5913

SciPy Reference Guide, Release 1.3.2

#5919:
#5920:
#5921:
#5926:
#5928:
#5929:
#5930:
#5931:
#5934:
#5935
#5938:
#5939:
#5941:
#5942:
#5943:
#5944
#5945:
#5946:
#5949:
#5955:
#5956:
#5958:
#5961:
#5962:
#5965:
#5975:
#5977:
#5978:
#5983:
#5985:
#5989:
#5990:
#5991:
#5994
#5996:
#5997:

MAINT: uninitialised var if basinhopping niter=0. closes #5915
BLD: Fix missing Isame.c error for MKL

DOC: interpolate: add example showing how to work around issue...
MAINT: spatial: upgrade to Qhull 2015.2

MAINT: sparse: optimize DIA sum/diagonal, csgraph.laplacian
Update info/URL for octave-maintainers discussion

TST: special: silence DeprecationWarnings from sph_yn

ENH: implement the principle branch of the logarithm of Gamma.

Typo: “mush” => “must”

: BUG:string comparison stats._binned_statistic closes #5927

Cythonize stats.ks_2samp for a ~33% gain in speed.

DOC: fix optimize.fmin convergence docstring

Fix minor typo in squareform docstring

Update linregress stderr description.

ENH: Improve numerical accuracy of lognorm

Merge vonmises into stats pyx

MAINT: interpolate: Tweak declaration to avoid cython warning. ..
MAINT: sparse: clean up format conversion methods

BUG: fix sparse .mean to return a scalar instead of a matrix
MAINT: Replace calls to hanning with hann

DOC: Missing periods interfering with parsing

MAINT: add a test for lognorm.sf underflow

MAINT _centered(): rename size to shape

ENH: constants: Add multi-scale temperature conversion function
ENH: special: faster way for calculating comb() for exact=True
ENH: Improve FIR path of signal.decimate

MAINT/BUG: sparse: remove overzealous bmat checks
minimize_neldermead() stop at user requested maxiter or maxfev
ENH: make sparse sum cast dtypes like NumPy sum for 32-bit...
BUG, API: Add jac parameter to curve_fit

ENH: Add firls least-squares fitting

BUG: read tries to handle 20-bit WAYV files but shouldn’t

DOC: Cleanup wav read/write docs and add tables for common types
ENH: Add gesvd method for svd

MAINT: Wave cleanup

TST: Break up upfirdn tests & compare to Ifilter

3.12

. SciPy 0.18.0 Release Notes

117

https://github.com/scipy/scipy/pull/5919
https://github.com/scipy/scipy/pull/5920
https://github.com/scipy/scipy/pull/5921
https://github.com/scipy/scipy/pull/5926
https://github.com/scipy/scipy/pull/5928
https://github.com/scipy/scipy/pull/5929
https://github.com/scipy/scipy/pull/5930
https://github.com/scipy/scipy/pull/5931
https://github.com/scipy/scipy/pull/5934
https://github.com/scipy/scipy/pull/5935
https://github.com/scipy/scipy/pull/5938
https://github.com/scipy/scipy/pull/5939
https://github.com/scipy/scipy/pull/5941
https://github.com/scipy/scipy/pull/5942
https://github.com/scipy/scipy/pull/5943
https://github.com/scipy/scipy/pull/5944
https://github.com/scipy/scipy/pull/5945
https://github.com/scipy/scipy/pull/5946
https://github.com/scipy/scipy/pull/5949
https://github.com/scipy/scipy/pull/5955
https://github.com/scipy/scipy/pull/5956
https://github.com/scipy/scipy/pull/5958
https://github.com/scipy/scipy/pull/5961
https://github.com/scipy/scipy/pull/5962
https://github.com/scipy/scipy/pull/5965
https://github.com/scipy/scipy/pull/5975
https://github.com/scipy/scipy/pull/5977
https://github.com/scipy/scipy/pull/5978
https://github.com/scipy/scipy/pull/5983
https://github.com/scipy/scipy/pull/5985
https://github.com/scipy/scipy/pull/5989
https://github.com/scipy/scipy/pull/5990
https://github.com/scipy/scipy/pull/5991
https://github.com/scipy/scipy/pull/5994
https://github.com/scipy/scipy/pull/5996
https://github.com/scipy/scipy/pull/5997

SciPy Reference Guide, Release 1.3.2

#6001:
#6002:
#6007:
#6009:
#6013:
#6014:
#6020:
#6022:
#6024
#6025
#6029:
#6030:
#6031:
#6032:
#6033:
#6034:
#6040:
#6044
#6047:
#6049:
#6050:
#6070:
#6071:
#6075:
#6080:
#6081:
#6085:
#6086:
#6087:
#6094:
#6095:
#6106:
#6116:
#6119:
#6120:
#6122:

Filter design docs

COMPAT: Expand compatibility fromnumeric.py

ENH: Skip conversion of TF to TF in freqresp

DOC: fix incorrect versionadded for entr, rel_entr, kl_div

Fixed the entropy calculation of the von Mises distribution.

MAINT: make gamma, rgamma use loggamma for complex arguments
WIP: ENH: add exact=True factorial for vectors

Added ‘lanczos’ to the image interpolation function list.

BUG: optimize: do not use dummy constraints in SLSQP when no...

: ENH: Boundary value problem solver for ODE systems

MAINT: Future imports for optimize._lsq

ENH: stats.trap - adding trapezoidal distribution closes #6028
MAINT: Some improvements to optimize._numdiff

MAINT: Add special/_comb.c to .gitignore

BUG: check the requested approximation rank in interpolative.svd
DOC: Doc for mannwhitneyu in stats.py corrected

FIX: Edit the wrong link in f_oneway

BUG: (ordqz) always increase parameter Iwork by 1.

ENH: extend special.spence to complex arguments.

DOC: Add documentation of PR #5640 to the 0.18.0 release notes
MAINT: small cleanups related to loggamma

Add asarray to explicitly cast list to numpy array in wilcoxon...
DOC: antialiasing filter and link decimate resample, etc.

MAINT: reimplement special.digamma for complex arguments
avoid multiple computation in kstest

Clarified pearson correlation return value

ENH: allow long indices of sparse matrix with umfpack in spsolve()
fix description for associated Laguerre polynomials

Corrected docstring of splrep.

ENH: special: change zeta signature to zeta(x, q=1)

BUG: fix integer overflow in special.spence

Fixed Issue #6105

BUG: matrix logarithm edge case

TST: DeprecationWarnings in stats on python 3.5 closes #5885
MAINT: sparse: clean up sputils.isintlike

DOC: optimize: linprog docs should say minimize instead of maximize

118

Chapter 3.

Release Notes

https://github.com/scipy/scipy/pull/6001
https://github.com/scipy/scipy/pull/6002
https://github.com/scipy/scipy/pull/6007
https://github.com/scipy/scipy/pull/6009
https://github.com/scipy/scipy/pull/6013
https://github.com/scipy/scipy/pull/6014
https://github.com/scipy/scipy/pull/6020
https://github.com/scipy/scipy/pull/6022
https://github.com/scipy/scipy/pull/6024
https://github.com/scipy/scipy/pull/6025
https://github.com/scipy/scipy/pull/6029
https://github.com/scipy/scipy/pull/6030
https://github.com/scipy/scipy/pull/6031
https://github.com/scipy/scipy/pull/6032
https://github.com/scipy/scipy/pull/6033
https://github.com/scipy/scipy/pull/6034
https://github.com/scipy/scipy/pull/6040
https://github.com/scipy/scipy/pull/6044
https://github.com/scipy/scipy/pull/6047
https://github.com/scipy/scipy/pull/6049
https://github.com/scipy/scipy/pull/6050
https://github.com/scipy/scipy/pull/6070
https://github.com/scipy/scipy/pull/6071
https://github.com/scipy/scipy/pull/6075
https://github.com/scipy/scipy/pull/6080
https://github.com/scipy/scipy/pull/6081
https://github.com/scipy/scipy/pull/6085
https://github.com/scipy/scipy/pull/6086
https://github.com/scipy/scipy/pull/6087
https://github.com/scipy/scipy/pull/6094
https://github.com/scipy/scipy/pull/6095
https://github.com/scipy/scipy/pull/6106
https://github.com/scipy/scipy/pull/6116
https://github.com/scipy/scipy/pull/6119
https://github.com/scipy/scipy/pull/6120
https://github.com/scipy/scipy/pull/6122

SciPy Reference Guide, Release 1.3.2

#6123:
#6124
#6125:
#6130:
#6138:
#6146:
#6151:
#6152:
#6153:
#6154
#6155:
#6160:
#6161:
#6163:
#6164
#6169:
#6170:
#6172:
#6175:
#6178:
#6179:
#6181:
#6182:
#6183:
#6184:
#6186:
#6192:
#6193:
#6196:
#62006:
#6207:
#6209:
#6210:
#6214
#6215:
#6220:

DOC: optimize: document the fun field in scipy.optimize.OptimizeResult
Move FFT zero-padding calculation from signaltools to fftpack
MAINT: improve special.gammainc in the a ~ x regime.

BUG: sparse: Fix COO dot with zero columns

ENH: stats: Improve behavior of genextreme.sf and genextreme.isf
MAINT: simplify the expit implementation

MAINT: special: make generate_ufuncs.py output deterministic
TST: special: better test for gammainc at large arguments

ENH: Make next_fast_len public and faster

fix typo “mush”—>"must”

DOC: Fix some incorrect RST definition lists

make logsumexp error out on a masked array

added missing bracket to rosen documentation

ENH: Added “kappa4” and “kappa3” distributions.

DOC: Minor clean-up in integrate._bvp

Fix mpf_assert_allclose to handle iterable results, such as maps
Fix pchip_interpolate convenience function

Corrected misplaced bracket in doc string

ENH: sparse.csgraph: Pass indices to shortest_path

TST: increase test coverage of sf and isf of a generalized extreme...
TST: avoid a deprecation warning from numpy

ENH: Boundary conditions for CubicSpline

DOC: Add examples/graphs to max_len_seq

BLD: update Bento build config files for recent changes.

BUG: fix issue in io/wavfile for float96 input.

ENH: Periodic extrapolation for PPoly and BPoly

MRG: Add circle-CI

ENH: sparse: avoid setitem densification

Fixed missing sqrt in docstring of Mahalanobis distance in cdist,...
MAINT: Minor changes in solve_bvp

BUG: linalg: for BLAS, downcast complex256 to complex128, not...
BUG: io.matlab: avoid buffer overflows in read_element_into
BLD: use setuptools when building.

BUG: sparse.linalg: fix bug in LGMRES breakdown handling
MAINT: special: make loggamma use zdiv

DOC: Add parameter

3.12

. SciPy 0.18.0 Release Notes

119

https://github.com/scipy/scipy/pull/6123
https://github.com/scipy/scipy/pull/6124
https://github.com/scipy/scipy/pull/6125
https://github.com/scipy/scipy/pull/6130
https://github.com/scipy/scipy/pull/6138
https://github.com/scipy/scipy/pull/6146
https://github.com/scipy/scipy/pull/6151
https://github.com/scipy/scipy/pull/6152
https://github.com/scipy/scipy/pull/6153
https://github.com/scipy/scipy/pull/6154
https://github.com/scipy/scipy/pull/6155
https://github.com/scipy/scipy/pull/6160
https://github.com/scipy/scipy/pull/6161
https://github.com/scipy/scipy/pull/6163
https://github.com/scipy/scipy/pull/6164
https://github.com/scipy/scipy/pull/6169
https://github.com/scipy/scipy/pull/6170
https://github.com/scipy/scipy/pull/6172
https://github.com/scipy/scipy/pull/6175
https://github.com/scipy/scipy/pull/6178
https://github.com/scipy/scipy/pull/6179
https://github.com/scipy/scipy/pull/6181
https://github.com/scipy/scipy/pull/6182
https://github.com/scipy/scipy/pull/6183
https://github.com/scipy/scipy/pull/6184
https://github.com/scipy/scipy/pull/6186
https://github.com/scipy/scipy/pull/6192
https://github.com/scipy/scipy/pull/6193
https://github.com/scipy/scipy/pull/6196
https://github.com/scipy/scipy/pull/6206
https://github.com/scipy/scipy/pull/6207
https://github.com/scipy/scipy/pull/6209
https://github.com/scipy/scipy/pull/6210
https://github.com/scipy/scipy/pull/6214
https://github.com/scipy/scipy/pull/6215
https://github.com/scipy/scipy/pull/6220

SciPy Reference Guide, Release 1.3.2

#6221:
#6223:
#6224
#6229:
#6230:
#6236:
#6237:
#6238:
#6239:
#6240:
#6241
#6246:
#6247:
#6249:
#6250:
#6251:
#6252:
#6253:
#6254
#6258:
#6260:
#6262:
#6267:
#6269:
#6274
#6276:
#6277:
#6282:
#6283:
#6284
#6285
#6290:
#6293:
#6295:
#6313:
#6327:

ENH: Improve Newton solver for solve_bvp

pchip should work for length-2 arrays

signal.lti: deprecate cross-class properties/setters
BUG: optimize: avoid an infinite loop in Newton-CG
Add example for application of gaussian filter
MAINT: gumbel_l accuracy

MAINT: rayleigh accuracy

MAINT: logistic accuracy

MAINT: bradford distribution accuracy

MAINT: avoid bad fmin in 1-bfgs-b due to maxfun interruption

: MAINT: weibull_min accuracy

ENH: Add _support_mask to distributions

fixed a print error for an example of ode

MAINT: change x-axis label for stats.probplot to “theoretical. ..
DOC: fix typos

MAINT: constants: filter out test noise from deprecated conversions
MAINT: io/arff: remove unused variable

Add examples to scipy.ndimage.filters

MAINT: special: fix some build warnings

MAINT: inverse gamma distribution accuracy

MAINT: signal.decimate - Use discrete-time objects

BUG: odr: fix string formatting

TST: fix some test issues in interpolate and stats.

TST: fix some warnings in the test suite

ENH: Add sosfiltfilt

DOC: update release notes for 0.18.0

MAINT: update the author name mapping

DOC: Correcting references for scipy.stats.normaltest

DOC: some more additions to 0.18.0 release notes.

Add versionadded:: directive to loggamma.

: BUG: stats: Inconsistency in the multivariate_normal docstring. ..

Add author list, gh-lists to 0.18.0 release notes

TST: special: relax a test’s precision

BUG: sparse: stop comparing None and int in bsr_matrix constructor
MAINT: Fix for python 3.5 travis-ci build problem.

TST: signal: use assert_allclose for testing near-equality in...

120

Chapter 3.

Release Notes

https://github.com/scipy/scipy/pull/6221
https://github.com/scipy/scipy/pull/6223
https://github.com/scipy/scipy/pull/6224
https://github.com/scipy/scipy/pull/6229
https://github.com/scipy/scipy/pull/6230
https://github.com/scipy/scipy/pull/6236
https://github.com/scipy/scipy/pull/6237
https://github.com/scipy/scipy/pull/6238
https://github.com/scipy/scipy/pull/6239
https://github.com/scipy/scipy/pull/6240
https://github.com/scipy/scipy/pull/6241
https://github.com/scipy/scipy/pull/6246
https://github.com/scipy/scipy/pull/6247
https://github.com/scipy/scipy/pull/6249
https://github.com/scipy/scipy/pull/6250
https://github.com/scipy/scipy/pull/6251
https://github.com/scipy/scipy/pull/6252
https://github.com/scipy/scipy/pull/6253
https://github.com/scipy/scipy/pull/6254
https://github.com/scipy/scipy/pull/6258
https://github.com/scipy/scipy/pull/6260
https://github.com/scipy/scipy/pull/6262
https://github.com/scipy/scipy/pull/6267
https://github.com/scipy/scipy/pull/6269
https://github.com/scipy/scipy/pull/6274
https://github.com/scipy/scipy/pull/6276
https://github.com/scipy/scipy/pull/6277
https://github.com/scipy/scipy/pull/6282
https://github.com/scipy/scipy/pull/6283
https://github.com/scipy/scipy/pull/6284
https://github.com/scipy/scipy/pull/6285
https://github.com/scipy/scipy/pull/6290
https://github.com/scipy/scipy/pull/6293
https://github.com/scipy/scipy/pull/6295
https://github.com/scipy/scipy/pull/6313
https://github.com/scipy/scipy/pull/6327

SciPy Reference Guide, Release 1.3.2

» #6330: BUG: spatial/ghull: allocate ghT via malloc to ensure CRT likes...
e #6332: TST: fix stats.igr test to not emit warnings, and fix line lengths.

» #6334: MAINT: special: fix a test for hypOf1

e #6347: TST: spatial.ghull: skip a test on 32-bit platforms

* #6350: BUG: optimize/slsqp: don’t overwrite an array out of bounds

» #6351: BUG: #6318 Interpld ‘nearest’ integer x-axis overflow issue fixed
e #6355: Backports for 0.18.0

3.13 SciPy 0.17.1 Release Notes

SciPy 0.17.1 is a bug-fix release with no new features compared to 0.17.0.

3.13.1 Issues closed for 0.17.1

#5817: BUG: skew, kurtosis return np.nan instead of “propagate”

#5850: Test failed with sgelsy

» #5898: interpolate.interpld crashes using float128

* #5953: Massive performance regression in cKDTree.query with L_inf distance. ..

#6062: mannwhitneyu breaks backward compatibility in 0.17.0
e #6134: T test does not handle nans

3.13.2 Pull requests for 0.17.1

» #5902: BUG: interpolate: make interpld handle np.float128 again

* #5957: BUG: slow down with p=np.inf in 0.17 cKDTree.query

e #5970: Actually propagate nans through stats functions with nan_policy="propagate”
e #5971: BUG: linalg: fix lwork check in *gelsy

» #6074: BUG: special: fixed violation of strict aliasing rules.

« #6083: BUG: Fix dtype for sum of linear operators

e #6100: BUG: Fix mannwhitneyu to be backward compatible

e #6135: Don’t pass null pointers to LAPACK, even during workspace queries.

* #6148: stats: fix handling of nan values in T tests and kendalltau

3.14 SciPy 0.17.0 Release Notes

Contents I

3.13. SciPy 0.17.1 Release Notes 121

https://github.com/scipy/scipy/pull/6330
https://github.com/scipy/scipy/pull/6332
https://github.com/scipy/scipy/pull/6334
https://github.com/scipy/scipy/pull/6347
https://github.com/scipy/scipy/pull/6350
https://github.com/scipy/scipy/pull/6351
https://github.com/scipy/scipy/pull/6355
https://github.com/scipy/scipy/issues/5817
https://github.com/scipy/scipy/issues/5850
https://github.com/scipy/scipy/issues/5898
https://github.com/scipy/scipy/issues/5953
https://github.com/scipy/scipy/issues/6062
https://github.com/scipy/scipy/issues/6134
https://github.com/scipy/scipy/pull/5902
https://github.com/scipy/scipy/pull/5957
https://github.com/scipy/scipy/pull/5970
https://github.com/scipy/scipy/pull/5971
https://github.com/scipy/scipy/pull/6074
https://github.com/scipy/scipy/pull/6083
https://github.com/scipy/scipy/pull/6100
https://github.com/scipy/scipy/pull/6135
https://github.com/scipy/scipy/pull/6148

SciPy Reference Guide, Release 1.3.2

%

*

*

— New features

scipy.

scipy.

* SciPy 0.17.0 Release Notes

* scipy.cluster improvements

io [I?ipl”()t’€i71€ill.9

optimize improvements

- Linear assignment problem solver

- Least squares optimization

scipy.
scipy.
scipy.
scipy.
scipy.

scipy.

Other changes

Authors

signal improvements
stats improvements
sparse improvements
spatial improvements
interpolate improvements

1linalgqg improvements

Deprecated features

Backwards incompatible changes

x Issues closed for 0.17.0

« Pull requests for 0.17.0

SciPy 0.17.0 is the culmination of 6 months of hard work. It contains many new features, numerous bug-fixes, improved
test coverage and better documentation. There have been a number of deprecations and API changes in this release, which
are documented below. All users are encouraged to upgrade to this release, as there are a large number of bug-fixes and
optimizations. Moreover, our development attention will now shift to bug-fix releases on the 0.17.x branch, and on adding
new features on the master branch.

This release requires Python 2.6, 2.7 or 3.2-3.5 and NumPy 1.6.2 or greater.

Release highlights:

e New functions for linear and nonlinear least squares optimization with constraints: scipy.optimize.

lsqg linearand scipy.optimize.least_squares

* Support for fitting with bounds in scipy.optimize.curve fit.

« Significant improvements to scipy. stats, providing many functions with better handing of inputs which have
NaNs or are empty, improved documentation, and consistent behavior between scipy.stats and scipy.
stats.mstats.

« Significant performance improvements and new functionality in scipy.spatial.cKDTree.

3.14.1 New features

122

Chapter 3. Release Notes

SciPy Reference Guide, Release 1.3.2

scipy.cluster improvements

A new function scipy.cluster.hierarchy.cut_tree, which determines a cut tree from a linkage matrix, was
added.

scipy.io improvements

scipy.io.mmwrite gained support for symmetric sparse matrices.

scipy.io.netcdf gained support for masking and scaling data based on data attributes.

scipy.optimize improvements

Linear assignment problem solver

scipy.optimize.linear_sum_assignment is a new function for solving the linear sum assignment problem.
It uses the Hungarian algorithm (Kuhn-Munkres).

Least squares optimization

A new function for nonlinear least squares optimization with constraints was added: scipy.optimize.
least_squares. It provides several methods: Levenberg-Marquardt for unconstrained problems, and two trust-region
methods for constrained ones. Furthermore it provides different loss functions. New trust-region methods also handle
sparse Jacobians.

A new function for linear least squares optimization with constraints was added: scipy.optimize.lsqg linear.
It provides a trust-region method as well as an implementation of the Bounded-Variable Least-Squares (BVLS) algorithm.

scipy.optimize.curve_fit now supports fitting with bounds.

scipy.signal improvements

A mode keyword was added to scipy.signal.spectrogram, to let it return other spectrograms than power
spectral density.

scipy.stats improvements
Many functions in scipy.stats have gained a nan_policy keyword, which allows specifying how to treat input
with NaNs in them: propagate the NaNs, raise an error, or omit the NaNs.

Many functions in scipy.stats have been improved to correctly handle input arrays that are empty or contain
infs/nans.

A number of functions with the same name in scipy.stats and scipy.stats.mstats were changed to have
matching signature and behavior. See gh-5474 for details.

scipy.stats.binom _test and scipy.stats.mannwhitneyu gained a keyword alternative, which
allows specifying the hypothesis to test for. Eventually all hypothesis testing functions will get this keyword.

For methods of many continuous distributions, complex input is now accepted.

Matrix normal distribution has been implemented as scipy.stats.matrix_normal.

3.14. SciPy 0.17.0 Release Notes 123

https://github.com/scipy/scipy/issues/5474

SciPy Reference Guide, Release 1.3.2

scipy.sparse improvements

The axis keyword was added to sparse norms, scipy.sparse.linalg.norm.

scipy.spatial improvements
scipy.spatial.cKDTree was partly rewritten for improved performance and several new features were added to
it:

e the query_ball_point method became significantly faster

e query and query_ball_point gained an n_jobs keyword for parallel execution

¢ build and query methods now release the GIL

* full pickling support

* support for periodic spaces

¢ the sparse_distance_matrix method can now return and sparse matrix type

scipy.interpolate improvements

Out-of-bounds behavior of scipy.interpolate.interpld has been improved. Use a two-element tu-
ple for the £il1l_value argument to specify separate fill values for input below and above the interpolation
range. Linear and nearest interpolation kinds of scipy.interpolate. interpld support extrapolation via the
fill_value="extrapolate" keyword.

fill_value canalso be set to an array-like (or a two-element tuple of array-likes for separate below and above values)
so long as it broadcasts properly to the non-interpolated dimensions of an array. This was implicitly supported by previous
versions of scipy, but support has now been formalized and gets compatibility-checked before use. For example, a set
of y values to interpolate with shape (2, 3, 5) interpolated along the last axis (2) could accept a £ill_value
array with shape () (singleton), (1,), (2, 1), (1, 3), (3,),or (2, 3);oritcanbe a2-element tuple to specify
separate below and above bounds, where each of the two tuple elements obeys proper broadcasting rules.

scipy.linalg improvements

The default algorithm for scipy.linalg.leastsq has been changed to use LAPACK’s function *ge1lsd. Users wanting to

9

get the previous behavior can use a new keyword lapack_driver="gelss" (allowed values are “gelss”, “gelsd” and
“gelsy99) .

scipy.sparse matrices and linear operators now support the matmul (@) operator when available (Python 3.5+). See
[PEP 465](https://legacy.python.org/dev/peps/pep-0465/)

A new function scipy.linalg.ordgz, for QZ decomposition with reordering, has been added.

3.14.2 Deprecated features
scipy.stats.histogramisdeprecated in favor of np.histogram, which is faster and provides the same func-
tionality.

scipy.stats.thresholdand scipy.mstats.threshold are deprecated in favor of np.clip. See issue
#617 for details.

scipy.stats.ss is deprecated. This is a support function, not meant to be exposed to the user. Also, the name is
unclear. See issue #663 for details.

124 Chapter 3. Release Notes

https://legacy.python.org/dev/peps/pep-0465/

SciPy Reference Guide, Release 1.3.2

scipy.stats.square_of_sums is deprecated. This too is a support function not meant to be exposed to the user.
See issues #665 and #663 for details.

scipy.stats.f_value, scipy.stats.f_value_multivariate, scipy.stats.
f_value_wilks_lambda, and scipy.mstats.f_value_wilks_lambda are deprecated. These are
related to ANOVA, for which scipy.stats provides quite limited functionality and these functions are not very
useful standalone. See issues #660 and #650 for details.

scipy.stats.chisgprob is deprecated. This is an alias. stats.chi?2. sf should be used instead.

scipy.stats.betai is deprecated. This is an alias for special .betainc which should be used instead.

3.14.3 Backwards incompatible changes

The functions stats.triml and stats.trimboth now make sure the elements trimmed are the lowest and/or
highest, depending on the case. Slicing without at least partial sorting was previously done, but didn’t make sense for
unsorted input.

When variable_names is set to an empty list, scipy.io.loadmat now correctly returns no values instead of all
the contents of the MAT file.

Element-wise multiplication of sparse matrices now returns a sparse result in all cases. Previously, multiplying a sparse
matrix with a dense matrix or array would return a dense matrix.

The function misc. lena has been removed due to license incompatibility.

The constructor for sparse.coo_matrix no longer accepts (None, (m,n)) to construct an all-zero matrix of
shape (m, n). This functionality was deprecated since at least 2007 and was already broken in the previous SciPy release.
Use coo_matrix ((m,n)) instead.

The Cython wrappersin 1inalg.cython_lapack for the LAPACK routines *gegs, *gegv, *gelsx, *gegpf,
*ggsvd, *ggsvp, *lahrd, *latzm, *tzrgf have been removed since these routines are not present in the new
LAPACK 3.6.0 release. With the exception of the routines *ggsvd and *ggsvp, these were all deprecated in favor of
routines that are currently present in our Cython LAPACK wrappers.

Because the LAPACK *gegv routines were removed in LAPACK 3.6.0. The corresponding Python wrappers in
scipy.linalg.lapack are now deprecated and will be removed in a future release. The source files for these
routines have been temporarily included as a part of scipy.linalg so that SciPy can be built against LAPACK
versions that do not provide these deprecated routines.

3.14.4 Other changes

Html and pdf documentation of development versions of Scipy is now automatically rebuilt after every merged pull request.
scipy.constants is updated to the CODATA 2014 recommended values.

Usage of scipy. fftpack functions within Scipy has been changed in such a way that PYFFTW can easily replace
scipy. fftpack functions (with improved performance). See gh-5295 for details.

The imread functions in scipy.miscand scipy.ndimage were unified, for which a mode argument was added
to scipy.misc.imread. Also, bugs for 1-bit and indexed RGB image formats were fixed.

runtests.py, the development script to build and test Scipy, now allows building in parallel with ——parallel.

3.14.5 Authors

e @cel4 +

3.14. SciPy 0.17.0 Release Notes 125

https://hgomersall.github.io/pyFFTW/
https://github.com/scipy/scipy/pull/5295

SciPy Reference Guide, Release 1.3.2

@chemelnucfin +
@endolith

@mamrehn +

@toshl1ki +

Joshua L. Adelman +
Anne Archibald

Hervé Audren +
Vincent Barrielle +
Bruno Beltran +

Sumit Binnani +

Joseph Jon Booker

Olga Botvinnik +
Michael Boyle +
Matthew Brett

Zaz Brown +

Lars Buitinck

Pete Bunch +

Evgeni Burovski

CJ Carey

Ien Cheng +

Cody +

Jaime Fernandez del Rio
Ales Erjavec +
Abraham Escalante
Yves-Rémi Van Eycke +
Yu Feng +

Eric Firing

Francis T. O'Donovan +
André Gaul

Christoph Gohlke

Ralf Gommers

Alex Griffing
Alexander Grigorievskiy
Charles Harris

Jorn Hees +

Ian Henriksen

126

Chapter 3. Release Notes

SciPy Reference Guide, Release 1.3.2

Derek Homeier +
David Menéndez Hurtado
Gert-Ludwig Ingold
Aakash Jain +

Rohit Jamuar +

Jan Schliiter
Johannes Ballé

Luke Zoltan Kelley +
Jason King +
Andreas Kopecky +
Eric Larson

Denis Laxalde
Antony Lee
Gregory R. Lee
Josh Levy-Kramer +
Sam Lewis +
Frangois Magimel +
Martin Gaitan +
Sam Mason +
Andreas Mayer
Nikolay Mayorov
Damon McDougall +
Robert McGibbon
Sturla Molden

Will Monroe +

Eric Moore
Maniteja Nandana
Vikram Natarajan +
Andrew Nelson
Marti Nito +
Behzad Nouri +
Daisuke Oyama +
Giorgio Patrini +
Fabian Paul +
Christoph Paulik +
Mad Physicist +

3.14

. SciPy 0.17.0 Release Notes

127

SciPy Reference Guide, Release 1.3.2

Irvin Probst
Sebastian Pucilowski +
Ted Pudlik +

Eric Quintero

Yoav Ram +

Joscha Reimer +
Juha Remes
Frederik Rietdijk +
Rémy Léone +
Christian Sachs +
Skipper Seabold
Sebastian Skoupy +
Alex Seewald +
Andreas Sorge +
Bernardo Sulzbach +
Julian Taylor

Louis Tiao +
Utkarsh Upadhyay +
Jacob Vanderplas
Gael Varoquaux +
Pauli Virtanen
Fredrik Wallner +
Stefan van der Walt
James Webber +
Warren Weckesser
Raphael Wettinger +
Josh Wilson +

Nat Wilson +

Peter Yin +

A total of 101 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

This list of names is automatically generated, and may not be fully complete.

Issues closed for 0.17.0

e #1923: problem with numpy O’s in stats.poisson.rvs (Trac #1398)
» #2138: scipy.misc.imread segfaults on 1 bit png (Trac #1613)

e #2237: distributions do not accept complex arguments (Trac #1718)

128

Chapter 3. Release Notes

https://github.com/scipy/scipy/issues/1923
https://github.com/scipy/scipy/issues/2138
https://github.com/scipy/scipy/issues/2237

SciPy Reference Guide, Release 1.3.2

#2282: scipy.special.hyp1f1(0.5, 1.5, -1000) fails (Trac #1763)

#2618: poisson.pmf returns NaN if mu is O

#2957: hyplf1 precision issue

#2997: FAIL: test_ghull. TestUtilities.test_more_barycentric_transforms
#3129: No way to set ranges for fitting parameters in Optimize functions
#3191: interpld should contain a fill_value_below and a fill_value_above...
#3453: Pchiplnterpolator sets slopes at edges differently than Matlab’s. ..
#4106: ndimage._ni_support._normalize_sequence() fails with numpy.int64

#4118: scipy.integrate.ode.set_solout called after scipy.integrate.ode.
set_initial_value fails silently

#4233: 1D scipy.interpolate.griddata using method=nearest produces nans. ..
#4375: All tests fail due to bad file permissions

#4580: scipy.ndimage.filters.convolve documenation is incorrect

#4627: logsumexp with sign indicator - enable calculation with negative...
#4702: logsumexp with zero scaling factor

#4834: gammainc should return 1.0 instead of NaN for infinite x

#4838: enh: exprel special function

#4862: the scipy.special.boxcox function is inaccurate for denormal. ..
#4887: Spherical harmonic incongruences

#4895: some scipy ufuncs have inconsistent output dtypes?

#4923: logm does not aggressively convert complex outputs to float
#4932: BUG: stats: The fir method of the distributions silently ignores. ..
#4956: Documentation error in scipy. special.bi_zeros

#4957: Docstring for pbvv_seq is wrong

#4967: block_diag should look at dtypes of all arguments, not only the. ..
#5037: scipy.optimize.minimize error messages are printed to stdout...
#5039: Cubic interpolation: On entry to DGESDD parameter number 12 had...
#5163: Base case example of Hierarchical Clustering (offer)

#5181: BUG: stats.genextreme.entropy should use the explicit formula
#5184: Some? wheels don’t express a numpy dependency

#5197: mstats: test_kurtosis fails (ULP max is 2)

#5260: Typo causing an error in splrep

#5263: Default epsilon in rbf.py fails for colinear points

#5276: Reading empty (no data) arff file fails

#5280: 1d scipy.signal.convolve much slower than numpy.convolve

#5326: Implementation error in scipy.interpolate.PchipInterpolator

. SciPy 0.17.0 Release Notes 129

https://github.com/scipy/scipy/issues/2282
https://github.com/scipy/scipy/issues/2618
https://github.com/scipy/scipy/issues/2957
https://github.com/scipy/scipy/issues/2997
https://github.com/scipy/scipy/issues/3129
https://github.com/scipy/scipy/issues/3191
https://github.com/scipy/scipy/issues/3453
https://github.com/scipy/scipy/issues/4106
https://github.com/scipy/scipy/issues/4118
https://github.com/scipy/scipy/issues/4233
https://github.com/scipy/scipy/issues/4375
https://github.com/scipy/scipy/issues/4580
https://github.com/scipy/scipy/issues/4627
https://github.com/scipy/scipy/issues/4702
https://github.com/scipy/scipy/issues/4834
https://github.com/scipy/scipy/issues/4838
https://github.com/scipy/scipy/issues/4862
https://github.com/scipy/scipy/issues/4887
https://github.com/scipy/scipy/issues/4895
https://github.com/scipy/scipy/issues/4923
https://github.com/scipy/scipy/issues/4932
https://github.com/scipy/scipy/issues/4956
https://github.com/scipy/scipy/issues/4957
https://github.com/scipy/scipy/issues/4967
https://github.com/scipy/scipy/issues/5037
https://github.com/scipy/scipy/issues/5039
https://github.com/scipy/scipy/issues/5163
https://github.com/scipy/scipy/issues/5181
https://github.com/scipy/scipy/issues/5184
https://github.com/scipy/scipy/issues/5197
https://github.com/scipy/scipy/issues/5260
https://github.com/scipy/scipy/issues/5263
https://github.com/scipy/scipy/issues/5276
https://github.com/scipy/scipy/issues/5280
https://github.com/scipy/scipy/issues/5326

SciPy Reference Guide, Release 1.3.2

#5370:
#5426:
#5427:
#5430:
#5450:
#5478:
#5539:
#5560:
#5571:
#5577:
#5578:
#5607:
#5629:
#5630:
#5689:
#5694:
#5719:

Test issue with test_quadpack and libm.so as a linker script
ERROR: test_stats.test_chisquare_masked_arrays

Automate installing correct numpy versions in numpy-vendor image
Python3 : Numpy scalar types “not iterable”; specific instance...
BUG: spatial.ConvexHull triggers a seg. fault when given nans.
clarify the relation between matrix normal distribution and multivariate_normal
Istsq related test failures on windows binaries from numpy-vendor
doc: scipy.stats.burr pdf issue

Istsq test failure after lapack_driver change

ordqz segfault on Python 3.4 in Wine

scipy.linalg test failures on python 3 in Wine

Overloaded ‘isnan(double&)’ is ambiguous when compiling with. ..
Test for Istsq randomly failed

memory leak with scipy 0.16 spatial cKDEtree

isnan errors compiling scipy/special/Faddeeva.cc with clang++
fftpack test failure in test_import

curve_fit(method!="Im") ignores initial guess

Pull requests for 0.17.0

#3022:
#3107:
#4390:
#4671:
#4796:
#4809:
#4821:
#4839:
#4859:
#4865:
#4869:
#4884:
#4890:
#4892:
#4896:
#4898:
#4899:

hyp1f1: better handling of large negative arguments

ENH: Add ordered QZ decomposition

ENH: Allow axis and keepdims arguments to be passed to scipy.linalg.norm.
ENH: add axis to sparse norms

ENH: Add cut tree function to scipy.cluster.hierarchy

MAINT: cauchy moments are undefined

ENH: stats: make distribution instances picklable

ENH: Add scipy.special.exprel relative error exponential ufunc
Logsumexp fixes - allows sign flags and b==

BUG: scipy.io.mmio.write: error with big indices and low precision

add as_inexact option to _lib._util._asarray_validated

ENH: Finite difference approximation of Jacobian matrix

ENH: Port cKDTree query methods to C++, allow pickling on Python...
how much doctesting is too much?

MAINT: work around a possible numpy ufunc loop selection bug
MAINT: A bit of pyflakes-driven cleanup.

ENH: add ‘alternative’ keyword to hypothesis tests in stats

130

Chapter 3.

Release Notes

https://github.com/scipy/scipy/issues/5370
https://github.com/scipy/scipy/issues/5426
https://github.com/scipy/scipy/issues/5427
https://github.com/scipy/scipy/issues/5430
https://github.com/scipy/scipy/issues/5450
https://github.com/scipy/scipy/issues/5478
https://github.com/scipy/scipy/issues/5539
https://github.com/scipy/scipy/issues/5560
https://github.com/scipy/scipy/issues/5571
https://github.com/scipy/scipy/issues/5577
https://github.com/scipy/scipy/issues/5578
https://github.com/scipy/scipy/issues/5607
https://github.com/scipy/scipy/issues/5629
https://github.com/scipy/scipy/issues/5630
https://github.com/scipy/scipy/issues/5689
https://github.com/scipy/scipy/issues/5694
https://github.com/scipy/scipy/issues/5719
https://github.com/scipy/scipy/pull/3022
https://github.com/scipy/scipy/pull/3107
https://github.com/scipy/scipy/pull/4390
https://github.com/scipy/scipy/pull/4671
https://github.com/scipy/scipy/pull/4796
https://github.com/scipy/scipy/pull/4809
https://github.com/scipy/scipy/pull/4821
https://github.com/scipy/scipy/pull/4839
https://github.com/scipy/scipy/pull/4859
https://github.com/scipy/scipy/pull/4865
https://github.com/scipy/scipy/pull/4869
https://github.com/scipy/scipy/pull/4884
https://github.com/scipy/scipy/pull/4890
https://github.com/scipy/scipy/pull/4892
https://github.com/scipy/scipy/pull/4896
https://github.com/scipy/scipy/pull/4898
https://github.com/scipy/scipy/pull/4899

SciPy Reference Guide, Release 1.3.2

#4903:
#4905:
#4906:
#4910:
#4912:
#4914
#4924
#4930:
#4941:
#4942:
#4944
#4951:
#4958:
#4961:
#4963:
#4968:
#4969:
#4971:
#4972:
#4976:
#4977:
#4979:
#4984
#4992:
#4996:
#4997:
#4998:
#5000:
#5003:
#5005:
#5007:
#5009:
#5010:
#5014
#5015:
#5016:

BENCH: Benchmarks for interpolate module

MAINT: prepend underscore to mask_to_limits; delete masked_var.
MAINT: Benchmarks for optimize.leastsq

WIP: Trimmed statistics functions have inconsistent API.
MAINT: fix typo in stats tutorial. Closes gh-4911.

DEP: deprecate scipy.stats.ss and scipy.stats.square_of _sums.
MAINT: if the imaginary part of logm of a real matrix is small,...
BENCH: Benchmarks for signal module

ENH: update find_repeats.

MAINT: use np.float64_t instead of np.float_t in cKDTree

BUG: integer overflow in correlate_nd

do not ignore invalid kwargs in distributions fit method

Add some detail to docstrings for special functions

ENH: stats.describe: add bias kw and empty array handling

ENH: scipy.sparse.coo.coo_matrix.__init__: less memory needed

DEP: deprecate stats.f_value* and mstats.f_value* functions.

ENH: review stats.relfreq and stats.cumfreq; fixes to stats. histogram
Extend github source links to line ranges

MAINT: impove the error message in validate_runtests_log

DEP: deprecate scipy.stats.threshold

MAINT: more careful dtype treatment in block diagonal matrix...
ENH: distributions, complex arguments

clarify dirichlet distribution error handling

ENH: stats. fligner and stats.bartlett empty input handling.

DOC: fix stats.spearmanr docs

Fix up boxcox for underflow / loss of precision

DOC: improved documentation for stats.ppcc_max

ENH: added empty input handling scipy.moment; doc enhancements
ENH: improves rankdata algorithm

scipy.stats: numerical stability improvement

ENH: nan handling in functions that use stats._chk_asarray
remove coveralls.io

Hypergeometric distribution log survival function

Patch to compute the volume and area of convex hulls

DOC: Fix mistaken variable name in sawtooth

DOC: resample example

3.14

. SciPy 0.17.0 Release Notes

131

https://github.com/scipy/scipy/pull/4903
https://github.com/scipy/scipy/pull/4905
https://github.com/scipy/scipy/pull/4906
https://github.com/scipy/scipy/pull/4910
https://github.com/scipy/scipy/pull/4912
https://github.com/scipy/scipy/pull/4914
https://github.com/scipy/scipy/pull/4924
https://github.com/scipy/scipy/pull/4930
https://github.com/scipy/scipy/pull/4941
https://github.com/scipy/scipy/pull/4942
https://github.com/scipy/scipy/pull/4944
https://github.com/scipy/scipy/pull/4951
https://github.com/scipy/scipy/pull/4958
https://github.com/scipy/scipy/pull/4961
https://github.com/scipy/scipy/pull/4963
https://github.com/scipy/scipy/pull/4968
https://github.com/scipy/scipy/pull/4969
https://github.com/scipy/scipy/pull/4971
https://github.com/scipy/scipy/pull/4972
https://github.com/scipy/scipy/pull/4976
https://github.com/scipy/scipy/pull/4977
https://github.com/scipy/scipy/pull/4979
https://github.com/scipy/scipy/pull/4984
https://github.com/scipy/scipy/pull/4992
https://github.com/scipy/scipy/pull/4996
https://github.com/scipy/scipy/pull/4997
https://github.com/scipy/scipy/pull/4998
https://github.com/scipy/scipy/pull/5000
https://github.com/scipy/scipy/pull/5003
https://github.com/scipy/scipy/pull/5005
https://github.com/scipy/scipy/pull/5007
https://github.com/scipy/scipy/pull/5009
https://github.com/scipy/scipy/pull/5010
https://github.com/scipy/scipy/pull/5014
https://github.com/scipy/scipy/pull/5015
https://github.com/scipy/scipy/pull/5016

SciPy Reference Guide, Release 1.3.2

#5017:
#5018:
#5026:
#5030:
#5033:
#5034:
#5035:
#5041:
#5044
#5050:
#5057:
#5058:
#5061:
#5065:
#5066:
#5067:
#5071:
#5072:
#5073:
#5075:
#5076:
#5078:
#5081:
#5082:
#5083:
#5086:
#5090:
#5094
#5098:
#5099:
#5104:
#5105:
#5106:
#5110:
#5111:
#5118:

DEP: deprecate stats.betai and stats.chisgprob

ENH: Add test on random inpu to volume computations

BUG: Fix return dtype of lil_matrix.getnnz(axis=0)

DOC: resample slow for prime output too

MAINT: integrate, special: remove unused RIMACH and Makefile
MAINT: signal: lift max_len_seq validation out of Cython
DOC/MAINT: refguide / doctest drudgery

BUG: fixing some small memory leaks detected by cppcheck
[GSoC] ENH: New least-squares algorithms

MAINT: C fixes, trimmed a lot of dead code from Cephes

ENH: sparse: avoid densifying on sparse/dense elementwise mult
TST: stats: add a sample distribution to the test loop

ENH: spatial: faster 2D Voronoi and Convex Hull plotting

TST: improve test coverage for stats.mvsdist and stats.bayes_mvs
MAINT: fitpack: remove a noop

ENH: empty and nan input handling for stats.kstat and stats.kstatvar
DOC: optimize: Correct paper reference, add doi

MAINT: scipy.sparse cleanup

DOC: special: Add an example showing the relation of diric to...
DOC: clarified parameterization of stats.lognorm

use int, float, bool instead of np.int, np.float, np.bool

DOC: Rename fftpack docs to README

BUG: Correct handling of scalar ‘b’ in Ismr and Isqr

loadmat variable_names: don’t confuse [] and None.

Fix integrate.fixed_quad docstring to indicate None return value
Use solve() instead of inv() for gaussian_kde

MAINT: stats: add explicit _sf, _isf to gengamma distribution
ENH: scipy.interpolate.NearestNDInterpolator: cKDTree configurable
DOC: special: fix typesetting in *_roots quadrature functions
DOC: make the docstring of stats.moment raw

DOC/ENH fixes and micro-optimizations for scipy.linalg

enh: made 1-bfgs-b parameter for the maximum number of line search...
TST: add NIST test cases to stats.f_oneway

[GSoC]: Bounded linear least squares

MAINT: special: Cephes cleanup

BUG: FIR path failed if len(x) < len(b) in Ifilter.

132

Chapter 3.

Release Notes

https://github.com/scipy/scipy/pull/5017
https://github.com/scipy/scipy/pull/5018
https://github.com/scipy/scipy/pull/5026
https://github.com/scipy/scipy/pull/5030
https://github.com/scipy/scipy/pull/5033
https://github.com/scipy/scipy/pull/5034
https://github.com/scipy/scipy/pull/5035
https://github.com/scipy/scipy/pull/5041
https://github.com/scipy/scipy/pull/5044
https://github.com/scipy/scipy/pull/5050
https://github.com/scipy/scipy/pull/5057
https://github.com/scipy/scipy/pull/5058
https://github.com/scipy/scipy/pull/5061
https://github.com/scipy/scipy/pull/5065
https://github.com/scipy/scipy/pull/5066
https://github.com/scipy/scipy/pull/5067
https://github.com/scipy/scipy/pull/5071
https://github.com/scipy/scipy/pull/5072
https://github.com/scipy/scipy/pull/5073
https://github.com/scipy/scipy/pull/5075
https://github.com/scipy/scipy/pull/5076
https://github.com/scipy/scipy/pull/5078
https://github.com/scipy/scipy/pull/5081
https://github.com/scipy/scipy/pull/5082
https://github.com/scipy/scipy/pull/5083
https://github.com/scipy/scipy/pull/5086
https://github.com/scipy/scipy/pull/5090
https://github.com/scipy/scipy/pull/5094
https://github.com/scipy/scipy/pull/5098
https://github.com/scipy/scipy/pull/5099
https://github.com/scipy/scipy/pull/5104
https://github.com/scipy/scipy/pull/5105
https://github.com/scipy/scipy/pull/5106
https://github.com/scipy/scipy/pull/5110
https://github.com/scipy/scipy/pull/5111
https://github.com/scipy/scipy/pull/5118

SciPy Reference Guide, Release 1.3.2

#5124
#5126:
#5130:
#5131:
#5132:
#5133:
#5135:
#5139:
#5140:
#5145
#5146:
#5147:
#5150:
#5152:
#5153:
#5156:
#5158:
#5162:
#5164
#5166:
#5167:
#5168:
#5169:
#5171:
#5172:
#5177:
#5179:
#5188:
#5189:
#5193:
#5194
#5198:
#5201:
#5209:
#5213:
#5216:

ENH: move the filliben approximation to a publicly visible function
StatisticsCleanup: stats.kruskal review
DOC: update PyPi trove classifiers. Beta -> Stable. Add license.

DOC: differential_evolution, improve docstring for mutation and...

MAINT: differential_evolution improve init_population_lhs comments. ..

MRG: rebased mmio refactoring

MAINT: stats.mstats consistency with stats.stats
TST: linalg: add a smoke test for gh-5039

EHN: Update constants.codata to CODATA 2014

: added ValueError to docstring as possible error raised

MAINT: Improve implementation details and doc in stats.shapiro
[GSoC] ENH: Upgrades to curve_fit

Fix misleading wavelets/cwt example

BUG: cluster.hierarchy.dendrogram: missing font size doesn’t...
add keywords to control the summation in discrete distributions...
DOC: added comments on algorithms used in Legendre function
ENH: optimize: add the Hungarian algorithm

FIX: Remove lena

MAINT: fix cluster.hierarchy.dendrogram issues and docs
MAINT: changed stats.pointbiserialr to delegate to stats.pearsonr
ENH: add nan_policy to stats.kendalltau.

TST: added nist test case (Norris) to stats.linregress.

update Ipmv docstring

Clarify metric parameter in linkage docstring

ENH: add mode keyword to signal.spectrogram

DOC: graphical example for KDTree.query_ball_point

MAINT: stats: tweak the formula for ncx2.pdf

MAINT: linalg: A bit of clean up.

BUG: stats: Use the explicit formula in stats.genextreme.entropy
BUG: fix uninitialized use in lartg

BUG: properly return error to fortran from ode_jacobian_function
TST: Fix TestCtypesQuad failure on Python 3.5 for Windows
allow extrapolation in interpld

MAINT: Change complex parameter to boolean in Y_()

BUG: sparse: fix logical comparison dtype conflicts

BUG: sparse: fixing unbound local error

3.14

. SciPy 0.17.0 Release Notes

133

https://github.com/scipy/scipy/pull/5124
https://github.com/scipy/scipy/pull/5126
https://github.com/scipy/scipy/pull/5130
https://github.com/scipy/scipy/pull/5131
https://github.com/scipy/scipy/pull/5132
https://github.com/scipy/scipy/pull/5133
https://github.com/scipy/scipy/pull/5135
https://github.com/scipy/scipy/pull/5139
https://github.com/scipy/scipy/pull/5140
https://github.com/scipy/scipy/pull/5145
https://github.com/scipy/scipy/pull/5146
https://github.com/scipy/scipy/pull/5147
https://github.com/scipy/scipy/pull/5150
https://github.com/scipy/scipy/pull/5152
https://github.com/scipy/scipy/pull/5153
https://github.com/scipy/scipy/pull/5156
https://github.com/scipy/scipy/pull/5158
https://github.com/scipy/scipy/pull/5162
https://github.com/scipy/scipy/pull/5164
https://github.com/scipy/scipy/pull/5166
https://github.com/scipy/scipy/pull/5167
https://github.com/scipy/scipy/pull/5168
https://github.com/scipy/scipy/pull/5169
https://github.com/scipy/scipy/pull/5171
https://github.com/scipy/scipy/pull/5172
https://github.com/scipy/scipy/pull/5177
https://github.com/scipy/scipy/pull/5179
https://github.com/scipy/scipy/pull/5188
https://github.com/scipy/scipy/pull/5189
https://github.com/scipy/scipy/pull/5193
https://github.com/scipy/scipy/pull/5194
https://github.com/scipy/scipy/pull/5198
https://github.com/scipy/scipy/pull/5201
https://github.com/scipy/scipy/pull/5209
https://github.com/scipy/scipy/pull/5213
https://github.com/scipy/scipy/pull/5216

SciPy Reference Guide, Release 1.3.2

#5218:
#5222:
#5224
#5228:
#5229:
#5234
#5235:
#5236:
#5239:
#5241
#5246:
#5247
#5248:
#5250:
#5261:
#5262:
#5264
#5269:
#5272:
#5273:
#5274
#5278:
#5289:
#5291:
#5294
#5295:
#5296:
#5297:
#5303:
#5307:
#5313:
#5315:
#5316:
#5319:
#5328:
#5329:

DOC and BUG: Bessel function docstring improvements, fix array_like,. ..
MAINT: sparse: fix COO ctor

DOC: optimize: type of OptimizeResult.hess_inv varies

ENH: Add maskandscale support to netcdf; based on pupynere and...
DOC: sparse.linalg.svds doc typo fixed

MAINT: sparse: simplify COO ctor

MAINT: sparse: warn on todia() with many diagonals

MAINT: ndimage: simplify thread handling/recursion + constness

BUG: integrate: Fixed issue 4118

: gr_insert fixes, closes #5149

Doctest tutorial files

DOC: optimize: typo/import fix in linear_sum_assignment
remove inspect.getargspec and test python 3.5 on Travis CI
BUG: Fix sparse multiply by single-element zero

Fix bug causing a TypeError in splrep when a runtime warning. ..
Follow up to 4489 (Addition LAPACK routines in linalg.Istsq)
ignore zero-length edges for default epsilon

DOC: Typos and spell-checking

MAINT: signal: Convert array syntax to memoryviews

DOC: raw strings for docstrings with math

MAINT: sparse: update cython code for MST

BUG: io: Stop guessing the data delimiter in ARFF files.
BUG: misc: Fix the Pillow work-around for 1-bit images.
ENH: call np.correlate for 1d in scipy.signal.correlate

DOC: special: Remove a potentially misleading example from the...
Simplify replacement of fftpack by pyfftw

ENH: Add matrix normal distribution to stats

Fixed leaf_rotation and leaf_font_size in Python 3

MAINT: stats: rewrite find_repeats

MAINT: stats: remove unused Fortran routine

BUG: sparse: fix diags for nonsquare matrices

MAINT: special: Cephes cleanup

fix input check for sparse.linalg.svds

MAINT: Cython code maintenance

BUG: Fix place_poles return values

avoid a spurious divide-by-zero in Student t stats

134

Chapter 3.

Release Notes

https://github.com/scipy/scipy/pull/5218
https://github.com/scipy/scipy/pull/5222
https://github.com/scipy/scipy/pull/5224
https://github.com/scipy/scipy/pull/5228
https://github.com/scipy/scipy/pull/5229
https://github.com/scipy/scipy/pull/5234
https://github.com/scipy/scipy/pull/5235
https://github.com/scipy/scipy/pull/5236
https://github.com/scipy/scipy/pull/5239
https://github.com/scipy/scipy/pull/5241
https://github.com/scipy/scipy/pull/5246
https://github.com/scipy/scipy/pull/5247
https://github.com/scipy/scipy/pull/5248
https://github.com/scipy/scipy/pull/5250
https://github.com/scipy/scipy/pull/5261
https://github.com/scipy/scipy/pull/5262
https://github.com/scipy/scipy/pull/5264
https://github.com/scipy/scipy/pull/5269
https://github.com/scipy/scipy/pull/5272
https://github.com/scipy/scipy/pull/5273
https://github.com/scipy/scipy/pull/5274
https://github.com/scipy/scipy/pull/5278
https://github.com/scipy/scipy/pull/5289
https://github.com/scipy/scipy/pull/5291
https://github.com/scipy/scipy/pull/5294
https://github.com/scipy/scipy/pull/5295
https://github.com/scipy/scipy/pull/5296
https://github.com/scipy/scipy/pull/5297
https://github.com/scipy/scipy/pull/5303
https://github.com/scipy/scipy/pull/5307
https://github.com/scipy/scipy/pull/5313
https://github.com/scipy/scipy/pull/5315
https://github.com/scipy/scipy/pull/5316
https://github.com/scipy/scipy/pull/5319
https://github.com/scipy/scipy/pull/5328
https://github.com/scipy/scipy/pull/5329

SciPy Reference Guide, Release 1.3.2

#5334:
#5340:
#5347:
#5350:
#5351:
#5354
#5359:
#5364:
#5365:
#53606:
#5367:
#5368:
#5372:
#5375:
#5377:
#5381:
#5385:
#5386:
#5387:
#5388:
#5389:
#5395:
#5398:
#5407:
#5409:
#5412:
#5413:
#5414
#5415:
#5416:
#5418:
#5419:
#5420:
#5422:
#5444
#5445:

MAINT: integrate: miscellaneous cleanup

MAINT: Printing Error Msg to STDERR and Removing iterate.dat
ENH: add Py3.5-style matmul operator (e.g. A @ B) to sparse linear...
FIX error, when reading 32-bit float wav files

refactor the PCHIP interpolant’s algorithm

MAINT: construct csr and csc matrices from integer lists

add a fast path to interpld

Add two fill_values to interpld.

ABCD docstrings

Fixed typo in the documentation for scipy.signal.cwt() per #5290.
DOC updated scipy.spatial. Delaunay example

ENH: Do not create a throwaway class at every function call

DOC: spectral: fix reference formatting

PEP8 amendments to ffpack_basic.py

BUG: integrate: builtin name no longer shadowed

PEP8ified fftpack_pseudo_diffs.py

BLD: fix Bento build for changes to optimize and spatial

STY: PEP8 amendments to interpolate.py

DEP: deprecate stats.histogram

REL: add “make upload” command to doc/Makefile.

DOC: updated origin param of scipy.ndimage.filters.convolve

BUG: special: fix a number of edge cases related to x = np.inf.
MAINT: stats: avoid spurious warnings in lognorm.pdf(0, s)

ENH: stats: Handle mu=0 in stats.poisson

Fix the behavior of discrete distributions at the right-hand. ..

TST: stats: skip a test to avoid a spurious log(0) warning

BUG: linalg: work around LAPACK single-precision Iwork computation...
MAINT: stats: move creation of namedtuples outside of function...
DOC: fix up sections in ToC in the pdf reference guide

TST: fix issue with a ctypes test for integrate on Fedora.

DOC: fix bugs in signal. TransferFunction docstring. Closes gh-5287.
MAINT: sparse: fix usage of NotImplementedError

Raise proper error if maxiter < 1

DOC: changed documentation of brent to be consistent with bracket
BUG: gaussian_filter, BPoly.from_derivatives fail on numpy int...

MAINT: stats: fix incorrect deprecation warnings and test noise

3.14

. SciPy 0.17.0 Release Notes

135

https://github.com/scipy/scipy/pull/5334
https://github.com/scipy/scipy/pull/5340
https://github.com/scipy/scipy/pull/5347
https://github.com/scipy/scipy/pull/5350
https://github.com/scipy/scipy/pull/5351
https://github.com/scipy/scipy/pull/5354
https://github.com/scipy/scipy/pull/5359
https://github.com/scipy/scipy/pull/5364
https://github.com/scipy/scipy/pull/5365
https://github.com/scipy/scipy/pull/5366
https://github.com/scipy/scipy/pull/5367
https://github.com/scipy/scipy/pull/5368
https://github.com/scipy/scipy/pull/5372
https://github.com/scipy/scipy/pull/5375
https://github.com/scipy/scipy/pull/5377
https://github.com/scipy/scipy/pull/5381
https://github.com/scipy/scipy/pull/5385
https://github.com/scipy/scipy/pull/5386
https://github.com/scipy/scipy/pull/5387
https://github.com/scipy/scipy/pull/5388
https://github.com/scipy/scipy/pull/5389
https://github.com/scipy/scipy/pull/5395
https://github.com/scipy/scipy/pull/5398
https://github.com/scipy/scipy/pull/5407
https://github.com/scipy/scipy/pull/5409
https://github.com/scipy/scipy/pull/5412
https://github.com/scipy/scipy/pull/5413
https://github.com/scipy/scipy/pull/5414
https://github.com/scipy/scipy/pull/5415
https://github.com/scipy/scipy/pull/5416
https://github.com/scipy/scipy/pull/5418
https://github.com/scipy/scipy/pull/5419
https://github.com/scipy/scipy/pull/5420
https://github.com/scipy/scipy/pull/5422
https://github.com/scipy/scipy/pull/5444
https://github.com/scipy/scipy/pull/5445

SciPy Reference Guide, Release 1.3.2

#5446:
#5459:
#5465:
#5471:
#5473:
#5476:
#5477:
#5479:
#5484:
#5486:

#5491

#5514:
#5515:
#5517:
#5518:
#5521:
#5523:
#5524:
#5525:
#5527:
#5535:
#5538:
#5545:
#5547:
#5550:
#5556:
#5561:
#5567:
#5568:
#5569:

DOC: add note about PyFFTW in fftpack tutorial.

DOC: integrate: Some improvements to the differential equation...
BUG: Relax mstats kurtosis test tolerance by a few ulp
ConvexHull should raise ValueError for NaNs.

MAINT: update decorators.py module to version 4.0.5

BUG: imsave searches for wrong channel axis if image has 3 or...
BLD: add numpy to setup/install_requires for OS X wheels

ENH: return Jacobian/Hessian from BasinHopping

BUG: fix ttest zero division handling

Fix crash on kmeans2

: MAINT: Expose parallel build option to runtests.py
#5494
#5496:
#5497:
#5498:
#5500:
#5505:

Sort OptimizeResult.__repr__ by key

DOC: update the author name mapping

Enhancement to binned_statistic: option to unraveled returned...
BUG: sparse: fix a bug in sparsetools input dtype resolution

DOC: detect unprintable characters in docstrings

BUG: misc: Ensure fromimage converts mode ‘P’ to ‘RGB’ or ‘RGBA’.
DOC: further update the release notes

ENH: optionally disable fixed-point acceleration

DOC: Improvements and additions to the matrix_normal doc
Remove wrappers for LAPACK deprecated routines

TST: skip a linalg.orth memory test on 32-bit platforms.

DOC: change a few floats to integers in docstring examples

DOC: more updates to 0.17.0 release notes.

Fix to minor typo in documentation for scipy.integrate.ode

TST: bump arccosh tolerance to allow for inaccurate numpy or...
DOC: signal: minor clarification to docstring of TransferFunction.
DOC: signal: fix find_peaks_cwt documentation

MAINT: Fix typo in linalg/basic.py

TST: mark TestEig.test_singular as knownfail in master.

MAINT: work around Istsq driver selection issue

BUG: Fixed broken dogbox trust-region radius update

BUG: eliminate warnings, exception (on Win) in test_maskandscale;. ..
TST: a few cleanups in the test suite; run_module_suite and clearer...
MAINT: simplify poisson’s _argcheck

TST: bump GMean test tolerance to make it pass on Wine

136

Chapter 3.

Release Notes

https://github.com/scipy/scipy/pull/5446
https://github.com/scipy/scipy/pull/5459
https://github.com/scipy/scipy/pull/5465
https://github.com/scipy/scipy/pull/5471
https://github.com/scipy/scipy/pull/5473
https://github.com/scipy/scipy/pull/5476
https://github.com/scipy/scipy/pull/5477
https://github.com/scipy/scipy/pull/5479
https://github.com/scipy/scipy/pull/5484
https://github.com/scipy/scipy/pull/5486
https://github.com/scipy/scipy/pull/5491
https://github.com/scipy/scipy/pull/5494
https://github.com/scipy/scipy/pull/5496
https://github.com/scipy/scipy/pull/5497
https://github.com/scipy/scipy/pull/5498
https://github.com/scipy/scipy/pull/5500
https://github.com/scipy/scipy/pull/5505
https://github.com/scipy/scipy/pull/5514
https://github.com/scipy/scipy/pull/5515
https://github.com/scipy/scipy/pull/5517
https://github.com/scipy/scipy/pull/5518
https://github.com/scipy/scipy/pull/5521
https://github.com/scipy/scipy/pull/5523
https://github.com/scipy/scipy/pull/5524
https://github.com/scipy/scipy/pull/5525
https://github.com/scipy/scipy/pull/5527
https://github.com/scipy/scipy/pull/5535
https://github.com/scipy/scipy/pull/5538
https://github.com/scipy/scipy/pull/5545
https://github.com/scipy/scipy/pull/5547
https://github.com/scipy/scipy/pull/5550
https://github.com/scipy/scipy/pull/5556
https://github.com/scipy/scipy/pull/5561
https://github.com/scipy/scipy/pull/5567
https://github.com/scipy/scipy/pull/5568
https://github.com/scipy/scipy/pull/5569

SciPy Reference Guide, Release 1.3.2

o #5572:
e #5573:
e #5576:
e #5579:
o #5582:
o #5583:
o #5588:
e #5595:
e #5600:
o #5602:
o #5605:
o #5614
o #5624:
o #5625:
o #5635:
o #5642:
o #5643:
o #5661:
o #5682:
* #5696:
e #5697:
o #5720:
o #5722:
o #5726:
o #5727:

TST: Istsq: bump test tolerance for TravisCI

TST: remove use of np.fromfile from cluster.vq tests

Lapack deprecations

TST: skip tests of linalg.norm axis keyword on numpy <= 1.7.x
Clarify language of survival function documentation

MAINT: stats/tests: A bit of clean up.

DOC: stats: Add a note that stats.burr is the Type III Burr distribution.

TST: fix test_lamch failures on Python 3

MAINT: Ignore spatial/ckdtree.cxx and .h

Explicitly numbered replacement fields for maintainability
MAINT: collection of small fixes to test suite

Minor doc change.

FIX: Fix interpolate

BUG: msvc9 binaries crash when indexing std::vector of size 0
BUG: misspelled __dealloc__ in cKDTree.

STY: minor fixup of formatting of 0.17.0 release notes.

BLD: fix a build issue in special/Faddeeva.cc with isnan.

TST: linalg tests used stdlib random instead of numpy.random.
backports for 0.17.0

Minor improvements to least_squares’ docstring.

BLD: fix for isnan/isinf issues in special/Faddeeva.cc

TST: fix for file opening error in fftpack test_import.py

BUG: Make curve_fit respect an initial guess with bounds
Backports for v0.17.0rc2

API: Changes to least_squares API

3.15 SciPy 0.16.1 Release Notes

SciPy 0.16.1 is a bug-fix release with no new features compared to 0.16.0.

3.15.1 Issues closed for 0.16.1

o #5077:
e #5127:
e #5149:
o #5154:
e #5173:

cKDTree not indexing properly for arrays with too many elements
Regression in 0.16.0: solve_banded errors out in patsy test suite
linalg tests apparently cause python to crash with numpy 1.10.0b1
0.16.0 fails to build on OS X; can’t find Python.h

failing stats.histogram test with numpy 1.10

3.15. SciPy 0.16.1 Release Notes

137

https://github.com/scipy/scipy/pull/5572
https://github.com/scipy/scipy/pull/5573
https://github.com/scipy/scipy/pull/5576
https://github.com/scipy/scipy/pull/5579
https://github.com/scipy/scipy/pull/5582
https://github.com/scipy/scipy/pull/5583
https://github.com/scipy/scipy/pull/5588
https://github.com/scipy/scipy/pull/5595
https://github.com/scipy/scipy/pull/5600
https://github.com/scipy/scipy/pull/5602
https://github.com/scipy/scipy/pull/5605
https://github.com/scipy/scipy/pull/5614
https://github.com/scipy/scipy/pull/5624
https://github.com/scipy/scipy/pull/5625
https://github.com/scipy/scipy/pull/5635
https://github.com/scipy/scipy/pull/5642
https://github.com/scipy/scipy/pull/5643
https://github.com/scipy/scipy/pull/5661
https://github.com/scipy/scipy/pull/5682
https://github.com/scipy/scipy/pull/5696
https://github.com/scipy/scipy/pull/5697
https://github.com/scipy/scipy/pull/5720
https://github.com/scipy/scipy/pull/5722
https://github.com/scipy/scipy/pull/5726
https://github.com/scipy/scipy/pull/5727
https://github.com/scipy/scipy/issues/5077
https://github.com/scipy/scipy/issues/5127
https://github.com/scipy/scipy/issues/5149
https://github.com/scipy/scipy/issues/5154
https://github.com/scipy/scipy/issues/5173

SciPy Reference Guide, Release 1.3.2

e #5191: Scipy 0.16.x - TypeError: _asarray_validated() got an unexpected...
e #5195: tarballs missing documentation source

» #5363: FAIL: test_orthogonal.test_j_roots, test_orthogonal.test_js_roots

3.15.2 Pull requests for 0.16.1

» #5088: BUG: fix logic error in cKDTree.sparse_distance_matrix

» #5089: BUG: Don’t overwrite b in lfilter’s FIR path

 #5128: BUG: solve_banded failed when solving 1x1 systems

e #5155: BLD: fix missing Python include for Homebrew builds.

e #5192: BUG: backport as_inexact kwarg to _asarray_validated

» #5203: BUG: fix uninitialized use in lartg 0.16 backport

e #5204: BUG: properly return error to fortran from ode_jacobian_function...
e #5207: TST: Fix TestCtypesQuad failure on Python 3.5 for Windows

e #5352: TST: sparse: silence warnings about boolean indexing

» #5355: MAINT: backports for 0.16.1 release

» #5356: REL: update Paver file to ensure sdist contents are OK for releases.

» #5382: 0.16.x backport: MAINT: work around a possible numpy ufunc loop...
e #5393: TST:special: bump tolerance levels for test_j_roots and test_js_roots

e #5417: MAINT: stats: move namedtuple creating outside function calls.

3.16 SciPy 0.16.0 Release Notes

Contents

* SciPy 0.16.0 Release Notes
— New features
* Benchmark suite
* scipy.linalg improvements
* scipy.signal improvements
* scilpy.sparse improvements
* scipy.spatial improvements
* scipy.stats improvements
* scipy.optimize improvements
— Deprecated features

— Backwards incompatible changes

— Other changes

138 Chapter 3. Release Notes

https://github.com/scipy/scipy/issues/5191
https://github.com/scipy/scipy/issues/5195
https://github.com/scipy/scipy/issues/5363
https://github.com/scipy/scipy/pull/5088
https://github.com/scipy/scipy/pull/5089
https://github.com/scipy/scipy/pull/5128
https://github.com/scipy/scipy/pull/5155
https://github.com/scipy/scipy/pull/5192
https://github.com/scipy/scipy/pull/5203
https://github.com/scipy/scipy/pull/5204
https://github.com/scipy/scipy/pull/5207
https://github.com/scipy/scipy/pull/5352
https://github.com/scipy/scipy/pull/5355
https://github.com/scipy/scipy/pull/5356
https://github.com/scipy/scipy/pull/5382
https://github.com/scipy/scipy/pull/5393
https://github.com/scipy/scipy/pull/5417

SciPy Reference Guide, Release 1.3.2

— Authors

« Issues closed for 0.16.0

« Pull requests for 0.16.0

SciPy 0.16.0 is the culmination of 7 months of hard work. It contains many new features, numerous bug-fixes, improved
test coverage and better documentation. There have been a number of deprecations and API changes in this release, which
are documented below. All users are encouraged to upgrade to this release, as there are a large number of bug-fixes and
optimizations. Moreover, our development attention will now shift to bug-fix releases on the 0.16.x branch, and on adding
new features on the master branch.

This release requires Python 2.6, 2.7 or 3.2-3.4 and NumPy 1.6.2 or greater.
Highlights of this release include:
¢ A Cython API for BLAS/LAPACK in scipy.linalg

¢ A new benchmark suite. It’s now straightforward to add new benchmarks, and they’re routinely included with
performance enhancement PRs.

* Support for the second order sections (SOS) format in scipy.signal.

3.16.1 New features

Benchmark suite

The benchmark suite has switched to using Airspeed Velocity for benchmarking. You can run the suite locally viapython
runtests.py —-bench. For more details, see benchmarks/README. rst.

scipy.linalg improvements

A full set of Cython wrappers for BLAS and LAPACK has been added in the modules scipy.linalg.
cython_blas and scipy.linalg.cython_lapack. In Cython, these wrappers can now be cimported from
their corresponding modules and used without linking directly against BLAS or LAPACK.

The functions scipy.linalg.qr delete, scipy.linalg.qr _insert and scipy.linalg.
gr_update for updating QR decompositions were added.

The function scipy.linalg.solve_circulant solves a linear system with a circulant coefficient matrix.
The function scipy.linalg.invpascal computes the inverse of a Pascal matrix.
The function scipy.linalg.solve_toeplit z,aLevinson-Durbin Toeplitz solver, was added.

Added wrapper for potentially useful LAPACK function *1asd4. It computes the square root of the i-th updated
eigenvalue of a positive symmetric rank-one modification to a positive diagonal matrix. See its LAPACK documentation
and unit tests for it to get more info.

Added two extra wrappers for LAPACK least-square solvers. Namely, they are *gelsd and *gelsy.
Wrappers for the LAPACK *1ange functions, which calculate various matrix norms, were added.

Wrappers for *gt sv and *pt sv, which solve A*X = B for tri-diagonal matrix A, were added.

3.16. SciPy 0.16.0 Release Notes 139

http://spacetelescope.github.io/asv/

SciPy Reference Guide, Release 1.3.2

scipy.signal improvements

Support for second order sections (SOS) as a format for IIR filters was added. The new functions are:
* scipy.signal.sosfilt
* scipy.signal.sosfilt_zi,
* scipy.signal.sos2tf
* scipy.signal.sosZzpk
* scipy.signal.tf2sos
* scipy.signal.zpkZsos.

Additionally, the filter design functions iirdesign, iirfilter, butter, chebyl, cheby2, ellip, and bessel can return the filter in
the SOS format.

The function scipy.signal.place_poles, which provides two methods to place poles for linear systems, was
added.

The option to use Gustafsson’s method for choosing the initial conditions of the forward and backward passes was added
to scipy.signal.filtfilt.

New classes TransferFunction, StateSpace and ZerosPolesGain were added. These classes are now re-
turned when instantiating scipy.signal. 1ti. Conversion between those classes can be done explicitly now.

An exponential (Poisson) window was added as scipy.signal.exponential, and a Tukey window was added as
scipy.signal.tukey.

The function for computing digital filter group delay was added as scipy.signal.group_delay.

The functionality for spectral analysis and spectral density estimation has been significantly improved: scipy.signal.
we 1 ch became ~8x faster and the functions scipy.signal.spectrogram, scipy.signal.coherence and
scipy.signal.csd (cross-spectral density) were added.

scipy.signal. lsimwas rewritten - all known issues are fixed, so this function can now be used instead of 1sim?2;
1simis orders of magnitude faster than 1sim?2 in most cases.

scipy.sparse improvements

The function scipy.sparse.norm, which computes sparse matrix norms, was added.

The function scipy. sparse.random, which allows to draw random variates from an arbitrary distribution, was
added.

scipy.spatial improvements

scipy.spatial.cKDTree has seen a major rewrite, which improved the performance of the query method sig-
nificantly, added support for parallel queries, pickling, and options that affect the tree layout. See pull request 4374 for
more details.

The function scipy. spatial.procrustes for Procrustes analysis (statistical shape analysis) was added.
scipy.stats improvements

The Wishart distribution and its inverse have been added, as scipy.stats.wishart and scipy.stats.
invwishart.

140 Chapter 3. Release Notes

SciPy Reference Guide, Release 1.3.2

The Exponentially Modified Normal distribution has been added as scipy.stats.exponnorm.
The Generalized Normal distribution has been added as scipy.stats.gennorm.

All distributions now contain a random_state property and allow specifying a specific numpy.random.
RandomState random number generator when generating random variates.

Many statistical tests and other scipy. stats functions that have multiple return values now return namedtuples.
See pull request 4709 for details.

scipy.optimize improvements

A new derivative-free method DF-SANE has been added to the nonlinear equation system solving function scipy.
optimize.root.

3.16.2 Deprecated features

scipy.stats.pdf_fromgamma is deprecated. This function was undocumented, untested and rarely used.
Statsmodels provides equivalent functionality with statsmodels.distributions.ExpandedNormal.
scipy.stats.fastsort is deprecated. This function is unnecessary, numpy . argsort can be used instead.

scipy.stats.signaltonoiseandscipy.stats.mstats.signaltonoise aredeprecated. These func-
tions did not belong in scipy.stats and are rarely used. See issue #609 for details.

scipy.stats.histogram?2 is deprecated. This function is unnecessary, numpy .histogram2d can be used
instead.

3.16.3 Backwards incompatible changes

The deprecated global optimizer scipy.optimize.anneal was removed.

The following deprecated modules have been removed: scipy.lib.blas, scipy.lib.lapack, scipy.
linalg.cblas, scipy.linalg.fblas, scipy.linalg.clapack, scipy.linalg.flapack. They
had been deprecated since Scipy 0.12.0, the functionality should be accessed as scipy.linalg.blasand scipy.
linalg.lapack.

The deprecated function scipy.special.all_mat has been removed.

The deprecated functions fprob, ksprob, zprob, randwcdf and randwppf have been removed from scipy.
stats.

3.16.4 Other changes

The version numbering for development builds has been updated to comply with PEP 440.

Building with python setup.py develop is now supported.

3.16.5 Authors

e @axiru +
¢ @endolith
 Elliott Sales de Andrade +

3.16. SciPy 0.16.0 Release Notes 141

SciPy Reference Guide, Release 1.3.2

Anne Archibald

Yoshiki Vazquez Baeza +

Sylvain Bellemare
Felix Berkenkamp +
Raoul Bourquin +
Matthew Brett

Per Brodtkorb
Christian Brueffer
Lars Buitinck
Evgeni Burovski
Steven Byrnes

CJ Carey

George Castillo +
Alex Conley +
Liam Damewood +
Rupak Das +
Abraham Escalante +
Matthias Feurer +
Eric Firing +

Clark Fitzgerald
Chad Fulton

André Gaul
Andreea Georgescu +
Christoph Gohlke
Andrey Golovizin +
Ralf Gommers

J.J. Green +

Alex Griffing

Alexander Grigorievskiy +

Hans Moritz Gunther +

Jonas Hahnfeld +
Charles Harris

Ian Henriksen
Andreas Hilboll
Asmund Hjulstad +

Jan Schliiter +

142

Chapter 3. Release Notes

SciPy Reference Guide, Release 1.3.2

Janko Slavi¢ +
Daniel Jensen +
Johannes Ballé +
Terry Jones +
Amato Kasahara +
Eric Larson

Denis Laxalde
Antony Lee

Gregory R. Lee
Perry Lee +

Loic Esteve

Martin Manns +
Eric Martin +

Matéj Kocidn +
Andreas Mayer +
Nikolay Mayorov +
Robert McGibbon +
Sturla Molden
Nicola Montecchio +
Eric Moore

Jamie Morton +
Nikolas Moya +
Maniteja Nandana +
Andrew Nelson

Joel Nothman
Aldrian Obaja
Regina Ongowarsito +
Paul Ortyl +

Pedro Lépez-Adeva Fernandez-Layos +
Stefan Peterson +
Irvin Probst +

Eric Quintero +
John David Reaver +
Juha Remes +
Thomas Robitaille

Clancy Rowley +

. SciPy 0.16.0 Release Notes 143

SciPy Reference Guide, Release 1.3.2

Tobias Schmidt +
Skipper Seabold
Aman Singh +

Eric Soroos
Valentine Svensson +
Julian Taylor

Aman Thakral +
Helmut Toplitzer +
Fukumu Tsutsumi +
Anastasiia Tsyplia +
Jacob Vanderplas
Pauli Virtanen
Matteo Visconti +
Warren Weckesser
Florian Wilhelm +
Nathan Woods
Haochen Wu +

Daan Wynen +

A total of 93 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
This list of names is automatically generated, and may not be fully complete.

Issues closed for 0.16.0

#1063: Implement a whishart distribution (Trac #536)

#1885: Rbf: floating point warnings - possible bug (Trac #1360)
#2020: Rbf default epsilon too large (Trac #1495)

#2325: extending distributions, hypergeom, to degenerate cases (Trac...
#3502: [ENH] linalg.hessenberg should use ORGHR for calc_q=True
#3603: Passing array as window into signal.resample() fails

#3675: Intermittent failures for signal.slepian on Windows

#3742: Pchipinterpolator inconvenient as ppoly

#3786: add procrustes?

#3798: scipy.io.savemat fails for empty dicts

#3975: Use RandomState in scipy.stats

#4022: savemat incorrectly saves logical arrays

#4028: scipy.stats.geom.logpmf(1,1) returns nan. The correct value is...

#4030: simplify scipy.stats.betaprime.cdf

144

. Release Notes

https://github.com/scipy/scipy/issues/1063
https://github.com/scipy/scipy/issues/1885
https://github.com/scipy/scipy/issues/2020
https://github.com/scipy/scipy/issues/2325
https://github.com/scipy/scipy/issues/3502
https://github.com/scipy/scipy/issues/3603
https://github.com/scipy/scipy/issues/3675
https://github.com/scipy/scipy/issues/3742
https://github.com/scipy/scipy/issues/3786
https://github.com/scipy/scipy/issues/3798
https://github.com/scipy/scipy/issues/3975
https://github.com/scipy/scipy/issues/4022
https://github.com/scipy/scipy/issues/4028
https://github.com/scipy/scipy/issues/4030

SciPy Reference Guide, Release 1.3.2

#4031:
#4033:
#4034:
#4035:
#4081:
#4100:
#4134:
#4204
#4206:
#4208:
#4217:
#4282:
#4301:
#4355:
#4391:
#4393:
#4408:
#4412:
#4428:
#4434:
#4438:
#4445:
#4467:
#4492:
#45006:
#4520:
#4521:
#4523:
#4526:
#4527:
#4550:
#4554
#4565:
#4569:
#4582:
#4585:

improve accuracy of scipy.stats.gompertz distribution for small...
improve accuracy of scipy.stats.lomax distribution for small...
improve accuracy of scipy.stats.rayleigh distribution for large...
improve accuracy of scipy.stats.truncexpon distribution for small...
Error when reading matlab file: buffer is too small for requested. ..
Why does qr(a, Iwork=0) not fail?

scipy.stats: rv_frozen has no expect() method

Please add docstring to scipy.optimize.RootResults

Wrap LAPACK tridiagonal solve routine gtsv

Empty sparse matrices written to MAT file cannot be read by MATLAB
use a TravisCI configuration with numpy built with NPY_RELAXED_STRIDES_CHECKING=1
integrate.odeint raises an exception when full_output=1 and the...
scipy and numpy version names do not follow pep 440
PPoly.antiderivative() produces incorrect output

spsolve becomes extremely slow with large b matrix

Documentation glitsch in sparse.linalg.spilu

Vector-valued constraints in minimize() et al

Documentation of scipy.signal.cwt error

dok.__setitem__ problem with negative indices

Incomplete documentation for sparse.linalg.spsolve

linprog() documentation example wrong

Typo in scipy.special.expit doc

Documentation Error in scipy.optimize options for TNC
solve_toeplitz benchmark is bitrotting already

lobpcg/sparse performance regression Jun 20147

g77_abi_wrappers needed on Linux for MKL as well

Broken check in uses_mkl for newer versions of the library

rbf with gaussian kernel seems to produce more noise than original...
error in site documentation for poisson.pmf() method

KDTree example doesn’t work in Python 3
scipy.stats.mode - UnboundLocalError on empty sequence
filter out convergence warnings in optimization tests

odeint messages

remez: “ValueError: Failure to converge after 25 iterations....

DOC: optimize: _minimize_scalar_brent does not have a disp option

DOC: Erroneous latex-related characters in tutorial.

3.16

. SciPy 0.16.0 Release Notes

145

https://github.com/scipy/scipy/issues/4031
https://github.com/scipy/scipy/issues/4033
https://github.com/scipy/scipy/issues/4034
https://github.com/scipy/scipy/issues/4035
https://github.com/scipy/scipy/issues/4081
https://github.com/scipy/scipy/issues/4100
https://github.com/scipy/scipy/issues/4134
https://github.com/scipy/scipy/issues/4204
https://github.com/scipy/scipy/issues/4206
https://github.com/scipy/scipy/issues/4208
https://github.com/scipy/scipy/issues/4217
https://github.com/scipy/scipy/issues/4282
https://github.com/scipy/scipy/issues/4301
https://github.com/scipy/scipy/issues/4355
https://github.com/scipy/scipy/issues/4391
https://github.com/scipy/scipy/issues/4393
https://github.com/scipy/scipy/issues/4408
https://github.com/scipy/scipy/issues/4412
https://github.com/scipy/scipy/issues/4428
https://github.com/scipy/scipy/issues/4434
https://github.com/scipy/scipy/issues/4438
https://github.com/scipy/scipy/issues/4445
https://github.com/scipy/scipy/issues/4467
https://github.com/scipy/scipy/issues/4492
https://github.com/scipy/scipy/issues/4506
https://github.com/scipy/scipy/issues/4520
https://github.com/scipy/scipy/issues/4521
https://github.com/scipy/scipy/issues/4523
https://github.com/scipy/scipy/issues/4526
https://github.com/scipy/scipy/issues/4527
https://github.com/scipy/scipy/issues/4550
https://github.com/scipy/scipy/issues/4554
https://github.com/scipy/scipy/issues/4565
https://github.com/scipy/scipy/issues/4569
https://github.com/scipy/scipy/issues/4582
https://github.com/scipy/scipy/issues/4585

SciPy Reference Guide, Release 1.3.2

#4590:
#4594
#4596:
#4599:
#4612:
#4613:
#4673:
#4681:
#4705:
#4719:
#4724
#4726:
#4734:
#4736:
#4746:
#4757:
#4774
#4779:
#4788:
#4791:

sparse.linalg.svds should throw an exception if which not in...
scipy.optimize.linprog IndexError when a callback is providen
scipy.linalg.block_diag misbehavior with empty array inputs (v0.13.3)
scipy.integrate.nquad should call _OptFunc when called with only...
Crash in signal.Ifilter on nd input with wrong shaped zi
scipy.io.readsav error on reading sav file
scipy.interpolate.RectBivariateSpline construction locks PyQt...
Broadcasting in signal.lfilter still not quite right.

kmeans k_or_guess parameter error if guess is not square array
Build failure on 14.04.2

GenGamma _munp function fails due to overflow

FAIL: test_cobyla.test_vector_constraints

Failing tests in stats with numpy master.

gr_update bug or incompatibility with numpy 1.10?

linprog returns solution violating equality constraint
optimize.leastsq docstring mismatch

Update contributor list for v0.16

circmean and others do not appear in the documentation

problems with scipy sparse linalg isolve iterative.py when complex

BUG: scipy.spatial: incremental Voronoi doesn’t increase size...

Pull requests for 0.16.0

#3116:
#3157:
#3442:
#3679:
#3680:
#3717:
#3741:
#3956:
#3980:
#3996:
#4001:
#4012:
#4021:
#4089:

sparse: enhancements for DIA format

ENH: linalg: add the function ‘solve_circulant’ for solving a...
ENH: signal: Add Gustafsson’s method as an option for the filtfilt...
WIP: fix sporadic slepian failures

Some cleanups in stats

ENH: Add second-order sections filtering

Dltisys changes

add note to scipy.signal.resample about prime sample numbers
Add check_finite flag to UnivariateSpline

MAINT: stricter linalg argument checking

BUG: numerical precision in dirichlet

ENH: linalg: Add a function to compute the inverse of a Pascal...
ENH: Cython api for lapack and blas

Fixes for various PEPS issues.

146

Chapter 3.

Release Notes

https://github.com/scipy/scipy/issues/4590
https://github.com/scipy/scipy/issues/4594
https://github.com/scipy/scipy/issues/4596
https://github.com/scipy/scipy/issues/4599
https://github.com/scipy/scipy/issues/4612
https://github.com/scipy/scipy/issues/4613
https://github.com/scipy/scipy/issues/4673
https://github.com/scipy/scipy/issues/4681
https://github.com/scipy/scipy/issues/4705
https://github.com/scipy/scipy/issues/4719
https://github.com/scipy/scipy/issues/4724
https://github.com/scipy/scipy/issues/4726
https://github.com/scipy/scipy/issues/4734
https://github.com/scipy/scipy/issues/4736
https://github.com/scipy/scipy/issues/4746
https://github.com/scipy/scipy/issues/4757
https://github.com/scipy/scipy/issues/4774
https://github.com/scipy/scipy/issues/4779
https://github.com/scipy/scipy/issues/4788
https://github.com/scipy/scipy/issues/4791
https://github.com/scipy/scipy/pull/3116
https://github.com/scipy/scipy/pull/3157
https://github.com/scipy/scipy/pull/3442
https://github.com/scipy/scipy/pull/3679
https://github.com/scipy/scipy/pull/3680
https://github.com/scipy/scipy/pull/3717
https://github.com/scipy/scipy/pull/3741
https://github.com/scipy/scipy/pull/3956
https://github.com/scipy/scipy/pull/3980
https://github.com/scipy/scipy/pull/3996
https://github.com/scipy/scipy/pull/4001
https://github.com/scipy/scipy/pull/4012
https://github.com/scipy/scipy/pull/4021
https://github.com/scipy/scipy/pull/4089

SciPy Reference Guide, Release 1.3.2

#4116:
#4129:
#4135:
#4195:
#4200:
#4202:
#4205:
#4211
#4212:
#4213:
#4215
#4219:
#4223:
#4226:
#4228:
#4232:
#4242:
#4245:
#4246:
#4247:
#4249:
#4250:
#4252:
#4253:
#4254
#4255:
#4256:
#4258:
#4261:
#4262:
#4263:
#4266:
#4268:
#4269:
#4272:
#4276:

MAINT: fitpack: trim down compiler warnings (unused labels, variables)
ENH: stats: add a random_state property to distributions

ENH: Add Wishart and inverse Wishart distributions

improve the interpolate docs

ENH: Add t-test from descriptive stats function.

Dendrogram threshold color

BLD: fix a number of Bento build warnings.

: add an ufunc for the inverse Box-Cox transfrom

MRG:fix for gh-4208
ENH: specific warning if matlab file is empty

: Issue #4209: splprep documentation updated to reflect dimensional. ..

DOC: silence several Sphinx warnings when building the docs
MAINT: remove two redundant lines of code

try forcing the numpy rebuild with relaxed strides

BLD: some updates to Bento config files and docs. Closes gh-3978.
wrong references in the docs

DOC: change example sample spacing

Arff fixes

MAINT: C fixes

MAINT: remove some unused code

Add routines for updating QR decompositions

MAINT: Some pyflakes-driven cleanup in linalg and sparse
MAINT trim away >10 kLOC of generated C code

TST: stop shadowing ellip* tests vs boost data

MAINT: special: use NPY_PI, not M_PI

DOC: INSTALL: use Py3-compatible print syntax, and don’t mention...
ENH: spatial: reimplement cdist_cosine using np.dot

BUG: io.arff #4429 #2088

MAINT: signal: PEP8 and related style clean up.

BUG: newton_krylov() was ignoring norm_tol argument, closes #4259
MAINT: clean up test noise and optimize tests for docstrings...
MAINT: io: Give an informative error when attempting to read. ..
MAINT: fftpack benchmark integer division vs true division
MAINT: avoid shadowing the eigvals function

BUG: sparse: Fix bench_sparse.py

DOC: remove confusing parts of the documentation related to writing. ..

3.16

. SciPy 0.16.0 Release Notes

147

https://github.com/scipy/scipy/pull/4116
https://github.com/scipy/scipy/pull/4129
https://github.com/scipy/scipy/pull/4135
https://github.com/scipy/scipy/pull/4195
https://github.com/scipy/scipy/pull/4200
https://github.com/scipy/scipy/pull/4202
https://github.com/scipy/scipy/pull/4205
https://github.com/scipy/scipy/pull/4211
https://github.com/scipy/scipy/pull/4212
https://github.com/scipy/scipy/pull/4213
https://github.com/scipy/scipy/pull/4215
https://github.com/scipy/scipy/pull/4219
https://github.com/scipy/scipy/pull/4223
https://github.com/scipy/scipy/pull/4226
https://github.com/scipy/scipy/pull/4228
https://github.com/scipy/scipy/pull/4232
https://github.com/scipy/scipy/pull/4242
https://github.com/scipy/scipy/pull/4245
https://github.com/scipy/scipy/pull/4246
https://github.com/scipy/scipy/pull/4247
https://github.com/scipy/scipy/pull/4249
https://github.com/scipy/scipy/pull/4250
https://github.com/scipy/scipy/pull/4252
https://github.com/scipy/scipy/pull/4253
https://github.com/scipy/scipy/pull/4254
https://github.com/scipy/scipy/pull/4255
https://github.com/scipy/scipy/pull/4256
https://github.com/scipy/scipy/pull/4258
https://github.com/scipy/scipy/pull/4261
https://github.com/scipy/scipy/pull/4262
https://github.com/scipy/scipy/pull/4263
https://github.com/scipy/scipy/pull/4266
https://github.com/scipy/scipy/pull/4268
https://github.com/scipy/scipy/pull/4269
https://github.com/scipy/scipy/pull/4272
https://github.com/scipy/scipy/pull/4276

SciPy Reference Guide, Release 1.3.2

#4281:
#4284:
#4286:
#4287:
#4291:
#4292:
#4293:
#4295:
#4296:
#4302:
#4306:
#4307:
#4310:
#4311:
#4313:
#4315:
#4318:
#4319:
#4320:
#4321:
#4322:
#4323:
#4324
#4326:
#43209:
#4330:
#4333:
#4338:
#4339:
#4340:
#4344:
#4345:
#4347:
#4349:
#4350:
#4351:

Sparse matrix multiplication: only convert array if needed (with...
BUG: integrate: odeint crashed when the integration time was. ..

MRG: fix matlab output type of logical array

DEP: deprecate stats.pdf_fromgamma. Closes gh-699.

DOC: linalg: fix layout in cholesky_banded docstring

BUG: allow empty dict as proxy for empty struct

MAINT: != -> not_equal in hamming distance implementation

Pole placement

MAINT: some cleanups in tests of several modules

ENH: Solve toeplitz linear systems

Add benchmark for conjugate gradient solver.

BLD: PEP 440

BUG: make stats.geom.logpmf(1,1) return 0.0 instead of nan

TST: restore a test that uses slogdet now that we have dropped. ..

Some minor fixes for stats.wishart addition.

MAINT: drop numpy 1.5 compatibility code in sparse matrix tests
ENH: Add random_ state to multivariate distributions

MAINT: fix hamming distance regression for exotic arrays, with. ..
TST: a few changes like self.assertTrue(x ==y, message) -> assert_equal(x,...
TST: more changes like self.assertTrue(x ==y, message) -> assert_equal(Xx,...
TST: in test_signaltools, changes like self.assertTrue(x ==y,...
MAINT: clean up benchmarks so they can all be run as single files.
Add more detailed committer guidelines, update MAINTAINERS.txt
TST: use numpy.testing in test_hierarchy.py

MAINT: stats: rename check_random_state test function

Update distance tests

MAINT: import comb, factorial from scipy.special, not scipy.misc
TST: more conversions from nose to numpy.testing

MAINT: remove the deprecated all_mat function from special_matrices.py
add several features to frozen distributions

BUG: Fix/test invalid Iwork param in qr

Fix test noise visible with Python 3.x

Remove deprecated blas/lapack imports, rename lib to _lib

DOC: add a nontrivial example to stats.binned_statistic.

MAINT: remove optimize.anneal for 0.16.0 (was deprecated in 0.14.0).
MAINT: fix usage of deprecated Numpy C API in optimize...

148

Chapter 3.

Release Notes

https://github.com/scipy/scipy/pull/4281
https://github.com/scipy/scipy/pull/4284
https://github.com/scipy/scipy/pull/4286
https://github.com/scipy/scipy/pull/4287
https://github.com/scipy/scipy/pull/4291
https://github.com/scipy/scipy/pull/4292
https://github.com/scipy/scipy/pull/4293
https://github.com/scipy/scipy/pull/4295
https://github.com/scipy/scipy/pull/4296
https://github.com/scipy/scipy/pull/4302
https://github.com/scipy/scipy/pull/4306
https://github.com/scipy/scipy/pull/4307
https://github.com/scipy/scipy/pull/4310
https://github.com/scipy/scipy/pull/4311
https://github.com/scipy/scipy/pull/4313
https://github.com/scipy/scipy/pull/4315
https://github.com/scipy/scipy/pull/4318
https://github.com/scipy/scipy/pull/4319
https://github.com/scipy/scipy/pull/4320
https://github.com/scipy/scipy/pull/4321
https://github.com/scipy/scipy/pull/4322
https://github.com/scipy/scipy/pull/4323
https://github.com/scipy/scipy/pull/4324
https://github.com/scipy/scipy/pull/4326
https://github.com/scipy/scipy/pull/4329
https://github.com/scipy/scipy/pull/4330
https://github.com/scipy/scipy/pull/4333
https://github.com/scipy/scipy/pull/4338
https://github.com/scipy/scipy/pull/4339
https://github.com/scipy/scipy/pull/4340
https://github.com/scipy/scipy/pull/4344
https://github.com/scipy/scipy/pull/4345
https://github.com/scipy/scipy/pull/4347
https://github.com/scipy/scipy/pull/4349
https://github.com/scipy/scipy/pull/4350
https://github.com/scipy/scipy/pull/4351

SciPy Reference Guide, Release 1.3.2

#4352:
#4353:
#4357:
#4358:
#4359:
#4360:
#4362:
#4363:
#4364:

#4365

#4367:
#4373:
#4374:
#4376:
#4377:
#4378:
#4380:
#4381:
#4392:
#4394
#4396:
#4398:
#4402:
#4404
#4405:
#4407:
#4414
#4415:
#4416:
#4419:
#4420:
#4423:
#4424
#4425:
#4426:
#4427:

MAINT: fix a number of special test failures

implement cdf for betaprime distribution

BUG: piecewise polynomial antiderivative

BUG: integrate: fix handling of banded Jacobians in odeint, plus...

MAINT: remove a code path taken for Python version < 2.5

MAINT: stats.mstats: Remove some unused variables (thanks, pyflakes).

Removed erroneous reference to smoothing parameter #4072
MAINT: interpolate: clean up in fitpack.py
MAINT: lib: don’t export “partial” from decorator

: svdvals now returns a length-0 sequence of singular values given...

DOC: slightly improve TeX rendering of wishart/invwishart docstring
ENH: wrap gtsv and ptsv for solve_banded and solveh_banded.

ENH: Enhancements to spatial.cKDTree

BF: fix reading off-spec matlab logical sparse

MAINT: integrate: Clean up some Fortran test code.

MAINT: fix usage of deprecated Numpy C API in signal

MAINT: scipy.optimize, removing further anneal references

ENH: Make DCT and DST accept int and complex types like fft
ENH: optimize: add DF-SANE nonlinear derivative-free solver

Make reordering algorithms 64-bit clean

BUG: bundle cblas.h in Accelerate ABI wrappers to enable compilation...

FIX pdist bug where wminkowski’s w.dtype != double

BUG: fix stat.hypergeom argcheck

MAINT: Fill in the full symmetric squareform in the C loop
BUG: avoid X += X.T (refs #4401)

improved accuracy of gompertz distribution for small x

DOC:fix error in scipy.signal.cwt documentation.

ENH: Improve accuracy of lomax for small x.

DOC: correct a parameter name in docstring of SuperLU.solve....
Restore scipy.linalg.calc_lwork also in master

fix a performance issue with a sparse solver

ENH: improve rayleigh accuracy for large x.

BUG: optimize.minimize: fix overflow issue with integer x0 input.
ENH: Improve accuracy of truncexpon for small x

ENH: improve rayleigh accuracy for large x.

MAINT: optimize: cleanup of TNC code

3.16

. SciPy 0.16.0 Release Notes

149

https://github.com/scipy/scipy/pull/4352
https://github.com/scipy/scipy/pull/4353
https://github.com/scipy/scipy/pull/4357
https://github.com/scipy/scipy/pull/4358
https://github.com/scipy/scipy/pull/4359
https://github.com/scipy/scipy/pull/4360
https://github.com/scipy/scipy/pull/4362
https://github.com/scipy/scipy/pull/4363
https://github.com/scipy/scipy/pull/4364
https://github.com/scipy/scipy/pull/4365
https://github.com/scipy/scipy/pull/4367
https://github.com/scipy/scipy/pull/4373
https://github.com/scipy/scipy/pull/4374
https://github.com/scipy/scipy/pull/4376
https://github.com/scipy/scipy/pull/4377
https://github.com/scipy/scipy/pull/4378
https://github.com/scipy/scipy/pull/4380
https://github.com/scipy/scipy/pull/4381
https://github.com/scipy/scipy/pull/4392
https://github.com/scipy/scipy/pull/4394
https://github.com/scipy/scipy/pull/4396
https://github.com/scipy/scipy/pull/4398
https://github.com/scipy/scipy/pull/4402
https://github.com/scipy/scipy/pull/4404
https://github.com/scipy/scipy/pull/4405
https://github.com/scipy/scipy/pull/4407
https://github.com/scipy/scipy/pull/4414
https://github.com/scipy/scipy/pull/4415
https://github.com/scipy/scipy/pull/4416
https://github.com/scipy/scipy/pull/4419
https://github.com/scipy/scipy/pull/4420
https://github.com/scipy/scipy/pull/4423
https://github.com/scipy/scipy/pull/4424
https://github.com/scipy/scipy/pull/4425
https://github.com/scipy/scipy/pull/4426
https://github.com/scipy/scipy/pull/4427

SciPy Reference Guide, Release 1.3.2

#4429:
#4430:
#4433:
#4435:
#4436:
#4439:
#4440:
#4442:
#4447:
#4448:
#4449:
#4451:
#4456:
#4461:
#4462:
#4470:
#4473:
#4475:
#4481:
#4485:
#4490:
#4491
#4493:
#4494:
#4496:
#4499:
#4501:
#4502:
#4503:
#4504

#4505

#4507:
#4509:
#4511:
#4512:
#4525:

BLD: fix build failure with numpy 1.7.x and 1.8.x.

BUG: fix a sparse.dok_matrix set/get copy-paste bug

Update _minimize.py

ENH: release GIL around batch distance computations

Fixed incomplete documentation for spsolve

MAINT: integrate: Some clean up in the tests.

Fast permutation t-test

DOC: optimize: fix wrong result in docstring

DOC: signal: Some additional documentation to go along with the...
DOC: tweak the docstring of lapack.linalg module

fix a typo in the expit docstring

ENH: vectorize distance loops with gcc

MAINT: don’t fail large data tests on MemoryError

CI: use travis_retry to deal with network timeouts

DOC: rationalize minimize() et al. documentation

MAINT: sparse: inherit dok_matrix.toarray from spmatrix

BUG: signal: Fix validation of the zi shape in sosfilt.

BLD: setup.py: update min numpy version and support “setup.py...
ENH: add a new linalg special matrix: the Helmert matrix

MRG: some changes to allow reading bad mat files

[ENH] linalg.hessenberg: use orghr - rebase

ENH: linalg: Adding wrapper for potentially useful LAPACK function...
BENCH: the solve_toeplitz benchmark used outdated syntax and...
MAINT: stats: remove duplicated code

References added for watershed_ift algorithm

DOC: reshuffle stats distributions documentation

Replace benchmark suite with airspeed velocity

SLSQP should strictly satisfy bound constraints

DOC: forward port 0.15.x release notes and update author name. ..

ENH: option to avoid computing possibly unused svd matrix

: Rebase of PR 3303 (sparse matrix norms)

MAINT: fix lobpcg performance regression

DOC: sparse: replace dead link

Fixed differential evolution bug

Change to fully PEP440 compliant dev version numbers (always. ..

made tiny style corrections (pep8)

150

Chapter 3.

Release Notes

https://github.com/scipy/scipy/pull/4429
https://github.com/scipy/scipy/pull/4430
https://github.com/scipy/scipy/pull/4433
https://github.com/scipy/scipy/pull/4435
https://github.com/scipy/scipy/pull/4436
https://github.com/scipy/scipy/pull/4439
https://github.com/scipy/scipy/pull/4440
https://github.com/scipy/scipy/pull/4442
https://github.com/scipy/scipy/pull/4447
https://github.com/scipy/scipy/pull/4448
https://github.com/scipy/scipy/pull/4449
https://github.com/scipy/scipy/pull/4451
https://github.com/scipy/scipy/pull/4456
https://github.com/scipy/scipy/pull/4461
https://github.com/scipy/scipy/pull/4462
https://github.com/scipy/scipy/pull/4470
https://github.com/scipy/scipy/pull/4473
https://github.com/scipy/scipy/pull/4475
https://github.com/scipy/scipy/pull/4481
https://github.com/scipy/scipy/pull/4485
https://github.com/scipy/scipy/pull/4490
https://github.com/scipy/scipy/pull/4491
https://github.com/scipy/scipy/pull/4493
https://github.com/scipy/scipy/pull/4494
https://github.com/scipy/scipy/pull/4496
https://github.com/scipy/scipy/pull/4499
https://github.com/scipy/scipy/pull/4501
https://github.com/scipy/scipy/pull/4502
https://github.com/scipy/scipy/pull/4503
https://github.com/scipy/scipy/pull/4504
https://github.com/scipy/scipy/pull/4505
https://github.com/scipy/scipy/pull/4507
https://github.com/scipy/scipy/pull/4509
https://github.com/scipy/scipy/pull/4511
https://github.com/scipy/scipy/pull/4512
https://github.com/scipy/scipy/pull/4525

SciPy Reference Guide, Release 1.3.2

#4533:
#4534
#4535:
#4536:
#4540:
#4541:
#4542:
#4543:
#4544
#4546:
#4549:
#4553:
#4556:
#4559:
#4563:
#4564
#45606:
#4570:
#4572:
#4576:
#4578:
#4581:
#4583:
#4584
#4587:
#4593:
#4595:
#4600:
#4603:
#4604
#4609:
#4610:
#4611:
#4614
#4617:
#4618:

Add exponentially modified gaussian distribution (scipy.stats.expongauss)
MAINT: benchmarks: make benchmark suite importable on all scipy...
BUG: Changed zip() to list(zip()) so that it could work in Python...
Follow up to pr 4348 (exponential window)

ENH: spatial: Add procrustes analysis

Bench fixes

TST: Numpy Version dev -> dev0

BUG: Overflow in savgol_coeffs

pep8 fixes for stats

MAINT: use reduction axis arguments in one-norm estimation
ENH : Added group_delay to scipy.signal

ENH: Significantly faster moment function

DOC: document the changes of the sparse.linalg.svds (optional. ..
DOC: stats: describe loc and scale parameters in the docstring. ..
ENH: rewrite of stats.ppcc_plot

Be more (or less) forgiving when user passes +-inf instead of ...
DEP: remove a bunch of deprecated function from scipy.stats,...
MNT: Suppress LineSearchWarning’s in scipy.optimize tests

ENH: Extract inverse hessian information from L-BFGS-B

ENH: Split signal.lti into subclasses, part of #2912

MNT: Reconcile docstrings and function signatures

Fix build with Intel MKL on Linux

DOC: optimize: remove references to unused disp kwarg

ENH: scipy.signal - Tukey window

Hermite asymptotic

DOC - add example to RegularGridInterpolator

DOC: Fix erroneous latex characters in tutorial/optimize.

Add return codes to optimize.tnc docs

ENH: Wrap LAPACK *1ange functions for matrix norms
scipy.stats: generalized normal distribution

MAINT: interpolate: fix a few inconsistencies between docstrings. ..
MAINT: make runtest.py —bench-compare use asv continuous and. ..
DOC: stats: explain rice scaling; add a note to the tutorial...

BUG: Ifilter, the size of zi was not checked correctly for nd...
MAINT: integrate: Clean the C code behind odeint.

FIX: Raise error when window length != data length

3.16

. SciPy 0.16.0 Release Notes

151

https://github.com/scipy/scipy/pull/4533
https://github.com/scipy/scipy/pull/4534
https://github.com/scipy/scipy/pull/4535
https://github.com/scipy/scipy/pull/4536
https://github.com/scipy/scipy/pull/4540
https://github.com/scipy/scipy/pull/4541
https://github.com/scipy/scipy/pull/4542
https://github.com/scipy/scipy/pull/4543
https://github.com/scipy/scipy/pull/4544
https://github.com/scipy/scipy/pull/4546
https://github.com/scipy/scipy/pull/4549
https://github.com/scipy/scipy/pull/4553
https://github.com/scipy/scipy/pull/4556
https://github.com/scipy/scipy/pull/4559
https://github.com/scipy/scipy/pull/4563
https://github.com/scipy/scipy/pull/4564
https://github.com/scipy/scipy/pull/4566
https://github.com/scipy/scipy/pull/4570
https://github.com/scipy/scipy/pull/4572
https://github.com/scipy/scipy/pull/4576
https://github.com/scipy/scipy/pull/4578
https://github.com/scipy/scipy/pull/4581
https://github.com/scipy/scipy/pull/4583
https://github.com/scipy/scipy/pull/4584
https://github.com/scipy/scipy/pull/4587
https://github.com/scipy/scipy/pull/4593
https://github.com/scipy/scipy/pull/4595
https://github.com/scipy/scipy/pull/4600
https://github.com/scipy/scipy/pull/4603
https://github.com/scipy/scipy/pull/4604
https://github.com/scipy/scipy/pull/4609
https://github.com/scipy/scipy/pull/4610
https://github.com/scipy/scipy/pull/4611
https://github.com/scipy/scipy/pull/4614
https://github.com/scipy/scipy/pull/4617
https://github.com/scipy/scipy/pull/4618

SciPy Reference Guide, Release 1.3.2

#4619:
#4620:
#4621:
#4623:
#4628:
#4629:
#4631:
#4633:
#4635:
#4637:
#4639:
#4642:
#4643:
#4646:
#4647:
#4648:
#4649:
#4650:
#4652:
#4653:
#4655
#4656:
#4660:
#4601:
#4662:
#4664
#4672:
#4675:
#4676:
#4679:
#4682:
#4684
#4685:
#4686:
#4688:
#4692:

Issue #4550: scipy.stats.mode - UnboundLocalError on empty...
Fixed a problem (#4590) with svds accepting wrong eigenvalue...
Speed up special.ai_zeros/bi_zeros by 10x

MAINT: some tweaks to spatial.procrustes (private file, html...

Speed up signal.lfilter and add a convolution path for FIR filters

Bug: integrate.nquad; resolve issue #4599

MAINT: integrate: Remove unused variables in a Fortran test function.
MAINT: Fix convergence message for remez

PEPS8: indentation (so that pep8 bot does not complain)

MAINT: generalize a sign function to do the right thing for complex...
Amended typo in apple_sgemv_fix.c

MAINT: use lapack for scipy.linalg.norm

RBF default epsilon too large 2020

Added atleast_1d around poly in invres and invresz

fix doc pdf build

BUG: Fixes #4408: Vector-valued constraints in minimize() et...
Vonmisesfix

Signal example clean up in Tukey and place_poles

DOC: Fix the error in convolve for same mode

improve erf performance

: DEP: deprecate scipy.stats.histogram?2 in favour of np.histogram2d

DEP: deprecate scipy.stats.signaltonoise

Avoid extra copy for sparse compressed [:, seq] and [seq, :]...
Clean, rebase of #4478, adding ?gelsy and ?gelsd wrappers
MAINT: Correct odeint messages

Update _monotone.py

fix behavior of scipy.linalg.block_diag for empty input

Fix Isim

Added missing colon to :math: directive in docstring.

ENH: sparse randn

ENH: scipy.signal - Addition of CSD, coherence; Enhancement of ...
BUG: various errors in weight calculations in orthogonal.py

BUG: Fixes #4594: optimize.linprog IndexError when a callback...
MAINT: cluster: Clean up duplicated exception raising code.
Improve is_distance_dm exception message

MAINT: stats: Simplify the calculation in tukeylambda._ppf

152

Chapter 3.

Release Notes

https://github.com/scipy/scipy/pull/4619
https://github.com/scipy/scipy/pull/4620
https://github.com/scipy/scipy/pull/4621
https://github.com/scipy/scipy/pull/4623
https://github.com/scipy/scipy/pull/4628
https://github.com/scipy/scipy/pull/4629
https://github.com/scipy/scipy/pull/4631
https://github.com/scipy/scipy/pull/4633
https://github.com/scipy/scipy/pull/4635
https://github.com/scipy/scipy/pull/4637
https://github.com/scipy/scipy/pull/4639
https://github.com/scipy/scipy/pull/4642
https://github.com/scipy/scipy/pull/4643
https://github.com/scipy/scipy/pull/4646
https://github.com/scipy/scipy/pull/4647
https://github.com/scipy/scipy/pull/4648
https://github.com/scipy/scipy/pull/4649
https://github.com/scipy/scipy/pull/4650
https://github.com/scipy/scipy/pull/4652
https://github.com/scipy/scipy/pull/4653
https://github.com/scipy/scipy/pull/4655
https://github.com/scipy/scipy/pull/4656
https://github.com/scipy/scipy/pull/4660
https://github.com/scipy/scipy/pull/4661
https://github.com/scipy/scipy/pull/4662
https://github.com/scipy/scipy/pull/4664
https://github.com/scipy/scipy/pull/4672
https://github.com/scipy/scipy/pull/4675
https://github.com/scipy/scipy/pull/4676
https://github.com/scipy/scipy/pull/4679
https://github.com/scipy/scipy/pull/4682
https://github.com/scipy/scipy/pull/4684
https://github.com/scipy/scipy/pull/4685
https://github.com/scipy/scipy/pull/4686
https://github.com/scipy/scipy/pull/4688
https://github.com/scipy/scipy/pull/4692

SciPy Reference Guide, Release 1.3.2

#4693:
#4694
#4696:
#4698:
#4701:
#4703:
#4706:
#4707:
#4709:
#4710:
#4711:
#4712:
#4713:
#4714
#4715:
#4716:
#4717:
#4718:
#4721:
#4722:

#4725

#47309:
#4740:
#4742:
#4750:
#4751:
#4753:
#4756:
#4758:
#4759:
#4760:
#4762:
#4763:

ENH: added functionality to handle scalars in stats._chk_asarray
Vectorization of Anderson-Darling computations.

Fix singleton expansion in Ifilter.

MAINT: quiet warnings from cephes.

add Bpoly.antiderivatives / integrals

Add citation of published paper

MAINT: special: avoid out-of-bounds access in specfun
MAINT: fix issues with np.matrix as input to functions related...
ENH: scipy. stats now returns namedtuples.

scipy.io.idl: make reader more robust to missing variables in...
Fix crash for unknown chunks at the end of file

Reduce onenormest memory usage

MAINT: interpolate: no need to pass dtype around if it can be...
BENCH: Add benchmarks for stats module

MAINT: polish signal.place_poles and signal/test_ltisys.py

DEP: deprecate mstats.signaltonoise ...

MAINT: basinhopping: fix error in tests, silence /0 warning,...
ENH: stats: can specify f-shapes to fix in fitting by name

Document that imresize converts the input to a PIL image

MAINT: PyArray_BASE is not an Ivalue unless the deprecated API...
: Fix gengamma _nump failure
#4728:
#4735:
#4738:

DOC: add poch to the list of scipy special function descriptions
MAINT: stats: avoid (a spurious) division-by-zero in skew

TST: silence runtime warnings for some corner cases in stats. ..
BLD: try to build numpy instead of using the one on TravisCI
DOC: Update some docstrings with ‘versionadded’.

BLD: make sure that relaxed strides checking is in effect on...
DOC: special: TeX typesetting of rel_entr, kl_div and pseudo_huber
BENCH: add sparse null slice benchmark

BUG: Fixed compilation with recent Cython versions.

BUG: Fixes #4733: optimize.brute finish option is not compatible...
DOC: optimize.leastsq default maxfev clarification

improved stats mle fit

MAINT: count bfgs updates more carefully

BUGS: Fixes #4746 and #4594: linprog returns solution violating. ..
fix small linprog bugs

3.16

. SciPy 0.16.0 Release Notes

153

https://github.com/scipy/scipy/pull/4693
https://github.com/scipy/scipy/pull/4694
https://github.com/scipy/scipy/pull/4696
https://github.com/scipy/scipy/pull/4698
https://github.com/scipy/scipy/pull/4701
https://github.com/scipy/scipy/pull/4703
https://github.com/scipy/scipy/pull/4706
https://github.com/scipy/scipy/pull/4707
https://github.com/scipy/scipy/pull/4709
https://github.com/scipy/scipy/pull/4710
https://github.com/scipy/scipy/pull/4711
https://github.com/scipy/scipy/pull/4712
https://github.com/scipy/scipy/pull/4713
https://github.com/scipy/scipy/pull/4714
https://github.com/scipy/scipy/pull/4715
https://github.com/scipy/scipy/pull/4716
https://github.com/scipy/scipy/pull/4717
https://github.com/scipy/scipy/pull/4718
https://github.com/scipy/scipy/pull/4721
https://github.com/scipy/scipy/pull/4722
https://github.com/scipy/scipy/pull/4725
https://github.com/scipy/scipy/pull/4728
https://github.com/scipy/scipy/pull/4735
https://github.com/scipy/scipy/pull/4738
https://github.com/scipy/scipy/pull/4739
https://github.com/scipy/scipy/pull/4740
https://github.com/scipy/scipy/pull/4742
https://github.com/scipy/scipy/pull/4750
https://github.com/scipy/scipy/pull/4751
https://github.com/scipy/scipy/pull/4753
https://github.com/scipy/scipy/pull/4756
https://github.com/scipy/scipy/pull/4758
https://github.com/scipy/scipy/pull/4759
https://github.com/scipy/scipy/pull/4760
https://github.com/scipy/scipy/pull/4762
https://github.com/scipy/scipy/pull/4763

SciPy Reference Guide, Release 1.3.2

o #4766:
o #4768:
o #4769:
e #4770:
o #4771:
o #4773:
o #4775:
o #4778:
o #4780:
o #4783:
o #4784:
o #4785:
o #4786:
o #4787:
o #4792:
o #4795:
o #4797:
o #4799:
e #4801:
o #4803:
o #4806:
e #4810:
o #4812:
o #4820:
o #4823:
o #4827:
o #4833:
o #4841:
o #4842:
o #4845:
o #4849:
o #4856:

BENCH: add signal.lsim benchmark

fix python syntax errors in docstring examples

Fixes #4726: test_cobyla.test_vector_constraints

Mark FITPACK functions as thread safe.

edited scipy/stats/stats.py to fix doctest for fisher_exact

DOC: update 0.16.0 release notes.

DOC: linalg: add funm_psd as a docstring example

Use a dictionary for function name synonyms

Include apparently-forgotten functions in docs

Added many missing special functions to docs

add an axis attribute to PPoly and friends

Brief note about origin of Lena image

DOC: reformat the Methods section of the KDE docstring

Add rice cdf and ppf.

CI: add a kludge for detecting test failures which try to disguise...
Make refguide_check smarter about false positives

BUG/TST: numpoints not updated for incremental Voronoi

BUG: spatial: Fix a couple edge cases for the Mahalanobis metric...
BUG: Fix TypeError in scipy.optimize._trust-region.py when disp=True.
Issues with relaxed strides in QR updating routines

MAINT: use an informed initial guess for cauchy fit

PEP8ify codata.py

BUG: Relaxed strides cleanup in decomp_update.pyx.in

BLD: update Bento build for sgemv fix and install cython blas/lapack...
ENH: scipy.signal - Addition of spectrogram function

DOC: add csd and coherence to __init__.py

BLD: fix issue in linalg * 1 ange wrappers for g77 builds.

TST: fix test failures in scipy.special with mingw32 due to test...
DOC: update site.cfg.example. Mostly taken over from Numpy
BUG: signal: Make spectrogram’s return values order match the...
DOC:Fix error in ode docstring example

BUG: fix typo causing memleak

3.17 SciPy 0.15.1 Release Notes

SciPy 0.15.1 is a bug-fix release with no new features compared to 0.15.0.

154

Chapter 3.

Release Notes

https://github.com/scipy/scipy/pull/4766
https://github.com/scipy/scipy/pull/4768
https://github.com/scipy/scipy/pull/4769
https://github.com/scipy/scipy/pull/4770
https://github.com/scipy/scipy/pull/4771
https://github.com/scipy/scipy/pull/4773
https://github.com/scipy/scipy/pull/4775
https://github.com/scipy/scipy/pull/4778
https://github.com/scipy/scipy/pull/4780
https://github.com/scipy/scipy/pull/4783
https://github.com/scipy/scipy/pull/4784
https://github.com/scipy/scipy/pull/4785
https://github.com/scipy/scipy/pull/4786
https://github.com/scipy/scipy/pull/4787
https://github.com/scipy/scipy/pull/4792
https://github.com/scipy/scipy/pull/4795
https://github.com/scipy/scipy/pull/4797
https://github.com/scipy/scipy/pull/4799
https://github.com/scipy/scipy/pull/4801
https://github.com/scipy/scipy/pull/4803
https://github.com/scipy/scipy/pull/4806
https://github.com/scipy/scipy/pull/4810
https://github.com/scipy/scipy/pull/4812
https://github.com/scipy/scipy/pull/4820
https://github.com/scipy/scipy/pull/4823
https://github.com/scipy/scipy/pull/4827
https://github.com/scipy/scipy/pull/4833
https://github.com/scipy/scipy/pull/4841
https://github.com/scipy/scipy/pull/4842
https://github.com/scipy/scipy/pull/4845
https://github.com/scipy/scipy/pull/4849
https://github.com/scipy/scipy/pull/4856

SciPy Reference Guide, Release 1.3.2

3.17.1 Issues fixed

o #4413: BUG: Tests too strict, f2py doesn’t have to overwrite this array
o #4417: BLD: avoid using NPY_API_VERSION to check not using deprecated. ..

e #4418: Restore and deprecate scipy.linalg.calc_work

3.18 SciPy 0.15.0 Release Notes

Contents

e SciPy 0.15.0 Release Notes

— New features
« Linear Programming Interface
« Differential evolution, a global optimizer
* scipy.signal improvements
* Scipy.lintegrate improvements
* scipy.linalgimprovements
* SCipy.sparse improvements
* scipy.special improvements
* Scipy.sparse.csgraph improvements
* scipy.stats improvements

— Deprecated features

— Backwards incompatible changes
* scipy.ndimage
* Scipy.integrate

— Authors

« [ssues closed

x Pull requests

SciPy 0.15.0 is the culmination of 6 months of hard work. It contains several new features, numerous bug-fixes, improved
test coverage and better documentation. There have been a number of deprecations and API changes in this release, which
are documented below. All users are encouraged to upgrade to this release, as there are a large number of bug-fixes and
optimizations. Moreover, our development attention will now shift to bug-fix releases on the 0.16.x branch, and on adding
new features on the master branch.

This release requires Python 2.6, 2.7 or 3.2-3.4 and NumPy 1.5.1 or greater.

3.18.1 New features

3.18. SciPy 0.15.0 Release Notes 155

https://github.com/scipy/scipy/pull/4413
https://github.com/scipy/scipy/pull/4417
https://github.com/scipy/scipy/pull/4418

SciPy Reference Guide, Release 1.3.2

Linear Programming Interface
The new function scipy.optimize.linprog provides a generic linear programming similar to the way scipy.
optimize.minimize provides a generic interface to nonlinear programming optimizers. Currently the only method

supported is simplex which provides a two-phase, dense-matrix-based simplex algorithm. Callbacks functions are sup-
ported, allowing the user to monitor the progress of the algorithm.

Differential evolution, a global optimizer
A new scipy.optimize.differential_evolution function has been added to the optimize module.
Differential Evolution is an algorithm used for finding the global minimum of multivariate functions. It is stochastic in

nature (does not use gradient methods), and can search large areas of candidate space, but often requires larger numbers
of function evaluations than conventional gradient based techniques.

scipy.signal improvements

The function scipy.signal.max_len_seqg was added, which computes a Maximum Length Sequence (MLS)
signal.

scipy.integrate improvements

It is now possible to use scipy. integrate routines to integrate multivariate ctypes functions, thus avoiding callbacks
to Python and providing better performance.

scipy.linalg improvements

The function scipy.linalg.orthogonal_procrustes for solving the procrustes linear algebra problem was
added.

BLAS level 2 functions her, syr, her2 and syr2 are now wrapped in scipy.linalg.
scipy.sparse improvements

scipy.sparse.linalg.svds cannow take a LinearOperator as its main input.

scipy.special improvements

Values of ellipsoidal harmonic (i.e. Lame) functions and associated normalization constants can be now computed using
ellip_harm,ellip_harm 2,andellip_normal.

New convenience functions entr, rel_entr k1_div, huber, and pseudo_huber were added.
scipy.sparse.csgraph improvements

Routines reverse_cuthill_mckee and maximum_bipartite_matching for computing reorderings of
sparse graphs were added.

156 Chapter 3. Release Notes

SciPy Reference Guide, Release 1.3.2

scipy.stats improvements

Added a Dirichlet multivariate distribution, scipy.stats.dirichlet.
The new function scipy.stats.median_test computes Mood’s median test.

The new function scipy.stats.combine_pvalues implements Fisher’s and Stouffer’s methods for combining
p-values.

scipy.stats.describe returns a namedtuple rather than a tuple, allowing users to access results by index or by
name.

3.18.2 Deprecated features

The scipy.weave module is deprecated. It was the only module never ported to Python 3.x, and is not recommended to be
used for new code - use Cython instead. In order to support existing code, scipy . weave has been packaged separately:
https://github.com/scipy/weave. It is a pure Python package, and can easily be installed with pip install weave.

scipy.special.bessel_diff_ formula is deprecated. It is a private function, and therefore will be removed
from the public API in a following release.

scipy.stats.nanmean, nanmedian and nanstd functions are deprecated in favor of their numpy equivalents.

3.18.3 Backwards incompatible changes
scipy.ndimage

The functions scipy.ndimage.minimum_positions, — scipy.ndimage.maximum_positions‘ and scipy.ndimage.
extrema return positions as ints instead of floats.

scipy.integrate

The format of banded Jacobians in scipy. integrate. ode solvers is changed. Note that the previous documentation
of this feature was erroneous.

3.18.4 Authors

¢ Abject +

* Ankit Agrawal +

* Sylvain Bellemare +
* Matthew Brett

¢ Christian Brodbeck
e Christian Brueffer

* Lars Buitinck

¢ Evgeni Burovski

* Pierre de Buyl +

¢ Greg Caporaso +

* CJ Carey

3.18. SciPy 0.15.0 Release Notes 157

https://github.com/scipy/weave

SciPy Reference Guide, Release 1.3.2

Jacob Carey +
Thomas A Caswell
Helder Cesar +
Bjorn Dahlgren +
Kevin Davies +
Yotam Doron +
Marcos Duarte +
endolith

Jesse Engel +

Rob Falck +

Corey Farwell +
Jaime Fernandez del Rio +
Clark Fitzgerald +
Tom Flannaghan +
Chad Fulton +
Jochen Garcke +
Francois Garillot +
André Gaul
Christoph Gohlke
Ralf Gommers
Alex Griffing
Blake Griffith
Olivier Grisel
Charles Harris
Trent Hauck +

Tan Henriksen +
Jinhyok Heo +
Matt Hickford +
Andreas Hilboll
Danilo Horta +
David Menéndez Hurtado +
Gert-Ludwig Ingold
Thouis (Ray) Jones
Chris Kerr +

Carl Kleftner +

Andreas Kloeckner

158

Chapter 3. Release Notes

SciPy Reference Guide, Release 1.3.2

Thomas Kluyver +
Adrian Kretz +
Johannes Kulick +
Eric Larson
Brianna Laugher +
Denis Laxalde
Antony Lee +
Gregory R. Lee +
Brandon Liu

Alex Loew +

Loic Esteve +
Jaakko Luttinen +
Benny Malengier
Tobias Megies +
Sturla Molden

Eric Moore

Brett R. Murphy +
Paul Nation +
Andrew Nelson
Brian Newsom +
Joel Nothman
Sergio Oller +
Janani Padmanabhan +
Tiago M.D. Pereira +
Nicolas Del Piano +
Manuel Reinhardt +
Thomas Robitaille
Mike Romberg +
Alex Rothberg +
Sebastian Polster] +
Maximilian Singh +
Brigitta Sipocz +
Alex Stewart +
Julian Taylor

Collin Tokheim +

James Tomlinson +

3.18

. SciPy 0.15.0 Release Notes

159

SciPy Reference Guide, Release 1.3.2

* Benjamin Trendelkamp-Schroer +
* Richard Tsai

* Alexey Umnov +

* Jacob Vanderplas

¢ Joris Vankerschaver
* Bastian Venthur +

* Pauli Virtanen

* Stefan van der Walt
* Yuxiang Wang +

e James T. Webber

¢ Warren Weckesser
o Axl West +

» Nathan Woods

* Benda Xu +

* Victor Zabalza +

¢ Tiziano Zito +

A total of 99 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

This list of names is automatically generated, and may not be fully complete.

Issues closed

o #1431: ellipk(x) extending its domain for x<0 (Trac #904)

e #1727: consistency of std interface (Trac #1200)

e #1851: Shape parameter negated in genextreme (relative to R, MATLAB,...
* #1889: interp2d is weird (Trac #1364)

o #2188: splev gives wrong values or crashes outside of support when der...

* #2343: scipy.insterpolate’s splrep function fails with certain combinations. ..
e #26069: .signal.ltisys.ss2tf should only apply to MISO systems in current...

e #2911: interpolate.splder() failure on Fedora

e #3171: future of weave in scipy

» #3176: Suggestion to improve error message in scipy.integrate.odeint

e #3198: pdf() and logpdf() methods for scipy.stats.gaussian_kde

e #3318: Travis CI is breaking on test(“full”)

» #3329: scipy.stats.scoreatpercentile backward-incompatible change not...

» #3362: Reference cycle in scipy.sparse.linalg.eigs with shift-invert...

» #3364: BUG: linalg.hessenberg broken (wrong results)

e #3376: stats f_oneway needs floats

160

. Release Notes

https://github.com/scipy/scipy/issues/1431
https://github.com/scipy/scipy/issues/1727
https://github.com/scipy/scipy/issues/1851
https://github.com/scipy/scipy/issues/1889
https://github.com/scipy/scipy/issues/2188
https://github.com/scipy/scipy/issues/2343
https://github.com/scipy/scipy/issues/2669
https://github.com/scipy/scipy/issues/2911
https://github.com/scipy/scipy/issues/3171
https://github.com/scipy/scipy/issues/3176
https://github.com/scipy/scipy/issues/3198
https://github.com/scipy/scipy/issues/3318
https://github.com/scipy/scipy/issues/3329
https://github.com/scipy/scipy/issues/3362
https://github.com/scipy/scipy/issues/3364
https://github.com/scipy/scipy/issues/3376

SciPy Reference Guide, Release 1.3.2

e #3379: Installation of scipy 0.13.3 via zc.buildout fails

» #3403: hierarchy.linkage raises an ugly exception for a compressed 2x2...
e #3422: optimize.curve_fit() handles NaN by returning all parameters. ..

e #3457: linalg. fractional_matrix_power has no docstring

e #3469: DOC: ndimage.find_object ignores zero-values

e #3491: optimize.leastsq() documentation should mention it does not work...
e #3499: cluster.vq.whiten return nan for all zeros column in observations

e #3503: minimize attempts to do vector addition when numpy arrays are...
e #3508: exponweib.logpdf fails for valid parameters

* #3500: libatlas3-base-dev does not exist

e #3550: BUG: anomalous values computed by special.ellipkinc

e #3555: scipy.ndimage positions are float instead of int

e #3557: UnivariateSpline.__call__ should pass all relevant args through...
e #3569: No license statement for test data imported from boost?

e #3576: mstats test failure (too sensitive?)

e #3579: Errors on scipy 0.14.x branch using MKL, Ubuntu 14.04 x86_64
» #3580: Operator overloading with sparse matrices

» #3587: Wrong alphabetical order in continuous statistical distribution...

» #3596: scipy.signal.fftconvolve no longer threadsafe

» #3623: BUG: signal.convolve takes longer than it needs to

* #3655: Integer returned from integer data in scipy.signal.periodogram...

e #3662: Travis failure on Numpy 1.5.1 (not reproducible?)

* #3668: dendogram(orientation="foo’)

* #3609: KroghlInterpolator doesn’t pass through points

e #3672: Inserting a knot in a spline

» #3682: misleading documentation of scipy.optimize.curve_fit

* #3699: BUG?: minor problem with scipy.signal.lfilter w/initial conditions
» #3700: Inconsistent exceptions raised by scipy.io.loadmat

e #3703: TypeError for RegularGridInterpolator with big-endian data

e #3714: Misleading error message in eigsh: k must be between 1 and rank(A)-1
e #3720: coo_matrix.setdiag() fails

o #3740: Scipy.Spatial. KdTree (Query) Return Type?

e #3761: Invalid result from scipy.special.btdtri

e #3784: DOC - Special Functions - Drum example fix for higher modes

e #3785: minimize() should have friendlier args=

e #3787: BUG: signal: Division by zero in lombscargle

3.18. SciPy 0.15.0 Release Notes 161

https://github.com/scipy/scipy/issues/3379
https://github.com/scipy/scipy/issues/3403
https://github.com/scipy/scipy/issues/3422
https://github.com/scipy/scipy/issues/3457
https://github.com/scipy/scipy/issues/3469
https://github.com/scipy/scipy/issues/3491
https://github.com/scipy/scipy/issues/3499
https://github.com/scipy/scipy/issues/3503
https://github.com/scipy/scipy/issues/3508
https://github.com/scipy/scipy/issues/3509
https://github.com/scipy/scipy/issues/3550
https://github.com/scipy/scipy/issues/3555
https://github.com/scipy/scipy/issues/3557
https://github.com/scipy/scipy/issues/3569
https://github.com/scipy/scipy/issues/3576
https://github.com/scipy/scipy/issues/3579
https://github.com/scipy/scipy/issues/3580
https://github.com/scipy/scipy/issues/3587
https://github.com/scipy/scipy/issues/3596
https://github.com/scipy/scipy/issues/3623
https://github.com/scipy/scipy/issues/3655
https://github.com/scipy/scipy/issues/3662
https://github.com/scipy/scipy/issues/3668
https://github.com/scipy/scipy/issues/3669
https://github.com/scipy/scipy/issues/3672
https://github.com/scipy/scipy/issues/3682
https://github.com/scipy/scipy/issues/3699
https://github.com/scipy/scipy/issues/3700
https://github.com/scipy/scipy/issues/3703
https://github.com/scipy/scipy/issues/3714
https://github.com/scipy/scipy/issues/3720
https://github.com/scipy/scipy/issues/3740
https://github.com/scipy/scipy/issues/3761
https://github.com/scipy/scipy/issues/3784
https://github.com/scipy/scipy/issues/3785
https://github.com/scipy/scipy/issues/3787

SciPy Reference Guide, Release 1.3.2

#3800:
#3817:
#3821:
#3829:
#3830:
#3844:
#3858:
#3876:
#3884:
#3895
#3898:
#3901:
#3905:
#3915:
#3935:
#3969:
#4025:
#4029:
#4032:
#4038:
#4171:
#4176:

BUG: scipy.sparse.csgraph.shortest_path overwrites input matrix
Warning in calculating moments from Binomial distribution for...
review scipy usage of np.ma.is_masked

Linear algebra function documentation doesn’t mention default...

A bug in Docstring of scipy.linalg.eig

Issue with shape parameter returned by genextreme

“ImportError: No module named Cython.Compiler.Main” on install
savgol_filter not in release notes and has no versionadded

scipy.stats.kendalltau empty array error

: ValueError: illegal value in 12-th argument of internal gesdd...

skimage test broken by minmax filter change

scipy sparse errors with numpy master

DOC: optimize: linprog docstring has two “Returns” sections

DOC: sphinx warnings because of **kwds in the stats distributions. ..
Split stats.distributions files in tutorial

gh-3607 breaks backward compatibility in ode solver banded jacobians
DOC: signal: The return value of find_peaks_cwt is not documented.
scipy.stats.nbinom.logpmf(0,1,1) returns nan. Correct value is...
ERROR: test_imresize (test_pilutil. TestPILUtil)

errors do not propagate through scipy.integrate.odeint properly
orthogonal_procrustes always returns scale.

Solving the Discrete Lyapunov Equation does not work with matrix...

Pull requests

#3109:
#3225:
#3262:
#3266:
#3273:
#3342:
#3348:
#3351:
#3382:
#3396:
#3398:
#3405:

ENH Added Fisher’s method and Stouffer’s Z-score method

Add the limiting distributions to generalized Pareto distribution. ..
Implement back end of faster multivariate integration

ENH: signal: add type=False as parameter for periodogram and...
Add PEPS check to Travis-CI

ENH: linprog function for linear programming

BUG: add proper error handling when using interp2d on regular...
ENH: Add MLS method

ENH: scipy.special information theory functions

ENH: improve stats.nanmedian more by assuming nans are rare
Added two wrappers to the gaussian_kde class.

BUG: cluster.linkage array conversion to double dtype

162

Chapter 3.

Release Notes

https://github.com/scipy/scipy/issues/3800
https://github.com/scipy/scipy/issues/3817
https://github.com/scipy/scipy/issues/3821
https://github.com/scipy/scipy/issues/3829
https://github.com/scipy/scipy/issues/3830
https://github.com/scipy/scipy/issues/3844
https://github.com/scipy/scipy/issues/3858
https://github.com/scipy/scipy/issues/3876
https://github.com/scipy/scipy/issues/3884
https://github.com/scipy/scipy/issues/3895
https://github.com/scipy/scipy/issues/3898
https://github.com/scipy/scipy/issues/3901
https://github.com/scipy/scipy/issues/3905
https://github.com/scipy/scipy/issues/3915
https://github.com/scipy/scipy/issues/3935
https://github.com/scipy/scipy/issues/3969
https://github.com/scipy/scipy/issues/4025
https://github.com/scipy/scipy/issues/4029
https://github.com/scipy/scipy/issues/4032
https://github.com/scipy/scipy/issues/4038
https://github.com/scipy/scipy/issues/4171
https://github.com/scipy/scipy/issues/4176
https://github.com/scipy/scipy/pull/3109
https://github.com/scipy/scipy/pull/3225
https://github.com/scipy/scipy/pull/3262
https://github.com/scipy/scipy/pull/3266
https://github.com/scipy/scipy/pull/3273
https://github.com/scipy/scipy/pull/3342
https://github.com/scipy/scipy/pull/3348
https://github.com/scipy/scipy/pull/3351
https://github.com/scipy/scipy/pull/3382
https://github.com/scipy/scipy/pull/3396
https://github.com/scipy/scipy/pull/3398
https://github.com/scipy/scipy/pull/3405

SciPy Reference Guide, Release 1.3.2

#3407:
#3409:
#3416:
#3419:
#3420:
#3429:
#3430:
#3433:
#3435:
#3446:
#3450
#3458:
#3462:
#3463:
#3477:
#3480:
#3484
#3498:
#3504
#3510:
#3512:
#3514
#3516:
#3517:
#3518:
#3526:
#3527:
#3537:
#3540:
#3542:
#3545:
#3547:
#3553:
#3561:
#3564
#3565:

MAINT: use assert_warns instead of a more complicated mechanism
ENH: change to use array view in signal/_peak_finding.py

Issue 3376 : stats f_oneway needs floats

BUG: tools: Fix list of FMA instructions in detect_cpu_extensions_wine.py
DOC: stats: Add ‘entropy’ to the stats package-level documentation.

BUG: close intermediate file descriptor right after it is used...

MAINT: Fix some cython variable declarations to avoid warnings. ..
Correcting the normalization of chebwin window function

Add more precise link to R’s quantile documentation

ENH: scipy.optimize - adding differential_evolution

: MAINT: remove unused function scipy.stats.mstats_basic._kolmog1

Reworked version of PR-3084 (mstats-stats comparison)

MAINT : Returning a warning for low attenuation values of chebwin...
DOC: linalg: Add examples to functions in matfuncs.py

ENH: sparse: release GIL in sparsetools routines

DOC: Add more details to deconvolve docstring

BLD: fix Qhull build issue with MinGW-w64. Closes gh-3237.
MAINT: io: remove old warnings from idl.py

BUG: cluster.vq.whiten returns nan or inf when std==

MAINT: stats: Reimplement the pdf and logpdf methods of exponweib.
Fix PEPS errors showing up on TravisCI after pep8 1.5 release

DOC: libatlas3-base-dev seems to have never been a thing

DOC improve scipy.sparse docstrings

ENH: speed-up ndimage.filters.min(max)imum_filter1d

Issues in scipy.misc.logsumexp

DOC: graphical example for cwt, and use a more interesting signal
ENH: Implement min(max)imum_filter1d using the MINLIST algorithm
STY: reduce number of C compiler warnings

DOC: linalg: add docstring to fractional_matrix_power

kde.py Doc Typo

BUG: stats: stats.levy.cdf with small arguments loses precision.

BUG: special: erfcinv with small arguments loses precision.

DOC: Convolve examples

FIX: in ndimage.measurements return positions as int instead. ..

Fix test failures with numpy master. Closes gh-3554

ENH: make interp2d accept unsorted arrays for interpolation.

3.18

. SciPy 0.15.0 Release Notes

163

https://github.com/scipy/scipy/pull/3407
https://github.com/scipy/scipy/pull/3409
https://github.com/scipy/scipy/pull/3416
https://github.com/scipy/scipy/pull/3419
https://github.com/scipy/scipy/pull/3420
https://github.com/scipy/scipy/pull/3429
https://github.com/scipy/scipy/pull/3430
https://github.com/scipy/scipy/pull/3433
https://github.com/scipy/scipy/pull/3435
https://github.com/scipy/scipy/pull/3446
https://github.com/scipy/scipy/pull/3450
https://github.com/scipy/scipy/pull/3458
https://github.com/scipy/scipy/pull/3462
https://github.com/scipy/scipy/pull/3463
https://github.com/scipy/scipy/pull/3477
https://github.com/scipy/scipy/pull/3480
https://github.com/scipy/scipy/pull/3484
https://github.com/scipy/scipy/pull/3498
https://github.com/scipy/scipy/pull/3504
https://github.com/scipy/scipy/pull/3510
https://github.com/scipy/scipy/pull/3512
https://github.com/scipy/scipy/pull/3514
https://github.com/scipy/scipy/pull/3516
https://github.com/scipy/scipy/pull/3517
https://github.com/scipy/scipy/pull/3518
https://github.com/scipy/scipy/pull/3526
https://github.com/scipy/scipy/pull/3527
https://github.com/scipy/scipy/pull/3537
https://github.com/scipy/scipy/pull/3540
https://github.com/scipy/scipy/pull/3542
https://github.com/scipy/scipy/pull/3545
https://github.com/scipy/scipy/pull/3547
https://github.com/scipy/scipy/pull/3553
https://github.com/scipy/scipy/pull/3561
https://github.com/scipy/scipy/pull/3564
https://github.com/scipy/scipy/pull/3565

SciPy Reference Guide, Release 1.3.2

#3566:
#3567:
#3574
#3577:
#3585:
#3589:
#3594
#3598:
#3599:
#3602:
#3607:
#3609:
#3616:
#3617:
#3622:
#3625:
#3626:
#3627:
#3628:
#3632:
#3636:
#3638:
#3639:
#3640:
#3641:
#3644
#3646:
#3647:
#3650:
#3652:
#3654
#3657:
#3660:
#3661:
#3663:
#3664:

BLD: add numpy requirement to metadata if it can’t be imported.
DOC: move matfuncs docstrings to user-visible functions

Fixes multiple bugs in mstats.theilslopes

TST: decrease sensitivity of an mstats test

Cleanup of code in scipy.constants

BUG: sparse: allow operator overloading

BUG: lobpcg returned wrong values for small matrices (n < 10)
MAINT: fix coverage and coveralls

MAINT: symeig — now that’s a name I've not heard in a long time
MAINT: clean up the new optimize.linprog and add a few more tests
BUG: integrate: Fix some bugs and documentation errors in the...
MAINT integrate/odepack: kill dead Fortran code

FIX: Invalid values

Sort netcdf variables in a Python-3 compatible way

DOC: Added 0.15.0 release notes entry for linprog function.

Fix documentation for cKDTree.sparse_distance_matrix
MAINT: linalg.orth memory efficiency

MAINT: stats: A bit of clean up

MAINT: signal: remove a useless function from wavelets.py
ENH: stats: Add Mood’s median test.

MAINT: cluster: some clean up

DOC: docstring of optimize.basinhopping confuses singular and. ..
BUG: change ddof default to 1 in mstats.sem, consistent with...
Weave: deprecate the module and disable slow tests on TravisCI
ENH: Added support for date attributes to io.arff.arffread
MAINT: stats: remove superfluous alias in mstats_basic.py

ENH: adding sum_duplicates method to COO sparse matrix

Fix for #3596: Make fftconvolve threadsafe

BUG: sparse: smarter random index selection

fix wrong option name in power_divergence dosctring example
Changing EPD to Canopy

BUG: signal.welch: ensure floating point dtype regardless of ...
TST: mark a test as known fail

BLD: ignore pep8 E302 (expected 2 blank lines, found 1)

BUG: fix leaking errstate, and ignore invalid= errors in a test

BUG: correlate was extremely slow when in2.size > inl.size

164

Chapter 3.

Release Notes

https://github.com/scipy/scipy/pull/3566
https://github.com/scipy/scipy/pull/3567
https://github.com/scipy/scipy/pull/3574
https://github.com/scipy/scipy/pull/3577
https://github.com/scipy/scipy/pull/3585
https://github.com/scipy/scipy/pull/3589
https://github.com/scipy/scipy/pull/3594
https://github.com/scipy/scipy/pull/3598
https://github.com/scipy/scipy/pull/3599
https://github.com/scipy/scipy/pull/3602
https://github.com/scipy/scipy/pull/3607
https://github.com/scipy/scipy/pull/3609
https://github.com/scipy/scipy/pull/3616
https://github.com/scipy/scipy/pull/3617
https://github.com/scipy/scipy/pull/3622
https://github.com/scipy/scipy/pull/3625
https://github.com/scipy/scipy/pull/3626
https://github.com/scipy/scipy/pull/3627
https://github.com/scipy/scipy/pull/3628
https://github.com/scipy/scipy/pull/3632
https://github.com/scipy/scipy/pull/3636
https://github.com/scipy/scipy/pull/3638
https://github.com/scipy/scipy/pull/3639
https://github.com/scipy/scipy/pull/3640
https://github.com/scipy/scipy/pull/3641
https://github.com/scipy/scipy/pull/3644
https://github.com/scipy/scipy/pull/3646
https://github.com/scipy/scipy/pull/3647
https://github.com/scipy/scipy/pull/3650
https://github.com/scipy/scipy/pull/3652
https://github.com/scipy/scipy/pull/3654
https://github.com/scipy/scipy/pull/3657
https://github.com/scipy/scipy/pull/3660
https://github.com/scipy/scipy/pull/3661
https://github.com/scipy/scipy/pull/3663
https://github.com/scipy/scipy/pull/3664

SciPy Reference Guide, Release 1.3.2

#3667:
#3670:
#3671:
#3673:
#3674:
#3681:
#3683:
#3684:
#3688:
#3692:
#3693:
#3695:
#3696:
#3701:
#3702:
#3704:
#3707:
#3708:
#3709:
#3712:
#3713:
#3718:
#3719:
#3722:
#3725:
#3727:
#3731:
#3734
#3735:
#3736:
#3744
#3746:
#3748:
#3750:
#3751:
#3759:

ENH: Adds default params to pdfs of multivariate_norm

ENH: Small speedup of FFT size check

DOC: adding differential_evolution function to 0.15 release notes
BUG: interpolate/fitpack: arguments to fortran routines may not. ..
Add support for appending to existing netcdf files

Speed up test(‘full’), solve Travis CI timeout issues

ENH: cluster: rewrite and optimize vg in Cython

Update special docs

Spacing in special docstrings

ENH: scipy.special: Improving sph_harm function

Update refguide entries for signal and fftpack

Update continuous.rst

ENH: check for valid ‘orientation’ kwarg in dendrogram()

make ‘a’ and ‘b’ coefficients atleast_1d array in filtfilt

BUG: cluster: _vq unable to handle large features

BUG: special: ellip(k,e)inc nan and double expected value

BUG: handle fill_value dtype checks correctly in RegularGridInterpolator
Reraise exception on failure to read mat file.

BUG: cast ‘X’ to correct dtype in Kroghlnterpolator._evaluate
ENH: cluster: reimplement the update-step of K-means in Cython
FIX: Check type of Ifiltic

Changed INSTALL file extension to rst

address svds returning nans for zero input matrix

MAINT: spatial: static, unused code, sqrt(sqeuclidean)

ENH: use numpys nanmedian if available

TST: add a new fixed_point test and change some test function...
BUG: fix romb in scipy.integrate.quadrature

DOC: simplify examples with semilogx

DOC: Add minimal docstrings to Iti.impulse/step

BUG: cast pchip arguments to floats

stub out inherited methods of AkimalDInterpolator

DOC: Fix formatting for Raises section

ENH: Added discrete Lyapunov transformation solve

Enable automated testing with Python 3.4

Reverse Cuthill-McKee and Maximum Bipartite Matching reorderings. ..

MAINT: avoid indexing with a float array

3.18

. SciPy 0.15.0 Release Notes

165

https://github.com/scipy/scipy/pull/3667
https://github.com/scipy/scipy/pull/3670
https://github.com/scipy/scipy/pull/3671
https://github.com/scipy/scipy/pull/3673
https://github.com/scipy/scipy/pull/3674
https://github.com/scipy/scipy/pull/3681
https://github.com/scipy/scipy/pull/3683
https://github.com/scipy/scipy/pull/3684
https://github.com/scipy/scipy/pull/3688
https://github.com/scipy/scipy/pull/3692
https://github.com/scipy/scipy/pull/3693
https://github.com/scipy/scipy/pull/3695
https://github.com/scipy/scipy/pull/3696
https://github.com/scipy/scipy/pull/3701
https://github.com/scipy/scipy/pull/3702
https://github.com/scipy/scipy/pull/3704
https://github.com/scipy/scipy/pull/3707
https://github.com/scipy/scipy/pull/3708
https://github.com/scipy/scipy/pull/3709
https://github.com/scipy/scipy/pull/3712
https://github.com/scipy/scipy/pull/3713
https://github.com/scipy/scipy/pull/3718
https://github.com/scipy/scipy/pull/3719
https://github.com/scipy/scipy/pull/3722
https://github.com/scipy/scipy/pull/3725
https://github.com/scipy/scipy/pull/3727
https://github.com/scipy/scipy/pull/3731
https://github.com/scipy/scipy/pull/3734
https://github.com/scipy/scipy/pull/3735
https://github.com/scipy/scipy/pull/3736
https://github.com/scipy/scipy/pull/3744
https://github.com/scipy/scipy/pull/3746
https://github.com/scipy/scipy/pull/3748
https://github.com/scipy/scipy/pull/3750
https://github.com/scipy/scipy/pull/3751
https://github.com/scipy/scipy/pull/3759

SciPy Reference Guide, Release 1.3.2

#3762:
#3766:
#3767:
#3769:
#3770:
#3772:
#3773:
#3774
#3779:
#3788:
#3791:
#3795:
#3796:
#3801:
#3803:
#3809:
#3811:
#3819:
#3820:
#3825:
#3827:
#3832:
#3845:
#3848:
#3850:
#3851:
#3860:
#3861:
#3862:
#3865:
#3866:

#3871

#3872:
#3873:
#3874
#3877:

TST: filter out RuntimeWarning in vq tests

TST: cluster: some cleanups in test_hierarchy.py

ENH/BUG: support negative m in elliptic integrals

ENH: avoid repeated matrix inverse

BUG: signal: In Ifilter_zi, b was not rescaled correctly when...
STY avoid unnecessary transposes in csr_matrix.getcol/row

ENH: Add ext parameter to UnivariateSpline call

BUG: in integrate/quadpack.h, put all declarations before statements.
Incbet fix

BUG: Fix lombscargle ZeroDivisionError

Some maintenance for doc builds

scipy.special.legendre docstring

TYPO: sheroidal -> spheroidal

BUG: shortest_path overwrite

TST: lombscargle regression test related to atan vs atan2

ENH: orthogonal procrustes solver

ENH: scipy.special, Implemented Ellipsoidal harmonic function:...
BUG: make a fully connected csgraph from an ndarray with no zeros
MAINT: avoid spurious warnings in binom(n, p=0).mean() etc
Don'’t claim scipy.cluster does distance matrix calculations.

get and set diagonal of coo_matrix, and related csgraph laplacian...
DOC: Minor additions to integrate/nquad docstring.

Bug fix for #3842: Bug in scipy.optimize.line_search

BUG: edge case where the covariance matrix is exactly zero

DOC: typo

DOC: document default argument values for some arpack functions
DOC: sparse: add the function ‘find’ to the module-level docstring
BUG: Removed unnecessary storage of args as instance variables. ..
BUG: signal: fix handling of multi-output systems in ss2tf.

Feature request: ability to read heterogeneous types in FortranFile

MAINT: update pip wheelhouse for installs

: MAINT: linalg: get rid of calc_lwork.f

MAINT: use scipy.linalg instead of np.dual

BLD: show a more informative message if Cython wasn’t installed.
TST: cluster: cleanup the hierarchy test data

DOC: Savitzky-Golay filter version added

166

Chapter 3.

Release Notes

https://github.com/scipy/scipy/pull/3762
https://github.com/scipy/scipy/pull/3766
https://github.com/scipy/scipy/pull/3767
https://github.com/scipy/scipy/pull/3769
https://github.com/scipy/scipy/pull/3770
https://github.com/scipy/scipy/pull/3772
https://github.com/scipy/scipy/pull/3773
https://github.com/scipy/scipy/pull/3774
https://github.com/scipy/scipy/pull/3779
https://github.com/scipy/scipy/pull/3788
https://github.com/scipy/scipy/pull/3791
https://github.com/scipy/scipy/pull/3795
https://github.com/scipy/scipy/pull/3796
https://github.com/scipy/scipy/pull/3801
https://github.com/scipy/scipy/pull/3803
https://github.com/scipy/scipy/pull/3809
https://github.com/scipy/scipy/pull/3811
https://github.com/scipy/scipy/pull/3819
https://github.com/scipy/scipy/pull/3820
https://github.com/scipy/scipy/pull/3825
https://github.com/scipy/scipy/pull/3827
https://github.com/scipy/scipy/pull/3832
https://github.com/scipy/scipy/pull/3845
https://github.com/scipy/scipy/pull/3848
https://github.com/scipy/scipy/pull/3850
https://github.com/scipy/scipy/pull/3851
https://github.com/scipy/scipy/pull/3860
https://github.com/scipy/scipy/pull/3861
https://github.com/scipy/scipy/pull/3862
https://github.com/scipy/scipy/pull/3865
https://github.com/scipy/scipy/pull/3866
https://github.com/scipy/scipy/pull/3871
https://github.com/scipy/scipy/pull/3872
https://github.com/scipy/scipy/pull/3873
https://github.com/scipy/scipy/pull/3874
https://github.com/scipy/scipy/pull/3877

SciPy Reference Guide, Release 1.3.2

#3878:
#3879:
#3881:
#3885:
#3886:
#3888:
#3891:
#3892:
#3894
#3896:

#3897

#3907:
#3909:
#3910:
#3911:
#3914:
#3916:
#3917:
#3918:
#3919:
#3920:
#3922:
#3924:
#3926:
#3927:
#3928:
#3929:
#3930:
#3932:
#3933:
#3936:
#3938:
#3939:
#3940:

DOC: move versionadded to notes

small tweaks to the docs

FIX incorrect sorting during fancy assignment

kendalltau function now returns a nan tuple if empty arrays used. ..
BUG: fixing linprog’s kwarg order to match docs

BUG: optimize: In _linprog_simplex, handle the case where the...
BUG: stats: Fix ValueError message in chi2_contingency.

DOC: sparse.linalg: Fix lobpcg docstring.

DOC: stats: Assorted docstring edits.

Fix 2 mistakes in MatrixMarket format parsing

: BUG: associated Legendre function of second kind for 1<x<1.0001
#3899:
#3906:

BUG: fix undefined behavior in alngam
MAINT/DOC: Whitespace tweaks in several docstrings.

TST: relax bounds of interpolate test to accomodate rounding. ..

MAINT: Create a common version of count_nonzero for compatibility. ..

Fix a couple of test errors in master

Use MathJax for the html docs

Rework the _roots functions and document them.

Remove all linpack_lite code and replace with LAPACK routines
splines, constant extrapolation

DOC: tweak the rv_discrete docstring example

Quadrature speed-up: scipy.special.orthogonal.p_roots with cache
DOC: Clarity docstring for sigma parameter for curve_fit

Fixed Docstring issues in linprog (Fixes #3905).

Coerce args into tuple if necessary.

DOC: Surround stats class methods in docstrings with backticks.
Changed doc for romb’s dx parameter to int.

check FITPACK conditions in LSQUnivariateSpline

Added a warning about leastsq using with NaNs.

ENH: optimize: curve_fit now warns if pcov is undetermined
Clarified the k > n case.

DOC: remove import scipy as sp abbreviation here and there

Add license and copyright holders to test data imported from. ..
DOC: Corrected documentation for return types.

DOC: fitpack: add a note about Sch-W conditions to splrep docstring

TST: integrate: Remove an invalid test of odeint.

3.18

. SciPy 0.15.0 Release Notes

167

https://github.com/scipy/scipy/pull/3878
https://github.com/scipy/scipy/pull/3879
https://github.com/scipy/scipy/pull/3881
https://github.com/scipy/scipy/pull/3885
https://github.com/scipy/scipy/pull/3886
https://github.com/scipy/scipy/pull/3888
https://github.com/scipy/scipy/pull/3891
https://github.com/scipy/scipy/pull/3892
https://github.com/scipy/scipy/pull/3894
https://github.com/scipy/scipy/pull/3896
https://github.com/scipy/scipy/pull/3897
https://github.com/scipy/scipy/pull/3899
https://github.com/scipy/scipy/pull/3906
https://github.com/scipy/scipy/pull/3907
https://github.com/scipy/scipy/pull/3909
https://github.com/scipy/scipy/pull/3910
https://github.com/scipy/scipy/pull/3911
https://github.com/scipy/scipy/pull/3914
https://github.com/scipy/scipy/pull/3916
https://github.com/scipy/scipy/pull/3917
https://github.com/scipy/scipy/pull/3918
https://github.com/scipy/scipy/pull/3919
https://github.com/scipy/scipy/pull/3920
https://github.com/scipy/scipy/pull/3922
https://github.com/scipy/scipy/pull/3924
https://github.com/scipy/scipy/pull/3926
https://github.com/scipy/scipy/pull/3927
https://github.com/scipy/scipy/pull/3928
https://github.com/scipy/scipy/pull/3929
https://github.com/scipy/scipy/pull/3930
https://github.com/scipy/scipy/pull/3932
https://github.com/scipy/scipy/pull/3933
https://github.com/scipy/scipy/pull/3936
https://github.com/scipy/scipy/pull/3938
https://github.com/scipy/scipy/pull/3939
https://github.com/scipy/scipy/pull/3940

SciPy Reference Guide, Release 1.3.2

#3942:
#3943:
#3944
#3946:
#3947:
#3949:
#3950:
#3951:
#3952:
#3953:
#3955:
#3959:
#3960:
#3965:
#3966:
#3968:
#3971:
#3972:
#3973:
#3981:
#3984:
#3990:
#3991:
#3993:
#3997:
#3998:
#3999:
#4000:
#4003:
#4004
#4006:
#4007:

#4008

FIX: Corrected error message of eigsh.

ENH: release GIL for filter and interpolation of ndimage

FIX: Raise value error if window data-type is unsupported

Fixed signal.get_window with unicode window name

MAINT: some docstring fixes and style cleanups in stats.mstats
DOC: fix a couple of issues in stats docstrings.

TST: sparse: remove known failure that doesn’t fail

TST: switch from Rackspace wheelhouse to numpy/cython source. ..
DOC: stats: Small formatting correction to the ‘chi’ distribution...
DOC: stats: Several corrections and small additions to docstrings.
signal.__init__.py: remove duplicated ger_window entry

TST: sparse: more “known failures” for DOK that don’t fail

BUG: io.netcdf: do not close mmap if there are references left...
DOC: Fix a few more sphinx warnings that occur when building. ..
DOC: add guidelines for using test generators in HACKING
BUG: sparse.linalg: make Inv objects in arpack garbage-collectable. ..
Remove all linpack_lite code and replace with LAPACK routines
fix typo in error message

MAINT: better error message for multivariate normal.

turn the cryptically named scipy.special information theory functions. ..
Wrap her, syr, her2, syr2 blas routines

improve UnivariateSpline docs

ENH: stats: return namedtuple for describe output

DOC: stats: percentileofscore references np.percentile

BUG: linalg: pascal(35) was incorrect: last element overflowed. ..
MAINT: use isMaskedArray instead of is_masked to check type
TST: test against all of boost data files.

BUG: stats: Fix edge-case handling in a few distributions.

ENH: using python’s warnings instead of prints in fitpack.
MAINT: optimize: remove a couple unused variables in zeros.c
BUG: Fix C90 compiler warnings in NI_MinOrMaxFilter1 D
MAINT/DOC: Fix spelling of ‘decomposition’ in several files.

: DOC: stats: Split the descriptions of the distributions in the...
#4015:
#4016:
#4020:

TST: logsumexp regression test
MAINT: remove some inf-related warnings from logsumexp

DOC: stats: fix whitespace in docstrings of several distributions

168

Chapter 3.

Release Notes

https://github.com/scipy/scipy/pull/3942
https://github.com/scipy/scipy/pull/3943
https://github.com/scipy/scipy/pull/3944
https://github.com/scipy/scipy/pull/3946
https://github.com/scipy/scipy/pull/3947
https://github.com/scipy/scipy/pull/3949
https://github.com/scipy/scipy/pull/3950
https://github.com/scipy/scipy/pull/3951
https://github.com/scipy/scipy/pull/3952
https://github.com/scipy/scipy/pull/3953
https://github.com/scipy/scipy/pull/3955
https://github.com/scipy/scipy/pull/3959
https://github.com/scipy/scipy/pull/3960
https://github.com/scipy/scipy/pull/3965
https://github.com/scipy/scipy/pull/3966
https://github.com/scipy/scipy/pull/3968
https://github.com/scipy/scipy/pull/3971
https://github.com/scipy/scipy/pull/3972
https://github.com/scipy/scipy/pull/3973
https://github.com/scipy/scipy/pull/3981
https://github.com/scipy/scipy/pull/3984
https://github.com/scipy/scipy/pull/3990
https://github.com/scipy/scipy/pull/3991
https://github.com/scipy/scipy/pull/3993
https://github.com/scipy/scipy/pull/3997
https://github.com/scipy/scipy/pull/3998
https://github.com/scipy/scipy/pull/3999
https://github.com/scipy/scipy/pull/4000
https://github.com/scipy/scipy/pull/4003
https://github.com/scipy/scipy/pull/4004
https://github.com/scipy/scipy/pull/4006
https://github.com/scipy/scipy/pull/4007
https://github.com/scipy/scipy/pull/4008
https://github.com/scipy/scipy/pull/4015
https://github.com/scipy/scipy/pull/4016
https://github.com/scipy/scipy/pull/4020

SciPy Reference Guide, Release 1.3.2

#4023:
#4024:
#4041:
#4049:
#4051:
#4052:
#4053:
#4057:
#4058:
#4059:

#4064

#4091:
#4105:
#4107:
#4113:
#4114:
#4117:
#4126:
#4131:
#4132:
#4145:
#4150:
#4153:
#4156:
#4159:
#4165:
#4172:
#4175:
#4177:
#4179:
#4181:
#4182:
#4183:
#4184:

Exactly one space required before assignments

In dendrogram(): Correct an argument name and a grammar issue. ..
BUG: misc: Ensure that the ‘size’ argument of PIL’s ‘resize’. ..

BUG: Return of _logpmf

BUG: expm of integer matrices

ENH: integrate: odeint: Handle exceptions in the callback functions.
BUG: stats: Refactor argument validation to avoid a unicode issue.
Added newline to scipy.sparse.linalg.svds documentation for correct. ..
MAINT: stats: Add note about change to scoreatpercentile in release. ..

ENH: interpolate: Allow splev to accept an n-dimensional array.

: Documented the return value for scipy.signal.find_peaks_cwt
#4074:
#4084:

ENH: Support LinearOperator as input to svds

BUG: Match exception declarations in scipy/io/matlab/streams.pyx...
DOC: special: more clear instructions on how to evaluate polynomials
BUG: Workaround for SGEMYV segfault in Accelerate

DOC: get rid of ‘import *’ in examples

DOC: fix typos in distance.yule

MAINT C fixes

deprecate nanmean, nanmedian and nanstd in favor of their numpy...
scipy.io.idl: support description records and fix bug with null...
ENH: release GIL in more ndimage functions

MAINT: stats: fix a typo [skip ci]

DOC: Fix documentation error for nc chi-squared dist

Fix _nd_image.geometric_transform endianness bug

MAINT: remove use of deprecated numpy API in lib/lapack/ f2py...
MAINT: optimize: remove dead code

MAINT: optimize: clean up Zeros code

DOC: add missing special functions to __doc__

DOC: remove misleading procrustes docstring line

DOC: sparse: clarify CSC and CSR constructor usage

MAINT: enable np.matrix inputs to solve_discrete_lyapunov

TST: fix an intermittently failing test case for special.legendre
MAINT: remove unnecessary null checks before free

Ellipsoidal harmonics

Skip Cython build in Travis-CI

Pr 4074

3.18

. SciPy 0.15.0 Release Notes

169

https://github.com/scipy/scipy/pull/4023
https://github.com/scipy/scipy/pull/4024
https://github.com/scipy/scipy/pull/4041
https://github.com/scipy/scipy/pull/4049
https://github.com/scipy/scipy/pull/4051
https://github.com/scipy/scipy/pull/4052
https://github.com/scipy/scipy/pull/4053
https://github.com/scipy/scipy/pull/4057
https://github.com/scipy/scipy/pull/4058
https://github.com/scipy/scipy/pull/4059
https://github.com/scipy/scipy/pull/4064
https://github.com/scipy/scipy/pull/4074
https://github.com/scipy/scipy/pull/4084
https://github.com/scipy/scipy/pull/4091
https://github.com/scipy/scipy/pull/4105
https://github.com/scipy/scipy/pull/4107
https://github.com/scipy/scipy/pull/4113
https://github.com/scipy/scipy/pull/4114
https://github.com/scipy/scipy/pull/4117
https://github.com/scipy/scipy/pull/4126
https://github.com/scipy/scipy/pull/4131
https://github.com/scipy/scipy/pull/4132
https://github.com/scipy/scipy/pull/4145
https://github.com/scipy/scipy/pull/4150
https://github.com/scipy/scipy/pull/4153
https://github.com/scipy/scipy/pull/4156
https://github.com/scipy/scipy/pull/4159
https://github.com/scipy/scipy/pull/4165
https://github.com/scipy/scipy/pull/4172
https://github.com/scipy/scipy/pull/4175
https://github.com/scipy/scipy/pull/4177
https://github.com/scipy/scipy/pull/4179
https://github.com/scipy/scipy/pull/4181
https://github.com/scipy/scipy/pull/4182
https://github.com/scipy/scipy/pull/4183
https://github.com/scipy/scipy/pull/4184

SciPy Reference Guide, Release 1.3.2

o #4187: Pr/3923

e #4190: BUG: special: fix up ellip_harm build

e #4193: BLD: fix msvc compiler errors

e #4194: BUG: fix buffer dtype mismatch on win-amd64

e #4199: ENH: Changed scipy.stats.describe output from datalen to nobs
e #4201: DOC: add blas2 and nan* deprecations to the release notes

o #4243: TST: bump test tolerances

3.19 SciPy 0.14.1 Release Notes

SciPy 0.14.1 is a bug-fix release with no new features compared to 0.14.0.

3.19.1 Issues closed

* #3630: NetCDF reading results in a segfault

e #3631: SuperLU object not working as expected for complex matrices

o #3733: segfault from map_coordinates

o #3780: Segfault when using CSR/CSC matrix and uint32/uint64

» #3781: BUG: sparse: fix omitted types in sparsetools typemaps

e #3802: 0.14.0 API breakage: _gen generators are missing from scipy.stats.distributions API
 #3805: ndimage test failures with numpy 1.10

e #3812: == sometimes wrong on csr_matrix

 #3853: Many scipy.sparse test errors/failures with numpy 1.9.0b2

» #4084: fix exception declarations for Cython 0.21.1 compatibility

e #4093: BUG: fitpack: avoid a memory error in splev(x, tck, der=k)

o #4104: BUG: Workaround SGEMV segfault in Accelerate (maintenance 0.14.x)

e #4143: BUG: fix ndimage functions for large data

* #4149: Bug in expm for integer arrays

o #4154: Backport gh-4041 for 0.14.1 (Ensure that the ‘size’ argument of PIL’s ‘resize’ method is a tuple)
» #4163: Backport #4142 (ZeroDivisionError in scipy.sparse.linalg.lsqr)

o #4164: Backport gh-4153 (remove use of deprecated numpy API in lib/lapack/ f2py wrapper)
o #4180: backport pil resize support tuple fix

» #4168: Lots of arpack test failures on windows 32 bits with numpy 1.9.1

e #4203: Matrix multiplication in 0.14.x is more than 10x slower compared...

e #4218: attempt to make ndimage interpolation compatible with numpy relaxed...

o #4225: BUG: off-by-one error in PPoly shape checks

o #4248: BUG: optimize: fix issue with incorrect use of closure for slsqp.

170 Chapter 3. Release Notes

https://github.com/scipy/scipy/pull/4187
https://github.com/scipy/scipy/pull/4190
https://github.com/scipy/scipy/pull/4193
https://github.com/scipy/scipy/pull/4194
https://github.com/scipy/scipy/pull/4199
https://github.com/scipy/scipy/pull/4201
https://github.com/scipy/scipy/pull/4243
https://github.com/scipy/scipy/issues/3630
https://github.com/scipy/scipy/issues/3631
https://github.com/scipy/scipy/issues/3733
https://github.com/scipy/scipy/issues/3780
https://github.com/scipy/scipy/pull/3781
https://github.com/scipy/scipy/issues/3802
https://github.com/scipy/scipy/issues/3805
https://github.com/scipy/scipy/issues/3812
https://github.com/scipy/scipy/issues/3853
https://github.com/scipy/scipy/pull/4084
https://github.com/scipy/scipy/pull/4093
https://github.com/scipy/scipy/pull/4104
https://github.com/scipy/scipy/pull/4143
https://github.com/scipy/scipy/issues/4149
https://github.com/scipy/scipy/issues/4154
https://github.com/scipy/scipy/issues/4163
https://github.com/scipy/scipy/issues/4164
https://github.com/scipy/scipy/pull/4180
https://github.com/scipy/scipy/issues/4168
https://github.com/scipy/scipy/issues/4203
https://github.com/scipy/scipy/pull/4218
https://github.com/scipy/scipy/pull/4225
https://github.com/scipy/scipy/pull/4248

SciPy Reference Guide, Release 1.3.2

3.20 SciPy 0.14.0 Release Notes

Contents

* SciPy 0.14.0 Release Notes
— New features
* scipy.interpolate improvements
* scipy.linalg improvements
* Scipy.optimize improvements
* scipy.stats improvements
* scipy.signal improvements
* scipy.special improvements

* Scipy.sparse improvements

Deprecated features
* anneal
* scipy.stats

* scipy.interpolate

Backwards incompatible changes
« scipy.special.lpmn
* scipy.sparse.linalg
* ScIpy.stats

* scipy.interpolate

Other changes

Authors

x [ssues closed

« Pull requests

SciPy 0.14.0 is the culmination of 8 months of hard work. It contains many new features, numerous bug-fixes, improved
test coverage and better documentation. There have been a number of deprecations and API changes in this release, which
are documented below. All users are encouraged to upgrade to this release, as there are a large number of bug-fixes and
optimizations. Moreover, our development attention will now shift to bug-fix releases on the 0.14.x branch, and on adding
new features on the master branch.

This release requires Python 2.6, 2.7 or 3.2-3.4 and NumPy 1.5.1 or greater.
3.20.1 New features
scipy.interpolate improvements

A new wrapper function scipy. interpolate. interpn for interpolation on regular grids has been added. interpn
supports linear and nearest-neighbor interpolation in arbitrary dimensions and spline interpolation in two dimensions.

3.20. SciPy 0.14.0 Release Notes 171

SciPy Reference Guide, Release 1.3.2

Faster implementations of piecewise polynomials in power and Bernstein polynomial bases have been added as
scipy.interpolate.PPoly and scipy.interpolate.BPoly. New users should use these in favor of
scipy.interpolate. PiecewisePolynomial.

scipy.interpolate.interpld now accepts non-monotonic inputs and sorts them. If performance is critical,
sorting can be turned off by using the new assume_sorted keyword.

Functionality for evaluation of bivariate spline derivatives in scipy.interpolate has been added.

The new class scipy.interpolate.AkimalDInterpolator implements the piecewise cubic polynomial in-
terpolation scheme devised by H. Akima.

Functionality for fast interpolation on regular, unevenly spaced grids in arbitrary dimensions has been added as scipy.
interpolate.RegularGridInterpolator.

scipy.linalg improvements

The new function scipy.linalg.dft computes the matrix of the discrete Fourier transform.

A condition number estimation function for matrix exponential, scipy. linalg.expm_cond, has been added.

scipy.optimize improvements

A set of benchmarks for optimize, which can be run with opt imize .bench (), has been added.
scipy.optimize.curve_fit now has more controllable error estimation via the absolute_sigma keyword.

Support for passing custom minimization methods to optimize.minimize() and optimize.
minimize_scalar () has been added, currently useful especially for combining opt imize.basinhopping ()
with custom local optimizer routines.

scipy.stats improvements

Anewclass scipy.stats.multivariate_normal with functionality for multivariate normal random variables
has been added.

A lot of work on the scipy.stats distribution framework has been done. Moment calculations (skew and kurtosis
mainly) are fixed and verified, all examples are now runnable, and many small accuracy and performance improvements
for individual distributions were merged.

The new function scipy.stats.anderson_ksamp computes the k-sample Anderson-Darling test for the null hy-
pothesis that k samples come from the same parent population.

scipy.signal improvements

scipy.signal.iirfilter and related functions to design Butterworth, Chebyshev, elliptical and Bessel IIR filters
now all use pole-zero (“zpk”) format internally instead of using transformations to numerator/denominator format. The
accuracy of the produced filters, especially high-order ones, is improved significantly as a result.

The Savitzky-Golay filter was added with the new functions scipy.signal.savgol_ filter and scipy.
signal.savgol_coeffs.

The new function scipy.signal.vectorstrength computes the vector strength, a measure of phase synchrony,
of a set of events.

172 Chapter 3. Release Notes

SciPy Reference Guide, Release 1.3.2

scipy.special improvements

The functions scipy.special.boxcoxand scipy.special.boxcoxl1p, which compute the Box-Cox trans-
formation, have been added.

scipy.sparse improvements

* Significant performance improvement in CSR, CSC, and DOK indexing speed.

* When using Numpy >= 1.9 (to be released in MM 2014), sparse matrices function correctly when given to argu-
ments of np.dot, np.multiply and other ufuncs. With earlier Numpy and Scipy versions, the results of such
operations are undefined and usually unexpected.

* Sparse matrices are no longer limited to 2~ 31 nonzero elements. They automatically switch to using 64-bit index
data type for matrices containing more elements. User code written assuming the sparse matrices use int32 as the
index data type will continue to work, except for such large matrices. Code dealing with larger matrices needs to
accept either int32 or int64 indices.

3.20.2 Deprecated features

anneal

The global minimization function scipy.optimize.anneal is deprecated. All users should use the scipy.optimize.
basinhopping function instead.

scipy.stats

randwcdf and randwppf functions are deprecated. All users should use distribution-specific rvs methods instead.

Probability calculation aliases zprob, fprob and ksprob are deprecated. Use instead the s f methods of the corre-
sponding distributions or the special functions directly.

scipy.interpolate

PiecewisePolynomial class is deprecated.

3.20.3 Backwards incompatible changes

scipy.special.lpmn

1pmn no longer accepts complex-valued arguments. A new function c¢1pmn with uniform complex analytic behavior has
been added, and it should be used instead.

scipy.sparse.linalg

Eigenvectors in the case of generalized eigenvalue problem are normalized to unit vectors in 2-norm, rather than following
the LAPACK normalization convention.

The deprecated UMFPACK wrapper in scipy.sparse.linalg has been removed due to license and install issues.
If available, scikits.umfpack is still used transparently in the spsolve and factorized functions. Otherwise,
SuperLU is used instead in these functions.

3.20. SciPy 0.14.0 Release Notes 173

SciPy Reference Guide, Release 1.3.2

scipy.stats

The deprecated functions g1lm, oneway and cmedian have been removed from scipy.stats.

stats.scoreatpercentile now returns an array instead of a list of percentiles.

scipy.interpolate

The API for computing derivatives of a monotone piecewise interpolation has changed: if pisaPchipInterpolator
object, p.derivative(der) returns a callable object representing the derivative of p. For in-place derivatives use the second
argument of the __call__ method: p(0.1, der=2) evaluates the second derivative of p at x=0.1.

The method p.derivatives has been removed.

3.20.4 Other changes

3.20.5 Authors

e Marc Abramowitz +

¢ Anders Bech Borchersen +
¢ Vincent Arel-Bundock +
* Petr Baudis +

* Max Bolingbroke

* Frangois Boulogne

* Matthew Brett

* Lars Buitinck

¢ Evgeni Burovski

e CJ Carey +

e Thomas A Caswell +

» Pawel Chojnacki +

* Phillip Cloud +

* Stefano Costa +

* David Cournapeau

¢ David Menendez Hurtado +
¢ Matthieu Dartiailh +

e Christoph Deil +

* Jorg Dietrich +

¢ endolith

* Francisco de la Pefia +

* Ben FrantzDale +

¢ Jim Garrison +

174 Chapter 3. Release Notes

SciPy Reference Guide, Release 1.3.2

André Gaul
Christoph Gohlke
Ralf Gommers
Robert David Grant
Alex Griffing

Blake Griffith
Yaroslav Halchenko
Andreas Hilboll

Kat Huang
Gert-Ludwig Ingold
James T. Webber +
Dorota Jarecka +
Todd Jennings +
Thouis (Ray) Jones
Juan Luis Cano Rodriguez
ktritz +

Jacques Kvam +

Eric Larson +

Justin Lavoie +
Denis Laxalde

Jussi Leinonen +
lemonlaug +

Tim Leslie

Alain Leufroy +
George Lewis +

Max Linke +
Brandon Liu +
Benny Malengier +
Matthias Kiimmerer +
Cimarron Mittelsteadt +
Eric Moore

Andrew Nelson +
Niklas Hambiichen +
Joel Nothman +
Clemens Novak

Emanuele Olivetti +

3.20

. SciPy 0.14.0 Release Notes

175

SciPy Reference Guide, Release 1.3.2

* Stefan Otte +

e peb +

* Josef Perktold

e pjwerneck

* poolio

e Jérdme Roy +

* Carl Sandrock +

¢ Andrew Sczesnak +
 Shauna +

* Fabrice Silva

¢ Daniel B. Smith

* Patrick Snape +

e Thomas Spura +

* Jacob Stevenson

¢ Julian Taylor

* Tomas Tomecek

* Richard Tsai

¢ Jacob Vanderplas

* Joris Vankerschaver +
 Pauli Virtanen

e Warren Weckesser

A total of 80 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

This list of names is automatically generated, and may not be fully complete.

Issues closed

e #1325: add custom axis keyword to dendrogram function in scipy.cluster.hierarchy...

* #1437: Wrong pochhammer symbol for negative integers (Trac #910)
» #1555: scipy.io.netcdf leaks file descriptors (Trac #1028)

e #1569: sparse matrix failed with element-wise multiplication using numpy.multiply()...

e #1833: Sparse matrices are limited to 2732 non-zero elements (Trac #1307)

» #1834: scipy.linalg.eig does not normalize eigenvector if B is given...
» #1866: stats for invgamma (Trac #1340)
o #1886: stats.zipf floating point warnings (Trac #1361)

» #1887: Stats continuous distributions - floating point warnings (Trac...

» #1897: scoreatpercentile() does not handle empty list inputs (Trac #1372)

e #1918: splint returns incorrect results (Trac #1393)

176

Chapter 3. Release Notes

https://github.com/scipy/scipy/issues/1325
https://github.com/scipy/scipy/issues/1437
https://github.com/scipy/scipy/issues/1555
https://github.com/scipy/scipy/issues/1569
https://github.com/scipy/scipy/issues/1833
https://github.com/scipy/scipy/issues/1834
https://github.com/scipy/scipy/issues/1866
https://github.com/scipy/scipy/issues/1886
https://github.com/scipy/scipy/issues/1887
https://github.com/scipy/scipy/issues/1897
https://github.com/scipy/scipy/issues/1918

SciPy Reference Guide, Release 1.3.2

#1949:
#2092:
#2106:
#2123:
#2152:
#2164:
#2169:
#2177:
#2179:

#2185

#2396:
#2398:
#24006:
#2443:
#2572:
#2607:
#2671:
#2691:
#2721:
#2741:
#2742:
#2765:
#2832:
#2861:
#2891:
#2919:
#2922:
#2938:
#2944
#2945:
#2947:
#2953:

kurtosistest fails in mstats with type error (Trac #1424)

scipy.test leaves darwin27compiled_catalog, cpp and so files. ..

stats ENH: shape parameters in distribution docstrings (Trac...

Bad behavior of sparse matrices in a binary ufunc (Trac #1598)

Fix mmio/fromfile on gzip on Python 3 (Trac #1627)
stats.rice.pdf(x, 0) returns nan (Trac #1639)
scipy.optimize.fmin_bfgs not handling functions with boundaries. ..
scipy.cluster.hierarchy.ClusterNode.pre_order returns IndexError. ..

coo.todense() segfaults (Trac #1654)

: Precision of scipy.ndimage.gaussian_filter*() limited (Trac #1660)
#2186:
#2238:
#2283:
#2288:

scipy.stats.mstats.kurtosistest crashes on 1d input (Trac #1661)
Negative p-value on hypergeom.cdf (Trac #1719)

ascending order in interpolation routines (Trac #1764)
mstats.kurtosistest is incorrectly converting to float, and fails. ..

Ipmn wrong results for | z| > 1 (Trac #1877)

ss2tf returns num as 2D array instead of 1D (Trac #1879)

linkage does not take Unicode strings as method names (Trac #1887)
IIR filter design should not transform to tf representation internally
class method solve of splu return object corrupted or falsely...

stats endless loop ?

.stats.hypergeom documentation error in the note about pmf

BUG scipy.linalg.lapack: potrf/ptroi interpret their ‘lower’. ..

Allow use of ellipsis in scipy.sparse slicing

stats: deprecate and remove alias for special functions

stats add rvs to rice distribution

bugs stats entropy

argrelextrema returns tuple of 2 empty arrays when no peaks found. ..
scipy.stats.scoreatpercentile broken for vector per

COBYLA successful termination when constraints violated

test failure with the current master

ndimage.percentile_filter ignores origin argument for multidimensional. ..

Sparse/dense matrix inplace operations fail due to __numpy_ufunc__
MacPorts builds yield 40Mb worth of build warnings

FAIL.: test_random_complex (test_basic.TestDet)

FAIL: Test some trivial edge cases for savgol_filter()

Scipy Delaunay triangulation is not oriented

3.20

. SciPy 0.14.0 Release Notes

177

https://github.com/scipy/scipy/issues/1949
https://github.com/scipy/scipy/issues/2092
https://github.com/scipy/scipy/issues/2106
https://github.com/scipy/scipy/issues/2123
https://github.com/scipy/scipy/issues/2152
https://github.com/scipy/scipy/issues/2164
https://github.com/scipy/scipy/issues/2169
https://github.com/scipy/scipy/issues/2177
https://github.com/scipy/scipy/issues/2179
https://github.com/scipy/scipy/issues/2185
https://github.com/scipy/scipy/issues/2186
https://github.com/scipy/scipy/issues/2238
https://github.com/scipy/scipy/issues/2283
https://github.com/scipy/scipy/issues/2288
https://github.com/scipy/scipy/issues/2396
https://github.com/scipy/scipy/issues/2398
https://github.com/scipy/scipy/issues/2406
https://github.com/scipy/scipy/issues/2443
https://github.com/scipy/scipy/issues/2572
https://github.com/scipy/scipy/issues/2667
https://github.com/scipy/scipy/issues/2671
https://github.com/scipy/scipy/issues/2691
https://github.com/scipy/scipy/issues/2721
https://github.com/scipy/scipy/issues/2741
https://github.com/scipy/scipy/issues/2742
https://github.com/scipy/scipy/issues/2765
https://github.com/scipy/scipy/issues/2832
https://github.com/scipy/scipy/issues/2861
https://github.com/scipy/scipy/issues/2891
https://github.com/scipy/scipy/issues/2919
https://github.com/scipy/scipy/issues/2922
https://github.com/scipy/scipy/issues/2938
https://github.com/scipy/scipy/issues/2944
https://github.com/scipy/scipy/issues/2945
https://github.com/scipy/scipy/issues/2947
https://github.com/scipy/scipy/issues/2953

SciPy Reference Guide, Release 1.3.2

e #2071:
* #2980:
* #2996:
e #2998:
e #3002:
e #3014:
* #3030:
* #3037:
o #3047:
* #3059:
* #3063:
* #3067:
e #3069:
* #3086:
e #3094:
e #3111:
o #3172:
* #3196:
* #3212:
o #3227:
* #3238:
e #3249:
o #3251:
o #3279:
* #3285:
e #32990:
* #3330:
* #3345:
* #3363:
* #3385:
e #3395
* #3399:
e #3404:
o #3412:
* #3466:

scipy.stats.mstats.winsorize documentation error

Problems running what seems a perfectly valid example

entropy for rv_discrete is incorrect?!

Fix numpy version comparisons

python setup.py install fails

Bug in stats.fisher_exact

relative entropy using scipy.stats.distribution.entropy when. ..
scipy.optimize.curve_fit leads to unexpected behavior when input...
mstats.ttest_rel axis=None, requires masked array

BUG: Slices of sparse matrices return incorrect dtype

range keyword in binned_statistics incorrect

cumtrapz not working as expected

sinc

standard error calculation inconsistent between ‘stats’ and ‘mstats’
Add a perm function into scipy.misc and an enhancement of ...
scipy.sparse.[hv]stack don’t respect anymore the dtype parameter
optimize.curve_fit uses different nomenclature from optimize.leastsq
scipy.stats.mstats.gmean does not actually take dtype

Dot product of csr_matrix causes segmentation fault
ZeroDivisionError in broydenl when initial guess is the right...
Ibfgsb output not suppressed by disp=0

Sparse matrix min/max/etc don’t support axis=-1

cdist performance issue with ‘sqeuclidean’ metric

logm fails for singular matrix

signal.chirp(method="hyp’) disallows hyperbolic upsweep
MEMORY LEAK: fmin_tnc

test failures with the current master

scipy and/or numpy change is causing tests to fail in another...

splu does not work for non-vector inputs

expit does not handle large arguments well

: specfun.f doesn’t compile with MinGW

Error message bug in scipy.cluster.hierarchy.linkage
interpolate._ppoly doesn’t build with MinGW
Test failures in signal

‘scipy.sparse.csgraph.shortest_path® does not

csr_matrix or "1il_matrix"

work on scipy.sparse.

178

Chapter 3. Release Notes

https://github.com/scipy/scipy/issues/2971
https://github.com/scipy/scipy/issues/2980
https://github.com/scipy/scipy/issues/2996
https://github.com/scipy/scipy/issues/2998
https://github.com/scipy/scipy/issues/3002
https://github.com/scipy/scipy/issues/3014
https://github.com/scipy/scipy/issues/3030
https://github.com/scipy/scipy/issues/3037
https://github.com/scipy/scipy/issues/3047
https://github.com/scipy/scipy/issues/3059
https://github.com/scipy/scipy/issues/3063
https://github.com/scipy/scipy/issues/3067
https://github.com/scipy/scipy/issues/3069
https://github.com/scipy/scipy/issues/3086
https://github.com/scipy/scipy/issues/3094
https://github.com/scipy/scipy/issues/3111
https://github.com/scipy/scipy/issues/3172
https://github.com/scipy/scipy/issues/3196
https://github.com/scipy/scipy/issues/3212
https://github.com/scipy/scipy/issues/3227
https://github.com/scipy/scipy/issues/3238
https://github.com/scipy/scipy/issues/3249
https://github.com/scipy/scipy/issues/3251
https://github.com/scipy/scipy/issues/3279
https://github.com/scipy/scipy/issues/3285
https://github.com/scipy/scipy/issues/3299
https://github.com/scipy/scipy/issues/3330
https://github.com/scipy/scipy/issues/3345
https://github.com/scipy/scipy/issues/3363
https://github.com/scipy/scipy/issues/3385
https://github.com/scipy/scipy/issues/3395
https://github.com/scipy/scipy/issues/3399
https://github.com/scipy/scipy/issues/3404
https://github.com/scipy/scipy/issues/3412
https://github.com/scipy/scipy/issues/3466

SciPy Reference Guide, Release 1.3.2

Pull requests

#442: ENH: sparse: enable 64-bit index arrays & nnz > 2**31

#2766:
#2772:
#2778:
#2792:
#2847:
#2878:
#2904
#2907:
#2932:
#2942:
#2946:
#2986:
#2987:
#2992:
#2995:
#30006:
#3007:
#3008:
#3009:
#3010:
#3012:
#3052:
#3064:
#3068:
#3073:
#3074
#3080:
#3083:
#3085:
#3101:
#3112:
#3123:
#3124:
#3126:

DOC: remove doc/seps/technology-preview.rst

TST: stats: Added a regression test for stats.wilcoxon. Closes...
Clean up stats._support, close statistics review issues

BUG io: fix file descriptor closing for netcdf variables

Rice distribution: extend to b=0, add an explicit rvs method.
[stats] fix formulas for higher moments of dweibull distribution
ENH: moments for the zipf distribution

ENH: add coverage info with coveralls.io for Travis runs.

BUGHTST: setdiag implementation for dia_matrix (Close #2931)...

Misc fixes pointed out by Eclipse PyDev static code analysis
ENH: allow non-monotonic input in interpld

BUG: runtests: chdir away from root when running tests
DOC: linalg: don’t recommend np.linalg.norm

ENH: Add “limit” parameter to dijkstra calculation

ENH: Use int shape

DOC: stats: add a log base note to the docstring

DEP: stats: Deprecate randwppf and randwcdf

Fix mstats.kurtosistest, and test coverage for skewtest/normaltest
Minor reST typo

Add scipy.optimize.Result to API docs

Corrects documentation error

PEP-8 conformance improvements

Binned statistic

Fix Issue #3067 fix camptrapz that was raising an exception when...

Arff reader with nominal value of 1 character

Some maintenance work

Review and clean up all Box-Cox functions

Bug: should return 0 if no regions found

BUG: Use zpk in IR filter design to improve accuracy
refactor stats tests a bit

ENH: implement Akima interpolation in 1D

MAINT: an easier way to make ranges from slices
File object support for imread and imsave

pepS8ify stats/distributions.py

3.20

. SciPy 0.14.0 Release Notes

179

https://github.com/scipy/scipy/pull/442
https://github.com/scipy/scipy/pull/2766
https://github.com/scipy/scipy/pull/2772
https://github.com/scipy/scipy/pull/2778
https://github.com/scipy/scipy/pull/2792
https://github.com/scipy/scipy/pull/2847
https://github.com/scipy/scipy/pull/2878
https://github.com/scipy/scipy/pull/2904
https://github.com/scipy/scipy/pull/2907
https://github.com/scipy/scipy/pull/2932
https://github.com/scipy/scipy/pull/2942
https://github.com/scipy/scipy/pull/2946
https://github.com/scipy/scipy/pull/2986
https://github.com/scipy/scipy/pull/2987
https://github.com/scipy/scipy/pull/2992
https://github.com/scipy/scipy/pull/2995
https://github.com/scipy/scipy/pull/3006
https://github.com/scipy/scipy/pull/3007
https://github.com/scipy/scipy/pull/3008
https://github.com/scipy/scipy/pull/3009
https://github.com/scipy/scipy/pull/3010
https://github.com/scipy/scipy/pull/3012
https://github.com/scipy/scipy/pull/3052
https://github.com/scipy/scipy/pull/3064
https://github.com/scipy/scipy/pull/3068
https://github.com/scipy/scipy/pull/3073
https://github.com/scipy/scipy/pull/3074
https://github.com/scipy/scipy/pull/3080
https://github.com/scipy/scipy/pull/3083
https://github.com/scipy/scipy/pull/3085
https://github.com/scipy/scipy/pull/3101
https://github.com/scipy/scipy/pull/3112
https://github.com/scipy/scipy/pull/3123
https://github.com/scipy/scipy/pull/3124
https://github.com/scipy/scipy/pull/3126

SciPy Reference Guide, Release 1.3.2

#3134
#3138:
#3155:
#3156:
#3166:
#3170:
#3175:
#3177:
#3178:
#3179:
#3180:
#3181:
#3182:
#3183:
#3186:
#3187:
#3201:
#3207:
#3218:
#3222:
#3223:
#3224
#3228:
#3234
#3235:
#3239:
#3240:
#3241:
#3243:
#3245:
#3247:
#3248:
#3252:
#3253:
#3254:
#3272:

MAINT: split distributions.py into three files

clean up tests for discrete distributions

special: handle the edge case lambda=0 in pdtr, pdtrc and pdtrik
Rename optimize.Result to OptimizeResult

BUG: make curve_fit() work with array_like input. Closes gh-3037.
Fix numpy version checks

use numpy sinc

Update numpy version warning, remove oldnumeric import

DEP: remove deprecated umfpack wrapper. Closes gh-3002.
DOC: add BPoly to the docs

Suppress warnings when running stats.test()

altered sem func in mstats to match stats

Make weave tests behave

ENH: Add k-sample Anderson-Darling test to stats module

Fix stats.scoreatpercentile

DOC: make curve_fit nomenclature same as leastsq

Added axis keyword to dendrogram function

Make docstring examples in stats.distributions docstrings runnable
BUG: integrate: Fix banded jacobian handling in the “vode” and...
BUG: limit input ranges in special.nctdtr

Fix test errors with numpy master

Fix int32 overflows in sparsetools

DOC: tf2ss zpk?2ss note controller canonical form

Add See Also links and Example graphs to filter design * ord functions
Updated the buttord function to be consistent with the other...
correct doc for pchip interpolation

DOC: fix ReST errors in the BPoly docstring

RF: check write attr of fileobject without writing

a bit of maintanence work in stats

BUG/ENH: stats: make frozen distributions hold separate instances
ENH function to return nnz per row/column in some sparse matrices
ENH much more efficient sparse min/max with axis

Fast sqeuclidean

FIX support axis=-1 and -2 for sparse reduce methods

TST tests for non-canonical input to sparse matrix operations

BUG: sparse: fix bugs in dia_matrix.setdiag

180

Chapter 3.

Release Notes

https://github.com/scipy/scipy/pull/3134
https://github.com/scipy/scipy/pull/3138
https://github.com/scipy/scipy/pull/3155
https://github.com/scipy/scipy/pull/3156
https://github.com/scipy/scipy/pull/3166
https://github.com/scipy/scipy/pull/3170
https://github.com/scipy/scipy/pull/3175
https://github.com/scipy/scipy/pull/3177
https://github.com/scipy/scipy/pull/3178
https://github.com/scipy/scipy/pull/3179
https://github.com/scipy/scipy/pull/3180
https://github.com/scipy/scipy/pull/3181
https://github.com/scipy/scipy/pull/3182
https://github.com/scipy/scipy/pull/3183
https://github.com/scipy/scipy/pull/3186
https://github.com/scipy/scipy/pull/3187
https://github.com/scipy/scipy/pull/3201
https://github.com/scipy/scipy/pull/3207
https://github.com/scipy/scipy/pull/3218
https://github.com/scipy/scipy/pull/3222
https://github.com/scipy/scipy/pull/3223
https://github.com/scipy/scipy/pull/3224
https://github.com/scipy/scipy/pull/3228
https://github.com/scipy/scipy/pull/3234
https://github.com/scipy/scipy/pull/3235
https://github.com/scipy/scipy/pull/3239
https://github.com/scipy/scipy/pull/3240
https://github.com/scipy/scipy/pull/3241
https://github.com/scipy/scipy/pull/3243
https://github.com/scipy/scipy/pull/3245
https://github.com/scipy/scipy/pull/3247
https://github.com/scipy/scipy/pull/3248
https://github.com/scipy/scipy/pull/3252
https://github.com/scipy/scipy/pull/3253
https://github.com/scipy/scipy/pull/3254
https://github.com/scipy/scipy/pull/3272

SciPy Reference Guide, Release 1.3.2

e #3278: Also generate a tar.xz when running paver sdist

e #3286: DOC: update 0.14.0 release notes.

e #3289: TST: remove insecure mktemp use in tests

e #3292: MAINT: fix a backwards incompatible change to stats.distributions.__all__
e #3293: ENH: signal: Allow upsweeps of frequency in the ‘hyperbolic’...

e #3302: ENH: add dtype arg to stats.mstats.gmean and stats.mstats.hmean

e #3307: DOC: add note about different ba forms in tf2zpk

» #3309: doc enhancements to scipy.stats.mstats.winsorize

» #3310: DOC: clarify matrix vs array in mmio docstrings

» #3314: BUG: fix scipy.io.mmread() of gzipped files under Python3

e #3323: ENH: Efficient interpolation on regular grids in arbitrary dimensions
e #3332: DOC: clean up scipy.special docs

e #3335: ENH: improve nanmedian performance

e #3347: BUG: fix use of np.max in stats.fisher_exact

* #3356: ENH: sparse: speed up LIL indexing + assignment via Cython

» #3357: Fix “imresize does not work with size = int”

e #3358: MAINT: rename Akimalnterpolator to AkimalDInterpolator

e #3366: WHT: sparse: reindent dsolve/*.c *.h

» #3367: BUG: sparse/dsolve: fix dense matrix fortran order bugs in superlu...
e #3369: ENH minimize, minimize_scalar: Add support for user-provided...

e #3371: scipy.stats.sigmaclip doesn’t appear in the html docs.

e #3373: BUG: sparse/dsolve: detect invalid LAPACK parameters in superlu...
e #3375: ENH: sparse/dsolve: make the L and U factors of splu and spilu...

e #3377: MAINT: make travis build one target against Numpy 1.5

o #3378: MAINT: fftpack: Remove the use of ' import *' in a couple test...
e #3381: MAINT: replace np.isinf(x) & (x>0) -> np.isposinf(x) to avoid...

o #3383: MAINT: skip float96 tests on platforms without float96

o #3384: MAINT: add pyflakes to Travis-CI

» #3386: BUG: stable evaluation of expit

» #3388: BUG: SuperLU: fix missing declaration of dlamch

» #3389: BUG: sparse: downcast 64-bit indices safely to intp when required

e #3390: BUG: nonlinear solvers are not confused by lucky guess

e #3391: TST: fix sparse test errors due to axis=-1,-2 usage in np.matrix.sum().
* #3392: BUG: sparse/lil: fix up Cython bugs in fused type lookup

» #3393: BUG: sparse/compressed: work around bug in np.unique in earlier. ..

e #3394: BUG: allow ClusterNode.pre_order() for non-root nodes

3.20. SciPy 0.14.0 Release Notes 181

https://github.com/scipy/scipy/pull/3278
https://github.com/scipy/scipy/pull/3286
https://github.com/scipy/scipy/pull/3289
https://github.com/scipy/scipy/pull/3292
https://github.com/scipy/scipy/pull/3293
https://github.com/scipy/scipy/pull/3302
https://github.com/scipy/scipy/pull/3307
https://github.com/scipy/scipy/pull/3309
https://github.com/scipy/scipy/pull/3310
https://github.com/scipy/scipy/pull/3314
https://github.com/scipy/scipy/pull/3323
https://github.com/scipy/scipy/pull/3332
https://github.com/scipy/scipy/pull/3335
https://github.com/scipy/scipy/pull/3347
https://github.com/scipy/scipy/pull/3356
https://github.com/scipy/scipy/pull/3357
https://github.com/scipy/scipy/pull/3358
https://github.com/scipy/scipy/pull/3366
https://github.com/scipy/scipy/pull/3367
https://github.com/scipy/scipy/pull/3369
https://github.com/scipy/scipy/pull/3371
https://github.com/scipy/scipy/pull/3373
https://github.com/scipy/scipy/pull/3375
https://github.com/scipy/scipy/pull/3377
https://github.com/scipy/scipy/pull/3378
https://github.com/scipy/scipy/pull/3381
https://github.com/scipy/scipy/pull/3383
https://github.com/scipy/scipy/pull/3384
https://github.com/scipy/scipy/pull/3386
https://github.com/scipy/scipy/pull/3388
https://github.com/scipy/scipy/pull/3389
https://github.com/scipy/scipy/pull/3390
https://github.com/scipy/scipy/pull/3391
https://github.com/scipy/scipy/pull/3392
https://github.com/scipy/scipy/pull/3393
https://github.com/scipy/scipy/pull/3394

SciPy Reference Guide, Release 1.3.2

e #3400: BUG: cluster.linkage ValueError typo bug

» #3402: BUG: special: In specfun.f, replace the use of CMPLX with DCMPLX,...
» #3408: MAINT: sparse: Numpy 1.5 compatibility fixes

e #3410: MAINT: interpolate: fix blas defs in _ppoly

e #3411: MAINT: Numpy 1.5 fixes in interpolate

e #3413: Fix more test issues with older numpy versions

e #3414: TST: signal: loosen some error tolerances in the filter tests....

e #3415: MAINT: tools: automated close issue + pr listings for release...
o #3440: MAINT: wrap sparsetools manually instead via SWIG

» #3460: TST: open image file in binary mode

» #3467: BUG: fix validation in csgraph.shortest_path

3.21 SciPy 0.13.2 Release Notes

SciPy 0.13.2 is a bug-fix release with no new features compared to 0.13.1.

3.21.1 Issues fixed

* 3096: require Cython 0.19, earlier versions have memory leaks in fused types
* 3079: ndimage. label fix swapped 64-bitness test

¢ 3108: optimize.fmin_slsqgp constraint violation

3.22 SciPy 0.13.1 Release Notes

SciPy 0.13.1 is a bug-fix release with no new features compared to 0.13.0. The only changes are several fixes in ndimage,
one of which was a serious regression in ndimage . label (Github issue 3025), which gave incorrect results in 0.13.0.

3.22.1 Issues fixed

* 3025: ndimage. label returns incorrect results in scipy 0.13.0
* 1992: ndimage. label return type changed from int32 to uint32

* 1992: ndimage. find_objects doesn’t work with int32 input in some cases

3.23 SciPy 0.13.0 Release Notes

Contents

e SciPy 0.13.0 Release Notes

182 Chapter 3. Release Notes

https://github.com/scipy/scipy/pull/3400
https://github.com/scipy/scipy/pull/3402
https://github.com/scipy/scipy/pull/3408
https://github.com/scipy/scipy/pull/3410
https://github.com/scipy/scipy/pull/3411
https://github.com/scipy/scipy/pull/3413
https://github.com/scipy/scipy/pull/3414
https://github.com/scipy/scipy/pull/3415
https://github.com/scipy/scipy/pull/3440
https://github.com/scipy/scipy/pull/3460
https://github.com/scipy/scipy/pull/3467

SciPy Reference Guide, Release 1.3.2

— Authors

— New features

* SCcipy.

* SCipy.

¥ scipy.

* SCipy.

* SCipy.

* SCipy.

¥ SCcipy.

* SCipy.

* SCipy.

* SCipy.

¥ Scipy.

* Scipy.

— Other changes

integrate improvements

- N-dimensional numerical integration

- dopri* improvements

1inalg improvements

- Interpolative decompositions
- Polar decomposition
- BLAS level 3 functions

- Matrix functions

optimize improvements

- Trust-region unconstrained minimization algorithms

sparse improvemenrs

- Boolean comparisons and sparse matrices

- CSR and CSC fancy indexing

sparse.linalqgimprovements
spatial improvements
signal improvements

special improvements

1o improvements

- Unformatted Fortran file reader

- scipy.io.wavfile enhancements

interpolate improvements

- B-spline derivatives and antiderivatives

stats improvements

— Deprecated features

x expmZ2 and expm3

stats functions

— Backwards incompatible changes
« LIL matrix assignment
« Deprecated radon function removed
Removed deprecated keywords xa and xb from stats.distributions

x Changes to MATLAB file readers / writers

SciPy 0.13.0 is the culmination of 7 months of hard work. It contains many new features, numerous bug-fixes, improved
test coverage and better documentation. There have been a number of deprecations and API changes in this release, which

3.23. SciPy 0.13.0 Release Notes

183

SciPy Reference Guide, Release 1.3.2

are documented below. All users are encouraged to upgrade to this release, as there are a large number of bug-fixes and
optimizations. Moreover, our development attention will now shift to bug-fix releases on the 0.13.x branch, and on adding
new features on the master branch.

This release requires Python 2.6, 2.7 or 3.1-3.3 and NumPy 1.5.1 or greater. Highlights of this release are:
* support for fancy indexing and boolean comparisons with sparse matrices
* interpolative decompositions and matrix functions in the linalg module

e two new trust-region solvers for unconstrained minimization

3.23.1 New features
scipy.integrate improvements

N-dimensional numerical integration

A new function scipy.integrate.nquad, which provides N-dimensional integration functionality with a more
flexible interface than db1lquad and tplquad, has been added.

dopri* improvements

The intermediate results from the dopri family of ODE solvers can now be accessed by a solout callback function.

scipy.linalg improvements

Interpolative decompositions

Scipy now includes a new module scipy.linalg.interpolative containing routines for computing interpola-
tive matrix decompositions (ID). This feature is based on the ID software package by P.G. Martinsson, V. Rokhlin, Y.
Shkolnisky, and M. Tygert, previously adapted for Python in the PymatrixId package by K.L. Ho.

Polar decomposition

A new function scipy.linalg.polar,to compute the polar decomposition of a matrix, was added.

BLAS level 3 functions

The BLAS functions symm, syrk, syr2k, hemm, herk and her2k are now wrapped in scipy.linalg.

Matrix functions

Several matrix function algorithms have been implemented or updated following detailed descriptions in recent pa-
pers of Nick Higham and his co-authors. These include the matrix square root (sgrtm), the matrix logarithm
(logm), the matrix exponential (expm) and its Frechet derivative (expm_frechet), and fractional matrix powers
(fractional_matrix_power).

scipy.optimize improvements

Trust-region unconstrained minimization algorithms

The minimize function gained two trust-region solvers for unconstrained minimization: dogleg and trust—-ncg.

184 Chapter 3. Release Notes

SciPy Reference Guide, Release 1.3.2

scipy.sparse improvements

Boolean comparisons and sparse matrices

All sparse matrix types now support boolean data, and boolean operations. Two sparse matrices A and B can be compared
in all the expected ways A < B, A >= B, A /= B, producing similar results as dense Numpy arrays. Comparisons with
dense matrices and scalars are also supported.

CSR and CSC fancy indexing

Compressed sparse row and column sparse matrix types now support fancy indexing with boolean matrices, slices, and
lists. So where A is a (CSC or CSR) sparse matrix, you can do things like:

>>> A[A > 0.5] = 1 # since Boolean sparse matrices work
>>> A[:2, :3] = 2
>>> A[[1,2], 2] = 3

scipy.sparse.linalg improvements

The new function onenormest provides a lower bound of the 1-norm of a linear operator and has been implemented
according to Higham and Tisseur (2000). This function is not only useful for sparse matrices, but can also be used to
estimate the norm of products or powers of dense matrices without explicitly building the intermediate matrix.

The multiplicative action of the matrix exponential of a linear operator (expm_multiply) has been implemented
following the description in Al-Mohy and Higham (2011).

Abstract linear operators (scipy.sparse.linalg.LinearOperator) can now be multiplied, added to each
other, and exponentiated, producing new linear operators. This enables easier construction of composite linear operations.

scipy.spatial improvements

The vertices of a ConvexHull can now be accessed via the vertices attribute, which gives proper orientation in 2-D.

scipy.signal improvements

The cosine window function scipy.signal.cosine was added.

scipy.special improvements

New functions scipy.special.xlogyand scipy.special.xloglpy were added. These functions can sim-
plify and speed up code that has to calculate x * log(y) and give 0 when x == 0.

scipy.io improvements

Unformatted Fortran file reader

The new class scipy.io.FortranFile facilitates reading unformatted sequential files written by Fortran code.

scipy.io.wavfile enhancements
scipy.io.wavfile.write now accepts a file buffer. Previously it only accepted a filename.

scipy.io.wavfile.readand scipy.io.wavfile.write cannow handle floating point WAV files.

3.23. SciPy 0.13.0 Release Notes 185

SciPy Reference Guide, Release 1.3.2

scipy.interpolate improvements

B-spline derivatives and antiderivatives

scipy.interpolate.splder and scipy.interpolate.splantider functions for computing B-splines
that represent derivatives and antiderivatives of B-splines were added. These functions are also available in the class-based
FITPACK interface as UnivariateSpline.derivative and UnivariateSpline.antiderivative.

scipy.stats improvements

Distributions now allow using keyword parameters in addition to positional parameters in all methods.

The function scipy.stats.power_divergence has been added for the Cressie-Read power divergence statistic
and goodness of fit test. Included in this family of statistics is the “G-test” (https://en.wikipedia.org/wiki/G-test).

scipy.stats.mood now accepts multidimensional input.
An option was added to scipy.stats.wilcoxon for continuity correction.
scipy.stats.chisquare now has an axis argument.

scipy.stats.mstats.chisquare now has axis and ddof arguments.

3.23.2 Deprecated features

expm2 and expm3

The matrix exponential functions scipy.linalg.expm2 and scipy.linalg.expm3 are deprecated. All users should use the
numerically more robust scipy.linalg.expm function instead.

scipy.stats functions

scipy.stats.oneway is deprecated; scipy.stats. f_oneway should be used instead.

scipy.stats.glm is deprecated. scipy.stats.ttest_ind is an equivalent function; more full-featured general (and
generalized) linear model implementations can be found in statsmodels.

scipy.stats.cmedian is deprecated; numpy . median should be used instead.

3.23.3 Backwards incompatible changes
LIL matrix assignment

Assigning values to LIL matrices with two index arrays now works similarly as assigning into ndarrays:

>>> x = 11l matrix ((3, 3))
>>> x[[0,1,2],[0,1,2]1=[0,1,2]
>>> x.todense ()
matrix ([[O., 0., 0
[0., 1., ©0.]
[0., 0., 2

rather than giving the result:

186 Chapter 3. Release Notes

https://en.wikipedia.org/wiki/G-test

SciPy Reference Guide, Release 1.3.2

>>> x.todense ()
matrix([[O., 1., 2
[0., 1., 2.]
[0., 1., 2

Users relying on the previous behavior will need to revisit their code. The previous behavior is obtained by x [numpy .
ix_([0,1,2],1(00,1,2])] =

Deprecated radon function removed

The misc. radon function, which was deprecated in scipy 0.11.0, has been removed. Users can find a more full-featured
radon function in scikit-image.

Removed deprecated keywords xa and xb from stats.distributions

The keywords xa and xb, which were deprecated since 0.11.0, have been removed from the distributions in scipy.
stats.

Changes to MATLARB file readers / writers

The major change is that 1D arrays in numpy now become row vectors (shape 1, N) when saved to a MATLAB 5 format
file. Previously 1D arrays saved as column vectors (N, 1). This is to harmonize the behavior of writing MATLAB 4 and
5 formats, and adapt to the defaults of numpy and MATLAB - for example np . at least_2d returns 1D arrays as row
vectors.

Trying to save arrays of greater than 2 dimensions in MATLAB 4 format now raises an error instead of silently reshaping
the array as 2D.

scipy.io.loadmat ('afile"') used to look for afile on the Python system path (sys.path); now loadmat
only looks in the current directory for a relative path filename.

3.23.4 Other changes

Security fix: scipy.weave previously used temporary directories in an insecure manner under certain circumstances.

Cython is now required to build unreleased versions of scipy. The C files generated from Cython sources are not included
in the git repo anymore. They are however still shipped in source releases.

The code base received a fairly large PEPS8 cleanup. A tox pep8 command has been added; new code should pass this
test command.

Scipy cannot be compiled with gfortran 4.1 anymore (at least on RHY), likely due to that compiler version not supporting
entry constructs well.

3.23.5 Authors

This release contains work by the following people (contributed at least one patch to this release, names in alphabetical
order):

¢ Jorge Cafiardo Alastuey +

e Tom Aldcroft +

3.23. SciPy 0.13.0 Release Notes 187

SciPy Reference Guide, Release 1.3.2

Max Bolingbroke +
Joseph Jon Booker +
Francois Boulogne
Matthew Brett
Christian Brodbeck +
Per Brodtkorb +
Christian Brueffer +
Lars Buitinck

Evgeni Burovski +
Tim Cera

Lawrence Chan +
David Cournapeau
DraZen Lucanin +
Alexander J. Dunlap +
endolith

André Gaul +
Christoph Gohlke
Ralf Gommers

Alex Griffing +

Blake Griffith +
Charles Harris

Bob Helmbold +
Andreas Hilboll

Kat Huang +
Oleksandr (Sasha) Huziy +
Gert-Ludwig Ingold +
Thouis (Ray) Jones
Juan Luis Cano Rodriguez +
Robert Kern

Andreas Kloeckner +
Sytse Knypstra +
Gustav Larsson +
Denis Laxalde
Christopher Lee

Tim Leslie

Wendy Liu +

188

Chapter 3. Release Notes

SciPy Reference Guide, Release 1.3.2

¢ Clemens Novak +

e Takuya Oshima +

* Josef Perktold

* Illia Polosukhin +

¢ Przemek Porebski +
* Steve Richardson +
* Branden Rolston +
* Skipper Seabold

¢ Fazlul Shahriar

* Leo Singer +

* Rohit Sivaprasad +
¢ Daniel B. Smith +
¢ Julian Taylor

* Louis Thibault +

¢ Tomas Tomecek +
* John Travers

* Richard Tsai +

¢ Jacob Vanderplas

¢ Patrick Varilly
 Pauli Virtanen

* Stefan van der Walt
e Warren Weckesser
¢ Pedro Werneck +
 Nils Werner +

¢ Michael Wimmer +
¢ Nathan Woods +

e Tony S. Yu +

A total of 65 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

3.24 SciPy 0.12.1 Release Notes

SciPy 0.12.1 is a bug-fix release with no new features compared to 0.12.0. The single issue fixed by this release is a
security issue in scipy . weave, which was previously using temporary directories in an insecure manner under certain
circumstances.

3.24. SciPy 0.12.1 Release Notes 189

SciPy Reference Guide, Release 1.3.2

3.25 SciPy 0.12.0 Release Notes

Contents

* SciPy 0.12.0 Release Notes
— New features
* scipy.spatial improvements
- cKDTree feature-complete
- Voronoi diagrams and convex hulls
- Delaunay improvements
x Spectral estimators (scipy.signal)
* Scipy.optimize improvements
- Callback functions in L-BFGS-B and TNC
- Basin hopping global optimization (scipy.optimize.basinhopping)
* scipy.special improvements
- Revised complex error functions
- Faster orthogonal polynomials
* scipy.sparse.linalg features
« Listing Matlab(R) file contents in scipy.io
+ Documented BLAS and LAPACK low-level interfaces (scipy.linalg)
Polynomial interpolation improvements (scipy.interpolate)
— Deprecated features
+ scipy.lib.lapack
» fblas and cblas
— Backwards incompatible changes
#* Removal of scipy.io.save_as_module

* axis argument added to scipy.stats.scoreatpercentile

— Authors

SciPy 0.12.0 is the culmination of 7 months of hard work. It contains many new features, numerous bug-fixes, improved
test coverage and better documentation. There have been a number of deprecations and API changes in this release, which
are documented below. All users are encouraged to upgrade to this release, as there are a large number of bug-fixes and
optimizations. Moreover, our development attention will now shift to bug-fix releases on the 0.12.x branch, and on adding
new features on the master branch.

Some of the highlights of this release are:
* Completed QHull wrappers in scipy.spatial.
e cKDTree now a drop-in replacement for KDTree.

¢ A new global optimizer, basinhopping.

190 Chapter 3. Release Notes

SciPy Reference Guide, Release 1.3.2

* Support for Python 2 and Python 3 from the same code base (no more 2to3).

This release requires Python 2.6, 2.7 or 3.1-3.3 and NumPy 1.5.1 or greater. Support for Python 2.4 and 2.5 has been
dropped as of this release.

3.25.1 New features
scipy.spatial improvements

cKDTree feature-complete

Cython version of KDTree, cKDTree, is now feature-complete. Most operations (construction, query, query_ball_point,
query_pairs, count_neighbors and sparse_distance_matrix) are between 200 and 1000 times faster in cKDTree than in
KDTree. With very minor caveats, cKDTree has exactly the same interface as KDTree, and can be used as a drop-in
replacement.

Voronoi diagrams and convex hulls

scipy.spatial now contains functionality for computing Voronoi diagrams and convex hulls using the Qhull library.
(Delaunay triangulation was available since Scipy 0.9.0.)

Delaunay improvements

It’s now possible to pass in custom Qhull options in Delaunay triangulation. Coplanar points are now also recorded, if
present. Incremental construction of Delaunay triangulations is now also possible.

Spectral estimators (scipy.signal)

The functions scipy.signal.periodogramand scipy.signal.welch were added, providing DFT-based
spectral estimators.

scipy.optimize improvements

Callback functions in L-BFGS-B and TNC

A callback mechanism was added to L-BFGS-B and TNC minimization solvers.

Basin hopping global optimization (scipy.optimize.basinhopping)

A new global optimization algorithm. Basinhopping is designed to efficiently find the global minimum of a smooth
function.

scipy.special improvements

Revised complex error functions

The computation of special functions related to the error function now uses a new Faddeeva library from MIT which
increases their numerical precision. The scaled and imaginary error functions erfcx and erfi were also added, and
the Dawson integral dawsn can now be evaluated for a complex argument.

Faster orthogonal polynomials

Evaluation of orthogonal polynomials (the eval_* routines) in now faster in scipy.special, and their out= ar-
gument functions properly.

3.25. SciPy 0.12.0 Release Notes 191

http://ab-initio.mit.edu/Faddeeva

SciPy Reference Guide, Release 1.3.2

scipy.sparse.linalg features

* In scipy.sparse.linalg.spsolve, the b argument can now be either a vector or a matrix.
* scipy.sparse.linalg.inv was added. This uses spsolve to compute a sparse matrix inverse.

* scipy.sparse.linalg.expm was added. This computes the exponential of a sparse matrix using a similar
algorithm to the existing dense array implementation in scipy.linalg.expm.

Listing Matlab(R) file contents in scipy.io

A new function whosmat is available in scipy.io for inspecting contents of MAT files without reading them to
memory.

Documented BLAS and LAPACK low-level interfaces (scipy.linalg)

The modules scipy.linalg.blas and scipy.linalg.lapack can be used to access low-level BLAS and
LAPACK functions.

Polynomial interpolation improvements (scipy.interpolate)

The barycentric, Krogh, piecewise and pchip polynomial interpolators in scipy.interpolate accept now an axis
argument.

3.25.2 Deprecated features

scipy.lib.lapack

The module scipy.lib.lapack is deprecated. You can use scipy.linalg. lapack instead. The module scipy.lib.blas
was deprecated earlier in Scipy 0.10.0.

fblas and cblas

Accessing the modules scipy.linalg. fblas, cblas, flapack, clapack is deprecated. Instead, use the modules scipy.
linalg.lapackand scipy.linalg.blas.

3.25.3 Backwards incompatible changes

Removal of scipy.io.save_as_module

The function scipy.io.save_as_module was deprecated in Scipy 0.11.0, and is now removed.

Its private support modules scipy.io.dumbdbm_patchedand scipy.io.dumb_shelve are also removed.

axis argument added to scipy.stats.scoreatpercentile

The function scipy.stats.scoreatpercentile has been given an axis argument. The default argument is
axis=None, which means the calculation is done on the flattened array. Before this change, scoreatpercentile would act
as if axis=0 had been given. Code using scoreatpercentile with a multidimensional array will need to add axis=0 to the
function call to preserve the old behavior. (This API change was not noticed until long after the release of 0.12.0.)

192 Chapter 3. Release Notes

SciPy Reference Guide, Release 1.3.2

3.25.4 Authors

Anton Akhmerov +
Alexander Eberspicher +
Anne Archibald

Jisk Attema +
K.-Michael Aye +
bemasc +

Sebastian Berg +
Francois Boulogne +
Matthew Brett

Lars Buitinck

Steven Byrnes +

Tim Cera +

Christian +

Keith Clawson +
David Cournapeau
Nathan Crock +
endolith

Bradley M. Froehle +
Matthew R Goodman
Christoph Gohlke
Ralf Gommers
Robert David Grant +
Yaroslav Halchenko
Charles Harris
Jonathan Helmus
Andreas Hilboll
Hugo +

Oleksandr Huziy
Jeroen Demeyer +
Johannes Schonberger +
Steven G. Johnson +
Chris Jordan-Squire
Jonathan Taylor +
Niklas Kroeger +

Jerome Kieffer +

3.25

. SciPy 0.12.0 Release Notes

193

SciPy Reference Guide, Release 1.3.2

kingson +

Josh Lawrence
Denis Laxalde
Alex Leach +

Tim Leslie
Richard Lindsley +
Lorenzo Luengo +
Stephen McQuay +
MinRK

Sturla Molden +
Eric Moore +
mszep +

Matt Newville +
Vlad Niculae
Travis Oliphant
David Parker +
Fabian Pedregosa
Josef Perktold
Zach Ploskey +
Alex Reinhart +
Gilles Rochefort +
Ciro Duran Santillli +
Jan Schlueter +
Jonathan Scholz +
Anthony Scopatz
Skipper Seabold
Fabrice Silva +
Scott Sinclair
Jacob Stevenson +
Sturla Molden +
Julian Taylor +
thorstenkranz +
John Travers +
True Price +
Nicky van Foreest

Jacob Vanderplas

194

Chapter 3. Release Notes

SciPy Reference Guide, Release 1.3.2

¢ Patrick Varilly

* Daniel Velkov +
 Pauli Virtanen

* Stefan van der Walt
* Warren Weckesser

A total of 75 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

3.26 SciPy 0.11.0 Release Notes

Contents

* SciPy 0.11.0 Release Notes
— New features
x Sparse Graph Submodule
* SCcipy.optimize improvements
- Unified interfaces to minimizers
- Unified interface to root finding algorithms
* scipy.linalg improvements
- New matrix equation solvers
- QZ and QR Decomposition
- Pascal matrices
* Sparse matrix construction and operations
x LSMR iterative solver
Discrete Sine Transform
* scipy.interpolate improvements

x Binned statistics (scipy.stats)

Deprecated features

Backwards incompatible changes
#* Removal of scipy.maxentropy
x Minor change in behavior of splev
x Behavior of scipy.integrate.complex_ode

« Minor change in behavior of T-tests

Other changes

Authors

SciPy 0.11.0 is the culmination of 8 months of hard work. It contains many new features, numerous bug-fixes, improved
test coverage and better documentation. Highlights of this release are:

3.26. SciPy 0.11.0 Release Notes 195

SciPy Reference Guide, Release 1.3.2

* A new module has been added which provides a number of common sparse graph algorithms.
* New unified interfaces to the existing optimization and root finding functions have been added.

All users are encouraged to upgrade to this release, as there are a large number of bug-fixes and optimizations. Our
development attention will now shift to bug-fix releases on the 0.11.x branch, and on adding new features on the master
branch.

This release requires Python 2.4-2.7 or 3.1-3.2 and NumPy 1.5.1 or greater.

3.26.1 New features

Sparse Graph Submodule
The new submodule scipy. sparse.csgraph implements a number of efficient graph algorithms for graphs stored
as sparse adjacency matrices. Available routines are:
e connected_components - determine connected components of a graph
e laplacian - compute the laplacian of a graph
* shortest_path - compute the shortest path between points on a positive graph
e dijkstra - use Dijkstra’s algorithm for shortest path
e floyd _warshall - use the Floyd-Warshall algorithm for shortest path
e breadth_first_order - compute a breadth-first order of nodes
e depth_first_order - compute a depth-first order of nodes
e breadth_first_tree - construct the breadth-first tree from a given node
e depth_first_tree - construct a depth-first tree from a given node

* minimum_spanning_tree - construct the minimum spanning tree of a graph

scipy.optimize improvements

The optimize module has received a lot of attention this release. In addition to added tests, documentation improvements,
bug fixes and code clean-up, the following improvements were made:

¢ A unified interface to minimizers of univariate and multivariate functions has been added.
* A unified interface to root finding algorithms for multivariate functions has been added.

* The L-BFGS-B algorithm has been updated to version 3.0.

Unified interfaces to minimizers

Two new functions scipy.optimize.minimize and scipy.optimize.minimize_scalar were added
to provide a common interface to minimizers of multivariate and univariate functions respectively. For mul-
tivariate functions, scipy.optimize.minimize provides an interface to methods for unconstrained opti-
mization (fmin, fmin_powell, fmin_cg, fmin_ncg, fmin_bfgs and anneal) or constrained optimiza-
tion (fmin_1_bfgs_b, fmin_tnc, fmin_cobyla and fmin_slsqgp). For univariate functions, scipy.
optimize.minimize_scalar provides an interface to methods for unconstrained and bounded optimization
(brent, golden, fminbound). This allows for easier comparing and switching between solvers.

196 Chapter 3. Release Notes

SciPy Reference Guide, Release 1.3.2

Unified interface to root finding algorithms

The new function scipy.optimize.root provides a common interface to root finding algorithms for multivariate
functions, embedding fsolve, leastsqg and nonlin solvers.

scipy.linalg improvements

New matrix equation solvers

Solvers for the Sylvester equation (scipy.linalg.solve_sylvester, discrete and continuous Lyapunov equa-
tions (scipy.linalg.solve_lyapunov, scipy.linalg.solve_discrete_lyapunov) and discrete
and continuous algebraic Riccati equations (scipy.linalg.solve_continuous_are, scipy.linalg.
solve_discrete_are) have been added to scipy.linalg. These solvers are often used in the field of linear
control theory.

QZ and QR Decomposition

It is now possible to calculate the QZ, or Generalized Schur, decomposition using scipy.linalg.gz. This function
wraps the LAPACK routines sgges, dgges, cgges, and zgges.

The function scipy.linalg.gr_multiply, which allows efficient computation of the matrix product of Q (from
a QR decomposition) and a vector, has been added.

Pascal matrices

A function for creating Pascal matrices, scipy.linalg.pascal, was added.

Sparse matrix construction and operations

Two new functions, scipy.sparse.diags and scipy.sparse.block_diag, were added to easily construct
diagonal and block-diagonal sparse matrices respectively.

scipy.sparse.csc_matrix and csr_matrix now support the operations sin, tan, arcsin, arctan,
sinh, tanh, arcsinh, arctanh, rint, sign, expml, loglp, deg2rad, rad2deg, floor, ceil and
trunc. Previously, these operations had to be performed by operating on the matrices’ data attribute.

LSMR iterative solver

LSMR, an iterative method for solving (sparse) linear and linear least-squares systems, was added as scipy.sparse.
linalg.lsmr.

Discrete Sine Transform

Bindings for the discrete sine transform functions have been added to scipy. fftpack.

scipy.interpolate improvements

For interpolation in spherical coordinates, the three classes scipy.interpolate.
SmoothSphereBivariateSpline, scipy.interpolate.LSQSphereBivariateSpline, and
scipy.interpolate.RectSphereBivariateSpline have been added.

3.26. SciPy 0.11.0 Release Notes 197

SciPy Reference Guide, Release 1.3.2

Binned statistics (scipy.stats)

The stats module has gained functions to do binned statistics, which are a generalization of histograms, in 1-D, 2-
D and multiple dimensions: scipy.stats.binned_statistic, scipy.stats.binned_statistic_2d
and scipy.stats.binned_statistic_dd.

3.26.2 Deprecated features

scipy.sparse.cs_graph_components has been made a part of the sparse graph submodule, and renamed to
scipy.sparse.csgraph.connected_components. Calling the former routine will result in a deprecation
warning.

scipy.misc.radon has been deprecated. A more full-featured radon transform can be found in scikits-image.

scipy.io.save_as_module has been deprecated. A better way to save multiple Numpy arrays is the numpy .
savez function.

The xa and xb parameters for all distributions in scipy.stats.distributions already weren’t used; they have
now been deprecated.

3.26.3 Backwards incompatible changes
Removal of scipy.maxentropy

The scipy.maxentropy module, which was deprecated in the 0.10.0 release, has been removed. Logistic regression
in scikits.learn is a good and modern alternative for this functionality.

Minor change in behavior of splev

The spline evaluation function now behaves similarly to interpld for size-1 arrays. Previous behavior:

>>> from scipy.interpolate import splev, splrep, interpld

>> x = [1,2,3,4,5]
>>vy = [4,5,6,7,8]
>>> tck = splrep(x, V)
>>> splev([1l], tck)

4.

>>> splev(l, tck)

4.

Corrected behavior:

>>> splev([1l], tck)
array ([4.])

>>> splev (1, tck)
array (4.)

This affects also the UnivariateSpline classes.

198 Chapter 3. Release Notes

SciPy Reference Guide, Release 1.3.2

Behavior of scipy.integrate.complex_ode

The behavior of the y attribute of complex_ode is changed. Previously, it expressed the complex-valued solution in
the form:

z = ode.y[::2] + 13 * ode.y[1::2]

Now, it is directly the complex-valued solution:

z = ode.y

Minor change in behavior of T-tests

The T-tests scipy.stats.ttest_ind, scipy.stats.ttest_rel and scipy.stats.ttest_lsamp
have been changed so that 0 / 0 now returns NaN instead of 1.

3.26.4 Other changes

The SuperLU sources in scipy.sparse.linalg have been updated to version 4.3 from upstream.

The function scipy.signal .bode, which calculates magnitude and phase data for a continuous-time system, has
been added.

The two-sample T-test scipy.stats.ttest_ind gained an option to compare samples with unequal variances, i.e.
Welch’s T-test.

scipy.misc.logsumexp now takes an optional axis keyword argument.

3.26.5 Authors

This release contains work by the following people (contributed at least one patch to this release, names in alphabetical
order):

¢ Jeff Armstrong

¢ Chad Baker

* Brandon Beacher +
e behrisch +

* borishim +

* Matthew Brett

* Lars Buitinck

* Luis Pedro Coelho +
¢ Johann Cohen-Tanugi
* David Cournapeau

* dougal +

 Ali Ebrahim +

* endolith +

* Bjgrn Forsman +

3.26. SciPy 0.11.0 Release Notes 199

SciPy Reference Guide, Release 1.3.2

Robert Gantner +
Sebastian Gassner +
Christoph Gohlke
Ralf Gommers
Yaroslav Halchenko
Charles Harris
Jonathan Helmus +
Andreas Hilboll +
Marc Honnorat +
Jonathan Hunt +
Maxim Ivanov +
Thouis (Ray) Jones
Christopher Kuster +
Josh Lawrence +
Denis Laxalde +
Travis Oliphant
Joonas Paalasmaa +
Fabian Pedregosa
Josef Perktold
Gavin Price +

Jim Radford +
Andrew Schein +
Skipper Seabold
Jacob Silterra +
Scott Sinclair
Alexis Tabary +
Martin Teichmann
Matt Terry +

Nicky van Foreest +
Jacob Vanderplas
Patrick Varilly +
Pauli Virtanen

Nils Wagner +
Darryl Wally +
Stefan van der Walt

Liming Wang +

200

Chapter 3. Release Notes

SciPy Reference Guide, Release 1.3.2

* David Warde-Farley +
* Warren Weckesser

* Sebastian Werk +

¢ Mike Wimmer +

e Tony S Yu +

A total of 55 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

3.27 SciPy 0.10.1 Release Notes

Contents

e SciPy 0.10.1 Release Notes

— Main changes

— Other issues fixed

SciPy 0.10.1 is a bug-fix release with no new features compared to 0.10.0.

3.27.1 Main changes

The most important changes are:

1. The single precision routines of eigs and eigshin scipy.sparse.linalg have been disabled (they inter-
nally use double precision now).

2. A compatibility issue related to changes in NumPy macros has been fixed, in order to make scipy 0.10.1 compile
with the upcoming numpy 1.7.0 release.

3.27.2 Other issues fixed

» #835: stats: nan propagation in stats.distributions

» #1202: io: netcdf segfault

e #1531: optimize: make curve_fit work with method as callable.

* #1560: linalg: fixed mistake in eig_banded documentation.

e #1565: ndimage: bug in ndimage.variance

» #1457: ndimage: standard_deviation does not work with sequence of indexes
e #1562: cluster: segfault in linkage function

* #1568: stats: One-sided fisher_exact() returns p < 1 for O successful attempts

o #1575: stats: zscore and zmap handle the axis keyword incorrectly

3.27. SciPy 0.10.1 Release Notes 201

SciPy Reference Guide, Release 1.3.2

3.28 SciPy 0.10.0 Release Notes

Contents

* SciPy 0.10.0 Release Notes
— New features
Bento: new optional build system
« Generalized and shift-invert eigenvalue problems in scipy.sparse.linalg
« Discrete-Time Linear Systems (scipy.signal)
x Enhancements to scipy.signal
» Additional decomposition options (scipy.linalg)
« Additional special matrices (scipy.linalg)
x Enhancements to scipy.stats
x Enhancements to scipy.special

« Basic support for Harwell-Boeing file format for sparse matrices

Deprecated features
* scipy.maxentropy
* scipy.lib.blas

* Numscons build system

Backwards-incompatible changes

Other changes

Authors

SciPy 0.10.0 is the culmination of 8 months of hard work. It contains many new features, numerous bug-fixes, improved
test coverage and better documentation. There have been a limited number of deprecations and backwards-incompatible
changes in this release, which are documented below. All users are encouraged to upgrade to this release, as there are a
large number of bug-fixes and optimizations. Moreover, our development attention will now shift to bug-fix releases on
the 0.10.x branch, and on adding new features on the development master branch.

Release highlights:
» Support for Bento as optional build system.
 Support for generalized eigenvalue problems, and all shift-invert modes available in ARPACK.

This release requires Python 2.4-2.7 or 3.1- and NumPy 1.5 or greater.

3.28.1 New features

Bento: new optional build system

Scipy can now be built with Bento. Bento has some nice features like parallel builds and partial rebuilds, that are not
possible with the default build system (distutils). For usage instructions see BENTO_BUILD.txt in the scipy top-level
directory.

202 Chapter 3. Release Notes

http://cournape.github.com/Bento/

SciPy Reference Guide, Release 1.3.2

Currently Scipy has three build systems, distutils, numscons and bento. Numscons is deprecated and is planned and will
likely be removed in the next release.

Generalized and shift-invert eigenvalue problems in scipy.sparse.linalg

The sparse eigenvalue problem solver functions scipy.sparse.eigs/eigh now support generalized eigenvalue
problems, and all shift-invert modes available in ARPACK.

Discrete-Time Linear Systems (scipy.signal)

Support for simulating discrete-time linear systems, including scipy.signal.dlsim, scipy.signal.
dimpulse, and scipy.signal.dstep, has been added to SciPy. Conversion of linear systems from continuous-
time to discrete-time representations is also present via the scipy.signal.cont2discrete function.

Enhancements to scipy.signal

A Lomb-Scargle periodogram can now be computed with the new function scipy.signal.lombscargle.

The forward-backward filter function scipy.signal.filtfilt can now filter the data in a given axis of an n-
dimensional numpy array. (Previously it only handled a 1-dimensional array.) Options have been added to allow more
control over how the data is extended before filtering.

FIR filter design with scipy.signal.firwin2 now has options to create filters of type III (zero at zero and Nyquist
frequencies) and IV (zero at zero frequency).

Additional decomposition options (scipy.linalg)

A sort keyword has been added to the Schur decomposition routine (scipy.linalg.schur) to allow the sorting of
eigenvalues in the resultant Schur form.

Additional special matrices (scipy.linalg)

The functions hilbert and invhilbert were added to scipy.linalg.

Enhancements to scipy.stats

* The one-sided form of Fisher’s exact test is now also implemented in stats.fisher_exact.

* The function stats.chi2_contingency for computing the chi-square test of independence of factors in a
contingency table has been added, along with the related utility functions stats.contingency.margins
and stats.contingency.expected_freq.

Enhancements to scipy.special

The functions logit (p) = log(p/ (1-p)) and expit (x) = 1/ (l+exp (—x)) have been implemented as
scipy.special.logit and scipy.special.expit respectively.

3.28. SciPy 0.10.0 Release Notes 203

SciPy Reference Guide, Release 1.3.2

Basic support for Harwell-Boeing file format for sparse matrices

Both read and write are support through a simple function-based API, as well as a more complete API to control number
format. The functions may be found in scipy.sparse.io.

The following features are supported:
* Read and write sparse matrices in the CSC format

¢ Only real, symmetric, assembled matrix are supported (RUA format)

3.28.2 Deprecated features

scipy.maxentropy
The maxentropy module is unmaintained, rarely used and has not been functioning well for several releases. Therefore

it has been deprecated for this release, and will be removed for scipy 0.11. Logistic regression in scikits.learn is a good
alternative for this functionality. The scipy.maxentropy.logsumexp function has been movedto scipy.misc.

scipy.lib.blas

There are similar BLAS wrappersin scipy.linalgand scipy.1lib. These have now been consolidated as scipy .
linalg.blas,and scipy.lib.blas is deprecated.

Numscons build system

The numscons build system is being replaced by Bento, and will be removed in one of the next scipy releases.

3.28.3 Backwards-incompatible changes

The deprecated name invnorm was removed from scipy.stats.distributions, this distribution is available as
invgauss.

The following deprecated nonlinear solvers from scipy.optimize have been removed:

- " “broyden_modified' "~ (bad performance)

— " “broydenl_modified’ " (bad performance)

- " “broyden_generalized "~ (equivalent to "~ ~anderson)

- “Tanderson2 " (equivalent to "~ “anderson”)

- " “broyden3" " (obsoleted by new limited-memory broyden methods)
- " “vackar'® (renamed to "~ “diagbroyden ")

3.28.4 Other changes

scipy.constants has been updated with the CODATA 2010 constants.

__all__ dicts have been added to all modules, which has cleaned up the namespaces (particularly useful for interactive
work).

An API section has been added to the documentation, giving recommended import guidelines and specifying which
submodules are public and which aren’t.

204 Chapter 3. Release Notes

SciPy Reference Guide, Release 1.3.2

3.28.5 Authors

This release contains work by the following people (contributed at least one patch to this release, names in alphabetical
order):

Jeff Armstrong +
Matthew Brett

Lars Buitinck +
David Cournapeau
FI$H 2000 +
Michael McNeil Forbes +
Matty G +
Christoph Gohlke
Ralf Gommers
Yaroslav Halchenko
Charles Harris
Thouis (Ray) Jones +
Chris Jordan-Squire +
Robert Kern

Chris Lasher +

Wes McKinney +
Travis Oliphant
Fabian Pedregosa
Josef Perktold
Thomas Robitaille +
Pim Schellart +
Anthony Scopatz +
Skipper Seabold +
Fazlul Shahriar +
David Simcha +
Scott Sinclair +
Andrey Smirnov +
Collin RM Stocks +
Martin Teichmann +
Jake Vanderplas +
Gaél Varoquaux +
Pauli Virtanen

Stefan van der Walt

3.28

. SciPy 0.10.0 Release Notes

205

SciPy Reference Guide, Release 1.3.2

e Warren Weckesser
e Mark Wiebe +

A total of 35 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

3.29 SciPy 0.9.0 Release Notes

Contents

e SciPy 0.9.0 Release Notes

— Python 3

— Scipy source code location to be changed

— New features
x Delaunay tessellations (scipy.spatial)
* N-dimensional interpolation (scipy.interpolate)
« Nonlinear equation solvers (scipy.optimize)
x New linear algebra routines (scipy.linalg)
« Improved FIR filter design functions (scipy.signal)
« Improved statistical tests (scipy.stats)

— Deprecated features
x Obsolete nonlinear solvers (in scipy.optimize)

— Removed features
« Old correlate/convolve behavior (in scipy.signal)
* scipy.stats
* scipy.sparse
* scipy.sparse.linalg.arpack.speigs

— Other changes

ARPACK interface changes

SciPy 0.9.0 is the culmination of 6 months of hard work. It contains many new features, numerous bug-fixes, improved
test coverage and better documentation. There have been a number of deprecations and API changes in this release, which
are documented below. All users are encouraged to upgrade to this release, as there are a large number of bug-fixes and
optimizations. Moreover, our development attention will now shift to bug-fix releases on the 0.9.x branch, and on adding
new features on the development trunk.

This release requires Python 2.4 - 2.7 or 3.1 - and NumPy 1.5 or greater.

Please note that SciPy is still considered to have “Beta” status, as we work toward a SciPy 1.0.0 release. The 1.0.0 release
will mark a major milestone in the development of SciPy, after which changing the package structure or API will be much
more difficult. Whilst these pre-1.0 releases are considered to have “Beta” status, we are committed to making them as
bug-free as possible.

However, until the 1.0 release, we are aggressively reviewing and refining the functionality, organization, and interface.

206 Chapter 3. Release Notes

SciPy Reference Guide, Release 1.3.2

This is being done in an effort to make the package as coherent, intuitive, and useful as possible. To achieve this, we need
help from the community of users. Specifically, we need feedback regarding all aspects of the project - everything - from
which algorithms we implement, to details about our function’s call signatures.

3.29.1 Python 3

Scipy 0.9.0 is the first SciPy release to support Python 3. The only module that is not yet ported is scipy.weave.

3.29.2 Scipy source code location to be changed
Soon after this release, Scipy will stop using SVN as the version control system, and move to Git. The development source
code for Scipy can from then on be found at

https://github.com/scipy/scipy

3.29.3 New features

Delaunay tessellations (scipy.spatial)

Scipy now includes routines for computing Delaunay tessellations in N dimensions, powered by the Qhull computational
geometry library. Such calculations can now make use of the new scipy.spatial.Delaunay interface.

N-dimensional interpolation (scipy.interpolate)

Support for scattered data interpolation is now significantly improved. This version includesa scipy.interpolate.
griddata function that can perform linear and nearest-neighbour interpolation for N-dimensional scattered data, in
addition to cubic spline (C1-smooth) interpolation in 2D and 1D. An object-oriented interface to each interpolator type
is also available.

Nonlinear equation solvers (scipy.optimize)
Scipy includes new routines for large-scale nonlinear equation solving in scipy.optimize. The following methods
are implemented:

¢ Newton-Krylov (scipy.optimize.newton_krylov)

¢ (Generalized) secant methods:

— Limited-memory Broyden methods (scipy.optimize.broydenl, scipy.optimize.
broyden?2)

— Anderson method (scipy.optimize.anderson)

e Simple iterations (scipy.optimize.diagbroyden, scipy.optimize.excitingmixing,
scipy.optimize.linearmixing)

The scipy.optimize.nonlin module was completely rewritten, and some of the functions were deprecated (see
above).

3.29. SciPy 0.9.0 Release Notes 207

https://github.com/scipy/scipy
http://www.qhull.org/

SciPy Reference Guide, Release 1.3.2

New linear algebra routines (scipy.linalg)

Scipy now contains routines for effectively solving triangular equation systems (scipy.linalg.
solve_triangular).

Improved FIR filter design functions (scipy.signal)
The function scipy.signal. firwin was enhanced to allow the design of highpass, bandpass, bandstop and multi-
band FIR filters.

The function scipy.signal.firwin2 was added. This function uses the window method to create a linear phase
FIR filter with an arbitrary frequency response.

The functions scipy.signal.kaiser_attenand scipy.signal.kaiser_beta were added.

Improved statistical tests (scipy.stats)
A new function scipy.stats.fisher_exact was added, that provides Fisher’s exact test for 2x2 contingency
tables.

The function scipy.stats.kendalltau was rewritten to make it much faster (O(n log(n)) vs O(n”2)).

3.29.4 Deprecated features

Obsolete nonlinear solvers (in scipy.optimize)

The following nonlinear solvers from scipy.optimize are deprecated:
e broyden_modified (bad performance)
* broydenl_modified (bad performance)
* broyden_generalized (equivalent to anderson)
¢ anderson?2 (equivalent to anderson)
* broyden3 (obsoleted by new limited-memory broyden methods)

e vackar (renamed to diagbroyden)

3.29.5 Removed features

The deprecated modules helpmod, pexec and ppimport were removed from scipy.misc.
The output_type keyword in many scipy.ndimage interpolation functions has been removed.

The econ keyword in scipy.linalg. gr has been removed. The same functionality is still available by specifying
mode="economic"'.

Old correlate/convolve behavior (in scipy.signal)

The old behavior for scipy.signal.convolve, scipy.signal.convolve2d, scipy.signal.
correlate and scipy.signal.correlate2d was deprecated in 0.8.0 and has now been removed. Convolve
and correlate used to swap their arguments if the second argument has dimensions larger than the first one, and the mode

208 Chapter 3. Release Notes

SciPy Reference Guide, Release 1.3.2

was relative to the input with the largest dimension. The current behavior is to never swap the inputs, which is what most
people expect, and is how correlation is usually defined.

scipy.stats

Many functions in scipy.stats that are either available from numpy or have been superseded, and have been dep-
recated since version 0.7, have been removed: std, var, mean, median, cov, corrcoef, z, zs, stderr, samplestd, samplevar,
pdfapprox, pdf_moments and erfc. These changes are mirrored in scipy.stats.mstats.

scipy.sparse
Several methods of the sparse matrix classes in scipy.sparse which had been deprecated since version 0.7 were
removed: save, rowcol, getdata, listprint, ensure_sorted_indices, matvec, matmat and rmatvec.

The functions spkron, speye, spidentity, 1il_eyeand 1il_diags were removed from scipy.sparse.
The first three functions are still available as scipy.sparse.kron, scipy.sparse.eyeand scipy.sparse.
identity

The dims and nzmax keywords were removed from the sparse matrix constructor. The colind and rowind attributes were
removed from CSR and CSC matrices respectively.

scipy.sparse.linalg.arpack.speigs

A duplicated interface to the ARPACK library was removed.

3.29.6 Other changes

ARPACK interface changes

The interface to the ARPACK eigenvalue routines in scipy.sparse.linalg was changed for more robustness.

The eigenvalue and SVD routines now raise ArpackNoConvergence if the eigenvalue iteration fails to converge. If
partially converged results are desired, they can be accessed as follows:

import numpy as np
from scipy.sparse.linalg import eigs, ArpackNoConvergence

m = np.random.randn (30, 30)

try:
w, v = eigs(m, 6)

except ArpackNoConvergence, err:
partially_converged_w err.eigenvalues
partially_converged_v err.eilgenvectors

Several bugs were also fixed.

The routines were moreover renamed as follows:
* eigen —> eigs
* eigen_symmetric —> eigsh

e svd —> svds

3.29. SciPy 0.9.0 Release Notes 209

SciPy Reference Guide, Release 1.3.2

3.30 SciPy 0.8.0 Release Notes

Contents

* SciPy 0.8.0 Release Notes

Python 3

Major documentation improvements

Deprecated features
« Swapping inputs for correlation functions (scipy.signal)
x Obsolete code deprecated (scipy.misc)

* Additional deprecations

New features
« DCT support (scipy.fftpack)
= Single precision support for fft functions (scipy.fftpack)
« Correlation functions now implement the usual definition (scipy.signal)
« Additions and modification to LTI functions (scipy.signal)
« Improved waveform generators (scipy.signal)
x New functions and other changes in scipy.linalg
« New function and changes in scipy.optimize
» New sparse least squares solver
ARPACK-based sparse SVD
x Alternative behavior available for scipy.constants.find
« Incomplete sparse LU decompositions
« Faster matlab file reader and default behavior change
« Faster evaluation of orthogonal polynomials
« Lambert W function
» Improved hypergeometric 2F1 function
x More flexible interface for Radial basis function interpolation

— Removed features

* SCIpY.10

SciPy 0.8.0 is the culmination of 17 months of hard work. It contains many new features, numerous bug-fixes, improved
test coverage and better documentation. There have been a number of deprecations and API changes in this release, which
are documented below. All users are encouraged to upgrade to this release, as there are a large number of bug-fixes and
optimizations. Moreover, our development attention will now shift to bug-fix releases on the 0.8.x branch, and on adding
new features on the development trunk. This release requires Python 2.4 - 2.6 and NumPy 1.4.1 or greater.

Please note that SciPy is still considered to have “Beta” status, as we work toward a SciPy 1.0.0 release. The 1.0.0 release
will mark a major milestone in the development of SciPy, after which changing the package structure or API will be much
more difficult. Whilst these pre-1.0 releases are considered to have “Beta” status, we are committed to making them as

210 Chapter 3. Release Notes

SciPy Reference Guide, Release 1.3.2

bug-free as possible.

However, until the 1.0 release, we are aggressively reviewing and refining the functionality, organization, and interface.
This is being done in an effort to make the package as coherent, intuitive, and useful as possible. To achieve this, we need
help from the community of users. Specifically, we need feedback regarding all aspects of the project - everything - from
which algorithms we implement, to details about our function’s call signatures.

3.30.1 Python 3

Python 3 compatibility is planned and is currently technically feasible, since Numpy has been ported. However, since the
Python 3 compatible Numpy 1.5 has not been released yet, support for Python 3 in Scipy is not yet included in Scipy 0.8.
SciPy 0.9, planned for fall 2010, will very likely include experimental support for Python 3.

3.30.2 Major documentation improvements

SciPy documentation is greatly improved.

3.30.3 Deprecated features
Swapping inputs for correlation functions (scipy.signal)

Concern correlate, correlate2d, convolve and convolve2d. If the second input is larger than the first input, the inputs are
swapped before calling the underlying computation routine. This behavior is deprecated, and will be removed in scipy
0.9.0.

Obsolete code deprecated (scipy.misc)

The modules helpmod, ppimport and pexec from scipy.misc are deprecated. They will be removed from SciPy in
version 0.9.

Additional deprecations
¢ linalg: The function solveh_banded currently returns a tuple containing the Cholesky factorization and the solution
to the linear system. In SciPy 0.9, the return value will be just the solution.

 The function constants.codata. find will generate a DeprecationWarning. In Scipy version 0.8.0, the keyword argu-
ment ‘disp’ was added to the function, with the default value ‘True’. In 0.9.0, the default will be ‘False’.

* The gshape keyword argument of signal.chirp is deprecated. Use the argument vertex_zero instead.

* Passing the coefficients of a polynomial as the argument f0 to signal.chirp is deprecated. Use the function sig-
nal.sweep_poly instead.

* The io.recaster module has been deprecated and will be removed in 0.9.0.

3.30.4 New features

DCT support (scipy.fftpack)

New realtransforms have been added, namely dct and idct for Discrete Cosine Transform; type I, IT and III are available.

3.30. SciPy 0.8.0 Release Notes 211

SciPy Reference Guide, Release 1.3.2

Single precision support for fft functions (scipy.fftpack)

fft functions can now handle single precision inputs as well: fft(x) will return a single precision array if x is single precision.

At the moment, for FFT sizes that are not composites of 2, 3, and 5, the transform is computed internally in double
precision to avoid rounding error in FFTPACK.

Correlation functions now implement the usual definition (scipy.signal)
The outputs should now correspond to their matlab and R counterparts, and do what most people expect if the
old_behavior=False argument is passed:

* correlate, convolve and their 2d counterparts do not swap their inputs depending on their relative shape anymore;

* correlation functions now conjugate their second argument while computing the slided sum-products, which cor-
respond to the usual definition of correlation.

Additions and modification to LTI functions (scipy.signal)
» The functions impulse2 and step2 were added to scipy.signal. They use the function scipy.signal.
1simZ to compute the impulse and step response of a system, respectively.

¢ The function scipy.signal. 1simZ2waschanged to pass any additional keyword arguments to the ODE solver.

Improved waveform generators (scipy.signal)

Several improvements to the chirp function in scipy. signal were made:

¢ The waveform generated when method="logarithmic” was corrected; it now generates a waveform that is also known
as an “exponential” or “geometric” chirp. (See https://en.wikipedia.org/wiki/Chirp.)

* A new chirp method, “hyperbolic”, was added.
* Instead of the keyword gshape, chirp now uses the keyword vertex_zero, a boolean.
e chirp no longer handles an arbitrary polynomial. This functionality has been moved to a new function, sweep_poly.

A new function, sweep_poly, was added.

New functions and other changes in scipy.linalg

The functions cho_solve_banded, circulant, companion, hadamard and leslie were added to scipy.linalg.

The function block_diag was enhanced to accept scalar and 1D arguments, along with the usual 2D arguments.

New function and changes in scipy.optimize

The curve_fit function has been added; it takes a function and uses non-linear least squares to fit that to the provided data.
The leastsq and fsolve functions now return an array of size one instead of a scalar when solving for a single parameter.

New sparse least squares solver

The Isgr function was added to scipy.sparse. This routine finds a least-squares solution to a large, sparse, linear
system of equations.

212 Chapter 3. Release Notes

https://en.wikipedia.org/wiki/Chirp
https://web.stanford.edu/group/SOL/software/lsqr/

SciPy Reference Guide, Release 1.3.2

ARPACK-based sparse SVD

A naive implementation of SVD for sparse matrices is available in scipy.sparse.linalg.eigen.arpack. It is based on using
an symmetric solver on <A, A>, and as such may not be very precise.

Alternative behavior available for scipy.constants.find

The keyword argument disp was added to the function scipy. constants. £ind, with the default value True. When
disp is True, the behavior is the same as in Scipy version 0.7. When False, the function returns the list of keys instead of
printing them. (In SciPy version 0.9, the default will be reversed.)

Incomplete sparse LU decompositions

Scipy now wraps SuperLU version 4.0, which supports incomplete sparse LU decompositions. These can be accessed via
scipy.sparse.linalg.spilu. Upgrade to SuperLU 4.0 also fixes some known bugs.

Faster matlab file reader and default behavior change

We’ve rewritten the matlab file reader in Cython and it should now read matlab files at around the same speed that Matlab
does.

The reader reads matlab named and anonymous functions, but it can’t write them.

Until scipy 0.8.0 we have returned arrays of matlab structs as numpy object arrays, where the objects have attributes named
for the struct fields. As of 0.8.0, we return matlab structs as numpy structured arrays. You can get the older behavior by
using the optional st ruct_as_record=False keyword argument to scipy.io.loadmat and friends.

There is an inconsistency in the matlab file writer, in that it writes numpy 1D arrays as column vectors in matlab 5 files, and
row vectors in matlab 4 files. We will change this in the next version, so both write row vectors. There is a Future Warning
when calling the writer to warn of this change; for now we suggest using the oned_as="'row' keyword argument to
scipy.io.savemat and friends.

Faster evaluation of orthogonal polynomials
Values of orthogonal polynomials can be evaluated with new vectorized functions in scipy.special: eval_legendre,
eval_chebyt, eval_chebyu, eval_chebyc, eval_chebys, eval_jacobi, eval_laguerre, eval_genlaguerre, eval_hermite,

eval_hermitenorm, eval_gegenbauer, eval_sh_legendre, eval_sh_chebyt, eval_sh_chebyu, eval_sh_jacobi. This is faster
than constructing the full coefficient representation of the polynomials, which was previously the only available way.

Note that the previous orthogonal polynomial routines will now also invoke this feature, when possible.

Lambert W function

scipy.special.lambertw can now be used for evaluating the Lambert W function.

Improved hypergeometric 2F1 function

Implementation of scipy.special.hyp2f1 for real parameters was revised. The new version should produce ac-
curate values for all real parameters.

3.30. SciPy 0.8.0 Release Notes 213

SciPy Reference Guide, Release 1.3.2

More fliexible interface for Radial basis function interpolation

The scipy.interpolate.Rbf class now accepts a callable as input for the “function” argument, in addition to the
built-in radial basis functions which can be selected with a string argument.

3.30.5 Removed features

scipy.stsci: the package was removed

The module scipy.misc.limits was removed.

scipy.io

The 10 code in both NumPy and SciPy is being extensively reworked. NumPy will be where basic code for reading and
writing NumPy arrays is located, while SciPy will house file readers and writers for various data formats (data, audio,
video, images, matlab, etc.).

Several functions in scipy.io are removed in the 0.8.0 release including: npfile, save, load, create_module, cre-
ate_shelf, objload, objsave, fopen, read_array, write_array, fread, fwrite, bswap, packbits, unpackbits, and con-
vert_objectarray. Some of these functions have been replaced by NumPy’s raw reading and writing capabilities, memory-
mapping capabilities, or array methods. Others have been moved from SciPy to NumPy, since basic array reading and
writing capability is now handled by NumPy.

3.31 SciPy 0.7.2 Release Notes

Contents

* SciPy 0.7.2 Release Notes

SciPy 0.7.2 is a bug-fix release with no new features compared to 0.7.1. The only change is that all C sources from
Cython code have been regenerated with Cython 0.12.1. This fixes the incompatibility between binaries of SciPy 0.7.1
and NumPy 1.4.

3.32 SciPy 0.7.1 Release Notes

Contents

* SciPy 0.7.1 Release Notes
— scipy.io
— scipy.odr
— scipy.signal
— scipy.sparse

— scipy.special

— scipy.stats

214 Chapter 3. Release Notes

SciPy Reference Guide, Release 1.3.2

— Windows binaries for python 2.6

— Universal build for scipy

SciPy 0.7.1 is a bug-fix release with no new features compared to 0.7.0.

3.32.1 scipy.io

Bugs fixed:
¢ Several fixes in Matlab file 10

3.32.2 scipy.odr

Bugs fixed:
* Work around a failure with Python 2.6

3.32.3 scipy.signal

Memory leak in Ifilter have been fixed, as well as support for array object
Bugs fixed:

o #8880, #925: lIfilter fixes

» #871: bicgstab fails on Win32

3.32.4 scipy.sparse

Bugs fixed:
» #883: scipy.io.mmread with scipy.sparse.lil_matrix broken

e lil_matrix and csc_matrix reject now unexpected sequences, cf. http://thread.gmane.org/gmane.comp.python.
scientific.user/19996 (dead link)

3.32.5 scipy.special

Several bugs of varying severity were fixed in the special functions:
e #503, #640: iv: problems at large arguments fixed by new implementation
e #623: jv: fix errors at large arguments
* #679: struve: fix wrong output for v< 0
» #803: pbdv produces invalid output
e #804: Igmn: fix crashes on some input
 #823: betainc: fix documentation
» #834: expl strange behavior near negative integer values

» #852: jn_zeros: more accurate results for large s, also in jnp/yn/ynp_zeros

3.32. SciPy 0.7.1 Release Notes 215

http://thread.gmane.org/gmane.comp.python.scientific.user/19996
http://thread.gmane.org/gmane.comp.python.scientific.user/19996

SciPy Reference Guide, Release 1.3.2

e #853: jv, yv, iv: invalid results for non-integer v < 0, complex x

e #854: jv, yv, iv, kv: return nan more consistently when out-of-domain
» #927: ellipj: fix segfault on Windows

* #946: ellpj: fix segfault on Mac OS X/python 2.6 combination.

* ive, jve, yve, kv, kve: with real-valued input, return nan for out-of-domain instead of returning only the real part
of the result.

Also,when scipy.special.errprint (1) hasbeenenabled, warning messages are now issued as Python warnings
instead of printing them to stderr.

3.32.6 scipy.stats

* linregress, mannwhitneyu, describe: errors fixed

* kstwobign, norm, expon, exponweib, exponpow, frechet, genexpon, rdist, truncexpon, planck: improvements to
numerical accuracy in distributions

3.32.7 Windows binaries for python 2.6

python 2.6 binaries for windows are now included. The binary for python 2.5 requires numpy 1.2.0 or above, and the one
for python 2.6 requires numpy 1.3.0 or above.

3.32.8 Universal build for scipy

Mac OS X binary installer is now a proper universal build, and does not depend on gfortran anymore (libgfortran is
statically linked). The python 2.5 version of scipy requires numpy 1.2.0 or above, the python 2.6 version requires numpy
1.3.0 or above.

3.33 SciPy 0.7.0 Release Notes

Contents

* SciPy 0.7.0 Release Notes
Python 2.6 and 3.0

Major documentation improvements

Running Tests

Building SciPy

Sandbox Removed

Sparse Matrices

Statistics package

— New Hierarchical Clustering module

Reworking of 10 package

216 Chapter 3. Release Notes

SciPy Reference Guide, Release 1.3.2

— New Spatial package

— Reworked fftpack package

— New Constants package

— New Radial Basis Function module

— New complex ODE integrator

— New generalized symmetric and hermitian eigenvalue problem solver
— Bug fixes in the interpolation package

— Weave clean up

— Known problems

SciPy 0.7.0 is the culmination of 16 months of hard work. It contains many new features, numerous bug-fixes, improved
test coverage and better documentation. There have been a number of deprecations and API changes in this release, which
are documented below. All users are encouraged to upgrade to this release, as there are a large number of bug-fixes and
optimizations. Moreover, our development attention will now shift to bug-fix releases on the 0.7.x branch, and on adding
new features on the development trunk. This release requires Python 2.4 or 2.5 and NumPy 1.2 or greater.

Please note that SciPy is still considered to have “Beta” status, as we work toward a SciPy 1.0.0 release. The 1.0.0 release
will mark a major milestone in the development of SciPy, after which changing the package structure or API will be much
more difficult. Whilst these pre-1.0 releases are considered to have “Beta” status, we are committed to making them as
bug-free as possible. For example, in addition to fixing numerous bugs in this release, we have also doubled the number
of unit tests since the last release.

However, until the 1.0 release, we are aggressively reviewing and refining the functionality, organization, and interface.
This is being done in an effort to make the package as coherent, intuitive, and useful as possible. To achieve this, we need
help from the community of users. Specifically, we need feedback regarding all aspects of the project - everything - from
which algorithms we implement, to details about our function’s call signatures.

Over the last year, we have seen a rapid increase in community involvement, and numerous infrastructure improvements
to lower the barrier to contributions (e.g., more explicit coding standards, improved testing infrastructure, better docu-
mentation tools). Over the next year, we hope to see this trend continue and invite everyone to become more involved.

3.33.1 Python 2.6 and 3.0

A significant amount of work has gone into making SciPy compatible with Python 2.6; however, there are still some
issues in this regard. The main issue with 2.6 support is NumPy. On UNIX (including Mac OS X), NumPy 1.2.1 mostly
works, with a few caveats. On Windows, there are problems related to the compilation process. The upcoming NumPy
1.3 release will fix these problems. Any remaining issues with 2.6 support for SciPy 0.7 will be addressed in a bug-fix
release.

Python 3.0 is not supported at all; it requires NumPy to be ported to Python 3.0. This requires immense effort, since a
lot of C code has to be ported. The transition to 3.0 is still under consideration; currently, we don’t have any timeline or
roadmap for this transition.

3.33.2 Major documentation improvements
SciPy documentation is greatly improved; you can view a HTML reference manual online or download it as a PDF file.
The new reference guide was built using the popular Sphinx tool.

This release also includes an updated tutorial, which hadn’t been available since SciPy was ported to NumPy in 2005.
Though not comprehensive, the tutorial shows how to use several essential parts of Scipy. It also includes the ndimage

3.33. SciPy 0.7.0 Release Notes 217

https://docs.scipy.org/
http://www.sphinx-doc.org

SciPy Reference Guide, Release 1.3.2

documentation from the numarray manual.

Nevertheless, more effort is needed on the documentation front. Luckily, contributing to Scipy documentation is now
easier than before: if you find that a part of it requires improvements, and want to help us out, please register a user name
in our web-based documentation editor at https://docs.scipy.org/ and correct the issues.

3.33.3 Running Tests

NumPy 1.2 introduced a new testing framework based on nose. Starting with this release, SciPy now uses the new NumPy
test framework as well. Taking advantage of the new testing framework requires nose version 0.10, or later. One major
advantage of the new framework is that it greatly simplifies writing unit tests - which has all ready paid off, given the rapid
increase in tests. To run the full test suite:

>>> import scipy
>>> scipy.test ('full'")

For more information, please see The NumPy/SciPy Testing Guide.

We have also greatly improved our test coverage. There were just over 2,000 unit tests in the 0.6.0 release; this release
nearly doubles that number, with just over 4,000 unit tests.

3.33.4 Building SciPy

Support for NumScons has been added. NumScons is a tentative new build system for NumPy/SciPy, using SCons at its
core.

SCons is a next-generation build system, intended to replace the venerable Make with the integrated functionality of
autoconf/automake and ccache. Scons is written in Python and its configuration files are Python scripts. Num-
Scons is meant to replace NumPy’s custom version of distutils providing more advanced functionality, such as
autoconf, improved fortran support, more tools, and support for numpy .distutils/scons cooperation.

3.33.5 Sandbox Removed

While porting SciPy to NumPy in 2005, several packages and modules were moved into scipy . sandbox. The sandbox
was a staging ground for packages that were undergoing rapid development and whose APIs were in flux. It was also a
place where broken code could live. The sandbox has served its purpose well, but was starting to create confusion. Thus
scipy.sandbox was removed. Most of the code was moved into scipy, some code was made into a scikit, and
the remaining code was just deleted, as the functionality had been replaced by other code.

3.33.6 Sparse Matrices
Sparse matrices have seen extensive improvements. There is now support for integer dtypes such int 8, uint32, etc.
Two new sparse formats were added:
* new class dia_matrix : the sparse DIAgonal format
* new class bsr_matrix : the Block CSR format
Several new sparse matrix construction functions were added:
e sparse.kron : sparse Kronecker product
* sparse.bmat : sparse version of numpy .bmat

* sparse.vstack : sparse version of numpy.vstack

218 Chapter 3. Release Notes

https://docs.scipy.org/
http://somethingaboutorange.com/mrl/projects/nose/
https://github.com/numpy/numpy/blob/master/doc/TESTS.rst.txt
https://www.scons.org/

SciPy Reference Guide, Release 1.3.2

* sparse.hstack : sparse version of numpy . hstack
Extraction of submatrices and nonzero values have been added:

* sparse.tril : extract lower triangle

* sparse.triu: extract upper triangle

¢ sparse.find : nonzero values and their indices

csr_matrixand csc_matrix now support slicing and fancy indexing (e.g.,A[1:3, 4:7]andA[[3,2,6,8],
: 1). Conversions among all sparse formats are now possible:

* using member functions such as .tocsr () and .tolil ()
¢ using the .asformat () member function, e.g. A.asformat ('csr')
* using constructors A = 1il_matrix([[1,2]]); B = csr_matrix(A)
All sparse constructors now accept dense matrices and lists of lists. For example:
e A = csr_matrix(rand(3,3))andB = 1il_matrix([[1,2],[3,4]1])

The handling of diagonals in the spdiags function has been changed. It now agrees with the MATLAB(TM) function
of the same name.

Numerous efficiency improvements to format conversions and sparse matrix arithmetic have been made. Finally, this
release contains numerous bugfixes.

3.33.7 Statistics package

Statistical functions for masked arrays have been added, and are accessible through scipy.stats.mstats. The
functions are similar to their counterparts in scipy.stats but they have not yet been verified for identical interfaces
and algorithms.

Several bugs were fixed for statistical functions, of those, kstest and percentileofscore gained new keyword
arguments.

Added deprecation warning for mean, median, var, std, cov, and corrcoef. These functions should be replaced
by their numpy counterparts. Note, however, that some of the default options differ between the scipy.stats and
numpy versions of these functions.

Numerous bug fixes to stats.distributions: all generic methods now work correctly, several methods in individ-
ual distributions were corrected. However, a few issues remain with higher moments (skew, kurtosis) and entropy.
The maximum likelihood estimator, £1it, does not work out-of-the-box for some distributions - in some cases, starting
values have to be carefully chosen, in other cases, the generic implementation of the maximum likelihood method might
not be the numerically appropriate estimation method.

We expect more bugfixes, increases in numerical precision and enhancements in the next release of scipy.

3.33.8 Reworking of 10 package

The 10 code in both NumPy and SciPy is being extensively reworked. NumPy will be where basic code for reading and
writing NumPy arrays is located, while SciPy will house file readers and writers for various data formats (data, audio,
video, images, matlab, etc.).

Several functions in scipy . 10 have been deprecated and will be removed in the 0.8.0 release including npfile, save,
load, create_module, create_shelf, objload, objsave, fopen, read_array, write_array,
fread, fwrite, bswap, packbits, unpackbits, and convert_objectarray. Some of these functions
have been replaced by NumPy’s raw reading and writing capabilities, memory-mapping capabilities, or array methods.

3.33. SciPy 0.7.0 Release Notes 219

SciPy Reference Guide, Release 1.3.2

Others have been moved from SciPy to NumPy, since basic array reading and writing capability is now handled by
NumPy.

The Matlab (TM) file readers/writers have a number of improvements:
e default version 5
* v5 writers for structures, cell arrays, and objects
* v5 readers/writers for function handles and 64-bit integers

* new struct_as_record keyword argument to 1oadmat, which loads struct arrays in matlab as record arrays in
numpy

* string arrays have dtype="'U. . . "' instead of dtype=object

* loadmat no longer squeezes singleton dimensions, i.e. squeeze_me=False by default

3.33.9 New Hierarchical Clustering module

This module adds new hierarchical clustering functionality to the scipy.cluster package. The function inter-
faces are similar to the functions providled MATLAB(TM)’s Statistics Toolbox to help facilitate easier migration to the
NumPy/SciPy framework. Linkage methods implemented include single, complete, average, weighted, centroid, median,
and ward.

In addition, several functions are provided for computing inconsistency statistics, cophenetic distance, and maximum
distance between descendants. The fcluster and fclusterdata functions transform a hierarchical clustering into
a set of flat clusters. Since these flat clusters are generated by cutting the tree into a forest of trees, the 1eaders function
takes a linkage and a flat clustering, and finds the root of each tree in the forest. The ClusterNode class represents a
hierarchical clusterings as a field-navigable tree object. t o_t ree converts a matrix-encoded hierarchical clustering to a
ClusterNode object. Routines for converting between MATLAB and SciPy linkage encodings are provided. Finally,
a dendrogram function plots hierarchical clusterings as a dendrogram, using matplotlib.

3.33.10 New Spatial package

The new spatial package contains a collection of spatial algorithms and data structures, useful for spatial statistics and
clustering applications. It includes rapidly compiled code for computing exact and approximate nearest neighbors, as well
as a pure-python kd-tree with the same interface, but that supports annotation and a variety of other algorithms. The API
for both modules may change somewhat, as user requirements become clearer.

It also includes a distance module, containing a collection of distance and dissimilarity functions for computing dis-
tances between vectors, which is useful for spatial statistics, clustering, and kd-trees. Distance and dissimilarity functions
provided include Bray-Curtis, Canberra, Chebyshev, City Block, Cosine, Dice, Euclidean, Hamming, Jaccard, Kulsin-
ski, Mahalanobis, Matching, Minkowski, Rogers-Tanimoto, Russell-Rao, Squared Euclidean, Standardized Euclidean,
Sokal-Michener, Sokal-Sneath, and Yule.

The pdist function computes pairwise distance between all unordered pairs of vectors in a set of vectors. The cdist
computes the distance on all pairs of vectors in the Cartesian product of two sets of vectors. Pairwise distance matrices
are stored in condensed form; only the upper triangular is stored. squareform converts distance matrices between
square and condensed forms.

3.33.11 Reworked fftpack package

FFTW2, FFTW3, MKL and DJBFFT wrappers have been removed. Only (NETLIB) fftpack remains. By focusing on
one backend, we hope to add new features - like float32 support - more easily.

220 Chapter 3. Release Notes

SciPy Reference Guide, Release 1.3.2

3.33.12 New Constants package

scipy.constants provides a collection of physical constants and conversion factors. These constants are taken
from CODATA Recommended Values of the Fundamental Physical Constants: 2002. They may be found at
physics.nist.gov/constants. The values are stored in the dictionary physical_constants as a tuple containing the value,
the units, and the relative precision - in that order. All constants are in SI units, unless otherwise stated. Several helper
functions are provided.

3.33.13 New Radial Basis Function module

scipy.interpolate now contains a Radial Basis Function module. Radial basis functions can be used for smooth-
ing/interpolating scattered data in n-dimensions, but should be used with caution for extrapolation outside of the observed
data range.

3.33.14 New complex ODE integrator

scipy.integrate.ode now contains a wrapper for the ZVODE complex-valued ordinary differential equation
solver (by Peter N. Brown, Alan C. Hindmarsh, and George D. Byrne).

3.33.15 New generalized symmetric and hermitian eigenvalue problem solver

scipy.linalg.eigh now contains wrappers for more LAPACK symmetric and hermitian eigenvalue problem
solvers. Users can now solve generalized problems, select a range of eigenvalues only, and choose to use a faster al-
gorithm at the expense of increased memory usage. The signature of the scipy.linalg.eigh changed accordingly.

3.33.16 Bug fixes in the interpolation package

The shape of return values from scipy.interpolate.interpld used to be incorrect, if interpolated data had
more than 2 dimensions and the axis keyword was set to a non-default value. This has been fixed. Moreover, interpld
returns now a scalar (OD-array) if the input is a scalar. Users of scipy.interpolate.interpld may need to
revise their code if it relies on the previous behavior.

3.33.17 Weave clean up

There were numerous improvements to scipy .weave. blitz++ was relicensed by the author to be compatible with
the SciPy license. wx_spec.py was removed.

3.33.18 Known problems

Here are known problems with scipy 0.7.0:
» weave test failures on windows: those are known, and are being revised.

» weave test failure with gcc 4.3 (std::labs): this is a gcc 4.3 bug. A workaround is to add #include <cstdlib> in
scipy/weave/blitz/blitz/funcs.h (line 27). You can make the change in the installed scipy (in site-packages).

3.33. SciPy 0.7.0 Release Notes 221

SciPy Reference Guide, Release 1.3.2

222 Chapter 3. Release Notes

CHAPTER
FOUR

TUTORIAL

Tutorials with worked examples and background information for most SciPy submodules.

4.1 SciPy Tutorial

4.1.1 Introduction

Contents

e Introduction

— SciPy Organization

— Finding Documentation

SciPy is a collection of mathematical algorithms and convenience functions built on the NumPy extension of Python.
It adds significant power to the interactive Python session by providing the user with high-level commands and classes
for manipulating and visualizing data. With SciPy an interactive Python session becomes a data-processing and system-
prototyping environment rivaling systems such as MATLAB, IDL, Octave, R-Lab, and SciLab.

The additional benefit of basing SciPy on Python is that this also makes a powerful programming language available for
use in developing sophisticated programs and specialized applications. Scientific applications using SciPy benefit from
the development of additional modules in numerous niches of the software landscape by developers across the world.
Everything from parallel programming to web and data-base subroutines and classes have been made available to the
Python programmer. All of this power is available in addition to the mathematical libraries in SciPy.

This tutorial will acquaint the first-time user of SciPy with some of its most important features. It assumes that the
user has already installed the SciPy package. Some general Python facility is also assumed, such as could be acquired
by working through the Python distribution’s Tutorial. For further introductory help the user is directed to the NumPy
documentation.

For brevity and convenience, we will often assume that the main packages (numpy, scipy, and matplotlib) have been
imported as:

>>> import numpy as np
>>> import matplotlib as mpl
>>> import matplotlib.pyplot as plt

These are the import conventions that our community has adopted after discussion on public mailing lists. You will see
these conventions used throughout NumPy and SciPy source code and documentation. While we obviously don’t require
you to follow these conventions in your own code, it is highly recommended.

223

SciPy Reference Guide, Release 1.3.2

SciPy Organization

SciPy is organized into subpackages covering different scientific computing domains. These are summarized in the fol-

lowing table:

Subpackage Description

cluster Clustering algorithms

constants Physical and mathematical constants

fftpack Fast Fourier Transform routines

integrate Integration and ordinary differential equation solvers
interpolate | Interpolation and smoothing splines

io Input and Output

linalg Linear algebra

ndimage N-dimensional image processing

odr Orthogonal distance regression

optimize

Optimization and root-finding routines

signal Signal processing

sparse Sparse matrices and associated routines
spatial Spatial data structures and algorithms
special Special functions

stats Statistical distributions and functions

SciPy sub-packages need to be imported separately, for example:

>>> from scipy import linalg, optimize

Because of their ubiquitousness, some of the functions in these subpackages are also made available in the scipy names-
pace to ease their use in interactive sessions and programs. In addition, many basic array functions from numpy are also
available at the top-level of the scipy package. Before looking at the sub-packages individually, we will first look at
some of these common functions.

Finding Documentation

SciPy and NumPy have documentation versions in both HTML and PDF format available at https://docs.scipy.org/, that
cover nearly all available functionality. However, this documentation is still work-in-progress and some parts may be
incomplete or sparse. As we are a volunteer organization and depend on the community for growth, your participation -
everything from providing feedback to improving the documentation and code - is welcome and actively encouraged.

Python’s documentation strings are used in SciPy for on-line documentation. There are two methods for reading them
and getting help. One is Python’s command help in the pydoc module. Entering this command with no arguments
(i.e. >>> help) launches an interactive help session that allows searching through the keywords and modules available
to all of Python. Secondly, running the command help(obj) with an object as the argument displays that object’s calling
signature, and documentation string.

The pydoc method of help is sophisticated but uses a pager to display the text. Sometimes this can interfere with the
terminal you are running the interactive session within. A numpy/scipy-specific help system is also available under the
command numpy .info. The signature and documentation string for the object passed to the help command are
printed to standard output (or to a writeable object passed as the third argument). The second keyword argument of
numpy . info defines the maximum width of the line for printing. If a module is passed as the argument to he 1 p then
a list of the functions and classes defined in that module is printed. For example:

>>> np.info (optimize.fmin)

fmin (func, x0, args=(), xtol=0.0001, ftol=0.0001, maxiter=None, maxfun=None,

(continues on next page)

224 Chapter 4. Tutorial

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs.scipy.org/
https://docs.python.org/dev/library/functions.html#help
https://docs.python.org/dev/library/pydoc.html#module-pydoc

SciPy Reference Guide, Release 1.3.2

(continued from previous page)

full_output=0,

disp=1, retall=0, callback=None)

Minimize a function using the downhill simplex algorithm.

Parameters
func callable func(x, *args)
The objective function to be minimized.
x0 ndarray
Initial guess.
args tuple
Extra arguments passed to func, i.e. " f(x,*args) °
callback callable
Called after each iteration, as callback(xk), where xk is the
current parameter vector.
Returns
xopt ndarray
Parameter that minimizes function.
fopt float
Value of function at minimum: °~ fopt = func (xopt) .
iter int
Number of iterations performed.
funcalls int
Number of function calls made.
warnflag int
1 : Maximum number of function evaluations made.
2 : Maximum number of iterations reached.
allvecs list

Solution at each iteration.

Other parameters

xtol float
Relative error
ftol number

Relative error
maxiter int
Maximum number
number

Maximum number
full_output bool

Set to True if

maxfun

disp bool
Set to True to
retall bool

Set to True to

Uses a Nelder-Mead

in xopt acceptable for convergence.

in func (xopt) acceptable for convergence.

of iterations to perform.
of function evaluations to make.
fopt and warnflag outputs are desired.

print convergence messages.

return list of solutions at each iteration.

simplex algorithm to find the minimum of function of

(continues on next page)

4.1. SciPy Tutorial

225

SciPy Reference Guide, Release 1.3.2

(continued from previous page)

one or more variables.

Another useful command is di r, which can be used to look at the namespace of a module or package.

4.1.2 Basic functions

Contents

* Basic functions
— Interaction with NumPy
« Index Tricks
« Shape manipulation

« Polynomials

*

Vectorizing functions (vectorize)

x Type handling

*

Other useful functions

Interaction with NumPy

SciPy builds on NumPy, and for all basic array handling needs you can use NumPy functions:

>>> import numpy as np
>>> np.some_function ()

Rather than giving a detailed description of each of these functions (which is available in the NumPy Reference Guide or
by using the help, info and source commands), this tutorial will discuss some of the more useful commands which
require a little introduction to use to their full potential.

To use functions from some of the SciPy modules, you can do:

>>> from scipy import some_module
>>> some_module.some_function ()

The top level of scipy also contains functions from numpy and numpy . 1ib. scimath. However, it is better to use
them directly from the numpy module instead.

Index Tricks

There are some class instances that make special use of the slicing functionality to provide efficient means for array
construction. This part will discuss the operation of numpy .mgrid, numpy.ogrid, numpy.r_ ,and numpy.c_
for quickly constructing arrays.

For example, rather than writing something like the following

>>> a = np.concatenate(([3], [0]*5, np.arange (-1, 1.002, 2/9.0)))

with the r_ command one can enter this as

226 Chapter 4. Tutorial

https://docs.python.org/dev/library/functions.html#help
https://docs.scipy.org/doc/numpy/reference/generated/numpy.info.html#numpy.info
https://docs.scipy.org/doc/numpy/reference/generated/numpy.source.html#numpy.source
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs.scipy.org/doc/numpy/reference/routines.emath.html#module-numpy.lib.scimath
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs.scipy.org/doc/numpy/reference/generated/numpy.mgrid.html#numpy.mgrid
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ogrid.html#numpy.ogrid
https://docs.scipy.org/doc/numpy/reference/generated/numpy.r_.html#numpy.r_
https://docs.scipy.org/doc/numpy/reference/generated/numpy.c_.html#numpy.c_
https://docs.scipy.org/doc/numpy/reference/generated/numpy.r_.html#numpy.r_

SciPy Reference Guide, Release 1.3.2

>>> a = np.r_[3,[0]1*5,-1:1:107]

which can ease typing and make for more readable code. Notice how objects are concatenated, and the slicing syntax is
(ab)used to construct ranges. The other term that deserves a little explanation is the use of the complex number 10j as
the step size in the slicing syntax. This non-standard use allows the number to be interpreted as the number of points to
produce in the range rather than as a step size (note we would have used the long integer notation, 10L, but this notation
may go away in Python as the integers become unified). This non-standard usage may be unsightly to some, but it gives
the user the ability to quickly construct complicated vectors in a very readable fashion. When the number of points is
specified in this way, the end- point is inclusive.

The “r” stands for row concatenation because if the objects between commas are 2 dimensional arrays, they are stacked by
rows (and thus must have commensurate columns). There is an equivalent command c__ that stacks 2d arrays by columns
but works identically to r_ for 1d arrays.

Another very useful class instance which makes use of extended slicing notation is the function mgrid. In the simplest
case, this function can be used to construct 1d ranges as a convenient substitute for arange. It also allows the use of
complex-numbers in the step-size to indicate the number of points to place between the (inclusive) end-points. The real
purpose of this function however is to produce N, N-d arrays which provide coordinate arrays for an N-dimensional
volume. The easiest way to understand this is with an example of its usage:

>>> np.mgrid[0:5,0:5]
array([[[0O, O, O, O, O],
r4, 1, 1, 1, 11,
[2, 2, 2, 2, 21,
[3, 3, 3, 3, 31,
(4, 4, 4, 4, 4171,
[ro, 1, 2, 3, 41,
(o, 1, 2, 3, 41,
(o, 1, 2, 3, 41,
(o, 1, 2, 3, 41,
[0, 1, 2, 3, 4111)
>>> np.mgrid[0:5:43,0:5:47]
array ([[[O. , 0. , 0. , 0. 1,
[1.6667, 1.6667, 1.6667, 1.6667],
[3.3333, 3.3333, 3.3333, 3.33331,
[5 , 5. , 5. ;5. 11,
[[O , 1.6667, 3.3333, 5. 1,
[O , 1.6667, 3.3333, 5. 1,
[O , 1.6667, 3.3333, 5. 1,
[O , 1.6667, 3.3333, 5. 111)

Having meshed arrays like this is sometimes very useful. However, it is not always needed just to evaluate some N-
dimensional function over a grid due to the array-broadcasting rules of NumPy and SciPy. If this is the only purpose
for generating a meshgrid, you should instead use the function ogrid which generates an “open” grid using newaxis
judiciously to create N, N-d arrays where only one dimension in each array has length greater than 1. This will save
memory and create the same result if the only purpose for the meshgrid is to generate sample points for evaluation of an
N-d function.

Shape manipulation

In this category of functions are routines for squeezing out length- one dimensions from N-dimensional arrays, ensuring
that an array is at least 1-, 2-, or 3-dimensional, and stacking (concatenating) arrays by rows, columns, and “pages “(in
the third dimension). Routines for splitting arrays (roughly the opposite of stacking arrays) are also available.

4.1. SciPy Tutorial 227

https://docs.scipy.org/doc/numpy/reference/generated/numpy.c_.html#numpy.c_
https://docs.scipy.org/doc/numpy/reference/generated/numpy.r_.html#numpy.r_
https://docs.scipy.org/doc/numpy/reference/generated/numpy.mgrid.html#numpy.mgrid
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ogrid.html#numpy.ogrid
https://docs.scipy.org/doc/numpy/reference/constants.html#numpy.newaxis

SciPy Reference Guide, Release 1.3.2

Polynomials

There are two (interchangeable) ways to deal with 1-d polynomials in SciPy. The first is to use the poly1d class from
NumPy. This class accepts coefficients or polynomial roots to initialize a polynomial. The polynomial object can then be
manipulated in algebraic expressions, integrated, differentiated, and evaluated. It even prints like a polynomial:

>>> from numpy import polyld
>>> p = polyld([3,4,5])
>>> print (p)
2
3 x +4x+5
>>> print (p*p)
4 3 2
9 x + 24 x + 46 x + 40 x + 25
>>> print (p.integ(k=6))
3 2
1 x+2x+5x+ 6
>>> print (p.deriv())
6 x + 4
>>> p([4, 51)
array ([69, 1001)

The other way to handle polynomials is as an array of coefficients with the first element of the array giving the coefficient
of the highest power. There are explicit functions to add, subtract, multiply, divide, integrate, differentiate, and evaluate
polynomials represented as sequences of coefficients.

Vectorizing functions (vectorize)

One of the features that NumPy provides is a class vectorize to convert an ordinary Python function which accepts
scalars and returns scalars into a “vectorized-function” with the same broadcasting rules as other NumPy functions (i.e.
the Universal functions, or ufuncs). For example, suppose you have a Python function named addsubtract defined
as:

>>> def addsubtract (a,b):
if a > b:
return a - b
else:
return a + b

which defines a function of two scalar variables and returns a scalar result. The class vectorize can be used to “vectorize
“this function so that

>>> vec_addsubtract = np.vectorize (addsubtract)

returns a function which takes array arguments and returns an array result:

>>> vec_addsubtract ([0,3,6,9],[1,3,5,7])
array([1, 6, 1, 2])

This particular function could have been written in vector form without the use of vectorize. However, functions that
employ optimization or integration routines can likely only be vectorized using vectorize.

Type handling

Note the difference between numpy.iscomplex/numpy.isreal and numpy.iscomplexobj/numpy.
isrealobj. The former command is array based and returns byte arrays of ones and zeros providing the result of

228 Chapter 4. Tutorial

https://docs.scipy.org/doc/numpy/reference/generated/numpy.poly1d.html#numpy.poly1d
https://docs.scipy.org/doc/numpy/reference/generated/numpy.vectorize.html#numpy.vectorize
https://docs.scipy.org/doc/numpy/reference/generated/numpy.vectorize.html#numpy.vectorize
https://docs.scipy.org/doc/numpy/reference/generated/numpy.iscomplex.html#numpy.iscomplex
https://docs.scipy.org/doc/numpy/reference/generated/numpy.isreal.html#numpy.isreal
https://docs.scipy.org/doc/numpy/reference/generated/numpy.iscomplexobj.html#numpy.iscomplexobj
https://docs.scipy.org/doc/numpy/reference/generated/numpy.isrealobj.html#numpy.isrealobj
https://docs.scipy.org/doc/numpy/reference/generated/numpy.isrealobj.html#numpy.isrealobj

SciPy Reference Guide, Release 1.3.2

the element-wise test. The latter command is object based and returns a scalar describing the result of the test on the
entire object.

Often it is required to get just the real and/or imaginary part of a complex number. While complex numbers and arrays
have attributes that return those values, if one is not sure whether or not the object will be complex-valued, it is better to
use the functional forms numpy . real and numpy . imag . These functions succeed for anything that can be turned
into a NumPy array. Consider also the function numpy . real_if_ close which transforms a complex-valued number
with tiny imaginary part into a real number.

Occasionally the need to check whether or not a number is a scalar (Python (long)int, Python float, Python complex,
or rank-0 array) occurs in coding. This functionality is provided in the convenient function numpy . i sscalar which
returns a 1 ora 0.

Other useful functions

There are also several other useful functions which should be mentioned. For doing phase processing, the functions
angle, and unwrap are useful. Also, the 1inspace and 1ogspace functions return equally spaced samples in a
linear or log scale. Finally, it’s useful to be aware of the indexing capabilities of NumPy. Mention should be made of
the function select which extends the functionality of where to include multiple conditions and multiple choices.
The calling convention is select (condlist, choicelist, default=0).numpy.select isa vectorized
form of the multiple if-statement. It allows rapid construction of a function which returns an array of results based on a
list of conditions. Each element of the return array is taken from the array in a choicelist corresponding to the first
condition in condlist that is true. For example

>>> x = np.arange (10)
>>> condlist = [x<3, x>5]
>>> choicelist = [x, x**2]

>>> np.select (condlist, choicelist)
array ([O, 1, 2, 0, 0, 0, 36, 49, 64, 81])

Some additional useful functions can also be found in the module scipy.special. For example the factorial
and comb functions compute n! and n!/k!(n — k)! using either exact integer arithmetic (thanks to Python’s Long integer
object), or by using floating-point precision and the gamma function.

Other useful functions can be found in scipy.misc. For example, two functions are provided that are useful for
approximating derivatives of functions using discrete-differences. The function central diff weights returns
weighting coefficients for an equally-spaced N -point approximation to the derivative of order o. These weights must be
multiplied by the function corresponding to these points and the results added to obtain the derivative approximation.
This function is intended for use when only samples of the function are available. When the function is an object that can
be handed to a routine and evaluated, the function derivat i ve can be used to automatically evaluate the object at the
correct points to obtain an N-point approximation to the o-th derivative at a given point.

4.1.3 Special functions (scipy.special)

The main feature of the scipy. special package is the definition of numerous special functions of mathematical
physics. Available functions include airy, elliptic, bessel, gamma, beta, hypergeometric, parabolic cylinder, mathieu,
spheroidal wave, struve, and kelvin. There are also some low-level stats functions that are not intended for general use as
an easier interface to these functions is provided by the st at s module. Most of these functions can take array arguments
and return array results following the same broadcasting rules as other math functions in Numerical Python. Many of these
functions also accept complex numbers as input. For a complete list of the available functions with a one-line description
type >>> help (special) . Each function also has its own documentation accessible using help. If you don’t see a
function you need, consider writing it and contributing it to the library. You can write the function in either C, Fortran,
or Python. Look in the source code of the library for examples of each of these kinds of functions.

4.1. SciPy Tutorial 229

https://docs.scipy.org/doc/numpy/reference/generated/numpy.real.html#numpy.real
https://docs.scipy.org/doc/numpy/reference/generated/numpy.imag.html#numpy.imag
https://docs.scipy.org/doc/numpy/reference/generated/numpy.real_if_close.html#numpy.real_if_close
https://docs.scipy.org/doc/numpy/reference/generated/numpy.isscalar.html#numpy.isscalar
https://docs.scipy.org/doc/numpy/reference/generated/numpy.angle.html#numpy.angle
https://docs.scipy.org/doc/numpy/reference/generated/numpy.unwrap.html#numpy.unwrap
https://docs.scipy.org/doc/numpy/reference/generated/numpy.linspace.html#numpy.linspace
https://docs.scipy.org/doc/numpy/reference/generated/numpy.logspace.html#numpy.logspace
https://docs.scipy.org/doc/numpy/reference/generated/numpy.select.html#numpy.select
https://docs.scipy.org/doc/numpy/reference/generated/numpy.where.html#numpy.where
https://docs.scipy.org/doc/numpy/reference/generated/numpy.select.html#numpy.select

SciPy Reference Guide, Release 1.3.2

Bessel functions of real order(jv, jn_zeros)

Bessel functions are a family of solutions to Bessel’s differential equation with real or complex order alpha:

d*y | dy

2 2 2

'S +zr—+ (2" —a")y=0

dax? dx (Jv

Among other uses, these functions arise in wave propagation problems such as the vibrational modes of a thin drum head.

Here is an example of a circular drum head anchored at the edge:

>>> from scipy import special
>>> def drumhead_height (n, k, distance, angle, t):
kth_zero = special.jn_zeros(n, k) [-1]
.. return np.cos(t) * np.cos(n*angle) * special.jn(n, distance*kth_zero)
>>> theta = np.r_[0:2*np.pi:507]

>>> radius = np.r_[0:1:507]

>>> x = np.array([r * np.cos(theta) for r in radius])

>>> y = np.array([r * np.sin(theta) for r in radius])

>>> z = np.array ([drumhead_height (1, 1, r, theta, 0.5) for r in radius])

>>> import matplotlib.pyplot as plt

>>> from mpl_toolkits.mplot3d import Axes3D
>>> from matplotlib import cm

>>> fig = plt.figure()
>>> ax = Axes3D (figqg)
>>> ax.plot_surface (x,
>>> ax.set_xlabel ('X")
>>> ax.set_ylabel ('Y")
>>> ax.set_zlabel ('72")
>>> plt.show ()

y, 2z, rstride=1, cstride=1, cmap=cm.jet)

Cython Bindings for Special Functions (scipy.special.cython_special)

SciPy also offers Cython bindings for scalar, typed versions of many of the functions in special. The following Cython
code gives a simple example of how to use these functions:

230 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

cimport scipy.special.cython_special as csc

cdef:
double x = 1
double complex z = 1 + 17
double si, ci, rgam
double complex cgam

rgam = csc.gamma (x)
print (rgam)
cgam = csc.gamma (z)

print (cgam)
csc.sici(x, &si, &ci)
print (si, ci)

(See the Cython documentation for help with compiling Cython.) In the example the function csc.gamma works
essentially like its ufunc counterpart gamma, though it takes C types as arguments instead of NumPy arrays. Note
in particular that the function is overloaded to support real and complex arguments; the correct variant is selected at
compile time. The function csc. sici works slightly differently from sici;for the ufunc we could write ai, bi =
sici (x) whereas in the Cython version multiple return values are passed as pointers. It might help to think of this as
analogous to calling a ufunc with an output array: sici (x, out=(si, ci)).

There are two potential advantages to using the Cython bindings:
 They avoid Python function overhead
* They do not require the Python Global Interpreter Lock (GIL)

The following sections discuss how to use these advantages to potentially speed up your code, though of course one should
always profile the code first to make sure putting in the extra effort will be worth it.

Avoiding Python Function Overhead

For the ufuncs in special, Python function overhead is avoided by vectorizing, that is, by passing an array to the function.
Typically this approach works quite well, but sometimes it is more convenient to call a special function on scalar inputs
inside a loop, for example when implementing your own ufunc. In this case the Python function overhead can become
significant. Consider the following example:

import scipy.special as sc
cimport scipy.special.cython_special as csc

def python_tight_loop () :
cdef:
int n
double x = 1

for n in range (100):
sc.jv(n, x)

def cython_tight_loop():
cdef:
int n
double x = 1

for n in range(100) :
csc.jv(n, x)

4.1. SciPy Tutorial 231

http://docs.cython.org/en/latest/src/reference/compilation.html

SciPy Reference Guide, Release 1.3.2

On one computer python_tight_loop took about 131 microseconds to run and cython_tight_loop took
about 18.2 microseconds to run. Obviously this example is contrived: one could just call special.jv (np.
arange (100), 1) and get results just as fast as in cython_tight_loop. The point is that if Python function
overhead becomes significant in your code then the Cython bindings might be useful.

Releasing the GIL

One often needs to evaluate a special function at many points, and typically the evaluations are trivially parallelizable.
Since the Cython bindings do not require the GIL, it is easy to run them in parallel using Cython’s prange function. For
example, suppose that we wanted to compute the fundamental solution to the Helmholtz equation:

ALG(z,y) + K Gla,y) = 6(z — y),

where k is the wavenumber and ¢ is the Dirac delta function. It is known that in two dimensions the unique (radiating)
solution is

1

110" (Kl = y)),

G(x,y) =

where H, él) is the Hankel function of the first kind, i.e. the function hankel1. The following example shows how we
could compute this function in parallel:

from libc.math cimport fabs
cimport cython
from cython.parallel cimport prange

import numpy as np
import scipy.special as sc
cimport scipy.special.cython_special as csc

def serial_G(k, x, y):
return 0.25j*sc.hankell (0, k*np.abs(x - vy))

@cython.boundscheck (False)
@cython.wraparound (False)
cdef void _parallel_G(double k, double[:,:] x, doublel:,:] vy,
double complex[:,:] out) nogil:
cdef int i, J

for i in prange(x.shapel[0]):
for j in range(y.shape([0]):
out[i,j] = 0.25j*csc.hankell (0, k*fabs(x[i,]J] - vI[i,31))

def parallel_G(k, x, y):
out = np.empty_like(x, dtype='complex128")
_parallel_G(k, x, y, out)
return out

(For help with compiling parallel code in Cython see here.) If the above Cython code is in a file test . pyx, then we
can write an informal benchmark which compares the parallel and serial versions of the function:

import timeit

import numpy as np

(continues on next page)

232 Chapter 4. Tutorial

http://docs.cython.org/en/latest/src/userguide/parallelism.html#compiling

SciPy Reference Guide, Release 1.3.2

(continued from previous page)

from test import serial_G, parallel_G
def main() :

k =1
X, y = np.linspace(-100, 100, 1000), np.linspace(-100, 100, 1000)
X, y = np.meshgrid(x, v)

def serial():
serial_G(k, x, y)

def parallel():
parallel_G(k, x, y)

time_serial = timeit.timeit (serial, number=3)

time_parallel = timeit.timeit (parallel, number=3)

print ("Serial method took {:.3} seconds".format (time_serial))

print ("Parallel method took {:.3} seconds".format (time_parallel))
if _ name_ == "_ _main__

main ()

LY

On one quad-core computer the serial method took 1.29 seconds and the parallel method took 0.29 seconds.

Functions not in scipy.special

Some functions are not included in special because they are straightforward to implement with existing functions in
NumPy and SciPy. To prevent reinventing the wheel, this section provides implementations of several such functions
which hopefully illustrate how to handle similar functions. In all examples NumPy is imported as np and special is
imported as sc.

The binary entropy function:

def binary_entropy (x) :
return - (sc.xlogy(x, x) + sc.xloglpy(l - x, -x))/np.log(2)

A rectangular step function on [0, 1]:

def step(x):
return 0.5% (np.sign(x) + np.sign(l - x))

Translating and scaling can be used to get an arbitrary step function.

The ramp function:

def ramp (x):
return np.maximum(0, x)

4.1.4 Integration (scipy.integrate)

The scipy. integrate sub-package provides several integration techniques including an ordinary differential equa-
tion integrator. An overview of the module is provided by the help command:

4.1. SciPy Tutorial 233

https://en.wikipedia.org/wiki/Binary_entropy_function
https://en.wikipedia.org/wiki/Ramp_function

SciPy Reference Guide, Release 1.3.2

>>> help (integrate)
Methods for Integrating Functions given function object.

quad —— General purpose integration.

dblquad —— General purpose double integration.

tplguad —-— General purpose triple integration.

fixed_quad —-— Integrate func(x) using Gaussian quadrature of order n.
quadrature —-— Integrate with given tolerance using Gaussian quadrature.
romberg —-— Integrate func using Romberg integration.

Methods for Integrating Functions given fixed samples.

trapz —— Use trapezoidal rule to compute integral from samples.
cumtrapz —— Use trapezoidal rule to cumulatively compute integral.
simps —— Use Simpson's rule to compute integral from samples.
romb —— Use Romberg Integration to compute integral from

(2**k + 1) evenly-spaced samples.

See the special module's orthogonal polynomials (special) for Gaussian
quadrature roots and weights for other weighting factors and regions.

Interface to numerical integrators of ODE systems.

odeint —— General integration of ordinary differential equations.
ode —— Integrate ODE using VODE and ZVODE routines.

General integration (quad)

The function quad is provided to integrate a function of one variable between two points. The points can be £oo (£
inf) to indicate infinite limits. For example, suppose you wish to integrate a bessel function jv (2.5, x) along the
interval [0, 4.5].

4.5
I :/ J2.5 (ZZ?) dx.
0

This could be computed using quad:

>>> import scipy.integrate as integrate

>>> import scipy.special as special

>>> result = integrate.quad(lambda x: special.jv(2.5,x), 0, 4.5)
>>> result

(1.1178179380783249, 7.8663172481899801e-09)

>>> from numpy import sqgrt, sin, cos, pi

>>> I = sqrt(2/pi)*(18.0/27*sqrt (2) *cos(4.5) - 4.0/27*sqgrt(2)*sin(4.5) +
C. sqgrt (2*pi) * special.fresnel (3/sqgrt(pi)) [0])

>>> T
1.117817938088701

>>> print (abs (result[0]-1))
1.03761443881e-11

234 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

The first argument to quad is a “callable” Python object (i.e. a function, method, or class instance). Notice the use of a
lambda- function in this case as the argument. The next two arguments are the limits of integration. The return value is
a tuple, with the first element holding the estimated value of the integral and the second element holding an upper bound
on the error. Notice, that in this case, the true value of this integral is

7—./2 (;iﬂws (4.5) — %ﬁsin (4.5) + V27Si (\;)) :

™

where

Si(z) = /Ow sin (gt2> dt.

is the Fresnel sine integral. Note that the numerically-computed integral is within 1.04 x 107! of the exact result —
well below the reported error bound.

If the function to integrate takes additional parameters, the can be provided in the args argument. Suppose that the
following integral shall be calculated:

1
I(a,b) :/ az® + bdzx.
0

This integral can be evaluated by using the following code:

>>> from scipy.integrate import quad
>>> def integrand(x, a, b):
return a*x**2 + Db

>>>

a = 2
>> b =1
>>> 1 = quad(integrand, 0, 1, args=(a,b))
>>> T

(1.6666666666666667, 1.8503717077085944e-14)

Infinite inputs are also allowed in quad by using = inf as one of the arguments. For example, suppose that a numerical
value for the exponential integral:

is desired (and the fact that this integral can be computed as special.expn (n, x) is forgotten). The functionality of
the function special.expn can be replicated by defining a new function vec_expint based on the routine quad:

>>> from scipy.integrate import quad
>>> def integrand(t, n, x):
return np.exp(-x*t) / t**n

>>> def expint(n, x):
return quad(integrand, 1, np.inf, args=(n, x))[0]

>>> vec_expint = np.vectorize (expint)

4.1. SciPy Tutorial 235

SciPy Reference Guide, Release 1.3.2

>>> vec_expint (3, np.arange(1.0, 4.0, 0.5))

array ([0.1097, 0.0567, 0.0301, 0.0163, 0.0089, 0.0049])
>>> import scipy.special as special

>>> special.expn (3, np.arange(1.0,4.0,0.5))

array ([0.1097, 0.0567, 0.0301, 0.0163, 0.0089, 0.00491])

The function which is integrated can even use the quad argument (though the error bound may underestimate the error
due to possible numerical error in the integrand from the use of quad). The integral in this case is

[ee] OOe—a:t
A
o J1 ¢t

1
dtder = —.
n

>>> result = quad(lambda x: expint (3, x), 0, np.inf)
>>> print (result)
(0.33333333324560266, 2.8548934485373678e-09)

>>> I3 = 1.0/3.0
>>> print (I3)
0.333333333333

>>> print (I3 - result[0])
8.77306560731e-11

This last example shows that multiple integration can be handled using repeated calls to quad.

General multiple integration (dblquad, tplquad, nquad)

The mechanics for double and triple integration have been wrapped up into the functions dblquad and tplquad.
These functions take the function to integrate and four, or six arguments, respectively. The limits of all inner integrals
need to be defined as functions.

An example of using double integration to compute several values of I,, is shown below:

>>> from scipy.integrate import quad, dblquad

>>> def I(n):

Ca return dblquad(lambda t, x: np.exp(-x*t)/t**n, 0, np.inf, lambda x: 1,
«— lambda x: np.inf)

>>> print (I(4))

(0.2500000000043577, 1.29830334693681e-08)
>>> print (I(3))

(0.33333333325010883, 1.3888461883425516e-08)
>>> print (I(2))

(0.4999999999985751, 1.3894083651858995e-08)

As example for non-constant limits consider the integral

/2 pl-2y 1
I= / / zydrdy = —.
y=0 Jax=0 96

This integral can be evaluated using the expression below (Note the use of the non-constant lambda functions for the
upper limit of the inner integral):

236 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

>>> from scipy.integrate import dblquad

>>> area = dblquad(lambda x, y: x*y, 0, 0.5, lambda x: 0, lambda x: 1-2*x)
>>> area

(0.010416666666666668, 1.1564823173178715e-16)

For n-fold integration, scipy provides the function nquad. The integration bounds are an iterable object: either a list of
constant bounds, or a list of functions for the non-constant integration bounds. The order of integration (and therefore
the bounds) is from the innermost integral to the outermost one.

oo Ooef:vt
A
o J1 ¢t

The integral from above

1
dtder = —
n

can be calculated as

>>> from scipy import integrate
>>> N = 5
>>> def f(t, x):

return np.exp(-x*t) / t**N

>>> integrate.nquad(f, [[1, np.inf], [0, np.inf]])
(0.20000000000002294, 1.2239614263187945e-08)

Note that the order of arguments for f must match the order of the integration bounds; i.e. the inner integral with respect
to t is on the interval [1, oo] and the outer integral with respect to 2 is on the interval [0, oc].

Non-constant integration bounds can be treated in a similar manner; the example from above

/2 p1-2y 1
I= / / rydrdy = —.
y=0 Ja=0 96

can be evaluated by means of

>>> from scipy import integrate
>>> def f(x, vy):
return x*y

>>> def bounds_y () :
return [0, 0.5]

>>> def bounds_x(y) :
return [0, 1-2*y]

>>> integrate.nquad(f, [bounds_x, bounds_y])
(0.010416666666666668, 4.101620128472366e-16)

which is the same result as before.

Gaussian quadrature

A few functions are also provided in order to perform simple Gaussian quadrature over a fixed interval. The first is
fixed_quad which performs fixed-order Gaussian quadrature. The second function is quadrat ure which performs
Gaussian quadrature of multiple orders until the difference in the integral estimate is beneath some tolerance supplied
by the user. These functions both use the module scipy.special.orthogonal which can calculate the roots

4.1. SciPy Tutorial 237

SciPy Reference Guide, Release 1.3.2

and quadrature weights of a large variety of orthogonal polynomials (the polynomials themselves are available as special
functions returning instances of the polynomial class — e.g. special. legendre).

Romberg Integration

Romberg’s method [WPR] is another method for numerically evaluating an integral. See the help function for romberg
for further details.

Integrating using Samples

If the samples are equally-spaced and the number of samples available is 2% + 1 for some integer k, then Romberg
romb integration can be used to obtain high-precision estimates of the integral using the available samples. Romberg
integration uses the trapezoid rule at step-sizes related by a power of two and then performs Richardson extrapolation on
these estimates to approximate the integral with a higher-degree of accuracy.

In case of arbitrary spaced samples, the two functions t rapz and simps are available. They are using Newton-Coates
formulas of order 1 and 2 respectively to perform integration. The trapezoidal rule approximates the function as a straight
line between adjacent points, while Simpson’s rule approximates the function between three adjacent points as a parabola.

For an odd number of samples that are equally spaced Simpson’s rule is exact if the function is a polynomial of order 3 or
less. If the samples are not equally spaced, then the result is exact only if the function is a polynomial of order 2 or less.

>>> import numpy as np
>>> def f1(x):
return x**2

>>> def f2(x):
return x**3

>>> x = np.array([1,3,4])
>>> yl1 = f1(x)
>>> from scipy.integrate import simps

>>> I1 = simps(yl, x)
>>> print (I1)
21.0

This corresponds exactly to

4
/ 22 dx = 21,
1

whereas integrating the second function

>>> y2 = f2(x)

>>> 12 = integrate.simps(y2, Xx)
>>> print (I2)
61.5

does not correspond to

4
/ 23 dr = 63.75
1

because the order of the polynomial in {2 is larger than two.

238 Chapter 4. Tutorial

https://docs.scipy.org/doc/numpy/reference/generated/numpy.trapz.html#numpy.trapz

SciPy Reference Guide, Release 1.3.2

Faster integration using low-level callback functions

A user desiring reduced integration times may pass a C function pointer through scipy.LowLevelCallable to
quad, dblquad, tplgquador nquad and it will be integrated and return a result in Python. The performance increase
here arises from two factors. The primary improvement is faster function evaluation, which is provided by compilation
of the function itself. Additionally we have a speedup provided by the removal of function calls between C and Python
in quad. This method may provide a speed improvements of ~2x for trivial functions such as sine but can produce a
much more noticeable improvements (10x+) for more complex functions. This feature then, is geared towards a user with
numerically intensive integrations willing to write a little C to reduce computation time significantly.

The approach can be used, for example, via ct ypes in a few simple steps:

1.) Write an integrand function in C with the function signature double f (int n, double *x, void
*user_data), where x is an array containing the point the function f is evaluated at, and user_data to arbitrary
additional data you want to provide.

/* testlib.c */
double f (int n, double *x, wvoid *user_data) {
double ¢ = * (double *)user_data;
return c¢c + x[0] - x[1] * x[2]; /* corresponds to ¢ + x — vy * z */

2.) Now compile this file to a shared/dynamic library (a quick search will help with this as it is OS-dependent). The user
must link any math libraries, etc. used. On linux this looks like:

$ gcc —-shared -fPIC -o testlib.so testlib.c

The output library will be referred to as test 1ib. so, but it may have a different file extension. A library has now been
created that can be loaded into Python with ctypes.

3.) Load shared library into Python using ct ypes and set restypes and argtypes - this allows SciPy to interpret
the function correctly:

import os, ctypes
from scipy import integrate, LowLevelCallable

lib = ctypes.CDLL (os.path.abspath('testlib.so'))

lib.f.restype = ctypes.c_double

lib.f.argtypes = (ctypes.c_int, ctypes.POINTER (ctypes.c_double), ctypes.c_
—void_p)

c = ctypes.c_double (1.0)
user_data = ctypes.cast (ctypes.pointer(c), ctypes.c_void_p)

func = LowLevelCallable(lib.f, user_data)

The last void *user_data in the function is optional and can be omitted (both in the C function and ctypes argtypes)
if not needed. Note that the coordinates are passed in as an array of doubles rather than a separate argument.

4.) Now integrate the library function as normally, here using nquad:

>>> integrate.nquad(func, [[O0, 10], [-10, O], [-1, 111)
(1200.0, 1.1102230246251565e-11)

The Python tuple is returned as expected in a reduced amount of time. All optional parameters can be used with this
method including specifying singularities, infinite bounds, etc.

4.1. SciPy Tutorial 239

https://docs.python.org/dev/library/ctypes.html#module-ctypes
https://docs.python.org/dev/library/ctypes.html#module-ctypes
https://docs.python.org/dev/library/ctypes.html#module-ctypes

SciPy Reference Guide, Release 1.3.2

Ordinary differential equations (odeint)

Integrating a set of ordinary differential equations (ODESs) given initial conditions is another useful example. The function
odeint is available in SciPy for integrating a first-order vector differential equation:

dy

— =f(y,t

o =1,

given initial conditions y (0) = o, where y is a length N vector and f is a mapping from R" to R". A higher-order
ordinary differential equation can always be reduced to a differential equation of this type by introducing intermediate
derivatives into the y vector.

For example suppose it is desired to find the solution to the following second-order differential equation:

d2
d—;g —zw(z)=0
with initial conditions w (0) = \3/3*%(2) and 42| = —ﬁ(l). It is known that the solution to this differential
3 - 3

equation with these boundary conditions is the Airy function
w = Ai(z),

which gives a means to check the integrator using special.airy.

First, convert this ODE into standard form by setting y = [d—’;’, w] and t = z. Thus, the differential equation becomes

e E S A I R

f(y,t)=A()y.

As an interesting reminder, if A (¢) commutes with fg A (7) dr under matrix multiplication, then this linear differential
equation has an exact solution using the matrix exponential:

v =ew([Aar)y 0.

However, in this case, A (¢) and its integral do not commute.

In other words,

There are many optional inputs and outputs available when using odeint which can help tune the solver. These additional
inputs and outputs are not needed much of the time, however, and the three required input arguments and the output
solution suffice. The required inputs are the function defining the derivative, fprime, the initial conditions vector, y0, and
the time points to obtain a solution, ¢, (with the initial value point as the first element of this sequence). The output to
odeint is a matrix where each row contains the solution vector at each requested time point (thus, the initial conditions
are given in the first output row).

The following example illustrates the use of odeint including the usage of the Dfun option which allows the user to specify
a gradient (with respect to y) of the function, f (y, t).

>>> from scipy.integrate import odeint
>>> from scipy.special import gamma, airy
>>> y1_0 = 1.0 / 3**(2.0/3.0) / gamma(2.0/3.0)
>>> y0_0 = -1.0 / 3**(1.0/3.0) / gamma (1.0/3.0)
>>> y0 = [y0_0, y1_0]
>>> def func(y, t):

return [t*y[1],vI[0]]

240 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

>>> def gradient(y, t):
return [[0,t], [1,0]]

>>> x = np.arange(0, 4.0, 0.01)

>>> t = x

>>> ychk = airy(x) [0]

>>> y = odeint (func, yO0, t)

>>> y2 = odeint (func, y0, t, Dfun=gradient)

>>> ychk[:36:6]
array ([0.355028, 0.339511, 0.324068, 0.308763, 0.293658, 0.278806])

>>> y[:36:6,1]
array ([0.355028, 0.339511, 0.324067, 0.308763, 0.293658, 0.278806])

>>> y2[:36:6,1]
array ([0.355028, 0.339511, 0.324067, 0.308763, 0.293658, 0.278806])

Solving a system with a banded Jacobian matrix

odeint can be told that the Jacobian is banded. For a large system of differential equations that are known to be stiff,
this can improve performance significantly.

As an example, we’ll solve the one-dimensional Gray-Scott partial differential equations using the method of lines [MOL].
The Gray-Scott equations for the functions u(z, t) and v(z, t) on the interval x € [0, L] are

ou 0%u 9
v 0% 9
a—Dv@+U’U 7(f+k)’l]

where D,, and D,, are the diffusion coefficients of the components u and v, respectively, and f and k are constants. (For
more information about the system, see http://groups.csail.mit.edu/mac/projects/amorphous/GrayScott/)

We'll assume Neumann (i.e. “no flux”) boundary conditions:

ou v ou Ov

—(0,t) =0, —(0,t)=0, —(L,t)=0, —(L,t)=0

8:1/'(?) Y ax()) I’ ax(Y) ’ ax(Y)
To apply the method of lines, we discretize the x variable by defining the uniformly spaced grid of N points
{zo,21,...,xn_1}, with zg = O and xny_; = L. We define u;(t) = u(xx,t) and v;(t) = v(z,t), and replace
the x derivatives with finite differences. That is,

0%u Ujfl(t) — 2uy (t) + u; 1(t)
gz) Bap

We then have a system of 2N ordinary differential equations:

de Du

at (Azx)? (uj—1 = 2uj + uj41) — ujv? + =)
o ” “4.1)
CT; = Bo)? (vj—1 — 2v5 + V1) +uj 32 — (f +k)v,

For convenience, the (¢) arguments have been dropped.

4.1. SciPy Tutorial 241

http://groups.csail.mit.edu/mac/projects/amorphous/GrayScott/

SciPy Reference Guide, Release 1.3.2

To enforce the boundary conditions, we introduce “ghost” points z_1 and z, and define u_1(t) = u1(t), un(t) =
un—2(t); v—1(t) and v (t) are defined analogously.

Then
du Du
T Ay (2w~ 2u0) — uovt + f(1 = w)
" " “4.2)
o= (A;)z (2v1 — 2vg) + uovg — (f + k)vo
and
du — Du
(Ji\; 1 = W (2’[,LN,2 — 2“/]\771) — UN,1U]2\f71 + f(l - uN*l)
o) “4.3)

T (Aa)2 (20n_2 — 2uN_1) + un—10%_1 — (f + k)on_1

Our complete system of 2N ordinary differential equations is (4.1) for k = 1,2,..., N — 2, along with (4.2) and (4.3).

We can now starting implementing this system in code. We must combine {uy } and {vy } into a single vector of length
2N. The two obvious choices are {UO, Uy oo s UN—1,V0, V15 .- 7'UN—1} and {UO, Vo, UL, V1ye s UN—1, ’UN_1}. Math-
ematically, it does not matter, but the choice affects how efficiently ode int can solve the system. The reason is in how
the order affects the pattern of the nonzero elements of the Jacobian matrix.

When the variables are ordered as {ug, u1, . .., un—_1,v0, V1, - -.,UN_1 |, the pattern of nonzero elements of the Jacobian

matrix 18
«%00000%x000000
+%+%00000%x00000
0x%+%00000x0000
00«x**00000x000
000x*x00000%00
0000**xx00000=%0
00000000000
x000000%%x00000
0%x00000%+x0000
00%x00000+%x000
000%00000 %00
0000x00000%x%x0
0000000000 % *
000000%0000) =

The Jacobian pattern with variables interleaved as {ug, vo, 41, v1,..., UN—1,VN—1} 18
«%%00000000000
*%0%x0000000000
«0%%x000000000
0%%+0%x00000000
00+0x++0000000
000%x++x0%x000000
0000+0%%+00000
00000*%+0+0000
000000x0*x=%=x%x000
0000000 *x0%00
00000000 *0xx*=x0
000000000 % x0 x
0000000000 %0 *
00000000000 % * x

In both cases, there are just five nontrivial diagonals, but when the variables are interleaved, the bandwidth is much smaller.
That is, the main diagonal and the two diagonals immediately above and the two immediately below the main diagonal are
the nonzero diagonals. This is important, because the inputs mu and m1 of odeint are the upper and lower bandwidths
of the Jacobian matrix. When the variables are interleaved, mu and m1 are 2. When the variables are stacked with {vy}
following {uy }, the upper and lower bandwidths are V.

With that decision made, we can write the function that implements the system of differential equations.

First, we define the functions for the source and reaction terms of the system:

def G(u, v, £, k):
return £ * (1 — u) - u*v**2

def H(u, v, £, k):
return —(f + k) * v + u*v**2

242 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

Next we define the function that computes the right-hand-side of the system of differential equations:

def grayscottld(y, t, £, k, Du, Dv, dx):

mrrn

Differential equations for the 1D Gray-Scott equations.

The ODEs are derived using the method of lines.

mirrn

The vectors u and v are interleaved in y. We define
views of u and v by slicing y.

u = yl::2]

v = y[l::2]

dydt is the return value of this function.
dydt = np.empty_like(y)

Just like u and v are views of the interleaved vectors
in y, dudt and dvdt are views of the interleaved output
vectors in dydt.

dudt = dydt[::2]

dvdt = dydt[1::2]

Compute du/dt and dv/dt. The end points and the interior points

are handled separately.

dudt [0] = G(ulo0], v[i0], f, k) + Du * (-2.0*u[0] + 2.0*u[l1]) /.
—dx**2

dudt[1:-1] = G(u[l:-1], vI[1:-1], £, k) + Du * np.diff(u,2) / dx**2

dudt [-1] = G(ul[-17, v[i-11, f, k) + Du * (- 2.0*u[-1] + 2.0*ul[-2]) /=
—dx**2

dvdt [0] = H(ulO], vI[0], £, k) + Dv * (-2.0*v[0] + 2.0*v[1]) /.
—dx**2

dvdt[1:-1] = H(u[l:-1], vI[1:-1], f, k) + Dv * np.diff(v,2) / dx**2

dvdt [-1] = H(ul[-17, vi-11, f, k) + Dv * (-2.0*v[-1] + 2.0*v[-2]) /.
—dx**2

return dydt

We won’t implement a function to compute the Jacobian, but we will tell ode int that the Jacobian matrix is banded.
This allows the underlying solver (LSODA) to avoid computing values that it knows are zero. For a large system, this
improves the performance significantly, as demonstrated in the following ipython session.

First, we define the required inputs:

In [31]: y0 = np.random.randn (5000)
In [32]: t = np.linspace (0, 50, 11)
In [33]: £ = 0.024
In [34]: k = 0.055
In [35]: Du = 0.01
In [36]: Dv = 0.005
{continues on next page)
4.1. SciPy Tutorial 243

SciPy Reference Guide, Release 1.3.2

(continued from previous page)

In [37]: dx = 0.025

Time the computation without taking advantage of the banded structure of the Jacobian matrix:

In [38]: %timeit sola = odeint (grayscottld, yO0, t, args=(f, k, Du, Dv, dx))
1 loop, best of 3: 25.2 s per loop

Now set m1=2 and mu=2, so odeint knows that the Jacobian matrix is banded:

In [39]: %timeit solb = odeint (grayscottld, yO0, t, args=(f, k, Du, Dv, dx),.
—ml=2, mu=2)
10 loops, best of 3: 191 ms per loop

That is quite a bit faster!

Let’s ensure that they have computed the same result:

In [41]: np.allclose(sola, solb)
Out[41]: True

References

4.1.5 Optimization (scipy.optimize)

The scipy.optimize package provides several commonly used optimization algorithms. A detailed listing is avail-
able: scipy.optimize (can also be found by help (scipy.optimize)).

The module contains:

1. Unconstrained and constrained minimization of multivariate scalar functions (minimize) using a variety of al-
gorithms (e.g. BFGS, Nelder-Mead simplex, Newton Conjugate Gradient, COBYLA or SLSQP)

2. Global optimization routines (e.g. basinhopping, differential_evolution, shgo,
dual_annealing).

3. Least-squares minimization (least_squares) and curve fitting (curve_ £1it) algorithms
4. Scalar univariate functions minimizers (ninimize_scalar) and root finders (root_scalar)

5. Multivariate equation system solvers (root) using a variety of algorithms (e.g. hybrid Powell, Levenberg-
Marquardt or large-scale methods such as Newton-Krylov [KK]).

Below, several examples demonstrate their basic usage.

Unconstrained minimization of multivariate scalar functions (minimize)

The minimize function provides a common interface to unconstrained and constrained minimization algorithms for
multivariate scalar functions in scipy.optimize. To demonstrate the minimization function consider the problem of
minimizing the Rosenbrock function of /V variables:

N
f (X) = Z 100 (.’Ei+1 — fE?)2 + (]. — l’i)z .
=2

The minimum value of this function is O which is achieved when z; = 1.

244 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

Note that the Rosenbrock function and its derivatives are included in scipy. optimize. The implementations shown
in the following sections provide examples of how to define an objective function as well as its jacobian and hessian
functions.

Nelder-Mead Simplex algorithm (method='Nelder-Mead')

In the example below, the minimize routine is used with the Nelder-Mead simplex algorithm (selected through the
method parameter):

>>> import numpy as np
>>> from scipy.optimize import minimize

>>> def rosen(x):
"""The Rosenbrock function"""
return sum(100.0*(x[1:]-x[:=1]**2.0)**2.0 + (l-x[:-1])**2.0)

>>> x0 = np.array([1.3, 0.7, 0.8, 1.9, 1.21])
>>> res = minimize (rosen, x0, method='nelder-mead',
ce options={'xtol': 1e-8, 'disp': True})
Optimization terminated successfully.
Current function value: 0.000000
Iterations: 339
Function evaluations: 571

>>> print (res.x)
(1. 1. 1. 1. 1.]

The simplex algorithm is probably the simplest way to minimize a fairly well-behaved function. It requires only function
evaluations and is a good choice for simple minimization problems. However, because it does not use any gradient
evaluations, it may take longer to find the minimum.

Another optimization algorithm that needs only function calls to find the minimum is Powell’s method available by setting
method="'powell' inminimize.

Broyden-Fletcher-Goldfarb-Shanno algorithm (method='BFGS"')

In order to converge more quickly to the solution, this routine uses the gradient of the objective function. If the gradient is
not given by the user, then it is estimated using first-differences. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method
typically requires fewer function calls than the simplex algorithm even when the gradient must be estimated.

To demonstrate this algorithm, the Rosenbrock function is again used. The gradient of the Rosenbrock function is the
vector:

of

N
) = 2200 (xi—a:?_l) (52‘,]‘ —2.%1'_151‘_17]') —2(1—3}2'_1)51'_17]‘.
L i=1

= 200 (z; — x?,l) — 400z, (241 — x?) —2(1—2xy).

This expression is valid for the interior derivatives. Special cases are

of
Do = —400z (21 — x%) —2(1 =),
of
pr— 200 (xN_l - x?\,_z) .

A Python function which computes this gradient is constructed by the code-segment:

4.1. SciPy Tutorial 245

SciPy Reference Guide, Release 1.3.2

>>> def rosen_der (x):
xm = x[1:-1]
xm_ml = x[:-2]
xm_pl = x[2:]

der = np.zeros_like (x)
der[1l:-1] = 200* (xm—xm_ml1**2) — 400* (xm_pl - xm**2)*xm — 2* (1l-xm)
der[0] = -400*x[0]*(x[1]-x[0]1**2) — 2*(1-x[0])

der[-1] = 200*(x[-1]1-x[-2]**2)
return der

This gradient information is specified in the minimi ze function through the jac parameter as illustrated below.

>>> res = minimize (rosen, x0, method='BFGS', jac=rosen_der,
c. options={'disp': True})
Optimization terminated successfully.
Current function value: 0.000000
Iterations: 51 # may vary
Function evaluations: 63
Gradient evaluations: 63
>>> res.x
array ([1., 1., 1., 1., 1.1)

Newton-Conjugate-Gradient algorithm (method="'Newton-CG"')

Newton-Conjugate Gradient algorithm is a modified Newton’s method and uses a conjugate gradient algorithm to (ap-
proximately) invert the local Hessian [NW]. Newton’s method is based on fitting the function locally to a quadratic
form:

f(x) = f(x0) + Vf(x0)(x—x0)+ % (X*XO)TH(XO) (x —xp).

where H (x¢) is a matrix of second-derivatives (the Hessian). If the Hessian is positive definite then the local minimum
of this function can be found by setting the gradient of the quadratic form to zero, resulting in

Xopt = X0 — H'V/.

The inverse of the Hessian is evaluated using the conjugate-gradient method. An example of employing this method to
minimizing the Rosenbrock function is given below. To take full advantage of the Newton-CG method, a function which
computes the Hessian must be provided. The Hessian matrix itself does not need to be constructed, only a vector which
is the product of the Hessian with an arbitrary vector needs to be available to the minimization routine. As a result, the
user can provide either a function to compute the Hessian matrix, or a function to compute the product of the Hessian
with an arbitrary vector.

Full Hessian example:

The Hessian of the Rosenbrock function is

O f

*J 833‘1'833]‘

200 ((5i,j — 2.%1',1(57;,17]') — 400‘%1 ((5i+1’j — 2$Z(517j) — 40057,] (l'iJrl - .’E?) + 252’,]’7

(202 + 12001’12 - 400$Z+1) 52-0- - 400xi6i+1,j - 400(Ei,16¢,1’j,

246 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

ifi,j € [1, N — 2] withi,j € [0, N — 1] defining the N x N matrix. Other non-zero entries of the matrix are

0% f 2
5;3 = 1200x§ — 400z + 2,
0? 0?
/ = / = —400xy,
6:6081‘1 81‘1 (3'£E0
o’ f 0*f
= = —400zy_2,
Orn_10zN_2 Ozy_20TN_1 N2
82
5 ! = 200.
oxs_
For example, the Hessian when N = 5 is
120022 — 400z + 2 —400x¢ 0 0 0
—400x¢ 202 + 120022 — 4002 —4002; 0 0
H-= 0 —400z, 202 + 120023 — 40023 —4002x4 0
0 —400x4 202 + 120022 — 40024 —400z3
0 0 0 —400z3 200

The code which computes this Hessian along with the code to minimize the function using Newton-CG method is shown
in the following example:

>>> def rosen_hess (x):

X = np.asarray (x)
H = np.diag(-400*x[:-1],1) - np.diag(400*x[:-1],-1)
diagonal = np.zeros_like (x)
diagonal[0] = 1200*x[0]**2-400*x[1]+2
diagonal[-1] = 200
diagonal[l:-1] = 202 + 1200*x[1:-1]**2 — 400*x[2:]
H = H + np.diag(diagonal)
return H
>>> res = minimize (rosen, x0, method='Newton-CG',

jac=rosen_der, hess=rosen_hess,
c. options={'xtol': 1e-8, 'disp': True})
Optimization terminated successfully.
Current function value: 0.000000
Iterations: 19 # may vary
Function evaluations: 22
Gradient evaluations: 19
Hessian evaluations: 19
>>> res.x
array ([1., 1., 1., 1., 1.1)

Hessian product example:

For larger minimization problems, storing the entire Hessian matrix can consume considerable time and memory. The
Newton-CG algorithm only needs the product of the Hessian times an arbitrary vector. As a result, the user can supply
code to compute this product rather than the full Hessian by giving a he s s function which take the minimization vector
as the first argument and the arbitrary vector as the second argument (along with extra arguments passed to the function
to be minimized). If possible, using Newton-CG with the Hessian product option is probably the fastest way to minimize
the function.

4.1. SciPy Tutorial 247

SciPy Reference Guide, Release 1.3.2

In this case, the product of the Rosenbrock Hessian with an arbitrary vector is not difficult to compute. If p is the arbitrary
vector, then H (x) p has elements:

(120023 — 40021 + 2) pg — 400z0p1
H (X) pP= —400.1‘1'_1])1'_1 + (202 + 12003312 - 400337;_;,_1) Pi — 400$Z‘p1’+1

—400x v —opNn—2 + 200pN—1

Code which makes use of this Hessian product to minimize the Rosenbrock function using minimi ze follows:

>>> def rosen_hess_p(x, p):

X = np.asarray (x)

Hp = np.zeros_like (x)

Hp[0] = (1200*x[0]**2 — 400*x[1] + 2)*p[0] - 400*x[0]*p[1l]
R Hp[l:-1] = —-400*x[:-2]1*p[:-2]1+(202+1200*x[1:-1]1**2-400*x[2:])*p[l:-1]_
<\

-400*x[1:-1]1*p[2:]

Hp[-1] = —-400*x[-2]*p[-2] + 200*p[-1]

return Hp
>>> res = minimize (rosen, x0, method='Newton-CG',

jac=rosen_der, hessp=rosen_hess_p,

C. options={'xtol': 1e-8, 'disp': True})
Optimization terminated successfully.

Current function value: 0.000000

Iterations: 20 # may vary

Function evaluations: 23

Gradient evaluations: 20

Hessian evaluations: 44
>>> res.x
array([1., 1., 1., 1., 1.1)

According to [NW] p. 170 the Newt on—CG algorithm can be inefficient when the Hessian is ill-condiotioned because
of the poor quality search directions provided by the method in those situations. The method t rust-ncg, according to
the authors, deals more effectively with this problematic situation and will be described next.

Trust-Region Newton-Conjugate-Gradient Algorithm (method="'trust-ncg')

The Newt on—CG method is a line search method: it finds a direction of search minimizing a quadratic approximation
of the function and then uses a line search algorithm to find the (nearly) optimal step size in that direction. An alternative
approach is to, first, fix the step size limit A and then find the optimal step p inside the given trust-radius by solving the
following quadratic subproblem:

. 1
min f (x) + Vf (xx) - p + 5p" H (x¢) P;
subject to: ||p|| < A.

The solution is then updated x; 11 = xj + p and the trust-radius A is adjusted according to the degree of agreement of
the quadratic model with the real function. This family of methods is known as trust-region methods. The t rust-ncg
algorithm is a trust-region method that uses a conjugate gradient algorithm to solve the trust-region subproblem [NW].

248 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

Full Hessian example:

>>> res = minimize (rosen, x0, method='trust-ncg',
jac=rosen_der, hess=rosen_hess,
options={'gtol': 1e-8, 'disp': True})
Optlmlzatlon terminated successfully.
Current function value: 0.000000
Iterations: 20 # may vary
Function evaluations: 21
Gradient evaluations: 20
Hessian evaluations: 19
>>> res.x
array([1., 1., 1., 1., 1.1)

Hessian product example:

>>> res = minimize (rosen, x0, method='trust-ncg',
jac=rosen_der, hessp=rosen_hess_p,
. options={"'gtol': 1e-8, 'disp': True})
Optlmlzatlon terminated successfully.
Current function value: 0.000000
Iterations: 20 # may vary
Function evaluations: 21
Gradient evaluations: 20
Hessian evaluations: O
>>> res.x
array([1., 1., 1., 1., 1.1)

Trust-Region Truncated Generalized Lanczos / Conjugate Gradient Algorithm
(method="trust-krylov')

Similar to the t rust-ncg method, the t rust-krylov method is a method suitable for large-scale problems as it
uses the hessian only as linear operator by means of matrix-vector products. It solves the quadratic subproblem more
accurately than the t rust —ncg method.

) 1
min f (xi) + Vf (%) - P+ 5P H (%) p;
subject to: ||p|| < A.

This method wraps the [TRLIB] implementation of the [GLTR] method solving exactly a trust-region subproblem re-
stricted to a truncated Krylov subspace. For indefinite problems it is usually better to use this method as it reduces the
number of nonlinear iterations at the expense of few more matrix-vector products per subproblem solve in comparison
to the t rust —ncg method.

Full Hessian example:

>>> res = minimize (rosen, x0, method='trust-krylov',
jac=rosen_der, hess=rosen_hess,
options={'gtol': 1e-8, 'disp': True})
Optlmlzatlon terminated successfully.

(continues on next page)

4.1. SciPy Tutorial 249

SciPy Reference Guide, Release 1.3.2

(continued from previous page)

Current function value: 0.000000
Iterations: 19 # may vary
Function evaluations: 20
Gradient evaluations: 20
Hessian evaluations: 18
>>> res.x
array ([1., 1., 1., 1., 1.1)

Hessian product example:

>>> res = minimize (rosen, x0, method='trust-krylov',
jac=rosen_der, hessp=rosen_hess_p,
. options={'gtol': 1e-8, 'disp': True})
Optlmlzatlon terminated successfully.
Current function value: 0.000000
Iterations: 19 # may vary
Function evaluations: 20
Gradient evaluations: 20
Hessian evaluations: O
>>> res.x
array([1., 1., 1., 1., 1.1)

Trust-Region Nearly Exact Algorithm (method="'trust-exact')

All methods Newt on—-CG, trust—ncgand t rust—krylov are suitable for dealing with large-scale problems (prob-
lems with thousands of variables). That is because the conjugate gradient algorithm approximatelly solve the trust-region
subproblem (or invert the Hessian) by iterations without the explicit Hessian factorization. Since only the product of the
Hessian with an arbitrary vector is needed, the algorithm is specially suited for dealing with sparse Hessians, allowing low
storage requirements and significant time savings for those sparse problems.

For medium-size problems, for which the storage and factorization cost of the Hessian are not critical, it is possible to
obtain a solution within fewer iteration by solving the trust-region subproblems almost exactly. To achieve that, a certain
nonlinear equations is solved iteratively for each quadratic subproblem [CGT]. This solution requires usually 3 or 4
Cholesky factorizations of the Hessian matrix. As the result, the method converges in fewer number of iterations and
takes fewer evaluations of the objective function than the other implemented trust-region methods. The Hessian product
option is not supported by this algorithm. An example using the Rosenbrock function follows:

>>> res = minimize (rosen, x0, method='trust-exact',
jac=rosen_der, hess=rosen_hess,
options={'gtol': 1e-8, 'disp': True})
Optlmlzatlon terminated successfully.
Current function value: 0.000000
Iterations: 13 # may vary
Function evaluations: 14
Gradient evaluations: 13
Hessian evaluations: 14
>>> res.x
array ([1., 1., 1., 1., 1.1)

250 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

Constrained minimization of multivariate scalar functions (minimize)

The minimize function provides algorithms for constrained minimization, namely 'trust-constr' , 'SLSQP'
and 'COBYLA'. They require the constraints to be defined using slightly different structures. The method
'"trust-constr' requires the constraints to be defined as a sequence of objects LinearConstraint and
NonlinearConstraint. Methods ' SLSQP' and 'COBYLA', on the other hand, require constraints to be defined
as a sequence of dictionaries, with keys t ype, fun and jac.

As an example let us consider the constrained minimization of the Rosenbrock function:

min 100 (xl — x3)2 +(1- xo)2

To,T1
subject to: To+2r1 <1
x?, +21 <1
x% —x1 <1
200 +x1 =1
0<z9<1
—0.5 <21 <2.0.

This optimization problem has the unique solution [xg,z1] = [0.4149, 0.1701], for which only the first and fourth
constraints are active.

Trust-Region Constrained Algorithm (method="'trust-constr')

The trust-region constrained method deals with constrained minimization problems of the form:

min f(x)
T
subject to: d <e(x) <,
2 << v

When clj = ¢} the method reads the j-th constraint as an equality constraint and deals with it accordingly. Besides that,
one-sided constraint can be specified by setting the upper or lower bound to np . inf with the appropriate sign.

The implementation is based on [EQSQP] for equality constraint problems and on [TRIP] for problems with inequality
constraints. Both are trust-region type algorithms suitable for large-scale problems.

Defining Bounds Constraints:

The bound constraints 0 < xp < 1 and —0.5 < z; < 2.0 are defined using a Bounds object.

>>> from scipy.optimize import Bounds
>>> bounds = Bounds ([0, -0.5], [1.0, 2.01])

Defining Linear Constraints:

The constraints g + 221 < 1 and 22y + 21 = 1 can be written in the linear constraint standard format:

=B <L)

and defined using a LinearConstraint object.

4.1. SciPy Tutorial 251

SciPy Reference Guide, Release 1.3.2

>>> from scipy.optimize import LinearConstraint
>>> linear_constraint = LinearConstraint([[1, 2], [2, 111, [-np.inf, 11, [1,_
~11)

Defining Nonlinear Constraints:

The nonlinear constraint:
with Jacobian matrix:

and linear combination of the Hessians:

1
2 0 2 0
=0

is defined using a NonlinearConstraint object.

>>> def cons_f (x):

e return [x[0]**2 + x[1], x[0]**2 — x[1]]
>>> def cons_J(x):

ce return [[2*x[0], 11, [2*x[0], -11]

>>> def cons_H(x, Vv):

return v[0]*np.array([[2, 0], [0, 01]) + v[1]l*np.array([[2, 0], [0,_
~011)

>>> from scipy.optimize import NonlinearConstraint

>>> nonlinear_constraint = NonlinearConstraint (cons_f, -np.inf, 1, jac=cons_J,

- hess=cons_H)

Alternatively, it is also possible to define the Hessian H (x, v) as a sparse matrix,

>>> from scipy.sparse import csc_matrix
>>> def cons_H_sparse(x, V):
.. return v[0]*csc_matrix([[2, 0], [0, 0]]1) + v[l]*csc_matrix([[2, O0],_
- [0, 011)
>>> nonlinear_constraint = NonlinearConstraint (cons_f, -np.inf, 1,

jac=cons_J, hess=cons_H_sparse)

orasa LinearOperator object.

>>> from scipy.sparse.linalg import LinearOperator
>>> def cons_H_linear_operator(x, Vv):
def matvec (p) :

return np.array ([pl[0]*2*(v[0]+vI[1]), O])
.. return LinearOperator((2, 2), matvec=matvec)
>>> nonlinear_constraint = NonlinearConstraint (cons_f, -np.inf, 1,
C jac=cons_J, hess=cons_H_linear_
—operator)

When the evaluation of the Hessian H (xz,v) is difficult to implement or computationally infeasible, one may use
HessianUpdateStrategy. Currently available strategies are BF'GS and SR1.

252 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

>>> from scipy.optimize import BFGS
>>> nonlinear_constraint = NonlinearConstraint (cons_f, -np.inf, 1, jac=cons_J,
— hess=BFGS())

Alternatively, the Hessian may be approximated using finite differences.

>>> nonlinear_constraint = NonlinearConstraint (cons_f, -np.inf, 1, jac=cons_J,
< hess="2-point")

The Jacobian of the constraints can be approximated by finite differences as well. In this case, however, the Hessian cannot
be computed with finite differences and needs to be provided by the user or defined using HessianUpdateStrategy

>>> nonlinear_constraint = NonlinearConstraint (cons_f, -np.inf, 1, Jjac='2-
—point', hess=BFGS())

Solving the Optimization Problem:

The optimization problem is solved using:

>>> x0 = np.array([0.5, 0])

>>> res = minimize(rosen, x0, method='trust-constr', jac=rosen_der,.
—~hess=rosen_hess,

constraints=[linear_constraint, nonlinear_constraint],
. options={'verbose': 1}, bounds=bounds)

may vary
‘gtol® termination condition is satisfied.

Number of iterations: 12, function evaluations: 8, CG iterations: 7,._
—optimality: 2.99e-09, constraint violation: 1.11le-16, execution time: 0.016.
—S.

>>> print (res.x)

[0.41494531 0.17010937]

When needed, the objective function Hessian can be defined using a Li nearOperator object,

>>> def rosen_hess_linop(x):
def matvec (p):
return rosen_hess_p(x, p)
.. return LinearOperator((2, 2), matvec=matvec)
>>> res = minimize (rosen, x0, method='trust-constr', jac=rosen_der, .
—hess=rosen_hess_linop,
constraints=[linear_constraint, nonlinear_constraint],
options={'verbose': 1}, bounds=bounds)
may vary
"gtol® termination condition is satisfied.
Number of iterations: 12, function evaluations: 8, CG iterations: 7,.
—optimality: 2.99e-09, constraint violation: 1.11e-16, execution time: 0.018_
—S.
>>> print (res.x)
[0.41494531 0.17010937]

or a Hessian-vector product through the parameter hessp.

4.1. SciPy Tutorial 253

SciPy Reference Guide, Release 1.3.2

>>> res = minimize (rosen, x0, method='trust-constr', Jjac=rosen_der, .
—hessp=rosen_hess_p,

constraints=[linear_constraint, nonlinear_constraint],
c. options={'verbose': 1}, bounds=bounds)

may vary
"gtol® termination condition is satisfied.

Number of iterations: 12, function evaluations: 8, CG iterations: 7,.
—optimality: 2.99e-09, constraint violation: 1.11e-16, execution time: 0.018._
S.

>>> print (res.x)

[0.41494531 0.17010937]

Alternatively, the first and second derivatives of the objective function can be approximated. For instance, the Hessian
can be approximated with SR1 quasi-Newton approximation and the gradient with finite differences.

>>> from scipy.optimize import SRI1
>>> res = minimize (rosen, x0, method='trust-constr', jac="2-point", .
—~hess=SR1 (),
constraints=[linear_constraint, nonlinear_constraint],
options={"'verbose': 1}, bounds=bounds)
may vary
"gtol® termination condition is satisfied.
Number of iterations: 12, function evaluations: 24, CG iterations: 7,.
—optimality: 4.48e-09, constraint violation: 0.00e+00, execution time: 0.016_
~S.
>>> print (res.x)
[0.41494531 0.17010937]

Sequential Least SQuares Programming (SLSQP) Algorithm (method="'SLSQP"')
The SLSQP method deals with constrained minimization problems of the form:
min f(z)
subject to: cj(x) =0, jeé&

¢j(x) >0, jel

lbz <z; < llbi, 1= 1,...,N.

Where £ or 7 are sets of indices containing equality and inequality constraints.

Both linear and nonlinear constraints are defined as dictionaries with keys t ype, fun and jac.

>>> ineq_cons = {'type': 'ineq',
"fun' : lambda x: np.array ([l - x[0] - 2*x[1],
1 - x[0]1**2 - x[1],
1 = x[0]**2 + x[1]11),
'Jac' : lambda x: np.array([[-1.0, -2.0],
[-2*x[0], —-1.01,
R [-2*x[0], 1.011)}
>>> eqg_cons = {'type': 'eq',
'"fun' : lambda x: np.array ([2*x[0] + x[1] - 11),
'jac' : lambda x: np.array([2.0, 1.0]1)}

And the optimization problem is solved with:

254 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

>>> x0 = np.array([0.5, 01)
>>> res = minimize (rosen, x0, method='SLSQP', jac=rosen_der,
constraints=[eqg_cons, ineqg_cons], options={'ftol': 1e-9,

—~'disp': True},
bounds=bounds)

may vary

Optimization terminated successfully. (Exit mode 0)
Current function value: 0.342717574857755
Iterations: 5
Function evaluations: 6
Gradient evaluations: 5

>>> print (res.x)

[0.41494475 0.1701105]

Most of the options available for the method 't rust—-constr' are not available for ' SLSQP '.

Global optimization

Global optimization aims to find the global minimum of a function within given bounds, in the presence of potentially
many local minima. Typically global minimizers efficiently search the parameter space, while using a local minimizer
(e.g. minimize) under the hood. SciPy contains a number of good global optimizers. Here we’ll use those on the same
objective function, namely the (aptly named) eggholder function:

>>> def eggholder (x):

return (—(x[1] + 47) * np.sin(np.sqrt(abs(x[0]/2 + (x[1] + 47))))
-x[0] * np.sin(np.sqgrt (abs(x[0] - (x[1] + 47)))))
>>> bounds = [(-512, 512), (=512, 512)]

This function looks like an egg carton:

>>> import matplotlib.pyplot as plt
>>> from mpl_toolkits.mplot3d import Axes3D

>>> x = np.arange(-512, 513)

>>> y = np.arange(-512, 513)

>>> xgrid, ygrid = np.meshgrid(x, V)
>>> xy = np.stack([xgrid, ygridl])

>>> fig = plt.figure()

>>> ax = fig.add_subplot (111, projection='3d")

>>> ax.view_init (45, -45)

>>> ax.plot_surface(xgrid, ygrid, eggholder (xy), cmap='terrain')
>>> ax.set_xlabel ('x")

>>> ax.set_ylabel('y")

>>> ax.set_zlabel ('eggholder (x, y)"'")

>>> plt.show ()

‘We now use the global optimizers to obtain the minimum and the function value at the minimum. We’ll store the results
in a dictionary so we can compare different optimization results later.

4.1. SciPy Tutorial 255

SciPy Reference Guide, Release 1.3.2

eqahnldn.-/..

>>> from scipy import optimize
>>> results = dict ()
>>> results|['shgo'] = optimize.shgo (eggholder, bounds)
>>> results['shgo']
fun: -935.3379515604197 # may vary
funl: array([-935.33795156])
message: 'Optimization terminated successfully.'

nfev: 42
nit: 2
nlfev: 37
nlhev: 0
nljev: 9

success: True
x: array ([439.48096952, 453.97740589])
x1: array([[439.48096952, 453.97740589]11)

>>> results['DA'] = optimize.dual_annealing(eggholder, bounds)
>>> results['DA'"]
fun: -956.9182316237413 # may vary

message: ['Maximum number of iteration reached']
nfev: 4091
nhev: 0
nit: 1000
njev: O

x: array([482.35324114, 432.8789290117)

All optimizers return an Opt imizeResult, which in addition to the solution contains information on the number of

256 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

function evaluations, whether the optimization was successful, and more. For brevity we won’t show the full output of the
other optimizers:

>>> results['DE'] = optimize.differential_evolution(eggholder, bounds)
>>> results['BH']

optimize.basinhopping (eggholder, bounds)

shgo has a second method, which returns all local minima rather than only what it thinks is the global minimum:

>>> results['shgo_sobol'] = optimize.shgo(eggholder, bounds, n=200, iters=5,
sampling_method="'sobol")

We’ll now plot all found minima on a heatmap of the function:

>>> fig = plt.figure()

>>> ax fig.add_subplot (111)

>>> im = ax.imshow(eggholder (xy), interpolation='bilinear', origin='lower',
R cmap="gray')

>>> ax.set_xlabel ('x")
>>> ax.set_ylabel('y")
>>>

>>> def plot_point (res, marker='o', color=None) :
ax.plot (512+res.x[0], 512+res.x[1l], marker=marker, color=color, ms=10)

>>> plot_point (results['BH'], color='y") # basinhopping - yellow
>>> plot_point (results['DE'], color='c'") # differential_evolution - cyan
>>> plot_point (results['DA'], color='w'") # dual_annealing. - white

>>> # SHGO produces multiple minima, plot them all (with a smaller marker.
~size)
>>> plot_point (results|['shgo'], color='r', marker='+")
>>> plot_point (results|['shgo_sobol'], color='r', marker='x")
>>> for i1 in range(results|['shgo_sobol'].x1l.shape[0]):
ax.plot (512 + results|['shgo_sobol']l.x1[1i, O],
512 + results['shgo_sobol']l.x1[i, 1],
'ro', ms=2)

>>> ax.set_xlim([—-4, 514*21)
>>> ax.set_ylim([-4, 514*2])
>>> plt.show ()

Least-squares minimization (Least_squares)

SciPy is capable of solving robustified bound constrained nonlinear least-squares problems:

R 2
min o ; p (fi(x)?) (4.4)
subject to Ib < x < ub 4.5)

Here f;(x) are smooth functions from R™ to R, we refer to them as residuals. The purpose of a scalar valued function
p(+) is to reduce the influence of outlier residuals and contribute to robustness of the solution, we refer to it as a loss
function. A linear loss function gives a standard least-squares problem. Additionally, constraints in a form of lower and
upper bounds on some of x; are allowed.

4.1. SciPy Tutorial 257

SciPy Reference Guide, Release 1.3.2

1000

800

600

400

200

0 200 400 600 800 1000

All methods specific to least-squares minimization utilize a m x n matrix of partial derivatives called Jacobian and defined
as J;; = 0f;/0x;. It is highly recommended to compute this matrix analytically and pass it to least_squares,
otherwise it will be estimated by finite differences which takes a lot of additional time and can be very inaccurate in hard
cases.

Function least_squares can be used for fitting a function (¢; x) to empirical data {(¢;,v;),7 = 0,...,m — 1}.

To do this one should simply precompute residuals as f;(x) = w;(¢(t;; X) — y;), where w; are weights assigned to each
observation.

Example of solving a fitting problem
Here we consider “Analysis of an Enzyme Reaction” problem formulated in'. There are 11 residuals defined as

fil) = zo(u? 4+ u;r)

_ Lolui U)o 10,
u? 4+ u;xy + 23 Yir t

I Brett M. Averick et al., “The MINPACK-2 Test Problem Collection”.

258 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

where y; are measurement values and u; are values of the independent variable. The unknown vector of parameters is
x = (wg, 21,22, 73)T. As was said previously, it is recommended to compute Jacobian matrix in a closed form:

Jio = S—Z = % (4.6)
Jin = gj; 1 = WZ—M “7)
o= g = s @
Jis = gg{; =— (u?iui;uf;i)g 4.9)

We are going to use the “hard” starting point defined in'. To find a physically meaningful solution, avoid potential division
by zero and assure convergence to the global minimum we impose constraints 0 < z; < 100,57 = 0,1, 2, 3.

The code below implements least-squares estimation of x and finally plots the original data and the fitted model function:

>>> from scipy.optimize import least_squares

>>> def model (x, u):
return x[0] * (u ** 2 + x[1] * u) / (u ** 2 + x[2] * u + x[3])

>>> def fun(x, u, y):
return model (x, u) - vy

>>> def jac(x, u, y):
J = np.empty((u.size, x.size))
den = u ** 2 + x[2] * u + x[3]

num = u ** 2 + x[1] * u

J[:, 0] = num / den

J[l:, 11 = x[0] * u / den

J[:, 2] = —-x[0] * num * u / den ** 2
J[:, 3] = —-x[0] * num / den ** 2
return J

>>> u = np.array([4.0, 2.0, 1.0, 5.0e-1, 2.5e-1, 1.67e-1, 1.25e-1, 1.0e-1,
ce 8.33e-2, 7.14e-2, 6.25e-21)

>>> y = np.array([1.957e-1, 1.947e-1, 1.735e-1, 1.6e-1, 8.44e-2, 6.27e-2,
R 4.56e-2, 3.42e-2, 3.23e-2, 2.35e-2, 2.46e-21])

>>> x0 = np.array([2.5, 3.9, 4.15, 3.91)

>>> res = least_squares (fun, x0, jac=jac, bounds=(0, 100), args=(u, Vy),-—
—verbose=1)

may vary

"ftol® termination condition is satisfied.

Function evaluations 130, initial cost 4.4383e+00, final cost 1.5375e-04,._
—~first-order optimality 4.92e-08.

>>> res.x

array ([0.19280596, 0.19130423, 0.12306063, 0.136072477)

>>> import matplotlib.pyplot as plt
>>> u_test = np.linspace (0, 5)
>>> y_test = model (res.x, u_test)

(continues on next page)

4.1. SciPy Tutorial 259

SciPy Reference Guide, Release 1.3.2

(continued from previous page)

>>> plt.plot(u, vy, 'o', markersize=4, label='data')
>>> plt.plot (u_test, y_test, label='fitted model')
>>> plt.xlabel ("u")
>>> plt.ylabel ("y")
>>> plt.legend(loc="'lower right')
>>> plt.show ()

0.20 N Py e
[J
[)
0.15
> 0.10 +
0
0
005 N 0
’4‘; e data
fitted model
0.00
0 1 2 3 4 5

Further examples
Three interactive examples below illustrate usage of 1east_squares in greater detail.

1. Large-scale bundle adjustment in scipy demonstrates large-scale capabilities of Ieast_squares and how to
efficiently compute finite difference approximation of sparse Jacobian.

2. Robust nonlinear regression in scipy shows how to handle outliers with a robust loss function in a nonlinear regres-
sion.

3. Solving a discrete boundary-value problem in scipy examines how to solve a large system of equations and use
bounds to achieve desired properties of the solution.

For the details about mathematical algorithms behind the implementation refer to documentation of least_squares.

Univariate function minimizers (minimize_scalar)

Often only the minimum of an univariate function (i.e. a function that takes a scalar as input) is needed. In these
circumstances, other optimization techniques have been developed that can work faster. These are accessible from the
minimize_scalar function which proposes several algorithms.

Unconstrained minimization (method="'brent')

There are actually two methods that can be used to minimize an univariate function: brent and golden, but golden
is included only for academic purposes and should rarely be used. These can be respectively selected through the method
parameter in minimize_scalar. The brent method uses Brent’s algorithm for locating a minimum. Optimally a
bracket (the bracket parameter) should be given which contains the minimum desired. A bracket is a triple (a, b, ¢)
such that f (a) > f(b) < f(¢) and a < b < c . If this is not given, then alternatively two starting points can be chosen

260 Chapter 4. Tutorial

https://scipy-cookbook.readthedocs.io/items/bundle_adjustment.html
https://scipy-cookbook.readthedocs.io/items/robust_regression.html
https://scipy-cookbook.readthedocs.io/items/discrete_bvp.html

SciPy Reference Guide, Release 1.3.2

and a bracket will be found from these points using a simple marching algorithm. If these two starting points are not
provided 0 and / will be used (this may not be the right choice for your function and result in an unexpected minimum
being returned).

Here is an example:

>>> from scipy.optimize import minimize_scalar
>>> f = lambda x: (x — 2) * (x + 1)**2

>>> res = minimize_scalar (f, method='brent')
>>> print (res.x)
1.0

Bounded minimization (method="'bounded')

Very often, there are constraints that can be placed on the solution space before minimization occurs. The bounded
method in minimize_scalar is an example of a constrained minimization procedure that provides a rudimentary
interval constraint for scalar functions. The interval constraint allows the minimization to occur only between two fixed
endpoints, specified using the mandatory bounds parameter.

For example, to find the minimum of .J; (z) near © = 5, minimize_scalar can be called using the interval [4, 7]
as a constraint. The result is z;, = 5.3314 :

>>> from scipy.special import jl

>>> res = minimize_scalar(jl, bounds=(4, 7), method='bounded')
>>> res.x

5.33144184241

Custom minimizers
Sometimes, it may be useful to use a custom method as a (multivariate or univariate) minimizer, for example when using
some library wrappers of minimize (e.g. basinhopping).

We can achieve that by, instead of passing a method name, we pass a callable (either a function or an object implementing
a __call__ method) as the method parameter.

Let us consider an (admittedly rather virtual) need to use a trivial custom multivariate minimization method that will just
search the neighborhood in each dimension independently with a fixed step size:

>>> from scipy.optimize import OptimizeResult
>>> def custmin (fun, x0, args=(), maxfev=None, stepsize=0.1,
maxiter=100, callback=None, **options):
bestx = x0

besty = fun (x0)
funcalls = 1
niter = 0
improved = True

stop = False

while improved and not stop and niter < maxiter:
improved = False
niter += 1
for dim in range (np.size(x0)):

for s in [bestx[dim] - stepsize, bestx[dim] + stepsize]:
testx = np.copy (bestx)
testx[dim] = s

(continues on next page)

4.1. SciPy Tutorial 261

SciPy Reference Guide, Release 1.3.2

(continued from previous page)

testy = fun(testx, *args)
funcalls += 1
if testy < besty:
besty = testy
bestx = testx
improved = True
if callback is not None:
callback (bestx)
if maxfev is not None and funcalls >= maxfev:
stop True
break

return OptimizeResult (fun=besty, x=bestx, nit=niter,
C. nfev=funcalls, success=(niter > 1))
>>> x0 = [1.35, 0.9, 0.8, 1.1, 1.2]
>>> res = minimize (rosen, x0, method=custmin, options=dict (stepsize=0.05))
>>> res.x
array([1., 1., 1., 1., 1.1)

This will work just as well in case of univariate optimization:

>>> def custmin (fun, bracket, args=(), maxfev=None, stepsize=0.1,
maxiter=100, callback=None, **options):
bestx = (bracket[1] + bracket[0]) / 2.0
besty = fun (bestx)
funcalls = 1
niter = 0
improved = True
stop = False

while improved and not stop and niter < maxiter:
improved = False
niter += 1
for testx in [bestx - stepsize, bestx + stepsizel]:
testy = fun(testx, *args)
funcalls += 1
if testy < besty:

besty = testy
bestx = testx
improved = True

if callback is not None:
callback (bestx)

if maxfev is not None and funcalls >= maxfev:
stop = True
break

return OptimizeResult (fun=besty, x=bestx, nit=niter,
Ce. nfev=funcalls, success=(niter > 1))
>>> def f(x):

. return (x — 2)**2 * (x + 2)**2
>>> res = minimize_scalar (f, bracket=(-3.5, 0), method=custmin,
options=dict (stepsize = 0.05))

(continues on next page)

262 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

(continued from previous page)

>>> res.x

Root finding

Scalar functions

If one has a single-variable equation, there are multiple different root finding algorithms that can be tried. Most of these
algorithms require the endpoints of an interval in which a root is expected (because the function changes signs). In general
brentq is the best choice, but the other methods may be useful in certain circumstances or for academic purposes.
When a bracket is not available, but one or more derivatives are available, then newton (or halley, secant) may
be applicable. This is especially the case if the function is defined on a subset of the complex plane, and the bracketing
methods cannot be used.

Fixed-point solving

A problem closely related to finding the zeros of a function is the problem of finding a fixed-point of a function. A fixed
point of a function is the point at which evaluation of the function returns the point: g (x) = «. Clearly the fixed point
of g is the root of f () = g (z) — x. Equivalently, the root of f is the fixed_point of g (x) = f (z) + «. The routine
fixed_ point provides a simple iterative method using Aitkens sequence acceleration to estimate the fixed point of g
given a starting point.

Sets of equations

Finding a root of a set of non-linear equations can be achieve using the root function. Several methods are available,
amongst which hybr (the default) and 1m which respectively use the hybrid method of Powell and the Levenberg-
Marquardt method from MINPACK.

The following example considers the single-variable transcendental equation
x+2cos(z) =0,

a root of which can be found as follows:

>>> import numpy as np
>>> from scipy.optimize import root
>>> def func(x):
return x + 2 * np.cos(x)
>>> sol = root (func, 0.3)
>>> sol.x
array ([-1.02986653])
>>> sol.fun
array ([-6.66133815e-16])

Consider now a set of non-linear equations

xocos(x1) = 4,

ToTy —T1 = 5.

We define the objective function so that it also returns the Jacobian and indicate this by setting the jac parameter to
True. Also, the Levenberg-Marquardt solver is used here.

4.1. SciPy Tutorial 263

SciPy Reference Guide, Release 1.3.2

>>> def func2(x):

f = [x[0] * np.cos(x[1]) - 4,
x[1]1*%x[0] - x[1] - 5]
df = np.array([[np.cos(x[1]), -x[0] * np.sin(x[1])],
[x[1], x[0] - 111)

c. return f, df

>>> sol = root(func2, [1, 1], jac=True, method='lm'")
>>> sol.x

array ([6.50409711, 0.9084142117])

Root finding for large problems

Methods hybr and 1m in root cannot deal with a very large number of variables (), as they need to calculate and
invert a dense N x N Jacobian matrix on every Newton step. This becomes rather inefficient when N grows.

Consider for instance the following problem: we need to solve the following integrodiftferential equation on the square
[0,1] x [0,1]:
2

11
(834—85)]3—1-5(/0 /0 cosh(P)dxdy) =0

with the boundary condition P(x,1) = 1 on the upper edge and P = 0 elsewhere on the boundary of the square. This
can be done by approximating the continuous function P by its values on a grid, P, ,,, = P(nh, mh), with a small grid
spacing h. The derivatives and integrals can then be approximated; for instance 92 P(z,y) ~ (P(x + h,y) — 2P(z,y) +
P(x — h,y))/h?. The problem is then equivalent to finding the root of some function residual (P), where P is a
vector of length N, N,,.

Now, because IV, N, can be large, methods hybr or 1min root will take a long time to solve this problem. The solution
can however be found using one of the large-scale solvers, for example krylov, broyden2, or anderson. These
use what is known as the inexact Newton method, which instead of computing the Jacobian matrix exactly, forms an
approximation for it.

The problem we have can now be solved as follows:

import numpy as np
from scipy.optimize import root
from numpy import cosh, zeros_like, mgrid, =zeros

parameters
nx, ny = 75, 75
hx, hy 1./(nx-1), 1./ (ny-1)

P_left, P_right = 0, O
P_top, P_bottom

Il
[N
~
o

def residual (P):
d2x = zeros_like (P)
d2y = zeros_like (P)

d2x[1:-1]1 = (P[2:] - 2*P[1:-1] 4+ P[:-2]) / hx/hx
d2x[0] = (P[1] - 2*P[0] + P_left) /hx/hx
d2x[-1] = (P_right - 2*P[-1] + P[-2])/hx/hx
d2y[:,1:-1] = (P[:,2:] — 2*P[:,1:-1]1 + P[:,:-2])/hy/hy
d2y[:,0] - (P[:,1] - 2*P[:,0] + P_bottom) /hy/hy

(continues on next page)

264 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

(continued from previous page)

d2y[:,-1] = (P_top - 2*P[:,-1] + P[:,-2])/hy/hy

return d2x + d2y + 5*cosh(P) .mean () **2

solve

guess = zeros((nx, ny), float)

sol = root (residual, guess, method='krylov', options={'disp': True})

#sol = root (residual, guess, method='broyden2', options={'disp': True, 'max_
—rank': 50})

#sol = root (residual, guess, method='anderson', options={'disp': True, 'M':.
~10})

print ('Residual: Sg' % abs(residual (sol.x)) .max())

visualize

import matplotlib.pyplot as plt

X, y = mgrid[0:1: (nx*1j), O0:1l:(ny*17)]
plt.pcolor(x, y, sol.x)

plt.colorbar ()

plt.show()

1.0

0.8

0.6

0.4

0.2

Still too slow? Preconditioning.

When looking for the zero of the functions f;(x) = 0,i=1, 2, ..., N, the kry1lov solver spends most of its time inverting
the Jacobian matrix,

_ofi
Jij = o,

If you have an approximation for the inverse matrix M =~ .J~!, you can use it for preconditioning the linear inversion
problem. The idea is that instead of solving Js =y one solves M Js = My: since matrix M .J is “closer” to the identity
matrix than J is, the equation should be easier for the Krylov method to deal with.

The matrix M can be passed to root with method krylov —as an option
options['Jjac_options'] ['inner_M']. It can be a (sparse) matrix or a scipy.sparse.linalg.
LinearOperator instance.

4.1. SciPy Tutorial 265

SciPy Reference Guide, Release 1.3.2

For the problem in the previous section, we note that the function to solve consists of two parts: the first one is applica-
tion of the Laplace operator, [92 + 8§]P, and the second is the integral. We can actually easily compute the Jacobian
corresponding to the Laplace operator part: we know that in one dimension

-2 1 0 0--
11 -2 1 0--

2 o 3,2

a«’v’“h2 0 1 -2 1...|= ML

x

so that the whole 2-D operator is represented by
=240 ~h’Lel+h,*I®L

The matrix Jo of the Jacobian corresponding to the integral is more difficult to calculate, and since all of it entries are
nonzero, it will be difficult to invert. .J; on the other hand is a relatively simple matrix, and can be inverted by scipy.
sparse.linalg.splu (or the inverse can be approximated by scipy.sparse.linalg.spilu). So we are
content to take M = .J; ! and hope for the best.

In the example below, we use the preconditioner M = J; 1

import numpy as np

from scipy.optimize import root

from scipy.sparse import spdiags, kron

from scipy.sparse.linalg import spilu, LinearOperator
from numpy import cosh, zeros_like, mgrid, zeros, eye

parameters
nx, ny = 75, 75
hx, hy = 1./(nx-1), 1./(ny-1)

P_left, P_right = 0, O
P_top, P_bottom = 1, O

def get_preconditioner():
"""Compute the preconditioner M"""

diags_x = zeros((3, nx))

diags_x[0,:] = 1/hx/hx

diags_xI[1,:] = -2/hx/hx

diags_xI[2,:] = 1/hx/hx

Lx = spdiags(diags_x, [-1,0,1], nx, nx)
diags_y = zeros((3, ny))

diags_y[0,:] = 1/hy/hy

diags_y[l,:]1 = -2/hy/hy

diags_y[2,:] = 1/hy/hy

Ly = Spdiags (dj—agS_YI [_11 Or j—]r ny, HY)

Jl = kron(Lx, eye(ny)) + kron(eye(nx), Ly)

Now we have the matrix “J_1°'. We need to find its inverse 'M' —-—
however, since an approximate inverse is enough, we can use

the *incomplete LU* decomposition

J1_ilu = spilu(J1)

(continues on next page)

266 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

(continued from previous page)

def

def

This returns an object with a method .solve() that evaluates
the corresponding matrix-vector product. We need to wrap it into
a LinearOperator before it can be passed to the Krylov methods:

M = LinearOperator (shape=(nx*ny, nx*ny), matvec=J1_ilu.solve)
return M

solve (preconditioning=True) :
"""Compute the solution"""
count = [0]

def residual (P):

count [0] += 1

d2x zeros_like (P)
d2y = zeros_like (P)

d2x[1:-1] = (P[2:] - 2*P[1:-1] + P[:-2])/hx/hx
d2x[0] = (P[1] - 2*P[0] + P_left) /hx/hx
d2x[—-1] = (P_right - 2*P[-1] + P[-2])/hx/hx
d2y[:,1:-11 = (P[:,2:] — 2*P[:,1:-1] + P[:,:-2])/hy/hy
d2y[:,0] = (P[:,1] - 2*P[:,0] + P_bottom) /hy/hy
d2y[:,-1] = (P_top - 2*P[:,-1] + P[:,-2])/hy/hy

return d2x + d2y + 5*cosh(P) .mean () **2

preconditioner
if preconditioning:
M get_preconditioner ()
else:
M

None

solve
guess = zeros((nx, ny), float)

sol = root (residual, guess, method='krylov',
options={'disp': True,
'Jac_options': {'inner_M': M}})
print ('Residual', abs(residual (sol.x)) .max())
print ('Evaluations', count[0])

return sol.x

main () :
sol = solve (preconditioning=True)

visualize

import matplotlib.pyplot as plt

X, y = mgrid[0:1: (nx*1j), O0:1: (ny*13)]
plt.clf ()

plt.pcolor(x, vy, sol)

(continues on next page)

4.1.

SciPy Tutorial 267

SciPy Reference Guide, Release 1.3.2

(continued from previous page)

plt.clim(0, 1)
plt.colorbar ()
plt.show ()

LI

if name " main

main ()

Resulting run, first without preconditioning:

0: [F(x)| = 803.614; step 1; tol 0.000257947

1: |[F(x)| = 345.912; step 1; tol 0.166755

2 [F(x)| = 139.159; step 1; tol 0.145657

3: |[F(x)| = 27.3682; step 1; tol 0.0348109

4 [F(x)| = 1.03303; step 1; tol 0.00128227

5: [F(x)| = 0.0406634; step 1; tol 0.00139451
6: [F(x)| = 0.00344341; step 1; tol 0.00645373
7: [F(x)| = 0.000153671; step 1; tol 0.00179246
8: [F(x)| = 6.7424e-06; step 1; tol 0.00173256

Residual 3.57078908664e-07
Evaluations 317

and then with preconditioning:

0: [F(x)| = 136.993; step 1; tol 7.49599e-06

1: [F(x)| = 4.80983; step 1; tol 0.00110945

2 [F(x)| = 0.195942; step 1; tol 0.00149362

3: [F(x)| = 0.000563597; step 1; tol 7.44604e-06
4: [F(x)| = 1.00698e-09; step 1; tol 2.87308e-12

Residual 9.29603061195e-11
Evaluations 77

Using a preconditioner reduced the number of evaluations of the residual function by a factor of 4. For problems
where the residual is expensive to compute, good preconditioning can be crucial — it can even decide whether the problem
is solvable in practice or not.

Preconditioning is an art, science, and industry. Here, we were lucky in making a simple choice that worked reasonably
well, but there is a lot more depth to this topic than is shown here.

References

Some further reading and related software, such as Newton-Krylov [KK], PETSc [PP], and PyYAMG [AMG]:

4.1.6 Interpolation (scipy.interpolate)

Contents

e Interpolation (scipy.interpolate)

— I-D interpolation (interpld)

268 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

— Multivariate data interpolation (griddata)
— Spline interpolation

Spline interpolation in 1-d: Procedural (interpolate.spIXXX)

« Spline interpolation in 1-d: Object-oriented (UnivariateSpline)

« Two-dimensional spline representation: Procedural (bisplrep)

x Two-dimensional spline representation: Object-oriented (BivariateSpline)
— Using radial basis functions for smoothing/interpolation

« [-d Example

x 2-d Example

There are several general interpolation facilities available in SciPy, for data in 1, 2, and higher dimensions:
* A class representing an interpolant (i nterpld) in 1-D, offering several interpolation methods.

» Convenience function griddata offering a simple interface to interpolation in N dimensions (N =1, 2, 3,4, ...).
Object-oriented interface for the underlying routines is also available.

¢ Functions for 1- and 2-dimensional (smoothed) cubic-spline interpolation, based on the FORTRAN library FIT-
PACK. There are both procedural and object-oriented interfaces for the FITPACK library.

* Interpolation using Radial Basis Functions.

1-D interpolation (interpild)

The interpldclassin scipy.interpolate isaconvenient method to create a function based on fixed data points
which can be evaluated anywhere within the domain defined by the given data using linear interpolation. An instance of
this class is created by passing the 1-d vectors comprising the data. The instance of this class defines a __call__ method
and can therefore by treated like a function which interpolates between known data values to obtain unknown values (it
also has a docstring for help). Behavior at the boundary can be specified at instantiation time. The following example
demonstrates its use, for linear and cubic spline interpolation:

>>> from scipy.interpolate import interpld

>>> x = np.linspace(0, 10, num=11, endpoint=True)
>>> y = np.cos (-x**2/9.0)

>>> f interpld(x, V)

>>> f2 = interpld(x, y, kind='cubic')

>>> xnew = np.linspace (0, 10, num=41, endpoint=True)
>>> import matplotlib.pyplot as plt
>>> plt.plot(x, vy, 'o', xnew, f(xnew), '-', xnew, f2(xnew), '——")

>>> plt.legend(['data', 'linear',6 'cubic'], loc='best'")
>>> plt.show ()

Another set of interpolations in i nterpld is nearest, previous, and next, where they return the nearest, previous, or next
point along the x-axis. Nearest and next can be thought of as a special case of a causal interpolating filter. The following
example demonstrates their use, using the same data as in the previous example:

>>> from scipy.interpolate import interpld

4.1. SciPy Tutorial 269

SciPy Reference Guide, Release 1.3.2

1.0
0.5 A
0.0 A
-0.59 @ data
—— linear
—-1.04 ——- cubic)
T T T T T T
0 2 4 6 8 10
>>> x = np.linspace (0, 10, num=11, endpoint=True)
>>> y np.cos (—x**2/9.0)
>>> f1 = interpld(x, y, kind='nearest')
>>> f2 = interpld(x, y, kind='previous')
>>> f3 = interpld(x, y, kind='next')
>>> xnew = np.linspace (0, 10, num=1001, endpoint=True)
>>> import matplotlib.pyplot as plt
>>> plt.plot(x, y, 'o")
>>> plt.plot (xnew, fl(xnew), '-', xnew, f2(xnew), '--', xnew, £f3(xnew), ':'")
>>> plt.legend(['data', 'nearest', 'previous', 'next'], loc='best')
>>> plt.show()
1.0
--—,-H.—-n
0.5 - =i T
| 1 I
| 1 I
| | [
0.0 - I : E o
® data i : I
. |
—— nearest : : I
—0.5 + . : I 1
——- previous L |
..... next E I J|
—1.0 - T T T T T T
0 2 4 6 8 10
270

Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

Multivariate data interpolation (griddata)

Suppose you have multidimensional data, for instance for an underlying function f(x, y) you only know the values at points
(x[i], y[i]) that do not form a regular grid.

Suppose we want to interpolate the 2-D function

>>> def func(x, vy):
return x* (1-x)*np.cos(4*np.pi*x) * np.sin(4*np.pi*y**2)**2

on a grid in [0, 1]x[0, 1]

>>> grid_x, grid_y = np.mgrid[0:1:100j, 0:1:2007]

but we only know its values at 1000 data points:

>>> points = np.random.rand (1000, 2)
>>> values = func(points[:,0], points[:,1])

This can be done with griddata — below we try out all of the interpolation methods:

>>> from scipy.interpolate import griddata

>>> grid_z0 = griddata (points, wvalues, (grid_x, grid_y), method='nearest')
>>> grid_zl1 = griddata (points, wvalues, (grid_x, grid_y), method='linear')
>>> grid_z2 griddata (points, values, (grid_x, grid_y), method='cubic'")

One can see that the exact result is reproduced by all of the methods to some degree, but for this smooth function the
piecewise cubic interpolant gives the best results:

>>> import matplotlib.pyplot as plt

>>> plt.subplot (221)

>>> plt.imshow (func(grid_x, grid_y).T, extent=(0,1,0,1), origin='lower')
>>> plt.plot (points[:,0], points[:,1], 'k.', ms=1)

>>> plt.title('Original')

>>> plt.subplot (222)

>>> plt.imshow(grid_z0.T, extent=(0,1,0,1), origin='lower'")
>>> plt.title('Nearest')

>>> plt.subplot (223)

>>> plt.imshow(grid_z1.T, extent=(0,1,0,1), origin='lower'")
>>> plt.title('Linear"')

>>> plt.subplot (224)

>>> plt.imshow(grid_z2.T, extent=(0,1,0,1), origin='lower'")
>>> plt.title('Cubic")

>>> plt.gcf().set_size_inches (6, ©6)

>>> plt.show ()

Spline interpolation

Spline interpolation in 1-d: Procedural (interpolate.spIXXX)

Spline interpolation requires two essential steps: (1) a spline representation of the curve is computed, and (2) the spline is
evaluated at the desired points. In order to find the spline representation, there are two different ways to represent a curve
and obtain (smoothing) spline coefficients: directly and parametrically. The direct method finds the spline representation
of a curve in a two- dimensional plane using the function spIrep. The first two arguments are the only ones required,

4.1. SciPy Tutorial 271

SciPy Reference Guide, Release 1.3.2

Original

1.0

0.8

0.6

0.4

0.2

0.0
0.00 0.25 ,0.50 0.75 1.00
Linear

1.0
0.8
0.6
0.4

0.2

0.0
0.00 0.25 0.50 0.75 1.00

Nearest
1.0
b
0.8 -y
0.6 o

0.4 ‘

0.2

0.0
0.00 0.25 80%9(: 0.75 1.00

1.0
0.8
0.6
0.4

0.2

0.0
0.00 0.25 0.50 0.75 1.00

272

Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

and these provide the x and y components of the curve. The normal output is a 3-tuple, (¢, c, k) , containing the knot-
points, ¢ , the coefficients ¢ and the order & of the spline. The default spline order is cubic, but this can be changed with
the input keyword, k.

For curves in N -dimensional space the function sp1prep allows defining the curve parametrically. For this function only
1 input argument is required. This input is a list of IV -arrays representing the curve in N -dimensional space. The length
of each array is the number of curve points, and each array provides one component of the N -dimensional data point.
The parameter variable is given with the keyword argument, u, which defaults to an equally-spaced monotonic sequence
between 0 and 1 . The default output consists of two objects: a 3-tuple, (¢, ¢, k) , containing the spline representation and
the parameter variable .

The keyword argument, s , is used to specify the amount of smoothing to perform during the spline fit. The default value
of sis s = m — v/2m where m is the number of data-points being fit. Therefore, if no smoothing is desired a value
of s = 0 should be passed to the routines.

Once the spline representation of the data has been determined, functions are available for evaluating the spline (splev)
and its derivatives (splev, spalde) at any point and the integral of the spline between any two points (splint). In
addition, for cubic splines (£ = 3) with 8 or more knots, the roots of the spline can be estimated (sproot). These
functions are demonstrated in the example that follows.

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from scipy import interpolate

Cubic-spline

>>> x = np.arange (0, 2*np.pi+np.pi/4, 2*np.pi/8)

>>> y = np.sin(x)

>>> tck = interpolate.splrep(x, y, s=0)

>>> xnew = np.arange (0, 2*np.pi, np.pi/50)

>>> ynew = interpolate.splev(xnew, tck, der=0)

>>> plt.figure ()

>>> plt.plot(x, vy, 'x', xnew, ynew, xnew, np.sin(xnew), x, vy, 'b'")
>>> plt.legend(['Linear', 'Cubic Spline', 'True'l])

>>> plt.axis([-0.05, 6.33, -1.05, 1.05])

>>> plt.title('Cubic-spline interpolation')

>>> plt.show ()

Derivative of spline

>>> yder = interpolate.splev(xnew, tck, der=1)

>>> plt.figure ()

>>> plt.plot (xnew, yder, xnew, np.cos(xnew),'——")
>>> plt.legend(['Cubic Spline', 'True'l])

>>> plt.axis([-0.05, 6.33, -1.05, 1.05])

>>> plt.title('Derivative estimation from spline')
>>> plt.show ()

Integral of spline

>>> def integ(x, tck, constant=-1):
x = np.atleast_1d(x)
out = np.zeros(x.shape, dtype=x.dtype)
for n in range(len(out)) :

(continues on next page)

4.1. SciPy Tutorial 273

SciPy Reference Guide, Release 1.3.2

Cubic-spline interpolation

1.0
X Linear
Cubic Spline
0.5 —— True
0.0 A
—0.5 A
_10 _I T T T T T T
0 1 2 3 4 5 6
Derivative estimation from spline
1.0 =~ A~
—— Cubic Spline
True
0.5 A .
0.0 A \% ;/
\ /
—0.5 + “\ ,"'"'
\ /
\‘ /
\~ /'
_10 _I T T T — T T T
0 1 2 3 4 5 6

274 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

(continued from previous page)

out [n] = interpolate.splint (0,

out += constant
return out

x[n],

tck)

>>> yint = integ(xnew, tck)
>>> plt.figure ()
>>> plt.plot (xnew, yint, xnew, -np.cos(xnew), '—-'")
>>> plt.legend(['Cubic Spline', 'True'l)
>>> plt.axis([-0.05, 6.33, -1.05, 1.05])
>>> plt.title('Integral estimation from spline')
>>> plt.show ()
Integral estimation from spline
1.0 1 '/'”'\~
/ N\
V4 \
V4 \\
0.5 A / \
/ \
/ \
/ \
/ \
0.0 A / \
Y 4 \
/ \
/ \
—0.5 / —
/ —— Cubic Spline
/ True
_10 _ll - T T T T T
0 1 2 3 4 5

Roots of spline

>>> interpolate.sproot (tck)
array ([3.1416])

Notice that sproot failed to find an obvious solution at the edge of the approximation interval, x = 0. If we define the

spline on a slightly larger interval, we recover both roots z = 0 and x = 27

>>> x = np.linspace(-np.pi/4,
>>> y = np.sin(x)

>>> tck = interpolate.splrep(x, vy,
>>> interpolate.sproot (tck)

array ([0., 3.1416])

2.*np.pi + np.pi/4, 21)

s=0)

Parametric spline

>>> t = np.arange(0, 1.1, .1)

>>> x = np.sin(2*np.pi*t)

>>> y = np.cos(2*np.pi*t)

>>> tck, u = interpolate.splprep([x, y]l, s=0)
>>> unew = np.arange(0, 1.01, 0.01)

(continues on next page)

4.1. SciPy Tutorial

275

SciPy Reference Guide, Release 1.3.2

(continued from previous page)

>>> out = interpolate.splev(unew, tck)

>>> plt.figure()

>>> plt.plot(x, vy, 'x', out[0], out[l], np.sin(2*np.pi*unew), np.cos(2*np.
—pi*unew), x, y, 'b'")

>>> plt.legend(['Linear', 'Cubic Spline', 'True'l])

>>> plt.axis([-1.05, 1.05, -1.05, 1.051])

>>> plt.title('Spline of parametrically-defined curve')

>>> plt.show ()

Spline of parametrically-defined curve

1.0 4
0.5 A
X Linear
0.0 4 Cubic Spline
— True
—0.5 A
—1.0

-1.0 -0.5 0.0 0.5 1.0

Spline interpolation in 1-d: Object-oriented (UnivariateSpline)

The spline-fitting capabilities described above are also available via an objected-oriented interface. The one dimensional
splines are objects of the UnivariateSpline class, and are created with the and y components of the curve provided
as arguments to the constructor. The class defines ___call__, allowing the object to be called with the x-axis values
at which the spline should be evaluated, returning the interpolated y-values. This is shown in the example below for the
subclass TnterpolatedUnivariateSpline. The integral, derivatives, and root s methods are also
available on UnivariateSpline objects, allowing definite integrals, derivatives, and roots to be computed for the
spline.

The UnivariateSpline class can also be used to smooth data by providing a non-zero value of the smoothing parameter
s, with the same meaning as the s keyword of the spIrep function described above. This results in a spline that has
fewer knots than the number of data points, and hence is no longer strictly an interpolating spline, but rather a smooth-
ing spline. If this is not desired, the TnterpolatedUnivariateSpline class is available. It is a subclass of
UnivariateSpline that always passes through all points (equivalent to forcing the smoothing parameter to 0). This
class is demonstrated in the example below.

The LSOUnivariateSpline class is the other subclass of UnivariateSpline. It allows the user to specify the
number and location of internal knots explicitly with the parameter 7. This allows creation of customized splines with
non-linear spacing, to interpolate in some domains and smooth in others, or change the character of the spline.

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from scipy import interpolate

InterpolatedUnivariateSpline

276 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

>>> x = np.arange (0, 2*np.pi+np.pi/4, 2*np.pi/8)

>>> y = np.sin (x)

>>> s = interpolate.InterpolatedUnivariateSpline (x, V)
>>> xnew = np.arange (0, 2*np.pi, np.pi/50)

>>> ynew = s (xnew)

>>> plt.figure()

>>> plt.plot(x, y, 'x', xnew, ynew, xnew, np.sin(xnew), x, vy, 'b'")
>>> plt.legend(['Linear', 'InterpolatedUnivariateSpline', 'True'l)
>>> plt.axis([-0.05, 6.33, -1.05, 1.05])

>>> plt.title('InterpolatedUnivariateSpline'")

>>> plt.show ()

InterpolatedUnivariateSpline

1.0 A
0.5 4
Linear
0.0 A InterpolatedUnivariateSpline
—— True
—0.5 A
—1.0 4

LSQUnivarateSpline with non-uniform knots

>>> t = [np.pi/2-.1, np.pi/2+.1, 3*np.pi/2-.1, 3*np.pi/2+.1]
>>> s = interpolate.LSQUnivariateSpline(x, vy, t, k=2)
>>> ynew = s (xnew)

>>> plt.figure ()

>>> plt.plot(x, vy, 'x', xnew, ynew, xnew, np.sin(xnew), x, vy, 'b'")
>>> plt.legend(['Linear', 'LSQUnivariateSpline', 'True'l)

>>> plt.axis([-0.05, 6.33, -1.05, 1.05])

>>> plt.title('Spline with Specified Interior Knots')

>>> plt.show()

Two-dimensional spline representation: Procedural (bisplrep)

For (smooth) spline-fitting to a two dimensional surface, the function bisplrep is available. This function takes as
required inputs the 1-D arrays x, y, and z which represent points on the surface z = f (z,y) . The default output is a
list [tx, ty, ¢, kx, ky] whose entries represent respectively, the components of the knot positions, the coefficients of the
spline, and the order of the spline in each coordinate. It is convenient to hold this list in a single object, #ck, so that it can
be passed easily to the function bisplev. The keyword, s, can be used to change the amount of smoothing performed

4.1. SciPy Tutorial 277

SciPy Reference Guide, Release 1.3.2

Spline with Specified Interior Knots

1.0 A :
X Linear
LSQUnivariateSpline
0.5 —— True
0.0 A
—0.5 A
-1.0 T T T T T T T
0 1 2 3 4 5 6
on the data while determining the appropriate spline. The default value is s = m — +/2m where m is the number of data

points in the x, y, and z vectors. As a result, if no smoothing is desired, then s = 0 should be passed to bisplrep.

To evaluate the two-dimensional spline and it’s partial derivatives (up to the order of the spline), the function bisplev
is required. This function takes as the first two arguments two 1-D arrays whose cross-product specifies the domain over
which to evaluate the spline. The third argument is the #ck list returned from bisplrep. If desired, the fourth and fifth
arguments provide the orders of the partial derivative in the = and y direction respectively.

It is important to note that two dimensional interpolation should not be used to find the spline representation of images.
The algorithm used is not amenable to large numbers of input points. The signal processing toolbox contains more
appropriate algorithms for finding the spline representation of an image. The two dimensional interpolation commands
are intended for use when interpolating a two dimensional function as shown in the example that follows. This example
uses the mgrid command in NumPy which is useful for defining a “mesh-grid” in many dimensions. (See also the
ogrid command if the full-mesh is not needed). The number of output arguments and the number of dimensions of
each argument is determined by the number of indexing objects passed in mgrid.

>>> import numpy as np
>>> from scipy import interpolate
>>> import matplotlib.pyplot as plt

Define function over sparse 20x20 grid

>>> x, y = np.mgrid[-1:1:207, -1:1:207]
>>> 7z = (xty) * np.exp(-6.0*% (x*x+y*y))

>>> plt.figure ()

>>> plt.pcolor(x, y, z)

>>> plt.colorbar ()

>>> plt.title("Sparsely sampled function.")
>>> plt.show ()

Interpolate function over new 70x70 grid

>>> xnew, ynew = np.mgrid[-1:1:703, —-1:1:707]
>>> tck = interpolate.bisplrep(x, vy, z, s=0)

(continues on next page)

278 Chapter 4. Tutorial

https://docs.scipy.org/doc/numpy/reference/generated/numpy.mgrid.html#numpy.mgrid
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ogrid.html#numpy.ogrid
https://docs.scipy.org/doc/numpy/reference/generated/numpy.mgrid.html#numpy.mgrid

SciPy Reference Guide, Release 1.3.2

Sparsely sampled function.

1.0
0.5
0.0
-0.5
-1.0

-1.0 -0.5 0.0 0.5 1.0

-0.1

-0.2

(continued from previous page)

>>> zZnew

= interpolate.bisplev(xnew[:,0], ynew([0,:], tck)

>>> plt.

>>> plt
>>> plt
>>> plt
>>> plt

figure ()

.pcolor (xnew, ynew, znew)
.colorbar ()

.title("Interpolated function.")
.show ()

Interpolated function.

1.0
0.5
0.0
-0.5
-1.0

-1.0 -0.5 0.0 0.5 1.0

-0.1

-0.2

Two-dimensional spline representation: Object-oriented (BivariateSpline)

The BivariateSpline class is the 2-dimensional analog of the UnivariateSpline class. It and its subclasses
implement the FITPACK functions described above in an object oriented fashion, allowing objects to be instantiated that
can be called to compute the spline value by passing in the two coordinates as the two arguments.

4.1. SciPy Tutorial

279

SciPy Reference Guide, Release 1.3.2

Using radial basis functions for smoothing/interpolation

Radial basis functions can be used for smoothing/interpolat
caution for extrapolation outside of the observed data range.

1-d Example

ing scattered data in n-dimensions, but should be used with

This example compares the usage of the Rbf and UnivariateSpline classes from the scipy.interpolate module.

>>> import numpy as np
>>> from scipy.interpolate import Rbf,

>>> import matplotlib.pyplot as plt

InterpolatedUnivariateSpline

>>> # setup data
X np.linspace (0,
y np.sin(x)

xi np.linspace (0,

>>> = 10, 9)

>>>
>>>

= 10, 101)

>>> # use fitpack2 method

ius
yi

>>>
>>>

ius (xi)

InterpolatedUnivariateSpline (x

4

v)

>>> plt
plt
plt
plt

plt

.subplot (2,
.plot(x, vy, 'bo'")

.plot(xi, vyi, 'g')

.plot (xi, np.sin(xi), 'r'")
.title('Interpolation using univ

1, 1)
>>>
>>>
>>>
>>>

ariate spline')

>>> # use RBF method

>>> rbf = Rbf(x, vy)

>>> fi = rbf (xi)

>>> plt.subplot (2, 1, 2)

>>> plt.plot(x, y, 'bo'")

>>> plt.plot(xi, fi, 'g')

>>> plt.plot(xi, np.sin(xi), 'r'")

>>> plt.title('Interpolation using RBF - multiquadrics')
>>> plt.show ()

2-d Example

This example shows how to interpolate scattered 2d data.

>>> import numpy as np
from scipy.interpolate import RDbf
import matplotlib.pyplot as plt

from matplotlib import cm

>>>
>>>
>>>

>>> # 2-d tests - setup scattered data
>>> x = np.random.rand(100)*4.0-2.0
>>> y = np.random.rand (100)*4.0-2.0
>>> 7z = X*np.exp(—-x**2-y**2)
(continues on next page)
280 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

Interpolation using univariate spline

Intergolation using RBF & multiquadrics _T
2 a4 A]]

3_

o -
N
SN
[0)]
o]
=
o

(continued from previous page)

>>> ti = np.linspace(-2.0, 2.0, 100)
>>> XI, YI = np.meshgrid(ti, ti)

>>> # use RBF
>>> rbf = Rbf(x, y, z, epsilon=2)
>>> 71 = rbf(XI, YI)

>>> # plot the result

>>> plt.subplot (1, 1, 1)

>>> plt.pcolor(XI, YI, ZI, cmap=cm.jet)

>>> plt.scatter(x, y, 100, z, cmap=cm.jet)

>>> plt.title('RBF interpolation - multiquadrics')
>>> plt.xlim (-2, 2)

>>> plt.ylim (-2, 2)

>>> plt.colorbar ()

4.1.7 Fourier Transforms (scipy. fftpack)

Contents

o Fourier Transforms (scipy . fftpack)
— Fast Fourier transforms
x One dimensional discrete Fourier transforms
* Two and n-dimensional discrete Fourier transforms

« FFT convolution

— Discrete Cosine Transforms

4.1. SciPy Tutorial 281

SciPy Reference Guide, Release 1.3.2

RBF interpolation - multiquadrics

2 0.4
11 0.2
0 - 0.0
-1 -0.2
-2 . T . -0.4
-2 -1 0 1 2
+ Type I DCT

« Type I DCT
+ Type Ill DCT
DCT and IDCT
x Example
— Discrete Sine Transforms
+ Type I DST
» Type Il DST
« Type Il DST
« DST and IDST

— Cache Destruction

— References

Fourier analysis is a method for expressing a function as a sum of periodic components, and for recovering the signal
from those components. When both the function and its Fourier transform are replaced with discretized counterparts, it
is called the discrete Fourier transform (DFT). The DFT has become a mainstay of numerical computing in part because
of a very fast algorithm for computing it, called the Fast Fourier Transform (FFT), which was known to Gauss (1805)
and was brought to light in its current form by Cooley and Tukey [CT65]. Press et al. [NRO7] provide an accessible
introduction to Fourier analysis and its applications.

Note: PyFFTW provides a way to replace a number of functions in scipy. fftpack with its own functions, which
are usually significantly faster, via pyfftw.interfaces. Because PyFFTW relies on the GPL-licensed FFTW it cannot be
included in SciPy. Users for whom the speed of FFT routines is critical should consider installing PyFFTW.

Fast Fourier transforms

282 Chapter 4. Tutorial

https://hgomersall.github.io/pyFFTW/
https://hgomersall.github.io/pyFFTW/pyfftw/interfaces/interfaces.html
https://hgomersall.github.io/pyFFTW/
http://www.fftw.org/
https://hgomersall.github.io/pyFFTW/

SciPy Reference Guide, Release 1.3.2

One dimensional discrete Fourier transforms

The FFT y[k] of length N of the length-/V sequence x/n] is defined as

N-1 .
ylk) = > e ¥ afn],
n=0

and the inverse transform is defined as follows

These transforms can be calculated by means of £t and i fft, respectively as shown in the following example.

>>> from scipy.fftpack import fft, ifft
>>> x = np.array([1.0, 2.0, 1.0, -1.0, 1.5])

>>> vy = fft (x)
>>> vy
array ([4.5 +0.7 , 2.08155948-1.651098767,

-1.83155948+1.608220417j, -1.83155948-1.608220417,
2.08155948+1.6510987671)
>>> yinv = ifft (y)
>>> yinv
array ([1.0+0.3, 2.0+0.3, 1.0+0.3, -1.0+0.3, 1.5+0.31)

From the definition of the FFT it can be seen that

N-1

yl0] = 3 afn.

n=0

In the example

>>> np.sum(x)
4.5

which corresponds to y[0]. For N even, the elements y[1]...y[N/2 — 1] contain the positive-frequency terms, and the
elements y[N/2]...y[N — 1] contain the negative-frequency terms, in order of decreasingly negative frequency. For N
odd, the elements y[1]...y[(N — 1)/2] contain the positive- frequency terms, and the elements y[(N + 1)/2]...y[N — 1]
contain the negative- frequency terms, in order of decreasingly negative frequency.

In case the sequence x is real-valued, the values of y[n] for positive frequencies is the conjugate of the values y[n| for
negative frequencies (because the spectrum is symmetric). Typically, only the FFT corresponding to positive frequencies
is plotted.

The example plots the FFT of the sum of two sines.

>>> from scipy.fftpack import fft

>>> # Number of sample points

>>> N = 600

>>> # sample spacing

>> T = 1.0 / 800.0

>>> x = np.linspace (0.0, N*T, N)

>>> y = np.sin(50.0 * 2.0*np.pi*x) + 0.5*np.sin(80.0 * 2.0*np.pi*x)

>>> yf = fft (y)
>>> xf = np.linspace (0.0, 1.0/(2.0*T), N//2)

(continues on next page)

4.1. SciPy Tutorial 283

SciPy Reference Guide, Release 1.3.2

(continued from previous page)

>>> import matplotlib.pyplot as plt

>>> plt.plot (xf, 2.0/N * np.abs(y£f[0:N//2]))
>>> plt.grid()

>>> plt.show ()

0.6 -
0.4 -
0.2 -
0.0 - e
0 100 200 300 400

The FFT input signal is inherently truncated. This truncation can be modelled as multiplication of an infinite signal with a
rectangular window function. In the spectral domain this multiplication becomes convolution of the signal spectrum with
the window function spectrum, being of form sin(z)/x. This convolution is the cause of an effect called spectral leakage
(see [WPW]). Windowing the signal with a dedicated window function helps mitigate spectral leakage. The example
below uses a Blackman window from scipy.signal and shows the effect of windowing (the zero component of the FFT has

been truncated for illustrative purposes).

>>> from scipy.fftpack import fft

>>> # Number of sample points

>>> N = 600

>>> # sample spacing

>> T = 1.0 / 800.0

>>> x = np.linspace (0.0, N*T, N)

>>> y = np.sin(50.0 * 2.0*np.pi*x) + 0.5*np.sin(80.0 * 2.0*np.pi*x)
>>> yf = fft(y)

>>> from scipy.signal import blackman

>>> w = blackman (N)

>>> ywf = fft (y*w)

>>> xf = np.linspace(0.0, 1.0/(2.0*T), N//2)

>>> import matplotlib.pyplot as plt

>>> plt.semilogy (xf[1:N//2], 2.0/N * np.abs(yf[1:N//21),
>>> plt.semilogy (xf[1:N//2], 2.0/N * np.abs(ywf[1:N//21),
>>> plt.legend(['FFT', 'FFT w. window'])

>>> plt.grid()

>>> plt.show ()

l_bl)
|7r|)

In case the sequence x is complex-valued, the spectrum is no longer symmetric. To simplify working with the FFT

functions, scipy provides the following two helper functions.

284

Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

— FFT
10—1 .

—— FFT w. window
10—3 .
10—5 .
10—7 _

0 100 200 300 400

The function £t freq returns the FFT sample frequency points.

>>> from scipy.fftpack import fftfreq

>>> freq = fftfreg(8, 0.125)

>>> freq

array ([0., 1., 2., 3., -4., -3., -2., -1.1)

In a similar spirit, the function £t shift allows swapping the lower and upper halves of a vector, so that it becomes
suitable for display.

>>> from scipy.fftpack import fftshift
>>> x = np.arange (8)

>>> fftshift (x)

array ([4, 5, 6, 7, 0, 1, 2, 31)

The example below plots the FFT of two complex exponentials; note the asymmetric spectrum.

>>> from scipy.fftpack import fft, fftfreqg, fftshift
>>> # number of signal points
>>> N = 400
>>> # sample spacing
>> T = 1.0 / 800.0
>>> x = np.linspace (0.0, N*T, N)
* 1

>>> y = np.exp(50.0 L) * 2.0%np.pi*x) + 0.5*%np.exp(-80.0 * 1.3 * 2.0*np.
—pi*x)

>>> yf = fft (y)

>>> xf = fftfreq(N, T)

>>> xf = fftshift (xf)

>>> yplot = fftshift (yf)

>>> import matplotlib.pyplot as plt
>>> plt.plot(xf, 1.0/N * np.abs(yplot))
>>> plt.grid()

>>> plt.show ()

The function rfrt calculates the FFT of a real sequence and outputs the FFT coefficients y[n] with separate real

4.1. SciPy Tutorial 285

SciPy Reference Guide, Release 1.3.2

1.0 A

0.8 1

0.6 1

0.4 4

0.2 4

0.0
—-400 —200 0 200 400

and imaginary parts. In case of N being even: [y[0], Re(y[1]), Im(y[1]),..., Re(y[N/2])]; in case N being odd
[y[0, Re(y[1]), Im(y[1]), ..., Re(y[N/2]), Im(y[N/2])].

The corresponding function i r £ £t calculates the IFFT of the FFT coefficients with this special ordering.

>>> from scipy.fftpack import fft, rfft, irfft
>>> x = np.array([1.0, 2.0, 1.0, -1.0, 1.5, 1.0])

>>> fft (x)

array ([5.5 +0.7 , 2.25-0.43301273 , -2.75-1.299038117,
1.5 +0.7 , —2.75+1.299038113, 2.25+0.433012773 1)

>>> yr = rfft (x)

>>> yr

array ([5.5 , 2.25 , —0.4330127 , -2.75 , —1.29903811,
1.5 1)

>>> irfft (yr)
array ([1. , 2., 1., =-1. , 1.5, 1.
1

>>> x = np.array([1.0, 2.0, 1.0,
>>> fft (x)
array ([4.5 +0.7 , 2.08155948-1.651098767,

-1.83155948+1.608220417j, -1.83155948-1.608220417,
2.08155948+1.6510987671)
>>> yr = rfft (x)
>>> yr
array ([4.5 , 2.08155948, -1.65109876, -1.83155948, 1.608220417])

Two and n-dimensional discrete Fourier transforms

The functions £t 2 and i £ £t 2 provide 2-dimensional FFT, and IFFT, respectively. Similar, £ ftnand i £ ftn provide
n-dimensional FFT, and IFFT, respectively.

The example below demonstrates a 2-dimensional IFFT and plots the resulting (2-dimensional) time-domain signals.

>>> from scipy.fftpack import ifftn
>>> import matplotlib.pyplot as plt
>>> import matplotlib.cm as cm

(continues on next page)

286 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

(continued from previous page)

>>> N = 30

>>> f, ((axl, ax2, ax3), (ax4, ax5, ax6)) = plt.subplots (2, 3, sharex='col', .
—sharey="row'")

>>> xf = np.zeros ((N,N))

>>> xf[0, 5] =1

>>> xf[0, N-5] =1

>>> 7 = ifftn(xf)

>>> axl.imshow (xf, cmap=cm.Reds)

>>> ax4.imshow (np.real(Z), cmap=cm.gray)
>>> xf = np.zeros ((N, N))

>>> xf[5, 0] =1

>>> xf[N-5, 0] =1

>>> 7 = ifftn(xf)

>>> ax2.imshow (xf, cmap=cm.Reds)

>>> ax5.imshow(np.real (Z), cmap=cm.gray)

>>> xf = np.zeros ((N, N))
>>> xf[5, 10] = 1

>>> xf[N-5, N-10] = 1
>>> 7 = ifftn(xf)

>>> ax3.imshow (xf, cmap=cm.Reds)
>>> ax6.imshow(np.real (Z), cmap=cm.gray)
>>> plt.show ()

0_ w w ~ -
10 - - -
20 - - -
0_ -

F
20 - -

T T Iﬁ
0 20 0 20 0 20

FFT convolution

scipy.fftpack.convolve performs a convolution of two one-dimensional arrays in frequency domain.

Discrete Cosine Transforms

SciPy provides a DCT with the function dct and a corresponding IDCT with the function i dct. There are 8 types of the
DCT [WPC], [Mak]; however, only the first 3 types are implemented in scipy. “The” DCT generally refers to DCT type
2, and “the” Inverse DCT generally refers to DCT type 3. In addition, the DCT coefficients can be normalized differently

4.1. SciPy Tutorial 287

SciPy Reference Guide, Release 1.3.2

(for most types, scipy provides None and ortho). Two parameters of the dct/idct function calls allow setting the DCT
type and coefficient normalization.

For a single dimension array X, dct(x, norm="ortho’) is equal to MATLAB dct(x).
Type | DCT

SciPy uses the following definition of the unnormalized DCT-I (norm="'None'):

mnk
N -1

), 0<k<N.

Only None is supported as normalization mode for DCT-I. Note also that the DCT-I is only supported for input size > 1

Type Il DCT

SciPy uses the following definition of the unnormalized DCT-II (norm="'None"'):

N—1
y[k]zQZx[n]cos (W) 0<k<N.
n=0

In case of the normalized DCT (norm="ortho"), the DCT coefficients y[k] are multiplied by a scaling factor f:

_[VI@N), ifk=0
f= V1/(2N), otherwise -

In this case, the DCT “base functions” ¢y [n] = 2f cos (W) become orthonormal:
N-1
> drlnlenln] = o
n=0

Type Il DCT

SciPy uses the following definition of the unnormalized DCT-III (norm="None'):

N-1
y[k]xo+22x[n]cos(7m(2k+l)> 0<k<N,

2N
n=1
or, for norm="ortho':
N-1
2 2k +1
y[k] = % + TN 2 x[n] cos (7m(2N+)> 0<k<N.

DCT and IDCT

The (unnormalized) DCT-III is the inverse of the (unnormalized) DCT-II, up to a factor 2N. The orthonormalized DCT-
III is exactly the inverse of the orthonormalized DCT- II. The function idct performs the mappings between the DCT
and IDCT types.

The example below shows the relation between DCT and IDCT for different types and normalizations.

>>> from scipy.fftpack import dct, idct
>>> x = np.array([1.0, 2.0, 1.0, -1.0, 1.5])
>>> dct (dct (x, type=2, norm='ortho'), type=3, norm='ortho')

(continues on next page)

288 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

(continued from previous page)

(1.0, 2.0, 1.0, =-1.0, 1.5]

>>> # scaling factor 2*N = 10

>>> idct (dct (x, type=2), type=2)

array ([10., 20., 10., -10., 15.1])

>>> # no scaling factor

>>> idct (dct (x, type=2, norm='ortho'), type=2, norm='ortho')
array ([1. , 2., 1., =-1. , 1.51)

>>> # scaling factor 2*N = 10

>>> idct (dct (x, type=3), type=3)

array ([10., 20., 10., -10., 15.1)

>>> # no scaling factor

>>> idct (dct (x, type=3, norm='ortho'), type=3, norm='ortho')
array ([1. , 2., 1., =-1., 1.57)

>>> # scaling factor 2*(N-1) = 8

>>> idct (dct (x, type=1l), type=1)

array ([8., 16., 8., -8., 12.1)

Example

The DCT exhibits the “energy compaction property”, meaning that for many signals only the first few DCT coefficients
have significant magnitude. Zeroing out the other coefficients leads to a small reconstruction error, a fact which is exploited
in lossy signal compression (e.g. JPEG compression).

The example below shows a signal x and two reconstructions (2o and 15)from the signal’s DCT coefficients. The signal
Toq 1s reconstructed from the first 20 DCT coefficients, x5 is reconstructed from the first 15 DCT coefficients. It can be
seen that the relative error of using 20 coefficients is still very small (~0.1%), but provides a five-fold compression rate.

>>> from scipy.fftpack import dct, idct
>>> import matplotlib.pyplot as plt
>>> N = 100

>>> t = np.linspace(0,20,N)

>>> x = np.exp(-t/3)*np.cos (2*t)

>>> y = dct (x, norm='ortho')

>>> window = np.zeros (N)

>>> window[:20] = 1

>>> yr = idct (y*window, norm='ortho')

>>> sum(abs (x-yr)**2) / sum(abs (x)**2)
0.0010901402257

>>> plt.plot (t, x, '-bx'")

>>> plt.plot(t, yr, 'ro')

>>> window = np.zeros (N)
>>> window[:15] = 1
>>> yr = idct (y*window, norm='ortho')

>>> sum(abs (x-yr)**2) / sum(abs(x)**2)
0.0718818065008

>>> plt.plot(t, yr, 'g+'")

>>> plt.legend(['x', "$x_{20}S", '"Sx_{15}$"'])
>>> plt.grid()

>>> plt.show ()

4.1. SciPy Tutorial 289

SciPy Reference Guide, Release 1.3.2

1.0 + N
® Xy
0.5 - T X
0.0 A
—0.5 +
0 5 10 15 20

Discrete Sine Transforms

SciPy provides a DST [Mak] with the function dst and a corresponding IDST with the function idst.

There are theoretically 8 types of the DST for different combinations of even/odd boundary conditions and boundary off
sets [WPS], only the first 3 types are implemented in scipy.

Type | DST

DST-I assumes the input is odd around n=-1 and n=N. SciPy uses the following definition of the unnormalized DST-I
(norm="None"'):

N—1
ylk] =2;x[n]sm (W) , 0<k<N.

Only None is supported as normalization mode for DST-I. Note also that the DST-I is only supported for input size > 1.
The (unnormalized) DST-I is its own inverse, up to a factor 2(N+1).

Type Il DST

DST-II assumes the input is odd around n=-1/2 and even around n=N. SciPy uses the following definition of the unnor-
malized DST-II (norm="None"):

N-1
ylk] =2 z[n]sin <W(n+1/]\2[)(k+l>>, 0<k<N.
n=0

Type 1ll DST

DST-HI assumes the input is odd around n=-1 and even around n=N-1. SciPy uses the following definition of the unnor-
malized DST-III (norm="None"'):

ylk] = (—1)*2[N — 1] + 2]Vz_2x[n] sin (ﬂn * 1)J(Vk * 1/2)) . 0<k<AN.

290 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

DST and IDST

The example below shows the relation between DST and IDST for different types and normalizations.

>>> from scipy.fftpack import dst, idst

>>> x = np.array([1.0, 2.0, 1.0, -1.0, 1.51])

>>> # scaling factor 2*N = 10

>>> idst (dst (x, type=2), type=2)

array ([10., 20., 10., -10., 15.1)

>>> # no scaling factor

>>> idst (dst (x, type=2, norm='ortho'), type=2, norm='ortho')
array ([1. , 2. , 1., =-1. , 1.571)

>>> # scaling factor 2*N = 10

>>> idst (dst (x, type=3), type=3)

array ([10., 20., 10., -10., 15.1)

>>> # no scaling factor

>>> idst (dst (x, type=3, norm='ortho'), type=3, norm='ortho')
array ([1. , 2. , 1., -1. , 1.51)

>>> # scaling factor 2*(N+1) = 8

>>> idst (dst (x, type=1), type=1)

array ([12., 24., 12., -12., 18.1)

Cache Destruction

To accelerate repeat transforms on arrays of the same shape and dtype, scipy.fftpack keeps a cache of the prime factor-
ization of length of the array and pre-computed trigonometric functions. These caches can be destroyed by calling the
appropriate functionin scipy. fftpack._fftpack. dst(type=1) and idst(type=1) share a cache (*dst1_cache).
As do dst(type=2), dst(type=3), idst(type=3), and idst(type=3) (*dst2_cache).

References

4.1.8 Signal Processing (scipy.signal)

The signal processing toolbox currently contains some filtering functions, a limited set of filter design tools, and a few
B-spline interpolation algorithms for one- and two-dimensional data. While the B-spline algorithms could technically be
placed under the interpolation category, they are included here because they only work with equally-spaced data and make
heavy use of filter-theory and transfer-function formalism to provide a fast B-spline transform. To understand this section
you will need to understand that a signal in SciPy is an array of real or complex numbers.

B-splines

A B-spline is an approximation of a continuous function over a finite- domain in terms of B-spline coefficients and knot
points. If the knot- points are equally spaced with spacing Az , then the B-spline approximation to a 1-dimensional
function is the finite-basis expansion.

y(a)~ Yy B (Aix*j)-

J

In two dimensions with knot-spacing Az and Ay , the function representation is

Z(x,y)@zzk:%kﬁo (Aix_j) B° (Ayy—k>

J

4.1. SciPy Tutorial 291

SciPy Reference Guide, Release 1.3.2

In these expressions, 3° (-) is the space-limited B-spline basis function of order, o . The requirement of equally-spaced
knot-points and equally-spaced data points, allows the development of fast (inverse-filtering) algorithms for determining
the coeflicients, ¢; , from sample-values, y,, . Unlike the general spline interpolation algorithms, these algorithms can
quickly find the spline coefficients for large images.

The advantage of representing a set of samples via B-spline basis functions is that continuous-domain operators (deriva-
tives, re- sampling, integral, etc.) which assume that the data samples are drawn from an underlying continuous function
can be computed with relative ease from the spline coefficients. For example, the second-derivative of a spline is

y" (x) = Alx?zjjcjﬁ(w <£—j>

Using the property of B-splines that

2 Qo
T o2 (w4 1) — 282 (w) + 5% (w -)

it can be seen that
1
V'@ = 5E 2 7 (s =i +1) =280 (o —d) + 7 (-0 - 1)
If o = 3, then at the sample points,

ALY (@) pepre = D CiOnmgtt = 2650n—j + ¢i0u—j1,
i
= Cn41 — 2¢n + Cp-1-

Thus, the second-derivative signal can be easily calculated from the spline fit. if desired, smoothing splines can be found
to make the second-derivative less sensitive to random-errors.

The savvy reader will have already noticed that the data samples are related to the knot coefficients via a convolution
operator, so that simple convolution with the sampled B-spline function recovers the original data from the spline coef-
ficients. The output of convolutions can change depending on how boundaries are handled (this becomes increasingly
more important as the number of dimensions in the data- set increases). The algorithms relating to B-splines in the
signal- processing sub package assume mirror-symmetric boundary conditions. Thus, spline coefficients are computed
based on that assumption, and data-samples can be recovered exactly from the spline coefficients by assuming them to
be mirror-symmetric also.

Currently the package provides functions for determining second- and third- order cubic spline coeflicients from equally
spaced samples in one- and two- dimensions (gsplineld, gspline2d, csplineld, cspline2d). The package
also supplies a function (bsp1ine) for evaluating the bspline basis function, 5° (x) for arbitrary order and . For large
o , the B-spline basis function can be approximated well by a zero-mean Gaussian function with standard-deviation equal
too, =(0o+1)/12:

orn . 1 _a?)
B (SU) ~ \/ﬂexp < 20, .
A function to compute this Gaussian for arbitrary x and o is also available (gauss_spline). The following code
and Figure uses spline-filtering to compute an edge-image (the second-derivative of a smoothed spline) of a raccoon’s
face which is an array returned by the command scipy.misc. face. The command sepfir2d was used to apply a
separable two-dimensional FIR filter with mirror- symmetric boundary conditions to the spline coefficients. This function
is ideally suited for reconstructing samples from spline coefficients and is faster than convolve2d which convolves
arbitrary two-dimensional filters and allows for choosing mirror-symmetric boundary conditions.

>>> import numpy as np
>>> from scipy import signal, misc
>>> import matplotlib.pyplot as plt

292 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

>>> image = misc.face (gray=True) .astype (np.float32)

>>> derfilt = np.array([1.0, -2, 1.0], dtype=np.float32)

>>> ck = signal.cspline2d(image, 8.0)

>>> deriv = (signal.sepfir2d(ck, derfilt, [1]) +
signal.sepfir2d(ck, [1], derfilt))

Alternatively we could have done:

laplacian = np.array([[0,1,0], [1,-4,11, [0,1,011, dtype=np.float32)
deriv2 = signal.convolve2d(ck, laplacian,mode="same',boundary="symm')

>>> plt.figure ()

>>> plt.imshow (image)

>>> plt.gray ()

>>> plt.title('Original image')
>>> plt.show ()

Original image

>>> plt.figure ()

>>> plt.imshow (deriv)

>>> plt.gray()

>>> plt.title('Output of spline edge filter')
>>> plt.show ()

Filtering

Filtering is a generic name for any system that modifies an input signal in some way. In SciPy a signal can be thought of as
a NumPy array. There are different kinds of filters for different kinds of operations. There are two broad kinds of filtering
operations: linear and non-linear. Linear filters can always be reduced to multiplication of the flattened NumPy array by
an appropriate matrix resulting in another flattened NumPy array. Of course, this is not usually the best way to compute
the filter as the matrices and vectors involved may be huge. For example filtering a 512 x 512 image with this method
would require multiplication of a 5122 x 5122 matrix with a 5122 vector. Just trying to store the 5122 x 5122 matrix using
a standard NumPy array would require 68, 719,476, 736 elements. At 4 bytes per element this would require 256GB of

4.1. SciPy Tutorial 293

SciPy Reference Guide, Release 1.3.2

Output of spline edge filter

200
400

600

0 200 400 600 800 1000

memory. In most applications most of the elements of this matrix are zero and a different method for computing the
output of the filter is employed.

Convolution/Correlation

Many linear filters also have the property of shift-invariance. This means that the filtering operation is the same at different
locations in the signal and it implies that the filtering matrix can be constructed from knowledge of one row (or column)
of the matrix alone. In this case, the matrix multiplication can be accomplished using Fourier transforms.

Let x [n] define a one-dimensional signal indexed by the integer n. Full convolution of two one-dimensional signals can
be expressed as

yll= > wlklhin—k.

k=—o00

This equation can only be implemented directly if we limit the sequences to finite support sequences that can be stored in
a computer, choose n = 0 to be the starting point of both sequences, let K + 1 be that value for which x [n] = 0 for all
n > K +1and M + 1 be that value for which h [n] = 0 for all n > M + 1, then the discrete convolution expression is

min(n,K)

y[n] = Z x[k]hn—k].

k=max(n—M,0)

294 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

For convenience assume K > M. Then, more explicitly the output of this operation is

y[o] = x[0]n[0]
y[1] = z[0]r[1]+z[1] (0]
y[2] z[0]h[2] + 2 [1h[1] + 2 [2] A [0]
y[M] 2Ol h[M] + 2 [h[M -1+ +z[M]h[0]
yIM+1 = z[1h[M]+z2h[M-1]+-- +z[M~+1]h[0]
y [K] 2K — Mh[M] + -+ [K]h[0]
y[K+1 = z[K+1—Mh[M]+-+z[K]h[1]
y[K+M—1j _ .as[K—l}h[M]—i-x[K]h[M—l]
y[K+M] = «[K]h[M).

Thus, the full discrete convolution of two finite sequences of lengths K + 1 and M + 1 respectively results in a finite
sequence of length K + M +1=(K+1)+ (M +1)—1.

One dimensional convolution is implemented in SciPy with the function convolve. This function takes as inputs the
signals x, h , and two optional flags ‘mode’ and ‘method’ and returns the signal y.

The first optional flag ‘mode’ allows for specification of which part of the output signal to return. The default value of
‘full’ returns the entire signal. If the flag has a value of ‘same’ then only the middle K values are returned starting at
Y H%H so that the output has the same length as the first input. If the flag has a value of ‘valid’ then only the middle
K—-M+1=(K+1)—(M+ 1)+ 1 output values are returned where z depends on all of the values of the smallest

input from A [0] to h [M] . In other words only the values y [M] to y [K] inclusive are returned.

The second optional flag ‘method’ determines how the convolution is computed, either through the Fourier transform
approach with £ftconvolve or through the direct method. By default, it selects the expected faster method. The
Fourier transform method has order O(N log V) while the direct method has order O(N?2). Depending on the big O
constant and the value of NV, one of these two methods may be faster. The default value ‘auto’ performs a rough calculation
and chooses the expected faster method, while the values ‘direct’” and ‘fft’ force computation with the other two methods.

The code below shows a simple example for convolution of 2 sequences

>>> x = np.array([1.0,
>>> h = np.array([0.0,

2.0, 3.01)

1 0.0
>>> signal.convolve (x, h)

3

h

.0
.0, , 0.0, 0.01)
array ([0., 1., 2.,
>>> signal.convolve (x,

array ([2., 3., 0.1)

., 0., 0., 0.1
, 'same')

This same function convolve can actually take /N -dimensional arrays as inputs and will return the N -dimensional
convolution of the two arrays as is shown in the code example below. The same input flags are available for that case as
well.

>>> x = np.array([[1., 1., 0., 0.], [1., 1., 0., 0.1, [0O., O., O., 0.1, [0.,_
~0., 0., 0.11)
>>> h = np.array([[1l., 0., 0., 0.1, [0., O., O., 0.1, [0O., O., 1., 0.1, [0.,_

0., 0., 0.11)
>>> signal.convolve (x, h)
array ([[1., 1., 0., 0., 0., 0., 0.1,

(continues on next page)

4.1. SciPy Tutorial 295

SciPy Reference Guide, Release 1.3.2

(continued from previous page)

(1., 1., 0., 0., 0., 0., 0.7,
(0., 0., 1., 1., 0., 0., 0.7,
(6., 0., 1., 1., 0., 0., 0.7,
r 6., 0., 0., 0., 0., 0., 0.7,
(0., 0., 0., 0., 0., 0., 0.1,
[0. 0 0. 0 0 0. 0.11)

Correlation is very similar to convolution except for the minus sign becomes a plus sign. Thus

oo

wln]= Y ykazhn+k

k=—o0

is the (cross) correlation of the signals y and x. For finite-length signals with y [n] = 0 outside of the range [0, K] and
x [n] = 0 outside of the range [0, M], the summation can simplify to

min(K,M—n)
whl= Y ykehth.
k=max(0,—n)
Assuming again that K > M this is
w[-K] = y[K]z[0]
w[-K+1] = y[K-1]z[0]+y[K]z[1]
wM—-K] = yl[K-M]z[0]+y[K-—M+1z[1]+ - +y[K]x[M]
wM-K+1 = y[K-—M-1]z[0]+- - +y[K—1]z[M]
w1 = y[z[0]+y2z]+-- +y[M+ 1]z [M]
w(0] = y[0]z[0] +y[l]z[l]+ - +y[M]x[M]
wll] = yl0]z[l]+y[]z[2]+ - +y[M—1]z[M]
wi2] = ylolel2+y[ef]+- -+ y[M -2z [M]
w[M—=1] = y[0]z[M —1]+y[1]z[M]
w[M] = yl0]z[M].

The SciPy function correlate implements this operation. Equivalent flags are available for this operation to re-
turn the full K + M + 1 length sequence (‘full’) or a sequence with the same size as the largest sequence starting at
w [—K + L%H (‘same’) or a sequence where the values depend on all the values of the smallest sequence (‘valid’).
This final option returns the K’ — M + 1 values w [M — K] to w [0] inclusive.

The function correlate can also take arbitrary [NV -dimensional arrays as input and return the N -dimensional convo-
lution of the two arrays on output.

When N = 2, correlate and/or convolve can be used to construct arbitrary image filters to perform actions such
as blurring, enhancing, and edge-detection for an image.

>>> import numpy as np
>>> from scipy import signal, misc
>>> import matplotlib.pyplot as plt

296 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

>>> image = misc.face (gray=True)

>>> w = np.zeros((50, 50))

>>> w[0][0] = 1.0

>>> w[49][25] 1.0

>>> image_new = signal.fftconvolve (image, w)

>>> plt.figure ()

>>> plt.imshow (image)

>>> plt.gray()

>>> plt.title('Original image')
>>> plt.show ()

Original image

>>> plt.figure()

>>> plt.imshow (image_new)

>>> plt.gray ()

>>> plt.title('Filtered image')
>>> plt.show ()

Calculating the convolution in the time domain as above is mainly used for filtering when one of the signals is much smaller
than the other (K > M), otherwise linear filtering is more efficiently calculated in the frequency domain provided by
the function Fftconvolve. By default, convolve estimates the fastest method using choose_conv._method

If the filter function w[n, m] can be factored according to
h[n,m] = hq[n]ha[m],

convolution can be calculated by means of the function sepfir2d. As an example we consider a Gaussian filter
gaussian
2 2 2

hln,m] e Y — ey

which is often used for blurring.

4.1. SciPy Tutorial 297

SciPy Reference Guide, Release 1.3.2

Filtered image

>>> import numpy as np
>>> from scipy import signal, misc
>>> import matplotlib.pyplot as plt

>>> image = misc.ascent ()
>>> w = signal.gaussian (50, 10.0)
>>> image_new = signal.sepfir2d(image, w, w)

>>> plt.figure()

>>> plt.imshow (image)

>>> plt.gray()

>>> plt.title('Original image')
>>> plt.show /()

Original image

200

300 -SRI

il '“\\
400 . AR

v) \\
500 | o TG \\\\\\.\\
0

\
0 200 400

298 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

>>> plt.figure ()

>>> plt.imshow (image_new)

>>> plt.gray ()

>>> plt.title('Filtered image')
>>> plt.show ()

Filtered image

0 200 400

Difference-equation filtering

A general class of linear one-dimensional filters (that includes convolution filters) are filters described by the difference
equation

Zaky[n—k]zz:bkm[n—k]

where x [n] is the input sequence and y [n] is the output sequence. If we assume initial rest so that y [n] = 0 forn < 0
, then this kind of filter can be implemented using convolution. However, the convolution filter sequence h [n] could be
infinite if a; # 0 for £ > 1. In addition, this general class of linear filter allows initial conditions to be placed on ¥ [n]
for n < 0 resulting in a filter that cannot be expressed using convolution.

The difference equation filter can be thought of as finding y [n] recursively in terms of it’s previous values
apy [n] = —ary[n—1] - —any[n— N]+ -+ boz[n] + -+ byx[n— M].

Often ag = 1 is chosen for normalization. The implementation in SciPy of this general difference equation filter is a little
more complicated then would be implied by the previous equation. It is implemented so that only one signal needs to be
delayed. The actual implementation equations are (assuming ag = 1).

y[n] = box[n]+z[n 1]
zo[n] = bzn]+z1n—1]—ary[n]
z1[n] = bax[n]+ 22[n—1] — a2y [n]
zk—2[n] = br_1x[n]+zx_1n—1]—arx-1y[n]
zk-1[n] = bgx[n]—akyln],

4.1. SciPy Tutorial 299

SciPy Reference Guide, Release 1.3.2

where K = max (N, M). Note that bx = 0if K > M and ax = 0if K > N. In this way, the output at time n
depends only on the input at time n and the value of zg at the previous time. This can always be calculated as long as the
K values zg [n — 1] ... zx—1 [n — 1] are computed and stored at each time step.

The difference-equation filter is called using the command 1 i It er in SciPy. This command takes as inputs the vector
b, the vector, a, a signal x and returns the vector y (the same length as =) computed using the equation given above. If
is N -dimensional, then the filter is computed along the axis provided. If, desired, initial conditions providing the values
of zg [—1] to zx_1 [—1] can be provided or else it will be assumed that they are all zero. If initial conditions are provided,
then the final conditions on the intermediate variables are also returned. These could be used, for example, to restart the
calculation in the same state.

Sometimes it is more convenient to express the initial conditions in terms of the signals = [n] and y [n] . In other words,
perhaps you have the values of x [—M] to [—1] and the values of y [—N] to y [—1] and would like to determine what
values of z,, [—1] should be delivered as initial conditions to the difference-equation filter. It is not difficult to show that
for0 <m < K,
K—-—m-—1
zm [n] = Z (Om4p1@ [0 = p] = Gmspr1y [0 —p]) -

p=0

Using this formula we can find the initial condition vector zo [—1] to zx 1 [—1] given initial conditions on y (and x).
The command 1 £i1tic performs this function.
As an example consider the following system:
1 1 1
yln) = Saln] + Joln = 1] + 5yln — 1]

The code calculates the signal y[n| for a given signal x[n]; first for initial conditions y[—1] = 0 (default case), then for
y[—1] =2bymeansof 1riltic.

>>> import numpy as np
>>> from scipy import signal

>>> x = np.array([1., 0., 0., 0.1])
>>> b = np.array([1.0/2, 1.0/41)
>>> a = np.array([1.0, -1.0/3])
>>> signal.lfilter (b, a, x)
array ([0.5, 0.41666667, 0.13888889, 0.04629631])

>>> zi = signal.lfiltic (b, a, y=I[2.1])

>>> signal.lfilter (b, a, x, zi=zi)

(array ([1.16666667, 0.63888889, 0.21296296, 0.07098765]), array([O0.
-02366]))

Note that the output signal y[n] has the same length as the length as the input signal 2[n].

Analysis of Linear Systems

Linear system described a linear difference equation can be fully described by the coefficient vectors a and b as was done
above; an alternative representation is to provide a factor k, N zeros z; and IN,, poles py, respectively, to describe the
system by means of its transfer function H (z) according to

(z—21)(z — 22)...(z — 2n.)
(z—=p1)(z —p2)...(2 —pn,)

H(z)=k

This alternative representation can be obtain with the scipy function t 2 zpk; the inverse is provided by zpk 2t £.

For the example from above we have

300 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

>>> b = np.array ([1.0/2, 1.0/41)

>>> a = np.array([1.0, -1.0/3])

>>> signal.tf2zpk (b, a)

(array ([-0.5]), array([0.33333333]), 0.5)

i.e. the system has a zero at z = —1/2 and a pole at z = 1/3.

The scipy function freqgz allows calculation of the frequency response of a system described by the coefficients a;, and
bi.. See the help of the fregz function of a comprehensive example.

Filter Design

Time-discrete filters can be classified into finite response (FIR) filters and infinite response (IIR) filters. FIR filters can
provide a linear phase response, whereas IIR filters cannot. SciPy provides functions for designing both types of filters.

FIR Filter

The function £irwin designs filters according to the window method. Depending on the provided arguments, the func-
tion returns different filter types (e.g. low-pass, band-pass...).

The example below designs a low-pass and a band-stop filter, respectively.

>>> import numpy as np
>>> import scipy.signal as signal
>>> import matplotlib.pyplot as plt

>>> bl = signal.firwin (40, 0.5
>>> b2 signal.firwin (41, [O.
>>> wl, hl = signal.freqgz(bl)

2)

>>> w2, h2 = signal.freqz (b

)
3, 0.81)

>>> plt.title('Digital filter frequency response')
>>> plt.plot(wl, 20*np.loglO(np.abs(hl)), 'b")

>>> plt.plot (w2, 20*np.loglO (np. abs(h2)), 'r'")
>>> plt.ylabel ('Amplitude Response B)")

>>> plt.xlabel ('Frequency (rad/sample)’
>>> plt.grid()

>>> plt.show ()

)

Note that £irwin uses per default a normalized frequency defined such that the value 1 corresponds to the Nyquist
frequency, whereas the function freqgz is defined such that the value 7 corresponds to the Nyquist frequency.

The function £ i rwin2 allows design of almost arbitrary frequency responses by specifying an array of corner frequencies
and corresponding gains, respectively.

The example below designs a filter with such an arbitrary amplitude response.

>>> import numpy as np
>>> import scipy.signal as signal
>>> import matplotlib.pyplot as plt

>>> b = signal.firwin2 (150, [0.0, 0.3, 0.6, 1.01, [1.0, 2.0, 0.5, 0.01])
>>> w, h = signal.freqgz (b)

4.1. SciPy Tutorial 301

SciPy Reference Guide, Release 1.3.2

Digital filter frequency response

—_ 0
3
~ _20_
Q
2
o _40_
o
¢ —60 A
o
8 —-80-
2
3 —100 -
£
< _120-

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Frequency (rad/sample)

>>>
>>>
>>>
>>>
>>>
>>>
>>>

plt
plt
plt
plt
plt
plt
plt

.title('Digital filter frequency response')
.plot (w, np.abs(h))
.title('Digital filter frequency response')

.ylabel ('Amplitude Response')
.xlabel ('Frequency (rad/sample) ")
.grid()

.show ()

Digital filter frequency response

2.0 A

1.5 4

1.0 A

0.5 4

Amplitude Response

0.0 4

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Frequency (rad/sample)

Note the linear scaling of the y-axis and the different definition of the Nyquist frequency in firwin2 and fregz (as
explained above).

302

Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

IIR Filter

SciPy provides two functions to directly design [IR iirdesignand iirfilter where the filter type (e.g. elliptic) is
passed as an argument and several more filter design functions for specific filter types; e.g. e11ip.

The example below designs an elliptic low-pass filter with defined passband and stopband ripple, respectively. Note the
much lower filter order (order 4) compared with the FIR filters from the examples above in order to reach the same
stop-band attenuation of ~ 60 dB.

>>> import numpy as np
>>> import scipy.signal as signal
>>> import matplotlib.pyplot as plt

>>> b, a signal.iirfilter (4, Wn=0.2, rp=5, rs=60, btype='lowpass', ftype=
—~'ellip'

>>> w, h

I~

signal.freqz (b, a)

>>> plt.title('Digital filter frequency response')
>>> plt.plot(w, 20*np.logl0(np.abs(h)))

>>> plt.title('Digital filter frequency response')
>>> plt.ylabel ('Amplitude Response [dB]"'")

>>> plt.xlabel ('Frequency (rad/sample)')

>>> plt.grid()

>>> plt.show ()

Digital filter frequency response

—_ 0
m
S
° —20 -+
Z
o —40 +
o
9
x —60
3
3 —80 A
=]
€ —100 +
<

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Frequency (rad/sample)

Filter Coefficients

Filter coeflicients can be stored in several different formats:
e ‘ba’ or ‘tf’” = transfer function coefficients
» ‘zpk’ = zeros, poles, and overall gain

* ‘ss’ = state-space system representation

4.1. SciPy Tutorial 303

SciPy Reference Guide, Release 1.3.2

¢ ‘sos’ = transfer function coeflicients of second-order sections

Functions such as t f2zpk and zpk2ss can convert between them.

Transfer function representation

The ba or t f format is a 2-tuple (b, a) representing a transfer function, where b is a length M+ 1 array of coefficients
of the M-order numerator polynomial, and a is a length N+1 array of coefficients of the N-order denominator, as positive,
descending powers of the transfer function variable. So the tuple of b = [bg, by, ...,bps] and a = [ag, a1, ..., an] can
represent an analog filter of the form:

bos™ + by sM=1) 4 ... 4 by, Zf\io bs(M—9)

H - =
(s) apsV +ars™ D+ tay SN sV

or a discrete-time filter of the form:

bozM + bz by Zi]\io bz(M =9
apzN + a2V 4 pay SN g (V=)

H(z)=

This “positive powers” form is found more commonly in controls engineering. If M and N are equal (which is true for
all filters generated by the bilinear transform), then this happens to be equivalent to the “negative powers” discrete-time
form preferred in DSP:

by bz bz M b
H(z) = N ZN a;z ¢
i=0 %

ap+arz7t+---+anz~
Although this is true for common filters, remember that this is not true in the general case. If M and N are not equal, the
discrete-time transfer function coefficients must first be converted to the “positive powers” form before finding the poles
and zeros.

This representation suffers from numerical error at higher orders, so other formats are preferred when possible.

Zeros and poles representation

The zpk format is a 3-tuple (z, p, k), where z is an M-length array of the complex zeros of the transfer function
z = [20, 21, ---s 20 —1], p is an N-length array of the complex poles of the transfer function p = [po, p1, ..., pnv—1], and k
is a scalar gain. These represent the digital transfer function:
(2 —20)(z —21) (2 = 2u-n) _ [licg (== 2)
H(z)=k- =k 5
(z=po)(z—p1)- (2 = p(n=-1)) [LL, (z—p)

or the analog transfer function:
(=z0)(5=2)- (s —2n) ka\iEl(S — %)
(s =po)(s —p1) -+ (s = pv-1)) 1Y s —pi)
Although the sets of roots are stored as ordered NumPy arrays, their ordering does not matter; ([-1, -2]1, [-3,
—-471, 1) isthe same filteras ([-2, -11, [-4, -31, 1).

H(s) =

State-space system representation

The ss format is a 4-tuple of arrays (A, B, C, D) representing the state-space of an N-order digital/discrete-time
system of the form:

304 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

or a continuous/analog system of the form:
Xx(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)
with P inputs, Q outputs and N state variables, where:
e x is the state vector
¢ yis the output vector of length Q
* u is the input vector of length P
¢ A is the state matrix, with shape (N, N)
* Bis the input matrix with shape (N, P)
* (C is the output matrix with shape (Q, N)

¢ D is the feedthrough or feedforward matrix with shape (Q, P) . (In cases where the system does not have a direct
feedthrough, all values in D are zero.)

State-space is the most general representation, and the only one that allows for multiple-input, multiple-output (MIMO)
systems. There are multiple state-space representations for a given transfer function. Specifically, the “controllable canon-
ical form” and “observable canonical form” have the same coefficients as the t f representation, and therefore suffer from
the same numerical errors.

Second-order sections representation

The sos format is a single 2D array of shape (n_sections, 6), representing a sequence of second-order transfer
functions which, when cascaded in series, realize a higher-order filter with minimal numerical error. Each row corresponds
to a second-order t f representation, with the first three columns providing the numerator coefficients and the last three
providing the denominator coefficients:

[bOa blv b27 Qp, ay, a’2}
The coefficients are typically normalized such that a is always 1. The section order is usually not important with floating-

point computation; the filter output will be the same regardless.

Filter transformations

The IIR filter design functions first generate a prototype analog lowpass filter with a normalized cutoft frequency of 1
rad/sec. This is then transformed into other frequencies and band types using the following substitutions:

Type Transformation
1p2lp | § = —
1lpZhp | § = =2

1p2bp | § — £Ewo”
1lpZ2bs | § =& 51— =

Here, wq is the new cutoff or center frequency, and BW is the bandwidth. These preserve symmetry on a logarithmic
frequency axis.

To convert the transformed analog filter into a digital filter, the bi I i near transform is used, which makes the following
substitution:

22z—1

4)
Tz+1

4.1. SciPy Tutorial 305

SciPy Reference Guide, Release 1.3.2

where T is the sampling time (the inverse of the sampling frequency).

Other filters

The signal processing package provides many more filters as well.

Median Filter

A median filter is commonly applied when noise is markedly non-Gaussian or when it is desired to preserve edges. The
median filter works by sorting all of the array pixel values in a rectangular region surrounding the point of interest. The
sample median of this list of neighborhood pixel values is used as the value for the output array. The sample median
is the middle array value in a sorted list of neighborhood values. If there are an even number of elements in the neigh-
borhood, then the average of the middle two values is used as the median. A general purpose median filter that works
on N-dimensional arrays is medfilt . A specialized version that works only for two-dimensional arrays is available as
medfilt2d.

Order Filter

A median filter is a specific example of a more general class of filters called order filters. To compute the output at a
particular pixel, all order filters use the array values in a region surrounding that pixel. These array values are sorted and
then one of them is selected as the output value. For the median filter, the sample median of the list of array values is
used as the output. A general order filter allows the user to select which of the sorted values will be used as the output.
So, for example one could choose to pick the maximum in the list or the minimum. The order filter takes an additional
argument besides the input array and the region mask that specifies which of the elements in the sorted list of neighbor
array values should be used as the output. The command to perform an order filter is order_filter.

Wiener filter

The Wiener filter is a simple deblurring filter for denoising images. This is not the Wiener filter commonly described in
image reconstruction problems but instead it is a simple, local-mean filter. Let = be the input signal, then the output is

2 2
y = Z—gmxﬁ-(l—g—%)x 052027
Mg U% < 02,
where m, is the local estimate of the mean and o2 is the local estimate of the variance. The window for these estimates
is an optional input parameter (default is 3 x 3). The parameter o2 is a threshold noise parameter. If o is not given then
it is estimated as the average of the local variances.

Hilbert filter

The Hilbert transform constructs the complex-valued analytic signal from a real signal. For example if x = coswn then
y = hilbert (z) would return (except near the edges) y = exp (jwn) . In the frequency domain, the hilbert transform
performs

Y=X-H

where H is 2 for positive frequencies, 0 for negative frequencies and 1 for zero-frequencies.

306 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

Analog Filter Design

The functions iirdesign, 1irfilter, and the filter design functions for specific filter types (e.g. e111ip) all have
a flag analog which allows design of analog filters as well.

The example below designs an analog (IIR) filter, obtains via ¢ £2zpk the poles and zeros and plots them in the complex
s-plane. The zeros at w ~ 150 and w ~ 300 can be clearly seen in the amplitude response.

>>>
>>>
>>>

import numpy as np
import scipy.signal as signal
import matplotlib.pyplot as plt

>>> b, a = signal.iirdesign(wp=100, ws=200, gpass=2.0, gstop=40., analog=True)
>>> w, h = signal.fregs (b, a)
>>> plt.title('Analog filter frequency response')
>>> plt.plot(w, 20*np.logl0(np.abs(h)))
>>> plt.ylabel ('Amplitude Response [dB]"'")
>>> plt.xlabel ('Frequency')
>>> plt.grid()
>>> plt.show ()
Analog filter frequency response
— 01
[ah]
S
@ —20 -
c
o
o
0
& —40 A
[0}
©
-}
£ —60 -
[}
€
<
_80 L T T T T T T
0 200 400 600 800 1000
Frequency
>>> z, p, k = signal.tf2zpk(b, a)
>>> plt.plot (np.real(z), np.imag(z), 'xb'")
>>> plt.plot (np.real(p), np.imag(p), 'or'")
>>> plt.legend(['Zeros', 'Poles'], loc=2)
>>> plt.title('Pole / Zero Plot'")
>>> plt.ylabel ('"Real')
>>> plt.xlabel ('Imaginary')
>>> plt.grid()
>>> plt.show ()
4.1. SciPy Tutorial 307

SciPy Reference Guide, Release 1.3.2

Pole / Zero Plot

X Zeros X
200 A ® Poles
X
[
b [)
o 0
o)
[
X
—200 A
-25 -20 -15 -10 -5 0

Imaginary

Spectral Analysis

Periodogram Measurements

The scipy function periodogram provides a method to estimate the spectral density using the periodogram method.

The example below calculates the periodogram of a sine signal in white Gaussian noise.

>>>
>>>
>>>

import numpy as np
import scipy.signal as signal
import matplotlib.pyplot as plt

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

fs = 10e3

N = leb

amp = 2*np.sqgrt (2)

freqg = 1270.0

noise_power = 0.001 * fs / 2

time = np.arange (N) / fs

X = amp*np.sin(2*np.pi*freg*time)

x += np.random.normal (scale=np.sqrt (noise_power), size=time.shape)

>>>

f, Pper_spec = signal.periodogram(x, fs, 'flattop', scaling='spectrum')

>>>
>>>
>>>
>>>
>>>

plt.semilogy (f, Pper_spec)
plt.xlabel ('frequency [Hz]")
plt.ylabel ('PSD")

plt.grid()

plt.show ()

Spectral Analysis using Welch’s Method

An improved method, especially with respect to noise immunity, is Welch’s method which is implemented by the scipy
function welch.

The example below estimates the spectrum using Welch’s method and uses the same parameters as the example above.

308

Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

10t

PSD

1077 4

0 1000 2000 3000 4000 5000
frequency [Hz]

Note the much smoother noise floor of the spectrogram.

>>> import numpy as np
>>> import scipy.signal as signal
>>> import matplotlib.pyplot as plt

>>> fs = 10e3

>>> N = leb

>>> amp = 2*np.sqgrt (2)

>>> freq = 1270.0

>>> noise_power = 0.001 * fs / 2

>>> time = np.arange(N) / fs

>>> x = amp*np.sin(2*np.pi*freg*time)

>>> x += np.random.normal (scale=np.sqrt (noise_power), size=time.shape)

>>> f, Pwelch_spec = signal.welch(x, fs, scaling='spectrum')

>>> plt.semilogy (f, Pwelch_spec)
>>> plt.xlabel ('frequency [Hz]")
>>> plt.ylabel ("PSD")

>>> plt.grid()

>>> plt.show ()

Lomb-Scargle Periodograms (Lombscargle)

Least-squares spectral analysis (LSSA)'? is a method of estimating a frequency spectrum, based on a least squares fit of
sinusoids to data samples, similar to Fourier analysis. Fourier analysis, the most used spectral method in science, generally

boosts long-periodic noise in long gapped records; LSSA mitigates such problems.

The Lomb-Scargle method performs spectral analysis on unevenly sampled data and is known to be a powerful way to

find, and test the significance of, weak periodic signals.

I'N.R. Lomb “Least-squares frequency analysis of unequally spaced data”, Astrophysics and Space Science, vol 39, pp. 447-462, 1976

2 I.D. Scargle “Studies in astronomical time series analysis. IT - Statistical aspects of spectral analysis of unevenly spaced data”, The Astrophysical

Journal, vol 263, pp. 835-853, 1982

4.1. SciPy Tutorial

SciPy Reference Guide, Release 1.3.2

100 5
o
g
1071 5
10_2 E T T T T T T
0 1000 2000 3000 4000 5000
frequency [Hz]
For a time series comprising /V; measurements X; = X (¢;) sampled at times ¢; where (j = 1, ..., N;), assumed to have

been scaled and shifted such that its mean is zero and its variance is unity, the normalized Lomb-Scargle periodogram at
frequency f is

2 2
P (f)l [Z;Vf Xj COS w(tj — 7'):| N {Z;Vf Xj Sinw(tj — T)
"2 Z;Vt cos?w(t; — 1) Z;V‘ sin? w(t; —)

Here, w = 2x f is the angular frequency. The frequency dependent time offset 7 is given by

N, .
> " sin2wt;

Z;Vt cos 2wt .

tan 2wt =

The lombscargle function calculates the periodogram using a slightly modified algorithm due to Townsend® which
allows the periodogram to be calculated using only a single pass through the input arrays for each frequency.

The equation is refactored as:

Po(f) = 1 (e, XC + 5, X8)? n (c; XS — 5, XC)?
"2 2CC + 2¢,5,C8 + 5258 288 — 2¢,5,C8S + s20C
and
tan 2wt = ﬂ
- CC-8S’
Here,
Cr = COSWT, S, = sinwTt

3 R.H.D. Townsend, “Fast calculation of the Lomb-Scargle periodogram using graphics processing units.”, The Astrophysical Journal Supplement
Series, vol 191, pp. 247-253, 2010

310 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

while the sums are

Ny

XC = ZXj cos wt;
J
Ny

XS5 = ZX]- sinwt
J
Ny

CcC = Z cos? wt;

J

N
SS = Z sin? wt;
J

Ny
CS = Z cos wt; sinwt;.
J

This requires Ny (2N, + 3) trigonometric function evaluations giving a factor of ~ 2 speed increase over the straightfor-
ward implementation.

Detrend
SciPy provides the function det rend to remove a constant or linear trend in a data series in order to see effect of higher
order.

The example below removes the constant and linear trend of a 2-nd order polynomial time series and plots the remaining
signal components.

>>> import numpy as np
>>> import scipy.signal as signal
>>> import matplotlib.pyplot as plt

>>> t = np.linspace(-10, 10, 20)

>>> y =1 + t + 0.01*t**2

>>> yconst = signal.detrend(y, type='constant')
>>> ylin = signal.detrend(y, type='linear')

>>> plt.plot

(t, y, "—rx'")
>>> plt.plot (

(

(

t
t, yconst, '-bo'")
>>> plt.plot(t, ylin, '-k+'")
>>> plt.grid()
>>> plt.legend
>>> plt.show ()

(['"signal', 'const. detrend', 'linear detrend'])

References

Some further reading and related software:

4.1.9 Linear Algebra (scipy.linalg)

When SciPy is built using the optimized ATLAS LAPACK and BLAS libraries, it has very fast linear algebra capabilities.
If you dig deep enough, all of the raw lapack and blas libraries are available for your use for even more speed. In this

4.1. SciPy Tutorial 311

SciPy Reference Guide, Release 1.3.2

104 7€ signal
—@— const. detrend
5 —— |inear detrend
0 - ———
_5-
—10 - T T T T T
-10 -5 0 5 10

section, some easier-to-use interfaces to these routines are described.

All of these linear algebra routines expect an object that can be converted into a 2-dimensional array. The output of these
routines is also a two-dimensional array.

scipy.linalg vs numpy.linalg

scipy.linalg contains all the functions in numpy.linalg. plus some other more advanced ones not contained in
numpy.linalg.

Another advantage of using scipy.linalgover numpy.linalg is that it is always compiled with BLAS/LAPACK
support, while for numpy this is optional. Therefore, the scipy version might be faster depending on how numpy was
installed.

Therefore, unless you don’t want to add scipy as a dependency to your numpy program, use scipy.linalg instead
of numpy.linalg.

numpy.matrix vs 2D nhumpy.ndarray

The classes that represent matrices, and basic operations such as matrix multiplications and transpose are a part of numpy.
For convenience, we summarize the differences between numpy .mat rix and numpy . ndarray here.

numpy .matrix is matrix class that has a more convenient interface than numpy . ndarray for matrix operations.
This class supports for example MATLAB-like creation syntax via the semicolon, has matrix multiplication as default for
the * operator, and contains I and T members that serve as shortcuts for inverse and transpose:

>>> import numpy as np
>>> A = np.mat ('[1 2;3 4]")
>>> A
matrix ([[1, 21,

[3, 411)
>>> A.I
matrix ([[-2. , 1. 1]

1

(continues on next page)

312 Chapter 4. Tutorial

https://www.numpy.org/devdocs/reference/routines.linalg.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.matrix.html#numpy.matrix
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

SciPy Reference Guide, Release 1.3.2

(continued from previous page)

>>> b = np.mat ('[5 6]")

>>> b

matrix ([[5, 6]11)

>>> pb.T

matrix ([[5],
[611)

>>> A*b.T

matrix ([[17],
[3911)

Despite its convenience, the use of the numpy .matrix class is discouraged, since it adds nothing that cannot be ac-
complished with 2D numpy . ndarray objects, and may lead to a confusion of which class is being used. For example,
the above code can be rewritten as:

>>> import numpy as np
>>> from scipy import linalg
>>> A = np.array ([[1,2]1,[3,411)

>>> A
array ([[1, 21,
[3, 411)
>>> linalg.inv (A)
array ([[-2. , 1. 171,
[1.5, -0.511])
>>> b = np.array([[5,6]]) #2D array
>>> b
array ([[5, 611)
>>> b.T
array ([[5],
[611)
>>> A*b #not matrix multiplication!
array ([[5, 127,
[15, 24]1)
>>> A.dot(b.T) #matrix multiplication
array ([[17],
[3911)
>>> b = np.array([5,6]) #1D array
>>> b

array ([5, 61])

>>> b.T #not matrix transpose!

array ([5, 61)

>>> A.dot (b) #does not matter for multiplication
array ([17, 391)

scipy.linalg operations can be applied equally to numpy .matrix or to 2D numpy .ndarray objects.

Basic routines

Finding Inverse

The inverse of a matrix A is the matrix B such that AB = I where I is the identity matrix consisting of ones down the
main diagonal. Usually B is denoted B = A~! . In SciPy, the matrix inverse of the NumPy array, A, is obtained using

4.1. SciPy Tutorial 313

SciPy Reference Guide, Release 1.3.2

linalg.inv (A) ,orusing A.T if A is a Matrix. For example, let

1 3 5
A=|2 51
2 3 8
then
1 =37 9 22 —1.48 0.36 0.88
Aflz% 14 2 -9 | = 0.56 0.08 —0.36
4 -3 1 0.16 —-0.12 0.04

The following example demonstrates this computation in SciPy

>>> import numpy as np
>>> from scipy import linalg
>>> A = np.array ([[1,3,5],1[2,5,11,12,3,811])
>>> A
array ([[1, 3, 51,
(2, 5, 11,
(2, 3, 811)
>>> linalg.inv (A)
array ([[-1.48, 0.36, 0.88],
[0.56, 0.08, -0.36],
[0.16, -0.12, 0.0411])
>>> A.dot (linalg.inv (A)) #double check
array ([[1.00000000e+00, -—-1.11022302e-16, -5.55111512e-17],
[3.05311332e-16, 1.00000000e+00, 1.87350135e-16],
[2.22044605e-16, -1.11022302e-16, 1.00000000e+0011)

Solving linear system

Solving linear systems of equations is straightforward using the scipy command 1 inalg. solve. This command expects
an input matrix and a right-hand-side vector. The solution vector is then computed. An option for entering a symmetric
matrix is offered which can speed up the processing when applicable. As an example, suppose it is desired to solve the
following simultaneous equations:

r+3y+52z = 10
204+5y+2 = 8
20 +3y+8 = 3

We could find the solution vector using a matrix inverse:

-1

T 1 3 5 10 1 —232 —9.28
y|=1]12 51 8 | = % 129 = 5.16
z 2 3 8 3 19 0.76

However, it is better to use the linalg.solve command which can be faster and more numerically stable. In this case it
however gives the same answer as shown in the following example:

>>> import numpy as np

>>> from scipy import linalg

>>> A = np.array ([[1, 2], [3, 411)
>>> A

array ([[1, 21,

(continues on next page)

314 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

(continued from previous page)

[3, 411)
>>> b = np.array ([[5], [6]1])
>>> b
array ([[5],
[611)
>>> linalg.inv (A) .dot (b) # slow
array ([[-4.],
[4.511)
>>> A.dot (linalg.inv (A) .dot (b)) - b # check
array ([[8.88178420e-16],
[2.66453526e-15]1)
>>> np.linalg.solve (A, b) # fast
array ([[-4. 1,
[4.511)
>>> A.dot (np.linalg.solve (A, b)) - b # check
array ([[0.1,
[0.11)

Finding Determinant

The determinant of a square matrix A is often denoted |A| and is a quantity often used in linear algebra. Suppose a;;
are the elements of the matrix A and let M,; = |A,;;| be the determinant of the matrix left by removing the i row and
4™ column from A . Then for any row i,

"
Al =" (=D ay My
J
This is a recursive way to define the determinant where the base case is defined by accepting that the determinant of a

1 x 1 matrix is the only matrix element. In SciPy the determinant can be calculated with 1inalg. det . For example,
the determinant of

1 3 5
A=|2 5 1
2 3 8
is
5 1 2 1 2 5
= alg =2l s [+o]3 5

= 1(5-8—3-1)—3(2-8—2-1)+5(2-3—2-5) = —25.

In SciPy this is computed as shown in this example:

>>> import numpy as np
>>> from scipy import linalg
>>> A = np.array([[1,2],[3,411)
>>> A
array ([[1, 21,
[3, 411)
>>> linalg.det (A)
-2.0

Computing norms

Matrix and vector norms can also be computed with SciPy. A wide range of norm definitions are available using different
parameters to the order argument of 1 inalg.norm. This function takes a rank-1 (vectors) or a rank-2 (matrices) array

4.1. SciPy Tutorial 315

SciPy Reference Guide, Release 1.3.2

and an optional order argument (default is 2). Based on these inputs a vector or matrix norm of the requested order is
computed.

For vector x , the order parameter can be any real number including inf or —inf. The computed norm is

max || ord = inf
min || ord = —inf

ord 1/ord
> il lord| < oo.

For matrix A the only valid values for norm are +2, +1, + inf, and ‘fro’ (or ‘f”) Thus,

Il =

max; y; |a;j| ord = inf
mini Zj |a”\ ord = —inf
max; y . |a;;| ord=1
JAI=4 min, 55 fay| ord = —1
max o; ord = 2
min o; ord = —2
trace (AT A) ord = fro’

where o; are the singular values of A .

Examples:

>>> import numpy as np
>>> from scipy import linalg
>>> A=np.array([[1,2],1[3,4]1])
>>> A
array ([[1, 2],
[3, 411)
>>> linalg.norm(A)
5.4772255750516612
>>> linalg.norm(A, 'fro') # frobenius norm is the default
5.4772255750516612
>>> linalg.norm(A,1) # L1 norm (max column sum)

6

>>> linalg.norm (A, —1)

4

>>> linalg.norm(A,np.inf) # L inf norm (max row sum)
9

Solving linear least-squares problems and pseudo-inverses

Linear least-squares problems occur in many branches of applied mathematics. In this problem a set of linear scaling
coefficients is sought that allow a model to fit data. In particular it is assumed that data y; is related to data x; through a
set of coefficients ¢; and model functions f; (x;) via the model

yi = chfj (xi) + €
J
where ¢; represents uncertainty in the data. The strategy of least squares is to pick the coefficients c; to minimize
2

J(c) = Z Yi — chfj (z:)

Theoretically, a global minimum will occur when

oo =0=3 (= et () | (-1 ()

316 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

or

e > fi () fr (@) > ik ()
j i i
AffAc = Afly
where
{A}ij = fj ().

When AHA is invertible, then

c=(ATA) Afly = Aly
where AT is called the pseudo-inverse of A. Notice that using this definition of A the model can be written

y =Ac+e.

The command 1 inalg. 1stsqg will solve the linear least squares problem for c given A and y . In addition 1inalg.
pinvor linalg.pinvZ (uses a different method based on singular value decomposition) will find AT given A.

The following example and figure demonstrate the use of 1 inalg. Istsgand 1inalg. pinv forsolving a data-fitting
problem. The data shown below were generated using the model:

Yi = c1e” "+ oy

where z; = 0.1ifori =1...10,c; = 5, and co = 4. Noise is added to y; and the coefficients c¢; and cs are estimated
using linear least squares.

>>> import numpy as np
>>> from scipy import linalg
>>> import matplotlib.pyplot as plt

>>> ¢cl, c2 = 5.0, 2.0

>>> 1 = np.r_[1:11]

>>> xi = 0.1*%1

>>> yi = cl*np.exp(-xi) + c2*xi

>>> zi = yi + 0.05 * np.max(yi) * np.random.randn (len(yi))
>>> A = np.c_[np.exp(-x1i)[:, np.newaxis], xi[:, np.newaxis]]
>>> ¢, resid, rank, sigma = linalg.lstsg(A, zi)

>>> xi2 = np.r_[0.1:1.0:1007]
>>> yi2 = c[0]*np.exp(—xi2) + c[1l]*xi2

>>> plt.plot(xi,zi, 'x',x12,yi2)

>>> plt.axis([0,1.1,3.0,5.5])

>>> plt.xlabel ('Sx_i")

>>> plt.title('Data fitting with linalg.lstsqg')
>>> plt.show ()

Generalized inverse

The generalized inverse is calculated using the command 1 inalg.pinvor l1inalg.pinvZ2. These two commands
differ in how they compute the generalized inverse. The first uses the linalg.Istsq algorithm while the second uses singular
value decomposition. Let A be an M x N matrix, then if M > N the generalized inverse is

At = (AFA) " AH

4.1. SciPy Tutorial 317

SciPy Reference Guide, Release 1.3.2

Data fitting with linalg.Istsq
5.5

5.0 4

4.5 X

4.0 A

3.5 1

3-0 T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

while if M < N matrix the generalized inverse is
A# = AT (AAT)T
In both cases for M = N , then
AT =A% =A"1

as long as A is invertible.

Decompositions

In many applications it is useful to decompose a matrix using other representations. There are several decompositions
supported by SciPy.

Eigenvalues and eigenvectors
The eigenvalue-eigenvector problem is one of the most commonly employed linear algebra operations. In one popular
form, the eigenvalue-eigenvector problem is to find for some square matrix A scalars A and corresponding vectors v such
that

Av =)v.
For an V x N matrix, there are N (not necessarily distinct) eigenvalues — roots of the (characteristic) polynomial

|A — M| = 0.

The eigenvectors, v , are also sometimes called right eigenvectors to distinguish them from another set of left eigenvectors
that satisfy

vEA = Wl
or

AHVL =)*VL.

318 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

With it’s default optional arguments, the command 1inalg.eig returns A and v. However, it can also return vz, and
just A by itself (1inalg.eigvals returns just A as well).

In addition, 1 inalg.eig can also solve the more general eigenvalue problem

Av =)Bv
Aflyv, = XBfv,

for square matrices A and B. The standard eigenvalue problem is an example of the general eigenvalue problem for
B = I. When a generalized eigenvalue problem can be solved, then it provides a decomposition of A as

A =BVAV!

where V is the collection of eigenvectors into columns and A is a diagonal matrix of eigenvalues.

By definition, eigenvectors are only defined up to a constant scale factor. In SciPy, the scaling factor for the eigenvectors
is chosen so that ||v||2 =>,vi=1

As an example, consider finding the eigenvalues and eigenvectors of the matrix
1 5 2
A=1]2 4 1
3 6 2

The characteristic polynomial is

A=A = (1-N[A-N) 2= —6] -
512(2—A) — 3] +2[12 — 3 (4 — \)]

= X 4+7224+8)\-3.

The roots of this polynomial are the eigenvalues of A :

A1 7.9579
A2 —1.2577
A3 0.2997.

The eigenvectors corresponding to each eigenvalue can be found using the original equation. The eigenvectors associated

with these eigenvalues can then be found.

>>> import numpy as np

>>> from scipy import linalg

>>> A = np.array ([[1, 2], [3, 411)
>>> la, v = linalg.eig(A)

>>> 11, 12 = la

>>> print (11, 12) # eigenvalues
(-0.3722813232690143+07)
>>> print(v[:, 0])
[-0.82456484 0.56576746]
>>> print(v[:, 1])
[-0.41597356 -0.90937671]

>>> print (np.sum(abs(v**2), axis=0))
(1. 1.]

>>> vl = np.array(v[:, 0]).T

>>> print(linalg.norm(A.dot (vl) - 11*vl))

3.23682852457e-16

(5.372281323269014+07)
first eigenvector

second eigenvector

eigenvectors are unitary

check the computation

4.1. SciPy Tutorial

319

SciPy Reference Guide, Release 1.3.2

Singular value decomposition

Singular Value Decomposition (SVD) can be thought of as an extension of the eigenvalue problem to matrices that are
not square. Let A be an M x N matrix with M and N arbitrary. The matrices A A and AA¥ are square hermitian
matrices' of size N x N and M x M respectively. It is known that the eigenvalues of square hermitian matrices are real
and non-negative. In addition, there are at most min (M, IV) identical non-zero eigenvalues of A A and AA¥ . Define
these positive eigenvalues as o2. The square-root of these are called singular values of A.. The eigenvectors of A A are
collected by columns into an N x N unitary” matrix V while the eigenvectors of A A are collected by columns in the
unitary matrix U , the singular values are collected in an M x N zero matrix X with main diagonal entries set to the
singular values. Then

A =UxVv#?

is the singular-value decomposition of A. Every matrix has a singular value decomposition. Sometimes, the singular
values are called the spectrum of A.. The command 1inalg. svdwillreturn U, V¥ and o; as an array of the singular
values. To obtain the matrix 3 use 1 inalg.diagsvd. The following example illustrates the use of 1inalg.svd.

>>> import numpy as np
>>> from scipy import linalg
>>> A = np.array([[1,2,31,14,5,611)

>>> A

array ([[1, 2, 31,
(4, 5, 611)

>>> M,N = A.shape

>>> U,s,Vh = linalg.svd(A)

>>> Sig = linalg.diagsvd(s,M,N)

>>> U, Vh = U, Vh

>>> U

array ([[-0.3863177 , -0.922365781,
[-0.92236578, 0.3863177 11)

>>> Sig

array ([[9.508032 , 0. 0. 1,
[O. , 0.77286964, 0. 11)

>>> Vh

array ([[-0.42866713, -0.56630692, -0.7039467 17,
[0.80596391, 0.11238241, -0.58119908],
[0.40824829, -0.81649658, 0.40824829]11)
>>> U.dot (Sig.dot (Vh)) #check computation
array ([[1., 2., 3.1,
[4., 5., 6.11)

LU decomposition

The LU decomposition finds a representation for the M x N matrix A as
A=PLU

where P is an M x M permutation matrix (a permutation of the rows of the identity matrix), L is in M x K lower
triangular or trapezoidal matrix (K = min (M, N)) with unit-diagonal, and U is an upper triangular or trapezoidal
matrix. The SciPy command for this decomposition is 1 inalg. lu.

Such a decomposition is often useful for solving many simultaneous equations where the left-hand-side does not change
but the right hand side does. For example, suppose we are going to solve

AXZ‘ = bz

!' A hermitian matrix D satisfies D¥ = D.
2 A unitary matrix D satisfies DD = I = DD sothat D1 = DH.

320 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

for many different b, . The LU decomposition allows this to be written as

Because L is lower-triangular, the equation can be solved for Ux; and finally x; very rapidly using forward- and back-
substitution. An initial time spent factoring A allows for very rapid solution of similar systems of equations in the future.
If the intent for performing LU decomposition is for solving linear systems then the command 1 inalg.lu_factor
should be used followed by repeated applications of the command I1inalg.lu_solve to solve the system for each
new right-hand-side.

Cholesky decomposition

Cholesky decomposition is a special case of LU decomposition applicable to Hermitian positive definite matrices. When
A = A¥ and x Ax > 0 for all x , then decompositions of A can be found so that

A = Ufu
A = LLY”

where L is lower-triangular and U is upper triangular. Notice that L = U . The command 1inalg.cholesky com-
putes the cholesky factorization. For using cholesky factorization to solve systems of equations there are also 1 inalg.
cho_rfactorand l1inalg.cho_solve routines that work similarly to their LU decomposition counterparts.

QR decomposition

The QR decomposition (sometimes called a polar decomposition) works for any M x N array and finds an M x M
unitary matrix Q and an M x N upper-trapezoidal matrix R such that

A =QR.
Notice that if the SVD of A is known then the QR decomposition can be found
A =UxV7 =QR

implies that Q = U and R = XV Note, however, that in SciPy independent algorithms are used to find QR and SVD
decompositions. The command for QR decomposition is 1 inalg.gr.

Schur decomposition

For a square N x N matrix, A , the Schur decomposition finds (not-necessarily unique) matrices T and Z such that
A =7ZTZ"

where Z is a unitary matrix and T is either upper-triangular or quasi-upper triangular depending on whether or not a real
schur form or complex schur form is requested. For a real schur form both T and Z are real-valued when A is real-valued.
When A is a real-valued matrix the real schur form is only quasi-upper triangular because 2 x 2 blocks extrude from
the main diagonal corresponding to any complex- valued eigenvalues. The command 1inalg. schur finds the Schur
decomposition while the command 1inalg. rsf2csf converts T and Z from a real Schur form to a complex Schur
form. The Schur form is especially useful in calculating functions of matrices.

The following example illustrates the schur decomposition:

>>> from scipy import linalg
>>> A = np.mat('[1 3 2; 1 4 5; 2 3 6]")
>>> T, Z = linalg.schur (a)

>>> T1, 7Z1 = linalg.schur (A, 'complex')
>>> T2, 7Z2 = linalg.rsf2csf (T, Z)
>>> T

(continues on next page)

4.1. SciPy Tutorial 321

SciPy Reference Guide, Release 1.3.2

(continued from previous page)

array ([[9.90012467, 1.78947961, -0.65498528],
[0. , 0.54993766, -1.577547897,
[O. , 0.51260928, 0.5499376611)
>>> T2
array ([[90012467+0.00000000e+00j, —-0.32436598+1.55463542e+007,

[

9.

0.88619748+5.69027615e-0171,

0. +0.00000000e+007, 0.54993766+8.99258408e-017,

1.06493862+3.05311332e-1671],
[0. +0.00000000e+0073, 0. +0.00000000e+007,
0.54993766-8.99258408e-01711)
>>> abs(T1 - T2) # different
array ([1.06604538e-14, 2.06969555e+00, 1.69375747e+00], # may vary
0.00000000e+00, 1.33688556e-15, 4.74146496e-01]

0.00000000e+00, 0.00000000e+00, 1.13220977e-1511)

[
[
[
>>> abs(Z1 - Z2) # different
array ([[0.06833781, 0.88091091, 0.79568503], # may vary
[0.11857169, 0.44491892, 0.99594171],
[0.12624999, 0.60264117, 0.77257633]11])
>>> T, 7z, T1, 21, T2, Z2 = map(np.mat, (T,z,T1,21,T2,Z2))
>>> abs(A - Z*T*Z.H) # same
matrix ([5.55111512e-16, 1.77635684e-15, 2.22044605e-1571,

[
[0.00000000e+00, 3.99680289e-15, 8.88178420e-16],
[1.11022302e-15, 4.44089210e-16, 3.55271368e-1511)
>>> abs (A - Z1*T1*Z1.H) # same

matrix ([[4.26993904e-15, 6.21793362e-15, 8.00007092e-151,
[5.77945386e-15, 6.21798014e-15, .06653681e-147,
[7.16681444e-15, 8.90271058e-15, 1.77635764e-1411)
>>> abs (A — Z2*T2*Z2.H) # same

matrix ([[6.02594127e-16, 1.77648931e-15, 2.22506907e-15],
[2.46275555e-16, 3.99684548e-15, 8.91642616e-161,
[8.8822511le-16, 8.88312432e-16, 4.44104848e-1511)

[EN

Interpolative Decomposition

scipy.linalg.interpolative contains routines for computing the interpolative decomposition (ID) of a matrix.
For a matrix A € C™*™ of rank & < min{m,n} this is a factorization

Al = [AL, AlL] = AIL [I T,

where IT = [II;, [I5] is a permutation matrix with IT; € {0,1}"*¥, i.e., ATl; = AII,T. This can equivalently be written
as A = BP, where B = All; and P = [I, T|II" are the skeleton and interpolation matrices, respectively.

See also:
scipy.linalg.interpolative — for more information.

Matrix Functions

Consider the function f (z) with Taylor series expansion

> £(k)
F@ =3 100

k
k=0

322 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

A matrix function can be defined using this Taylor series for the square matrix A as
= SPA0) 4
f(A) = kz Al
=0

While, this serves as a useful representation of a matrix function, it is rarely the best way to calculate a matrix function.

Exponential and logarithm functions

The matrix exponential is one of the more common matrix functions. The preferred method for implementing the matrix
exponential is to use scaling and a Padé approximation for e” . This algorithm is implemented as 1 inalg.expm.

The inverse of the matrix exponential is the matrix logarithm defined as the inverse of the matrix exponential.
A =exp (log (A)).
The matrix logarithm can be obtained with 1inalg. logm.

Trigonometric functions

The trigonometric functions sin , cos , and tan are implemented for matrices in 1 inalg.sinm, linalg.cosm, and
Iinalg.tanmrespectively. The matrix sin and cosine can be defined using Euler’s identity as

A —eIA
A - e

sin (A) 5
JA | —jA
cos(A) = er e ™

2

The tangent is
tan (z) = sin (2) _ [cos (z)] " sin (x)
~ cos(x)

and so the matrix tangent is defined as
[cos (A)] 'sin (A).

Hyperbolic trigonometric functions

The hyperbolic trigonometric functions sinh , cosh , and tanh can also be defined for matrices using the familiar defini-
tions:

A_ -A
sinh (A) = ¢ 26
A, -A
cosh (A) = %
tanh (A) = [cosh (A)] " sinh(A).

These matrix functions can be found using 1 inalg.sinhm, 1inalg.coshm,and 1inalg.tanhm.

Arbitrary function

Finally, any arbitrary function that takes one complex number and returns a complex number can be called as a matrix
function using the command 1inalg. funm. This command takes the matrix and an arbitrary Python function. It then
implements an algorithm from Golub and Van Loan’s book “Matrix Computations” to compute the function applied to
the matrix using a Schur decomposition. Note that the function needs to accept complex numbers as input in order to work
with this algorithm. For example the following code computes the zeroth-order Bessel function applied to a matrix.

4.1. SciPy Tutorial 323

SciPy Reference Guide, Release 1.3.2

>>> from scipy import special, random, linalg
>>> np.random.seed (1234)

>>> A = random.rand(3, 3)
>>> B = linalg.funm(A, lambda x: special.jv(0, x))
>>> A

array ([[0.19151945, 0.62210877, 0.43772774],
[0.78535858, 0.77997581, 0.27259261],
[0.27646426, 0.80187218, 0.95813935]1])

array ([[0.86511146, -0.19676526, -0.138567481],
[-0.17479869, 0.7259118 , -0.16606258],
[-0.19212044, -0.32052767, 0.7359070411])

>>> linalg.eigvals (A)

array ([1.73881510+0.73, -0.20270676+0.73, 0.39352627+0.731])

>>> special.jv (0, linalg.eigvals(A))

array ([0.37551908+0.73, 0.98975384+0.73, 0.96165739+0.731)

>>> linalg.eigvals (B)

array ([0.37551908+0.73, 0.98975384+0.73, 0.96165739+0.731])

Note how, by virtue of how matrix analytic functions are defined, the Bessel function has acted on the matrix eigenvalues.

Special matrices

SciPy and NumPy provide several functions for creating special matrices that are frequently used in engineering and
science.

Type Function Description

block diagonal scipy.linalg.block_diag | Create a block diagonal matrix from the provided arrays.
circulant scipy.linalg.circulant Construct a circulant matrix.

companion scipy.linalg.companion Create a companion matrix.

Hadamard scipy.linalg.hadamard Construct a Hadamard matrix.

Hankel scipy.linalg.hankel Construct a Hankel matrix.

Hilbert scipy.linalg.hilbert Construct a Hilbert matrix.

Inverse Hilbert | scipy.linalg.invhilbert | Construct the inverse of a Hilbert matrix.
Leslie scipy.linalg.leslie Create a Leslie matrix.

Pascal scipy.linalg.pascal Create a Pascal matrix.

Toeplitz scipy.linalg.toeplitz Construct a Toeplitz matrix.

Van der Monde | numpy.vander Generate a Van der Monde matrix.

For examples of the use of these functions, see their respective docstrings.

4.1.10 Sparse Eigenvalue Problems with ARPACK

Introduction

ARPACK!' is a Fortran package which provides routines for quickly finding a few eigenvalues/eigenvectors of large sparse
matrices. In order to find these solutions, it requires only left-multiplication by the matrix in question. This operation
is performed through a reverse-communication interface. The result of this structure is that ARPACK is able to find
eigenvalues and eigenvectors of any linear function mapping a vector to a vector.

! http://www.caam.rice.edu/software/ ARPACK/

324 Chapter 4. Tutorial

https://docs.scipy.org/doc/numpy/reference/generated/numpy.vander.html#numpy.vander
http://www.caam.rice.edu/software/ARPACK/

SciPy Reference Guide, Release 1.3.2

All of the functionality provided in ARPACK is contained within the two high-level interfaces scipy. sparse.
linalg.eigs and scipy.sparse.linalg.eigsh. eigs provides interfaces to find the eigenvalues/vectors
of real or complex nonsymmetric square matrices, while eigsh provides interfaces for real-symmetric or complex-
hermitian matrices.

Basic Functionality
ARPACK can solve either standard eigenvalue problems of the form
Ax = A\x
or general eigenvalue problems of the form
Ax = AMx

The power of ARPACK is that it can compute only a specified subset of eigenvalue/eigenvector pairs. This is accomplished
through the keyword which. The following values of which are available:

e which = 'LM' :Eigenvalues with largest magnitude (eigs, eigsh), thatis, largest eigenvalues in the euclidean
norm of complex numbers.

e which = 'SM' : Eigenvalues with smallest magnitude (eigs, eigsh), that is, smallest eigenvalues in the
euclidean norm of complex numbers.

* which = 'LR' :Eigenvalues with largest real part (eigs)

e which = 'SR' :FEigenvalues with smallest real part (eigs)

e which = 'LI' :FEigenvalues with largest imaginary part (eigs)

e which = 'SI' :Eigenvalues with smallest imaginary part (eigs)

e which = 'LA' :Eigenvalues with largest algebraic value (eigsh), that is, largest eigenvalues inclusive of any

negative sign.

e which = 'SA"' : Eigenvalues with smallest algebraic value (eigsh), that is, smallest eigenvalues inclusive of
any negative sign.

e which = 'BE' : Eigenvalues from both ends of the spectrum (eigsh)

Note that ARPACK is generally better at finding extremal eigenvalues: that is, eigenvalues with large magnitudes. In
particular, using which = 'SM' may lead to slow execution time and/or anomalous results. A better approach is to
use shift-invert mode.

Shift-Invert Mode
Shift invert mode relies on the following observation. For the generalized eigenvalue problem
Ax = AMx
it can be shown that
(A—oM)*Mx = vx

where

4.1. SciPy Tutorial 325

SciPy Reference Guide, Release 1.3.2

Examples

Imagine you’d like to find the smallest and largest eigenvalues and the corresponding eigenvectors for a large matrix.
ARPACK can handle many forms of input: dense matrices such as numpy.ndarray instances, sparse matrices
such as scipy.sparse.csr_matrix, or a general linear operator derived from scipy.sparse.linalg.
LinearOperator. For this example, for simplicity, we’ll construct a symmetric, positive-definite matrix.

>>> import numpy as np

>>> from scipy.linalg import eig, eigh

>>> from scipy.sparse.linalg import eigs, eigsh
>>> np.set_printoptions (suppress=True)

>>>

>>> np.random. seed (0)

>>> X = np.random.random((100,100)) - 0.5

>>> X = np.dot (X, X.T) #create a symmetric matrix

We now have a symmetric matrix X with which to test the routines. First compute a standard eigenvalue decomposition
using eigh:

>>> evals_all, evecs_all = eigh (X)

As the dimension of X grows, this routine becomes very slow. Especially if only a few eigenvectors and eigenvalues are
needed, ARPACK can be a better option. First let’s compute the largest eigenvalues (which = 'LM')of X and compare
them to the known results:

>>> evals_large, evecs_large = eigsh (X, 3, which="'LM")
>>> print (evals_all[-3:])

[29.1446102 30.05821805 31.19467646]

>>> print (evals_large)

[29.1446102 30.05821805 31.19467646]

>>> print (np.dot (evecs_large.T, evecs_all[:,-3:1))

array ([[-1. 0. 0.7, # may vary (signs)
[0. 1. 0.1,
[-0. 0. =-1.11)

The results are as expected. ARPACK recovers the desired eigenvalues, and they match the previously known results.
Furthermore, the eigenvectors are orthogonal, as we’d expect. Now let’s attempt to solve for the eigenvalues with smallest
magnitude:

>>> evals_small, evecs_small = eigsh (X, 3, which='SM")
Traceback (most recent call last): # may vary (convergence)

scipy.sparse.linalg.eigen.arpack.arpack.ArpackNoConvergence:
ARPACK error -1: No convergence (1001 iterations, 0/3 eigenvectors converged)

Oops. We see that as mentioned above, ARPACK is not quite as adept at finding small eigenvalues. There are a few ways
this problem can be addressed. We could increase the tolerance (to1) to lead to faster convergence:

>>> evals_small, evecs_small = eigsh (X, 3, which='SM', tol=1E-2)
>>> evals_all[:3]

array ([0.0003783, 0.00122714, 0.00715878])

>>> evals_small

array ([0.00037831, 0.00122714, 0.00715881])

>>> np.dot (evecs_small.T, evecs_all[:,:3])

(continues on next page)

326 Chapter 4. Tutorial

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

SciPy Reference Guide, Release 1.3.2

(continued from previous page)

array ([[0.99999999 0.00000024 -0.000000497, # may vary (signs)
[-0.00000023 0.99999999 0.00000056],
[0.00000031 -0.00000037 0.99999852]1)

This works, but we lose the precision in the results. Another option is to increase the maximum number of iterations
(maxiter) from 1000 to 5000:

>>> evals_small, evecs_small = eigsh (X, 3, which='SM', maxiter=5000)
>>> evals_all[:3]
array ([0.0003783, 0.00122714, 0.007158787)
>>> evals_small
array ([0.0003783, 0.00122714, 0.00715878])
>>> np.dot (evecs_small.T, evecs_all[:,:3])
array ([[1. 0. 0.7, # may vary (signs)
[-0. 1. 0.7,
[0. 0. =-1.11)

We get the results we’d hoped for, but the computation time is much longer. Fortunately, ARPACK contains a mode
that allows quick determination of non-external eigenvalues: shift-invert mode. As mentioned above, this mode involves
transforming the eigenvalue problem to an equivalent problem with different eigenvalues. In this case, we hope to find
eigenvalues near zero, so we’ll choose sigma = 0. The transformed eigenvalues will then satisfy v = 1/(A—0) = 1/,
so our small eigenvalues \ become large eigenvalues .

>>> evals_small, evecs_small = eigsh(X, 3, sigma=0, which="'LM")
>>> evals_all[:3]
array ([0.0003783, 0.00122714, 0.00715878])
>>> evals_small
array ([0.0003783, 0.00122714, 0.00715878])
>>> np.dot (evecs_small.T, evecs_all[:,:3])
array ([[1. 0. 0.1, # may vary (signs)
[0. -1. -0.]1,
[-0. -0. 1.11)

We get the results we were hoping for, with much less computational time. Note that the transformation from v — A
takes place entirely in the background. The user need not worry about the details.

The shift-invert mode provides more than just a fast way to obtain a few small eigenvalues. Say you desire to find internal
eigenvalues and eigenvectors, e.g. those nearest to A = 1. Simply set sigma = 1 and ARPACK takes care of the rest:

>>> evals_mid, evecs_mid = eigsh(X, 3, sigma=1, which='LM")
>>> i_sort = np.argsort(abs(l. / (1 — evals_all)))[-3:]

>>> evals_all[i_sort]

array ([1.16577199, 0.85081388, 1.06642272])

>>> evals_mid

array ([0.85081388, 1.06642272, 1.16577199])

>>> print (np.dot (evecs_mid.T, evecs_alll:,i_sort]))

array ([[-0. 1. 0.1, # may vary (signs)
[-0. -=0. 1.1,
[1. 0. 0.7]

The eigenvalues come out in a different order, but they’re all there. Note that the shift-invert mode requires the internal
solution of a matrix inverse. This is taken care of automatically by eigsh and eigs, but the operation can also be
specified by the user. See the docstring of scipy.sparse.linalg.eigsh and scipy.sparse.linalg.
e1gs for details.

4.1. SciPy Tutorial 327

SciPy Reference Guide, Release 1.3.2

Use of LinearOperator

We consider now the case where you'd like to avoid creating a dense matrix and use scipy.sparse.linalg.
LinearOperator instead. Our first linear operator applies element-wise multiplication between the input vector and
a vector d provided by the user to the operator itself. This operator mimics a diagonal matrix with the elements of
d along the main diagonal and it has the main benefit that the forward and adjoint operations are simple element-wise
multiplications other than matrix-vector multiplications. For a diagonal matrix, we expect the eigenvalues to be equal
to the elements along the main diagonal, in this case d. The eigenvalues and eigenvectors obtained with eigsh are
compared those obtained by using e i gh when applied to the dense matrix:

>>> from scipy.sparse.linalg import LinearOperator
>>> class Diagonal (LinearOperator) :
def _ _init__ (self, diag, dtype='float32'):
self.diag = diag
self.shape = (len(self.diag), len(self.diag))
self.dtype = np.dtype (dtype)
def matvec(self, x):
return self.diag*x
def _rmatvec(self, x):
return self.diag*x

>>> np.random.seed (0)

>>> N = 100

>>> d np.random.normal (0, 1, N).astype(np.float64)
>>> D = np.diag(d)

>>> Dop = Diagonal (d, dtype=np.float64)

>>> evals_all, evecs_all = eigh (D)

>>> evals_large, evecs_large = eigsh (Dop, 3, which='LA', maxiter=1e3)
>>> evals_all[-3:]

array ([1.9507754 , 2.2408932 , 2.26975462])

>>> evals_large

array ([1.9507754 , 2.2408932 , 2.26975462])

>>> print (np.dot (evecs_large.T, evecs_all[:,-3:1))

array ([[-1. 0. 0.], # may vary (signs)
[-0. -1. 0.],
[0. 0. —-1.1]

In this case we have created a quick and easy Diagonal operator. The external library PyLops provides similar capa-
bilities in the Diagonal operator as well as several other operators.

Finally, we consider a linear operator that mimics the application of a first derivative stencil. In this case the operator is
equivalent to a real nonsymmetric matrix. Once again we compare the estimated eigenvalues and eigenvectors with those
from a dense matrix that applies the same first derivative to an input signal:

>>> class FirstDerivative (LinearOperator) :

def _ init_ (self, N, dtype='float32'"):
self.N = N
self.shape = (self.N, self.N)
self.dtype = np.dtype (dtype)

def _matvec(self, x):
y = np.zeros(self.N, self.dtype)
yIl1:-1] = (0.5*x[2:]-0.5*x[0:-21])

(continues on next page)

328 Chapter 4. Tutorial

https://pylops.readthedocs.io
https://pylops.readthedocs.io/en/latest/api/generated/pylops.Diagonal.html#pylops.Diagonal

SciPy Reference Guide, Release 1.3.2

(continued from previous page)

return y
def _rmatvec(self, x):
y = np.zeros(self.N, self.dtype)

y[0:-2] = y[0:-2] — (0.5*x[1:-17])

y[2:] = y[2:] + (0.5*x[1:-11)

return y
>>> N = 21
>>> D = np.diag(0.5*np.ones(N-1), k=1) - np.diag(0.5*np.ones(N-1), k=-1)
>>> D[0] = D[-1] = 0 # take away edge effects

>>> Dop = FirstDerivative (N, dtype=np.float64)

>>> evals_all, evecs_all = eig (D)

>>> evals_large, evecs_large = eigs(Dop, 4, which='LI")
>>> evals_all_imag = evals_all.imag

>>> isort_imag = np.argsort (np.abs(evals_all_imag))

>>> evals_all_imag = evals_all_imag[isort_imag]

>>> evals_large_imag = evals_large.imag

>>> isort_imag = np.argsort (np.abs(evals_large_imag))

>>> evals_large_imag = evals_large_imag[isort_imag]

>>> evals_all_imag[—4:]

array ([-0.95105652, 0.95105652, -0.98768834, 0.987688341])
>>> evals_large_imag

array ([0.95105652, -0.95105652, 0.98768834, -0.987688341])

Note that the eigenvalues of this operator are all imaginary. Moreover, the keyword which="'LI"' of scipy.
sparse.linalg.eigs produces the eigenvalues with largest absolute imaginary part (both positive and negative).
Again, a more advanced implementation of the first derivative operator is available in the PyLops library under the name
of FirstDerivative operator.

References
4.1.11 Compressed Sparse Graph Routines (scipy.sparse.csgraph)

Example: Word Ladders

A Word Ladder is a word game invented by Lewis Carroll in which players find paths between words by switching one
letter at a time. For example, one can link “ape” and “man” in the following way:

ape — apt — ait — bit — big — bag — mag — man

Note that each step involves changing just one letter of the word. This is just one possible path from “ape” to “man”, but
is it the shortest possible path? If we desire to find the shortest word ladder path between two given words, the sparse
graph submodule can help.

First we need a list of valid words. Many operating systems have such a list built-in. For example, on linux, a word list
can often be found at one of the following locations:

/usr/share/dict
/var/lib/dict

4.1. SciPy Tutorial 329

https://pylops.readthedocs.io
https://pylops.readthedocs.io/en/latest/api/generated/pylops.FirstDerivative.html
https://en.wikipedia.org/wiki/Word_ladder

SciPy Reference Guide, Release 1.3.2

Another easy source for words are the scrabble word lists available at various sites around the internet (search with your
favorite search engine). We'll first create this list. The system word lists consist of a file with one word per line. The
following should be modified to use the particular word list you have available:

>>> word_list = open('/usr/share/dict/words') .readlines ()
>>> word_list map (str.strip, word_list)

We want to look at words of length 3, so let’s select just those words of the correct length. We’ll also eliminate words which
start with upper-case (proper nouns) or contain non alpha-numeric characters like apostrophes and hyphens. Finally, we’ll
make sure everything is lower-case for comparison later:

>>> word_list = [word for word in word_list if len (word) == 3]
>>> word_list = [word for word in word_list if word[0].islower ()]
>>> word_list = [word for word in word_list if word.isalpha()]
>>> word_list = list (map(str.lower, word_list))

>>> len(word_list)

586 # may vary

Now we have a list of 586 valid three-letter words (the exact number may change depending on the particular list used).
Each of these words will become a node in our graph, and we will create edges connecting the nodes associated with each
pair of words which differs by only one letter.

There are efficient ways to do this, and inefficient ways to do this. To do this as efficiently as possible, we’re going to use
some sophisticated numpy array manipulation:

>>> import numpy as np

>>> word_list = np.asarray(word_list)

>>> word_list.dtype # these are unicode characters in Python 3
dtype ('<U3")

>>> word_list.sort () # sort for quick searching later

We have an array where each entry is three unicode characters long. We’d like to find all pairs where exactly one character
is different. We'll start by converting each word to a three-dimensional vector:

>>> word_bytes = np.ndarray((word_list.size, word_list.itemsize),
dtype='uint8",
. buffer=word_list.data)
>>> # each unicode character is four bytes long. We only need first byte
>>> # we know that there are three characters in each word
>>> word_bytes = word_bytes[:, ::word_list.itemsize//3]
>>> word_bytes.shape
(586, 3) # may vary

Now we’ll use the Hamming distance between each point to determine which pairs of words are connected. The Hamming
distance measures the fraction of entries between two vectors which differ: any two words with a hamming distance equal
to 1/N, where N is the number of letters, are connected in the word ladder:

>>> from scipy.spatial.distance import pdist, squareform
>>> from scipy.sparse import csr_matrix

>>> hamming_dist = pdist (word_bytes, metric='hamming')

>>> # there are three characters in each word

>>> graph = csr_matrix (squareform(hamming_dist < 1.5 / 3))

When comparing the distances, we don’t use an equality because this can be unstable for floating point values. The
inequality produces the desired result as long as no two entries of the word list are identical. Now that our graph is set up,
we’ll use a shortest path search to find the path between any two words in the graph:

330 Chapter 4. Tutorial

https://en.wikipedia.org/wiki/Hamming_distance

SciPy Reference Guide, Release 1.3.2

>>> il = word_list.searchsorted('ape')
>>> i2 = word_list.searchsorted('man')
>>> word_list[il]

lapel

>>> word_list[i2]

'man'

‘We need to check that these match, because if the words are not in the list that will not be the case. Now all we need is to
find the shortest path between these two indices in the graph. We'll use Dijkstra’s algorithm, because it allows us to find
the path for just one node:

>>> from scipy.sparse.csgraph import dijkstra

>>> distances, predecessors = dijkstra(graph, indices=il,

ce return_predecessors=True)
>>> print (distances[12])
5.0 # may vary

So we see that the shortest path between ‘ape’ and ‘man’ contains only five steps. We can use the predecessors returned
by the algorithm to reconstruct this path:

>>> path = []
>>> 1 = 12
>>> while i != il:
path.append (word_list[i])
ce i = predecessors[i]
>>> path.append (word_list[i1])
>>> print (path[::-17])
['ape', 'apt', 'opt', 'oat', 'mat', 'man'] # may vary

This is three fewer links than our initial example: the path from ape to man is only five steps.

Using other tools in the module, we can answer other questions. For example, are there three-letter words which are not
linked in a word ladder? This is a question of connected components in the graph:

>>> from scipy.sparse.csgraph import connected_components

>>> N_components, component_list = connected_components (graph)
>>> print (N_components)

15 # may vary

In this particular sample of three-letter words, there are 15 connected components: that is, 15 distinct sets of words with
no paths between the sets. How many words are in each of these sets? We can learn this from the list of components:

>>> [np.sum(component_list == i) for i in range (N_components)]
(5712, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] # may vary

There is one large connected set, and 14 smaller ones. Let’s look at the words in the smaller ones:

>>> [list(word_list[np.nonzero (component_list == 1i)]) for i in range(l, N_
—components)]

[['aha'], # may vary

['chi'],

['ebb'],

['ems', 'emu'],

['gnu'],

(continues on next page)

4.1. SciPy Tutorial 331

SciPy Reference Guide, Release 1.3.2

(continued from previous page)

o B ~ K
< ot 5w
0 SN B

S © Q .
T Q o
n oo

c C
n 5
o 3

These are all the three-letter words which do not connect to others via a word ladder.

We might also be curious about which words are maximally separated. Which two words take the most links to connect?
We can determine this by computing the matrix of all shortest paths. Note that by convention, the distance between two
non-connected points is reported to be infinity, so we’ll need to remove these before finding the maximum:

>>> distances, predecessors = dijkstra(graph, return_predecessors=True)
>>> max_distance = np.max(distances[~np.isinf (distances)])

>>> print (max_distance)

13.0 # may vary

So there is at least one pair of words which takes 13 steps to get from one to the other! Let’s determine which these are:

>>> i1, 12 = np.nonzero(distances == max_distance)
>>> list (zip(word_list[il], word_list[i2]))
[("imp', 'ohm'), # may vary

We see that there are two pairs of words which are maximally separated from each other: ‘imp’ and ‘ump’ on one hand,
and ‘ohm’ and ‘ohs’ on the other hand. We can find the connecting list in the same way as above:

>>> path = []

>>> 1 = 12[0]

>>> while 1 != i1[0]:

path.append (word_list[i]

. i = predecessors[i1[0]

>>> path.append (word_list[1i1[0

>>> print(path[::-11])

["imp', 'amp', 'asp', 'ass', 'ads', 'add', 'aid', 'mid', 'mod', 'moo', 'too',

—~'tho', 'oho', 'ohm'] # may vary

)
;1]
1)

This gives us the path we desired to see.

Word ladders are just one potential application of scipy’s fast graph algorithms for sparse matrices. Graph theory makes
appearances in many areas of mathematics, data analysis, and machine learning. The sparse graph tools are flexible enough
to handle many of these situations.

332 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

4.1.12 Spatial data structures and algorithms (scipy.spatial)

scipy.spatial can compute triangulations, Voronoi diagrams, and convex hulls of a set of points, by leveraging the
Qhull library.

Moreover, it contains KD Tree implementations for nearest-neighbor point queries, and utilities for distance computations
in various metrics.

Delaunay triangulations

The Delaunay triangulation is a subdivision of a set of points into a non-overlapping set of triangles, such that no point is
inside the circumcircle of any triangle. In practice, such triangulations tend to avoid triangles with small angles.

Delaunay triangulation can be computed using scipy. spatial as follows:

>>> from scipy.spatial import Delaunay
>>> points = np.array([[O0, 0], [0, 1.11, [1, 01, [1, 111)
>>> tri = Delaunay (points)

We can visualize it:

>>> import matplotlib.pyplot as plt
>>> plt.triplot (points[:,0], points[:,1]
>>> plt.plot (points[:,0], points[:,1]1, '

, tri.simplices)
o'")

And add some further decorations:

>>> for j, p in enumerate (points):

plt.text (p[0]-0.03, pl[1]1+0.03, Jj, ha='right') # label the points
>>> for j, s in enumerate(tri.simplices):

p = points[s].mean (axis=0)
.. plt.text (p[0], pl1], '# ' % j, ha='center') # label triangles
>>> plt.xlim(-0.5, 1.5); plt.ylim(-0.5, 1.5)
>>> plt.show ()

15
1
1.0 - 3
#1
0.5 -
#0

0.0 1 0 2

~0.5

—0.50-0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

4.1. SciPy Tutorial 333

http://qhull.org/

SciPy Reference Guide, Release 1.3.2

The structure of the triangulation is encoded in the following way: the simplices attribute contains the indices of the
points in the points array that make up the triangle. For instance:

>> i =1
>>> tri.simplices|[i, :]
array ([3, 1, 0], dtype=int32)
>>> points[tri.simplices[i, :]]
array ([[1. , 1. 1,

[0., 1.171,

[0., 0. 101)

Moreover, neighboring triangles can also be found out:

>>> tri.neighbors[i]
array ([-1, 0, -1], dtype=int32)

What this tells us is that this triangle has triangle #0 as a neighbor, but no other neighbors. Moreover, it tells us that
neighbor 0 is opposite the vertex 1 of the triangle:

>>> points[tri.simplices[i, 1]1]
array ([0. , 1.11])

Indeed, from the figure we see that this is the case.

Qhull can also perform tessellations to simplices also for higher-dimensional point sets (for instance, subdivision into
tetrahedra in 3-D).

Coplanar points

It is important to note that not all points necessarily appear as vertices of the triangulation, due to numerical precision
issues in forming the triangulation. Consider the above with a duplicated point:

>>> points = np.array([([0, 01, [O, 211, [1, O1, [Z2, 11, [1, 111)
>>> tri = Delaunay (points)

>>> np.unique (tri.simplices.ravel())

array ([0, 1, 2, 3], dtype=int32)

Observe that point #4, which is a duplicate, does not occur as a vertex of the triangulation. That this happened is recorded:

>>> tri.coplanar
array ([[4, 0, 3]], dtype=int32)

This means that point 4 resides near triangle 0 and vertex 3, but is not included in the triangulation.

Note that such degeneracies can occur not only because of duplicated points, but also for more complicated geometrical
reasons, even in point sets that at first sight seem well-behaved.

However, Qhull has the “QJ” option, which instructs it to perturb the input data randomly until degeneracies are resolved:

>>> tri = Delaunay (points, ghull_options="QJ Pp")
>>> points[tri.simplices]
array ([[[1, 0],

[1

[0, O
(1, 1
(1, 1

14

(continues on next page)

334 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

(continued from previous page)

~ 0~ 0~
NN
~

~

4

~

B RO OO R P
N
P R PO O

~

—, e, e e
A R T U

1)

Two new triangles appeared. However, we see that they are degenerate and have zero area.

Convex hulls

Convex hull is the smallest convex object containing all points in a given point set.

These can be computed via the Qhull wrappers in scipy.spatial as follows:

>>> from scipy.spatial import ConvexHull
>>> points = np.random.rand (30, 2) # 30 random points in 2-D
>>> hull = ConvexHull (points)

The convex hull is represented as a set of N-1 dimensional simplices, which in 2-D means line segments. The storage
scheme is exactly the same as for the simplices in the Delaunay triangulation discussed above.

‘We can illustrate the above result:

>>> import matplotlib.pyplot as plt

>>> plt.plot (points([:,0], points[:,1], 'o")

>>> for simplex in hull.simplices:

ce plt.plot (points[simplex, 0], points[simplex,1], 'k-")
>>> plt.show ()

1.0 A

0.8 A

0.6

0.4

0.2 4

0.2 0.4 0.6 0.8 1.0

The same can be achieved with scipy.spatial.convex_hull_plot_2d.

4.1. SciPy Tutorial 335

SciPy Reference Guide, Release 1.3.2

Voronoi diagrams

A Voronoi diagram is a subdivision of the space into the nearest neighborhoods of a given set of points.

There are two ways to approach this object using scipy.spatial. First, one can use the KDTree to answer the
question “which of the points is closest to this one”, and define the regions that way:

>>> from scipy.spatial import KDTree

>>> points = np.array([[0, O], [0, 11, [0, 21,
. (2, 01, (2, 11, (2, 211)

>>> tree = KDTree (points)

>>> tree.query([0.1, 0.1])

(0.14142135623730953, 0)

So the point (0.1, 0.1) belongs to region 0. In color:

>>> x = np.linspace(-0.5, 2.5, 31)

>>> y = np.linspace(-0.5, 2.5, 33)

>>> xx, yy = np.meshgrid(x, vy)

>>> xy = np.c_[xx.ravel (), yy.ravel()]

>>> import matplotlib.pyplot as plt

>>> plt.pcolor(x, y, tree.query(xy)[1l].reshape (33, 31))
>>> plt.plot (points([:,0], points[:,1], 'ko')

>>> plt.show ()

This does not, however, give the Voronoi diagram as a geometrical object.

The representation in terms of lines and points can be again obtained via the Qhull wrappers in scipy. spatial:

>>> from scipy.spatial import Voronoi

>>> vyor = Voronoi (points)
>>> vor.vertices
array ([[0.5, 0.5],

[1.5, 0.5],

[0.5, 1.5],

[1.5, 1.511])

336 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

The Voronoi vertices denote the set of points forming the polygonal edges of the Voronoi regions. In this case, there are
9 different regions:

>>> vor.regions
[[]/ [_1/ O]/ [_1/ 1]/ [1/ _1/ O]l [31 _11 ZJI [_11 3]/ [_11 2]/ [3/ 2/ OI 1JI
— [2/ 71/ O]r [31 71/ 1]

f—

Negative value —1 again indicates a point at infinity. Indeed, only one of the regions, [3, 1, 0, 2], is bounded.
Note here that due to similar numerical precision issues as in Delaunay triangulation above, there may be fewer Voronoi
regions than input points.

The ridges (lines in 2-D) separating the regions are described as a similar collection of simplices as the convex hull pieces:

>>> vor.ridge_vertices
[[_1/ O]I [_11 O]I [_11 1]1 [_11 1]/ [OI 1]/ [_11 3]/ [_11 2]/ [21 3]/ [_11‘—‘
-31, [-1, 21, [0, 2], [1, 31]

These numbers indicate indices of the Voronoi vertices making up the line segments. —1 is again a point at infinity —
only four of the 12 lines is a bounded line segment while the others extend to infinity.

The Voronoi ridges are perpendicular to lines drawn between the input points. Which two points each ridge corresponds
to is also recorded:

>>> vor.ridge_points
array ([[0, 17,

~ 0~ 0~ ~ SN N N~
VTV U T
N N SN NS SN SN SN N~ O~

~

SO N o U1 U O W oYy oy O
~
N PPN 0 d W

o~

, dtype=int32)

~

This information, taken together, is enough to construct the full diagram.

We can plot it as follows. First the points and the Voronoi vertices:

>>> plt.plot (points[:, 0], points[:, 11, 'o")
>>> plt.plot (vor.vertices([:, 0], vor.vertices[:, 1], '*")
>>> plt.xlim(-1, 3); plt.ylim(-1, 3)

Plotting the finite line segments goes as for the convex hull, but now we have to guard for the infinite edges:

>>> for simplex in vor.ridge_vertices:
simplex = np.asarray(simplex)
if np.all(simplex >= 0):
plt.plot (vor.vertices([simplex, 0], vor.vertices[simplex, 1], 'k-")

The ridges extending to infinity require a bit more care:

>>> center = points.mean (axis=0)
>>> for pointidx, simplex in zip(vor.ridge_points, vor.ridge_vertices):

(continues on next page)

4.1. SciPy Tutorial 337

SciPy Reference Guide, Release 1.3.2

(continued from previous page)

simplex = np.asarray(simplex)
if np.any(simplex < 0):
i = simplex[simplex >= 0][0] # finite end Voronoi vertex
t = points[pointidx[1]] - points[pointidx[0]] # tangent
t =t / np.linalg.norm(t)
n = np.array([-t[1], t[0]]) # normal
midpoint = points[pointidx] .mean (axis=0)
c. far_point = vor.vertices[i] + np.sign(np.dot (midpoint - center,.
—n)) * n * 100

plt.plot ([vor.vertices[i, 0], far_point[0]1],
c. [vor.vertices([i, 1], far_point[l]], 'k--")
>>> plt.show ()

3 T T
1 1
1 1
1 1

2 o 1 o 1 o
1 1

1 1 o o o
1 1

0 - [1 [1 (]
1 1
1 1
1 1

_1 ! T ! T T

-1.0 -05 00 05 10 15 20 25 3.0

This plot can also be created using scipy.spatial.voronoi_plot_2d.

4.1.13 Statistics (scipy.stats)

Introduction
In this tutorial we discuss many, but certainly not all, features of scipy.stats. The intention here is to provide a user
with a working knowledge of this package. We refer to the reference manual for further details.

Note: This documentation is work in progress.

Discrete Statistical Distributions

Discrete random variables take on only a countable number of values. The commonly used distributions are included in
SciPy and described in this document. Each discrete distribution can take one extra integer parameter: L. The relationship
between the general distribution p and the standard distribution pg is

p(x) =po(x—L)

338 Chapter 4. Tutorial

https://docs.scipy.org/doc/scipy/reference/stats.html

SciPy Reference Guide, Release 1.3.2

which allows for shifting of the input. When a distribution generator is initialized, the discrete distribution can either
specify the beginning and ending (integer) values a and b which must be such that

po(z)=0 z<aorx>b

in which case, it is assumed that the pdf function is specified on the integers a +mk < b where k is a non-negative integer
(0,1,2,...)and m is a positive integer multiplier. Alternatively, the two lists 2 and p (x) can be provided directly in
which case a dictionary is set up internally to evaluate probabilities and generate random variates.

Probability Mass Function (PMF)

The probability mass function of a random variable X is defined as the probability that the random variable takes on a
particular value.

p(xg) = P[X = xy)
This is also sometimes called the probability density function, although technically

Fla)=> p(xx)d(x—ax)
k

is the probability density function for a discrete distribution’ .

Cumulative Distribution Function (CDF)

The cumulative distribution function is

and is also useful to be able to compute. Note that

F(xy) — F(xr-1) = p(zr)

Survival Function

The survival function is just
S(x)=1-F(x)=P[X > k]

the probability that the random variable is strictly larger than & .

Percent Point Function (Inverse CDF)

The percent point function is the inverse of the cumulative distribution function and is

G(g)=F (g

for discrete distributions, this must be modified for cases where there is no xj, such that F' (z;) = ¢. In these cases we
choose G (g) to be the smallest value z;, = G (g) for which F' (x) > ¢ . If ¢ = 0 then we define G (0) = a — 1. This
definition allows random variates to be defined in the same way as with continuous rv’s using the inverse cdf on a uniform
distribution to generate random variates.

! XXX: Unknown layout Plain Layout: Note that we will be using p to represent the probability mass function and a parameter (a XXX: probability).
The usage should be obvious from context.

4.1. SciPy Tutorial 339

SciPy Reference Guide, Release 1.3.2

Inverse survival function

The inverse survival function is the inverse of the survival function
Z(@)=8"1(a)=G(1-a)

and is thus the smallest non-negative integer k for which F' (k) > 1 — « or the smallest non-negative integer k for which
S (k) < a.

Hazard functions

If desired, the hazard function and the cumulative hazard function could be defined as

h(zy) = %
and
Hx)= Y hz)=)Y, F(xlk)_—Ff;m(:)k—l)
Moments

Non-central moments are defined using the PDF
f, = E[X™] =2 (z1).
k
Central moments are computed similarly © = p}

o =E[(X =)™ = > (xx—)" p(zx)
k

The mean is the first moment

the variance is the second central moment
2
po =B [(X =)] = Y alp (o) — .
Tk

Skewness is defined as

M3
FYI - 3 /2
Ho
while (Fisher) kurtosis is
4
Y2 = % - 37
Ha

so that a normal distribution has a kurtosis of zero.

340 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

Moment generating function

The moment generating function is defined as
Mx (t) = E [eX] =Y e™'p (x)
Tk

Moments are found as the derivatives of the moment generating function evaluated at 0.

Fitting data

To fit data to a distribution, maximizing the likelihood function is common. Alternatively, some distributions have well-
known minimum variance unbiased estimators. These will be chosen by default, but the likelihood function will always
be available for minimizing.

If f; (k;0) is the PDF of a random-variable where 0 is a vector of parameters (e.g. L and S), then for a collection of
N independent samples from this distribution, the joint distribution the random vector k is

N
tﬂkﬂ):IIﬁ(hﬂy

The maximum likelihood estimate of the parameters 6 are the parameters which maximize this function with x fixed and
given by the data:

6 = argmgxxf(k;@)

arg ngn Ik (0).

Where

N
— Y log f (ki; 6)

=1

—Nlog f (ki; 0)

Ik (0)

Standard notation for mean

We will use

where N should be clear from context.

Combinations

Note that
Kl=k-(k-1)-(k—=2)-----1=T(k+1)
and has special cases of

o =1
kK = 0 k<O

4.1. SciPy Tutorial 341

SciPy Reference Guide, Release 1.3.2

and

Ifn<00rk<00rk>nwedeﬁne< Z):

Discrete Distributions in scipy.stats
Bernoulli Distribution

A Bernoulli random variable of parameter p takes one of only two values X = 0 or X = 1. The probability of success
(X =1)isp, and the probability of failure (X = 0)is 1 — p. It can be thought of as a binomial random variable with
n=1.The PMFisp (k) =0fork # 0,1 and

p(kip) =

=
5
S
Il
"W A ——
— O
|
S
e
N A
& O
A
—_

0 0<g<1l—0p
G(g:p) =
1 1-p<gqg<l1
u =
p2 = p(l—p)
” 1—-2p
3
p(1—p)
_ 1—-6p(1—p)
Y4 =
p(l1—p)

M(t)=1-p(1—¢)
[y =D
h[X]=plogp+ (1 —p)log (1 —p)

Implementation: scipy.stats.bernoulli

Binomial Distribution

A binomial random variable with parameters (n,p) can be described as the sum of n independent Bernoulli random
variables of parameter p;

Therefore, this random variable counts the number of successes in n independent trials of a random experiment where
the probability of success is p.

plng) = (§)a-p"" ke),

P = 5 (4)9 0-p = hoy - Lol el +1) 220

k<x

342 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

where the incomplete beta integral is

I (a,b) = F(C‘+b)) /Ox =t (1 —)"t

T (a)T (b
Now
poo= np
p2 = np(l—p)
y 1—-2p
N el
np (1 —p)
_ 1-6p(1—p)
Yo = ———.
np (1 —p)

M@#)=[1-p(1—€)]"

Implementation: scipy.stats.binom

Boltzmann (truncated Planck) Distribution

1—e?
0 x <0
F(oN\) = gl o<z <N -1
1 x>N-—1
1
G(g,A\) = [—/\log[l—q(l—e)‘]v)]—l—‘
Define z = e
_ z NN
peo= 1—z 1—2N
z N2zN
H2 = -

no= 3/2

4
z(1+4z—|—z2) (17,2”) — N4N (1+4ZN +22N)

[2 (11_jz) _ NQZN:|
| NN]
1—et=* 1—e AN

T2 =

M(t) =

Implementation: scipy.stats.boltzmann

4.1. SciPy Tutorial 343

SciPy Reference Guide, Release 1.3.2

Planck (discrete exponential) Distribution

Named Planck because of its relationship to the black-body problem he solved.

plksA) = (1- e e kx>0
F(z:)) = 1—eEHD) gax>0
1
G(gN) = [—)\log[l—q]—lw-
- 1
o
H2 (1 _ e*A)z
A
¥y = 2cosh (2)
Y2 = 4+2cosh(N)
1—e?
M®) ==
e _
h[X] = rp— —log(1—e ’\)

Implementation: scipy.stats.planck

Poisson Distribution

The Poisson random variable counts the number of successes in n independent Bernoulli trials in the limit as n — co and
p — 0 where the probability of success in each trial is p and np = A > 0 is a constant. It can be used to approximate the
Binomial random variable or in its own right to count the number of events that occur in the interval [0, ¢] for a process
satisfying certain “sparsity” constraints. The functions are:

)\k
p(k;\) = G_AE k>0,
F(z;\) = S A " pleletg
(3 N) —nz::oe n'_F(Lx—&—l)//\t e 'dt
wo= A
M2 A
_ 1
Moo= \ﬁ
1
Y2 = 3\
M (t) =exp [A (e —1)].

Implementation: scipy.stats.poisson

344 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

Geometric Distribution

The geometric random variable with parameter p € (0, 1) can be defined as the number of trials required to obtain a
success where the probability of success on each trial is p . Thus,

plkp) = (1-p)'p k>1
(@p) = 1-(1-pt 2>1
log (q)w
Gp) =
(@p) [log(—p)
1
po= =
P
_ 1-p
H2 p2
_ 2-vp
M= =
p? —6p+6
Y2
1-p
M) =
e

Implementation: scipy.stats.geom

Negative Binomial Distribution

The negative binomial random variable with parameters n and p € (0,1) can be defined as the number of extra inde-
pendent trials (beyond n) required to accumulate a total of n successes where the probability of a success on each trial
is p. Equivalently, this random variable is the number of failures encountered while accumulating n successes during
independent trials of an experiment that succeeds with probability p. Thus,

k+n—1
n—1

p(kin,p) = <)p"(l—p)k k>0

A itn—1
F(zinp) = Y. . p"(1=p) >0

7

=0
= IL(n,|z]+1) >0
1-p
Bo= n—-
P
1-p
H2 = 7N
p2
2—p
Mm o= —V—
n(1—p)
p*+6(1—p)
Yo = -
n(l—p)

Recall that I}, (a, b) is the incomplete beta integral.

Implementation: scipy.stats.nbinom

4.1. SciPy Tutorial 345

SciPy Reference Guide, Release 1.3.2

Hypergeometric Distribution

The hypergeometric random variable with parameters (M, n, N) counts the number of “good “objects in a sample of

size N chosen without replacement from a population of M objects where n is the number of “good “objects in the total
population.

_nN
S V]

~ nN(M —n)(M—N)
g2 = M2 (M —1)

(M —2n) (M — 2N) M-1
"=
M—-2 nN (M —m) (M —n)

_ g (N,n, M)

T UN(M —n) (M —3) (M —2) (N — M)
where (definingm = M —n)
g(N,n,M) = m>—m®+3m?*n —6m3n +m*n + 3mn?

—12m2n? + 8m3n? + n® — 6mn® + 8m?2n?

+mn* —n® —6m3N + 6m*N + 18m*nN
—6m3nN + 18mn?N — 24m?n’N — 6n>N
—6mn3N + 6n*N + 6m>N? — 6m>N? — 24mnN>
+12m?*nN? + 6n?N? + 12mn?N? — 6n° N2

Implementation: scipy.stats.hypergeom
Zipf (Zeta) Distribution

A random variable has the zeta distribution (also called the zipf distribution) with parameter o > 1 if it’s probability
mass function is given by

where

346 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

is the Riemann zeta function. Other functions of this distribution are

[x]
1
F(z;0) = Cik;k—a
no= 2—0 a>2
2
by = C2C02—C1 0> 3
o
v = (365 — 3¢¢i6e + 2¢3 a4

[C2€0 — Clz]g/Q
4G — 4C3C1¢3 + 12¢2¢F Co — 6¢F — 3C22C§.
(C2Go — ¢2)°

72 =

Li, (ef)
¢(a)

where (; = ¢ (o — i) and Li,, (2) is the n' polylogarithm function of z defined as

M) =

k=1

Implementation: scipy.stats.zipf

Logarithmic (Log-Series, Series) Distribution

The logarithmic distribution with parameter p has a probability mass function with terms proportional to the Taylor series
expansion of log (1 — p)

pk
. — _ >
p(k;p) Floz (1 =) k=1

Lz @
F(x;p) = Z&_ P e (p 1,1 + [2))
’ log k log (1 —p)

where
o0
ZSCL
1;) a+k)*

is the Lerch Transcendent. Also define » = log (1 — p)

[__pr
(I-p)r
iy _ plp+r]
(1—p)*r?
2p? + 3pr + (1 + p) r?
Y1 -
r(p+r)y/-pP+r)
., 6p° + 12p°r +p(dp+T)r? + (P +4p+ 1) 13
7 = -

p(p+r)?

4.1. SciPy Tutorial 347

SciPy Reference Guide, Release 1.3.2

1 0 etkpk
M@t = —
*) log (1 —p) 1; k
_ log (1 —pe')
log (1 —p)
Thus,
_ Lij_, (pe") Lii—y (p)

py = MM (t)

=0 log(1—p)|_y log(1—p)

Implementation: scipy.stats. logser

Discrete Uniform (randint) Distribution

The discrete uniform distribution with parameters (a, b) constructs a random variable that has an equal probability of being
any one of the integers in the half-open range [a,b). If a is not given it is assumed to be zero and the only parameter is
b. Therefore,

1
k,a,b) = —— <k<b
p(k,a,b) T S
F (z;a,b) = ng__aa a<z<b
G(g;a,b) = [q(b—a)+al]
_ bta-—1
o= 2
 (b—a—-1)(b—a+1)
p2 = 12
o= 0
6 (h—a)’+1
T TR _—a—1D0b_artl)
=
M t — tk
(t) b a];ae
B ebt _ eat
G—a) (e —1)
Implementation: scipy.stats.randint
Discrete Laplacian Distribution
Defined over all integers for a > 0
p(k) = tanh (g) e~ alkl,
eallz]+1)
Fla) { - lal <0,
l— g lz]>0.

@Q
—
)
~

|

{ [Lloglg(e* +1)] 1] ¢ < =,
Loglt—g (1 +e)] g2 e,

348 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

o0

M(t) = tanh(%) th ,—alk|

e
k=—o00

- o1t Saen)
k=1 1

ek a) 67(t+a) et—a
- (5) T e we T T e

tanh (%) sinh a
cosha — cosht’

Thus,
p, =M™ (0) = [1 + (—1)"]Li_,, (e

where Li_,, (2) is the polylogarithm function of order —n evaluated at z.

h[X] = —log (tanh (g)) + -2

sinh a

Implementation: scipy.stats.dlaplace

Continuous Statistical Distributions

Overview

All distributions will have location (L) and Scale (S) parameters along with any shape parameters needed, the names for
the shape parameters will vary. Standard form for the distributions will be given where L = 0.0 and S = 1.0. The
nonstandard forms can be obtained for the various functions using (note U is a standard uniform random variate).

Function Name Standard Function Transformation
Cumulative Distribution Function F (x) F(xz;L,S)=F ((sz))
(CDF)
Probability Density Function (PDF) f(z)=F'(x) f(z;L,S)=3%f ((wgm)
Percent Point Function (PPF) G(q)=F (g G(¢;L,S) =L+ SG(q)
Probability Sparsity Function (PSF) g9(q) =G (q) g(¢;L,S)=Sg(q)
Hazard Function (HF) he (z) = 1f§f()m) ho (3L, S) = $ha (ng))
Cumulative Hazard Function (CHF) H, (z) =log ﬁ H,(z;L,S)=H, ((IEL))
Survival Function (SF) S(z)=1-F () S(x;L,5) =S (<”;L>
Inverse Survival Function (ISF) Z()=85"1(a)= Z(a;L,S) =L+ 5Z (o)
G(l—a)
Moment Generating Function (MGF) My (t) = E [¢"7] Mx (t) = eP* My (St)
Random Variates Y =G(U) X=L+S5Y
(Differential) Entropy RiY]=—[f(ylogf(y)dy | h[X]=h[Y]+logS
(Non-central) Moments w, =EY"] EX" =
— n k

el () ()
Central Moments pn = E[(Y —p)"] E[(X —ux)"] = S™un
mean (mode, median), var Ly 12 L+ Su, S%us
skewness Y1 = (ujﬁ 71
kurtosis Yo = (IZ‘)Q -3 2

4.1. SciPy Tutorial 349

SciPy Reference Guide, Release 1.3.2

Moments
Non-central moments are defined using the PDF
o= [2t @)
Note, that these can always be computed using the PPF. Substitute 2 = G (¢) in the above equation and get
1
i, = / G" (q)dg
0

which may be easier to compute numerically. Note that ¢ = F' () so that dg = f (x) dz. Central moments are computed
similarly p = g}

o= [aew @

— 00

k=0
In particular
pa =y — 3ups +24°
. / 3
= 3 — 3ppe —p
/ / 2.7 4
pa = py —Apps +6p7 gy — 3p

=y —dpps — 64 po — it

Skewness is defined as

H3
71:\/ﬂ1:W

Ko
while (Fisher) kurtosis is
Y2 = Iu% - 37
H2

so that a normal distribution has a kurtosis of zero.

Median and mode

The median, m,, is defined as the point at which half of the density is on one side and half on the other. In other words,

F (my,) = % so that
1

In addition, the mode, m , is defined as the value for which the probability density function reaches it’s peak

mgq = argmax f ().
€T

350 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

Fitting data

To fit data to a distribution, maximizing the likelihood function is common. Alternatively, some distributions have well-
known minimum variance unbiased estimators. These will be chosen by default, but the likelihood function will always
be available for minimizing.

If f (x;0) is the PDF of a random-variable where 6 is a vector of parameters (e.g. L and S'), then for a collection of NV
independent samples from this distribution, the joint distribution the random vector x is

N
f(x;e>=Hf(a:i;0>.

The maximum likelihood estimate of the parameters 0 are the parameters which maximize this function with x fixed and
given by the data:
Ocs = argmax f(x;0)

= arg mein Ix ().

Where

N
I (0) = = logf(z::0)
i=1

= —Nlog f(z:0)

Note that if @ includes only shape parameters, the location and scale-parameters can be fit by replacing z; with
(x; — L) /S in the log-likelihood function adding N log S and minimizing, thus

N
Ix(L,S;0) = NlogS— logf (xi;L;g>
i=1

NlogS—&-l% (8)

If desired, sample estimates for L and S' (not necessarily maximum likelihood estimates) can be obtained from samples

estimates of the mean and variance using
g — [
M2

L = ﬂ—S’u

where 4 and o are assumed known as the mean and variance of the untransformed distribution (when L = 0 and
S =1)and

=
I
==
=
&
Il
bl

=
|

Standard notation for mean

We will use

1 X
y(X):NZy(xi)

where N should be clear from context as the number of samples x;

4.1. SciPy Tutorial 351

SciPy Reference Guide, Release 1.3.2

References

¢ Documentation for ranlib, rv2, cdflib

* Eric Weisstein’s world of mathematics http://mathworld.wolfram.com/, http://mathworld.wolfram.com/topics/

StatisticalDistributions.html

* Documentation to Regress+ by Michael McLaughlin item Engineering and Statistics Handbook (NIST), https:

/Iwww.itl.nist.gov/div898/handbook/

¢ Documentation for DATAPLOT from NIST, https://www.itl.nist.gov/div898/software/dataplot/distribu.htm

¢ Norman Johnson, Samuel Kotz, and N. Balakrishnan Continuous Univariate Distributions, second edition, Volumes

I'and II, Wiley & Sons, 1994.

In the tutorials several special functions appear repeatedly and are listed here.

Symbol Description Definition
v (s,) lower incomplete Gamma function Syt e tat
T (s,2) upper incomplete Gamma function [t et
B (z;a,b) incomplete Beta function Jot (- t)b*1 dt
I (z;a,b) regularized incomplete Beta function FF(E;;JF’E’I?) JOI el (1—t) T at
¢ (x) PDF for normal distribution %ﬂe‘w /2
D (z) CDF for normal distribution [o) dt =1+ Lerf (%)
¥ (z) digamma function L log (' (2))
Uy (2) polygamma function f,l,—:l log (T' (2))
I, (y) modified Bessel function of the first kind
Ei(z) exponential integral -7 < dt
: . <1
¢ (n) Riemann zeta function Dkt
¢(n,z) Hurwitz zeta function 2 k=0 W
pFy(ar, ..., ap;b1,...,by;2) | Hypergeometric function 2 neo ((ZBHEZ:))TI i

Continuous Distributions in scipy.stats

Alpha Distribution

One shape parameter o > 0 (parameter 5 in DATAPLOT is a scale-parameter). The suport for the standard form is

x > 0.

Flra) = e (—; (o ;))

a1
F(z;0) = W
Glga) = [a—07 (¢@ ()]

0=yt [G (3 (o 1)) e

N 1
Ix (a) = Nlog {CD (o) v 27T:| + 2Nlog x + 50[2 —ax~ 1+ §x*2

No moments?

Implementation: scipy.stats.alpha

352

Chapter 4. Tutorial

http://mathworld.wolfram.com/
http://mathworld.wolfram.com/topics/StatisticalDistributions.html
http://mathworld.wolfram.com/topics/StatisticalDistributions.html
https://www.itl.nist.gov/div898/handbook/
https://www.itl.nist.gov/div898/handbook/
https://www.itl.nist.gov/div898/software/dataplot/distribu.htm

SciPy Reference Guide, Release 1.3.2

Anglit Distribution

Defined over = € [—7F, Z].

. T
flx) = 5111(23:4—5)—008(23;)
F(z) = sin? (x+%>
G(q) = arcsin(\/(})—g

p o= 0
_ o1
T
v = 0
7t — 96
S
V2 (71‘2—8)2
h(X] = 1-log2

0.30685281944005469058

Ix (-) = —Nlog [cos (2x)]

Implementation: scipy.stats.anglit

Arcsine Distribution

Defined over z € [0, 1]. To get the JKB definition put z = “FL.je. L = —1and S = 2.

1
fle) = m/x (1l —x)
F(z) = % arcsin (v/z)

Gl - s (30)

2
1 1
P = /xnfm(l—x)*mdx
T Jo
1 /1 1\ (@n-1)
= 7B — =
(2””2) 9

4.1. SciPy Tutorial

353

SciPy Reference Guide, Release 1.3.2

1
b= g
1
M2 = 3
mn = 0
_ 3
Yo = —5
h[X] = log(g) ~ —0.24156447527049044468

N N
Ix ()= Nlogm+ ?logx + Elog (1-x)

Implementation: scipy.stats.arcsine

Beta Distribution

There are two shape parameters a, b > 0 and the support is = € [0, 1].

fload) = plda 1
Frab) = /Oxf(y;a,wdyf(w;a,b)
G(ga,b) = I'(ga,b)
M) = I;‘((aa)i(blg) 1F1 (a;a+ b;t)
re= a+b
_ ab(a+b+1)
H2 = 7@ n b)2

_ 5 b—a la+b+1
mo= a+b+2 ab

6 (a®+a? (1 —2b) + b (b+ 1) — 2ab (b + 2))
ab(a+b+2)(a+b+3)

Y2 =

(a—1)
(a+b—2)

where I (x; a,b) is the regularized incomplete Beta function. f (z;a, 1) is also called the Power-function distribution.

mqg = a+b#2

Ix (a,b) = —NlogI'(a +b) + NlogI'(a) + NlogI' (b) — N (a —1)logx — N (b—1)log (1 — x)

Implementation: scipy.stats.beta

Beta Prime Distribution

There are two shape parameters a, b > 0 and the support is z € [0, 00). Note the CDF evaluation uses Eq. 3.194.1 on
pg. 313 of Gradshteyn & Ryzhik (sixth edition).

L D@4
f(x,a,ﬂ) - Wf (1+CC) A
Floap) = —potBat o o+ past +ai-o)

G(ga,B) = F ' (x;a,pB)

354 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

I(n+a)I'(B—n) _ (@),
M;L _ I'(a)I(B) ~ (B—n), B>n
00 otherwise
Therefore,
po= 5i 1 forg > 1
a(a+1) o’
fy = - for 3 > 2
B-2)(B-1) (8-1)7?
_alotl)(at+2) g]
3139 (5= Hi2 — [
o= (B=3)(8—2)(B ;}2 for g >3
Ho
v = B3
125
a(a+1)(a+2)(a+3)
pa =

B-4)B-3)(B-2)(B-1

Implementation: scipy.stats.betaprime

Bradford Distribution

There is one shape parameter, ¢ > 0, and the support is € [0, 1].

) —Apps — 6pPps — pt for B> 4

Letk = log(l1+¢)
Then
flae) = s 0t o)
Floo) = log (1}:— cx)
Glgey = LEPL
M(t) = %e—t/c [Ei (t + Z) —Ei (Z)}
c—k
o= ck
o V2(12¢2 = 9ke (¢ +2) + 2K (¢ (c 4 3) + 3))
T T ek —2) 1 2k) (Be(k —2) + 6k)
A (k—3) (k(3k — 16) + 24) + 12kc? (k — 4) (k — 3) + 6¢k? (3k — 14) + 12k?
»o= 3¢ (c(k —2) + 2k)°
mg = 0
m, = V14+c—1
h[X] = %log(l—l—c)—log (1og(lc+c)>

where Ei (z) is the exponential integral function.

Implementation: scipy.stats.bradford

4.1. SciPy Tutorial

355

SciPy Reference Guide, Release 1.3.2

Burr Distribution

There are two shape parameters ¢, d > 0 and the support is = € [0, c0).

Letk = rmﬂ«ﬁ—i>r(i+%>—W(1-i>ﬁ(i+d>

cd
f(z;e,d) = 2t (14 2oy 1T
F(x;e,d) = (1+mfc)7d
G(ge,d) = (q*”d—l)il/c
_ T-9r(c+4d
o I (d)
B k
S)

< Rl e e (-2
(-0)

vy = —3+$ {6F(d)l“<1—i>1‘2 (1_i>r2 (1+d)r(z+d)
IS RN NS
war{- el Ye(toe (2o

d—1 1/c

mg = (C) if ed > 1, otherwise 0
c+1

my, = (21/d—1>_1/c

Implementation: scipy.stats.burr

Cauchy Distribution

The supportis x € R.

1
f(l‘) - 7T(1+[L'2)
11
F(x) = B + —tan" "z
77
™
G(g) = tan (ﬂ'q - 5)
mg = 0
m, = 0

No finite moments. This is the ¢ distribution with one degree of freedom.

h[X] = log(4m)
~ 2.5310242469692907930.

Implementation: scipy.stats.cauchy

356 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

Chi Distribution

Generated by taking the (positive) square-root of chi-squared variates. The one shape parameter is v, a positive integer,

the degrees of freedom. The support is > 0.

v—1,—x%/2
fav) = e
~y y 2
F(x;v) = <1_‘2(U)2)
2

NCY
r'(3)
M2 = V—M2
203 + (1 —2v)
noo= 3/2
Ho
2v (1 —v) —6ut +4pu? (2v — 1)
Y2 = P}

mg = Vv—1 v>1

e \/27—1 (;,;n;))

Implementation: scipy.stats.chi

Chi-squared Distribution

This is the gamma distribution with L = 0.0 and S = 2.0 and o = v/2 where v is called the degrees of freedom. If
Zy ... Z, are all standard normal distributions, then W =, Z? has (standard) chi-square distribution with v degrees

of freedom.
The standard form (most often used in standard form only) has support x >
1 xr\v/2—1 _
fwo) = e (3) e
v(5:3)
F(za) = z
I'(%)
G (a: — 9471 (K T v)
(¢; @) 7 (3t ()

0.

x/2

4.1. SciPy Tutorial

357

SciPy Reference Guide, Release 1.3.2

n o= v
to = 2v
22
7= NG
12
Y2 = —
v
v
mqg = 5 -1

Implementation: scipy.stats.chi?2

Cosine Distribution

Approximation to the normal distribution. The support is [—, 7].

flx) = %(14—008.%‘)
F(x) = %(w—&—x—ksinx)
G(qg) = F ' (q)
_ sinh(nt)
M) = mt (1 + t2)
pw=mg=my = 0
2
Mo = ? -2
1 = 0
=6 (x* —90)
L
h[X] = log(4r)—1

1.5310242469692907930.

Implementation: scipy.stats.cosine

Double Gamma Distribution

The double gamma is the signed version of the Gamma distribution. For o > 0 :

1 - —|x
O L
1 (o, |])
F(z;0) = {f_%l;(ﬁc)n r=0
§+’Y2F&a) x>0
—1 1
. _ 7 (0, 2¢ - 1T () q<3
Glgia) = { v 2g—1T(a) g¢>1

1 N 1
2(1-1)" 2(1+1t)"

M (t) =

358

Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

n=1my 0
pe = ala+1)
1 = 0
_ (a+2)(a+3)
7= ala+1) 3
mg = NA

Implementation: scipy.stats.dgamma

Double Weibull Distribution

This is a signed form of the Weibull distribution. There is one shape parameter ¢ > 0. Support is z € R.

C c— c
flze) = 5zl texp (= |2[%)
3 exp (— |2[°) r<0
. — 2 —
Fzie) = { 12 Lexp(—|ef) #>0
—log/® (L g<1
Glgc) = el 5 .
log (2q—1 2
, _Jr(1+2) neven
Hn = =10 n odd
my,=p = 0
2
p2 = F(C+)
C
m =0
I(1+4%)
Y2 = 2y
I2 (14 2)
mg = NA bimodal

Implementation: scipy.stats.dweibull

Erlang Distribution

This is just the Gamma distribution with shape parameter o = n an integer.

Implementation: scipy.stats.erlang

Exponential Distribution

This is a special case of the Gamma (and Erlang) distributions with shape parameter (o = 1) and the same location and

scale parameters. The standard form is therefore (z > 0)

fl@) = e”
F(z) = v(l,z)=1—-¢""
G(qg) = —log(l—gq)

Hrn = 1!

4.1. SciPy Tutorial

359

SciPy Reference Guide, Release 1.3.2

=
)
I

2 2
[
(I

o o N R o

Implementation: scipy.stats.expon

Exponentiated Weibull Distribution

Two positive shape parameters a, ¢ > 0, and the support is = € [0, c0).

f(za,¢) = acll —exp(—z)]* "exp (—z¢) 2
F(z;a,¢) = [1—exp(—a)]"
G(ga,c) = [— log (1 - ql/a)} Ve

Implementation: scipy.stats.exponweib

Exponential Power Distribution

One positive shape parameter b. The support is z > 0.

f (557 b) = ebﬂl‘bil exp (.Tb _ emb)
F(x;b) = 1—exp (1—exb)
G(g;b) = log(1—log(1—q)""

Implementation: scipy.stats.exponpow

Fatigue Life (Birnbaum-Saunders) Distribution

This distribution’s pdf is the average of the inverse-Gaussian (p« = 1) and reciprocal inverse-Gaussian pdf (u = 1) . We
follow the notation of JKB here with 5 = S. There is one shape parameter ¢ > 0, and the support is z > 0.

flzie) = Qi/%@cp <—($2;C?2>
i - (2o 2)
cwa = et wr e

360 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

2

= —+41
M 2+
5
Ho = 2 (402+1>
4ev/11c¢?2 + 6
7=

(5c2 + 4)>/
6c? (93¢% +41)

?T T et 4y

Implementation: scipy.stats. fatiguelife
Fisk (Log Logistic) Distribution

Special case of the Burr distribution with d = 1. There is are one shape parameter ¢ > 0 and the support is = € [0, c0).

1
Letk = F(1—2)I‘(2+1)—I‘2<1_>F2<1+1)
C C C C

et
f(gc,qd) - (1—|—£UC)2
F(z;e,d) = (1 —|—x_c)_1
Glged = (¢t -1)7"°
(-2 ()
w = I(1——)T (-+1
c c
p2 = k

N RGO
(-3
2= e () ()
(e erle- et
(-3 2]

. 1/c
myg = (C) if ¢ > 1, otherwise 0
c+1
m, = 1
h[(X] = 2-loge

Implementation: scipy.stats.fisk

4.1. SciPy Tutorial 361

SciPy Reference Guide, Release 1.3.2

Folded Cauchy Distribution

This formula can be expressed in terms of the standard formulas for the Cauchy distribution (call the cdf C' (x) and the
pdf d(x)). If Y is cauchy then |Y| is folded cauchy. There is one shape parameter c and the support is 2 > 0.

1 1
Fe) = — :
7r(1+(x—c)) 7r(1—|—(x+c)>
1, 1,
F(zr;e) = —tan " (x—c)+ —tan"" (x +¢)
7r 7r
Glge) = F ' (go)
No moments
Implementation: scipy.stats.foldcauchy
Folded Normal Distribution
If Z is Normal with mean L and ¢ = S, then |Z| is a folded normal with shape parameter ¢ = |L| /S , location

parameter 0 and scale parameter .S . This is a special case of the non-central chi distribution with one- degree of freedom
and non-centrality parameter c¢2. Note that ¢ > 0 . The standard form of the folded normal is

flx;e) = \/zcosh (cx) exp (— 2 ;_CQ>
Flai) = @-0)-@(-z-0)=P(c—0)+P(z+c)-1
G(gc) = F'(gec)
M(t) = exp (; (t— 20)) (1 + cht)
e

[
p o= exp| -3
/2
po= \/z-p+ck
™

pe = A +1—p?
\/gp3 (4 -5 (2¢% + 1)) + 2ck (6p* + 3cpkV/2m + me (k? — 1))
"= 3/2
T
c4+662+3+6(02+1)u2—3,u474p,u(\/g(c2+2)Jr%(02+3))
Y2 = 2

Ha

Implementation: scipy.stats.foldnorm

362 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

Fratio (or F) Distribution

The distribution of (X7 /X5) (va/v1) if X7 is chi-squared with v; degrees of freedom and X5 is chi-squared with vy
degrees of freedom. The suport is x > 0.

2 2 _
ng/ 1/1”1/ pvi/2=1

f(x;ylvle) =
(vs + 1) T2 B (4, 2)
vx V1 V9
F(z; = (= an
(x,'Ul,’UQ) (VQ"‘VL’E’ 2a 2)

-1
. B V2 o
G(gv,ve) = <I—1 (g;v1/2,12/2) ”2)

wo= v2 for v > 2
V2—2

202 -2
pa = vy (1 +2V2) for vy > 4
141 (1/2 — 2) (1/2 — 4)

2(21/14’1/272) 2(1/274)

= for v, > 6
m vy — 6 v (v +va —2) 2
3(8+ (vg —6)7%)
Yo = 9 — 16 for vy > 8

where I (x;a,b) = I, (a, b) is the regularized incomplete Beta function.

Implementation: scipy.stats.

Gamma Distribution

The standard form for the gamma distribution is (o > 0) valid for x > 0.

1
’ I'(e)
Glga) = 77 (a,ql(a)
where - is the lower incomplete gamma function, 7 (s, z) = foa: ts~le~tdt.
1
M (t) =
o o
2 = o
2
"= ﬁ
6
Y2 = —
o
mg = a—1

where

Implementation: scipy.stats.gamma

4.1. SciPy Tutorial 363

SciPy Reference Guide, Release 1.3.2

Generalized Logistic Distribution

Has been used in the analysis of extreme values. There is one shape parameter ¢ > 0. The support is > 0.

pe) = cexp (—x)
f()) [1+exp (_x)]chl
1
P = ieecar
G(g;c) = —log (q*”c - 1)

M (t) = 1it2F1(1+c,1—t;2—t;—1)

po= v+o(c)
2
™
M2 = €+1/11 (C)
_ () +2¢(3)
Y1 = — 372
Ha
(35 +4s(0)
Y2 = T
25
mgq = logc
My = —log(21/c—1)
Note that the polygamma function is
dn+1
ba(s) = Toplogl(2)

= D"l
Z Z+k n+1

= (- n!C (n +1,2)

where ¢ (k,) is a generalization of the Riemann zeta function called the Hurwitz zeta function. Note that ¢ (n) =
¢(n,1).

Implementation: scipy.stats.genlogistic

Generalized Pareto Distribution

There is one shape parameter ¢ % 0. The supportis x > 0if ¢ > 0,and 0 < = < ﬁ if ¢ is negative.

flwie) = (1+ea)™ e
1
F(l’,C) - (].+C£Z?)1/c

(‘tﬂ)l/ldr(ﬁ»\tﬁ)r(L) c<0

364 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

/_(_1)n ~ (n (_1)k .
== Z(k‘)l—ck ifen <1

k=0
. 1
wy = T—< c<1
2
2= T 290-¢9 ‘T2
, 6 1
s = T-o1-200-30 “°3
, 24 1
Moo= Aol -200-30(1 49 1
Thus,
no=
po = ph—
py — 3ppg — p°
o= T3
Ho
ol — Apps — 6ppg — pt
T2 = 5 -3

H3
hX]=14¢ ¢>0

Implementation: scipy.stats.genpareto

Generalized Exponential Distribution

Three positive shape parameters a, b, c > 0 with support z > 0.

f(z;a,b,¢) = (a +b (1 — e_cx)) exp (ax —bx + g (1 — e_cx))
F(z;a,b,c) = 1—exp (ax —br + g (1- e—cw))
G(q;a,b,c) = F7!

Implementation: scipy.stats.genexpon

Generalized Extreme Value Distribution

Extreme value distributions with one shape parameter c.

If ¢ > 0, the support is —co < < 1/c. If ¢ < 0, the support is % <z < o0.

flz;e) = exp (_ (1— Cm)l/c) (1— C$>1/c—1
F (fE, C) = exp (_ (1 _ Cl’)l/c>
Glge) = % (1 —(—logq)°)

’ 1 - (n k .
= — —1)"T'(ck+1 f -1
o= 2 (3) ok i

4.1. SciPy Tutorial 365

SciPy Reference Guide, Release 1.3.2

So,
, 1
uy = E(lfF(quc)) c>—1
1 1
R 2(172F(1+c)+I‘(1+20)) c>—3
1 1
Wy = 0—3(1—3F(1+c)+31“(1+2c)—1"(1+3c)) c>—3
1 1
Wy = 0—4(1—41"(1+c)+61"(1+2c)—41"(1+36)+1"(1+4c)) ¢>—

For ¢ = 0 the distribution is the same as the (left-skewed) Gumbel distribution, and the support is R.

f(z;0) = exp(—e)e”

F(2;0) = exp(—e ™)
G(q;0) = —log(—loggq)
po= v=—vo(1)

7'(2

H2 = 6

w o= 28
12

Y2 = g

Implementation: scipy.stats.genextreme

Generalized Gamma Distribution

A general probability form that reduces to many common distributions. There are two shape parameters a > 0 and ¢ # 0.
The support is x > 0.

ca—1
floae = e (e
y(a,z%)
et >0
Flrae - { .
1-— () c<0
~1(q,T (a) q)*¢ c>0
G(q;aac) = _3/ (()Q) 1/c
7 (@, (a)(1—q)"" ¢<0

366 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

where 7 is the lower incomplete gamma function, 7 (s, z) = [, t*~'e~'dt.

Lo Tl
" I (a)
_ Tfate)
YT T
_ Dletd)
/142 - F (Cl) /‘l‘
_ D(a+3)/T(a) = 3upe — i
no= 3/2
Ha
U (a+32) /T (a) = 4pps — 6p2ps — p
Y2 =) -3
)
(ac -1) 1e
mg =
&
Special cases are Weibull (a = 1), half-normal (¢ = 1/2, ¢ = 2) and ordinary gamma distributions ¢ = 1. If ¢ = —1

then it is the inverted gamma distribution.
1
hiX]=a—a¥(a)+ -V (a) +logT' (a) —log|c|.
c
Implementation: scipy.stats.gengamma
Generalized Half-Logistic Distribution

One shape parameter ¢ > 0 and support x € [0,1/c].

2(1—cx)%71
f(x§c) = 2

(1 +(1- cac)l/c)

i e 1/c
F(x;¢) = 1--e)’ (1)

1+ (1—ca)/e |
s - ()]

h(X] = 2—(2c+1)log2.

Implementation: scipy.stats.genhalflogistic

Generalized Normal Distribution

This distribution is also known as the exponential power distribution. It has a single shape parameter 8 > 0. It reduces
to a number of common distributions.

Functions

f@B) = sramme ™

4.1. SciPy Tutorial 367

SciPy Reference Guide, Release 1.3.2

1 v (1/8,2°)
F(z: - =
~y is the lower incomplete gamma function. 7y (s,) = foz ts e tdt.

a1 8
"[X’B]‘ﬂ‘log@r(l/m)

Moments

n 0
m, = 0
mqg = 0
B T
7(1/B)
m = 0
L LGB/
I'(3/8)*

Special Cases

¢ Laplace distribution (3 = 1)
 Normal distribution with ps = 1/2 (8 = 2)

* Uniform distribution over the interval [—1,1] (5 — o0)

Sources

* https://en.wikipedia.org/wiki/Generalized_normal_distribution#Version_1
* https://en.wikipedia.org/wiki/Incomplete_gamma_function#Lower_incomplete_Gamma_function

Implementation: scipy.stats.gennorm

Gilbrat Distribution

Special case of the log-normal with ¢ = 1 and S = 1.0, typically also L = 0.0.)

1 1)

Flaio) = —menp 5 oge)?)
F(x;0) = @(loga:):;<1—|—erf<lci§;)>
G(go) = exp (27" (q))

po= e

pa = ele—1]

M = ve—1(2+e)

Yo = et +2e3+3e2 -6

368 Chapter 4. Tutorial

https://en.wikipedia.org/wiki/Generalized_normal_distribution#Version_1
https://en.wikipedia.org/wiki/Incomplete_gamma_function#Lower_incomplete_Gamma_function

SciPy Reference Guide, Release 1.3.2

h[X] log (\/%)

1.4189385332046727418

%

Implementation: scipy.stats.gilbrat

Gompertz (Truncated Gumbel) Distribution

For z > 0 and ¢ > 0 . In JKB the two shape parameters b, a are reduced to the single shape-parameter ¢ = b/a . As a
is just a scale parameter when a # 0 . If a = 0, the distribution reduces to the exponential distribution scaled by 1/b.
Thus, the standard form is given as

f(z;¢) = ce®exp(—c(e” —1))
F(z;e) = 1—exp(—c(e®—1))

G(gc) = log (1 - ilog(l - q))
h[X]=1-log(c) — e“Ei(1,¢),
where

Ei(n,x) = / t~"exp (—axt) dt
1

Implementation: scipy.stats.gompertz

Gumbel (LogWeibull, Fisher-Tippetts, Type | Extreme Value) Distribution

One of a class of extreme value distributions (right-skewed).

fx) = exp (f (:v + e*$))
F(z) = exp(—e™®)
G(q) = —log(—log(q))

M@#)=T(1-t)

po= v=—v¢o(1)
2
2 = F
126
71 - 3 C(3)
0
_
Y2 = 5
mq = O
m, = —log(log2)

h[X] ~ 1.0608407169541684911

Implementation: scipy.stats.gumbel_r

4.1. SciPy Tutorial 369

SciPy Reference Guide, Release 1.3.2

Gumbel Left-skewed (for minimum order statistic) Distribution

@) = explo—e)

F(z) = 1—exp(—e€")

G(qg) = log(—log(l—q))
M@)=T(1+¢)

Note, that ;. is negative the mean for the right-skewed distribution. Similar for median and mode. All other moments are
the same.

h[X] ~ 1.0608407169541684911.

Implementation: scipy.stats.gumbel_ 1

HalfCauchy Distribution

If Z is Hyperbolic Secant distributed then eZ is Half-Cauchy distributed. Also, if 1 is (standard) Cauchy distributed,
then |TV| is Half-Cauchy distributed. Special case of the Folded Cauchy distribution with ¢ = 0. The support is 2 > 0.
The standard form is

2
L)
2
F(z) = - arctan (x)

6 ~ wn(Za)
M (t) = cost + % [Si(t) cost — Ci(—t)sint]

where Si(t) = [j #t= dr, Ci(t) = — [<s*du.

mg = 0
m, = tan(—
4
No moments, as the integrals diverge.
h[(X] = log(2nm)

1.8378770664093454836.

Implementation: scipy.stats.halfcauchy

HalfNormal Distribution

This is a special case of the chi distribution with . = a¢ and S = b and v = 1. This is also a special case of the folded
normal with shape parameter ¢ = 0 and S = S. If Z is (standard) normally distributed then, |Z| is half-normal. The

standard form is
2
\/7 e~ z? /2
T

F 20 () — 1
Gl = o (1;(1)

370 Chapter 4. Tutorial

~

—~ —~
8 8]

~— ~—
(I

SciPy Reference Guide, Release 1.3.2

2
noo= -
T
2
p2 = 1——=
T
Vi)
Y1 - 3/2
(m—2)
_ 8(m—3)
P w2y
mqg = 0

h[X] = log(”;)
0.72579135264472743239.

Q

Implementation: scipy.stats.halfnorm

Half-Logistic Distribution

In the limit as ¢ — oo for the generalized half-logistic we have the half-logistic defined over x > 0. Also, the distribution
of | X | where X has logistic distribution.

. 2" - 1 2 (T
flx) = 7(1 n e*l’)2 = 2sech (2)
1—e* T
F(z) = e tanh (§>
G(qg) = log (11_(1) = 2arctanh (q)

M () = 1 — ty (;;>+two (1;)

where 1., is the polygamma function v,,(z) = % log(T'(2)).

f,=2(1-2"")nl¢(n) n#l

py = 2log(2)
2
py = 20(2) = 3
py = 9¢(3)
) _ Tt
iy = ax@=""
h[X] = 2-1log(2)

~ 1.3068528194400546906.

Implementation: scipy.stats.halflogistic

4.1. SciPy Tutorial 371

SciPy Reference Guide, Release 1.3.2

Hyperbolic Secant Distribution

Related to the logistic distribution and used in lifetime analysis. Standard form is (defined over all =)
1
f(x) = =—sech(x)
0

2
F(z) = farctan e”)

(
G(q) = log (tan (gq>)

B 0 nodd
o Cn/2 T meven

where C,,, is an integer given by

o i1 ¢ m+1,3)]
m 7T2m+122m

., 1em 1
= 4(_1)m o2m + 1B2m+1 (4>

where By, +1 () is the Bernoulli polynomial of order 2m + 1 evaluated at 1/4. Thus

0 n odd

/ = n
%‘@<W”%ﬂmM9nmn

mg=my=p = 0
T

pe =

Implementation: scipy.stats.hypsecant

Gauss Hypergeometric Distribution

The two shape parameters are « > 0, 8 > 0. The support is z € [0, 1].
1

Let €= B (o, B) oF1 (v, ;a0 + 35 —2)
(-2
f(,I;O{,ﬂ,’Y,Z) = Cxa 1((1+12x)'y
, _ Bm+a,pB)oFy(v,a+n;a+ +n;—2)
fn = TB(a,B) 2P (00 + B;—2)

Implementation: scipy.stats.gausshyper

372 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

Inverted Gamma Distribution

Special case of the generalized Gamma distribution with ¢ = —1 and a > 0 and support z > 0.
xmot 1
e = rew()
I(a3)
F (z; = £
@0 = T
- -1
G(g;a) = {F L (a,T (a) q)}
I'(a—n)
!/
"= T) a>n
! >1
= a
a a—1
! 2 a>2
= — — a
1 @-2)(a—1 "
1
@3 @-2)a-1) SHH2 — p
Al = 3/2
Ha
1
e ey — s — 6pPpe — pt
T2 = 3 -3
M3
1
mag =
L |

hiX]=a—(a+1)¢(a)+1logT (a).

where U is the digamma function 1(z) = <L log(I'(z)).

Implementation: scipy.stats.invgamma

Inverse Normal (Inverse Gaussian) Distribution

The standard form involves the shape parameter y (in most definitions, L = 0.0 is used). (In terms of the regress
documentation u = A/B) and B = S and L is not a parameter in that distribution. A standard form is > 0

1 (@ —)’
f(zp) = meXP _W .

) = o LTTHY e (2 e (LTt
Flaw) = (I)(\/E 1 >+ep<u>¢)< N)
Glgp) = Flgp

po= p
p2 = M3
Mno= 3V
Y2 = 15p

: (V-

mg =

This is related to the canonical form or JKB “two-parameter” inverse Gaussian when written in it’s full form with scale
parameter .S and location parameter L by taking L = 0 and S = A, then S is equal to po where pg is the parameter

4.1. SciPy Tutorial

373

SciPy Reference Guide, Release 1.3.2

used by JKB. We prefer this form because of it’s consistent use of the scale parameter. Notice that in JKB the skew
(\/61) and the kurtosis (2 — 3) are both functions only of us/\ = uS/S = u as shown here, while the variance and
mean of the standard form here are transformed appropriately.

Implementation: scipy.stats.invgauss

Inverted Weibull Distribution

There is one shape parameter ¢ > 0 and the supportis > 0. Then

f(z;e) = co“lexp (f:c*c)
F(z;¢) = exp(—27°)
Glge) = (~logg)™ /"

h[X] = 1+’y+%—log(c)
where is Euler’s constant.

Implementation: scipy.stats.invweibull

Johnson SB Distribution

There are two shape parameters a € R and b > 0, and the support is z € [0, 1].

b
flaad) = 50 (a+blog1fm)

<I><a—|—blog <)
1—x

1
1+exp (—% (@1 (q) — a))

F (x;a,b)

G(g;a,b) =

Implementation: scipy.stats. johnsonsb

Johnson SU Distribution

There are two shape parameters ¢ € R and b > 0, and the support is = € R.

f(z;a,b) = \/%T¢(a+blog(x+ x2+1>)
<I><a+blog(x+ x2+1))

G(g;a,b) = sinh(q’_l(bq)—a)

F (z;a,b)

Implementation: scipy.stats. johnsonsu

KSone Distribution

This is the distribution of maximum positive differences between an empirical distribution function, computed from n
samples or observations, and a comparison (or target) cumulative distribution function.

374 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

Writing D, = sup, (Fempiricai,n(t) — Frarget(t)), ksone is the distribution of the D; values. (The distribution of
D;; = sup, (Frarget(t) — Fempirical,n(t)) differences follows the same distribution, so ksone can be used for one-
sided tests on either side.)

There is one shape parameter n, a positive integer, and the support is « € [0, 1].

[n(1—=)] n .\ j-1 o\ n—Jj
F (n,z) 1- Z (J)x(x—i—i) (1—3&—7‘1)

=0

1 — scipy.special.smirnov(n, x)
X 2

li F el — —2x

(o) - .

References

» “Kolmogorov-Smirnov test”, Wikipedia https://en.wikipedia.org/wiki/Kolmogorov-Smirnov_test

* Birnbaum, Z. W_; Tingey, Fred H. “One-Sided Confidence Contours for Probability Distribution Functions.” Ann.
Math. Statist. 22 (1951), no. 4, 592-596.

Implementation: scipy.stats.ksone

KStwo Distribution

This is the limiting distribution of the normalized maximum absolute differences between an empirical distribution func-
tion, computed from n samples or observations, and a comparison (or target) cumulative distribution function. (ksone
is the distribution of the unnormalized positive differences, DTJ{)

Writing D,, = sup, |Fempirical,n(t) — Ftarget(t)—|, the normalization factor is y/n, and kstwobign is the limiting
distribution of the \/nD,, values as n — oo.

Note that D,, = max(D;"

n?

D), but D;f and D,, are not independent.

kstwobign can also be used with the differences between two empirical distribution functions, for sets of observa-
tions with m and n samples respectively, where m and n are “big”. Writing Dy, ,, = sup;, |F1,m(t) — Fz ()|, where
Fy p, and F5,, are the two empirical distribution functions, then kstwobign is also the limiting distribution of the

mn
(m+n) D,, values, as m,n — 0.

There are no shape parameters, and the support is € [0, c0).
F(z) = 1-2) (-1)kte 2%
k=1

T

V21 o o~ (2k—1)27%/(82%)

k=1
= 1 — scipy.special.kolmogorov(n, x)

fla) = 8z (~1)Flg2e 2
k=1

References

» “Kolmogorov-Smirnov test”, Wikipedia https://en.wikipedia.org/wiki/Kolmogorov-Smirnov_test

4.1. SciPy Tutorial 375

https://en.wikipedia.org/wiki/Kolmogorov-Smirnov_test
https://en.wikipedia.org/wiki/Kolmogorov-Smirnov_test

SciPy Reference Guide, Release 1.3.2

* Kolmogoroff, A. “Confidence Limits for an Unknown Distribution Function.”” Ann. Math. Statist. 12 (1941), no.
4, 461-463.

* Feller, W. “On the Kolmogorov-Smirnov Limit Theorems for Empirical Distributions.” Ann. Math. Statist. 19
(1948), no. 2, 177-189. and “Errata” Ann. Math. Statist. 21 (1950), no. 2, 301-302.

Implementation: scipy.stats.kstwobign

Laplace (Double Exponential, Bilateral Exponential) Distribution

1
fl@) = el
Loz <0
F(x) = {1 21 e * x;O
_ log (2q) 1< 3
Glo) = {—log (2 —2q) q>%
mg=my,=pu = 0
p2 = 2
mnm = 0
2 = 3

The ML estimator of the location parameter is
L = median (X3)

where X; is a sequence of N mutually independent Laplace RV’s and the median is some number between the %N th
and the (N/2 + 1)th order statistic (e.g. take the average of these two) when N is even. Also,

| XN
=y |-
j=1
Replace L with L if it is known. If L is known then this estimator is distributed as (2/N) s XN -
h(X] = log(2e)

1.6931471805599453094.

Implementation: scipy.stats.laplace

Left-skewed Lévy Distribution

Special case of Lévy-stable distribution with o = % and 8 = —1. The support is x < 0. In standard form
e (“aim)
- exp|———
|z| \/27 |x] 2 ||
1
F@:2%>_1
Vel

eV

@
—
<
~—

I

No moments.

Implementation: scipy.stats.levy_ 1

376 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

Lévy Distribution

A special case of Lévy-stable distributions with av = % and 8 = 1 and support = > 0. In standard form it is defined for
x> 0as

1 1
- exp (-
V21 P (296)

It has no finite moments.

Implementation: scipy.stats.levy

Logistic (Sech-squared) Distribution

A special case of the Generalized Logistic distribution with ¢ = 1. Defined for z > 0

_ exp (—x)
T@ = ea oy
1
Fz) = 1+exp(—x)
G(qg) = —log(l/qg—1)
po= y+io(l)=0
7T2 772
p2 = F‘i‘wl(l):?
BEACES SO
Ho
(7{%+1/)3(1)> 6
(i
mg = logl=20
m, = —log(2—1)=0

where 1., is the polygamma function ,,(z) = j;,% log(T'(2)).

hX]=1.

Implementation: scipy.stats.logistic

Log Double Exponential (Log-Laplace) Distribution

One shape parameter ¢ > 0. The support is z > 0.

gpel O<z<l1
flze) = {2xc1 z>1
1
sx¢ O<z<l1
F(ze) = {1—21xc z>1
2 paiy
2)V/¢ 0<qg<?i
Glao = {200 1R
(2—2¢q) 5<¢g<1

4.1. SciPy Tutorial 377

SciPy Reference Guide, Release 1.3.2

Implementation: scipy.stats.loglaplace

Log Gamma Distribution

A single shape parameter ¢ > 0 . The supportis x € R.

exp (cx — %)

F(z;¢) = Vécéf;)
Glge) = log(v (e, ql ()

where is the lower incomplete gamma function, 7 (s, z) = fom 5 le7tdt,

u;=/ logy]™ y“ " exp (—y) dy.
0

po= p
po = ph—

_ ps = 3ppe —
no= 3/2

Ko

_ Ha—Apps = 6pPpp —pt

Y2 = 2 -
Ha

Implementation: scipy.stats.loggamma

Log Normal (Cobb-Douglass) Distribution

Has one shape parameter o >0. (Notice that the “Regress” A = log S where S is the scale parameter and A is the mean
of the underlying normal distribution). The support is = > 0.

2
e = e (-3(50))

Flaio) = @ (bga’)

o
G(go) = exp(a® ' (q)
I = exp (02/2)
t2 = exp (02) [exp (02) - 1]
M1 o= p—1(2+p)
o = p 2432 -6 p=e

Notice that using JKB notation we have § = L, (= log S and we have given the so-called antilognormal form of the
distribution. This is more consistent with the location, scale parameter description of general probability distributions.

h[X] = % [1+log (27) 4 2log (0)] .

Also, note that if X is a log-normally distributed random-variable with I = 0 and S and shape parameter o. Then, log X
is normally distributed with variance 2 and mean log S.

Implementation: scipy.stats.lognorm

378 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

Maxwell Distribution

This is a special case of the Chi distribution with L = 0 and S = —= and v = 3. The support is z > 0.

\/E
2 2
f(l’) ;:1726 z°/2
12
1(3%)
R V€
2
43
Glg) = /271 5d(35)
2
o= 2 p
8
M2 = 3—;
) 32— 107
1 = T __a/9
(3m — 8)*/?
~ —127% + 1607 — 384
” (37 — 8)°
mg = \/5

31,3
- IN=L [Z (=
m \/7 (2,2 (2))
2
h[X] = log (,/Z) + .
Implementation: scipy.stats.maxwell

Mielke’s Beta-Kappa Distribution

A generalized F distribution. Two shape parameters x and 6, with support z > 0. The 3 in the DATAPLOT reference
is a scale parameter.

Hl’ﬁil
fleik,0) = ——— 5%
@m0 = e
xli
Flakb) = ——-5
(1+a0)"/*
qa/K 1/9
G(g;k,0) = (1_qgm>

Implementation: scipy.stats.mielke

4.1. SciPy Tutorial 379

SciPy Reference Guide, Release 1.3.2

Nakagami Distribution

Generalization of the chi distribution. Shape parameter is v > 0. The support is x > 0.

flzv) = %xm’*lexp (—va?)
v, va?

F(x;v) = ynrr) (F’(I/))

Glav) = o (mal ()

where is the lower incomplete gamma function, v (v, z) = [; t“~te~"dt.

_ T{r+3)
T)
pe = [1—p?]

_ p(1—4dops)
no= 3/2

2vpty
—6pty + 8v —2)pu? — 20 +1

Y2 =

2
vy

Implementation: scipy.stats.nakagami
Noncentral chi-squared Distribution

The distribution of Z;’:l (Z; + 52»)2 where Z; are independent standard normal variables and d; are constants. A\ =
Py 82 > 0. (In communications it is called the Marcum-Q function). It can be thought of as a Generalized Rayleigh-
Rice distribution.

The two shape parameters are v, a positive integer, and A, a positive real number. The support is z > 0.

v—2)/4
flxv X)) = 6’“”)/2% (g)(g T2y (\/ﬂ)
Plan)) = Z;){(Af)je‘w}l)r[xime
=
Glgr) = F @)
o= v+A
pe = 2(v+2X)
VB +3))
T (v +2X)%2
12 (v +4X)
= (v +2))°

where I, (y) is a modified Bessel function of the first kind.

References

¢ “Noncentral
distribution

Implementation: scipy.stats.ncx2

chi-squared distribution”,

Wikipedia https://en.wikipedia.org/wiki/Noncentral_chi-squared_

380

Chapter 4. Tutorial

https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution
https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution

SciPy Reference Guide, Release 1.3.2

Noncentral F Distribution

The distribution of (X7 /X5) (v2/v1) if X is non-central chi-squared with v; degrees of freedom and parameter A, and
X is chi-squared with v, degrees of freedom.

There are 3 shape parameters: the degrees of freedom 14 > 0 and v5 > 0;and A > 0.
A (>\V1$) v1/2 va/2 _
‘A = Z 1 2/2, vy /2—1
f @A v, v2) exp | 5 + 2 (i + 1) 2 2

v v1/2-1 Avizx
72) LV2/2 <_2(V1x1+1/2))
1% 12 v14v
55T (552)

r%)ra+
X (v + le)*(l’lﬂz)m (%) (B(

1/1/271
112/2

Implementation: scipy.stats.ncf

where L (x) is an associated Laguerre polynomial.

Noncentral t Distribution

The distribution of the ratio

U+)\
Xov/VV

where U and Yy, are independent and distributed as a standard normal and chi with v degrees of freedom. Note A > 0
andv > 0.

VP (v +1)
2e/2 (y 4 22)Y2T (v)2)
v . 3. 222
V2Az 1 Fy (g +1 %7 W)
(v+a?)T ()
Oy (R 4 i)
Vv +22T (£ +1)
'v+1) vA?
= exp |—
20=1/2 /7ul (v/2) v+ 22

(v—1)/2
(=) ()
v+ 22 N

. B ﬁy,u(:n) x>0
Fledv) = { 1-F,_,(x) <0

flzav) =

X

where
. 1) 1 v . v
Fou(z) = ¢(_H)+§Z pily It355 + a1y (J+1’§)
=0
vy = 22 +v

(F) ey
S (2)

o(-5) N
v = i)

4.1. SciPy Tutorial 381

SciPy Reference Guide, Release 1.3.2

where I, (a, b) is the regularized incomplete beta function and Airy’s Hh function is Hh,, (z) = ﬁ Jootve™ Tt

Implementation: scipy.stats.nct

Normal Distribution

efw2/2
f@) = Ton
F(z) = @(x)= % + %erf (\xf)
Glg) = @' (g
mqg =My = W 0
pe = 1
m =0
V2 0
h[X] = log (\/%)

1.4189385332046727418

%

Implementation: scipy.stats.norm

Normal Inverse Gaussian Distribution

The probability density function is given by:
aexp (Va® —b% + bz)
™1+ 22

where x is a real number, the parameter a is the tail heaviness and b is the asymmetry parameter satisfying a > 0 and
|b] < a. K7 is the modified Bessel function of second kind (scipy.special.k1).

f(z;a,b) = K, (a * sqrtl + xz) ,

A normal inverse Gaussian random variable with parameters a and b can be expressed as X = bV + \ﬂV)X where X
is norm(0,1) and V is invgauss(mu=1/sqri(a**2 - b**2)). Hence, the normal inverse Gaussian distribution is a special
case of normal variance-mean mixtures.

Implementation: scipy.stats.norminvgauss

Pareto Distribution

One shape parameter b > 0 and support x > 1. The standard form is

b
f(zb) = ey
Fa:b) = 1_%
G(gb) = (1—g "

382 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

b
b
- — b>2
BT -2 -1
2(b+1)vb—2
= — 2 = >3
" (b—3)vb
6 (b° 4+ b2 — 6b—2
v = () b>4

b(b%2—Tb+12)
1
h(X)=-+1-1log(c)
c
Implementation: scipy.stats.pareto

Pareto Second Kind (Lomax) Distribution

This is Pareto of the first kind with L = —1.0 . There is one shape parameter ¢ > 0 and support x > 0.

c

f(x5e) = G

1
F(ﬂﬁ;C) —m
Glge) = (1—q) " =1

h[X]z%—&—l—log(c).

Implementation: scipy.stats.lomax

Power Log Normal Distribution

A generalization of the log-normal distribution with shape parameters ¢ > 0, ¢ > 0 and support z > 0.

e -)2
F(x;0,¢) = 1_<¢(_lo§x>>c

G(q;0,c) = exp <70'@71 ((1 . q)l/c))

= /1 exp (—n(ﬂb*l (yl/c>) dy
0

no=
pe = py— g
i = 3ppe —
o= 3/2
Ko
_Ha s = 6ptpp —pt
Y2 = P) -

k3
This distribution reduces to the log-normal distribution when ¢ = 1.

Implementation: scipy.stats.powerlognorm

4.1. SciPy Tutorial 383

SciPy Reference Guide, Release 1.3.2

Power Normal Distribution

A generalization of the normal distribution, with one shape parameter ¢ > 0 and support z > 0.

fwie) = coa)(@(—x))"

F(zie) = 1—(2(—x))°
G(ge) = —@°! ((1—Q)1/c>
1 n
ﬂn=(—1)"/ [@‘1 (yl/c)] dy
0
no=
po = py—p’
I e
71 - 3/2
Ho
/_4 -6 2 _ 4
by = M s = Opti —
Ha

For ¢ = 1 this reduces to the normal distribution.

Implementation: scipy.stats.powernorm

Power-function Distribution

A special case of the beta distribution with b = 1. There is one shape parameter a > 0 and support = € [0, 1].

f(z;a) az®!
F(z;a) = z2°
G(ga) = ¢'/°
_ a
Be= a+1
ala+2)
T ey
a+2
= 2(1- —_—
n (1-a) a(a+3)
B 6(a3—a2—6a+2)
2= a(a+3)(a+4)
mg = 1

h[X]:lféflog(a)

Implementation: scipy.stats.powerlaw

384 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

R-distribution Distribution

A general-purpose distribution with a variety of shapes controlled by one shape parameter ¢ > 0. The support of the
standard distribution is x € [—1, 1].

f() (1 . :1','2)(//2_1
ric) = .
B(3,5)
1 T 1 c 3
F(x: = = 2 R 1=Z.2.42
(z;¢) 2+B(%,§)2 1(27 272733)
, A (=DY), (n+lc
Hin = 5 Pl 733

The R-distribution with parameter n is the distribution of the correlation coefficient of a random sample of size n drawn
from a bivariate normal distribution with p = 0. The mean of the standard distribution is always zero and as the sample
size grows, the distribution’s mass concentrates more closely about this mean.

Implementation: scipy.stats.rdist

Rayleigh Distribution

This is a special case of the Chi distribution with L = 0.0 and v = 2 (no location parameter is generally used), the mode
of the distribution is S.

fr) = el
F(r) = 1—e /2
G(g) = —2log(l—q)

T
H2 = D)
2(r—3) /7
"= . 32
(4—m)
_ 247 — 672 — 16
Y2 (4—77')2
mg = 1
m, = 2log (2)
y e
h(X]==+log| —
A «(73)

Implementation: scipy.stats.rayleigh

4.1. SciPy Tutorial 385

SciPy Reference Guide, Release 1.3.2

Rice Distribution

There is one shape parameter b > 0 (the “distance from the origin”) and the support is > 0.

[(z;b)

F (z;b)

pl, = /2" (1+ g) Ry (—”~1;—b2>

Implementation: scipy.stats.rice

Reciprocal Distribution

T exp (—

2% + b?

5) Io (xb)

x 2 2
/ ozexp(—a ;_b)Io(ab)da
0

were I(y) is the modified Bessel function of the first kind of order 0.

277 92

There are two shape parameters a, b > 0 and the support is = € [a, b].
1
zlog (b/a)

M2

Al

72

Mn

log (z/a)

log (b/a)

a exp

(m%wm»=a(b

(@a—b)[a(d—2)+b(d+2)]

f(x;a,0)
F (z;a,b)
G (g;a,b)
log (a/5)
a—2>b
d
a+b 2
o M

2d?

)

V2 [12d (a—b)% + d? (a2 (2d — 9) + 2abd + b? (2d + 9))}

3dva—bla(d—2)+b(d+2)*?
~36(a —b)® +36d (a — b)* (a+b) — 16d> (a® — b*) + 3d° (a® + b?) (a +b)

a

Vab

h(X] = %log(ab) +log {log } .

3(a—"b)[a(d—2)+b(d+2)

Implementation: scipy.stats.reciprocal

Reciprocal Inverse Gaussian Distribution

a

1
T

The pdf is found from the inverse gaussian (IG), frig (x; 1) = T% fia (; u) defined for x > 0 as

Jra (w5)

Frg (w5)

i

dl

1
exp
2mas

1 z—p

N

_w—mj
2xp? |

)e(G)ol

386

Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

_ 2
Frie (wip) = V%em(—%)

Fric (z; 1)

|
—
|
=
0
Y
8=
=
S~

Implementation: scipy.stats.recipinvgauss

Semicircular Distribution

Defined on z € [—1,1]

2
flx) = ;\/1—952
1 1
F(x) = §+7{LL’ 1—x2+arcsina:}
T
Gl = F ' (q)
mg=my=p = 0
_ !
p2 = 7
m =0
Yo = -1

h [X] = 0.64472988584940017414.

Implementation: scipy.stats.semicircular

Student t Distribution

There is one shape parameter > 0 and the support is z € R.

(L
f(x;u) — (2) —
Vvl (5) [L+ 5] 7
lI(”2;573) <0
F(fﬂ,l/) o 21 l/+zy 2V21
1—§I(V+z2v§a§) z 20
- [—1(2:7371 -V QS%
Glgv) = — 1
14 —v q>7
\/1*1(2*2%%7%) -2
Mmp=mg=p = 0
v
P2 = o v>2
1 = 0 v>3
6
Yo = - v>4

4.1. SciPy Tutorial 387

SciPy Reference Guide, Release 1.3.2

where I (; a, b) is the incomplete beta integral and I ~! (I (z;a,b) ;a,b) = x. As v — 00, this distribution approaches
the standard normal distribution.

)) _ (C‘Zl) {\IJ(E)_CZ()+7Ttan<2)+7+210g2]

where

3) Skl T(§+1+k) T'(3)
.7’2;]‘ - c 3
2 k:ok+1 F<§+1) P(§+k)

Implementation: scipy.stats.t
Trapezoidal Distribution

Two shape parameters ¢ € [0, 1], d € [0, 1] giving the distances to the first and second modes as a percentage of the total
extent of the non-zero portion. The location parameter is the start of the non- zero portion, and the scale-parameter is
the width of the non-zero portion. In standard form we have z € [0, 1] .

2
u(e,d) = pp—
= r<c
flxie,d) = c<z<d
ui*—m x>d
“2"”62 r<c
F(zje,d) = %—ﬁ—u(x—zc) c<z<d
1-— 2((1 ‘Z)) x>d
ge(d—c+1) g<c
G(g;c,d) = i) g<d
| J0=d sy

u

Implementation: scipy.stats.trapz

Triangular Distribution

One shape parameter ¢ € [0, 1] giving the distance to the peak as a percentage of the total extent of the non-zero portion.
The location parameter is the start of the non- zero portion, and the scale-parameter is the width of the non-zero portion.
In standard form we have = € [0, 1].

rwo = {5

c r>c
Flze) = { “7—2 r<c
) = S
=Y
Glge) = Ve e
’ I-V(l-col-q) q=c

388 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

c 1

T o33

- l—c+c?
M2 = T

. V2@2c—1)(c+1)(c—2)
" 5(1—C+C2)3/2

_ 3
Y2 = —g

hx) = tog(5ve)

~ —0.19314718055994530942.

Implementation: scipy.stats.triang

Truncated Exponential Distribution

This is an exponential distribution defined only over a certain region 0 < x < B . In standard form this is

—x

e

f(z;B) =

1—e B
1—e "
FloB) = 1=
G(¢;B) = flog(lqurqe*B)

w,=T(1+n)—T(1+n,B)
1+eB(B-1)
+ .

h[X}:log(eB_l) 1_¢B

Implementation: scipy.stats.truncexpon

Truncated Normal Distribution

A normal distribution restricted to lie within a certain range given by two parameters A and B . Notice that this A and
B correspond to the bounds on z in standard form. For z € [A, B] we get

f(z;A,B) =

F(z;A,B) =

G(gA,B) = 7' (¢®(B)+@(4)(1-q)

where

¢ (A) — ¢(B)
T (B)— @ (A)

Ap(A)—Bo(B) (¢<A>—¢>2
()

p2 = 1+

Implementation: scipy.stats.truncnorm

4.1. SciPy Tutorial 389

SciPy Reference Guide, Release 1.3.2

Tukey-Lambda Distribution

There is one shape parameter A. The support is z € R.

1 1

Fad) = BN = G - B 1 P
F(zd) = Gz
N r=a-p’
© o= 0
o = /OG (p; A) dp
B or ()\+%)7/\47)‘\/EF()‘) (1-2))
= A2 (1+20)T (A +3)
Mmoo o=0
Y2 = %73
M3
3T (A)2 2
M TN (201 3) M (L +43)

2v30 (A) 275433 D (A + 1) T (A + 3)
ML (2 A+ 3T (A + 1) '

Notice that the limy_,o G (p; \) = log (p/ (1 — p))

1
hmzzﬁmwww

1
/ log [p”l + (1 —p)™ dp.
0

Implementation: scipy.stats.tukeylambda

Uniform Distribution

Standard form « € [0, 1] . In general form, the lower limit is L, the upper limit is S + L.

Implementation: scipy.stats.uniform

390 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

Von Mises Distribution

There is one shape parameter £ > 0, with support € [—, m]. For values of x < 100 the PDF and CDF formulas
below are used. Otherwise, a normal approximation with variance 1/x is used. [Note that the PDF and CDF functions
below are periodic with period 27. If an input outside « € [—, 7] is given, it is converted to the equivalent angle in this
range.]

K COsST

e
F@ir) = o
1 =z 2. Iy, (k) sin (kx)
Fzr) = =+ —
(w5 k) 2+27r+kz:1 Iy (k) 7k
G(g;k) = F 'z;k)
where Ij (k) is a modified Bessel function of the first kind.
po= 0
o = / 22 f (z; k) da
n =0
ffﬂ 2t f (2, k) dx
Y2 =) -3

This can be used for defining circular variance.

Implementation: scipy.stats.vonmises

Wald Distribution

Special case of the Inverse Normal with shape parameter set to 1.0. It has support z > 0.

o - e (55)
F(z) = @(z_1)+exp(2)q>(—x+l>

Ve Vi
Glgp) = F ' gp

w o= 1

pe = 1

mn o= 3

’)/2 = 15

mqg = = (\/E - 3)

Implementation: scipy.stats.wald

Weibull Maximum Extreme Value Distribution

Defined forx < Oandc > 0.

fzse) = c(—2)exp(—(—2)°)
F(z;c) = exp(—(—x)°)
Glgc) = —(—logg)"

4.1. SciPy Tutorial 391

SciPy Reference Guide, Release 1.3.2

The mean is the negative of the right-skewed Frechet distribution given above, and the other statistical parameters can be

computed from

W= (~1)"T (1 + %) .

()

"
2 1
Lo r<1+)—r2<1+>
c c
F(1+3)-3r(1+2)r(1+1)+2r3(1+12)
n - 3/2
Ho
" FA+3)—ar(1+Hra+2)+6r2(1+4H)r(1+2)-sr4(1+1) 4
T
1
. (=17 ife>1
d
0 ifec<=1
M “In(2)*
hIX) =1 —log(c) + 7 +1
where ~y is Euler’s constant and equal to
v~ 0.57721566490153286061.
Implementation: scipy.stats.weibull_ max
Weibull Minimum Extreme Value Distribution
A type of extreme-value distribution with a lower bound. Defined for x > 0O and ¢ > 0
flase) = e texp(—a°)
F(z;¢) = 1—exp(—2°)
Glge) = [~log(l—g]"*
=T (1+2)
c
1
1 I'i1+)
c
2 1
Lo r(1+)—r2<1+>
c c
F(1+23)-30(1+2)T(1+21)+20% (14 2)
71 3/2
Ha
4 1 3 1 2 1
. PI+2)—ar(1+H)TQ+2)+6I?(1+)0 (14 2)-3r*(1+1) 5
13
1
. {(Ccl)c ife>1
d

mpy

0 ife<=1

o=

In (2)

392

Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

h[X]:—%—log(c)Jrv—kl

where + is Euler’s constant and equal to

~v =~ 0.57721566490153286061.
Implementation: scipy.stats.weibull_min
Wrapped Cauchy Distribution

Thre is one shape parameter ¢ € (0, 1) with support = € [0, 27].

1—c?
f(aie) = 21 (1 + ¢2 — 2ccos)
ge () = %arctan (11_2‘5&11 (;))
re(q) = 2arctan (1 _T_ Z tan (7“])>
F(r;e) = { 1_9%((2:;)_96) :SS;E;;T
G(ge) = { 27r—r;0(?1)—q) 2?‘112%

h[X] =log (2 (1 —¢?)).

Implementation: scipy.stats.wrapcauchy

Random Variables

There are two general distribution classes that have been implemented for encapsulating continuous random variables
and discrete random variables . Over 80 continuous random variables (RVs) and 10 discrete random variables have been
implemented using these classes. Besides this, new routines and distributions can easily added by the end user. (If you
create one, please contribute it).

All of the statistics functions are located in the sub-package scipy . st at s and afairly complete listing of these functions
can be obtained using info (stats). The list of the random variables available can also be obtained from the docstring
for the stats sub-package.

In the discussion below we mostly focus on continuous RVs. Nearly all applies to discrete variables also, but we point out
some differences here: Specific Points for Discrete Distributions.

In the code samples below we assume that the scipy. stats package is imported as

>>> from scipy import stats

and in some cases we assume that individual objects are imported as

>>> from scipy.stats import norm

For consistency between Python 2 and Python 3, we'll also ensure that print is a function:

>>> from __ future__ import print_function

4.1. SciPy Tutorial 393

SciPy Reference Guide, Release 1.3.2

Getting Help

First of all, all distributions are accompanied with help functions. To obtain just some basic information we print the
relevant docstring: print (stats.norm.__doc__).

To find the support, i.e., upper and lower bound of the distribution, call:

o)

>>> print ('bounds of distribution lower: , upper: ' % (norm.a, norm.b))
bounds of distribution lower: —-inf, upper: inf

We can list all methods and properties of the distribution with dir (norm). As it turns out, some of the methods are
private methods although they are not named as such (their name does not start with a leading underscore), for example
veccdf, are only available for internal calculation (those methods will give warnings when one tries to use them, and
will be removed at some point).

To obtain the real main methods, we list the methods of the frozen distribution. (We explain the meaning of a frozen
distribution below).

>>> rv = norm()

>>> dir (rv) # reformatted

['"_class_ ', '__delattr__', '__ dict__"', '__dir__', '_doc_'", '"_eq "',
' __format__ ', '_ge__ ', '__getattribute__', '_gt__ ', '__hash__"',

' init_ ', '_le_ ', ' 1t ', ' _module_ ', ' _ne_ ', ' new_ "',

' _reduce__ ', '__reduce_ex__ ', '_repr_ ', '__setattr__', '__sizeof_ ',
' str__ ', '__subclasshook__', '_ _weakref__', 'a', 'args', 'b', 'cdf',

'dist', 'entropy', 'expect', 'interval', 'isf', 'kwds', 'logcdf',
'logpdf', 'logpmf', 'logsf', 'mean', 'median', 'moment', 'pdf', 'pmf',
'epf', 'random_state', 'rvs', 'sf', 'stats', 'std', 'var']

Finally, we can obtain the list of available distribution through introspection:

>>> dist_continu = [d for d in dir(stats) if

. isinstance (getattr(stats, d), stats.rv_continuous)]
>>> dist_discrete = [d for d in dir(stats) if

c. isinstance (getattr(stats, d), stats.rv_discrete)]
>>> print ('number of continuous distributions: ' % len(dist_continu))
number of continuous distributions: 98

>>> print ('number of discrete distributions: ' % len(dist_discrete))
number of discrete distributions: 14

Common Methods
The main public methods for continuous RVs are:
* rvs: Random Variates
e pdf: Probability Density Function
¢ cdf: Cumulative Distribution Function
e sf: Survival Function (1-CDF)
* ppf: Percent Point Function (Inverse of CDF)
e isf: Inverse Survival Function (Inverse of SF)
e stats: Return mean, variance, (Fisher’s) skew, or (Fisher’s) kurtosis
* moment: non-central moments of the distribution

Let’s take a normal RV as an example.

394 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

>>> norm.cdf (0)
0.5

To compute the cdf at a number of points, we can pass a list or a numpy array.

>>> norm.cdf ([-1., 0, 11)

array ([0.15865525, 0.5, 0.841344757)
>>> import numpy as np

>>> norm.cdf (np.array([-1., 0, 11))
array ([0.15865525, 0.5, 0.841344757)

Thus, the basic methods such as pdf, cdf, and so on are vectorized.

Other generally useful methods are supported too:

>>> norm.mean (), norm.std(), norm.var ()
(0.0, 1.0, 1.0)

>>> norm.stats (moments="mv")

(array (0.0), array(1.0))

To find the median of a distribution we can use the percent point function pp £, which is the inverse of the cdf:

>>> norm.ppf (0.5)
0.0

To generate a sequence of random variates, use the size keyword argument:

>>> norm.rvs (size=3)
array ([-0.35687759, 1.34347647, -0.11710531]) # random

Note that drawing random numbers relies on generators from numpy.random package. In the example above, the specific
stream of random numbers is not reproducible across runs. To achieve reproducibility, you can explicitly seed a global
variable

>>> np.random.seed (1234)

Relying on a global state is not recommended though. A better way is to use the random_state parameter which accepts
an instance of numpy . random.mt rand.RandomState class, or an integer which is then used to seed an internal
RandomState object:

>>> norm.rvs (size=5, random_state=1234)
array ([0.47143516, -1.19097569, 1.43270697, -0.3126519 , -0.7205887317)

Don’t think that norm.rvs (5) generates 5 variates:

>>> norm.rvs (5)
5.471435163732493

Here, 5 with no keyword is being interpreted as the first possible keyword argument, 1oc, which is the first of a pair of
keyword arguments taken by all continuous distributions. This brings us to the topic of the next subsection.

Shifting and Scaling

All continuous distributions take 1oc and scale as keyword parameters to adjust the location and scale of the distri-
bution, e.g. for the standard normal distribution the location is the mean and the scale is the standard deviation.

4.1. SciPy Tutorial 395

https://www.numpy.org/devdocs/reference/routines.random.html
https://docs.scipy.org/doc/numpy/reference/random/legacy.html#numpy.random.mtrand.RandomState

SciPy Reference Guide, Release 1.3.2

>>> norm.stats (loc=3, scale=4, moments="mv")
(array (3.0), array(16.0))

In many cases the standardized distribution for a random variable X is obtained through the transformation (X - loc)
/ scale. The default values are 1oc = 0 and scale = 1.

Smart use of 1oc and scale can help modify the standard distributions in many ways. To illustrate the scaling further,
the cdf of an exponentially distributed RV with mean 1/ is given by

F(z) =1 —exp(—Az)

By applying the scaling rule above, it can be seen that by taking scale = 1./lambda we get the proper scale.

>>> from scipy.stats import expon
>>> expon.mean (scale=3.)
3.0

Note: Distributions that take shape parameters may require more than simple application of 1oc and/or scale to
achieve the desired form. For example, the distribution of 2-D vector lengths given a constant vector of length R perturbed
by independent N(0, o) deviations in each component is rice(R/c, scale= o). The first argument is a shape parameter
that needs to be scaled along with x.

The uniform distribution is also interesting:

>>> from scipy.stats import uniform
>>> uniform.cdf ([0, 1, 2, 3, 4, 5], loc=1, scale=4)
array([0. , 0. , 0.25, 0.5, 0.75, 1. 1)

Finally, recall from the previous paragraph that we are left with the problem of the meaning of norm.rvs (5). Asit
turns out, calling a distribution like this, the first argument, i.e., the 5, gets passed to set the 1 oc parameter. Let’s see:

>>> np.mean (norm.rvs (5, size=500))
5.0098355106969992

Thus, to explain the output of the example of the last section: norm.rvs (5) generates a single normally distributed
random variate with mean 1oc=5, because of the default size=1.

We recommend that you set 1oc and scale parameters explicitly, by passing the values as keywords rather than as
arguments. Repetition can be minimized when calling more than one method of a given RV by using the technique of
Freezing a Distribution, as explained below.

Shape Parameters

While a general continuous random variable can be shifted and scaled with the 1oc and scale parameters, some
distributions require additional shape parameters. For instance, the gamma distribution, with density

) = Ml

requires the shape parameter a. Observe that setting A can be obtained by setting the scale keyword to 1/A.

Let’s check the number and name of the shape parameters of the gamma distribution. (We know from the above that this
should be 1.)

396 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

>>> from scipy.stats import gamma
>>> gamma.numargs

1

>>> gamma.shapes

lal

Now we set the value of the shape variable to 1 to obtain the exponential distribution, so that we compare easily whether
we get the results we expect.

>>> gamma (1, scale=2.).stats (moments="mv")
(array (2.0), array(4.0))

Notice that we can also specify shape parameters as keywords:

>>> gamma (a=1, scale=2.).stats (moments="mv")
(array(2.0), array(4.0))

Freezing a Distribution

Passing the 1oc and scale keywords time and again can become quite bothersome. The concept of freezing a RV is
used to solve such problems.

>>> rv = gamma (1, scale=2.)

By using rv we no longer have to include the scale or the shape parameters anymore. Thus, distributions can be used in
one of two ways, either by passing all distribution parameters to each method call (such as we did earlier) or by freezing
the parameters for the instance of the distribution. Let us check this:

>>> rv.mean (), rv.std()
(2.0, 2.0)

This is indeed what we should get.

Broadcasting

The basic methods pdf and so on satisfy the usual numpy broadcasting rules. For example, we can calculate the critical
values for the upper tail of the t distribution for different probabilities and degrees of freedom.

>>> stats.t.isf([0.1, 0.05, 0.01], [[10], [1111)
array ([[1.37218364, 1.81246112, 2.7637694¢6],
[1.36343032, 1.79588482, 2.71807918]1])

Here, the first row are the critical values for 10 degrees of freedom and the second row for 11 degrees of freedom (d.o.f.).
Thus, the broadcasting rules give the same result of calling i sf twice:

>>> stats.t.isf ([0.1, 0.05, 0.011, 10)
array ([1.37218364, 1.81246112, 2.76376946])
>>> stats.t.isf([0.1, 0.05, 0.0171, 11)
array ([1.36343032, 1.79588482, 2.71807918])

If the array with probabilities, i.e., [0.1, 0.05, 0.01] and the array of degrees of freedomi.e., [10, 11, 12],
have the same array shape, then element wise matching is used. As an example, we can obtain the 10% tail for 10 d.o.f.,
the 5% tail for 11 d.o.f. and the 1% tail for 12 d.o.f. by calling

4.1. SciPy Tutorial 397

SciPy Reference Guide, Release 1.3.2

>>> stats.t.isf([0.1, 0.05, 0.01], [10, 11, 127)
array ([1.37218364, 1.79588482, 2.68099799])

Specific Points for Discrete Distributions

Discrete distribution have mostly the same basic methods as the continuous distributions. However pdf is replaced the
probability mass function pmf, no estimation methods, such as fit, are available, and scale is not a valid keyword
parameter. The location parameter, keyword 1oc can still be used to shift the distribution.

The computation of the cdf requires some extra attention. In the case of continuous distribution the cumulative distribution
function is in most standard cases strictly monotonic increasing in the bounds (a,b) and has therefore a unique inverse. The
cdf of a discrete distribution, however, is a step function, hence the inverse cdf, i.e., the percent point function, requires
a different definition:

ppf(g) = min{x : cdf(x) >= g, X integer}

For further info, see the docs here.

We can look at the hypergeometric distribution as an example

>>> from scipy.stats import hypergeom
>>> [M, n, N] = [20, 7, 12]

If we use the cdf at some integer points and then evaluate the ppf at those cdf values, we get the initial integers back, for
example

>>> x = np.arange (4)*2

>>> x

array ([0, 2, 4, 6])

>>> prb = hypergeom.cdf (x, M, n, N)

>>> prb

array ([1.03199174e-04, 5.21155831e-02, 6.08359133e-01,
9.89783282e-011)

>>> hypergeom.ppf (prb, M, n, N)

array ([0., 2., 4., 6.1)

If we use values that are not at the kinks of the cdf step function, we get the next higher integer back:

>>> hypergeom.ppf (prb + 1e-8, M, n, N)
array ([1., 3., 5., 7.1)
>>> hypergeom.ppf (prb - 1e-8, M, n, N)
array ([0., 2., 4., 6.1)

Fitting Distributions
The main additional methods of the not frozen distribution are related to the estimation of distribution parameters:
e fit: maximum likelihood estimation of distribution parameters, including location
and scale
* fit_loc_scale: estimation of location and scale when shape parameters are given
* nnlf: negative log likelihood function

 expect: Calculate the expectation of a function against the pdf or pmf

398 Chapter 4. Tutorial

https://docs.scipy.org/doc/scipy/reference/tutorial/stats/discrete.html#percent-point-function-inverse-cdf

SciPy Reference Guide, Release 1.3.2

Performance Issues and Cautionary Remarks

The performance of the individual methods, in terms of speed, varies widely by distribution and method. The results of
a method are obtained in one of two ways: either by explicit calculation, or by a generic algorithm that is independent of
the specific distribution.

Explicit calculation, on the one hand, requires that the method is directly specified for the given distribution, either through
analytic formulas or through special functions in scipy.special or numpy.random for rvs. These are usually
relatively fast calculations.

The generic methods, on the other hand, are used if the distribution does not specify any explicit calculation. To define
a distribution, only one of pdf or cdf is necessary; all other methods can be derived using numeric integration and root
finding. However, these indirect methods can be very slow. As an example, rgh = stats.gausshyper.rvs (0.
5, 2, 2, 2, size=100) creates random variables in a very indirect way and takes about 19 seconds for 100
random variables on my computer, while one million random variables from the standard normal or from the t distribution
take just above one second.

Remaining Issues

The distributions in scipy.stats have recently been corrected and improved and gained a considerable test suite,
however a few issues remain:

« the distributions have been tested over some range of parameters, however in some corner ranges, a few incorrect
results may remain.

¢ the maximum likelihood estimation in fir does not work with default starting parameters for all distributions and the
user needs to supply good starting parameters. Also, for some distribution using a maximum likelihood estimator
might inherently not be the best choice.

Building Specific Distributions

The next examples shows how to build your own distributions. Further examples show the usage of the distributions and
some statistical tests.

Making a Continuous Distribution, i.e., Subclassing rv_continuous

Making continuous distributions is fairly simple.

>>> from scipy import stats
>>> class deterministic_gen (stats.rv_continuous) :
def _cdf (self, x):
return np.where(x < 0, 0., 1.)
def _stats(self):
return 0., 0., 0., O.

>>> deterministic = deterministic_gen (name="deterministic")
>>> deterministic.cdf (np.arange (-3, 3, 0.5))
array ([0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1.1)

Interestingly, the pdf is now computed automatically:

>>> deterministic.pdf (np.arange (-3, 3, 0.5))

array ([0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00,
5.83333333e+04, 4.16333634e-12,
4.16333634e-12, 4.16333634e-12,

.00000000e+00,
.00000000e+00,
.16333634e-12,
.16333634e-12])

o O O

4.1. SciPy Tutorial 399

SciPy Reference Guide, Release 1.3.2

Be aware of the performance issues mentions in Performance Issues and Cautionary Remarks. The computation of un-
specified common methods can become very slow, since only general methods are called which, by their very nature,
cannot use any specific information about the distribution. Thus, as a cautionary example:

>>> from scipy.integrate import quad
>>> quad (deterministic.pdf, -le-1, le-1)
(4.163336342344337e-13, 0.0)

But this is not correct: the integral over this pdf should be 1. Let’s make the integration interval smaller:

>>> quad (deterministic.pdf, -1e-3, 1le-3) # warning removed
(1.000076872229173, 0.0010625571718182458)

This looks better. However, the problem originated from the fact that the pdf is not specified in the class definition of the
deterministic distribution.

Subclassing rv_discrete

In the following we use stats.rv_discrete to generate a discrete distribution that has the probabilities of the
truncated normal for the intervals centered around the integers.

General Info
From the docstring of rv_discrete, help (stats.rv_discrete),

“You can construct an arbitrary discrete rv where P{X=xk} = pk by passing to the rv_discrete initialization method
(through the values= keyword) a tuple of sequences (xk, pk) which describes only those values of X (xk) that occur
with nonzero probability (pk).”

Next to this, there are some further requirements for this approach to work:

¢ The keyword name is required.

» The support points of the distribution xk have to be integers.

» The number of significant digits (decimals) needs to be specified.
In fact, if the last two requirements are not satisfied an exception may be raised or the resulting numbers may be incorrect.
An Example

Let’s do the work. First

>>> npoints = 20 # number of integer support points of the distribution.
—minus 1

>>> npointsh = npoints // 2

>>> npointsf float (npoints)

>>> nbound = 4 # bounds for the truncated normal

>>> normbound = (1+1/npointsf) * nbound # actual bounds of truncated normal
>>> grid = np.arange (—npointsh, npointsh+2, 1) # integer grid

>>> gridlimitsnorm = (grid-0.5) / npointsh * nbound # bin limits for the.
—truncnorm

>>> gridlimits = grid - 0.5 # used later in the analysis

>>> grid = grid[:-1]

>>> probs = np.diff (stats.truncnorm.cdf (gridlimitsnorm, —-normbound, .
—normbound))

>>> gridint = grid

And finally we can subclass rv_discrete:

400 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

>>> normdiscrete = stats.rv_discrete(values=(gridint,
np.round (probs, decimals=7)), name='normdiscrete')

Now that we have defined the distribution, we have access to all common methods of discrete distributions.

>>> print ('mean = %6.4f, variance = %6.4f, skew = %6.4f, kurtosis = %6.4f"' %
e normdiscrete.stats (moments="mvsk'))

mean = -0.0000, wvariance = 6.3302, skew = 0.0000, kurtosis = -0.0076

>>> nd_std = np.sqgrt (normdiscrete.stats (moments='v"))

Testing the Implementation

Let’s generate a random sample and compare observed frequencies with the probabilities.

>>> n_sample = 500

>>> np.random.seed(87655678) # fix the seed for replicability

>>> rvs = normdiscrete.rvs(size=n_sample)

>>> f, 1 = np.histogram(rvs, bins=gridlimits)

>>> sfreq = np.vstack([gridint, f, probs*n_sample]).T

>>> print (sfreq)

[[-1.00000000e+01 0.00000000e+00 2.95019349e-02]
[-9.00000000e+00 0.00000000e+00 1.32294142e-01]
[-8.00000000e+00 0.00000000e+00 5.06497902e-01]
[-7.00000000e+00 2.00000000e+00 1.65568919e+00]
[-6.00000000e+00 1.00000000e+00 4.62125309e+00]
[-5.00000000e+00 9.00000000e+00 1.10137298e+01]
[-4.00000000e+00 2.60000000e+01 2.24137683e+01]
[-3.00000000e+00 3.70000000e+01 3.89503370e+01]
[-2.00000000e+00 5.10000000e+01 5.78004747e+01]
[-1.00000000e+00 7.10000000e+01 7.32455414e+01]
[0.00000000e+00 7.40000000e+01 7.92618251e+01]
[1.00000000e+00 8.90000000e+01 7.32455414e+01]
[2.00000000e+00 5.50000000e+01 5.78004747e+01]
[3.00000000e+00 5.00000000e+01 3.89503370e+01]
[4.00000000e+00 1.70000000e+01 2.24137683e+01]
[5.00000000e+00 1.10000000e+01 1.10137298e+01]
[6.00000000e+00 4.00000000e+00 4.62125309e+00]
[7.00000000e+00 3.00000000e+00 1.65568919e+00]
[8.00000000e+00 0.00000000e+00 5.06497902e-01]
[9.00000000e+00 0.00000000e+00 1.32294142e-01]
[1.00000000e+01 0.00000000e+00 2.95019349e-02]]

Next, we can test, whether our sample was generated by our normdiscrete distribution. This also verifies whether the
random numbers are generated correctly.

The chisquare test requires that there are a minimum number of observations in each bin. We combine the tail bins into
larger bins so that they contain enough observations.

>>> f2 = np.hstack([f[:5].sum(), £[5:-5], f£[-5:1.sum()])
>>> p2 = np.hstack([probs[:5].sum(), probs[5:-5], probs[-5:].sum()])
>>> ch2, pval = stats.chisquare(f2, p2*n_sample)

4.1. SciPy Tutorial 401

SciPy Reference Guide, Release 1.3.2

Frequency and Probability of normdiscrete

HEl true
0.15 A B sample

0.10 ~

Frequency

0.05 A

0.00 -
-109-8-7-6-5-4-3-2-1012 34567 8910

Cumulative Frequency and CDF of normdiscrete

107w true

0.8 - E sample

« 0.6

cd

0.4 4

0.2 4

0.0 -
-109-8-7-6-5-4-3-2-1012 34567 8910

402 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

>>> print ('chisquare for normdiscrete: chi2 = pvalue = "% (chz,._
—pval))
chisquare for normdiscrete: chi2 = 12.466 pvalue = 0.4090

The pvalue in this case is high, so we can be quite confident that our random sample was actually generated by the
distribution.

Analysing One Sample

First, we create some random variables. We set a seed so that in each run we get identical results to look at. As an example
we take a sample from the Student t distribution:

>>> np.random.seed (282629734)
>>> x = stats.t.rvs (10, size=1000)

Here, we set the required shape parameter of the t distribution, which in statistics corresponds to the degrees of freedom,
to 10. Using size=1000 means that our sample consists of 1000 independently drawn (pseudo) random numbers. Since
we did not specify the keyword arguments loc and scale, those are set to their default values zero and one.

Descriptive Statistics

X is a numpy array, and we have direct access to all array methods, e.g.

>>> print (x.min()) # equivalent to np.min(x)
-3.78975572422
>>> print (x.max()) # equivalent to np.max(x)

5.26327732981

>>> print(x.mean()) # equivalent to np.mean (x)
0.0140610663985

>>> print(x.var()) # equivalent to np.var(x))
1.28899386208

How do the some sample properties compare to their theoretical counterparts?

>>> m, v, s, k = stats.t.stats (10, moments='mvsk'")

>>> n, (smin, smax), sm, sv, ss, sk = stats.describe (x)

>>> sstr = ' mean = , variance = , skew = , kurtosis =
>>> print (sstr % ('distribution:', m, v, s ,k))

distribution: mean = 0.0000, variance = 1.2500, skew = 0.0000, kurtosis = 1.
0000

>>> print(sstr % ('sample:', sm, sv, ss, sk))

sample: mean = 0.0141, variance = 1.2903, skew = 0.2165, kurtosis = 1.
0556

Note: stats.describe uses the unbiased estimator for the variance, while np.var is the biased estimator.

For our sample the sample statistics differ a by a small amount from their theoretical counterparts.

T-test and KS-test

We can use the t-test to test whether the mean of our sample differs in a statistically significant way from the theoretical
expectation.

4.1. SciPy Tutorial 403

SciPy Reference Guide, Release 1.3.2

)

>>> print ('t-statistic = pvalue = ' % stats.ttest_lsamp(x, m))
t-statistic = 0.391 pvalue 0.6955

The pvalue is 0.7, this means that with an alpha error of, for example, 10%, we cannot reject the hypothesis that the
sample mean is equal to zero, the expectation of the standard t-distribution.

As an exercise, we can calculate our ttest also directly without using the provided function, which should give us the same
answer, and so it does:

>>> tt = (sm-m)/np.sqrt(sv/float (n)) # t—-statistic for mean

>>> pval = stats.t.sf(np.abs(tt), n-1)*2 # two-sided pvalue = Prob (abs(t)>tt)
>>> print ('t-statistic = pvalue = "% (tt, pval))

t-statistic = 0.391 pvalue 0.6955

The Kolmogorov-Smirnov test can be used to test the hypothesis that the sample comes from the standard t-distribution

>>> print ('KS-statistic D = pvalue = ' % stats.kstest(x, 't', (10,
=)))
KS-statistic D = 0.016 pvalue = 0.9606

Again the p-value is high enough that we cannot reject the hypothesis that the random sample really is distributed ac-
cording to the t-distribution. In real applications, we don’t know what the underlying distribution is. If we perform the
Kolmogorov-Smirnov test of our sample against the standard normal distribution, then we also cannot reject the hypoth-
esis that our sample was generated by the normal distribution given that in this example the p-value is almost 40%.

o)

>>> print ('KS-statistic D = pvalue = ' % stats.kstest (x, 'norm'))
KS-statistic D = 0.028 pvalue = 0.3949

However, the standard normal distribution has a variance of 1, while our sample has a variance of 1.29. If we standardize
our sample and test it against the normal distribution, then the p-value is again large enough that we cannot reject the
hypothesis that the sample came form the normal distribution.

>>> d, pval = stats.kstest((x-x.mean())/x.std(), 'norm')
>>> print ('KS-statistic D = pvalue = "% (d, pval))
KS-statistic D = 0.032 pvalue = 0.2402

Note: The Kolmogorov-Smirnov test assumes that we test against a distribution with given parameters, since in the last
case we estimated mean and variance, this assumption is violated, and the distribution of the test statistic on which the
p-value is based, is not correct.

Tails of the distribution

Finally, we can check the upper tail of the distribution. We can use the percent point function ppf, which is the inverse
of the cdf function, to obtain the critical values, or, more directly, we can use the inverse of the survival function

>>> crit01, crit05, critl0 = stats.t.ppf([1-0.01, 1-0.05, 1-0.10], 10)

>>> print ('critical values from ppf at 1%%, 5 and 10 !
% (crit01, crit05, criti10))

critical values from ppf at 1%, 5% and 10% 2.7638 1.8125 1.3722

>>> print ('critical values from isf at 1%%, 5 and 10 !
—% tuple(stats.t.isf([0.01,0.05,0.10],10)))

critical values from isf at 1%, 5% and 10% 2.7638 1.8125 1.3722

404 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

>>> freq0l = np.sum(x>crit01) / float(n) * 100
>>> freq05 = np.sum(x>crit05) / float(n) * 100
>>> freql0 = np.sum(x>critl10) / float(n) * 100
>>> print ('sample —frequency at 1%%, 5 and 10 tail !

% (freg0l, fregl05, freqlO))
sample %—-frequency at 1%, 5% and 10% tail 1.4000 5.8000 10.5000

In all three cases, our sample has more weight in the top tail than the underlying distribution. We can briefly check a larger
sample to see if we get a closer match. In this case the empirical frequency is quite close to the theoretical probability,
but if we repeat this several times the fluctuations are still pretty large.

>>> freq051 = np.sum(stats.t.rvs (10, size=10000) > crit05) / 10000.0 * 100
>>> print ('larger sample —frequency at 5 tail ' % freq051)
larger sample %$-frequency at 5% tail 4.8000

We can also compare it with the tail of the normal distribution, which has less weight in the tails:

o\

>>> print('tail prob. of normal at 13%%, 5 and 10 !
Ca tuple (stats.norm.sf ([crit0l, crit05, critl10])*100))
tail prob. of normal at 1%, 5% and 10% 0.2857 3.4957 8.5003

The chisquare test can be used to test, whether for a finite number of bins, the observed frequencies differ significantly
from the probabilities of the hypothesized distribution.

>>> quantiles = [0.0, 0.01, 0.05, 0.1, 1-0.10, 1-0.05, 1-0.01, 1.0]
>>> crit = stats.t.ppf(quantiles, 10)
>>> crit

array ([-inf, -2.76376946, -1.81246112, -1.37218364, 1.37218364,
1.81246112, 2.76376946, inf])

>>> n_sample = x.size

>>> freqgcount = np.histogram(x, bins=crit) [0]

>>> tprob np.diff (quantiles)
>>> nprob = np.diff(stats.norm.cdf (crit))

>>> tch, tpval = stats.chisquare (freqcount, tprob*n_sample)

>>> nch, npval = stats.chisquare (freqgcount, nprob*n_sample)

>>> print ('chisquare for t: chi2 = pvalue = ' % (tch, tpval))
chisquare for t: chi2 = 2.30 pvalue = 0.8901

>>> print ('chisquare for normal: chi2 = pvalue = ' % (nch, npval))
chisquare for normal: chi2 = 64.60 pvalue = 0.0000

We see that the standard normal distribution is clearly rejected while the standard t-distribution cannot be rejected. Since
the variance of our sample differs from both standard distribution, we can again redo the test taking the estimate for scale
and location into account.

The fit method of the distributions can be used to estimate the parameters of the distribution, and the test is repeated
using probabilities of the estimated distribution.

>>> tdof, tloc, tscale = stats.t.fit (x)
>>> nloc, nscale = stats.norm.fit (x)
>>> tprob = np.diff(stats.t.cdf(crit, tdof, loc=tloc, scale=tscale))
>>> nprob = np.diff (stats.norm.cdf (crit, loc=nloc, scale=nscale))
>>> tch, tpval = stats.chisquare (freqgcount, tprob*n_sample)
>>> nch, npval = stats.chisquare (freqgcount, nprob*n_sample)
>>> print ('chisquare for t: chi2z = pvalue = !

o\

(tch, tpval))

(continues on next page)

4.1. SciPy Tutorial 405

SciPy Reference Guide, Release 1.3.2

(continued from previous page)

chisquare for t: chi2 = 1.58 pvalue = 0.9542
>>> print ('chisquare for normal: chi2 = pvalue = ' % (nch, npval))
chisquare for normal: chi2 = 11.08 pvalue = 0.0858

Taking account of the estimated parameters, we can still reject the hypothesis that our sample came from a normal
distribution (at the 5% level), but again, with a p-value of 0.95, we cannot reject the t distribution.

Special tests for normal distributions

Since the normal distribution is the most common distribution in statistics, there are several additional functions available
to test whether a sample could have been drawn from a normal distribution

First we can test if skew and kurtosis of our sample differ significantly from those of a normal distribution:

>>> print ('normal skewtest teststat = pvalue = ' % stats.
—skewtest (x))

normal skewtest teststat = 2.785 pvalue = 0.0054

>>> print ('normal kurtosistest teststat = pvalue = ' % stats.
—kurtosistest (x))

normal kurtosistest teststat = 4.757 pvalue = 0.0000

These two tests are combined in the normality test

o\

>>> print ('normaltest teststat = pvalue = ! stats.normaltest (x))

normaltest teststat = 30.379 pvalue = 0.0000

In all three tests the p-values are very low and we can reject the hypothesis that the our sample has skew and kurtosis of
the normal distribution.

Since skew and kurtosis of our sample are based on central moments, we get exactly the same results if we test the
standardized sample:

o\

>>> print ('normaltest teststat = pvalue =
c.. stats.normaltest ((x-x.mean ()) /x.std()))
normaltest teststat = 30.379 pvalue = 0.0000

Because normality is rejected so strongly, we can check whether the normaltest gives reasonable results for other cases:

>>> print ('normaltest teststat = pvalue = ' %

c. stats.normaltest (stats.t.rvs (10, size=100)))
normaltest teststat = 4.698 pvalue = 0.0955

>>> print ('normaltest teststat = pvalue = "%

ce stats.normaltest (stats.norm.rvs (size=1000)))
normaltest teststat = 0.613 pvalue = 0.7361

When testing for normality of a small sample of t-distributed observations and a large sample of normal distributed
observation, then in neither case can we reject the null hypothesis that the sample comes from a normal distribution. In
the first case this is because the test is not powerful enough to distinguish a t and a normally distributed random variable
in a small sample.

Comparing two samples

In the following, we are given two samples, which can come either from the same or from different distribution, and we
want to test whether these samples have the same statistical properties.

406 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

Comparing means

Test with sample with identical means:

>>> rvsl stats.norm.rvs (loc=5, scale=10, size=500)

>>> rvs2 = stats.norm.rvs (loc=5, scale=10, size=500)

>>> stats.ttest_ind(rvsl, rvs2)

Ttest_indResult (statistic=-0.5489036175088705, pvalue=0.5831943748663959)

Test with sample with different means:

>>> rvs3 = stats.norm.rvs (loc=8, scale=10, size=500)
>>> stats.ttest_ind(rvsl, rvs3)
Ttest_indResult (statistic=-4.533414290175026, pvalue=6.507128186389019e-06)

Kolmogorov-Smirnov test for two samples ks_2samp

For the example where both samples are drawn from the same distribution, we cannot reject the null hypothesis since the
pvalue is high

>>> stats.ks_2samp(rvsl, rvs2)
Ks_2sampResult (statistic=0.026, pvalue=0.9959527565364388)

In the second example, with different location, i.e. means, we can reject the null hypothesis since the pvalue is below 1%

>>> stats.ks_2samp(rvsl, rvs3)
Ks_2sampResult (statistic=0.114, pvalue=0.00299005061044668)

Kernel Density Estimation

A common task in statistics is to estimate the probability density function (PDF) of a random variable from a set of data
samples. This task is called density estimation. The most well-known tool to do this is the histogram. A histogram is a
useful tool for visualization (mainly because everyone understands it), but doesn’t use the available data very efficiently.
Kernel density estimation (KDE) is a more efficient tool for the same task. The gaussian_kde estimator can be used
to estimate the PDF of univariate as well as multivariate data. It works best if the data is unimodal.

Univariate estimation

We start with a minimal amount of data in order to see how gaussian_kde works, and what the different options for
bandwidth selection do. The data sampled from the PDF is show as blue dashes at the bottom of the figure (this is called
a rug plot):

>>> from scipy import stats
>>> import matplotlib.pyplot as plt

>>> x1 = np.array([-7, -5, 1, 4, 5], dtype=np.float)
>>> kdel = stats.gaussian_kde (x1)
>>> kde2 = stats.gaussian_kde (x1, bw_method='silverman')

>>> fig = plt.figure()
>>> ax = fig.add_subplot (111)

4.1. SciPy Tutorial 407

SciPy Reference Guide, Release 1.3.2

>>> ax.plot (x1, np.zeros(xl.shape), 'b+', ms=20) # rug plot

>>> x_eval = np.linspace(-10, 10, num=200)

>>> ax.plot (x_eval, kdel(x_eval), 'k-', label="Scott's Rule")

>>> ax.plot (x_eval, kde2(x_eval), 'r-', label="Silverman's Rule")

>>> plt.show ()

0.06 -
0.05 A
0.04 ~
0.03 A
0.02 ~
0.01 ~

ool L Lo

-10 -5 0 5 10

We see that there is very little difference between Scott’s Rule and Silverman’s Rule, and that the bandwidth selection with
a limited amount of data is probably a bit too wide. We can define our own bandwidth function to get a less smoothed
out result.

>>> def my_kde_bandwidth (obj, fac=1./5):
""r"we use Scott's Rule, multiplied by a constant factor."""
return np.power (obj.n, -1./(obj.d+4)) * fac

>>> fig = plt.figure()
>>> ax = fig.add_subplot (111)

>>> ax.plot (x1, np.zeros(xl.shape), 'b+', ms=20) # rug plot
>>> kde3 = stats.gaussian_kde (x1, bw_method=my_kde_bandwidth)
>>> ax.plot (x_eval, kde3(x_eval), 'g-', label="With smaller BW")

>>> plt.show ()

We see that if we set bandwidth to be very narrow, the obtained estimate for the probability density function (PDF) is
simply the sum of Gaussians around each data point.

We now take a more realistic example, and look at the difference between the two available bandwidth selection rules.
Those rules are known to work well for (close to) normal distributions, but even for unimodal distributions that are quite
strongly non-normal they work reasonably well. As a non-normal distribution we take a Student’s T distribution with 5
degrees of freedom.

408 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

0.15 A
0.10 A

0.05 A

0.00{ = - -

-10 =5 0 5 10

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

np.random.seed (12456)

x1 = np.random.normal (size=200) # random data, normal distribution
xs = np.linspace(xl.min()-1, x1.max()+1, 200)

kdel = stats.gaussian_kde (x1)

kde2 = stats.gaussian_kde(xl, bw_method='silverman')

fig = plt.figure(figsize=(8, 6))

axl = fig.add_subplot (211)

axl.plot(x1l, np.zeros(xl.shape), 'bt+', ms=12) # rug plot
axl.plot (xs, kdel(xs), 'k-'", label="Scott's Rule")
axl.plot (xs, kde2(xs), 'b-', label="Silverman's Rule'")
axl.plot (xs, stats.norm.pdf(xs), 'r—--', label="True PDE")

axl.set_xlabel ('x'")

axl.set_ylabel ('Density')

axl.set_title ("Normal (top) and Student's T$_{df=5}$ (bottom) distributions")
axl.legend(loc=1)

X2 = stats.t.rvs (5, size=200) # random data, T distribution
xs = np.linspace(x2.min() - 1, x2.max() + 1, 200)

kde3 = stats.gaussian_kde (x2)

kded4 = stats.gaussian_kde (x2, bw_method='silverman')

ax2 = fig.add_subplot (212)
ax2.plot (x2, np.zeros(x2.shape), 'bt+', ms=12) # rug plot

(continues on next page)

4.1. SciPy Tutorial 409

SciPy Reference Guide, Release 1.3.2

(continued from previous page)

ax2.plot (xs, kde3(xs), 'k-', label="Scott's Rule")
ax2.plot (xs, kded (xs), 'b-', label="Silverman's Rule")
ax2.plot (xs, stats.t.pdf(xs, 5), 'r——', label="True PDE")

ax2.set_xlabel ('x")
ax2.set_ylabel ('Density'")

plt.show()

Normal (top) and Student's T4r=5 (bottom) distributions

S —— Scott's Rule

034 — Silverman's Rule
' ——- True PDF

We now take a look at a bimodal distribution with one wider and one narrower Gaussian feature. We expect that this will
be a more difficult density to approximate, due to the different bandwidths required to accurately resolve each feature.

>>> from functools import partial

>>> locl, scalel, sizel = (-2, 1, 175)
>>> loc2, scale2, size2 = (2, 0.2, 50)
>>> x2 = np.concatenate ([np.random.normal (loc=locl, scale=scalel, size=sizel),

np.random.normal (loc=loc2, scale=scale2,.
»size=size2)])

410 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

>>> x_eval = np.linspace(x2.min() - 1, x2.max() + 1, 500)

>>> kde = stats.gaussian_kde (x2)

>>> kde2 = stats.gaussian_kde (x2, bw_method='silverman')

>>> kde3 = stats.gaussian_kde (x2, bw_method=partial (my_kde_bandwidth, fac=0.

—2))
>>> kded4d = stats.gaussian_kde (x2, bw_method=partial (my_kde_bandwidth, fac=0.
=5))

>>> pdf = stats.norm.pdf
>>> bimodal_pdf = pdf (x_eval, loc=locl, scale=scalel) * float(sizel) / x2.
size + \

pdf (x_eval, loc=loc2, scale=scale2) * float (size2) / x2.size

>>> fig = plt.figure(figsize=(8, 6))
>>> ax = fig.add_subplot (111)

>>> ax.plot (x2, np.zeros(x2.shape), 'bt+', ms=12)

>>> ax.plot (x_eval, kde(x_eval), 'k-', label="Scott's Rule")

>>> ax.plot (x_eval, kde2(x_eval), 'b-', label="Silverman's Rule")
>>> ax.plot (x_eval, kde3(x_eval), 'g-', label="Scott * 0.2")

>>> ax.plot (x_eval, kded (x_eval), 'c-', label="Scott * 0.5")

>>> ax.plot (x_eval, bimodal_pdf, 'r—--', label="Actual PDEF")

>>> ax.set_xlim([x_eval.min(), x_eval.max()])
>>> ax.legend(loc=2)

>>> ax.set_xlabel ('x")

>>> ax.set_ylabel ('Density’')

>>> plt.show ()

As expected, the KDE is not as close to the true PDF as we would like due to the different characteristic size of the two
features of the bimodal distribution. By halving the default bandwidth (Scott * 0.5) we can do somewhat better,
while using a factor 5 smaller bandwidth than the default doesn’t smooth enough. What we really need though in this case
is a non-uniform (adaptive) bandwidth.

Multivariate estimation

With gaussian_kde we can perform multivariate as well as univariate estimation. We demonstrate the bivariate case.
First we generate some random data with a model in which the two variates are correlated.

>>> def measure(n) :
"""Measurement model, return two coupled measurements.
ml = np.random.normal (size=n)
m2 = np.random.normal (scale=0.5, size=n)
return ml+m2, ml-m2

mrmrn

>>> ml, m2 = measure (2000)
>>> xmin = ml.min ()
>>> xmax = ml.max ()
>>> ymin = m2.min ()
>>> ymax = m2.max ()

Then we apply the KDE to the data:

4.1. SciPy Tutorial 411

SciPy Reference Guide, Release 1.3.2

Density

0.4

Scott's Rule
Silverman's Rule
Scott * 0.2

Scott * 0.5

=== Actual PDF

412

Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

>>> X, Y = np.mgrid[xmin:xmax:1007j, ymin:ymax:1007]

>>> positions = np.vstack([X.ravel (), Y.ravel()])

>>> values = np.vstack([ml, m2])

>>> kernel = stats.gaussian_kde (values)

>>> 7 = np.reshape (kernel.evaluate (positions).T, X.shape)

Finally we plot the estimated bivariate distribution as a colormap, and plot the individual data points on top.

>>> fig = plt.figure(figsize=(8, 6))
>>> ax = fig.add_subplot (111)

>>> ax.imshow (np.rot90(Z), cmap=plt.cm.gist_earth_r,
extent=[xmin, xmax, ymin, ymax])
>>> ax.plot (ml, m2, 'k.', markersize=2)

>>> ax.set_xlim([xmin, xmax])
>>> ax.set_ylim([ymin, ymax])

>>> plt.show ()

|
IN

4.1. SciPy Tutorial 413

SciPy Reference Guide, Release 1.3.2

4.1.14 Multidimensional image processing (scipy.ndimage)
Introduction

Image processing and analysis are generally seen as operations on two-dimensional arrays of values. There are however a
number of fields where images of higher dimensionality must be analyzed. Good examples of these are medical imaging
and biological imaging. numpy is suited very well for this type of applications due its inherent multidimensional nature.
The scipy.ndimage packages provides a number of general image processing and analysis functions that are designed
to operate with arrays of arbitrary dimensionality. The packages currently includes functions for linear and non-linear
filtering, binary morphology, B-spline interpolation, and object measurements.

Properties shared by all functions

All functions share some common properties. Notably, all functions allow the specification of an output array with the
output argument. With this argument you can specify an array that will be changed in-place with the result with the
operation. In this case the result is not returned. Usually, using the ousput argument is more efficient, since an existing
array is used to store the result.

The type of arrays returned is dependent on the type of operation, but it is in most cases equal to the type of the input.
If, however, the output argument is used, the type of the result is equal to the type of the specified output argument. If
no output argument is given, it is still possible to specify what the result of the output should be. This is done by simply
assigning the desired numpy type object to the output argument. For example:

>>> from scipy.ndimage import correlate

>>> correlate(np.arange(10), [1, 2.51)

array([0, 2, 6, 9, 13, 16, 20, 23, 27, 30])

>>> correlate(np.arange(10), [1, 2.5], output=np.float64)

array ([0. , 2.5, 6. , 9.5, 13. , 1.5, 20. , 23.5, 27. , 30.5])

Filter functions

The functions described in this section all perform some type of spatial filtering of the input array: the elements in
the output are some function of the values in the neighborhood of the corresponding input element. We refer to this
neighborhood of elements as the filter kernel, which is often rectangular in shape but may also have an arbitrary footprint.
Many of the functions described below allow you to define the footprint of the kernel, by passing a mask through the
footprint parameter. For example a cross shaped kernel can be defined as follows:

>>> footprint = np.array([([(o, 1, o1, [, 1, 11, [0, 1, 011)
>>> footprint
array ([[O0, 1, 01,

(1, 1, 11,

(0, 1, 011)

[N

Usually the origin of the kernel is at the center calculated by dividing the dimensions of the kernel shape by two. For
instance, the origin of a one-dimensional kernel of length three is at the second element. Take for example the correlation
of a one-dimensional array with a filter of length 3 consisting of ones:

>>> from scipy.ndimage import correlateld
>> a = [0, 0O, O, 1, 0, 0, 0]
>>> correlateld(a, [1, 1, 11)
array ([0, 0, 1, 1, 1, 0, 0])

414 Chapter 4. Tutorial

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy

SciPy Reference Guide, Release 1.3.2

Sometimes it is convenient to choose a different origin for the kernel. For this reason most functions support the origin
parameter which gives the origin of the filter relative to its center. For example:

>> a = [0, O, O, 1, 0, 0, 0]
>>> correlateld(a, [1, 1, 1], origin = -1)
array ([0, 1, 1, 1, 0, 0, 0])

The effect is a shift of the result towards the left. This feature will not be needed very often, but it may be useful especially
for filters that have an even size. A good example is the calculation of backward and forward differences:

>>> a = [0, O, 1, 1, 1, O, O]

>>> correlateld(a, [-1, 1]) # backward difference
array ([O, 0, 1, 0, 0, -1, 01)
>>> correlateld(a, [-1, 1], origin = -1) # forward difference

array ([O, 1, 0, o, -1, 0, 01)

We could also have calculated the forward difference as follows:

>>> correlateld(a, [0, -1, 1])
array ([O, 1, 0, o, -1, 0, 01)

However, using the origin parameter instead of a larger kernel is more efficient. For multidimensional kernels origin can
be a number, in which case the origin is assumed to be equal along all axes, or a sequence giving the origin along each
axis.

Since the output elements are a function of elements in the neighborhood of the input elements, the borders of the array
need to be dealt with appropriately by providing the values outside the borders. This is done by assuming that the arrays are
extended beyond their boundaries according certain boundary conditions. In the functions described below, the boundary
conditions can be selected using the mode parameter which must be a string with the name of the boundary condition.
The following boundary conditions are currently supported:

“nearest” Use the value at the boundary [123]->[11233]
“wrap” Periodically replicate the array [123]>[31231]
“reflect” Reflect the array at the boundary [123]->[11233]
“constant” | Use a constant value, default is 0.0 | [1 2 3]->[0 1 2 3 0]

The “constant” mode is special since it needs an additional parameter to specify the constant value that should be used.

Note: The easiest way to implement such boundary conditions would be to copy the data to a larger array and extend
the data at the borders according to the boundary conditions. For large arrays and large filter kernels, this would be very
memory consuming, and the functions described below therefore use a different approach that does not require allocating
large temporary buffers.

Correlation and convolution

* The correlateld function calculates a one-dimensional correlation along the given axis. The lines of the array
along the given axis are correlated with the given weights. The weights parameter must be a one-dimensional
sequences of numbers.

¢ The function correlate implements multidimensional correlation of the input array with a given kernel.

* The convolveld function calculates a one-dimensional convolution along the given axis. The lines of the array
along the given axis are convoluted with the given weights. The weights parameter must be a one-dimensional
sequences of numbers.

4.1. SciPy Tutorial 415

SciPy Reference Guide, Release 1.3.2

Note: A convolution is essentially a correlation after mirroring the kernel. As a result, the origin parameter behaves
differently than in the case of a correlation: the result is shifted in the opposite directions.

¢ The function convolve implements multidimensional convolution of the input array with a given kernel.

Note: A convolution is essentially a correlation after mirroring the kernel. As a result, the origin parameter behaves
differently than in the case of a correlation: the results is shifted in the opposite direction.

Smoothing filters

e The gaussian_filterid function implements a one-dimensional Gaussian filter. The standard-deviation of
the Gaussian filter is passed through the parameter sigma. Setting order = O corresponds to convolution with a
Gaussian kernel. An order of 1, 2, or 3 corresponds to convolution with the first, second or third derivatives of a
Gaussian. Higher order derivatives are not implemented.

e The gaussian_filter function implements a multidimensional Gaussian filter. The standard-deviations of
the Gaussian filter along each axis are passed through the parameter sigma as a sequence or numbers. If sigma is
not a sequence but a single number, the standard deviation of the filter is equal along all directions. The order of
the filter can be specified separately for each axis. An order of O corresponds to convolution with a Gaussian kernel.
An order of 1, 2, or 3 corresponds to convolution with the first, second or third derivatives of a Gaussian. Higher
order derivatives are not implemented. The order parameter must be a number, to specify the same order for all
axes, or a sequence of numbers to specify a different order for each axis.

Note: The multidimensional filter is implemented as a sequence of one-dimensional Gaussian filters. The inter-
mediate arrays are stored in the same data type as the output. Therefore, for output types with a lower precision,
the results may be imprecise because intermediate results may be stored with insufficient precision. This can be
prevented by specifying a more precise output type.

e The uniform filterld function calculates a one-dimensional uniform filter of the given size along the given
axis.

e The uniform filter implements a multidimensional uniform filter. The sizes of the uniform filter are given
for each axis as a sequence of integers by the size parameter. If size is not a sequence, but a single number, the sizes
along all axis are assumed to be equal.

Note: The multidimensional filter is implemented as a sequence of one-dimensional uniform filters. The inter-
mediate arrays are stored in the same data type as the output. Therefore, for output types with a lower precision,
the results may be imprecise because intermediate results may be stored with insufficient precision. This can be
prevented by specifying a more precise output type.

Filters based on order statistics

e The minimum_filterid function calculates a one-dimensional minimum filter of given size along the given
axis.

e The maximum_filterld function calculates a one-dimensional maximum filter of given size along the given
axis.

e The minimum_£1ilter function calculates a multidimensional minimum filter. Either the sizes of a rectangular
kernel or the footprint of the kernel must be provided. The size parameter, if provided, must be a sequence of
sizes or a single number in which case the size of the filter is assumed to be equal along each axis. The footprint,
if provided, must be an array that defines the shape of the kernel by its non-zero elements.

416 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

e The maximum_f1ilter function calculates a multidimensional maximum filter. Either the sizes of a rectangular
kernel or the footprint of the kernel must be provided. The size parameter, if provided, must be a sequence of
sizes or a single number in which case the size of the filter is assumed to be equal along each axis. The footprint,
if provided, must be an array that defines the shape of the kernel by its non-zero elements.

e The rank_filter function calculates a multidimensional rank filter. The rank may be less then zero, i.e., rank
= -1 indicates the largest element. Either the sizes of a rectangular kernel or the footprint of the kernel must be
provided. The size parameter, if provided, must be a sequence of sizes or a single number in which case the size of
the filter is assumed to be equal along each axis. The footprint, if provided, must be an array that defines the shape
of the kernel by its non-zero elements.

e The percentile_ filter function calculates a multidimensional percentile filter. The percentile may be less
then zero, i.e., percentile = -20 equals percentile = 80. Either the sizes of a rectangular kernel or the footprint of the
kernel must be provided. The size parameter, if provided, must be a sequence of sizes or a single number in which
case the size of the filter is assumed to be equal along each axis. The foorprint, if provided, must be an array that
defines the shape of the kernel by its non-zero elements.

e The median_filter function calculates a multidimensional median filter. Either the sizes of a rectangular
kernel or the footprint of the kernel must be provided. The size parameter, if provided, must be a sequence of
sizes or a single number in which case the size of the filter is assumed to be equal along each axis. The footprint if
provided, must be an array that defines the shape of the kernel by its non-zero elements.

Derivatives

Derivative filters can be constructed in several ways. The function gaussian_filterid described in Smoothing
filters can be used to calculate derivatives along a given axis using the order parameter. Other derivative filters are the
Prewitt and Sobel filters:

e The prewitt function calculates a derivative along the given axis.
* The sobel function calculates a derivative along the given axis.

The Laplace filter is calculated by the sum of the second derivatives along all axes. Thus, different Laplace filters can
be constructed using different second derivative functions. Therefore we provide a general function that takes a function
argument to calculate the second derivative along a given direction.

* The function generic_laplace calculates a laplace filter using the function passed through derivative?2
to calculate second derivatives. The function derivative2 should have the following signature

derivative2 (input, axis, output, mode, cval, *extra_arguments, **extra_
—keywords)

It should calculate the second derivative along the dimension axis. If ouput is not None it should use that for the
output and return None, otherwise it should return the result. mode, cval have the usual meaning.

The extra_arguments and extra_keywords arguments can be used to pass a tuple of extra arguments and a dictionary
of named arguments that are passed to derivative?2 at each call.

For example

>>> def d2 (input, axis, output, mode, cval):
return correlateld(input, [1, -2, 1], axis, output, mode, cval, 0)

>>> a = np.zeros((5, 5))

>>> a2, 2] =1

>>> from scipy.ndimage import generic_laplace

>>> generic_laplace(a, d2)

array ([[O., 0., 0., 0., 0.7,
(0., 0., 1., 0., 0.1,

(continues on next page)

4.1. SciPy Tutorial 417

SciPy Reference Guide, Release 1.3.2

(continued from previous page)

To demonstrate the use of the extra_arguments argument we could do

>>> def d2 (input, axis, output, mode, cval, weights):
return correlateld(input, weights, axis, output, mode, cval, 0,)

>>> a = np.zeros((5, 5))
>>> a2, 2] =1

>>> generic_laplace(a, d2, extra_arguments = ([1, -2, 11,))
array([[0., 0., 0., 0., 0.7,

(0., 0., 1., 0., 0.1,

[0., 1., -4., 1., 0.1,

(0., 0., 1., 0., 0.1,

(0., 0., 0., 0., 0.10)
or
>>> generic_laplace(a, d2, extra_keywords = {'weights': [1, -2, 11})
array ([[O., 0., 0., 0., 0.7,

(0., 0., 1., 0., 0.1,

[0., 1., -4., 1., 0.1,

(0., 0., 1., 0., 0.1,

[0., 0., 0., 0., 0.10)

The following two functions are implemented using generic_laplace by providing appropriate functions for the
second derivative function:

» The function 1aplace calculates the Laplace using discrete differentiation for the second derivative (i.e. convo-

lution with [1, -2, 11]).

e The function gaussian_laplace calculates the Laplace filter using gaussian_filter to calculate the

second derivatives. The standard-deviations of the Gaussian filter along each axis are passed through the parameter
sigma as a sequence or numbers. If sigma is not a sequence but a single number, the standard deviation of the filter
is equal along all directions.

The gradient magnitude is defined as the square root of the sum of the squares of the gradients in all directions. Similar
to the generic Laplace function there is a generic_gradient_magnitude function that calculats the gradient
magnitude of an array.

e The function generic_gradient_magnitude calculates a gradient magnitude using the function passed

through derivative to calculate first derivatives. The function derivative should have the following sig-
nature

derivative (input, axis, output, mode, cval, *extra_arguments, **extra_
—keywords)

It should calculate the derivative along the dimension axis. If output is not None it should use that for the output
and return None, otherwise it should return the result. mode, cval have the usual meaning.

The extra_arguments and extra_keywords arguments can be used to pass a tuple of extra arguments and a dictionary
of named arguments that are passed to derivative at each call.

For example, the sobe 1 function fits the required signature

418

Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

>>> a = np.zeros((5, 5))

>>> a2, 2] =1

>>> from scipy.ndimage import sobel, generic_gradient_magnitude
>>> generic_gradient_magnitude (a, sobel)

array ([[O. , 0. , 0. , 0. , 0. 1,
[O. , 1.41421356, 2. , 1.41421356, 0. 1,
[O. , 2. , 0. , 2. , 0. 1,
[0. , 1.41421356, 2 , 1.41421356, O. 1,
[O. , 0. , 0 , 0. , 0. 11)

See the documentation of generic_laplace for examples of using the extra_arguments and extra_keywords
arguments.

The sobel and prewitt functions fit the required signature and can therefore directly be used with
generic_gradient_magnitude.

e The function gaussian_gradient_magnitude calculates the gradient magnitude using
gaussian_filter to calculate the first derivatives. The standard-deviations of the Gaussian filter along each
axis are passed through the parameter sigma as a sequence or numbers. If sigma is not a sequence but a single
number, the standard deviation of the filter is equal along all directions.

Generic filter functions

To implement filter functions, generic functions can be used that accept a callable object that implements the filtering
operation. The iteration over the input and output arrays is handled by these generic functions, along with such details
as the implementation of the boundary conditions. Only a callable object implementing a callback function that does the
actual filtering work must be provided. The callback function can also be written in C and passed using a PyCapsule
(see Extending scipy.ndimage in C for more information).

e The generic_filterld function implements a generic one-dimensional filter function, where the actual fil-
tering operation must be supplied as a python function (or other callable object). The generic_filterld
function iterates over the lines of an array and calls function at each line. The arguments that are passed to
function are one-dimensional arrays of the numpy . £1oat 64 type. The first contains the values of the current
line. It is extended at the beginning end the end, according to the filter_size and origin arguments. The second array
should be modified in-place to provide the output values of the line. For example consider a correlation along one
dimension:

>>> a = np.arange(12) .reshape (3, 4)
>>> correlateld(a, [1, 2, 31])
array ([[3, 8, 14, 171,

(27, 32, 38, 417,

[51, 56, 62, 6511)

The same operation can be implemented using generic_filterld as follows:

>>> def fnc(iline, oline):
oline[...] = 1iline[:-2] + 2 * iline([l1l:-1] + 3 * iline[2:]

>>> from scipy.ndimage import generic_filterld
>>> generic_filterld(a, fnc, 3)
array ([[3, 8, 14, 17],

(27, 32, 38, 417,

[51, 56, 62, 65]11)

Here the origin of the kernel was (by default) assumed to be in the middle of the filter of length 3. Therefore, each
input line was extended by one value at the beginning and at the end, before the function was called.

4.1. SciPy Tutorial 419

https://docs.python.org/dev/c-api/capsule.html#c.PyCapsule

SciPy Reference Guide, Release 1.3.2

Optionally extra arguments can be defined and passed to the filter function. The extra_arguments and ex-
tra_keywords arguments can be used to pass a tuple of extra arguments and/or a dictionary of named arguments
that are passed to derivative at each call. For example, we can pass the parameters of our filter as an argument

>>> def fnc(iline, oline, a, b):
oline([...] = iline[:-2] + a * iline[l1l:-1] + b * iline[2:]

>>> generic_filterld(a, fnc, 3, extra_arguments = (2, 3))
array ([[3, 8, 14, 17],

[27, 32, 38, 41],

[51, 56, 62, 65]])

or

>>> generic_filterld(a, fnc, 3, extra_keywords = {'a':2, 'b':3})
array ([[3, 8, 14, 171,

(27, 32, 38, 417,

[51, 56, 62, 6511)

The generic_filter function implements a generic filter function, where the actual filtering operation must be
supplied as a python function (or other callable object). The generic_filter function iterates over the array
and calls function at each element. The argument of function is a one-dimensional array of the numpy .
float 64 type, that contains the values around the current element that are within the footprint of the filter. The
function should return a single value that can be converted to a double precision number. For example consider a
correlation:

>>> a = np.arange

>>> correlate(a,

array ([[O, 3,
[12, 15, 1
[28, 31, 3

(12) .reshape (3, 4)
(rt, o1, 10, 311
7, 1171,
9, 231,
5, 3911)

The same operation can be implemented using generic_filter as follows:

>>> def fnc (buffer):
return (buffer * np.array([1l, 31)) .sum()

>>> from scipy.ndimage import generic_filter
>>> generic_filter(a, fnc, footprint = [[1, O], [0, 111)
array ([[O, 3, 7, 117,

(12, 15, 19, 231,

[28, 31, 35, 3911)

Here a kernel footprint was specified that contains only two elements. Therefore the filter function receives a buffer
of length equal to two, which was multiplied with the proper weights and the result summed.

When calling generic_filter, either the sizes of a rectangular kernel or the footprint of the kernel must be
provided. The size parameter, if provided, must be a sequence of sizes or a single number in which case the size of
the filter is assumed to be equal along each axis. The footprint, if provided, must be an array that defines the shape
of the kernel by its non-zero elements.

Optionally extra arguments can be defined and passed to the filter function. The extra_arguments and ex-
tra_keywords arguments can be used to pass a tuple of extra arguments and/or a dictionary of named arguments
that are passed to derivative at each call. For example, we can pass the parameters of our filter as an argument

420

Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

>>> def fnc(buffer, weights):
weights = np.asarray (weights)
return (buffer * weights) .sum()

>>> generic_filter(a, fnc, footprint = [[1, 0], [0, 111, extra_arguments.
= ([1, 31,))
array ([[O, 3, 7, 117,

[12, 15, 19, 23],

[28, 31, 35, 3911)

or

>>> generic_filter(a, fnc, footprint = [[1, 0], [0, 111, extra_keywords= {
—'weights': [1, 31})
array ([[O, 3, 7, 117,

(12, 15, 19, 231,

(28, 31, 35, 3911)

These functions iterate over the lines or elements starting at the last axis, i.e. the last index changes the fastest. This order
of iteration is guaranteed for the case that it is important to adapt the filter depending on spatial location. Here is an
example of using a class that implements the filter and keeps track of the current coordinates while iterating. It performs
the same filter operation as described above for generic_filter, but additionally prints the current coordinates:

>>> a = np.arange(l2) .reshape(3,4)
>>>
>>> class fnc_class:
def _ _init__ (self, shape):
store the shape:
self.shape = shape
initialize the coordinates:
self.coordinates = [0] * len(shape)

def filter(self, buffer):
result = (buffer * np.array([1l, 3])).sum()
print (self.coordinates)
calculate the next coordinates:
axes = list (range(len(self.shape)))
axes.reverse ()
for jj in axes:
if self.coordinates[j]j] < self.shapel[jj] - 1:
self.coordinates([jj] += 1
break
else:
self.coordinates[jj] = 0
return result

>>> fnc = fnc_class (shape = (3,4))

>>> generic_filter(a, fnc.filter, footprint = [[1, 0], [0, 111)
[0, 0]
[0, 1]
[0, 2]
[0, 31
[1, O]

~

(continues on next page)

4.1. SciPy Tutorial 421

SciPy Reference Guide, Release 1.3.2

(continued from previous page)

array([[0O, 3, 7, 117,
[12, 15, 19, 237,
[28, 31, 35, 3911)

For the generic_filterld function the same approach works, except that this function does not iterate over the
axis that is being filtered. The example for generic_filterld then becomes this:

>>> a = np.arange(12) .reshape (3, 4)

>>>
>>> class fncld_class:
def _ init_ (self, shape, axis = -1):
store the filter axis:
self.axis = axis
store the shape:
self.shape = shape
initialize the coordinates:
self.coordinates = [0] * len(shape)
def filter(self, iline, oline):
oline([...] = iline[:-2] + 2 * iline([l1l:-1] + 3 * iline[2:]
print (self.coordinates)
calculate the next coordinates:
axes = list(range(len(self.shape)))
skip the filter axis:
del axes[self.axis]
axes.reverse ()
for jj in axes:
if self.coordinates[j]j] < self.shape[jj] - 1:
self.coordinates([jj] += 1
break
else:
self.coordinates[jj] = 0O
>>> fnc = fncld_class(shape = (3,4))
>>> generic_filterld(a, fnc.filter, 3)
[0, O]
[1, O]
(2, O]

array ([[3, 8, 14, 1771,
[27, 32, 38, 4171,
[51, 56, 62, 65]1)

Fourier domain filters

The functions described in this section perform filtering operations in the Fourier domain. Thus, the input array of such
a function should be compatible with an inverse Fourier transform function, such as the functions from the numpy . £ft

422 Chapter 4. Tutorial

https://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft

SciPy Reference Guide, Release 1.3.2

module. We therefore have to deal with arrays that may be the result of a real or a complex Fourier transform. In the
case of a real Fourier transform only half of the of the symmetric complex transform is stored. Additionally, it needs to
be known what the length of the axis was that was transformed by the real fft. The functions described here provide a
parameter n that in the case of a real transform must be equal to the length of the real transform axis before transformation.
If this parameter is less than zero, it is assumed that the input array was the result of a complex Fourier transform. The
parameter axis can be used to indicate along which axis the real transform was executed.

e The fourier_shift function multiplies the input array with the multidimensional Fourier transform of a shift
operation for the given shift. The shift parameter is a sequences of shifts for each dimension, or a single value for
all dimensions.

e The fourier gaussian function multiplies the input array with the multidimensional Fourier transform of
a Gaussian filter with given standard-deviations sigma. The sigma parameter is a sequences of values for each
dimension, or a single value for all dimensions.

e The fourier_ uniform function multiplies the input array with the multidimensional Fourier transform of a
uniform filter with given sizes size. The size parameter is a sequences of values for each dimension, or a single value
for all dimensions.

e The fourier_ellipsoid function multiplies the input array with the multidimensional Fourier transform of
a elliptically shaped filter with given sizes size. The size parameter is a sequences of values for each dimension, or
a single value for all dimensions. This function is only implemented for dimensions 1, 2, and 3.

Interpolation functions

This section describes various interpolation functions that are based on B-spline theory. A good introduction to B-splines
can be found in'.

Spline pre-filters

Interpolation using splines of an order larger than 1 requires a pre-filtering step. The interpolation functions described
in section Interpolation functions apply pre-filtering by calling spline_filter, but they can be instructed not to do
this by setting the prefilter keyword equal to False. This is useful if more than one interpolation operation is done on the
same array. In this case it is more efficient to do the pre-filtering only once and use a prefiltered array as the input of the
interpolation functions. The following two functions implement the pre-filtering:

* The spline_ filterld function calculates a one-dimensional spline filter along the given axis. An output array
can optionally be provided. The order of the spline must be larger then 1 and less than 6.

e The spline_filter function calculates a multidimensional spline filter.

Note: The multidimensional filter is implemented as a sequence of one-dimensional spline filters. The intermediate
arrays are stored in the same data type as the output. Therefore, if an output with a limited precision is requested,
the results may be imprecise because intermediate results may be stored with insufficient precision. This can be
prevented by specifying a output type of high precision.

Interpolation functions

Following functions all employ spline interpolation to effect some type of geometric transformation of the input array.
This requires a mapping of the output coordinates to the input coordinates, and therefore the possibility arises that input
values outside the boundaries are needed. This problem is solved in the same way as described in Filter functions for
the multidimensional filter functions. Therefore these functions all support a mode parameter that determines how the
boundaries are handled, and a cval parameter that gives a constant value in case that the ‘constant’ mode is used.

! M. Unser, “Splines: A Perfect Fit for Signal and Image Processing,” IEEE Signal Processing Magazine, vol. 16, no. 6, pp. 22-38, November
1999.

4.1. SciPy Tutorial 423

SciPy Reference Guide, Release 1.3.2

e The geomet ric_transformfunctionapplies an arbitrary geometric transform to the input. The given mapping

function is called at each point in the output to find the corresponding coordinates in the input. mapping must be
a callable object that accepts a tuple of length equal to the output array rank and returns the corresponding input
coordinates as a tuple of length equal to the input array rank. The output shape and output type can optionally be
provided. If not given they are equal to the input shape and type.

For example:

>>> a = np.arange(l12) .reshape (4, 3) .astype (np.floatb64)
>>> def shift_func (output_coordinates):
return (output_coordinates([0] - 0.5, output_coordinates[1] - 0.5)

>>> from scipy.ndimage import geometric_transform
>>> geometric_transform(a, shift_func)

array ([[O. , 0. , 0. 1,
[O. , 1.3625, 2.73757,
[O. , 4.8125, 6.18757,
[O , 8.2625, 9.6375]11)

Optionally extra arguments can be defined and passed to the filter function. The extra_arguments and ex-
tra_keywords arguments can be used to pass a tuple of extra arguments and/or a dictionary of named arguments
that are passed to derivative at each call. For example, we can pass the shifts in our example as arguments

>>> def shift_func(output_coordinates, s0, sl):

return (output_coordinates[0] - s0, output_coordinates[l] - s1)
>>> geometric_transform(a, shift_func, extra_arguments = (0.5, 0.5))
array ([[O. , 0. , 0. 1,

[O. , 1.3625, 2.7375],

[0. , 4.8125, 6.1875],

[0 , 8.2625, 9.637511)
or
>>> geometric_transform(a, shift_func, extra_keywords = {'s0': 0.5, 'sl':.
—~0.5})
array ([[O , 0. , 0. 1,

[O , 1.3625, 2.7375],

[O , 4.8125, 6.18757,

[0 , 8.2625, 9.637511)

Note: The mapping function can also be written in C and passed using a scipy.LowLevelCallable. See
Extending scipy.ndimage in C for more information.

The function map_coordinates applies an arbitrary coordinate transformation using the given array of co-
ordinates. The shape of the output is derived from that of the coordinate array by dropping the first axis. The
parameter coordinates is used to find for each point in the output the corresponding coordinates in the input. The
values of coordinates along the first axis are the coordinates in the input array at which the output value is found.
(See also the numarray coordinates function.) Since the coordinates may be non- integer coordinates, the value of
the input at these coordinates is determined by spline interpolation of the requested order.

Here is an example that interpolates a 2D array at (0.5, 0.5) and (1, 2):

424

Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

>>> a = np.arange(12) .reshape (4, 3) .astype (np.float64)

>>> a

array ([[0., 1., 2.1,
[3., 4., 5.1,
[6., 7., 8.1,

[9., 10., 11.11)
>>> from scipy.ndimage import map_coordinates
>>> map_coordinates(a, [[0.5, 2], [0.5, 111)
array ([1.3625, 7.1)

e The affine_transformtfunction applies an affine transformation to the input array. The given transformation
matrix and offset are used to find for each point in the output the corresponding coordinates in the input. The
value of the input at the calculated coordinates is determined by spline interpolation of the requested order. The
transformation matrix must be two-dimensional or can also be given as a one-dimensional sequence or array. In the
latter case, it is assumed that the matrix is diagonal. A more efficient interpolation algorithm is then applied that
exploits the separability of the problem. The output shape and output type can optionally be provided. If not given
they are equal to the input shape and type.

e The shi £t function returns a shifted version of the input, using spline interpolation of the requested order.
» The zoom function returns a rescaled version of the input, using spline interpolation of the requested order.

» The rotate function returns the input array rotated in the plane defined by the two axes given by the parameter
axes, using spline interpolation of the requested order. The angle must be given in degrees. If reshape is true, then
the size of the output array is adapted to contain the rotated input.

Morphology

Binary morphology

e The generate_binary_structure functions generates a binary structuring element for use in binary mor-
phology operations. The rank of the structure must be provided. The size of the structure that is returned is equal
to three in each direction. The value of each element is equal to one if the square of the Euclidean distance from the
element to the center is less or equal to connectivity. For instance, two dimensional 4-connected and 8-connected
structures are generated as follows:

>>> from scipy.ndimage import generate_binary_structure
>>> generate_binary_structure (2, 1)
array ([[False, True, False],
[True, True, True],
[False, True, False]], dtype=bool)
>>> generate_binary_structure (2, 2)
array ([[True, True, True],
[True, True, True],
[True, True, True]], dtype=bool)

Most binary morphology functions can be expressed in terms of the basic operations erosion and dilation.

e The binary erosion function implements binary erosion of arrays of arbitrary rank with the given struc-
turing element. The origin parameter controls the placement of the structuring element as described in Filter
Sfunctions. If no structuring element is provided, an element with connectivity equal to one is generated using
generate_binary_structure. The border_value parameter gives the value of the array outside bound-
aries. The erosion is repeated iterations times. If iterations is less than one, the erosion is repeated until the result
does not change anymore. If a mask array is given, only those elements with a true value at the corresponding mask
element are modified at each iteration.

4.1. SciPy Tutorial 425

SciPy Reference Guide, Release 1.3.2

e The binary_dilation function implements binary dilation of arrays of arbitrary rank with the given struc-
turing element. The origin parameter controls the placement of the structuring element as described in Filter
functions. If no structuring element is provided, an element with connectivity equal to one is generated using
generate_binary_structure. The border_value parameter gives the value of the array outside bound-
aries. The dilation is repeated iterations times. If iterations is less than one, the dilation is repeated until the result
does not change anymore. If a mask array is given, only those elements with a true value at the corresponding mask
element are modified at each iteration.

Here is an example of using binary_ dilation to find all elements that touch the border, by repeatedly dilating an
empty array from the border using the data array as the mask:

>>> struct = np.array([[0, 1, O] 1

, 1, 1, 11, [0, 1, 011)
>>> a = np.array([[1,0,0,0,01, T[1,1,0,1,0], [0,0,1,2,01, [0,0,0,0,011)
>>> a
array([[1, 0, O, 0O, 01,
(¢4, 12, o, 1, 01,
(o, o, 1, 1, 01,
[0, 0, 0, 0, 01D

>>> from scipy.ndimage import binary_dilation

>>> binary_dilation(np.zeros(a.shape), struct, -1, a, border_value=1l)

array([[True, False, False, False, False],
[True, True, False, False, False]
[False, False, False, False, False]
[False, False, False, False, False]

14

1, dtype=bool)

The binary_erosionand binary_dilationfunctions both have an iterations parameter which allows the erosion
or dilation to be repeated a number of times. Repeating an erosion or a dilation with a given structure » times is equivalent
to an erosion or a dilation with a structure that is n-/ times dilated with itself. A function is provided that allows the
calculation of a structure that is dilated a number of times with itself:

* The iterate_ structure function returns a structure by dilation of the input structure iteration - 1 times with
itself.

For instance:

>>> struct = generate_binary_structure (2, 1)
>>> struct
array ([[False, True, False],

[True, True, True],

[False, True, False]], dtype=bool)
>>> from scipy.ndimage import iterate_structure
>>> iterate_structure (struct, 2)
array ([[False, False, True, False, False

False, True, True, True, False

l4

4

]
[]
[True, True, True, True, True],
[False, True, True, True, False],
[False, False, True, False, False]], dtype=bool)
If the origin of the original structure is equal to 0, then it is
also equal to 0 for the iterated structure. If not, the origin
must also be adapted if the equivalent of the *iterations*
erosions or dilations must be achieved with the iterated
structure. The adapted origin is simply obtained by multiplying
with the number of iterations. For convenience the
:func: iterate_structure’ also returns the adapted origin if the

(continues on next page)

426 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

(continued from previous page)

origin parameter is not ~ ~None
code:: python

>>> iterate_structure(struct, 2, -1)
(array ([[False, False, True, False, False
False, True, True, True, False

False, True, True, True, False

]
]
True, True, True, True, True],
]I
False, False, True, False, False]], dtype=bool), [-2, -2])

[
[
[
[

Other morphology operations can be defined in terms of erosion and d dilation. The following functions provide a few of
these operations for convenience:

e The binary_opening function implements binary opening of arrays of arbitrary rank with the given struc-
turing element. Binary opening is equivalent to a binary erosion followed by a binary dilation with the same
structuring element. The origin parameter controls the placement of the structuring element as described in Fil-
ter functions. If no structuring element is provided, an element with connectivity equal to one is generated using
generate_binary_structure. The iferations parameter gives the number of erosions that is performed
followed by the same number of dilations.

e The binary_ closing function implements binary closing of arrays of arbitrary rank with the given structur-
ing element. Binary closing is equivalent to a binary dilation followed by a binary erosion with the same struc-
turing element. The origin parameter controls the placement of the structuring element as described in Filter
Sfunctions. If no structuring element is provided, an element with connectivity equal to one is generated using
generate_binary_structure. The iterations parameter gives the number of dilations that is performed
followed by the same number of erosions.

e The binary_fill_holes function is used to close holes in objects in a binary image, where the structure
defines the connectivity of the holes. The origin parameter controls the placement of the structuring element as
described in Filter functions. If no structuring element is provided, an element with connectivity equal to one is
generated using generate_binary_ structure.

e The binary hit_or_miss function implements a binary hit-or-miss transform of arrays of arbitrary rank
with the given structuring elements. The hit-or-miss transform is calculated by erosion of the input with the first
structure, erosion of the logical not of the input with the second structure, followed by the logical and of these two
erosions. The origin parameters control the placement of the structuring elements as described in Filter functions.
If origin2 equals None it is set equal to the originl parameter. If the first structuring element is not provided,
a structuring element with connectivity equal to one is generated using generate_binary_structure, if
structure2 is not provided, it is set equal to the logical not of structurel.

Grey-scale morphology

Grey-scale morphology operations are the equivalents of binary morphology operations that operate on arrays with arbi-
trary values. Below we describe the grey-scale equivalents of erosion, dilation, opening and closing. These operations are
implemented in a similar fashion as the filters described in Filter functions, and we refer to this section for the description
of filter kernels and footprints, and the handling of array borders. The grey-scale morphology operations optionally take a
structure parameter that gives the values of the structuring element. If this parameter is not given the structuring element
is assumed to be flat with a value equal to zero. The shape of the structure can optionally be defined by the footprint
parameter. If this parameter is not given, the structure is assumed to be rectangular, with sizes equal to the dimensions of
the structure array, or by the size parameter if structure is not given. The size parameter is only used if both structure and
footprint are not given, in which case the structuring element is assumed to be rectangular and flat with the dimensions
given by size. The size parameter, if provided, must be a sequence of sizes or a single number in which case the size of
the filter is assumed to be equal along each axis. The footprint parameter, if provided, must be an array that defines the
shape of the kernel by its non-zero elements.

4.1. SciPy Tutorial 427

SciPy Reference Guide, Release 1.3.2

Similar to binary erosion and dilation there are operations for grey-scale erosion and dilation:
e The grey_erosion function calculates a multidimensional grey- scale erosion.
* The grey_dilation function calculates a multidimensional grey-scale dilation.
Grey-scale opening and closing operations can be defined similar to their binary counterparts:

e The grey_opening function implements grey-scale opening of arrays of arbitrary rank. Grey-scale opening is
equivalent to a grey-scale erosion followed by a grey-scale dilation.

* The grey_closing function implements grey-scale closing of arrays of arbitrary rank. Grey-scale opening is
equivalent to a grey-scale dilation followed by a grey-scale erosion.

e The morphological_gradient function implements a grey-scale morphological gradient of arrays of arbi-
trary rank. The grey-scale morphological gradient is equal to the difference of a grey-scale dilation and a grey-scale
erosion.

e The morphological_laplace function implements a grey-scale morphological laplace of arrays of arbitrary
rank. The grey-scale morphological laplace is equal to the sum of a grey-scale dilation and a grey-scale erosion
minus twice the input.

e The white_tophat function implements a white top-hat filter of arrays of arbitrary rank. The white top-hat is
equal to the difference of the input and a grey-scale opening.

e The black_tophat function implements a black top-hat filter of arrays of arbitrary rank. The black top-hat is
equal to the difference of a grey-scale closing and the input.

Distance transforms

Distance transforms are used to calculate the minimum distance from each element of an object to the background.
The following functions implement distance transforms for three different distance metrics: Euclidean, City Block, and
Chessboard distances.

e The function distance_transform_ cdt uses a chamfer type algorithm to calculate the distance trans-
form of the input, by replacing each object element (defined by values larger than zero) with the shortest dis-
tance to the background (all non-object elements). The structure determines the type of chamfering that is
done. If the structure is equal to ‘cityblock’ a structure is generated using generate _binary_ structure
with a squared distance equal to 1. If the structure is equal to ‘chessboard’, a structure is generated using
generate_binary_structure with a squared distance equal to the rank of the array. These choices cor-
respond to the common interpretations of the cityblock and the chessboard distance metrics in two dimensions.

In addition to the distance transform, the feature transform can be calculated. In this case the index of the closest
background element is returned along the first axis of the result. The refurn_distances, and return_indices flags can
be used to indicate if the distance transform, the feature transform, or both must be returned.

The distances and indices arguments can be used to give optional output arrays that must be of the correct size and
type (both numpy . int 32). The basics of the algorithm used to implement this function is described in’.

e The function distance_transform_edt calculates the exact euclidean distance transform of the input, by
replacing each object element (defined by values larger than zero) with the shortest euclidean distance to the back-
ground (all non-object elements).

In addition to the distance transform, the feature transform can be calculated. In this case the index of the closest
background element is returned along the first axis of the result. The return_distances, and return_indices flags can
be used to indicate if the distance transform, the feature transform, or both must be returned.

Optionally the sampling along each axis can be given by the sampling parameter which should be a sequence of
length equal to the input rank, or a single number in which the sampling is assumed to be equal along all axes.

2G. Borgefors, “Distance transformations in arbitrary dimensions.”, Computer Vision, Graphics, and Image Processing, 27:321-345, 1984.

428 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

The distances and indices arguments can be used to give optional output arrays that must be of the correct size and
type (numpy . float 64 and numpy . int 32).The algorithm used to implement this function is described in>.

* The function distance_transform_bf uses a brute-force algorithm to calculate the distance transform of
the input, by replacing each object element (defined by values larger than zero) with the shortest distance to the
background (all non-object elements). The metric must be one of “euclidean”, “cityblock”, or “chessboard”.

In addition to the distance transform, the feature transform can be calculated. In this case the index of the closest
background element is returned along the first axis of the result. The return_distances, and return_indices flags can
be used to indicate if the distance transform, the feature transform, or both must be returned.

Optionally the sampling along each axis can be given by the sampling parameter which should be a sequence of
length equal to the input rank, or a single number in which the sampling is assumed to be equal along all axes. This
parameter is only used in the case of the euclidean distance transform.

The distances and indices arguments can be used to give optional output arrays that must be of the correct size and
type (numpy . float 64 and numpy.int32).

Note: This function uses a slow brute-force algorithm, the function distance transform cdt
can be used to more efficiently calculate cityblock and chessboard distance transforms. The function
distance_transform edt can be used to more efficiently calculate the exact euclidean distance transform.

Segmentation and labeling

Segmentation is the process of separating objects of interest from the background. The most simple approach is probably
intensity thresholding, which is easily done with numpy functions:

>>> a = np.array([[1,2,2,1,1,0],
(0,2,3,1,2,0],
[(1,1,1,3,3,21,
c. [(1,1,1,1,2,111)
>>> np.where(a > 1, 1, 0)
array([[O, 1, 1, 0, 0, 0],
(o, 12, 1, o, 1, 01,
(o, o, o, 1, 1, 11,
[, o, o, 0, 1, 011)

The result is a binary image, in which the individual objects still need to be identified and labeled. The function label
generates an array where each object is assigned a unique number:

» The Iabel function generates an array where the objects in the input are labeled with an integer index. It returns a
tuple consisting of the array of object labels and the number of objects found, unless the output parameter is given,
in which case only the number of objects is returned. The connectivity of the objects is defined by a structuring
element. For instance, in two dimensions using a four-connected structuring element gives:

>>> a = np.array([([(o,1,1,0,0,01,110,2,2,0,1,01,1(0,0,0,2,2,11,10,0,0,0,1,
—011)

>>> s = [[0, 1, 01, [1,1,11, [0,1,01]

>>> from scipy.ndimage import label

>>> label (a, s)

(array([(ro, 1, 12, 0, 0, 01,

(continues on next page)

3 C.R. Maurer, Jr., R. Qi, and V. Raghavan, “A linear time algorithm for computing exact euclidean distance transforms of binary images in arbitrary
dimensions. IEEE Trans. PAMI 25, 265-270, 2003.

4.1. SciPy Tutorial 429

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy

SciPy Reference Guide, Release 1.3.2

(continued from previous page)

These two objects are not connected because there is no way in which we can place the structuring element such
that it overlaps with both objects. However, an 8-connected structuring element results in only a single object:

>>> a = np-arraY([[OrlrerrOrO]r [0,1,1,0,1,0], [Orororlllll]r [0,0,0,0,l,

—011)
>>> s = [[1,1,1], [%1,%,11, [1,1,1]1]
>>> label (a, s) [0

1
; s)[0]
array ([[0, 1, 1, O
(o, 1, 1, o,
[0, 0, 0, 1
[0, 0, 0, O

14

~
~

~

4

~

=)
N
or oo

4

~

If no structuring element is provided, one is generated by calling generate_binary_structure (see Binary
morphology) using a connectivity of one (which in 2D is the 4-connected structure of the first example). The input
can be of any type, any value not equal to zero is taken to be part of an object. This is useful if you need to ‘re-label’
an array of object indices, for instance after removing unwanted objects. Just apply the label function again to the
index array. For instance:

>>> 1, n = label([1, 0, 1, 0, 11)

>>> 1

array ([1, 0, 2, 0, 31)

>>> 1 = np.where(l != 2, 1, 0)
>>> 1

array ([1, 0, 0, 0, 31)
>>> label (1) [0]
array ([1, 0, 0, 0, 21)

Note: The structuring element used by 1abe is assumed to be symmetric.

There is a large number of other approaches for segmentation, for instance from an estimation of the borders of the objects
that can be obtained for instance by derivative filters. One such an approach is watershed segmentation. The function
watershed_1ift generates an array where each object is assigned a unique label, from an array that localizes the object
borders, generated for instance by a gradient magnitude filter. It uses an array containing initial markers for the objects:

e The watershed_ i ft function applies a watershed from markers algorithm, using an Iterative Forest Transform,
as described in*.

¢ The inputs of this function are the array to which the transform is applied, and an array of markers that designate
the objects by a unique label, where any non-zero value is a marker. For instance:

>>> input = np.array([[0,

~
~
~
~
~

4

4

~
~
~
~
~

4

4

~
~
~
~
~

4

4

~
~
~
~
~

4

[0
[0
[OI
[0
[0
[0

A =)
~

e e el)
N

B, OO or o
N

PO OO RO

A =)
~

OO0 oo oo

~

]
]
]I
]
]
]

4

~
~
~
~

4

(continues on next page)

4 P. Felkel, R. Wegenkittl, and M. Bruckschwaiger, “Implementation and Complexity of the Watershed-from-Markers Algorithm Computed as a
Minimal Cost Forest.”, Eurographics 2001, pp. C:26-35.

430 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

(continued from previous page)

[

0
np.array ([

>>> markers

>>> from scipy.ndimage i
>>> watershed_ift (input,

array ([[1, 1, 1, 1, 1, 1
(¢, 1, 2, 2, 2, 1
(1, 2, 2, 2, 2, 2
(1, 2, 2, 2, 2, 2
(1, 2, 2, 2, 2, 2
(¢, 1, 2, 2, 2, 1
(¢, 1, 1, 1, 1, 1

4 4 4 4

, 0, 0, 0, 0, 0, 0]
(1, o, o, o, 0o, 0O,
(o, o, o, o, 0, 0O,
(o, o, o, o, 0, 0O,
(o, o, 0, 2, 0, 0O,
(o, o, 0, o, 0o, 0O,
(o, o, o, o, 0, 0O,
(o, o, o, o, 0o, 0O,

mport watershed_ift
markers)

~

~

~

~

~

~

r
], dtype=int8)

~

O O O O O o o

Here two markers were used to designate an object (marker = 2) and the background (marker = 1). The order in
which these are processed is arbitrary: moving the marker for the background to the lower right corner of the array

yields a different result:

>>> markers np.array ([

>>> watershed_ift (input
array ([[1, 1, 1

4

4 4 4

~

4 4

l4

~

I4 l4

4

~

14 4

4

~

14 14

4

~

14 14

P
1
1
2
2
2
1
1

i

(
1
1
2
2
2
1
1

e
BN NN e

~

4 14 4

(o, o, o, 0, 0, 0O,
(o, o, o, 0, 0, 0O,
(o, o, o, o, 0, 0,
(o, o, o, 2, 0, 0,
(o, o, o, 0, 0, 0O,
(o, o, o, 0, 0, O,
(o, o, o, 0, 0, 0O,
markers)

11y

11,

r 11,

11,

PR

11y

, 111, dtype=int8)

The result is that the object (rmarker = 2) is smaller because the second marker was processed earlier. This
may not be the desired effect if the first marker was supposed to designate a background object. Therefore
watershed_1ift treats markers with a negative value explicitly as background markers and processes them
after the normal markers. For instance, replacing the first marker by a negative marker gives a result similar to the

first example:

>>> markers np.array ([

>>> watershed_ift (input,

(o, o, o, o0, 0, 0O,
(o, o, o, o, o, o,
(o, o, o, o, o0, 0,
(o, o, o, 2, 0, 0O,
(o, o, o, 0, 0, O,
(o, o, o, 0, 0, 0O,
(o, o, o, o, o0, 0,
markers)

O O O O O o
e e e e e

~

~

~

~

~

11, np.int8)

(continues on next page)

4.1. SciPy Tutorial

431

SciPy Reference Guide, Release 1.3.2

(continued from previous page)

array(([-21, -1, -1, -1, -1, -1, -11,
(-1, -1, 2, 2, 2, -1, -11,
-1, 2, 2, 2, 2, 2, -11,
-1, 2, 2, 2, 2, 2, -11,
(-1, 2, 2, 2, 2, 2, -11,
(-1, -1, 2, 2, 2, -1, -11,
(-2, -1, -1, -1, -1, -1, =111, dtype=int8)

The connectivity of the objects is defined by a structuring element. If no structuring element is provided, one is
generated by calling generate_binary_structure (see Binary morphology) using a connectivity of one
(which in 2D is a 4-connected structure.) For example, using an 8-connected structure with the last example yields
a different object:

>>> watershed_ift (input, markers,

structure = [[1,1,1], [1,1,11, [1,1,111)
’ _ll _11 ’ _1]1

14 2’ 2/

array ([

~

~

’ l4

~

-1
2, -1]
’ , 2, —11,
’ ’ 2, —11,
2, —-1]
2, —-1]
-1, -1]

~

4 4 14 4

~
~

4 4 14

|
e e e

~
NN NN N

N
NN NN e

~

~
NN NN
NN NN

’
], dtype=int8)

~

4 4 14

Note: The implementation of watershed_ift limits the data types of the input to numpy.uint8 and
numpy.uintle.

Object measurements

Given an array of labeled objects, the properties of the individual objects can be measured. The find objects
function can be used to generate a list of slices that for each object, give the smallest sub-array that fully contains the
object:

e The find_objects function finds all objects in a labeled array and returns a list of slices that correspond to the

smallest regions in the array that contains the object.

For instance:

>>> a = np.array([([(0,2,1,0,0,01,100,1,2,0,2,01,10,0,0,1,1,11,[0,0,0,0,1,
-011)

>>> 1, n = label (a)

>>> from scipy.ndimage import find_ objects

>>> f = find_objects (1)

The function £ind_object s returns slices for all objects, unless the max_label parameter is larger then zero, in

432

Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

which case only the first max_label objects are returned. If an index is missing in the label array, None is return
instead of a slice. For example:

>>> from scipy.ndimage import find_ objects
>>> find_objects([1, 0, 3, 4], max_label = 3)
[(slice (0, 1, None),), None, (slice(2, 3, None),)]

The list of slices generated by find_objects is useful to find the position and dimensions of the objects in the array,
but can also be used to perform measurements on the individual objects. Say we want to find the sum of the intensities of
an object in image:

>>> image = np.arange (4 * 6).reshape (4, 6)

>>> mask = np.array¢(((0,1,1,0,0,01,10,2,2,0,2,01,10,0,0,2,2,11,100,0,0,0,12,011)
>>> Jlabels = label (mask) [0]

>>> slices = find_objects (labels)

Then we can calculate the sum of the elements in the second object:

>>> np.where (labels[slices[1]] == 2, image[slices[1]], 0).sum()
80

That is however not particularly efficient, and may also be more complicated for other types of measurements. Therefore
a few measurements functions are defined that accept the array of object labels and the index of the object to be measured.
For instance calculating the sum of the intensities can be done by:

>>> from scipy.ndimage import sum as ndi_sum
>>> ndi_sum(image, labels, 2)
80

For large arrays and small objects it is more efficient to call the measurement functions after slicing the array:

>>> ndi_sum(image[slices[1]], labels[slices[1]1, 2)
80

Alternatively, we can do the measurements for a number of labels with a single function call, returning a list of results.
For instance, to measure the sum of the values of the background and the second object in our example we give a list of
labels:

>>> ndi_sum(image, labels, [0, 21)
array ([178.0, 80.01])

The measurement functions described below all support the index parameter to indicate which object(s) should be mea-
sured. The default value of index is None. This indicates that all elements where the label is larger than zero should be
treated as a single object and measured. Thus, in this case the labels array is treated as a mask defined by the elements that
are larger than zero. If index is a number or a sequence of numbers it gives the labels of the objects that are measured.
If index is a sequence, a list of the results is returned. Functions that return more than one result, return their result as a
tuple if index is a single number, or as a tuple of lists, if index is a sequence.

e The sum function calculates the sum of the elements of the object with label(s) given by index, using the labels
array for the object labels. If index is None, all elements with a non-zero label value are treated as a single object.
If label is None, all elements of input are used in the calculation.

» The mean function calculates the mean of the elements of the object with label(s) given by index, using the labels
array for the object labels. If index is None, all elements with a non-zero label value are treated as a single object.
If label is None, all elements of input are used in the calculation.

4.1. SciPy Tutorial 433

SciPy Reference Guide, Release 1.3.2

e The variance function calculates the variance of the elements of the object with label(s) given by index, using
the labels array for the object labels. If index is None, all elements with a non-zero label value are treated as a
single object. If label is None, all elements of input are used in the calculation.

e The standard_deviationfunction calculates the standard deviation of the elements of the object with label(s)
given by index, using the labels array for the object labels. If index is None, all elements with a non-zero label
value are treated as a single object. If label is None, all elements of input are used in the calculation.

e The minimum function calculates the minimum of the elements of the object with label(s) given by index, using
the labels array for the object labels. If index is None, all elements with a non-zero label value are treated as a
single object. If label is None, all elements of input are used in the calculation.

¢ The maximum function calculates the maximum of the elements of the object with label(s) given by index, using
the labels array for the object labels. If index is None, all elements with a non-zero label value are treated as a
single object. If label is None, all elements of input are used in the calculation.

e The minimum_position function calculates the position of the minimum of the elements of the object with
label(s) given by index, using the labels array for the object labels. If index is None, all elements with a non-zero
label value are treated as a single object. If label is None, all elements of input are used in the calculation.

e The maximum_position function calculates the position of the maximum of the elements of the object with
label(s) given by index, using the labels array for the object labels. If index is None, all elements with a non-zero
label value are treated as a single object. If label is None, all elements of input are used in the calculation.

e The ext rema function calculates the minimum, the maximum, and their positions, of the elements of the object
with label(s) given by index, using the labels array for the object labels. If index is None, all elements with a non-
zero label value are treated as a single object. If label is None, all elements of input are used in the calculation. The
result is a tuple giving the minimum, the maximum, the position of the minimum and the position of the maximum.
The result is the same as a tuple formed by the results of the functions minimum, maximum, minimum_position,
and maximum_position that are described above.

e The center_of_mass function calculates the center of mass of the of the object with label(s) given by index,
using the labels array for the object labels. If index is None, all elements with a non-zero label value are treated as
a single object. If label is None, all elements of input are used in the calculation.

e The histogramfunction calculates a histogram of the of the object with label(s) given by index, using the labels
array for the object labels. If index is None, all elements with a non-zero label value are treated as a single object.
If label is None, all elements of input are used in the calculation. Histograms are defined by their minimum (min),
maximum (max) and the number of bins (bins). They are returned as one-dimensional arrays of type numpy .
int32.

Extending scipy.ndimage in C

A few functions in scipy.ndimage take a callback argument. This can be either a python function or a scipy.
LowLevelCallable containing a pointer to a C function. Using a C function will generally be more efficient since
it avoids the overhead of calling a python function on many elements of an array. To use a C function you must write
a C extension that contains the callback function and a Python function that returns a scipy. LowLevelCallable
containing a pointer to the callback.

An example of a function that supports callbacks is geomet ric_transform, which accepts a callback function that
defines a mapping from all output coordinates to corresponding coordinates in the input array. Consider the following
python example which uses geomet ric_transformtoimplement a shift function.

from scipy import ndimage

def transform(output_coordinates, shift):
input_coordinates = output_coordinates[0] - shift, output_coordinates[1l] -

SES =S

(continues on next page)

434 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

(continued from previous page)

return input_coordinates

im = np.arange (12) .reshape (4, 3).astype(np.float64)
shift = 0.5
print (ndimage.geometric_transform(im, transform, extra_arguments=(shift,)))

We can also implement the callback function with the following C code.

/* example.c */

#include <Python.h>
#include <numpy/npy_common.h>

static int
_transform(npy_intp *output_coordinates, double *input_coordinates,
int output_rank, int input_rank, wvoid *user_data)

npy_intp i;
double shift = * (double *)user_data;

for (i = 0; i < input_rank; i++) {
input_coordinates[i] = output_coordinates[i] - shift;
t

return 1;

static char *transform_signature = "int (npy_intp *, double *, int, int, void.
(_}*) n,.
static PyObject *
py_get_transform (PyObject *obj, PyObject *args)
{
if (!PyArg_ParseTuple (args, "")) return NULL;
return PyCapsule_New (_transform, transform_signature, NULL);

static PyMethodDef ExampleMethods[] = {
{"get_transform", (PyCFunction)py_get_transform, METH_VARARGS, ""},
{NULL, NULL, 0O, NULL}

}i

/* Initialize the module */
#1if PY_VERSION_HEX >= 0x03000000
static struct PyModuleDef example = {
PyModuleDef_ HEAD_INIT,
"example",
NULL,
-1,
ExampleMethods,
NULL,
NULL,
NULL,

(continues on next page)

4.1. SciPy Tutorial 435

SciPy Reference Guide, Release 1.3.2

(continued from previous page)

NULL
}i

PyMODINIT_FUNC
PyInit_example (void)
{
return PyModule_Create (&example);
}
#else
PyMODINIT_FUNC
initexample (void)
{
Py_InitModule ("example", ExampleMethods) ;

}
#endif

More information on writing Python extension modules can be found here. If the C code is in the file example. c, then
it can be compiled with the following setup . py,

from distutils.core import setup, Extension
import numpy

shift = Extension('example',
['example.c'],
include_dirs=[numpy.get_include ()]

setup (name="'example',
ext_modules=[shift]

and now running the script

import ctypes
import numpy as np
from scipy import ndimage, LowLevelCallable

from example import get_transform
shift = 0.5

user_data = ctypes.c_double (shift)

ptr = ctypes.cast (ctypes.pointer (user_data), ctypes.c_void_p)
callback = LowLevelCallable(get_transform(), ptr)

im = np.arange (12) .reshape (4, 3).astype(np.float64)

print (ndimage.geometric_transform(im, callback))

produces the same result as the original python script.

In the C version _transform is the callback function and the parameters output_coordinates and
input_coordinates play the same role as they do in the python version while out put_rank and input_rank
provide the equivalents of len (output_coordinates) and len (input_coordinates). The variable
shift is passed through user_data instead of extra_arguments. Finally, the C callback function returns an
integer status which is one upon success and zero otherwise.

436 Chapter 4. Tutorial

https://docs.python.org/2/extending/extending.html

SciPy Reference Guide, Release 1.3.2

The function py_t ransform wraps the callback function in a PyCapsule. The main steps are:
¢ Initialize a PyCapsule. The first argument is a pointer to the callback function.
* The second argument is the function signature which must match exactly the one expected by ndimage.
e Above, we used scipy.LowLevelCallable to specify user_data that we generated with ct ypes.

A different approach would be to supply the data in the capsule context, that can be set by PyCapsule_SetContext and
omit specifying user_data in scipy. LowLevelCallable. However, in this approach we would need to
deal with allocation/freeing of the data — freeing the data after the capsule is destroyed can be done by specifying
a non-NULL callback function in the third argument of PyCapsule_New.

C callback functions for ndimage all follow this scheme. The next section lists the ndimage functions that accept a C
callback function and gives the prototype of the function.

See also:
The functions that support low-level callback arguments are:
generic_filter,generic_filterld, geometric_transform

Below, we show alternative ways to write the code, using Numba, Cython, ctypes, or cffi instead of writing wrapper code
in C.

Numba

Numba provides a way to write low-level functions easily in Python. We can write the above using Numba as:

example.py

import numpy as np

import ctypes

from scipy import ndimage, LowLevelCallable
from numba import cfunc, types, carray

@cfunc (types.intc (types.CPointer (types.intp),
types.CPointer (types.double),
types.intc,
types.intc,
types.voidptr))
def transform(output_coordinates_ptr, input_coordinates_ptr,
output_rank, input_rank, user_data):
input_coordinates = carray (input_coordinates_ptr, (input_rank,))
output_coordinates = carray (output_coordinates_ptr, (output_rank,))
shift = carray(user_data, (1,), types.double) [0]

for i in range (input_rank) :
input_coordinates[i] = output_coordinates[i] - shift

return 1
shift = 0.5
Then call the function
user_data = ctypes.c_double (shift)

ptr = ctypes.cast (ctypes.pointer (user_data), ctypes.c_void_p)
callback = LowLevelCallable(transform.ctypes, ptr)

(continues on next page)

4.1. SciPy Tutorial 437

https://docs.python.org/dev/c-api/capsule.html#c.PyCapsule
https://docs.python.org/dev/c-api/capsule.html#c.PyCapsule
https://docs.python.org/dev/library/ctypes.html#module-ctypes
https://numba.pydata.org/
https://cython.org/
https://docs.python.org/3/library/ctypes.html
https://cffi.readthedocs.io/
https://numba.pydata.org/

SciPy Reference Guide, Release 1.3.2

(continued from previous page)

im = np.arange(12) .reshape (4, 3) .astype(np.float6d)
print (ndimage.geometric_transform(im, callback))

Cython

Functionally the same code as above can be written in Cython with somewhat less boilerplate as follows.

example.pyx
from numpy cimport npy_intp as intp

cdef api int transform(intp *output_coordinates, double *input_coordinates,
int output_rank, int input_rank, void *user_data):
cdef intp i
cdef double shift = (<double *>user_data) [0]

for i in range (input_rank) :
input_coordinates[i] = output_coordinates[i] - shift
return 1

script.py

import ctypes
import numpy as np
from scipy import ndimage, LowLevelCallable

import example
shift = 0.5

user_data = ctypes.c_double (shift)

ptr = ctypes.cast (ctypes.pointer (user_data), ctypes.c_void_p)
callback = LowLevelCallable.from_cython (example, "transform", ptr)
im = np.arange(12) .reshape (4, 3) .astype(np.float64)

print (ndimage.geometric_transform(im, callback))

cffi

With cffi, you can interface with a C function residing in a shared library (DLL). First, we need to write the shared library,
which we do in C — this example is for Linux/OSX:

/*

example.c

Needs to be compiled with "gcc -std=c99 -shared —-fPIC -o example.so example.
<~>C”

or similar

*/

(continues on next page)

438 Chapter 4. Tutorial

https://cffi.readthedocs.io/

SciPy Reference Guide, Release 1.3.2

(continued from previous page)

#include <stdint.h>

int
_transform(intptr_t *output_coordinates, double *input_coordinates,
int output_rank, int input_rank, wvoid *user_data)

int i;
double shift = * (double *)user_data;

for (i = 0; i < input_rank; i++) {
input_coordinates[i] = output_coordinates([i] - shift;
}

return 1;

The Python code calling the library is:

import os

import numpy as np

from scipy import ndimage, LowLevelCallable
import cffi

Construct the FFI object, and copypaste the function declaration

ffi = cf£fi.FFI()

ffi.cdef ("""

int _transform(intptr_t *output_coordinates, double *input_coordinates,
int output_rank, int input_rank, void *user_data);

nmnn ")

Open library
lib = ffi.dlopen (os.path.abspath("example.so"))

Do the function call

user_data = ffi.new('double *', 0.5)

callback = LowLevelCallable(lib._transform, user_data)
im = np.arange(12) .reshape (4, 3) .astype(np.float6d)
print (ndimage.geometric_transform(im, callback))

You can find more information in the cffi documentation.

ctypes

With ctypes, the C code and the compilation of the so/DLL is as for cffi above. The Python code is different:

script.py

import os

import ctypes

import numpy as np

from scipy import ndimage, LowLevelCallable

1lib = ctypes.CDLL (os.path.abspath ('example.so'))

(continues on next page)

4.1. SciPy Tutorial 439

https://cffi.readthedocs.io/

SciPy Reference Guide, Release 1.3.2

(continued from previous page)

shift = 0.5

user_data = ctypes.c_double (shift)
ptr = ctypes.cast (ctypes.pointer (user_data), ctypes.c_void_p)

Ctypes has no built—-in intptr type, so override the signature
instead of trying to get it via ctypes
callback = LowLevelCallable(lib._transform, ptr,

LU

int _transform(intptr_t *, double *, int, int, wvoid *)")

Perform the call
im = np.arange (12) .reshape (4, 3).astype(np.float64)
print (ndimage.geometric_transform(im, callback))

You can find more information in the ctypes documentation.

References

4.1.15 File 10 (scipy.io)

See also:

NumPy IO routines

MATLAB files
loadmat(file_name[, mdict, appendmat]) Load MATLAB file.
savemat(file_name, mdict[, appendmat, ...]) Save a dictionary of names and arrays into a MATLAB-
style .mat file.
whosmat(file_name[, appendmat]) List variables inside a MATLAB file.

The basic functions

We'll start by importing scipy. io and calling it sio for convenience:

>>> import scipy.io as sio

If you are using IPython, try tab completing on sio. Among the many options, you will find:

sio.loadmat
sio.savemat
sio.whosmat

These are the high-level functions you will most likely use when working with MATLAB files. You’ll also find:

sio.matlab

This is the package from which 1oadmat, savemat and whosmat are imported. Within sio.matlab, you will
find the mio module This module contains the machinery that 1oadmat and savemat use. From time to time you
may find yourself re-using this machinery.

440 Chapter 4. Tutorial

https://docs.python.org/3/library/ctypes.html
https://www.numpy.org/devdocs/reference/routines.io.html

SciPy Reference Guide, Release 1.3.2

How do | start?

You may have a .mat file that you want to read into SciPy. Or, you want to pass some variables from SciPy / NumPy
into MATLAB.

To save us using a MATLAB license, let’s start in Octave. Octave has MATLAB-compatible save and load functions.
Start Octave (octave at the command line for me):

octave:l> a = 1:12
a:

octave:2> a = reshape(a, [1 3 41])

ans(:,:,2) =

ans(:,:,3) =

ans(:,:,4)

10 11 12

\©

octave:3> save -6 octave_a.mat a % MATLAB 6 compatible
octave:4> 1ls octave_a.mat
octave_a.mat

Now, to Python:

>>> mat_contents
>>> mat_contents

sio.loadmat ('octave_a.mat')

{'a': array ([[[1., 4., 7., 10.],
[2., 5., 8., 11.],
[3., 6., 9., 12.111),
' wversion_ ': '1.0"',
' header__': '"MATLAB 5.0 MAT-file, written by
Octave 3.6.3, 2013-02-17 21:02:11 UTC',
' __globals__ '": []}
>>> oct_a = mat_contents['a']
>>> oct_a
array ([[[4., 7., 10.7,

1.,
[2., 5., 8., 11.1,
[3., 6., 9., 12.111)
>>> oct_a.shape
(1, 3, 4)

4.1. SciPy Tutorial 441

https://www.gnu.org/software/octave

SciPy Reference Guide, Release 1.3.2

Now let’s try the other way round:

>>> import numpy as np

>>> vect = np.arange(10)
>>> vect.shape
(10,)

>>> sio.savemat ('np_vector.mat', {'vect':vect})

Then back to Octave:

octave:8> load np_vector.mat
octave: 9> vect
vect =

octave:10> size (vect)
ans =

1 10

If you want to inspect the contents of a MATLAB file without reading the data into memory, use the whosmat command:

>>> sio.whosmat ('octave_a.mat')
[('a', (1, 3, 4), 'double'")]

whosmat returns a list of tuples, one for each array (or other object) in the file. Each tuple contains the name, shape and
data type of the array.

MATLAB structs

MATLAB structs are a little bit like Python dicts, except the field names must be strings. Any MATLAB object can be
a value of a field. As for all objects in MATLAB, structs are in fact arrays of structs, where a single struct is an array of
shape (1, 1).

octave:11> my_struct = struct ('fieldl', 1, 'field2', 2)
my_struct =
{

fieldl = 1

field2

Il
N

octave:12> save -6 octave_struct.mat my_struct

We can load this in Python:

>>> mat_contents = sio.loadmat ('octave_struct.mat')
>>> mat_contents
{'my_struct': array ([[([[2.0]1]1, [[2.0]11)11,

dtype=[('fieldl', '0O'), ('field2', 'O0")1), '__version__': '1.0', '__
—header_ ': '"MATLAB 5.0 MAT-file, written by Octave 3.6.3, 2013-02-17.
—21:23:14 UTC', '__globals__ ': []}
>>> oct_struct = mat_contents|['my_struct']
>>> oct_struct.shape

(1, 1)

(continues on next page)

442 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

(continued from previous page)

>>> val = oct_struct[0,0]

>>> val

([r1.011, [12.011)

>>> val['fieldl']

array ([[1.11)

>>> val['field2"']

array ([[2.11)

>>> val.dtype

dtype ([('fieldl', '0O"), ('field2', '0O")1)

In versions of SciPy from 0.12.0, MATLAB structs come back as numpy structured arrays, with fields named for the
struct fields. You can see the field names in the dt ype output above. Note also:

>>> val = oct_struct[0,0]

and:

octave:13> size (my_struct)
ans =

So, in MATLARB, the struct array must be at least 2D, and we replicate that when we read into SciPy. If you want all
length 1 dimensions squeezed out, try this:

>>> mat_contents = sio.loadmat ('octave_struct.mat', squeeze_me=True)
>>> oct_struct = mat_contents['my_struct']
>>> oct_struct.shape

0

Sometimes, it’s more convenient to load the MATLAB structs as python objects rather than numpy structured ar-
rays - it can make the access syntax in python a bit more similar to that in MATLAB. In order to do this, use the
struct_as_record=False parameter setting to loadmat.

>>> mat_contents = sio.loadmat ('octave_struct.mat', struct_as_record=False)
>>> oct_struct = mat_contents['my_struct']

>>> oct_struct[0,0].fieldl

array ([[1.11)

struct_as_record=False works nicely with squeeze_me:

>>> mat_contents = sio.loadmat ('octave_ struct.mat', struct_as_record=False, .
—squeeze_me=True)

>>> oct_struct = mat_contents['my_struct']

>>> oct_struct.shape # but no - it's a scalar

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'mat_struct' object has no attribute 'shape'
>>> type (oct_struct)
<class 'scipy.io.matlab.mio5_params.mat_struct'>
>>> oct_struct.fieldl
1.0

Saving struct arrays can be done in various ways. One simple method is to use dicts:

4.1. SciPy Tutorial 443

SciPy Reference Guide, Release 1.3.2

>>> g_dict = {'fieldl': 0.5, 'field2': 'a string'}
>>> sio.savemat ('saved_ struct.mat', {'a_ dict': a_dict})
loaded as:

octave:21> load saved_struct
octave:22> a_dict
a_dict =

scalar structure containing the fields:

field2 a string
fieldl = 0.50000

You can also save structs back again to MATLAB (or Octave in our case) like this:

>>> dt = [('f1', 'f£8"), ('f2', 'S10")]
>>> arr = np.zeros((2,), dtype=dt)
>>> arr
array ([(0.0, ""), (0.0, '"")1,
dtype=[('f1', '<f8'"), ('f2', 'S10")1)
>>> arr[0]['f1'] = 0.5
>>> arr[0]['f2'] = 'python'
>>> arr[1]['f1'] = 99
>>> arr[1]['f2'] = 'not perl'
>>> sio.savemat ('np_struct_arr.mat', {'arr': arr})

MATLAB cell arrays

Cell arrays in MATLAB are rather like python lists, in the sense that the elements in the arrays can contain any type of
MATLAB object. In fact they are most similar to numpy object arrays, and that is how we load them into numpy.

octave:14> my_cells = {1, [2, 31}

my_cells =
{
[1,11 = 1
(1,21 =
2 3
}

octave:15> save -6 octave_cells.mat my_cells

Back to Python:

>>> mat_contents = sio.loadmat ('octave_cells.mat")
>>> oct_cells = mat_contents['my_cells']

>>> print (oct_cells.dtype)

object

>>> val = oct_cells[0,0]

>>> val

array ([[1.]11)

(continues on next page)

444 Chapter 4. Tutorial

SciPy Reference Guide, Release 1.3.2

(continued from previous page)

>>> print (val.dtype)
floato64

Saving to a MATLAB cell array just involves making a numpy object array:

>>> obj_arr = np.zeros((2,), dtype=np.object)
>>> obj_arr[0] = 1

>>> obj_arr[1l

>>> obj_arr

array ([1, 'a string']l, dtype=object)

>>> sio.savemat ('np_cells.mat', {'obj_arr':obj_arr})

] = 'a string'

octave:16> load np_cells.mat
octave:17> obj_arr

obj_arr =
{
[1,1] = 1
[2,1] = a string
3
IDL files
readsav(file_namel, idict, python_dict, ...]) Read an IDL .sav file.

Matrix Market files

mminfo(source) Return size and storage parameters from Matrix Market
file-like ‘source’.

mmread(source) Reads the contents of a Matrix Market file-like ‘source’
into a matrix.

mmwr1te(target, a[, comment, field, ...]) Writes the sparse or dense array a to Matrix Market file-

like target.

Wav sound files (scipy.io.wavfile)

read(filename[, mmap]) Open a WAV file
write(filename, rate, data) Write a numpy array as a WAYV file.

Arff files (scipy.io.arff)

loadarff(f) Read an arff file.

Netcdf

4.1. SciPy Tutorial 445

SciPy Reference Guide, Release 1.3.2

netcdf_file(filename[, mode, mmap, version, ...]) A file object for NetCDF data.

Allows reading of NetCDF files (version of pupynere package)

446 Chapter 4. Tutorial

https://pypi.python.org/pypi/pupynere/

CHAPTER
FIVE

DEVELOPER’S GUIDE

Explanations of how to start contributing to SciPy, and descriptions of maintenance activities and policies.

5.1 SciPy Code of Conduct

5.1.1 Introduction

This code of conduct applies to all spaces managed by the SciPy project, including all public and private mailing lists,
issue trackers, wikis, blogs, Twitter, and any other communication channel used by our community. The SciPy project
does not organise in-person events, however events related to our community should have a code of conduct similar in
spirit to this one.

This code of conduct should be honored by everyone who participates in the SciPy community formally or informally,
or claims any affiliation with the project, in any project-related activities and especially when representing the project, in
any role.

This code is not exhaustive or complete. It serves to distill our common understanding of a collaborative, shared environ-
ment and goals. Please try to follow this code in spirit as much as in letter, to create a friendly and productive environment
that enriches the surrounding community.

5.1.2 Specific Guidelines

‘We strive to:

1. Be open. We invite anyone to participate in our community. We prefer to use public methods of communication
for project-related messages, unless discussing something sensitive. This applies to messages for help or project-
related support, too; not only is a public support request much more likely to result in an answer to a question, it
also ensures that any inadvertent mistakes in answering are more easily detected and corrected.

2. Be empathetic, welcoming, friendly, and patient. We work together to resolve conflict, and assume good intentions.
We may all experience some frustration from time to time, but we do not allow frustration to turn into a personal
attack. A community where people feel uncomfortable or threatened is not a productive one.

3. Be collaborative. Our work will be used by other people, and in turn we will depend on the work of others. When
we make something for the benefit of the project, we are willing to explain to others how it works, so that they can
build on the work to make it even better. Any decision we make will affect users and colleagues, and we take those
consequences seriously when making decisions.

4. Be inquisitive. Nobody knows everything! Asking questions early avoids many problems later, so we encourage
questions, although we may direct them to the appropriate forum. We will try hard to be responsive and helpful.

447

SciPy Reference Guide, Release 1.3.2

5. Be careful in the words that we choose. We are careful and respectful in our communication and we take respon-
sibility for our own speech. Be kind to others. Do not insult or put down other participants. We will not accept
harassment or other exclusionary behaviour, such as:

* Violent threats or language directed against another person.

* Sexist, racist, or otherwise discriminatory jokes and language.

* Posting sexually explicit or violent material.

 Posting (or threatening to post) other people’s personally identifying information (“doxing”).

« Sharing private content, such as emails sent privately or non-publicly, or unlogged forums such as IRC channel
history, without the sender’s consent.

» Personal insults, especially those using racist or sexist terms.

¢ Unwelcome sexual attention.

» Excessive profanity. Please avoid swearwords; people differ greatly in their sensitivity to swearing.
* Repeated harassment of others. In general, if someone asks you to stop, then stop.

* Advocating for, or encouraging, any of the above behaviour.

5.1.3 Diversity Statement

The SciPy project welcomes and encourages participation by everyone. We are committed to being a community that
everyone enjoys being part of. Although we may not always be able to accommodate each individual’s preferences, we
try our best to treat everyone kindly.

No matter how you identify yourself or how others perceive you: we welcome you. Though no list can hope to be
comprehensive, we explicitly honour diversity in: age, culture, ethnicity, genotype, gender identity or expression, language,
national origin, neurotype, phenotype, political beliefs, profession, race, religion, sexual orientation, socioeconomic status,
subculture and technical ability, to the extent that these do not conflict with this code of conduct.

Though we welcome people fluent in all languages, SciPy development is conducted in English.

Standards for behaviour in the SciPy community are detailed in the Code of Conduct above. Participants in our community
should uphold these standards in all their interactions and help others to do so as well (see next section).

5.1.4 Reporting Guidelines

We know that it is painfully common for internet communication to start at or devolve into obvious and flagrant abuse.
We also recognize that sometimes people may have a bad day, or be unaware of some of the guidelines in this Code of
Conduct. Please keep this in mind when deciding on how to respond to a breach of this Code.

For clearly intentional breaches, report those to the Code of Conduct committee (see below). For possibly unintentional
breaches, you may reply to the person and point out this code of conduct (either in public or in private, whatever is most
appropriate). If you would prefer not to do that, please feel free to report to the Code of Conduct Committee directly, or
ask the Committee for advice, in confidence.

You can report issues to the SciPy Code of Conduct committee, at scipy-conduct@googlegroups.com. Currently, the
committee consists of:

e Stefan van der Walt
¢ Nathaniel J. Smith

¢ Ralf Gommers

448 Chapter 5. Developer’s Guide

mailto:scipy-conduct@googlegroups.com

SciPy Reference Guide, Release 1.3.2

If your report involves any members of the committee, or if they feel they have a conflict of interest in handling it, then
they will recuse themselves from considering your report. Alternatively, if for any reason you feel uncomfortable making
a report to the committee, then you can also contact:

* Chair of the SciPy Steering Committee: Ralf Gommers, or

* Senior NumFOCUS staft: conduct@numfocus.org

5.1.5 Incident reporting resolution & Code of Conduct enforcement

This section summarizes the most important points, more details can be found in CoC_reporting_manual.

We will investigate and respond to all complaints. The SciPy Code of Conduct Committee and the SciPy Steering
Committee (if involved) will protect the identity of the reporter, and treat the content of complaints as confidential
(unless the reporter agrees otherwise).

In case of severe and obvious breaches, e.g. personal threat or violent, sexist or racist language, we will immediately
disconnect the originator from SciPy communication channels; please see the manual for details.

In cases not involving clear severe and obvious breaches of this code of conduct, the process for acting on any received
code of conduct violation report will be:

1. acknowledge report is received

2. reasonable discussion/feedback

3. mediation (if feedback didn’t help, and only if both reporter and reportee agree to this)

4. enforcement via transparent decision (see CoC_resolutions) by the Code of Conduct Committee

The committee will respond to any report as soon as possible, and at most within 72 hours.

5.1.6 Endnotes

We are thankful to the groups behind the following documents, from which we drew content and inspiration:
* The Apache Foundation Code of Conduct
* The Contributor Covenant
* Jupyter Code of Conduct
¢ Open Source Guides - Code of Conduct

5.2 Contributing to SciPy

This document aims to give an overview of how to contribute to SciPy. It tries to answer commonly asked questions,
and provide some insight into how the community process works in practice. Readers who are familiar with the SciPy
community and are experienced Python coders may want to jump straight to the git workflow documentation.

There are a lot of ways you can contribute:
¢ Contributing new code
* Fixing bugs and other maintenance work
¢ Improving the documentation

* Reviewing open pull requests

5.2. Contributing to SciPy 449

https://numfocus.org/code-of-conduct#persons-responsible
mailto:conduct@numfocus.org
https://www.apache.org/foundation/policies/conduct.html
https://www.contributor-covenant.org/version/1/4/code-of-conduct/
https://github.com/jupyter/governance/tree/master/conduct
https://opensource.guide/code-of-conduct/
https://docs.scipy.org/doc/numpy/dev/gitwash/

SciPy Reference Guide, Release 1.3.2

¢ Triaging issues
* Working on the scipy.org website

* Answering questions and participating on the scipy-dev and scipy-user mailing lists.

5.2.1 Contributing new code

If you have been working with the scientific Python toolstack for a while, you probably have some code lying around of
which you think “this could be useful for others too”. Perhaps it’s a good idea then to contribute it to SciPy or another open
source project. The first question to ask is then, where does this code belong? That question is hard to answer here, so we
start with a more specific one: what code is suitable for putting into SciPy? Almost all of the new code added to scipy has
in common that it’s potentially useful in multiple scientific domains and it fits in the scope of existing scipy submodules. In
principle new submodules can be added too, but this is far less common. For code that is specific to a single application,
there may be an existing project that can use the code. Some scikits (scikit-learn, scikit-image, statsmodels, etc.) are
good examples here; they have a narrower focus and because of that more domain-specific code than SciPy.

Now if you have code that you would like to see included in SciPy, how do you go about it? After checking that your code
can be distributed in SciPy under a compatible license (see FAQ for details), the first step is to discuss on the scipy-dev
mailing list. All new features, as well as changes to existing code, are discussed and decided on there. You can, and
probably should, already start this discussion before your code is finished.

Assuming the outcome of the discussion on the mailing list is positive and you have a function or piece of code that does
what you need it to do, what next? Before code is added to SciPy, it at least has to have good documentation, unit tests
and correct code style.

1. Unit tests

In principle you should aim to create unit tests that exercise all the code that you are adding. This gives some
degree of confidence that your code runs correctly, also on Python versions and hardware or OSes that you
don’t have available yourself. An extensive description of how to write unit tests is given in the NumPy testing
guidelines.

2. Documentation

Clear and complete documentation is essential in order for users to be able to find and understand the code.
Documentation for individual functions and classes — which includes at least a basic description, type and
meaning of all parameters and returns values, and usage examples in doctest format — is put in docstrings.
Those docstrings can be read within the interpreter, and are compiled into a reference guide in html and pdf
format. Higher-level documentation for key (areas of) functionality is provided in tutorial format and/or in
module docstrings. A guide on how to write documentation is given in how to document.

3. Code style

Uniformity of style in which code is written is important to others trying to understand the code. SciPy follows
the standard Python guidelines for code style, PEPS8. In order to check that your code conforms to PEPS, you
can use the pep8 package style checker. Most IDEs and text editors have settings that can help you follow
PEPS, for example by translating tabs by four spaces. Using pyflakes to check your code is also a good idea.

At the end of this document a checklist is given that may help to check if your code fulfills all requirements for inclusion
in SciPy.

Another question you may have is: where exactly do I put my code? To answer this, it is useful to understand how the SciPy
public API (application programming interface) is defined. For most modules the API is two levels deep, which means
your new function should appear as scipy.submodule.my_new_func. my_new_func can be put in an existing
or new file under /scipy/<submodule>/, its name is added tothe __all__ list in that file (which lists all public
functions in the file), and those public functions are then imported in /scipy/<submodule>/__init__.py. Any
private functions/classes should have a leading underscore (_) in their name. A more detailed description of what the
public API of SciPy is, is given in SciPy API.

450 Chapter 5. Developer’s Guide

https://scipy.org/
https://www.scipy.org/scipylib/mailing-lists.html
http://scikit-learn.org
http://scikit-image.org/
https://www.statsmodels.org/
https://github.com/numpy/numpy/blob/master/doc/TESTS.rst.txt
https://github.com/numpy/numpy/blob/master/doc/TESTS.rst.txt
https://pymotw.com/3/doctest/
https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt
https://www.python.org/dev/peps/pep-0008/
https://pypi.python.org/pypi/pep8
https://pypi.python.org/pypi/pyflakes
https://docs.scipy.org/doc/scipy/reference/api.html

SciPy Reference Guide, Release 1.3.2

Once you think your code is ready for inclusion in SciPy, you can send a pull request (PR) on Github. We won’t go into the
details of how to work with git here, this is described well in the git workflow section of the NumPy documentation and
on the Github help pages. When you send the PR for a new feature, be sure to also mention this on the scipy-dev mailing
list. This can prompt interested people to help review your PR. Assuming that you already got positive feedback before
on the general idea of your code/feature, the purpose of the code review is to ensure that the code is correct, efficient and
meets the requirements outlined above. In many cases the code review happens relatively quickly, but it’s possible that it
stalls. If you have addressed all feedback already given, it’s perfectly fine to ask on the mailing list again for review (after
a reasonable amount of time, say a couple of weeks, has passed). Once the review is completed, the PR is merged into
the “master” branch of SciPy.

The above describes the requirements and process for adding code to SciPy. It doesn’t yet answer the question though
how decisions are made exactly. The basic answer is: decisions are made by consensus, by everyone who chooses to
participate in the discussion on the mailing list. This includes developers, other users and yourself. Aiming for consensus
in the discussion is important — SciPy is a project by and for the scientific Python community. In those rare cases that
agreement cannot be reached, the maintainers of the module in question can decide the issue.

5.2.2 Contributing by helping maintain existing code

The previous section talked specifically about adding new functionality to SciPy. A large part of that discussion also
applies to maintenance of existing code. Maintenance means fixing bugs, improving code quality, documenting existing
functionality better, adding missing unit tests, keeping build scripts up-to-date, etc. The SciPy issue list contains all
reported bugs, build/documentation issues, etc. Fixing issues helps improve the overall quality of SciPy, and is also a
good way of getting familiar with the project. You may also want to fix a bug because you ran into it and need the
function in question to work correctly.

The discussion on code style and unit testing above applies equally to bug fixes. It is usually best to start by writing a unit
test that shows the problem, i.e. it should pass but doesn’t. Once you have that, you can fix the code so that the test does
pass. That should be enough to send a PR for this issue. Unlike when adding new code, discussing this on the mailing
list may not be necessary - if the old behavior of the code is clearly incorrect, no one will object to having it fixed. It may
be necessary to add some warning or deprecation message for the changed behavior. This should be part of the review
process.

Note: Pull requests that only change code style, e.g. fixing some PEPS issues in a file, are discouraged. Such PRs are
often not worth cluttering the git annotate history, and take reviewer time that may be better spent in other ways. Code
style cleanups of code that is touched as part of a functional change are fine however.

5.2.3 Reviewing pull requests

Reviewing open pull requests (PRs) is very welcome, and a valuable way to help increase the speed at which the project
moves forward. If you have specific knowledge/experience in a particular area (say “optimization algorithms” or “special
functions”) then reviewing PRs in that area is especially valuable - sometimes PRs with technical code have to wait for a
long time to get merged due to a shortage of appropriate reviewers.

We encourage everyone to get involved in the review process; it’s also a great way to get familiar with the code base.
Reviewers should ask themselves some or all of the following questions:

* Was this change adequately discussed (relevant for new features and changes in existing behavior)?

* Is the feature scientifically sound? Algorithms may be known to work based on literature; otherwise, closer look at
correctness is valuable.

* Is the intended behavior clear under all conditions (e.g. unexpected inputs like empty arrays or nan/inf values)?

* Does the code meet the quality, test and documentation expectation outline under Contributing new code?

5.2. Contributing to SciPy 451

https://docs.scipy.org/doc/numpy/dev/gitwash/
https://help.github.com/articles/set-up-git/
https://github.com/scipy/scipy/issues

SciPy Reference Guide, Release 1.3.2

If we do not know you yet, consider introducing yourself.

5.2.4 Other ways to contribute

There are many ways to contribute other than contributing code.

Triaging issues (investigating bug reports for validity and possible actions to take) is also a useful activity. SciPy has
many hundreds of open issues; closing invalid ones and correctly labeling valid ones (ideally with some first thoughts in a
comment) allows prioritizing maintenance work and finding related issues easily when working on an existing function or
submodule.

Participating in discussions on the scipy-user and scipy-dev mailing lists is a contribution in itself. Everyone who writes
to those lists with a problem or an idea would like to get responses, and writing such responses makes the project and
community function better and appear more welcoming.

The scipy.org website contains a lot of information on both SciPy the project and SciPy the community, and it can always
use a new pair of hands. The sources for the website live in their own separate repo: https://github.com/scipy/scipy.org

5.2.5 Recommended development setup

Since Scipy contains parts written in C, C++, and Fortran that need to be compiled before use, make sure you have the
necessary compilers and Python development headers installed. Having compiled code also means that importing Scipy
from the development sources needs some additional steps, which are explained below.

First fork a copy of the main Scipy repository in Github onto your own account and then create your local repository via:

$ git clone git@github.com:YOURUSERNAME/scipy.git scipy
$ cd scipy
$ git remote add upstream git://github.com/scipy/scipy.git

Second to code review pull requests it is helpful to have a local copy of the code changes in the pull request. The preferred
method to bring a PR from the github repository to your local repo in a new branch:

$ git fetch upstream pull/PULL_REQUEST_ID/head:NEW_BRANCH_NAME

The value of PULL_REQUEST_ID will be the PR number and the NEW_BRANCH_NAME will be the name of the branch
in your local repository where the diffs will reside.

Now you have a branch in your local development area to code review in python.

To build the development version of Scipy and run tests, spawn interactive shells with the Python import paths properly
set up etc., do one of:

python runtests.py -v

python runtests.py -v -s optimize

python runtests.py -v -t scipy.special.tests.test_lbasic::test_xlogy
python runtests.py —-—-ipython

python runtests.py —--python somescript.py

python runtests.py —--bench

v 0 Ur Uy O

This builds Scipy first, so the first time it may take some time. If you specify —n, the tests are run against the version of
Scipy (if any) found on current PYTHONPATH. Note: if you run into a build issue, more detailed build documentation
can be found in :doc:building/index* and at https://github.com/scipy/scipy/tree/master/doc/source/building

Using runtests.py is the recommended approach to running tests. There are also a number of alternatives to it, for
example in-place build or installing to a virtualenv. See the FAQ below for details.

452 Chapter 5. Developer’s Guide

https://www.scipy.org/scipylib/mailing-lists.html
https://scipy.org/
https://github.com/scipy/scipy.org

SciPy Reference Guide, Release 1.3.2

Some of the tests in Scipy are very slow and need to be separately enabled. See the FAQ below for details.

5.2.6 SciPy structure

All SciPy modules should follow the following conventions. In the following, a SciPy module is defined as a Python
package, say yvyy, that is located in the scipy/ directory.

Ideally, each SciPy module should be as self-contained as possible. That is, it should have minimal dependencies
on other packages or modules. Even dependencies on other SciPy modules should be kept to a minimum. A
dependency on NumPy is of course assumed.

Directory yyy/ contains:

— Afile setup.py that defines configuration (parent_package="'", top_path=None) func-
tion for numpy .distutils.

— A directory tests/ that contains files test_<name>.py corresponding to modules yyy/<name>{ .
py,.so,/}.

Private modules should be prefixed with an underscore _, for instance yyy/_somemodule.py.

User-visible functions should have good documentation following the NumPy documentation style, see how to
document

The __init__ .py of the module should contain the main reference documentation in its docstring. This is
connected to the Sphinx documentation under doc/ via Sphinx’s automodule directive.

The reference documentation should first give a categorized list of the contents of the module using
autosummary: : directives, and after that explain points essential for understanding the use of the module.

Tutorial-style documentation with extensive examples should be separate, and put under doc/source/
tutorial/

See the existing Scipy submodules for guidance.

For further details on NumPy distutils, see:

https://github.com/numpy/numpy/blob/master/doc/DISTUTILS.rst.txt

5.2.7 Useful links, FAQ, checklist

Checklist before submitting a PR

Are there unit tests with good code coverage?

Do all public function have docstrings including examples?
Is the code style correct (PEPS, pyflakes)

Is the commit message formatted correctly?

Is the new functionality tagged with . . versionadded:: X.Y.Z (with X.Y.Z the version number of the
next release - can be found in setup.py)?

Is the new functionality mentioned in the release notes of the next release?
Is the new functionality added to the reference guide?
In case of larger additions, is there a tutorial or more extensive module-level description?

In case compiled code is added, is it integrated correctly via setup.py

5.2. Contributing to SciPy 453

https://docs.scipy.org/doc/numpy/reference/distutils.html#module-numpy.distutils
https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt
https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt
https://github.com/numpy/numpy/blob/master/doc/DISTUTILS.rst.txt
https://docs.scipy.org/doc/numpy/dev/gitwash/development_workflow.html#writing-the-commit-message

SciPy Reference Guide, Release 1.3.2

* If you are a first-time contributor, did you add yourself to THANKS.txt? Please note that this is perfectly normal
and desirable - the aim is to give every single contributor credit, and if you don’t add yourself it’s simply extra work
for the reviewer (or worse, the reviewer may forget).

* Did you check that the code can be distributed under a BSD license?

Useful SciPy documents

¢ The how to document guidelines
* NumPy/SciPy testing guidelines
e SciPy API

* The SciPy Roadmap

¢ NumPy/SciPy git workflow

* How to submit a good bug report

FAQ

I based my code on existing Matlab/R/... code I found online, is this OK?

It depends. SciPy is distributed under a BSD license, so if the code that you based your code on is also BSD licensed or
has a BSD-compatible license (e.g. MIT, PSF) then it’'s OK. Code which is GPL or Apache licensed, has no clear license,
requires citation or is free for academic use only can’t be included in SciPy. Therefore if you copied existing code with
such a license or made a direct translation to Python of it, your code can’t be included. If you're unsure, please ask on the
scipy-dev mailing list.

Why is SciPy under the BSD license and not, say, the GPL?

Like Python, SciPy uses a “permissive” open source license, which allows proprietary re-use. While this allows companies
to use and modify the software without giving anything back, it is felt that the larger user base results in more contributions
overall, and companies often publish their modifications anyway, without being required to. See John Hunter’s BSD pitch.

How do I set up a development version of SciPy in parallel to a released version that I use to do my job/research?

One simple way to achieve this is to install the released version in site-packages, by using a binary installer or pip for
example, and set up the development version in a virtualenv. First install virtualenv (optionally use virtualenvwrapper),
then create your virtualenv (named scipy-dev here) with:

$ virtualenv scipy-dev

Now, whenever you want to switch to the virtual environment, you can use the command source scipy-dev/bin/
activate, and deactivate to exit from the virtual environment and back to your previous shell. With scipy-dev
activated, install first Scipy’s dependencies:

$ pip install NumPy pytest Cython

After that, you can install a development version of Scipy, for example via:

$ python setup.py install

The installation goes to the virtual environment.
How do I set up an in-place build for development

For development, you can set up an in-place build so that changes made to . py files have effect without rebuild. First,
run:

454 Chapter 5. Developer’s Guide

https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt
https://github.com/numpy/numpy/blob/master/doc/TESTS.rst.txt
https://docs.scipy.org/doc/scipy/reference/api.html
https://scipy.github.io/devdocs/roadmap.html
https://docs.scipy.org/doc/numpy/dev/gitwash/
https://scipy.org/bug-report.html
http://nipy.sourceforge.net/nipy/stable/faq/johns_bsd_pitch.html
https://virtualenv.pypa.io/
https://bitbucket.org/dhellmann/virtualenvwrapper/

SciPy Reference Guide, Release 1.3.2

$ python setup.py build_ext -i

Then you need to point your PYTHONPATH environment variable to this directory. Some IDEs (Spyder for example)
have utilities to manage PYTHONPATH. On Linux and OSX, you can run the command:

$ export PYTHONPATH=$PWD

and on Windows
$ set PYTHONPATH=/path/to/scipy

Now editing a Python source file in SciPy allows you to immediately test and use your changes (in . py files), by simply
restarting the interpreter.

Are there any video examples for installing from source, setting up a development environment, etc...?
Currently, there are two video demonstrations for Anaconda Python on macOS:

Anaconda SciPy Dev Part I (macOS) is a four-minute overview of installing Anaconda, building SciPy from source, and
testing changes made to SciPy from the Spyder IDE.

Anaconda SciPy Dev Part IT (macOS) shows how to use a virtual environment to easily switch between the “pre-built
version” of SciPy installed with Anaconda and your “source-built version” of SciPy created according to Part I.

Are there any video examples of the basic development workflow?

SciPy Development Workflow is a five-minute example of fixing a bug and submitting a pull request. While it’s intended
as a followup to Anaconda SciPy Dev Part I (macOS) and Anaconda SciPy Dev Part II (macOS), the process is similar
for other development setups.

Can I use a programming language other than Python to speed up my code?

Yes. The languages used in SciPy are Python, Cython, C, C++ and Fortran. All of these have their pros and cons. If
Python really doesn’t offer enough performance, one of those languages can be used. Important concerns when using com-
piled languages are maintainability and portability. For maintainability, Cython is clearly preferred over C/C++/Fortran.
Cython and C are more portable than C++/Fortran. A lot of the existing C and Fortran code in SciPy is older, battle-tested
code that was only wrapped in (but not specifically written for) Python/SciPy. Therefore the basic advice is: use Cython.
If there’s specific reasons why C/C++/Fortran should be preferred, please discuss those reasons first.

How do I debug code written in C/C++/Fortran inside Scipy?

The easiest way to do this is to first write a Python script that invokes the C code whose execution you want to debug. For
instance mytest .py:

from scipy.special import hyp2fl
print (hyp2£1(5.0, 1.0, -1.8, 0.95))

Now, you can run:

gdb —-—-args python runtests.py —-g ——python mytest.py

If you didn’t compile with debug symbols enabled before, remove the build directory first. While in the debugger:

(gdb) break cephes_hyp2fl
(gdb) run

The execution will now stop at the corresponding C function and you can step through it as usual. Instead of plain gdb
you can of course use your favourite alternative debugger; run it on the python binary with arguments runtests.py
-g ——-python mytest.py.

How do I enable additional tests in Scipy?

5.2. Contributing to SciPy 455

https://www.spyder-ide.org/
https://youtu.be/1rPOSNd0ULI
https://www.spyder-ide.org/
https://youtu.be/Faz29u5xIZc
https://youtu.be/HgU01gJbzMY
https://youtu.be/1rPOSNd0ULI
https://youtu.be/Faz29u5xIZc

SciPy Reference Guide, Release 1.3.2

Some of the tests in Scipy’s test suite are very slow and not enabled by default. You can run the full suite via:

$ python runtests.py -g —-m full

This invokes the test suite import scipy; scipy.test ("full"), enabling also slow tests.

There is an additional level of very slow tests (several minutes), which are disabled also in this case. They can be enabled
by setting the environment variable SCIPY_XSLOW=1 before running the test suite.

5.3 Building from sources

Note: If you are only trying to install SciPy, see Installing and upgrading.

Build instructions for different operating systems:

5.3.1 Building From Source on Linux
Generic instructions

To build NumPy/SciPy from source, get the source package, unpack it, and:

python setup.py install —-user # installs to your home directory

or

python setup.py build
python setup.py install —-prefix=$HOME/local

Before building, you will also need to install packages that NumPy and SciPy depend on

¢ BLAS and LAPACK libraries (optional but strongly recommended for NumPy, required for SciPy): typically
ATLAS + OpenBLAS, or MKL.

¢ C and Fortran compilers (typically gcc and gfortran).
» Python header files (typically a package named python-dev or python-devel)

¢ Unless you are building from released source packages, the Cython compiler is necessary (typically in a package
named cython). For building recent SciPy, it is possible that you need Cython in a newer version than is available
in your distribution.

Typically, you will want to install all of the above from packages supplied by your Linux distribution, as building them
yourself is complicated. If you need to use specific BLAS/LAPACK libraries, you can do

export BLAS=/path/to/libblas.so
export LAPACK=/path/to/liblapack.so
export ATLAS=/path/to/libatlas.so
python setup.py

If you don’t want to any LAPACK, just do “export LAPACK=".

You will find below additional installation instructions and advice for many major Linux distributions.

456 Chapter 5. Developer’s Guide

https://github.com/scipy/scipy
http://math-atlas.sourceforge.net/
https://github.com/xianyi/OpenBLAS/
https://software.intel.com/en-us/intel-mkl
http://cython.org/

SciPy Reference Guide, Release 1.3.2

Specific instructions

e Debian / Ubuntu
e Fedora 26

e Intel C compiler and MKL
— Intel MKL 11.0 (updated Dec 2012)

Debian / Ubuntu

To build from source the following packages are needed:

sudo apt-get install gcc gfortran python-dev libopenblas-dev liblapack-dev.
—cython

To customize which BLAS is used, you can setup a sife.cfg file. See the site.cfg.example file in the numpy source for the
options you can set.

Note that Debian and Ubuntu package optimized BLAS libraries in a exchangeable way. You can install libraries such as
ATLAS or OpenBLAS and change the default one used via the alternatives mechanism:

$ sudo apt—-get install libopenblas-base libatlas3-base
$ update-alternatives —--list libblas.so.3
/usr/lib/atlas-base/atlas/libblas.so.3
/usr/lib/libblas/libblas.so0.3
/usr/lib/openblas-base/libopenblas.so.0

$ sudo update-alternatives —--set libblas.so.3 /usr/lib/openblas-base/
—libopenblas.so.0

See /usr/share/doc/libatlas3-base/README.Debian for instructions on how to build optimized ATLAS packages for your
specific CPU. The packaged OpenBLAS chooses the optimal code at runtime so it does not need recompiling unless the
packaged version does not yet support the used CPU.

You can also use a library you built yourself by preloading it. This does not require administrator rights.

LD_PRELOAD=/path/to/libatlas.so.3 ./my—-application

Fedora 26

To install scipy build requirements, you can do:

sudo dnf install gcc-gfortran python3-devel python2-devel openblas-devel.
—~lapack—-devel Cython

Intel C compiler and MKL
Intel MKL 11.0 (updated Dec 2012)

Add the following lines to site.cfg in your top level NumPy directory to use Intel® MKL for Intel® 64 (or earlier known
as em64t) architecture, considering the default installation path of Intel® MKL which is bundled with Intel® Composer
XE SP1 version on Linux:

5.3. Building from sources 457

SciPy Reference Guide, Release 1.3.2

[mk1]

library_dirs = /opt/intel/composer_xe_2013/mkl/lib/intel64
include_dirs = /opt/intel/composer_xe_2013/mkl/include
mkl_libs = mkl_intel_ 1p64,mkl_intel_thread,mkl_core

If you are building NumPy for 32 bit, please add as the following

[mkl]

library_dirs = /opt/intel/composer_xe_2013/mkl/1ib/ia32
include_dirs = /opt/intel/composer_xe_2013/mkl/include
mkl_libs = mkl_intel,mkl_intel_thread,mkl_core

Instead of the layered linking approach for the Intel® MKL as shown above, you may also use the dynamic interface lib
mkl_rt.lib. So, for both the ia32 and intel64 architecture make the change as below

mkl libs = mkl_rt

Modify cc_exe in numpy/numpy/distutils/intelccompiler.py to be something like:

cc_exe = 'icc -02 -g -openmp —-avx'

Here we use, default optimizations (-02), OpenMP threading (-openmp) and Intel® AVX optimizations for Intel® Xeon
E5 or E3 Series which are based on Intel® SandyBridge Architecture (-avx). Run icc —help for more information on
processor-specific options.

Compile and install NumPy with the Intel compiler (on 64-bit platforms replace “intel” with “intelem”):

python setup.py config ——compiler=intel build_clib --compiler=intel build_ext.
———compiler=intel install

Compile and install SciPy with the Intel compilers (on 64-bit platforms replace “intel” with “intelem”):

python setup.py config —-compiler=intel —--fcompiler=intel build_clib —-
—compiler=intel ——-fcompiler=intel build_ext —--compiler=intel ——
—fcompiler=intel install

You’'ll have to set LD_LIBRARY_PATH to Intel® MKL libraries (exact values will depend on your architecture, compiler
and library versions) and OpenMP library for NumPy to work. If you build NumPy for Intel® 64 platforms:

Sexport LD_LIBRARY_PATH=/opt/intel/composer_xe_2013/mkl/lib/intel64: /opt/
—intel/composer_xe_2013/compiler/lib/intel64:S$LD_LIBRARY_PATH

If you build NumPy for ia32 bit platforms:

Sexport LD_LIBRARY_PATH=/opt/intel/composer_xe_2013/mkl/lib/ia32: /opt/intel/
—composer_xe_2013/compiler/lib/ia32:S$LD_LIBRARY_PATH

5.3.2 Building From Source on Windows

e Overview

* Building the Released SciPy

458 Chapter 5. Developer’s Guide

SciPy Reference Guide, Release 1.3.2

— Building OpenBLAS
— Installing OpenBLAS
— Building SciPy

* Building Against an Older NumPy Version

e Additional Resources

Overview

Compared to OSX and Linux, building NumPy and SciPy on Windows is more difficult, largely due to the lack of
compatible, open-source libraries like LAPACK or ATLAS that are necessary to build both libraries and have them
perform relatively well. It is not possible to just call a one-liner on the command prompt as you would on other platforms
via sudo apt-get install machinery.

This document describes one option to build OpenBLAS and SciPy from source that was validated for scipy 1.0.0. How-
ever, in light of all the work currently being done, do not expect these instructions to be accurate in the long-run and be
sure to check up on any of the open source projects mentioned for the most up-to-date information. For more informa-
tion on all of these projects, the Mingwpy website is an excellent source of in-depth information than this document will
provide.

Building the Released SciPy

This section provides the step-by-step process to build the released scipy. If you want to build completely from source, you
should estimate at least three hours to build all libraries and compile SciPy. Feel free to stop and inspect any step at any
time, but for this section, we’ll just mention the steps without providing an in-depth explanation for the reasons behind
them. If you have further questions about what we’re doing, more in-depth documentation is provided in the sections
below. Also, please make sure to read this section before proceeding, as the presence or absence of error messages in
general is not a good indication of whether you've completed a step correctly. Each step creates particular files, and
what ultimately matters is whether you have built the required files rather than whether error messages appeared in your
terminal.

Building OpenBLAS

First, we need to install the software required to build OpenBLAS, which is the BLAS library that we’re going to use.
Because the software to build OpenBLAS is different than that required to build SciPy and because OpenBLAS takes a
long time to build, we’re going to start building OpenBLAS first and then explain what to do next while the OpenBLAS
build is running. Alternatively, if you’d rather download a pre-built OpenBLAS, download the one of the pre-built
zip files and skip to the Installing OpenBLAS section below.

Otherwise, install MSYS2 using these instructions including the pacman update instructions. Occasionally during the
updates the terminal might ask you to close the terminal but then might refuse to be closed and hang. If this happens you
can kill it via Task Manager and continue with the instructions. Make sure to install the correct architecture for the SciPy
that you want to build (eg. 32 or 64 bit). Now, you have three options for opening a terminal which are MSYS2, MINGW
(32 or 64 bit). After updating all the packages, now we are ready to install some more package bundles that we will need.
Open a MSYS2 terminal and type the following depending on the architecture of your choice; run the following for a
32-bit build

pacman —-S —--needed base-devel mingw-w64-i686-toolchain mingw-w64-i686-cmake_

and for 64-bit

5.3. Building from sources 459

http://www.netlib.org/lapack/
http://math-atlas.sourceforge.net/
https://mingwpy.github.io/
https://github.com/xianyi/OpenBLAS
https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms
https://3f23b170c54c2533c070-1c8a9b3114517dc5fe17b7c3f8c63a43.ssl.cf2.rackcdn.com/
https://3f23b170c54c2533c070-1c8a9b3114517dc5fe17b7c3f8c63a43.ssl.cf2.rackcdn.com/
https://github.com/msys2/msys2/wiki/MSYS2-installation

SciPy Reference Guide, Release 1.3.2

pacman —-S —--needed base-devel mingw-w64-x86_64-toolchain mingw-w64-x86_64-
—cmake git

It will prompt to whether install everything in these packages and you can simply accept all via hitting enter key at each
step.

We should be aware of the fact that these tools also install Python2, very similar to a virtual environment, which is only
usable within an MSYS2 terminal and we are not going to use it at any point. After updating, now we are going to use
the build toolchain that we have installed in the previous step. Depending on 32/64bit choice, we will switch to another
shell that MSYS2 created. In your start menu you should see three MSYS2 terminal shortcuts. Select the one with either
64 or 32bit indicator. The reason why we do this is that the toolchain and compilers are available to these shells and not
to the standard MSYS2 terminal.

If you already have a GitHub repository folder where you keep your own repos, it is better to use that location to keep
things nice and tidy since we are going to clone yet another repository to obtain the source code, hence

cd /c/<wherever the GitHub repo folder is>/GitHub

You don’t necessarily need to build in that particular location, but it should be somewhere convenient. To make sure that
we're ready to build, type the following in the terminal:

make
gfortran
gcc

These commands should give errors as we have not provided any arguments to them. However an error also implies that
they are accessible on the path. Now clone the repository required to build OpenBLAS:

git clone https://github.com/matthew-brett/build-openblas.git
cd build-openblas
git submodule update --init --recursive

If any of these commands fail, you’re not ready to build. Go back and make sure that MSYS? is installed correctly and has
the required packages enabled. Now, let’s set some environment variables. In the MSYS?2 terminal, type the following.

export OPENBLAS_COMMIT=5f998ef
export OPENBLAS_ROOT="C:\\opt"
export BUILD_BITS=64

Please check these variables’ purpose for a moment. More specifically, make sure that you have read/write access to the
path that OPENBLAS_ROOT points to. The output of the OpenBLAS build will be collected in this folder. Make sure
that the OPENBLAS_COMMIT points to the correct OpenBLAS commit that you want to build in the cloned repo. In
the future, build_openblas repository might get updated and you might want to get those updates by changing the
commit. Make sure that the architecture is correctly set to either 32 or 64 bit. And after you’ve made sure of that, start
the OpenBLAS build with:

./build_openblas.sh

Building OpenBLAS is challenging. The build may fail with an error after a few hours but may also fail silently and
produce an incorrect binary. Please, if you have any issues, report them so that we can save the next person’s time.

While you're waiting on OpenBLAS to finish building, go ahead and install build tools from Microsoft, since these take a
while to install and you’ll need them later.

After the build_openblas. sh script has completed (probably with an error), there should be an openblas. a file
somewhere on your system. If OPENBLAS_ROOT was set to C: \ \opt, then you might see a line like this in the MSYS2
terminal:

460 Chapter 5. Developer’s Guide

https://github.com/scipy/scipy/issues/new
https://www.visualstudio.com/downloads/#build-tools-for-visual-studio-2017

SciPy Reference Guide, Release 1.3.2

Copying the static library to /c/opt/64/1ib

Installing OpenBLAS

If you see that line, then you might have OpenBLAS correctly built, even if other failures might have occurred. Look
in that folder for openblas.a. If you find a file called something like 1ibopenblas_5£998ef_gcc7_2_0.a,
just rename it to openblas . a and continue. If the file isn’t there, then poke around and try to find the file elsewhere in
OPENBLAS_ROOT. If you don’t have that file, you’ll probably need to find out what happened and then build OpenBLAS
again. But if you have that file, we’ll assume that you’ve completed this step correctly. Proceeding on that assumption,
let’s build SciPy.

Before continuing, make sure that you don’t have other copies of either openblas.libor libopenblas.lib
on your computer elsewhere. Multiple copies could result in later build errors that will be difficult to debug. You
may verifiy that the openblas library was correctly picked up by looking for the following in your build log:

FOUND:
libraries = ['openblas']
library_dirs = ['C:\opt\64\1lib"']
language = c
define_macros = [('HAVE_CBLAS', None)]
Building SciPy

Once you have built OpenBLAS, it’s time to build SciPy. Before continuing make sure to install the following software
for building on the latest Python version. For building on other Python versions, see the WindowsCompilers page.

1) Install Microsoft Visual Studio 2015 or 2017 Community Edition (use the build tools from Microsoft)
2) Finally, install Python from https://python.org/ (make sure to check the box to install pip)

After you've installed the required software, open an MSYS2 terminal, change to a good location to build, and clone
SciPy.

cd C:\Users\MyUser\Downloads
git clone https://github.com/scipy/scipy.git
cd scipy

Now we need to copy the openblas. a file that we've built earlier to the correct location. If your Python is installed
somewhere like the following:

C:\Users\<user name>\AppDatal\Local\Programs\Python\Python36\python.exe

Then you’ll need to put the openblas. a file somewhere like the following:

C:\Users\<user name>\AppData\Local\Programs\Python\Python36\Lib

Adjust the location accordingly based on where python.exe is located. Now for a sanity check. Type the following
and press enter.

gfortran

If you see an error with the above command, gfort ran is not correctly installed. Go back to the “Building OpenBLAS”
section and make sure that you have installed the correct tools.

Now install the dependencies that we need to build and test SciPy. It’s important that you specify the full path to
the native Python interpreter so that the built-in MSYS2 Python will not be used. Attempting to build with the
MSYS2 Python will not work correctly.

5.3. Building from sources 461

https://wiki.python.org/moin/WindowsCompilers
https://www.visualstudio.com/downloads/#build-tools-for-visual-studio-2017
https://python.org/

SciPy Reference Guide, Release 1.3.2

/c/Users/<user name>/AppData/Local/Programs/Python/Python36/python.exe \
-m pip install numpy>=1.14.0 cython pytest pytest-xdist

Please note that this is a simpler procedure than what is used for the official binaries. Your binaries will only work
with the latest NumPy (v1.14.0dev and higher). For building against older NumPy versions, see Building Against an
Older NumPy Version. Make sure that you are in the same directory where setup . py is (you should be if you have not
changed directories):

ls setup.py

Assuming that you have set up everything correctly, you should be ready to build. Run the following commands:

/c/Users/<user name>/AppData/Local/Programs/Python/Python36/python.exe \
-m pip wheel -v -v -v

/c/Users/<user name>/AppData/Local/Programs/Python/Python36/python.exe \
runtests.py —--mode full

Congratulatations, you’ve built SciPy!

Building Against an Older NumPy Version

If you want to build SciPy to work with an older numpy version, then you will need to replace the NumPy “distutils” folder
with the folder from the latest numpy. The following powershell snippet can upgrade NumPy distutils while retaining an
older NumPy ABI.

SNumpyDir = $((python -c 'import os; import numpy; print (os.path.

—dirname (numpy.__file_)) ') | Out-String) .Trim()
rm -r —-Force "SNumpyDir\distutils"
Stmpdir = New-TemporaryFile | %{ rm $; mkdir $_ }

git clone —-g ——-depth=1 -b master https://github.com/numpy/numpy.git Stmpdir
mv Stmpdir\numpy\distutils SNumpyDir

Additional Resources

As discussed in the overview, this document is not meant to provide extremely detailed explanations on how to build
NumPy and SciPy on Windows. This is largely because currently, there is no single superior way to do so and because
the process for building these libraries on Windows is under development. It is likely that any information will go out of
date relatively soon. If you wish to receive more assistance, please reach out to the NumPy and SciPy mailing lists, which
can be found here. There are many developers out there, working on this issue right now, and they would certainly be
happy to help you out! Google is also a good resource, as there are many people out there who use NumPy and SciPy on
Windows, so it would not be surprising if your question or problem has already been addressed.

5.3.3 Building From Source on Mac OSX

These instructions describe how to build NumPy and SciPy libraries from source.

If you just want to use NumPy or SciPy, install pre-built binaries as described in Installing and upgrading.

462 Chapter 5. Developer’s Guide

https://en.wikipedia.org/wiki/Application_binary_interface
https://www.scipy.org/scipylib/mailing-lists.html

SciPy Reference Guide, Release 1.3.2

Python
Apple ships its own version of Python with OS X. However, we strongly recommend installing the official Python distri-
bution.

Alternatively, use Python from one of the OS X package managers (Homebrew, MacPorts, Fink).

Compilers (C/C++/FORTRAN/Cython)
Though virtually any commercial C/C++ compiler may be used with SciPy, OS X comes with GNU C compilers pre-
installed. The only thing missing is the GNU FORTRAN compiler.
We recommend gfortran; this is a free, open source, F95 compiler. We suggest you use the following binaries:
e gfortran installed via Homebrew, or,
e http://r.research.att.com/tools/gcc-42-5666.3-darwinl 1.pkg (for Xcode 4.2 or higher)
See this site for the most recent links.

Unless you are building from released source packages, the Cython compiler is also needed.

BLAS/LAPACK Installation

You will also need to install a library providing the BLAS and LAPACK interfaces. ATLAS, OpenBLAS, and MKL all
work. OpenBLAS can be installed via Homebrew.

As of SciPy version 1.2.0, we do not support compiling against the system Accelerate library for BLAS and LAPACK.
It does not support a sufficiently recent LAPACK interface.

Version-specific notes

This section notes only things specific to one version of OS X or Python. The build instructions in Obtaining and Building
NumPy and SciPy apply to all versions.

Obtaining and Building NumPy and SciPy

You may install NumPy and SciPy either by checking out the source files or downloading a source archive file from
GitHub. If you choose the latter, simply expand the archive (generally a gzipped tar file), otherwise check out the following
branches from the repository:

$ git clone https://github.com/numpy/numpy.git
$ git clone https://github.com/scipy/scipy.git

Both NumPy and SciPy are built as follows:

$ python setup.py build
$ python setup.py install

The above applies to the official Python distribution, which is 32-bit only for 2.6 while 32/64-bit bundles are available for
2.7 and 3.x. For alternative 64-bit Pythons (either from Apple or home-built) on Snow Leopard, you may need to extend
your build flags to specify the architecture by setting LDFLAGS and FFLAGS.

Note that with distutils (setup.py) given build flags like LDFLAGS do not extend but override the defaults, so you have
to specify all necessary flags. Only try this if you know what you’re doing!

5.3. Building from sources 463

https://www.python.org/downloads/
https://www.python.org/downloads/
https://brew.sh/
http://r.research.att.com/tools/gcc-42-5666.3-darwin11.pkg
http://r.research.att.com/tools/
http://cython.org/
https://github.com/scipy/scipy
https://www.python.org/downloads/

SciPy Reference Guide, Release 1.3.2

After a successful build, you may try running the built-in unit tests for SciPy:

$ python

>>> import numpy as np
>>> np.test ('full')
>>> import scipy

>>> scipy.test ()

Be sure not to import numpy or scipy while you're in the numpy/scipy source tree. Change directory first.

If you have any problems installing SciPy on your Mac based on these instructions, please check the scipy-users and scipy-
dev mailing list archives for possible solutions. If you are still stuck, feel free to join scipy-users for further assistance.
Please have the following information ready:

* Your OS version

 The versions of gcc and gfortran and where you obtained gfortran
- $ gcc —-version
- $ gfortran --version

¢ The versions of numpy and scipy that you are trying to install

e The full output of $ python setup.py build

5.4 SciPy Developer Guide

5.4.1 Decision making process

SciPy has a formal governance model, documented in SciPy project governance. The section below documents in an
informal way what happens in practice for decision making about code and commit rights. The formal governance model
is leading, the below is only provided for context.

Code

Any significant decisions on adding (or not adding) new features, breaking backwards compatibility or making other
significant changes to the codebase should be made on the scipy-dev mailing list after a discussion (preferably with full
consensus).

Any non-trivial change (where trivial means a typo, or a one-liner maintenance commit) has to go in through a pull request
(PR). It has to be reviewed by another developer. In case review doesn’t happen quickly enough and it is important that
the PR is merged quickly, the submitter of the PR should send a message to mailing list saying he/she intends to merge
that PR without review at time X for reason Y unless someone reviews it before then.

Changes and new additions should be tested. Untested code is broken code.
Commit rights

Who gets commit rights is decided by the SciPy Steering Council; changes in commit rights will then be announced on
the scipy-dev mailing list.

464 Chapter 5. Developer’s Guide

https://www.scipy.org/scipylib/mailing-lists.html
https://www.scipy.org/scipylib/mailing-lists.html

SciPy Reference Guide, Release 1.3.2

5.4.2 Deciding on new features

The general decision rule to accept a proposed new feature has so far been conditional on:
1. The method is applicable in many fields and “generally agreed” to be useful,
2. Fits the topic of the submodule, and does not require extensive support frameworks to operate,

3. The implementation looks sound and unlikely to need much tweaking in the future (e.g., limited expected mainte-
nance burden), and

4. Someone wants to do it.

Although it’s difficult to give hard rules on what “generally useful and generally agreed to work” means, it may help to
weigh the following against each other:

¢ Is the method used/useful in different domains in practice? How much domain-specific background knowledge is
needed to use it properly?

 Consider the code already in the module. Is what you are adding an omission? Does it solve a problem that you'd
expect the module be able to solve? Does it supplement an existing feature in a significant way?

* Consider the equivalence class of similar methods / features usually expected. Among them, what would in principle
be the minimal set so that there’s not a glaring omission in the offered features remaining? How much stuff would
that be? Does including a representative one of them cover most use cases? Would it in principle sound reasonable
to include everything from the minimal set in the module?

¢ Is what you are adding something that is well understood in the literature? If not, how sure are you that it will turn
out well? Does the method perform well compared to other similar ones?

* Note that the twice-a-year release cycle and backward-compatibility policy makes correcting things later on more
difficult.

The scopes of the submodules also vary, so it’s probably best to consider each as if it’s a separate project - “numerical
evaluation of special functions” is relatively well-defined, but “commonly needed optimization algorithms” less so.

5.4.3 Development on GitHub

SciPy development largely takes place on GitHub; this section describes the expected way of working for issues, pull
requests and managing the main scipy repository.

Labels and Milestones

Each issue and pull request normally gets at least two labels: one for the topic or component (scipy.stats,
Documentation, etc.), and one for the nature of the issue or pull request (enhancement, maintenance,
defect, etc.). Other labels that may be added depending on the situation:

* easy-fix: for issues suitable to be tackled by new contributors.

* needs-work: for pull requests that have review comments that haven’t been addressed for a while.

* needs-decision: for issues or pull requests that need a decision.

* needs—-champion: for pull requests that were not finished by the original author, but are worth resurrecting.
* backport-candidate: bugfixes that should be considered for backporting by the release manager.

A milestone is created for each version number for which a release is planned. Issues that need to be addressed and pull
requests that need to be merged for a particular release should be set to the corresponding milestone. After a pull request
is merged, its milestone (and that of the issue it closes) should be set to the next upcoming release - this makes it easy to
get an overview of changes and to add a complete list of those to the release notes.

5.4. SciPy Developer Guide 465

SciPy Reference Guide, Release 1.3.2

Dealing with pull requests

¢ When merging contributions, a committer is responsible for ensuring that those meet the requirements outlined in
Contributing to SciPy. Also check that new features and backwards compatibility breaks were discussed on the
scipy-dev mailing list.

* New code goes in via a pull request (PR).

* Merge new code with the green button. In case of merge conflicts, ask the PR submitter to rebase (this may require
providing some git instructions).

» Backports and trivial additions to finish a PR (really trivial, like a typo or PEPS fix) can be pushed directly.

* For PRs that add new features or are in some way complex, wait at least a day or two before merging it. That way,
others get a chance to comment before the code goes in.

* Squashing commits or cleaning up commit messages of a PR that you consider too messy is OK. Make sure though
to retain the original author name when doing this.

¢ Make sure that the labels and milestone on a merged PR are set correctly.

* When you want to reject a PR: if it’s very obvious you can just close it and explain why, if not obvious then it’s a
good idea to first explain why you think the PR is not suitable for inclusion in SciPy and then let a second committer
comment or close.

Backporting

All pull requests (whether they contain enhancements, bug fixes or something else), should be made against master. Only
bug fixes are candidates for backporting to a maintenance branch. The backport strategy for SciPy is to (a) only backport
fixes that are important, and (b) to only backport when it’s reasonably sure that a new bugfix release on the relevant mainte-
nance branch will be made. Typically, the developer who merges an important bugfix adds the backport-candidate
label and pings the release manager, who decides on whether and when the backport is done. After the backport is com-
pleted, the backport-candidate label has to be removed again.

A good strategy for a backport pull request is to combine several master branch pull requests, to reduce the burden on
continuous integration tests and to reduce the merge commit cluttering of maintenance branch history. It is generally best
to have a single commit for each of the master branch pull requests represented in the backport pull request. This way,
history is clear and can be reverted in a straightforward manner if needed.

Release notes

When a PR gets merged, consider if the changes need to be mentioned in the release notes. What needs mentioning:
new features, backwards incompatible changes, deprecations, and “other changes” (anything else noteworthy enough, see
older release notes for the kinds of things worth mentioning).

Release note entries are maintained on the wiki, (e.g. https://github.com/scipy/scipy/wiki/
Release-note-entries-for-SciPy-1.1.0). The release manager will gather content from there and integrate it into
the html docs. We use this mechanism to avoid merge conflicts that would happen if every PR touched the same file
under doc/release/ directly.

Changes can be monitored (Atom feed) and pulled (the wiki is a gitrepo: https://github.com/scipy/scipy.
wiki.git).

466 Chapter 5. Developer’s Guide

https://github.com/scipy/scipy/blob/master/HACKING.rst.txt
https://github.com/scipy/scipy/wiki/Release-note-entries-for-SciPy-1.1.0
https://github.com/scipy/scipy/wiki/Release-note-entries-for-SciPy-1.1.0
https://github.com/scipy/scipy/wiki.atom

SciPy Reference Guide, Release 1.3.2

Other

PR status page: When new commits get added to a pull request, GitHub doesn’t send out any notifications. The
needs-work label may not be justified anymore though. This page gives an overview of PRs that were updated,
need review, need a decision, etc.

Cross-referencing: Cross-referencing issues and pull requests on GitHub is often useful. GitHub allows doing that by using
gh-xxxx or #xxxx with xxxx the issue/PR number. The gh—xxxx format is strongly preferred, because it’s clear
that that is a GitHub link. Older issues contain #xxxx which is about Trac (what we used pre-GitHub) tickets.

PR naming convention: Pull requests, issues and commit messages usually start with a three-letter abbreviation like ENH :
or BUG:. This is useful to quickly see what the nature of the commit/PR/issue is. For the full list of abbreviations, see
writing the commit message.

5.4.4 Licensing

SciPy is distributed under the modified (3-clause) BSD license. All code, documentation and other files added to SciPy
by contributors is licensed under this license, unless another license is explicitly specified in the source code. Contributors
keep the copyright for code they wrote and submit for inclusion to SciPy.

Other licenses that are compatible with the modified BSD license that SciPy uses are 2-clause BSD, MIT and PSF.
Incompatible licenses are GPL, Apache and custom licenses that require attribution/citation or prohibit use for commercial
purposes.

It regularly happens that PRs are submitted with content copied or derived from unlicensed code. Such contributions
cannot be accepted for inclusion in SciPy. What is needed in such cases is to contact the original author and ask him to
relicense his code under the modified BSD (or a compatible) license. If the original author agrees to this, add a comment
saying so to the source files and forward the relevant email to the scipy-dev mailing list.

What also regularly happens is that code is translated or derived from code in R, Octave (both GPL-licensed) or a com-
mercial application. Such code also cannot be included in SciPy. Simply implementing functionality with the same API
as found in R/Octave/... is fine though, as long as the author doesn’t look at the original incompatibly-licensed source
code.

5.4.5 Version numbering
SciPy version numbering complies to PEP 440. Released final versions, which are the only versions appearing on PyPI,
are numbered MAJOR . MINOR . MICRO where:

e MAJOR is an integer indicating the major version. It changes very rarely; a change in MAJOR indicates large
(possibly backwards-incompatible) changes.

* MINOR is an integer indicating the minor version. Minor versions are typically released twice a year and can contain
new features, deprecations and bug-fixes.

e MICRO is an integer indicating a bug-fix version. Bug-fix versions are released when needed, typically one or two
per minor version. They cannot contain new features or deprecations.

Released alpha, beta and rc (release candidate) versions are numbered like final versions but with postfixes a#, b# and
rc# respectively, with # an integer. Development versions are postfixed with . dev0+<git-commit—-hash>.

Examples of valid SciPy version strings are:

0.16.0
0.15.1
0.14.0a1

(continues on next page)

5.4. SciPy Developer Guide 467

https://pav.iki.fi/scipy-needs-work/
https://docs.scipy.org/doc/numpy/dev/gitwash/development_workflow.html#writing-the-commit-message
https://www.python.org/dev/peps/pep-0440
https://pypi.python.org/

SciPy Reference Guide, Release 1.3.2

(continued from previous page)

0.14.0b2
0.14.0rc1
0.17.0.dev0+ac53f09

An installed SciPy version contains these version identifiers:

scipy.__version___ # complete version string, including git commit.
—hash for dev versions

scipy.version.short_version # string, only major.minor.micro
scipy.version.version # string, same as scipy.__version___
scipy.version.full_version # string, same as scipy._ _version___
scipy.version.release # bool, development or (alpha/beta/rc/final).

—~released version
scipy.version.git_revision # string, git commit hash from which scipy was.

5.4.6 Deprecations
There are various reasons for wanting to remove existing functionality: it’s buggy, the API isn’t understandable, it’s
superseded by functionality with better performance, it needs to be moved to another SciPy submodule, etc.

In general it’s not a good idea to remove something without warning users about that removal first. Therefore this is what
should be done before removing something from the public API:

1. Propose to deprecate the functionality on the scipy-dev mailing list and get agreement that that’s OK.

2. Add a DeprecationWarning for it, which states that the functionality was deprecated, and in which release.
3. Mention the deprecation in the release notes for that release.
4

. Wait till at least 6 months after the release date of the release that introduced the Deprecat ionWarning before
removing the functionality.

5. Mention the removal of the functionality in the release notes.

The 6 months waiting period in practice usually means waiting two releases. When introducing the warning, also ensure
that those warnings are filtered out when running the test suite so they don’t pollute the output.

It’s possible that there is reason to want to ignore this deprecation policy for a particular deprecation; this can always be
discussed on the scipy-dev mailing list.

5.4.7 Distributing

Distributing Python packages is nontrivial - especially for a package with complex build requirements like SciPy - and
subject to change. For an up-to-date overview of recommended tools and techniques, see the Python Packaging User
Guide. This document discusses some of the main issues and considerations for SciPy.

Dependencies

Dependencies are things that a user has to install in order to use (or build/test) a package. They usually cause trouble,
especially if they’re not optional. SciPy tries to keep its dependencies to a minimum; currently they are:

Unconditional run-time dependencies:

e Numpy

468 Chapter 5. Developer’s Guide

https://packaging.python.org
https://packaging.python.org
https://numpy.org

SciPy Reference Guide, Release 1.3.2

Conditional run-time dependencies:

¢ nose (to run the test suite)

¢ asv (to run the benchmarks)

» matplotlib (for some functions that can produce plots)

¢ Pillow (for image loading/saving)

* scikits.umfpack (optionally used in sparse.linalg)

¢ mpmath (for more extended tests in special)
Unconditional build-time dependencies:

* Numpy

* A BLAS and LAPACK implementation (reference BLAS/LAPACK, ATLAS, OpenBLAS, MKL, Accelerate are
all known to work)

¢ (for development versions) Cython
Conditional build-time dependencies:
* setuptools
e wheel (python setup.py bdist_wheel)
¢ Sphinx (docs)
» matplotlib (docs)
e LaTeX (pdf docs)
¢ Pillow (docs)

Furthermore of course one needs C, C++ and Fortran compilers to build SciPy, but those we don’t consider to be depen-
dencies and are therefore not discussed here. For details, see https://scipy.github.io/devdocs/building/.

When a package provides useful functionality and it’s proposed as a new dependency, consider also if it makes sense to
vendor (i.e. ship a copy of it with scipy) the package instead. For example, six and decorator are vendored in scipy.
_lib.

The only dependency that is reported to pip is Numpy, see install_requires in SciPy’s main setup.py. The
other dependencies aren’t needed for SciPy to function correctly, and the one unconditional build dependency that pip
knows how to install (Cython) we prefer to treat like a compiler rather than a Python package that pip is allowed to
upgrade.

Issues with dependency handling

There are some serious issues with how Python packaging tools handle dependencies reported by projects. Because SciPy
gets regular bug reports about this, we go in a bit of detail here.

SciPy only reports its dependency on NumPy via install_requires if NumPy isn't installed at all on a system. This
will only change when there are either 32-bit and 64-bit Windows wheels for NumPy on PyPI or when pip upgrade
becomes available (with sane behavior, unlike pip install -U, see this PR). For more details, see this summary.

The situation with setup_requires is even worse; pip doesn’t handle that keyword at all, while setuptools has
issues (here’s a current one) and invokes easy_install which comes with its own set of problems (note that SciPy
doesn’t support easy_install at all anymore; issues specific to it will be closed as “wontfix”).

5.4. SciPy Developer Guide 469

https://nose.readthedocs.io
https://asv.readthedocs.org
https://matplotlib.org
https://pillow.readthedocs.org
https://pypi.python.org/pypi/scikit-umfpack
http://mpmath.org
https://numpy.org
http://cython.org
https://bitbucket.org/pypa/setuptools
https://wheel.readthedocs.io/
http://www.sphinx-doc.org/
https://matplotlib.org
https://pillow.readthedocs.org
https://scipy.github.io/devdocs/building/
https://pypi.python.org/pypi/six
https://github.com/micheles/decorator
https://pip.pypa.io/en/stable/
https://numpy.org
https://pip.pypa.io/en/stable/
http://cython.org
https://pip.pypa.io/en/stable/
https://github.com/pypa/pip/pull/3194
https://mail.python.org/pipermail/distutils-sig/2015-October/027161.html
https://pip.pypa.io/en/stable/
https://bitbucket.org/pypa/setuptools/issues/391

SciPy Reference Guide, Release 1.3.2

Supported Python and NumPy versions

The Python versions that SciPy supports are listed in the list of PyPI classifiers in setup.py, and mentioned in the
release notes for each release. All newly released Python versions will be supported as soon as possible. The general
policy on dropping support for a Python version is that (a) usage of that version has to be quite low (say <5% of users)
and (b) the version isn’t included in an active long-term support release of one of the main Linux distributions anymore.
SciPy typically follows NumPy, which has a similar policy. The final decision on dropping support is always taken on the
scipy-dev mailing list.

The lowest supported Numpy version for a SciPy version is mentioned in the release notes and is encoded in scipy/
__init_ .pyandthe install requires field of setup.py. Typically the latest SciPy release supports 3 or 4
minor versions of NumPy. That may become more if the frequency of NumPy releases increases (it’s about 1x/year at the
time of writing). Support for a particular NumPy version is typically dropped if (a) that NumPy version is several years
old, and (b) the maintenance cost of keeping support is starting to outweigh the benefits. The final decision on dropping
support is always taken on the scipy-dev mailing list.

Supported versions of optional dependencies and compilers is less clearly documented, and also isn’t tested well or at
all by SciPy’s Continuous Integration setup. Issues regarding this are dealt with as they come up in the issue tracker or
mailing list.

Building binary installers

Note: This section is only about building SciPy binary installers to distribute. For info on building SciPy on the same
machine as where it will be used, see this scipy.org page.

There are a number of things to take into consideration when building binaries and distributing them on PyPI or elsewhere.
General

* A binary is specific for a single Python version (because different Python versions aren’t ABI-compatible, at least
up to Python 3.4).

* Build against the lowest NumPy version that you need to support, then it will work for all NumPy versions with the
same major version number (NumPy does maintain backwards ABI compatibility).

Windows

* The currently most easily available toolchain for building Python.org compatible binaries for SciPy is installing
MSVC (see https://wiki.python.org/moin/WindowsCompilers) and mingw64-gfortran. Support for this configu-
ration requires numpy.distutils from NumPy >= 1.14.dev and a gcc/gfortran-compiled static openblas. a. This
configuration is currently used in the Appveyor configuration for https://github.com/MacPython/scipy-wheels

* For 64-bit Windows installers built with a free toolchain, use the method documented at https://github.com/numpy/
numpy/wiki/Mingw-static-toolchain. That method will likely be used for SciPy itself once it’s clear that the main-
tenance of that toolchain is sustainable long-term. See the MingwPy project and this thread for details.

* The other way to produce 64-bit Windows installers is with icc, i fort plus MKL (or MSVC instead of icc). For
Intel toolchain instructions see this article and for (partial) MSVC instructions see this wiki page.

* Older SciPy releases contained a .exe “superpack” installer. Those contain 3 complete builds (no SSE, SSE2,
SSE3), and were built with https://github.com/numpy/numpy-vendor. That build setup is known to not work well
anymore and is no longer supported. It used g77 instead of gfortran, due to complex DLL distribution issues (see
¢h-2829). Because the toolchain is no longer supported, g77 support isn’t needed anymore and SciPy can now
include Fortran 90/95 code.

OSX

470 Chapter 5. Developer’s Guide

https://python.org
https://numpy.org
https://scipy.github.io/devdocs/building/
https://wiki.python.org/moin/WindowsCompilers
https://github.com/MacPython/scipy-wheels
https://github.com/numpy/numpy/wiki/Mingw-static-toolchain
https://github.com/numpy/numpy/wiki/Mingw-static-toolchain
https://mingwpy.github.io
https://mail.scipy.org/pipermail/numpy-discussion/2015-October/074056.html
https://software.intel.com/en-us/articles/numpyscipy-with-intel-mkl
https://github.com/numpy/numpy/wiki/Building-with-MSVC
https://github.com/numpy/numpy-vendor
https://github.com/scipy/scipy/issues/2829

SciPy Reference Guide, Release 1.3.2

¢ To produce OS X wheels that work with various Python versions (from python.org, Homebrew, MacPython), use
the build method provided by https://github.com/MacPython/scipy-wheels.

e DMG installers for the Python from python.org on OS X can still be produced by tools/
scipy-macosx-installer/. SciPy doesn’t distribute those installers anymore though, now that there are
binary wheels on PyPi.

Linux

* PyPi-compatible Linux wheels can be produced via the manylinux project. The corresponding build setup for
TravisClI for SciPy is set up in https://github.com/MacPython/scipy-wheels.

Other Linux build-setups result to PyPi incompatible wheels, which would need to be distributed via custom channels,
e.g. in a Wheelhouse, see at the wheel and Wheelhouse docs.

5.4.8 Making a SciPy release

At the highest level, this is what the release manager does to release a new SciPy version:
1. Propose a release schedule on the scipy-dev mailing list.

Create the maintenance branch for the release.

Tag the release.

Build all release artifacts (sources, installers, docs).

Upload the release artifacts.

AN U T

Announce the release.
7. Port relevant changes to release notes and build scripts to master.

In this guide we attempt to describe in detail how to perform each of the above steps. In addition to those steps, which
have to be performed by the release manager, here are descriptions of release-related activities and conventions of interest:

* Backporting

* Labels and Milestones

» Version numbering

 Supported Python and NumPy versions

* Deprecations

Proposing a release schedule

A typical release cycle looks like:
¢ Create the maintenance branch
¢ Release a beta version
¢ Release a “release candidate” (RC)
¢ If needed, release one or more new RCs
¢ Release the final version once there are no issues with the last release candidate

There’s usually at least one week between each of the above steps. Experience shows that a cycle takes between 4 and 8
weeks for a new minor version. Bug-fix versions don’t need a beta or RC, and can be done much quicker.

5.4. SciPy Developer Guide 471

https://github.com/MacPython/scipy-wheels
https://github.com/pypa/manylinux/
https://github.com/MacPython/scipy-wheels
https://pypi.python.org/pypi/Wheelhouse
https://wheel.readthedocs.io/
https://pypi.python.org/pypi/Wheelhouse

SciPy Reference Guide, Release 1.3.2

Ideally the final release is identical to the last RC, however there may be minor difference - it’s up to the release manager
to judge the risk of that. Typically, if compiled code or complex pure Python code changes then a new RC is needed,
while a simple bug-fix that’s backported from master doesn’t require a new RC.

To propose a schedule, send a list with estimated dates for branching and beta/rc/final releases to scipy-dev. In the
same email, ask everyone to check if there are important issues/PRs that need to be included and aren’t tagged with the
Milestone for the release or the “backport-candidate” label.

Creating the maintenance branch

Before branching, ensure that the release notes are updated as far as possible. Include the outputof tools/gh_lists.
py and tools/authors.py in the release notes.

Maintenance branches are named maintenance/<major>.<minor>.x (e.g. 0.19.x). To create one, simply push
a branch with the correct name to the scipy repo. Immediately after, push a commit where you increment the version
number on the master branch and add release notes for that new version. Send an email to scipy-dev to let people know
that you've done this.

Tagging a release

First ensure that you have set up GPG correctly. See https://github.com/scipy/scipy/issues/4919 for a discussion of
signing release tags, and https://keyring.debian.org/creating-key.html for instructions on creating a GPG key if you do
not have one.

To make your key more readily identifiable as you, consider sending your key to public keyservers, with a command such
as:

gpg ——-send-keys <yourkeyid>

Check that all relevant commits are in the branch. In particular, check issues and PRs under the Milestone for the release
(https://github.com/scipy/scipy/milestones), PRs labeled “backport-candidate”, and that the release notes are up-to-date
and included in the html docs.

Then edit setup.py to get the correct version number (set ISRELEASED = True) and commit it with a message
like REL: set version to <version—-number>. Don’t push this commit to the SciPy repo yet.

Finally tag the release locally withgit tag -s <vl.x.y> (the —s ensures the tag is signed). Continue with building
release artifacts (next section). Only push the release commit to the scipy repo once you have built the sdists and docs
successfully. Then continue with building wheels. Only push the release tag to the repo once all wheels have been built
successfully on TravisCI and Appveyor (if it fails, you have to move the tag otherwise - which is bad practice). Finally,
after pushing the tag, also push a second commit which increments the version number and sets ISRELEASED to False
again. This also applies with new release candidates, and for removing the rc affix when switching from release candidate
to release proper.

Building release artifacts

Here is a complete list of artifacts created for a release:
e source archives (.tar.gz, .zip and .tar.xz for GitHub Releases, only . tar. gz is uploaded to PyPI)
* Binary wheels for Windows, Linx and OS X
¢ Documentation (html, pdf)
* A README file

¢ A Changelog file

472 Chapter 5. Developer’s Guide

https://github.com/scipy/scipy/issues/4919
https://keyring.debian.org/creating-key.html
https://github.com/scipy/scipy/milestones

SciPy Reference Guide, Release 1.3.2

Source archives, Changelog and README are built by running paver release in the repo root, and end up in
REPO_ROOT/release/. Do this after you've created the signed tag locally. paver release will be sensitive to
the version of Cython available in your build environment, so make sure your version matches the minimum requirements
for the release. If this completes without issues, push the release commit (not the tag, see section above) to the scipy
repo. If pavement . py is causing issues, it is also possible to simply use python setup.py sdist and perform
the release notes task from pavement . py by hand.

To build wheels, push a commit to a branch used for the current release at https://github.com/MacPython/scipy-wheels .
This triggers builds for all needed Python versions on TravisCI. Update and check the . travis.yml and appveyor.
yml config files what commit to build, and what Python and NumPy are used for the builds (it needs to be the lowest
supported NumPy version for each Python version). See the README file in the scipy-wheels repo for more details.
Note that because several months may pass between SciPy releases, it is sometimes necessary to update the versions of
the gfortran—install and multibuild submodules used for wheel builds. If the wheels builds reveal issues that
need to be fixed with backports on the maintenance branch, you may remove the local tags (for example git tag -d
v1.2.0rcl) and restart with tagging above on the new candidate commit.

The TravisCI and Appveyor builds run the tests from the built wheels and if they pass, upload the wheels to a container
pointed to at https://github.com/MacPython/scipy-wheels Once there are successful wheel builds, it is recommended
to create a versioned branch in the scipy-wheels repo, which will for example be adjusted to point to different
maintenance branch commits if there are multiple release candidates.

From there you can download them for uploading to PyPI. This can be done in an automated fashion with terryfy (note
the -n switch which makes it only download the wheels and skip the upload to PyPI step - we want to be able to check the
wheels and put their checksums into README first):

$ python wheel-uploader -n -v -c —u https://3£23b170c54¢c2533¢c070~-
—1c8a9%p3114517dc5fel7b7c3f8c63a43.ssl.cf2.rackcdn.com —-w REPO_ROOT/release/
—installers -t win scipy 0.19.0

$ python wheel-uploader -n -v —-c -u https://3f23b170c54c2533c070-
—1c8a9%p3114517dc5fel7b7¢c3f8c63a43.ssl.cf2.rackcdn.com -w REPO_ROOT/release/
—installers -t macosx scipy 0.19.0

$ python wheel-uploader -n -v —-c -u https://3f23b170c54c2533c070-
—1c8a9p3114517dc5fel7b7c3f8c63a43.ssl.cf2.rackecdn.com —w REPO_ROOT/release/
—installers -t manylinuxl scipy 0.19.0

The correct URL to use is shown in https://github.com/MacPython/scipy-wheels and should agree with the above one.

After this, we want to regenerate the README file, in order to have the MD5 and SHA256 checksums of the just
downloaded wheels in it. Run:

$ paver write_release_and_log

Uploading release artifacts

For a release there are currently five places on the web to upload things to:
» PyPI (tarballs, wheels)
* Github releases (tarballs, release notes, Changelog)
e scipy.org (an announcement of the release)
¢ docs.scipy.org (html/pdf docs)
PyPI:

Upload first the wheels and then the sdist:

5.4. SciPy Developer Guide 473

https://github.com/MacPython/scipy-wheels
https://github.com/MacPython/scipy-wheels
https://github.com/MacPython/terryfy
https://github.com/MacPython/scipy-wheels

SciPy Reference Guide, Release 1.3.2

twine upload -s REPO_ROOT/release/installers/*.whl
twine upload -s REPO_ROOT/release/installers/scipy-1l.x.y.tar.gz

Github Releases:

Use GUI on https://github.com/scipy/scipy/releases to create release and upload all release artifacts. At this stage, it is
appropriate to push the tag and associate the new release (candidate) with this tag in the GUIL For example, git push
upstream v1.2.0rcl, where upstream represents scipy/scipy. It is useful to check a previous release to
determine exactly which artifacts should be included in the GUI upload process. Also, note that the release notes are not
automatically populated into the release description on GitHub, and some manual reformatting to markdown can be quite
helpful to match the formatting of previous releases on the site. We generally do not include Issue and Pull Request lists
in these GUI descriptions.

scipy.org:

Sources for the site are in https://github.com/scipy/scipy.org. Update the News section in www/index.rst and then
domake upload USERNAME=yourusername. This is only for proper releases, not release candidates.

docs.scipy.org:

First build the scipy docs, by running make dist in scipy/doc/. Verify that they look OK, then upload them to
the doc server withmake upload USERNAME=rgommers RELEASE=0.19.0. Note that SSH access to the doc
server is needed; ask @pv (server admin) or @rgommers (can upload) if you don’t have that.

The sources for the website itself are maintained in https://github.com/scipy/docs.scipy.org/. Add the new SciPy version
in the table of releases in index.rst. Push that commit, then do make upload USERNAME=yourusername.
This is only for proper releases, not release candidates.

Wrapping up

Send an email announcing the release to the following mailing lists:
* scipy-dev
* numpy-discussion
¢ python-announce (not for beta/rc releases)

For beta and rc versions, ask people in the email to test (run the scipy tests and test against their own code) and report
issues on Github or scipy-dev.

After the final release is done, port relevant changes to release notes, build scripts, author name mapping in tools/
authors.py and any other changes that were only made on the maintenance branch to master.

5.4.9 Module-Specific Instructions

Some SciPy modules have specific development workflows that it is useful to be aware of while contributing.

scipy.special

Many of the functions in special are vectorized versions of scalar functions. The scalar functions are written by hand
and the necessary loops for vectorization are generated automatically. This section discusses the steps necessary to add a
new vectorized special function.

The first step in adding a new vectorized function is writing the corresponding scalar function. This can be done in Cython,
C, C++, or Fortran. If starting from scratch then Cython should be preferred because the code is easier to maintain for

474 Chapter 5. Developer’s Guide

https://github.com/scipy/scipy/releases
https://github.com/scipy/scipy.org
https://github.com/scipy/docs.scipy.org/

SciPy Reference Guide, Release 1.3.2

developers only familiar with Python. If the primary code is in Fortran then it is necessary to write a C wrapper around
the code; for examples of such wrappers see specfun_wrappers.c.

After implementing the scalar function, register the new function by adding a line to the FUNC string in
generate_ufuncs.py. The docstring for that file explains the format. Also add documentation for the new function
by adding an entry to add_newdocs . py; look in the file for examples.

5.5 SciPy project governance

The purpose of this document is to formalize the governance process used by the SciPy project in both ordinary and
extraordinary situations, and to clarify how decisions are made and how the various elements of our community interact,
including the relationship between open source collaborative development and work that may be funded by for-profit or
non-profit entities.

5.5.1 The Project

The SciPy Project (The Project) is an open source software project. The goal of The Project is to develop open source
software for scientific computing in Python, and in particular the scipy package. The Software developed by The Project
is released under the BSD (or similar) open source license, developed openly and hosted on public GitHub repositories
under the scipy GitHub organization.

The Project is developed by a team of distributed developers, called Contributors. Contributors are individuals who have
contributed code, documentation, designs or other work to the Project. Anyone can be a Contributor. Contributors can
be affiliated with any legal entity or none. Contributors participate in the project by submitting, reviewing and discussing
GitHub Pull Requests and Issues and participating in open and public Project discussions on GitHub, mailing lists, and
other channels. The foundation of Project participation is openness and transparency.

The Project Community consists of all Contributors and Users of the Project. Contributors work on behalf of and are
responsible to the larger Project Community and we strive to keep the barrier between Contributors and Users as low as
possible.

The Project is not a legal entity, nor does it currently have any formal relationships with legal entities.

5.5.2 Governance

This section describes the governance and leadership model of The Project.
The foundations of Project governance are:

* Openness & Transparency

* Active Contribution

* Institutional Neutrality

Traditionally, Project leadership was provided by a subset of Contributors, called Core Developers, whose active and
consistent contributions have been recognized by their receiving “commit rights” to the Project GitHub repositories. In
general all Project decisions are made through consensus among the Core Developers with input from the Community.

While this approach has served us well, as the Project grows we see a need for a more formal governance model. The
SciPy Core Developers expressed a preference for a leadership model which includes a BDFL (Benevolent Dictator for
Life). Therefore, moving forward The Project leadership will consist of a BDFL and Steering Council.

5.5. SciPy project governance 475

SciPy Reference Guide, Release 1.3.2

BDFL

The Project will have a BDFL (Benevolent Dictator for Life), who is currently Pauli Virtanen. As Dictator, the BDFL
has the authority to make all final decisions for The Project. As Benevolent, the BDFL, in practice chooses to defer that
authority to the consensus of the community discussion channels and the Steering Council (see below). It is expected, and
in the past has been the case, that the BDFL will only rarely assert his/her final authority. Because rarely used, we refer
to BDFL’s final authority as a “special” or “overriding” vote. When it does occur, the BDFL override typically happens in
situations where there is a deadlock in the Steering Council or if the Steering Council asks the BDFL to make a decision
on a specific matter. To ensure the benevolence of the BDFL, The Project encourages others to fork the project if they
disagree with the overall direction the BDFL is taking. The BDFL may delegate his/her authority on a particular decision
or set of decisions to any other Council member at his/her discretion.

The BDFL can appoint his/her successor, but it is expected that the Steering Council would be consulted on this decision.
If the BDFL is unable to appoint a successor, the Steering Council will make this decision - preferably by consensus, but
if needed by a majority vote.

Note that the BDFL can step down at any time, and acting in good faith, will also listen to serious calls to do so. Also
note that the BDFL is more a role for fallback decision making rather than that of a director/CEO.

Steering Council

The Project will have a Steering Council that consists of Project Contributors who have produced contributions that are
substantial in quality and quantity, and sustained over at least one year. The overall role of the Council is to ensure,
through working with the BDFL and taking input from the Community, the long-term well-being of the project, both
technically and as a community.

The Council will have a Chair, who is tasked with keeping the organisational aspects of the functioning of the Council
and the Project on track. The Council will also appoint a Release Manager for the Project, who has final responsibility
for one or more releases.

During the everyday project activities, council members participate in all discussions, code review and other project
activities as peers with all other Contributors and the Community. In these everyday activities, Council Members do not
have any special power or privilege through their membership on the Council. However, it is expected that because of the
quality and quantity of their contributions and their expert knowledge of the Project Software and Services that Council
Members will provide useful guidance, both technical and in terms of project direction, to potentially less experienced
contributors.

The Steering Council and its Members play a special role in certain situations. In particular, the Council may:
* Make decisions about the overall scope, vision and direction of the project.
* Make decisions about strategic collaborations with other organizations or individuals.

» Make decisions about specific technical issues, features, bugs and pull requests. They are the primary mechanism
of guiding the code review process and merging pull requests.

¢ Make decisions about the Services that are run by The Project and manage those Services for the benefit of the
Project and Community.

* Make decisions when regular community discussion does not produce consensus on an issue in a reasonable time
frame.

» Update policy documents such as this one.

Council membership

To become eligible for being a Steering Council Member an individual must be a Project Contributor who has produced
contributions that are substantial in quality and quantity, and sustained over at least one year. Potential Council Members
are nominated by existing Council members and voted upon by the existing Council after asking if the potential Member

476 Chapter 5. Developer’s Guide

SciPy Reference Guide, Release 1.3.2

is interested and willing to serve in that capacity. The Council will be initially formed from the set of existing Core
Developers who, as of January 2017, have been significantly active over the last two years.

When considering potential Members, the Council will look at candidates with a comprehensive view of their contribu-
tions. This will include but is not limited to code, code review, infrastructure work, mailing list and chat participation,
community help/building, education and outreach, design work, etc. We are deliberately not setting arbitrary quantitative
metrics (like “100 commits in this repo”) to avoid encouraging behavior that plays to the metrics rather than the project’s
overall well-being. We want to encourage a diverse array of backgrounds, viewpoints and talents in our team, which is
why we explicitly do not define code as the sole metric on which council membership will be evaluated.

If a Council member becomes inactive in the project for a period of one year, they will be considered for removal from
the Council. Before removal, inactive Member will be approached to see if they plan on returning to active participation.
If not they will be removed immediately upon a Council vote. If they plan on returning to active participation soon, they
will be given a grace period of one year. If they don’t return to active participation within that time period they will
be removed by vote of the Council without further grace period. All former Council members can be considered for
membership again at any time in the future, like any other Project Contributor. Retired Council members will be listed
on the project website, acknowledging the period during which they were active in the Council.

The Council reserves the right to eject current Members, other than the BDFL, if they are deemed to be actively harmful
to the project’s well-being, and attempts at communication and conflict resolution have failed.

A list of current Steering Council Members is maintained at the page governance-people.

Council Chair

The Chair will be appointed by the Steering Council. The Chair can stay on as long as he/she wants, but may step down
at any time and will listen to serious calls to do so (similar to the BDFL role). The Chair will be responsible for:

« Starting a review of the technical direction of the project (as captured by the SciPy Roadmap) bi-yearly, around
mid-April and mid-October.

* At the same times of the year, summarizing any relevant organisational updates and issues in the preceding period,
and asking for feedback/suggestions on the mailing list.

 Ensuring the composition of the Steering Council stays current.

* Ensuring matters discussed in private by the Steering Council get summarized on the mailing list to keep the
Community informed.

* Ensuring other important organisational documents (e.g. Code of Conduct, Fiscal Sponsorship Agreement) stay
current after they are added.

Release Manager

The Release Manager has final responsibility for making a release. This includes:
* Proposing of and deciding on the timing of a release.
* Determining the content of a release in case there is no consensus on a particular change or feature.
* Creating the release and announcing it on the relevant public channels.

For more details on what those responsibilities look like in practice, see Making a SciPy release.

Conflict of interest

It is expected that the BDFL and Council Members will be employed at a wide range of companies, universities and non-
profit organizations. Because of this, it is possible that Members will have conflict of interests. Such conflict of interests
include, but are not limited to:

* Financial interests, such as investments, employment or contracting work, outside of The Project that may influence
their work on The Project.

5.5. SciPy project governance 477

SciPy Reference Guide, Release 1.3.2

 Access to proprietary information of their employer that could potentially leak into their work with the Project.

All members of the Council, BDFL included, shall disclose to the rest of the Council any conflict of interest they may
have. Members with a conflict of interest in a particular issue may participate in Council discussions on that issue, but
must recuse themselves from voting on the issue. If the BDFL has recused his/herself for a particular decision, the Council
will appoint a substitute BDFL for that decision.

Private communications of the Council

Unless specifically required, all Council discussions and activities will be public and done in collaboration and discussion
with the Project Contributors and Community. The Council will have a private mailing list that will be used sparingly
and only when a specific matter requires privacy. When private communications and decisions are needed, the Council
will do its best to summarize those to the Community after removing personal/private/sensitive information that should
not be posted to the public internet.

Council decision making

If it becomes necessary for the Steering Council to produce a formal decision, then they will use a form of the Apache
Foundation voting process. This is a formalized version of consensus, in which +1 votes indicate agreement, -1 votes are
vetoes (and must be accompanied with a rationale, as above), and one can also vote fractionally (e.g. -0.5, +0.5) if one
wishes to express an opinion without registering a full veto. These numeric votes are also often used informally as a way
of getting a general sense of people’s feelings on some issue, and should not normally be taken as formal votes. A formal
vote only occurs if explicitly declared, and if this does occur then the vote should be held open for long enough to give all
interested Council Members a chance to respond — at least one week.

In practice, we anticipate that for most Steering Council decisions (e.g., voting in new members) a more informal process
will suffice.

5.5.3 Institutional Partners and Funding

The Steering Council is the primary leadership for the project. No outside institution, individual or legal entity has
the ability to own, control, usurp or influence the project other than by participating in the Project as Contributors and
Council Members. However, because institutions can be an important funding mechanism for the project, it is important
to formally acknowledge institutional participation in the project. These are Institutional Partners.

An Institutional Contributor is any individual Project Contributor who contributes to the project as part of their official
duties at an Institutional Partner. Likewise, an Institutional Council Member is any Project Steering Council Member
who contributes to the project as part of their official duties at an Institutional Partner.

With these definitions, an Institutional Partner is any recognized legal entity in any country that employs at least 1 Insti-
tutional Contributor or Institutional Council Member. Institutional Partners can be for-profit or non-profit entities.

Institutions become eligible to become an Institutional Partner by employing individuals who actively contribute to The
Project as part of their official duties. To state this another way, the only way for a Partner to influence the project is
by actively contributing to the open development of the project, in equal terms to any other member of the community
of Contributors and Council Members. Merely using Project Software in institutional context does not allow an entity
to become an Institutional Partner. Financial gifts do not enable an entity to become an Institutional Partner. Once an
institution becomes eligible for Institutional Partnership, the Steering Council must nominate and approve the Partnership.

If at some point an existing Institutional Partner stops having any contributing employees, then a one year grace period
commences. If at the end of this one year period they continue not to have any contributing employees, then their
Institutional Partnership will lapse, and resuming it will require going through the normal process for new Partnerships.

An Institutional Partner is free to pursue funding for their work on The Project through any legal means. This could involve
a non-profit organization raising money from private foundations and donors or a for-profit company building proprietary
products and services that leverage Project Software and Services. Funding acquired by Institutional Partners to work on
The Project is called Institutional Funding. However, no funding obtained by an Institutional Partner can override the
Steering Council. If a Partner has funding to do SciPy work and the Council decides to not pursue that work as a project,

478 Chapter 5. Developer’s Guide

https://www.apache.org/foundation/voting.html
https://www.apache.org/foundation/voting.html

SciPy Reference Guide, Release 1.3.2

the Partner is free to pursue it on their own. However in this situation, that part of the Partner’s work will not be under
the SciPy umbrella and cannot use the Project trademarks in a way that suggests a formal relationship.

Institutional Partner benefits are:
¢ Acknowledgement on the SciPy website and in talks.
* Ability to acknowledge their own funding sources on the SciPy website and in talks.
* Ability to influence the project through the participation of their Council Member.
* Council Members invited to SciPy Developer Meetings.

A list of current Institutional Partners is maintained at the page governance-people.

5.5.4 Document history

https://github.com/scipy/scipy/commits/master/doc/source/dev/governance/governance.rst

5.5.5 Acknowledgements

Substantial portions of this document were adapted from the Jupyter/I[Python project’s governance document and NumPy’s
governance document.

5.5.6 License

To the extent possible under law, the authors have waived all copyright and related or neighboring rights to the SciPy
project governance document, as per the CC-0 public domain dedication / license.

To get an overview of where help or new features are desired or planned, see the roadmap:

5.6 SciPy Roadmap

This roadmap page contains only the most important ideas and needs for SciPy going forward. For a more detailed
roadmap, including per-submodule status, many more ideas, API stability and more, see Detailed SciPy Roadmap.

5.6.1 Evolve BLAS and LAPACK support

The Python and Cython interfaces to BLAS and LAPACK in scipy.linalg are one of the most important things
that SciPy provides. In general scipy.linalg is in good shape, however we can make a number of improvements:

1. Library support. Our released wheels now ship with OpenBLAS, which is currently the only feasible performant option
(ATLAS is too slow, MKL cannot be the default due to licensing issues, Accelerate support is dropped because Apple
doesn’t update Accelerate anymore). OpenBLAS isn’t very stable though, sometimes its releases break things and it has
issues with threading (currently the only issue for using SciPy with PyPy3). We need at the very least better support for
debugging OpenBLAS issues, and better documentation on how to build SciPy with it. An option is to use BLIS for a
BLAS interface (see numpy gh-7372).

2. Support for newer LAPACK features. In SciPy 1.2.0 we increased the minimum supported version of LAPACK to
3.4.0. Now that we dropped Python 2.7, we can increase that version further (MKL + Python 2.7 was the blocker for
>3.4.0 previously) and start adding support for new features in LAPACK.

5.6. SciPy Roadmap 479

https://github.com/scipy/scipy/commits/master/doc/source/dev/governance/governance.rst
https://github.com/jupyter/governance/blob/master/governance.md
https://github.com/numpy/numpy/blob/master/doc/source/dev/governance/governance.rst
https://github.com/numpy/numpy/blob/master/doc/source/dev/governance/governance.rst
https://creativecommons.org/publicdomain/zero/1.0/
https://github.com/numpy/numpy/issues/7372

SciPy Reference Guide, Release 1.3.2

5.6.2 Implement sparse arrays in addition to sparse matrices

The sparse matrix formats are mostly feature-complete, however the main issue is that they act like numpy .matrix
(which will be deprecated in NumPy at some point). What we want is sparse arrays that act like numpy .ndarray.
This is being worked on in https://github.com/pydata/sparse, which is quite far along. The tentative plan is:

« Start depending on pydata/sparse once it’s feature-complete enough (it still needs a CSC/CSR equivalent)
and okay performance-wise.

e Add support for pydata/sparse to scipy.sparse.linalg (and perhaps to scipy.sparse.
csgraph after that).

¢ Indicate in the documentation that for new code users should prefer pydata/sparse over sparse matrices.

¢ When NumPy deprecates numpy . mat rix, vendor that or maintain it as a stand-alone package.

5.6.3 Fourier transform enhancements

We want to integrate PocketFFT into scipy . £ ftpack for significant performance improvements (see this NumPy PR
for details), add a backend system to support PyFFTW and mkl-fft, and align the function signatures of numpy . fft
and scipy.fftpack.

5.6.4 Support for distributed arrays and GPU arrays

NumPy is splitting its API from its execution engine with __array_function__and _ _array_ufunc__. This
will enable parts of SciPy to accept distributed arrays (e.g. dask.array.Array) and GPU arrays (e.g. cupy.
ndarray) that implement the ndarray interface. At the moment it is not yet clear which algorithms will work out
of the box, and if there are significant performance gains when they do. We want to create a map of which parts of the
SciPy API work, and improve support over time.

In addition to making use of NumPy protocols like __array_function__, we can make use of these protocols in
SciPy as well. That will make it possible to (re)implement SciPy functions like, e.g., those in scipy.signal for Dask
or GPU arrays (see NEP 18 - use outside of NumPYy).

5.6.5 Improve source builds on Windows

SciPy critically relies on Fortran code. This is still problematic on Windows. There are currently only two options: using
Intel Fortran, or using MSVC + gfortran. The former is expensive, while the latter works (it’s what we use for releases)
but is quite hard to do correctly. For allowing contributors and end users to reliably build SciPy on Windows, using the
Flang compiler looks like the best way forward long-term. Until Flang support materializes, we need to streamline and
better document the MSVC + gfortran build.

5.6.6 Improve benchmark system for optimize

scipy.optimize has an extensive set of benchmarks for accuracy and speed of the global optimizers. That has
allowed adding new optimizers (shgo and dual_anneal ing) with significantly better performance than the existing
ones. The optimize benchmark system itself is slow and hard to use however; we need to make it faster and make it
easier to compare performance of optimizers via plotting performance profiles.

480 Chapter 5. Developer’s Guide

https://github.com/pydata/sparse
https://github.com/numpy/numpy/pull/11888
http://www.numpy.org/neps/nep-0018-array-function-protocol.html#use-outside-of-numpy

SciPy Reference Guide, Release 1.3.2

5.6.7 Linear programming enhancements

Recently all known issues with opt imize.linprog have been solved. Now we have many ideas for additional func-
tionality (e.g. integer constraints, sparse matrix support, performance improvements), see gh-9269.

5.7 Detailed SciPy Roadmap

Most of this roadmap is intended to provide a high-level view on what is most needed per SciPy submodule in terms of
new functionality, bug fixes, etc. Besides important “business as usual” changes, it contains ideas for major new features
- those are marked as such, and are expected to take significant dedicated effort. Things not mentioned in this roadmap
are not necessarily unimportant or out of scope, however we (the SciPy developers) want to provide to our users and
contributors a clear picture of where SciPy is going and where help is needed most.

Note: This is the detailed roadmap. A very high-level overview with only the most important ideas is SciPy Roadmap.

5.7.1 General

This roadmap will be evolving together with SciPy. Updates can be submitted as pull requests. For large or disruptive
changes you may want to discuss those first on the scipy-dev mailing list.

API changes

In general, we want to evolve the API to remove known warts as much as possible, however as much as possible without
breaking backwards compatibility.

Also, it should be made (even) more clear what is public and what is private in SciPy. Everything private should be named
starting with an underscore as much as possible.

Test coverage

Test coverage of code added in the last few years is quite good, and we aim for a high coverage for all new code that is
added. However, there is still a significant amount of old code for which coverage is poor. Bringing that up to the current
standard is probably not realistic, but we should plug the biggest holes.

Besides coverage there is also the issue of correctness - older code may have a few tests that provide decent statement
coverage, but that doesn’t necessarily say much about whether the code does what it says on the box. Therefore code
review of some parts of the code (stats, signal and ndimage in particular) is necessary.

Documentation

The documentation is in good shape. Expanding of current docstrings and putting them in the standard NumPy format
should continue, so the number of 1eST errors and glitches in the html docs decreases. Most modules also have a tutorial
in the reference guide that is a good introduction, however there are a few missing or incomplete tutorials - this should be
fixed.

5.7. Detailed SciPy Roadmap 481

SciPy Reference Guide, Release 1.3.2

Benchmarks

The asv-based benchmark system is in reasonable shape. It is quite easy to add new benchmarks, however running the
benchmarks is not very intuitive. Making this easier is a priority. In addition, we should run them in our CI (gh-8779 is
an ongoing attempt at this).

Other

Regarding Cython code:

¢ It’s not clear how much functionality can be Cythonized without making the .so files too large. This needs measur-
ing.

e Cython’s old syntax for using NumPy arrays should be removed and replaced with Cython memoryviews.
Regarding build environments:

¢ SciPy builds from source on Windows now with a MSVC + MinGW-w64 gfortran toolchain, which we’re using for
official releases. MSVC + Intel Fortran + MKL works as well, and is easier for users (as long as they have access
to ifort and MKL of course). This mainly needs better documentation at the moment.

* We're aiming to gradually increase the minimum version of LAPACK that is required, so we can use newer features.
Support for Accelerate on macOS has been dropped. We do rely quite heavily on OpenBLAS, and its stability is
a worry (often only one of the recent releases works without test failures) - improvements in testing and build
documentation at least are needed.

Continuous integration is in good shape, it covers Windows, macOS and Linux, as well as a range of versions of our
dependencies and building release quality wheels.

5.7.2 Modules

cluster

This module is in good shape.

constants

This module is basically done, low-maintenance and without open issues.

fitpack

We aim to follow NumPy in adopting pocket £ft (see this NumPy PR). That will address a number of maintenance
issues, and increase performance (both accuracy and speed). Of particular interest regarding performance is the Bluestein
algorithm (or chirp Z-transform), which we have been wanting to add to £ ftpack for a long time.

‘We probably want to deprecate fftpack.convolve as public function (it was not meant to be public).

There’s a large overlap with numpy . ££t. This duplication has to change (both are too widely used to deprecate one); in
the documentation we should make clear that scipy . fftpack is preferred over numpy . £ £t. If there are differences
in signature or functionality, the best version should be picked case by case (example: numpy’s rf £t is preferred, see
gh-2487).

Ideas for new features:

482 Chapter 5. Developer’s Guide

https://github.com/numpy/numpy/pull/11888
https://github.com/scipy/scipy/issues/2487

SciPy Reference Guide, Release 1.3.2

e Add a backend/plugin system. At the moment pyFFTW is monkeypatching SciPy, and mk1_fft provides
f ftpack-compatible functions as well. We should provide a method to support such packages.

integrate

Needed for ODE solvers:
* Documentation is pretty bad, needs fixing

* A new ODE solver interface (solve_ivp) was added in SciPy 1.0.0. In the future we can consider (soft-
)deprecating the older API.

The numerical integration functions are in good shape. Support for integrating complex-valued functions and integrating
multiple intervals (see gh-3325) could be added.

interpolate

Ideas for new features:
* Spline fitting routines with better user control.
* Transparent tensor-product splines.
* NURBS support.

¢ Mesh refinement and coarsening of B-splines and corresponding tensor products.

io
wavfile;
e PCM float will be supported, for anything else use audiolab or other specialized libraries.

* Raise errors instead of warnings if data not understood.

Other sub-modules (matlab, netcdf, idl, harwell-boeing, arff, matrix market) are in good shape.

linalg
scipy.linalg is in good shape. We have started requiring more recent LAPACK versions (minimum version in-
creases from 3.1.0 to 3.4.0 in SciPy 1.2.0); we want to add support for newer features in LAPACK.
Needed:
* Reduce duplication of functions with numpy . 1inalg, make APIs consistent.
* get_lapack_funcs should always use £1lapack
¢ Wrap more LAPACK functions
¢ One too many funcs for LU decomposition, remove one
Ideas for new features:
¢ Add type-generic wrappers in the Cython BLAS and LAPACK

e Make many of the linear algebra routines into gufuncs

5.7. Detailed SciPy Roadmap 483

https://github.com/scipy/scipy/issues/3325

SciPy Reference Guide, Release 1.3.2

misc
scipy.misc will be removed as a public module. Most functions in it have been moved to another submodule or
deprecated. The few that are left:

e info, who : these are NumPy functions

e derivative, central_diff_weight : remove, possibly replacing them with more extensive functionality
for numerical differentiation.

ndimage

Underlying ndimage is a powerful interpolation engine. Users come with an expectation of one of two models: a pixel
model with (1, 1) elements having centers (0.5, 0.5), or a data point model, where values are defined at points
on a grid. Over time, we’ve become convinced that the data point model is better defined and easier to implement, but
this should be clearly communicated in the documentation.

More importantly, still, SciPy implements one variant of this data point model, where datapoints at any two extremes of
an axis share a spatial location under periodic wrapping mode. E.g., in a 1D array, you would have x [0] and x [—1]
co-located. A very common use-case, however, is for signals to be periodic, with equal spacing between the first and
last element along an axis (instead of zero spacing). Wrapping modes for this use-case were added in gh-8537, next
the interpolation routines should be updated to use those modes. This should address several issues, including gh-1323,
gh-1903, gh-2045 and gh-2640.

The morphology interface needs to be standardized:

* binary dilation/erosion/opening/closing take a “structure” argument, whereas their grey equivalent take size (has to
be a tuple, not a scalar), footprint, or structure.

* ascalar should be acceptable for size, equivalent to providing that same value for each axis.

« for binary dilation/erosion/opening/closing, the structuring element is optional, whereas it’s mandatory for grey.
Grey morphology operations should get the same default.

* other filters should also take that default value where possible.

odr

This module is in reasonable shape, although it could use a bit more maintenance. No major plans or wishes here.

optimize
Overall this module is in good shape. Two good global optimizers were added in 1.2.0; large-scale optimizers is still a
gap that could be filled. Other things that are needed:

¢ Many ideas for additional functionality (e.g. integer constraints, sparse matrix support, performance improvements)
in linprog, see gh-9269.

¢ Add functionality to the benchmark suite to compare results more easily (e.g. with summary plots).

e deprecate the fmin_* functions in the documentation, minimize is preferred.

484 Chapter 5. Developer’s Guide

https://github.com/scipy/scipy/pull/8537
https://github.com/scipy/scipy/issues/9269

SciPy Reference Guide, Release 1.3.2

signal

Convolution and correlation: (Relevant functions are convolve, correlate, fftconvolve, convolve2d, correlate2d, and sep-
fir2d.) Eliminate the overlap with ndimage (and elsewhere). From numpy, scipy.signal and scipy.ndimage
(and anywhere else we find them), pick the “best of class” for 1-D, 2-D and n-d convolution and correlation, put the
implementation somewhere, and use that consistently throughout SciPy.

B-splines: (Relevant functions are bspline, cubic, quadratic, gauss_spline, csplineld, gsplineld, cspline2d, gspline2d,
csplineld_eval, and spline_filter.) Move the good stuft to interpolate (with appropriate API changes to match how things
are done in interpolate), and eliminate any duplication.

Filter design: merge firwin and firwin2 so firwin2 can be removed.

Continuous-Time Linear Systems: remove Isim2, impulse2, step2. The Isim, impulse and step functions now “just work”
for any input system. Further improve the performance of 1tisys (fewer internal transformations between different
representations). Fill gaps in Iti system conversion functions.

Second Order Sections: Make SOS filtering equally capable as existing methods. This includes ltisys objects, an [filtic
equivalent, and numerically stable conversions to and from other filter representations. SOS filters could be considered as
the default filtering method for ltisys objects, for their numerical stability.

Wavelets: what’s there now doesn’t make much sense. Continuous wavelets only at the moment - decide whether to
completely rewrite or remove them. Discrete wavelet transforms are out of scope (PyWavelets does a good job for those).

sparse

The sparse matrix formats are mostly feature-complete, however the main issue is that they act like numpy .matrix
(which will be deprecated in NumPy at some point). What we want is sparse arrays, that act like numpy .ndarray.
This is being worked on in https://github.com/pydata/sparse, which is quite far along. The tentative plan is:

* Start depending on pydata/sparse once it’s feature-complete enough (it still needs a CSC/CSR equivalent)
and okay performance-wise.

¢ Add support for pydata/sparse to scipy.sparse.linalg (and perhaps to scipy.sparse.
csgraph after that).

¢ Indicate in the documentation that for new code users should prefer pydata/sparse over sparse matrices.
¢ When NumPy deprecates numpy . mat rix, vendor that or maintain it as a stand-alone package.

Regarding the different sparse matrix formats: there are a lot of them. These should be kept, but improve-
ments/optimizations should go into CSR/CSC, which are the preferred formats. LIL may be the exception, it’s inherently
inefficient. It could be dropped if DOK is extended to support all the operations LIL currently provides.

sparse.csgraph

This module is in good shape.

sparse.linalg

Arpack is in good shape.
isolve:
* callback keyword is inconsistent
* tol keyword is broken, should be relative tol

* Fortran code not re-entrant (but we don’t solve, maybe re-use from PyKrilov)

5.7. Detailed SciPy Roadmap 485

https://github.com/pydata/sparse

SciPy Reference Guide, Release 1.3.2

dsolve:

add sparse Cholesky or incomplete Cholesky

* look at CHOLMOD

Ideas for new features:

» Wrappers for PROPACK for faster sparse SVD computation.

spatial

QHull wrappers are in good shape, as is cKDTree.

Needed:

KDTree will be removed, and cKDTree will be renamed to KDTree in a backwards-compatible way.

distance_wrap. c needs to be cleaned up (maybe rewrite in Cython).

special

Though there are still a lot of functions that need improvements in precision, probably the only show-stoppers are hyper-
geometric functions, parabolic cylinder functions, and spheroidal wave functions. Three possible ways to handle this:

1.

3.

stats

Get good double-precision implementations. This is doable for parabolic cylinder functions (in progress). I think
it’s possible for hypergeometric functions, though maybe not in time. For spheroidal wavefunctions this is not
possible with current theory.

Port Boost’s arbitrary precision library and use it under the hood to get double precision accuracy. This might
be necessary as a stopgap measure for hypergeometric functions; the idea of using arbitrary precision has been
suggested before by @nmayorov and in gh-5349. Likely necessary for spheroidal wave functions, this could be
reused: https://github.com/radelman/scattering.

Add clear warnings to the documentation about the limits of the existing implementations.

This module is in good shape overall. New functionality that’s similar to what’s already present can continue to be added;
more advanced statistical routines may fit better in st at smodels. Some ideas for new contributions are:

Implementing (well-known) distributions to the stats.distributions framework is always welcome.

Continuing work on making the function signatures of stats and stats.mstats more consistent, and adding
tests to ensure that that remains the case.

Return Bunch objects from functions that now return many values, and for functions for which extra return values
are desired (see gh-3665).

Improve statistical tests (p-value calculation, alternative hypothesis), for example implement an exact two-sided KS
test (see gh-8341) or a one-sided Wilcoxon test (see gh-9046).

There are a number of issues regarding stats.mannwhitneyu, and a stalled PR in gh-4933 could be picked
up.

486

Chapter 5. Developer’s Guide

https://github.com/scipy/scipy/issues/5349
https://github.com/radelman/scattering
https://github.com/scipy/scipy/issues/3665
https://github.com/scipy/scipy/issues/8341
https://github.com/scipy/scipy/issues/9046
https://github.com/scipy/scipy/pull/4933

SciPy Reference Guide, Release 1.3.2

5.8 Toolchain Roadmap

The use of the SciPy library requires (or optionally depends upon) several other libraries in order to operate, the main
dependency being Python and NumPy. It requires a larger collection of libraries and tools in order to build the library,
or to build the documentation.

Of course, the tooling and libraries are themselves not static. This document aims to provide a guide as to how SciPy’s
use of these dynamic dependencies will proceed over time.

SciPy aims to be compatible with a number of releases of its dependent libraries and tools. Forcing the user base to other
components for upgrade for every release would greatly diminish the value of SciPy. However, maintaining backwards
compatibility with very old tooling/libraries imposes limitations on which newer functionalities and capabilities can be
incorporated. SciPy takes a somewhat conservative approach, maintaining compatibility with several major releases of
Python and NumPy on the major platforms. (That may in of itself impose further restrictions. See the C Compilers
section for an example.)

* First and foremost, SciPy is a Python project hence it requires a Python environment.

* BLAS and LAPACK numerical libraries need to be installed.

* Compilers for C, C++, Cython and Fortran code are needed.

* The Python environment needs the NumPy package to be installed.

¢ Testing requires the pytest Python package.

¢ Building the documentation requires the matplot1ib, Sphinx packages, as well as a LaTeX installation.

The tooling used to build CPython has some implications for the tooling used in building SciPy. It also has implications
for the examples used in the documentation (e.g. docstrings for functions), as these examples can only use functionality
present in all supported configurations.

5.8.1 Building SciPy

Python Versions

SciPy is compatible with several versions of Python, and some specific decisions are still under consideration, especially
with regard to future changes. Python 2.7 support was dropped for SciPy releases numbered 1.3 and above but is still
available in Release 1.2.x, which is a long-term support release.',>.

Date | Pythons supported

2018 | Py2.7, Py3.4+ (SciPy 1.2.x is the last release to support Python 2.7)
2019 | Py3.5+ (but Py2.7-specific code not removed)

2020 | Py3.6+ (removal of Py2.7-specific code permitted)

NumPy

SciPy depends on NumPy but releases of SciPy are not tied to releases of NumPy. SciPy attempts to be compatible with
at least the 4 previous releases of NumPy. In particular, SciPy can not rely on features of just the latest NumPy, but needs

to be written using what is common in all of those 4 releases.',’.

The table shows the NumPy versions suitable for each major Python version (for SciPy 1.3.x unless otherwise stated.)

! https://docs.scipy.org/doc/scipy/reference/release.1.2.0.html
2 https://python3statement.org
3 https://docs.scipy.org/doc/numpy/release.html

5.8. Toolchain Roadmap 487

https://docs.scipy.org/doc/scipy/reference/release.1.2.0.html
https://python3statement.org
https://docs.scipy.org/doc/numpy/release.html

SciPy Reference Guide, Release 1.3.2

Python Minimum NumPy version | Maximum NumPy version
2.7 (SciPy 1.2) | 1.8.2 1.16.x

35 1.13.3 >=1.16.x

3.6 1.13.3 >=1.16.x

3.7 1.14.5 >=1.16.x

C Compilers

SciPy is compatible with most modern C compilers (in particular clang). However CPython on Windows is built with

specific versions of the Microsoft Visual C++ compiler’,®.”, as is the corresponding build of SciPy. This has implications
for the C language standards that can be supported®.

CPython MS Visual C++ | C Standard

2.7,3.0,3.1,3.2 | 9.0 C90

33,34 10.0 C90 & some of C99

35,36 14.0 C90 & most of C99

3.7 15.7 C90 & most of C99

C and C++ Language Standards

C and C++ language standards for SciPy are generally guidelines rather than official decisions. This is particularly true
of attempting to predict adoption timelines for newer standards.

Date C Standard

<=2018 | C90

2019 C90 for old code, may consider C99 for new
2020 C99

? Cl11

? Cl17,C18

The use of MSVisual Studio 9.0 (which doesn’t have support C99) to build Python2.7, has meant that C code in SciPy
has had to conform to the earlier C90 standard for the language and standard library. With the dropping of Python2.7 for
SciPy 1.3.x, the C90 restriction is no longer imposed by compilers. Even though C99 has been a standard for 20 years,
experience has shown that not all features are supported equally well across all platforms. The expectation is that C99
code will be become acceptable in 2020.

C18 is a bug fix for C11, so C11 may be skipped entirely.

In practice the C++ feature set that can be used is limited by the availability in the MS VisualStudio versions that SciPy
needs to support. C++11 can be used, C++14/17 is going to be impossible for a very long time because of ecosystem
support restrictions. See”.

Note: Developer Note: Some C99 features would be useful for scientific programming, in particular better support of
IEEE 754°. SciPy has a small include file scipy/_1ib/_c99compat . h which provides access to a few functions.
Use in conjunction with <numpy/npy_math.h>.

7 https://pythondev.readthedocs.io/windows.html#python-and- visual-studio- version-matrix

8 https://en.wikipedia.org/wiki/Microsoft_Visual_C%2B%2B#Internal_version_numbering

9 https://wiki.python.org/moin/WindowsCompilers

6 https://blogs.msdn.microsoft.com/vcblog/2013/07/19/c99-library-support-in-visual-studio-2013/
4 https://en.cppreference.com/w/cpp/compiler_support

5 https://en.wikipedia.org/wiki/IEEE_754-1985

488 Chapter 5. Developer’s Guide

https://pythondev.readthedocs.io/windows.html#python-and-visual-studio-version-matrix
https://en.wikipedia.org/wiki/Microsoft_Visual_C%2B%2B#Internal_version_numbering
https://wiki.python.org/moin/WindowsCompilers
https://blogs.msdn.microsoft.com/vcblog/2013/07/19/c99-library-support-in-visual-studio-2013/
https://en.cppreference.com/w/cpp/compiler_support
https://en.wikipedia.org/wiki/IEEE_754-1985

SciPy Reference Guide, Release 1.3.2

Feature

Workaround

isnan (), isinf (),isfinite ()

Use sc_isnan (), sc_isinf (), sc_isfinite ()

NAN

Use NPY_NAN (it is almost equivalent)

inline functions

Make static functions and place in an include .h file

mid-block variable declarations

Declare variables at the top of the block

Fortran Compilers

Generally, any well-maintained compiler is likely suitable and can be used to build SciPy.

Cython Compiler

Tool Version
gfortran | >=4.8.0
ifort A recent version
flang A recent version

SciPy always requires a recent Cython compiler.

Tool

Tool

Version

SciPy version

Cython

>=0.

29.13 1.2.1

Other Libraries

Any library conforming to the BLAS/LAPACK interface may be used. OpenBLAS, ATLAS, MKL, BLIS and reference
Netlib libraries are known to work.

Library Minimum version
LAPACK | 3.4.1
BLAS A recent version of OpenBLAS, MKL or ATLAS. The Accelerate BLAS is no longer supported.

There are some additional optional dependencies.

Library Version | URL
mpmath Recent http://mpmath.org/
scikit-umfpack | Recent https://pypi.org/project/scikit-umfpack/

5.8.2 Testing and Benchmarking

Testing and benchmarking require recent versions of :

Tool Version | URL
pytest Recent https://docs.pytest.org/en/latest/
asv (airspeed velocity) | Recent https://asv.readthedocs.io/

5.8. Toolchain Roadmap

489

http://mpmath.org/
https://pypi.org/project/scikit-umfpack/
https://docs.pytest.org/en/latest/
https://asv.readthedocs.io/

SciPy Reference Guide, Release 1.3.2

5.8.3 Building the Documentation

Tool Version

Sphinx Whatever recent versions work. >= 2.0.
numpydoc | Whatever recent versions work. >= 0.8.0.
matplotlib | Generally suggest >= 2.0

LaTeX A recent distribution, such as TeX Live 2016

[The numpydoc package is also used, but that is currently packaged in doc/sphinxext.]

Note: Developer Note: The versions of numpy and matplot1ib required has implications for the examples in Python
docstrings. Examples must be able to be executed both in the environment used to build the documentation, as well as
with any supported versions of numpy/matplotlib that a user may use with this release of SciPy.

5.8.4 Packaging

A Recent version of:

Tool Version | URL

setuptools | Recent

wheel Recent | https://pythonwheels.com

multibuild | Recent | https://github.com/matthew-brett/multibuild

Making a SciPy release and Distributing contain information on making and distributing a SciPy release.

5.8.5 References

490 Chapter 5. Developer’s Guide

https://pythonwheels.com
https://github.com/matthew-brett/multibuild

CHAPTER
SIX

APl REFERENCE

The exact API of all functions and classes, as given by the docstrings. The API documents expected types and allowed
features for all functions, and all parameters available for the algorithms.

6.1 Clustering package (scipy.cluster)

scipy.cluster.vqg

Clustering algorithms are useful in information theory, target detection, communications, compression, and other areas.
The vg module only supports vector quantization and the k-means algorithms.

scipy.cluster.hierarchy

The hierarchy module provides functions for hierarchical and agglomerative clustering. Its features include generating
hierarchical clusters from distance matrices, calculating statistics on clusters, cutting linkages to generate flat clusters, and
visualizing clusters with dendrograms.

6.2 K-means clustering and vector quantization (scipy.cluster.
vq)

Provides routines for k-means clustering, generating code books from k-means models, and quantizing vectors by com-
paring them with centroids in a code book.

whiten(obs[, check_finite]) Normalize a group of observations on a per feature basis.

vg(obs, code_book[, check_finite]) Assign codes from a code book to observations.

kmeans(obs, k_or_guess|, iter, thresh, ...]) Performs k-means on a set of observation vectors forming
k clusters.

kmeans2(data, K[, iter, thresh, minit, ...]) Classify a set of observations into k clusters using the k-

means algorithm.

6.2.1 scipy.cluster.vq.whiten
scipy.cluster.vqg.whiten (obs, check_finite=True)
Normalize a group of observations on a per feature basis.

Before running k-means, it is beneficial to rescale each feature dimension of the observation set with whitening.
Each feature is divided by its standard deviation across all observations to give it unit variance.

Parameters

491

SciPy Reference Guide, Release 1.3.2

obs [ndarray] Each row of the array is an observation. The columns are the features seen during
each observation.
>>> # £0 £l £2
>>> obs = [[1., 1., 1.1, #00
[2., 2., 2.1, #ol
[3., 3., 3.1, #o2
[4., 4., 4.11] #03

check_finite
[bool, optional] Whether to check that the input matrices contain only finite numbers. Dis-
abling may give a performance gain, but may result in problems (crashes, non-termination)
if the inputs do contain infinities or NaNs. Default: True

Returns

result [ndarray] Contains the values in obs scaled by the standard deviation of each column.

Examples

>>> from scipy.cluster.vqg import whiten

>>> features = np.array([[1.9, 2.3, 1.7],
[1.5, 2.5, 2.21,
[0.8, 0.6, 1.7,11)

>>> whiten (features)
array ([[4.17944278, 2.69811351, 7.21248917],
[3.29956009, 2.93273208, 9.33380951],
[1.75976538, 0.7038557 , 7.2124891711])

6.2.2 scipy.cluster.vq.vq
scipy.cluster.vq.vq (obs, code_book, check_finite=True)
Assign codes from a code book to observations.

Assigns a code from a code book to each observation. Each observation vector in the ‘M’ by ‘N’ obs array is
compared with the centroids in the code book and assigned the code of the closest centroid.

The features in obs should have unit variance, which can be achieved by passing them through the whiten function.
The code book can be created with the k-means algorithm or a different encoding algorithm.

Parameters
obs [ndarray] Each row of the ‘M’ x ‘N’ array is an observation. The columns are the “features”
seen during each observation. The features must be whitened first using the whiten function
or something equivalent.
code_book

[ndarray] The code book is usually generated using the k-means algorithm. Each row of the
array holds a different code, and the columns are the features of the code.

>>> # o f1 2 3

>>> code_book = [
[1., 2., 3., 4.1, #co0
[1., 2., 3., 4.1, #cl
[1., 2., 3., 4.11 #c2

492 Chapter 6. APl Reference

SciPy Reference Guide, Release 1.3.2

check_finite

Returns

code
dist

Examples

[bool, optional] Whether to check that the input matrices contain only finite numbers. Dis-
abling may give a performance gain, but may result in problems (crashes, non-termination)
if the inputs do contain infinities or NaNs. Default: True

[ndarray] A length M array holding the code book index for each observation.
[ndarray] The distortion (distance) between the observation and its nearest code.

>>> code_book

>>> features

(array ([1, 1,

>>> vq(features, code_book)
0],'1'), array ([0.43588989, 0.73484692, 0.83066239]))

>>> from numpy import array
>>> from scipy.cluster.vqg import vg

= array([[1.,1.,1.1,
[2.,2.,2.11)

= array([[1.9,2.3,1.7],
[1.5,2.5,2.2]7,
[0.8,0.6,1.711)

14 4

6.2.3 scipy.cluster.vq.kmeans

scipy.cluster.vqg.kmeans (obs, k_or_guess, iter=20, thresh=1e-05, check_finite=True)
Performs k-means on a set of observation vectors forming k clusters.

The k-means algorithm adjusts the classification of the observations into clusters and updates the cluster centroids
until the position of the centroids is stable over successive iterations. In this implementation of the algorithm, the
stability of the centroids is determined by comparing the absolute value of the change in the average Euclidean
distance between the observations and their corresponding centroids against a threshold. This yields a code book
mapping centroids to codes and vice versa.

Parameters

obs

k_or_guess

iter

thresh

[ndarray] Each row of the M by N array is an observation vector. The columns are the
features seen during each observation. The features must be whitened first with the whiten
function.

[int or ndarray] The number of centroids to generate. A code is assigned to each centroid,
which is also the row index of the centroid in the code_book matrix generated.

The initial k centroids are chosen by randomly selecting observations from the observation
matrix. Alternatively, passing a k by N array specifies the initial k centroids.

[int, optional] The number of times to run k-means, returning the codebook with the lowest
distortion. This argument is ignored if initial centroids are specified with an array for the
k_or_guess parameter. This parameter does not represent the number of iterations of
the k-means algorithm.

[float, optional] Terminates the k-means algorithm if the change in distortion since the last
k-means iteration is less than or equal to thresh.

check_finite

[bool, optional] Whether to check that the input matrices contain only finite numbers. Dis-
abling may give a performance gain, but may result in problems (crashes, non-termination)
if the inputs do contain infinities or NaNs. Default: True

6.2. K-means clustering and vector quantization (scipy.cluster.vq) 493

SciPy Reference Guide, Release 1.3.2

Returns
codebook [ndarray] A k by N array of k centroids. The i’th centroid codebook[i] is represented with the
code i. The centroids and codes generated represent the lowest distortion seen, not necessarily
the globally minimal distortion.
distortion [float] The mean (non-squared) Euclidean distance between the observations passed and the
centroids generated. Note the difference to the standard definition of distortion in the context
of the K-means algorithm, which is the sum of the squared distances.
See also:
kmeans2

a different implementation of k-means clustering with more methods for generating initial centroids but without
using a distortion change threshold as a stopping criterion.

whiten

must be called prior to passing an observation matrix to kmeans.

Examples

>>>
>>>

from numpy import array

from scipy.cluster.vqg import vqg, kmeans, whiten

>>> import matplotlib.pyplot as plt
>>> features = array([[1.9,2.31,
[1.5,2.5],
[0.8,0.6],
[0.4,1.8],
[0.12,0.17,
[0.2,1.871,
[2.0,0.57,
[0.3,1.5],
[1.0,1.011)
>>> whitened = whiten (features)
>>> book = np.array((whitened[0],whitened[2]))
>>> kmeans (whitened, book)

(array ([[2.3110306 , 2.86287398], # random
[0.93218041, 1.2439869111), 0.85684700941625547)
>>> from numpy import random

>>> random.seed ((1000,2000))
>>> codes = 3
>>> kmeans (whitened, codes)
(array ([[2.3110306 , 2.86287398], # random
[1.32544402, 0.656075297,
[0.40782893, 2.02786907]11), 0.5196582527686241)
>>> # Create 50 datapoints in two clusters a and b
>>> pts = 50
>>> a = np.random.multivariate_normal ([0, 01, [[4, 11, [1, 411, size=pts)
>>> b = np.random.multivariate_normal ([30, 107,
(rwo, 21, 12, 111,
size=pts)

(continues on next page)

494

Chapter 6. APl Reference

SciPy Reference Guide, Release 1.3.2

(continued from previous page)

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

features = np.concatenate((a, b))

Whiten data

whitened = whiten (features)

Find 2 clusters in the data

codebook, distortion = kmeans (whitened, 2)

Plot whitened data and cluster centers in red
plt.scatter (whitened[:, 0], whitened[:, 1])
plt.scatter (codebook[:, 0], codebook[:, 1], c='r")
plt.show ()

1.0 1.5 2.0 2.5

6.2.4 scipy.cluster.vq.kmeans2

scipy.cluster.vqg.kmeans2 (data, k, iter=10, thresh=I1e-05, minit="random’, missing="warn’

check_finite=True)

Classify a set of observations into k clusters using the k-means algorithm.

The algorithm attempts to minimize the Euclidian distance between observations and centroids. Several initializa-
tion methods are included.

Parameters
data [ndarray] A ‘M’ by ‘N’ array of ‘M’ observations in ‘N’ dimensions or a length ‘M’ array of
‘M’ one-dimensional observations.
k [int or ndarray] The number of clusters to form as well as the number of centroids to generate.

If minit initialization string is ‘matrix’, or if a ndarray is given instead, it is interpreted as initial
cluster to use instead.

iter [int, optional] Number of iterations of the k-means algorithm to run. Note that this differs
in meaning from the iters parameter to the kmeans function.

thresh [float, optional] (not used yet)

minit [str, optional] Method for initialization. Available methods are ‘random’, ‘points’, ‘“++” and
‘matrix’:
‘random’: generate k centroids from a Gaussian with mean and variance estimated from the
data.

6.2. K-means clustering and vector quantization (scipy.cluster.vq) 495

SciPy Reference Guide, Release 1.3.2

‘points’: choose k observations (rows) at random from data for the initial centroids.
‘++’: choose k observations accordingly to the kmeans++ method (careful seeding)
‘matrix’: interpret the k parameter as a k by M (or length k array for one-dimensional data)
array of initial centroids.

missing [str, optional] Method to deal with empty clusters. Available methods are ‘warn’ and ‘raise’:
‘warn’: give a warning and continue.
‘raise’: raise an ClusterError and terminate the algorithm.

check_finite
[bool, optional] Whether to check that the input matrices contain only finite numbers. Dis-
abling may give a performance gain, but may result in problems (crashes, non-termination)
if the inputs do contain infinities or NaNs. Default: True

Returns

centroid [ndarray] A ‘k’ by ‘N’ array of centroids found at the last iteration of k-means.
label [ndarray] label[i] is the code or index of the centroid the i’th observation is closest to.

References

(1]

6.2.5 Background information

The k-means algorithm takes as input the number of clusters to generate, k, and a set of observation vectors to cluster.
It returns a set of centroids, one for each of the k clusters. An observation vector is classified with the cluster number or
centroid index of the centroid closest to it.

A vector v belongs to cluster i if it is closer to centroid i than any other centroids. If v belongs to i, we say centroid
1 is the dominating centroid of v. The k-means algorithm tries to minimize distortion, which is defined as the sum of
the squared distances between each observation vector and its dominating centroid. The minimization is achieved by
iteratively reclassifying the observations into clusters and recalculating the centroids until a configuration is reached in
which the centroids are stable. One can also define a maximum number of iterations.

Since vector quantization is a natural application for k-means, information theory terminology is often used. The centroid
index or cluster index is also referred to as a “code” and the table mapping codes to centroids and vice versa is often
referred as a “code book”. The result of k-means, a set of centroids, can be used to quantize vectors. Quantization aims
to find an encoding of vectors that reduces the expected distortion.

All routines expect obs to be a M by N array where the rows are the observation vectors. The codebook is a k by N array
where the 1’th row is the centroid of code word i. The observation vectors and centroids have the same feature dimension.

As an example, suppose we wish to compress a 24-bit color image (each pixel is represented by one byte for red, one for
blue, and one for green) before sending it over the web. By using a smaller 8-bit encoding, we can reduce the amount of
data by two thirds. Ideally, the colors for each of the 256 possible 8-bit encoding values should be chosen to minimize
distortion of the color. Running k-means with k=256 generates a code book of 256 codes, which fills up all possible 8-bit
sequences. Instead of sending a 3-byte value for each pixel, the 8-bit centroid index (or code word) of the dominating
centroid is transmitted. The code book is also sent over the wire so each 8-bit code can be translated back to a 24-bit
pixel value representation. If the image of interest was of an ocean, we would expect many 24-bit blues to be represented
by 8-bit codes. If it was an image of a human face, more flesh tone colors would be represented in the code book.

6.3 Hierarchical clustering (scipy.cluster.hierarchy)

These functions cut hierarchical clusterings into flat clusterings or find the roots of the forest formed by a cut by providing
the flat cluster ids of each observation.

496 Chapter 6. API Reference

SciPy Reference Guide, Release 1.3.2

fcluster(Z,t[, criterion, depth, R, monocrit]) Form flat clusters from the hierarchical clustering defined
by the given linkage matrix.

fclusterdata(X, t[, criterion, metric, ...]) Cluster observation data using a given metric.

leaders(Z,T) Return the root nodes in a hierarchical clustering.

6.3.1 scipy.cluster.hierarchy.fcluster

scipy.cluster.hierarchy.fcluster (Z, t, criterion="inconsistent’, depth=2, R=None, mon-

ocrit=None)
Form flat clusters from the hierarchical clustering defined by the given linkage matrix.

Parameters
Z [ndarray] The hierarchical clustering encoded with the matrix returned by the 1inkage
function.
t [scalar]

For criteria ‘inconsistent’, ‘distance’ or ‘monocrit’,
this is the threshold to apply when forming flat clusters.
For ‘maxclust’ or ‘maxclust_monocrit’ criteria,
this would be max number of clusters requested.
criterion [str, optional] The criterion to use in forming flat clusters. This can be any of the following
values:
inconsistent:
If a cluster node and all its descendants have an inconsistent value less than or
equal to ¢ then all its leaf descendants belong to the same flat cluster. When
no non-singleton cluster meets this criterion, every node is assigned to its own
cluster. (Default)
distance:
Forms flat clusters so that the original observations in each flat cluster have
no greater a cophenetic distance than 7.
maxclust :
Finds a minimum threshold r so that the cophenetic distance between any
two original observations in the same flat cluster is no more than r and no
more than ¢ flat clusters are formed.
monocrit :
Forms a flat cluster from a cluster node ¢ with index i when monocrit []
<= t.
For example, to threshold on the maximum mean distance as computed in
the inconsistency matrix R with a threshold of 0.8 do:

MR = maxRstat (Z2, R, 3)
cluster (Z, t=0.8, criterion='monocrit', .
—monocrit=MR)

maxclust_monocrit :
Forms a flat cluster from a non-singleton cluster node c when
monocrit[i] <= r for all cluster indices i below and including
c. r is minimized such that no more than t flat clusters are formed.
monocrit must be monotonic. For example, to minimize the threshold t
on maximum inconsistency values so that no more than 3 flat clusters are
formed, do:

6.3. Hierarchical clustering (scipy.cluster.hierarchy) 497

SciPy Reference Guide, Release 1.3.2

MI = maxinconsts (Z, R)
cluster (Z, t=3, criterion='maxclust_monocrit', .
—monocrit=MI)

depth [int, optional] The maximum depth to perform the inconsistency calculation. It has no mean-
ing for the other criteria. Default is 2.
R [ndarray, optional] The inconsistency matrix to use for the ‘inconsistent’ criterion. This ma-

trix is computed if not provided.

monocrit [ndarray, optional] An array of length n-1. monocrit[i] is the statistics upon which non-
singleton i is thresholded. The monocrit vector must be monotonic, i.e. given a node ¢
with index i, for all node indices j corresponding to nodes below ¢, monocrit [i] >=
monocrit[j].
Returns
fcluster [ndarray] An array of length n. T [1] is the flat cluster number to which original observation
i belongs.
See also:
linkage

for information about hierarchical clustering methods work.

Examples

>>> from scipy.cluster.hierarchy import ward, fcluster

>>> from scipy.spatial.distance import pdist

All cluster linkage methods - e.g. scipy.cluster.hierarchy.ward generate a linkage matrix Z as their

output:
>>> X = [[0, O], [0, 1], [1, O7,
o, 41, 10, 31, [1, 4],
(4, 01, (3, 01, [4, 11,
(4, 41, [3, 41, [4, 311
>>> 7 = ward(pdist (X))
>>> 7
array ([[O. , 1. , 1. , 2. 1,
[3. , 4. 1. , 2. 1,
[6. , 1. 1. , 2. 1,
[9. , 10. 1. , 2. 1,
[2. , 12, 1.29099445, 3. 1,
[5. , 13. 1.29099445, 3. 1,
[8. , 14. 1.29099445, 3. 1,
[11. , 15. 1.29099445, 3. 1,
[16. , 17, 5.77350269, 6. 1,
[18. , 19. 5.77350269, 6. 1,
[20. , 21. 8.16496581, 12. 11)

This matrix represents a dendrogram, where the first and second elements are the two clusters merged at each step,
the third element is the distance between these clusters, and the fourth element is the size of the new cluster - the
number of original data points included.

498

Chapter 6. APl Reference

SciPy Reference Guide, Release 1.3.2

scipy.cluster.hierarchy. fcluster can be used to flatten the dendrogram, obtaining as a result an
assignation of the original data points to single clusters.

This assignation mostly depends on a distance threshold t - the maximum inter-cluster distance allowed:

>>> fcluster (Z, t=0
3

.9, criterion='distance')
array ([1, 2, ;4

, 5, 6, 7, 8, 9, 10, 11, 12], dtype=int32)

o+
I
=

>>> fcluster (Z, .1, criterion='distance')
array (1, 1, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8], dtype=int32)

>>> fcluster (Z, t=3, criterion='distance')
array (1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4], dtype=int32)

>>> fcluster (Zz, t=9, criterion='distance')
array (1, 1, 1, 1, 21, 1, 1, 1, 1, 1, 1, 1], dtype=int32)

In the first case, the threshold t is too small to allow any two samples in the data to form a cluster, so 12 different
clusters are returned.

In the second case, the threshold is large enough to allow the first 4 points to be merged with their nearest neighbors.
So here only 8 clusters are returned.

The third case, with a much higher threshold, allows for up to 8 data points to be connected - so 4 clusters are
returned here.

Lastly, the threshold of the fourth case is large enough to allow for all data points to be merged together - so a single
cluster is returned.

6.3.2 scipy.cluster.hierarchy.fclusterdata

scipy.cluster.hierarchy. fclusterdata (X, t, criterion="inconsistent’, metric=euclidean’, depth=2,

method="single’, R=None)
Cluster observation data using a given metric.

Clusters the original observations in the n-by-m data matrix X (n observations in m dimensions), using the euclidean
distance metric to calculate distances between original observations, performs hierarchical clustering using the
single linkage algorithm, and forms flat clusters using the inconsistency method with ¢ as the cut-off threshold.

A one-dimensional array T of length n is returned. T [1] is the index of the flat cluster to which the original
observation i belongs.

Parameters
X [(N, M) ndarray] N by M data matrix with N observations in M dimensions.
t [scalar]

For criteria ‘inconsistent’, ‘distance’ or ‘monocrit’,
this is the threshold to apply when forming flat clusters.
For ‘maxclust’ or ‘maxclust_monocrit’ criteria,
this would be max number of clusters requested.
criterion [str, optional] Specifies the criterion for forming flat clusters. Valid values are ‘inconsistent’
(default), ‘distance’, or ‘maxclust’ cluster formation algorithms. See fc1ustexr for descrip-

tions.
metric [str, optional] The distance metric for calculating pairwise distances. See distance.
pdist for descriptions and linkage to verify compatibility with the linkage method.
depth [int, optional] The maximum depth for the inconsistency calculation. See inconsistent

for more information.

6.3.

Hierarchical clustering (scipy.cluster.hierarchy) 499

SciPy Reference Guide, Release 1.3.2

method [str, optional] The linkage method to use (single, complete, average, weighted, median cen-
troid, ward). See 1inkage for more information. Default is “single”.

R [ndarray, optional] The inconsistency matrix. It will be computed if necessary if it is not
passed.
Returns
fclusterdata
[ndarray] A vector of length n. T[i] is the flat cluster number to which original observation i
belongs.
See also:

scipy.spatial.distance.pdist

pairwise distance metrics

Notes

This function is similar to the MATLAB function clusterdata.

Examples

>>> from scipy.cluster.hierarchy import fclusterdata

This is a convenience method that abstracts all the steps to perform in a typical SciPy’s hierarchical clustering
workflow.

e Transform the input data into a condensed matrix with scipy.spatial.distance.pdist.
e Apply a clustering method.

* Obtain flat clusters at a user defined distance threshold t using scipy.cluster.hierarchy.
fcluster.

>>> X = [[0, O], [0, 11, [, O1,
(o, 41, [0, 31, [1, 4],
(4, 01, 3, 01, [4, 11,
(4, 41, [3, 41, [4, 3]]

>>> fclusterdata (X, t=1)
array([3, 3, 3, 4, 4, 4, 2, 2, 2, 1, 1, 11, dtype=int32)

The output here (for the dataset X, distance threshold t, and the default settings) is four clusters with three data
points each.

6.3.3 scipy.cluster.hierarchy.leaders

scipy.cluster.hierarchy.leaders (Z, T)

Return the root nodes in a hierarchical clustering.

Returns the root nodes in a hierarchical clustering corresponding to a cut defined by a flat cluster assignment vector
T. See the fcluster function for more information on the format of T.

For each flat cluster j of the k flat clusters represented in the n-sized flat cluster assignment vector T, this function
finds the lowest cluster node ¢ in the linkage tree Z such that:

500

Chapter 6. APl Reference

SciPy Reference Guide, Release 1.3.2

* leaf descendants belong only to flat cluster j (i.e. T [p]==7] for all p in S(¢) where S(7) is the set of leaf ids
of descendant leaf nodes with cluster node 7)

* there does not exist a leaf that is not a descendant with ¢ that also belongs to cluster 7 (i.e. T[q] ! =7 for all
g not in S(7)). If this condition is violated, T is not a valid cluster assignment vector, and an exception will

be thrown.
Parameters
Z [ndarray] The hierarchical clustering encoded as a matrix. See 1inkage for more infor-
mation.
T [ndarray] The flat cluster assignment vector.
Returns
L [ndarray] The leader linkage node id’s stored as a k-element 1-D array where k is the number
of flat clusters found in T.
L[j]1=1i is the linkage cluster node id that is the leader of flat cluster with id M[j]. If 1
< n, i corresponds to an original observation, otherwise it corresponds to a non-singleton
cluster.
M [ndarray] The leader linkage node id’s stored as a k-element 1-D array where k is the number
of flat clusters found in T. This allows the set of flat cluster ids to be any arbitrary set of k
integers.
For example: if L.[3]=2 and M[3] =8, the flat cluster with id 8’s leader is linkage node 2.
See also:
fcluster

for the creation of flat cluster assignments.

Examples

>>> from scipy.cluster.hierarchy import ward, fcluster, leaders
>>> from scipy.spatial.distance import pdist

Given a linkage matrix Z - obtained after apply a clustering method to a dataset X - and a flat cluster assignment

array T:

>>> X = ([0, 01, [0, 1], [1, OJ,
(o, 41, (0, 31, [1, 4],
(4, 01, (3, 01, [4, 1],
(4, 41, [3, 41, [4, 311

>>> 7 = ward(pdist (X))

>>> 7

array ([[O. , 1. , 1. , 2. 1,
[3. , 4. , 1. , 2. 1,
[6. , 1. , 1. , 2. 1,
[9. , 10. , 1. , 2. 1,
[2. , 12, , 1.29099445, 3. 1,
[5. , 13. , 1.29099445, 3. 1,
[8. , 14. , 1.29099445, 3. 1,
[11. , 15. , 1.29099445, 3. 1,

(continues on next page)

6.3. Hierarchical clustering (scipy.cluster.hierarchy) 501

SciPy Reference Guide, Release 1.3.2

(continued from previous page)

[16. , 17. , 5.77350269, 6. 1,

[18. , 19. , 5.77350269, 6. 1,

[20. , 21. , 8.16496581, 12. 11)
>>> T = fcluster(Z2, 3, criterion='distance')

>>> T
array([1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4], dtype=int32)

scipy.cluster.hierarchy.leaders returns the indexes of the nodes in the dendrogram that are the
leaders of each flat cluster:

>>> 1L, M = leaders(zZ, T)
>>> 1
array ([16, 17, 18, 19], dtype=int32)

(remember that indexes 0-11 point to the 12 data points in X whereas indexes 12-22 point to the 11 rows of z)

scipy.cluster.hierarchy.leaders also returns the indexes of the flat clusters in T:

>>> M
array ([1, 2, 3, 4], dtype=int32)

These are routines for agglomerative clustering.

1inkage(y[, method, metric, optimal_ordering]) Perform hierarchical/agglomerative clustering.

single(y) Perform single/min/nearest linkage on the condensed dis-
tance matrix y.

complete(y) Perform complete/max/farthest point linkage on a con-
densed distance matrix.

average(y) Perform average/UPGMA linkage on a condensed dis-
tance matrix.

weighted(y) Perform weighted/ WPGMA linkage on the condensed
distance matrix.

centroid(y) Perform centroid/UPGMC linkage.

median(y) Perform median/WPGMC linkage.

ward(y) Perform Ward’s linkage on a condensed distance matrix.

6.3.4 scipy.cluster.hierarchy.linkage

scipy.cluster.hierarchy.linkage (y, method="single’, metric="euclidean’, optimal_ordering=False)

Perform hierarchical/agglomerative cluster