This is documentation for an old release of SciPy (version 1.3.2). Read this page in the documentation of the latest stable release (version 1.15.1).
Normal Inverse Gaussian Distribution¶
The probability density function is given by:
where \(x\) is a real number, the parameter \(a\) is the tail heaviness and \(b\) is the asymmetry parameter satisfying \(a > 0\) and \(|b| \leq a\). \(K_1\) is the modified Bessel function of second kind (scipy.special.k1
).
A normal inverse Gaussian random variable with parameters \(a\) and \(b\) can be expressed as \(X = b V + \sqrt(V) X\) where \(X\) is norm(0,1) and \(V\) is invgauss(mu=1/sqrt(a**2 - b**2)). Hence, the normal inverse Gaussian distribution is a special case of normal variance-mean mixtures.
Implementation: scipy.stats.norminvgauss