This is documentation for an old release of SciPy (version 1.3.2). Search for this page in the documentation of the latest stable release (version 1.15.1).
Hyperbolic Secant Distribution¶
Related to the logistic distribution and used in lifetime analysis. Standard form is (defined over all \(x\) )
\begin{eqnarray*} f\left(x\right) & = & \frac{1}{\pi}\mathrm{sech}\left(x\right)\\
F\left(x\right) & = & \frac{2}{\pi}\arctan\left(e^{x}\right)\\
G\left(q\right) & = & \log\left(\tan\left(\frac{\pi}{2}q\right)\right)\end{eqnarray*}
\[M\left(t\right)=\sec\left(\frac{\pi}{2}t\right)\]
\begin{eqnarray*} \mu_{n}^{\prime} & = & \frac{1+\left(-1\right)^{n}}{2\pi2^{2n}}n!\left[\zeta\left(n+1,\frac{1}{4}\right)-\zeta\left(n+1,\frac{3}{4}\right)\right]\\
& = & \left\{
\begin{array}{cc}
0 & n \text{ odd}\\
C_{n/2}\frac{\pi^{n}}{2^{n}} & n \text{ even}
\end{array}
\right.\end{eqnarray*}
where \(C_{m}\) is an integer given by
\begin{eqnarray*} C_{m} & = & \frac{\left(2m\right)!\left[\zeta\left(2m+1,\frac{1}{4}\right)-\zeta\left(2m+1,\frac{3}{4}\right)\right]}{\pi^{2m+1}2^{2m}}\\
& = & 4\left(-1\right)^{m-1}\frac{16^{m}}{2m+1}B_{2m+1}\left(\frac{1}{4}\right)\end{eqnarray*}
where \(B_{2m+1}\left(\frac{1}{4}\right)\) is the Bernoulli polynomial of order \(2m+1\) evaluated at \(1/4.\) Thus
\[\begin{split}\mu_{n}^{\prime}=\left\{
\begin{array}{cc}
0 & n \text{ odd}\\
4\left(-1\right)^{n/2-1}\frac{\left(2\pi\right)^{n}}{n+1}B_{n+1}\left(\frac{1}{4}\right) & n \text{ even}
\end{array}
\right.\end{split}\]
\begin{eqnarray*} m_{d}=m_{n}=\mu & = & 0\\
\mu_{2} & = & \frac{\pi^{2}}{4}\\
\gamma_{1} & = & 0\\
\gamma_{2} & = & 2\end{eqnarray*}
\[h\left[X\right]=\log\left(2\pi\right).\]
Implementation: scipy.stats.hypsecant