scipy.interpolate.RectBivariateSpline¶
-
class
scipy.interpolate.RectBivariateSpline(x, y, z, bbox=[None, None, None, None], kx=3, ky=3, s=0)[source]¶ Bivariate spline approximation over a rectangular mesh.
Can be used for both smoothing and interpolating data.
- Parameters
- x,yarray_like
1-D arrays of coordinates in strictly ascending order.
- zarray_like
2-D array of data with shape (x.size,y.size).
- bboxarray_like, optional
Sequence of length 4 specifying the boundary of the rectangular approximation domain. By default,
bbox=[min(x,tx),max(x,tx), min(y,ty),max(y,ty)].- kx, kyints, optional
Degrees of the bivariate spline. Default is 3.
- sfloat, optional
Positive smoothing factor defined for estimation condition:
sum((w[i]*(z[i]-s(x[i], y[i])))**2, axis=0) <= sDefault iss=0, which is for interpolation.
See also
SmoothBivariateSplinea smoothing bivariate spline for scattered data
bisplrepan older wrapping of FITPACK
bisplevan older wrapping of FITPACK
UnivariateSplinea similar class for univariate spline interpolation
Methods
__call__(self, x, y[, dx, dy, grid])Evaluate the spline or its derivatives at given positions.
ev(self, xi, yi[, dx, dy])Evaluate the spline at points
get_coeffs(self)Return spline coefficients.
get_knots(self)Return a tuple (tx,ty) where tx,ty contain knots positions of the spline with respect to x-, y-variable, respectively.
get_residual(self)Return weighted sum of squared residuals of the spline approximation: sum ((w[i]*(z[i]-s(x[i],y[i])))**2,axis=0)
integral(self, xa, xb, ya, yb)Evaluate the integral of the spline over area [xa,xb] x [ya,yb].
