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CHAPTER

ONE

INSTALLING AND UPGRADING

Information on how to install SciPy and/or the SciPy Stack (a larger set of packages for scientific computing with Python)
can be found at https://scipy.org/install.html .
It is recommended that users use a scientific Python distribution or binaries for their platform. If building from source is
required, documentation about that can be found at Building from sources.
If you already have SciPy installed and want to upgrade to a newer version, use the same install mechanism as you have
used to install SciPy before. Before upgrading to a newer version, it is recommended to check that your own code does
not use any deprecated SciPy functionality. To do so, run your code with python -Wd.

3
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CHAPTER

TWO

API - IMPORTING FROM SCIPY

In Python the distinction between what is the public API of a library and what are private implementation details is
not always clear. Unlike in other languages like Java, it is possible in Python to access “private” function or objects.
Occasionally this may be convenient, but be aware that if you do so your code may break without warning in future
releases. Some widely understood rules for what is and isn’t public in Python are:

• Methods / functions / classes and module attributes whose names begin with a leading underscore are private.
• If a class name begins with a leading underscore none of its members are public, whether or not they begin with a
leading underscore.

• If a module name in a package begins with a leading underscore none of its members are public, whether or not
they begin with a leading underscore.

• If a module or package defines __all__ that authoritatively defines the public interface.
• If a module or package doesn’t define __all__ then all names that don’t start with a leading underscore are public.

Note: Reading the above guidelines one could draw the conclusion that every private module or object starts with an
underscore. This is not the case; the presence of underscores domark something as private, but the absence of underscores
do not mark something as public.

In SciPy there are modules whose names don’t start with an underscore, but that should be considered private. To clarify
which modules these are we define below what the public API is for SciPy, and give some recommendations for how to
import modules/functions/objects from SciPy.

2.1 Guidelines for importing functions from SciPy

The scipy namespace itself only contains functions imported from numpy. These functions still exist for backwards
compatibility, but should be imported from numpy directly.
Everything in the namespaces of scipy submodules is public. In general, it is recommended to import functions from sub-
module namespaces. For example, the function curve_fit (defined in scipy/optimize/minpack.py) should be imported
like this:

from scipy import optimize
result = optimize.curve_fit(...)

This form of importing submodules is preferred for all submodules except scipy.io (because io is also the name of
a module in the Python stdlib):

5
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from scipy import interpolate
from scipy import integrate
import scipy.io as spio

In some cases, the public API is one level deeper. For example the scipy.sparse.linalg module is public, and
the functions it contains are not available in the scipy.sparse namespace. Sometimes it may result in more easily
understandable code if functions are imported from one level deeper. For example, in the following it is immediately
clear that lomax is a distribution if the second form is chosen:

# first form
from scipy import stats
stats.lomax(...)

# second form
from scipy.stats import distributions
distributions.lomax(...)

In that case the second form can be chosen, if it is documented in the next section that the submodule in question is public.

2.2 API definition

Every submodule listed below is public. That means that these submodules are unlikely to be renamed or changed in an
incompatible way, and if that is necessary a deprecation warning will be raised for one SciPy release before the change is
made.

• scipy.cluster

– scipy.cluster.vq

– scipy.cluster.hierarchy

• scipy.constants

• scipy.fftpack

• scipy.integrate

• scipy.interpolate

• scipy.io

– scipy.io.arff

– scipy.io.harwell_boeing

– scipy.io.idl

– scipy.io.matlab

– scipy.io.netcdf

– scipy.io.wavfile

• scipy.linalg

– scipy.linalg.blas

– scipy.linalg.cython_blas

– scipy.linalg.lapack

6 Chapter 2. API - importing from SciPy



SciPy Reference Guide, Release 1.3.1

– scipy.linalg.cython_lapack

– scipy.linalg.interpolative

• scipy.misc

• scipy.ndimage

• scipy.odr

• scipy.optimize

• scipy.signal

– scipy.signal.windows

• scipy.sparse

– scipy.sparse.linalg

– scipy.sparse.csgraph

• scipy.spatial

– scipy.spatial.distance

– scipy.spatial.transform

• scipy.special

• scipy.stats

– scipy.stats.distributions

– scipy.stats.mstats

2.2. API definition 7
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CHAPTER

THREE

RELEASE NOTES

3.1 SciPy 1.3.1 Release Notes

Contents

• SciPy 1.3.1 Release Notes

– Authors

∗ Issues closed for 1.3.1

∗ Pull requests for 1.3.1

SciPy 1.3.1 is a bug-fix release with no new features compared to 1.3.0.

3.1.1 Authors

• Matt Haberland
• Geordie McBain
• Yu Feng
• Evgeni Burovski
• Sturla Molden
• Tapasweni Pathak
• Eric Larson
• Peter Bell
• Carlos Ramos Carreño +
• Ralf Gommers
• David Hagen
• Antony Lee
• Ayappan P
• Tyler Reddy
• Pauli Virtanen

9
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A total of 15 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
This list of names is automatically generated, and may not be fully complete.

Issues closed for 1.3.1

• #5040: BUG: Empty data handling of (c)KDTrees
• #9901: lsoda fails to detect stiff problem when called from solve_ivp
• #10206: sparse matrices indexing with scipy 1.3
• #10232: Exception in loadarff with quoted nominal attributes in scipy…
• #10292: DOC/REL: Some sections of the release notes are not nested correctly.
• #10303: BUG: optimize: linprog failing TestLinprogSimplexBland::test_unbounded_below_no_presolve_corrected
• #10376: TST: Travis CI fails (with pytest 5.0 ?)
• #10384: CircleCI doc build failing on new warnings
• #10398: Scipy 1.3.0 build broken in AIX
• #10501: BUG: scipy.spatial.HalfspaceIntersection works incorrectly
• #10514: BUG: cKDTree GIL handling is incorrect
• #10535: TST: master branch CI failures
• #10572: BUG: ckdtree query_ball_point errors on discontiguous input
• #10597: BUG: No warning on PchipInterpolator changing from bernstein base to local power base

Pull requests for 1.3.1

• #10071: DOC: reconstruct SuperLU permutation matrices avoiding SparseEfficiencyWarning
• #10196: Fewer checks on xdata for curve_fit.
• #10207: BUG: Compressed matrix indexing should return a scalar
• #10233: Fix for ARFF reader regression (#10232)
• #10306: BUG: optimize: Fix for 10303
• #10309: BUG: Pass jac=None directly to lsoda
• #10377: TST, MAINT: adjustments for pytest 5.0
• #10379: BUG: sparse: set writeability to be forward-compatible with numpy>=1.17
• #10426: MAINT: Fix doc build bugs
• #10431: Update numpy version for AIX
• #10457: BUG: Allow ckdtree to accept empty data input
• #10503: BUG: spatial/qhull: get HalfspaceIntersection.dual_points from the correct array
• #10516: BUG: Use nogil contexts in cKDTree
• #10520: DOC: Proper .rst formatting for deprecated features and Backwards incompatible changes
• #10540: MAINT: Fix Travis and Circle
• #10573: BUG: Fix query_ball_point with discontiguous input

10 Chapter 3. Release Notes
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• #10600: BUG: interpolate: fix broken conversions between PPoly/BPoly objects

3.2 SciPy 1.3.0 Release Notes

Contents

• SciPy 1.3.0 Release Notes

– Highlights of this release

– New features

∗ scipy.interpolate improvements

∗ scipy.io improvements

∗ scipy.linalg improvements

∗ scipy.ndimage improvements

∗ scipy.optimize improvements

∗ scipy.signal improvements

∗ scipy.sparse improvements

∗ scipy.spatial improvements

∗ scipy.stats improvements

– Backwards incompatible changes

∗ scipy.interpolate changes

∗ scipy.linalg changes

∗ scipy.optimize changes

∗ scipy.stats changes

– Other changes

– Authors

∗ Issues closed for 1.3.0

∗ Pull requests for 1.3.0

SciPy 1.3.0 is the culmination of 5 months of hard work. It contains many new features, numerous bug-fixes, improved
test coverage and better documentation. There have been some API changes in this release, which are documented below.
All users are encouraged to upgrade to this release, as there are a large number of bug-fixes and optimizations. Before
upgrading, we recommend that users check that their own code does not use deprecated SciPy functionality (to do so, run
your code with python -Wd and check for DeprecationWarning s). Our development attention will now shift to
bug-fix releases on the 1.3.x branch, and on adding new features on the master branch.
This release requires Python 3.5+ and NumPy 1.13.3 or greater.
For running on PyPy, PyPy3 6.0+ and NumPy 1.15.0 are required.

3.2. SciPy 1.3.0 Release Notes 11
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3.2.1 Highlights of this release

• Three new stats functions, a rewrite of pearsonr, and an exact computation of the Kolmogorov-Smirnov
two-sample test

• A new Cython API for bounded scalar-function root-finders in scipy.optimize
• Substantial CSR and CSC sparse matrix indexing performance improvements
• Added support for interpolation of rotations with continuous angular rate and acceleration in RotationSpline

3.2.2 New features

scipy.interpolate improvements

A new class CubicHermiteSpline is introduced. It is a piecewise-cubic interpolator which matches ob-
served values and first derivatives. Existing cubic interpolators CubicSpline, PchipInterpolator and
Akima1DInterpolator were made subclasses of CubicHermiteSpline.

scipy.io improvements

For the Attribute-Relation File Format (ARFF) scipy.io.arff.loadarff now supports relational attributes.
scipy.io.mmread can now parse Matrix Market format files with empty lines.

scipy.linalg improvements

Added wrappers for ?syconv routines, which convert a symmetric matrix given by a triangular matrix factorization into
two matrices and vice versa.
scipy.linalg.clarkson_woodruff_transform now uses an algorithm that leverages sparsity. This may
provide a 60-90 percent speedup for dense input matrices. Truly sparse input matrices should also benefit from the
improved sketch algorithm, which now correctly runs in O(nnz(A)) time.
Added new functions to calculate symmetric Fiedlermatrices and Fiedler companionmatrices, namedscipy.linalg.
fiedler and scipy.linalg.fiedler_companion, respectively. These may be used for root finding.

scipy.ndimage improvements

Gaussian filter performances may improve by an order of magnitude in some cases, thanks to removal of a dependence
on np.polynomial. This may impact scipy.ndimage.gaussian_filter for example.

scipy.optimize improvements

The scipy.optimize.bruteminimizer obtained a new keyword workers, which can be used to parallelize com-
putation.
A Cython API for bounded scalar-function root-finders in scipy.optimize is available in a new module scipy.
optimize.cython_optimize via cimport. This API may be used with nogil and prange to loop over an
array of function arguments to solve for an array of roots more quickly than with pure Python.
'interior-point' is now the default method for linprog, and 'interior-point' now uses SuiteSparse
for sparse problems when the required scikits (scikit-umfpack and scikit-sparse) are available. On benchmark problems
(gh-10026), execution time reductions by factors of 2-3 were typical. Also, a new method='revised simplex'
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has been added. It is not as fast or robust as method='interior-point', but it is a faster, more robust, and equally
accurate substitute for the legacy method='simplex'.
differential_evolution can now use a Bounds class to specify the bounds for the optimizing argument of a
function.
scipy.optimize.dual_annealing performance improvements related to vectorisation of some internal code.

scipy.signal improvements

Two additional methods of discretization are now supported by scipy.signal.cont2discrete: impulse and
foh.
scipy.signal.firls now uses faster solvers
scipy.signal.detrend now has a lower physical memory footprint in some cases, which may be leveraged using
the new overwrite_data keyword argument
scipy.signal.firwin pass_zero argument now accepts new string arguments that allow specification of the
desired filter type: 'bandpass', 'lowpass', 'highpass', and 'bandstop'
scipy.signal.sosfilt may have improved performance due to lower retention of the global interpreter lock
(GIL) in algorithm

scipy.sparse improvements

A new keyword was added to csgraph.dijsktra that allows users to query the shortest path to ANY of the passed
in indices, as opposed to the shortest path to EVERY passed index.
scipy.sparse.linalg.lsmr performance has been improved by roughly 10 percent on large problems
Improved performance and reduced physical memory footprint of the algorithm used by scipy.sparse.linalg.
lobpcg

CSR and CSC sparse matrix fancy indexing performance has been improved substantially

scipy.spatial improvements

scipy.spatial.ConvexHull now has a good attribute that can be used alongsize the QGn Qhull options to
determine which external facets of a convex hull are visible from an external query point.
scipy.spatial.cKDTree.query_ball_point has been modernized to use some newer Cython features, in-
cluding GIL handling and exception translation. An issue with return_sorted=True and scalar queries was fixed,
and a new mode named return_length was added. return_length only computes the length of the returned
indices list instead of allocating the array every time.
scipy.spatial.transform.RotationSpline has been added to enable interpolation of rotations with con-
tinuous angular rates and acceleration

scipy.stats improvements

Added a new function to compute the Epps-Singleton test statistic, scipy.stats.epps_singleton_2samp,
which can be applied to continuous and discrete distributions.
New functions scipy.stats.median_absolute_deviation and scipy.stats.gstd (geometric stan-
dard deviation) were added. The scipy.stats.combine_pvalues method now supports pearson, tippett
and mudholkar_george pvalue combination methods.
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The scipy.stats.ortho_group and scipy.stats.special_ortho_group rvs(dim) functions’ al-
gorithms were updated from a O(dim^4) implementation to a O(dim^3) which gives large speed improvements for
dim>100.
A rewrite of scipy.stats.pearsonr to use a more robust algorithm, provide meaningful exceptions and warnings
on potentially pathological input, and fix at least five separate reported issues in the original implementation.
Improved the precision of hypergeom.logcdf and hypergeom.logsf.
Added exact computation for Kolmogorov-Smirnov (KS) two-sample test, replacing the previously approximate compu-
tation for the two-sided test stats.ks_2samp. Also added a one-sided, two-sample KS test, and a keyword alternative
to stats.ks_2samp.

3.2.3 Backwards incompatible changes

scipy.interpolate changes

Functions from scipy.interpolate (spleval, spline, splmake, and spltopp) and functions from
scipy.misc (bytescale, fromimage, imfilter, imread, imresize, imrotate, imsave, imshow,
toimage) have been removed. The former set has been deprecated since v0.19.0 and the latter has been deprecated since
v1.0.0. Similarly, aliases from scipy.misc (comb, factorial, factorial2, factorialk, logsumexp,
pade, info, source, who) which have been deprecated since v1.0.0 are removed. SciPy documentation for v1.1.0
can be used to track the new import locations for the relocated functions.

scipy.linalg changes

For pinv, pinv2, and pinvh, the default cutoff values are changed for consistency (see the docs for the actual values).

scipy.optimize changes

The default method for linprog is now 'interior-point'. The method’s robustness and speed come at a cost:
solutions may not be accurate to machine precision or correspond with a vertex of the polytope defined by the constraints.
To revert to the original simplex method, include the argument method='simplex'.

scipy.stats changes

Previously, ks_2samp(data1, data2) would run a two-sided test and return the approximated p-value. The new
signature, ks_2samp(data1, data2, alternative="two-sided", method="auto"), still runs the
two-sided test by default but returns the exact p-value for small samples and the approximated value for large samples.
method="asymp" would be equivalent to the old version but auto is the better choice.

3.2.4 Other changes

Our tutorial has been expanded with a new section on global optimizers
There has been a rework of the stats.distributions tutorials.
scipy.optimize now correctly sets the convergence flag of the result to CONVERR, a convergence error, for bounded
scalar-function root-finders if the maximum iterations has been exceeded, disp is false, and full_output is true.
scipy.optimize.curve_fit no longer fails if xdata and ydata dtypes differ; they are both now automatically
cast to float64.
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scipy.ndimage functions including binary_erosion, binary_closing, and binary_dilation now
require an integer value for the number of iterations, which alleviates a number of reported issues.
Fixed normal approximation in case zero_method == "pratt" in scipy.stats.wilcoxon.
Fixes for incorrect probabilities, broadcasting issues and thread-safety related to stats distributions setting member vari-
ables inside _argcheck().
scipy.optimize.newton now correctly raises a RuntimeError, when default arguments are used, in the case
that a derivative of value zero is obtained, which is a special case of failing to converge.
A draft toolchain roadmap is now available, laying out a compatibility plan including Python versions, C standards, and
NumPy versions.

3.2.5 Authors

• ananyashreyjain +
• ApamNapat +
• Scott Calabrese Barton +
• Christoph Baumgarten
• Peter Bell +
• Jacob Blomgren +
• Doctor Bob +
• Mana Borwornpadungkitti +
• Matthew Brett
• Evgeni Burovski
• CJ Carey
• Vega Theil Carstensen +
• Robert Cimrman
• Forrest Collman +
• Pietro Cottone +
• David +
• Idan David +
• Christoph Deil
• Dieter Werthmüller
• Conner DiPaolo +
• Dowon
• Michael Dunphy +
• Peter Andreas Entschev +
• Gökçen Eraslan +
• Johann Faouzi +
• Yu Feng
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• Piotr Figiel +
• Matthew H Flamm
• Franz Forstmayr +
• Christoph Gohlke
• Richard Janis Goldschmidt +
• Ralf Gommers
• Lars Grueter
• Sylvain Gubian
• Matt Haberland
• Yaroslav Halchenko
• Charles Harris
• Lindsey Hiltner
• JakobStruye +
• He Jia +
• Jwink3101 +
• Greg Kiar +
• Julius Bier Kirkegaard
• John Kirkham +
• Thomas Kluyver
• Vladimir Korolev +
• Joseph Kuo +
• Michael Lamparski +
• Eric Larson
• Denis Laxalde
• Katrin Leinweber
• Jesse Livezey
• ludcila +
• Dhruv Madeka +
• Magnus +
• Nikolay Mayorov
• Mark Mikofski
• Jarrod Millman
• Markus Mohrhard +
• Eric Moore
• Andrew Nelson
• Aki Nishimura +
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• OGordon100 +
• Petar Mlinarić +
• Stefan Peterson
• Matti Picus +
• Ilhan Polat
• Aaron Pries +
• Matteo Ravasi +
• Tyler Reddy
• Ashton Reimer +
• Joscha Reimer
• rfezzani +
• Riadh +
• Lucas Roberts
• Heshy Roskes +
• Mirko Scholz +
• Taylor D. Scott +
• Srikrishna Sekhar +
• Kevin Sheppard +
• Sourav Singh
• skjerns +
• Kai Striega
• SyedSaifAliAlvi +
• Gopi Manohar T +
• Albert Thomas +
• Timon +
• Paul van Mulbregt
• Jacob Vanderplas
• Daniel Vargas +
• Pauli Virtanen
• VNMabus +
• Stefan van der Walt
• Warren Weckesser
• Josh Wilson
• Nate Yoder +
• Roman Yurchak
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A total of 97 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
This list of names is automatically generated, and may not be fully complete.

Issues closed for 1.3.0

• #1320: scipy.stats.distribution: problem with self.a, self.b if they…
• #2002: members set in scipy.stats.distributions.##._argcheck (Trac #1477)
• #2823: distribution methods add tmp
• #3220: Scipy.opimize.fmin_powell direc argument syntax unclear
• #3728: scipy.stats.pearsonr: possible bug with zero variance input
• #6805: error-in-scipy-wilcoxon-signed-rank-test-for-equal-series
• #6873: ‘stats.boxcox’ return all same values
• #7117: Warn users when using float32 input data to curve_fit and friends
• #7632: it’s not possible to tell the ‘optimize.least_squares‘ solver…
• #7730: stats.pearsonr: Potential division by zero for dataset of length…
• #7933: stats.truncnorm fails when providing values outside truncation…
• #8033: Add standard filter types to firwin to set pass_zero intuitively…
• #8600: lfilter.c.src zfill has erroneous header
• #8692: Non-negative values of ‘stats.hypergeom.logcdf‘
• #8734: Enable pip build isolation
• #8861: scipy.linalg.pinv gives wrong result while scipy.linalg.pinv2…
• #8915: need to fix macOS build against older numpy versions
• #8980: scipy.stats.pearsonr overflows with high values of x and y
• #9226: BUG: signal: SystemError: <built-in function _linear_filter>…
• #9254: BUG: root finders brentq, etc, flag says “converged” even if…
• #9308: Test failure - test_initial_constraints_as_canonical
• #9353: scipy.stats.pearsonr returns r=1 if r_num/r_den = inf
• #9359: Planck distribution is a geometric distribution
• #9381: linregress should warn user in 2x2 array case
• #9406: BUG: stats: In pearsonr, when r is nan, the p-value must also…
• #9437: Cannot create sparse matrix from size_t indexes
• #9518: Relational attributes in loadarff
• #9551: BUG: scipy.optimize.newton says the root of x^2+1 is zero.
• #9564: rv_sample accepts invalid input in scipy.stats
• #9565: improper handling of multidimensional input in stats.rv_sample
• #9581: Least-squares minimization fails silently when x and y data are…
• #9587: Outdated value for scipy.constants.au
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• #9611: Overflow error with new way of p-value calculation in kendall…
• #9645: ‘scipy.stats.mode‘ crashes with variable length arrays (‘dtype=object‘)
• #9734: PendingDeprecationWarning for np.matrix with pytest
• #9786: stats.ks_2samp() misleading for small data sets.
• #9790: Excessive memory usage on detrend
• #9801: dual_annealing does not set the success attribute in OptimizeResult
• #9833: IntegrationWarning from mielke.stats() during build of html doc.
• #9835: scipy.signal.firls seems to be inefficient versus MATLAB firls
• #9864: Curve_fit does not check for empty input data if called with…
• #9869: scipy.ndimage.label: Minor documentation issue
• #9882: format at the wrong paranthesis in scipy.spatial.transform
• #9889: scipy.signal.find_peaks minor documentation issue
• #9890: Minkowski p-norm Issues in cKDTree For Values Other Than 2 Or…
• #9896: scipy.stats._argcheck sets (not just checks) values
• #9905: Memory error in ndimage.binary_erosion
• #9909: binary_dilation/erosion/closing crashes when iterations is float
• #9919: BUG: ‘coo_matrix‘ does not validate the ‘shape‘ argument.
• #9982: lsq_linear hangs/infinite loop with ‘trf’ method
• #10003: exponnorm.pdf returns NAN for small K
• #10011: Incorrect check for invalid rotation plane in scipy.ndimage.rotate
• #10024: Fails to build from git
• #10048: DOC: scipy.optimize.root_scalar
• #10068: DOC: scipy.interpolate.splev
• #10074: BUG: ‘expm‘ calculates the wrong coefficients in the backward…

Pull requests for 1.3.0

• #7827: ENH: sparse: overhaul of sparse matrix indexing
• #8431: ENH: Cython optimize zeros api
• #8743: DOC: Updated linalg.pinv, .pinv2, .pinvh docstrings
• #8744: DOC: added examples to remez docstring
• #9227: DOC: update description of “direc” parameter of “fmin_powell”
• #9263: ENH: optimize: added “revised simplex” for scipy.optimize.linprog
• #9325: DEP: Remove deprecated functions for 1.3.0
• #9330: Add note on push and pull affine transformations
• #9423: DOC: Clearly state how 2x2 input arrays are handled in stats.linregress
• #9428: ENH: parallelised brute
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• #9438: BUG: Initialize coo matrix with size_t indexes
• #9455: MAINT: Speed up get_(lapack,blas)_func
• #9465: MAINT: Clean up optimize.zeros C solvers interfaces/code.
• #9477: DOC: linalg: fix lstsq docstring on residues shape
• #9478: DOC: Add docstring examples for rosen functions
• #9479: DOC: Add docstring example for ai_zeros and bi_zeros
• #9480: MAINT: linalg: lstsq clean up
• #9489: DOC: roadmap update for changes over the last year.
• #9492: MAINT: stats: Improve implementation of chi2 ppf method.
• #9497: DOC: Improve docstrings sparse.linalg.isolve
• #9499: DOC: Replace “Scipy” with “SciPy” in the .rst doc files for consistency.
• #9500: DOC: Document the toolchain and its roadmap.
• #9505: DOC: specify which definition of skewness is used
• #9511: DEP: interpolate: remove deprecated interpolate_wrapper
• #9517: BUG: improve error handling in stats.iqr
• #9522: ENH: Add Fiedler and fiedler companion to special matrices
• #9526: TST: relax precision requirements in signal.correlate tests
• #9529: DOC: fix missing random seed in optimize.newton example
• #9533: MAINT: Use list comprehension when possible
• #9537: DOC: add a “big picture” roadmap
• #9538: DOC: Replace “Numpy” with “NumPy” in .py, .rst and .txt doc files…
• #9539: ENH: add two-sample test (Epps-Singleton) to scipy.stats
• #9559: DOC: add section on global optimizers to tutorial
• #9561: ENH: remove noprefix.h, change code appropriately
• #9562: MAINT: stats: Rewrite pearsonr.
• #9563: BUG: Minor bug fix Callback in linprog(method=’simplex’)
• #9568: MAINT: raise runtime error for newton with zeroder if disp true,…
• #9570: Correct docstring in show_options in optimize. Fixes #9407
• #9573: BUG fixes range of pk variable pre-check
• #9577: TST: fix minor issue in a signal.stft test.
• #9580: Included blank line before list - Fixes #8658
• #9582: MAINT: drop Python 2.7 and 3.4
• #9588: MAINT: update ‘constants.astronomical_unit‘ to new 2012 value.
• #9592: TST: Add 32-bit testing to CI
• #9593: DOC: Replace cumulative density with cumulative distribution
• #9596: TST: remove VC 9.0 from Azure CI
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• #9599: Hyperlink DOI to preferred resolver
• #9601: DEV: try to limit GC memory use on PyPy
• #9603: MAINT: improve logcdf and logsf of hypergeometric distribution
• #9605: Reference to pylops in LinearOperator notes and ARPACK example
• #9617: TST: reduce max memory usage for sparse.linalg.lgmres test
• #9619: FIX: Sparse matrix addition/subtraction eliminates explicit zeros
• #9621: bugfix in rv_sample in scipy.stats
• #9622: MAINT: Raise error in directed_hausdorff distance
• #9623: DOC: Build docs with warnings as errors
• #9625: Return the number of calls to ‘hessp’ (not just ‘hess’) in trust…
• #9627: BUG: ignore empty lines in mmio
• #9637: Function to calculate the MAD of an array
• #9646: BUG: stats: mode for objects w/ndim > 1
• #9648: Add ‘stats.contingency‘ to refguide-check
• #9650: ENH: many lobpcg() algorithm improvements
• #9652: Move misc.doccer to _lib.doccer
• #9660: ENH: add pearson, tippett, and mudholkar-george to combine_pvalues
• #9661: BUG: Fix ksone right-hand endpoint, documentation and tests.
• #9664: ENH: adding multi-target dijsktra performance enhancement
• #9670: MAINT: link planck and geometric distribution in scipy.stats
• #9676: ENH: optimize: change default linprog method to interior-point
• #9685: Added reference to ndimage.filters.median_filter
• #9705: Fix coefficients in expm helper function
• #9711: Release the GIL during sosfilt processing for simple types
• #9721: ENH: Convexhull visiblefacets
• #9723: BLD: Modify rv_generic._construct_doc to print out failing distribution…
• #9726: BUG: Fix small issues with ‘signal.lfilter’
• #9729: BUG: Typecheck iterations for binary image operations
• #9730: ENH: reduce sizeof(NI_WatershedElement) by 20%
• #9731: ENH: remove suspicious sequence of type castings
• #9739: BUG: qr_updates fails if u is exactly in span Q
• #9749: BUG: MapWrapper.__exit__ should terminate
• #9753: ENH: Added exact computation for Kolmogorov-Smirnov two-sample…
• #9755: DOC: Added example for signal.impulse, copied from impulse2
• #9756: DOC: Added docstring example for iirdesign
• #9757: DOC: Added examples for step functions
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• #9759: ENH: Allow pass_zero to act like btype
• #9760: DOC: Added docstring for lp2bs
• #9761: DOC: Added docstring and example for lp2bp
• #9764: BUG: Catch internal warnings for matrix
• #9766: ENH: Speed up _gaussian_kernel1d by removing dependence on np.polynomial
• #9769: BUG: Fix Cubic Spline Read Only issues
• #9773: DOC: Several docstrings
• #9774: TST: bump Azure CI OpenBLAS version to match wheels
• #9775: DOC: Improve clarity of cov_x documentation for scipy.optimize.leastsq
• #9779: ENH: dual_annealing vectorise visit_fn
• #9788: TST, BUG: f2py-related issues with NumPy < 1.14.0
• #9791: BUG: fix amax constraint not enforced in scalar_search_wolfe2
• #9792: ENH: Allow inplace copying in place in “detrend” function
• #9795: DOC: Fix/update docstring for dstn and dst
• #9796: MAINT: Allow None tolerances in least_squares
• #9798: BUG: fixes abort trap 6 error in scipy issue 9785 in unit tests
• #9807: MAINT: improve doc and add alternative keyword to wilcoxon in…
• #9808: Fix PPoly integrate and test for CubicSpline
• #9810: ENH: Add the geometric standard deviation function
• #9811: MAINT: remove invalid derphi default None value in scalar_search_wolfe2
• #9813: Adapt hamming distance in C to support weights
• #9817: DOC: Copy solver description to solver modules
• #9829: ENH: Add FOH and equivalent impulse response discretizations…
• #9831: ENH: Implement RotationSpline
• #9834: DOC: Change mielke distribution default parameters to ensure…
• #9838: ENH: Use faster solvers for firls
• #9854: ENH: loadarff now supports relational attributes.
• #9856: integrate.bvp - improve handling of nonlinear boundary conditions
• #9862: TST: reduce Appveyor CI load
• #9874: DOC: Update requirements in release notes
• #9883: BUG: fixed parenthesis in spatial.rotation
• #9884: ENH: Use Sparsity in Clarkson-Woodruff Sketch
• #9888: MAINT: Replace NumPy aliased functions
• #9892: BUG: Fix 9890 query_ball_point returns wrong result when p is…
• #9893: BUG: curve_fit doesn’t check for empty input if called with bounds
• #9894: scipy.signal.find_peaks documentation error
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• #9898: BUG: Set success attribute in OptimizeResult. See #9801
• #9900: BUG: Restrict rv_generic._argcheck() and its overrides from setting…
• #9906: fixed a bug in kde logpdf
• #9911: DOC: replace example for “np.select” with the one from numpy…
• #9912: BF(DOC): point to numpy.select instead of plain (python) .select
• #9914: DOC: change ValueError message in _validate_pad of signaltools.
• #9915: cKDTree query_ball_point improvements
• #9918: Update ckdtree.pyx with boxsize argument in docstring
• #9920: BUG: sparse: Validate explicit shape if given with dense argument…
• #9924: BLD: add back pyproject.toml
• #9931: Fix empty constraint
• #9935: DOC: fix references for stats.f_oneway
• #9936: Revert gh-9619: “FIX: Sparse matrix addition/subtraction eliminates…
• #9937: MAINT: fix PEP8 issues and update to pycodestyle 2.5.0
• #9939: DOC: correct ‘structure‘ description in ‘ndimage.label‘ docstring
• #9940: MAINT: remove extraneous distutils copies
• #9945: ENH: differential_evolution can use Bounds object
• #9949: Added ‘std’ to add doctstrings since it is a ‘known_stats‘…
• #9953: DOC: Documentation cleanup for stats tutorials.
• #9962: __repr__ for Bounds
• #9971: ENH: Improve performance of lsmr
• #9987: CI: pin Sphinx version to 1.8.5
• #9990: ENH: constraint violation
• #9991: BUG: Avoid inplace modification of input array in newton
• #9995: MAINT: sparse.csgraph: Add cdef to stop build warning.
• #9996: BUG: Make minimize_quadratic_1d work with infinite bounds correctly
• #10004: BUG: Fix unbound local error in linprog - simplex.
• #10007: BLD: fix Python 3.7 build with build isolation
• #10009: BUG: Make sure that _binary_erosion only accepts an integer number…
• #10016: Update link to airspeed-velocity
• #10017: DOC: Update ‘interpolate.LSQSphereBivariateSpline‘ to include…
• #10018: MAINT: special: Fix a few warnings that occur when compiling…
• #10019: TST: Azure summarizes test failures
• #10021: ENH: Introduce CubicHermiteSpline
• #10022: BENCH: Increase cython version in asv to fix benchmark builds
• #10023: BUG: Avoid exponnorm producing nan for small K values.
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• #10025: BUG: optimize: tweaked linprog status 4 error message
• #10026: ENH: optimize: use SuiteSparse in linprog interior-point when…
• #10027: MAINT: cluster: clean up the use of malloc() in the function…
• #10028: Fix rotate invalid plane check
• #10040: MAINT: fix pratt method of wilcox test in scipy.stats
• #10041: MAINT: special: Fix a warning generated when building the AMOS…
• #10044: DOC: fix up spatial.transform.Rotation docstrings
• #10047: MAINT: interpolate: Fix a few build warnings.
• #10051: Add project_urls to setup
• #10052: don’t set flag to “converged” if max iter exceeded
• #10054: MAINT: signal: Fix a few build warnings and modernize some C…
• #10056: BUG: Ensure factorial is not too large in kendaltau
• #10058: Small speedup in samping from ortho and special_ortho groups
• #10059: BUG: optimize: fix #10038 by increasing tol
• #10061: BLD: DOC: make building docs easier by parsing python version.
• #10064: ENH: Significant speedup for ortho and special ortho group
• #10065: DOC: Reword parameter descriptions in ‘optimize.root_scalar‘
• #10066: BUG: signal: Fix error raised by savgol_coeffs when deriv > polyorder.
• #10067: MAINT: Fix the cutoff value inconsistency for pinv2 and pinvh
• #10072: BUG: stats: Fix boxcox_llf to avoid loss of precision.
• #10075: ENH: Add wrappers for ?syconv routines
• #10076: BUG: optimize: fix curve_fit for mixed float32/float64 input
• #10077: DOC: Replace undefined ‘k‘ in ‘interpolate.splev‘ docstring
• #10079: DOC: Fixed typo, rearranged some doc of stats.morestats.wilcoxon.
• #10080: TST: install scikit-sparse for full TravisCI tests
• #10083: Clean ‘‘_clean_inputs‘‘ in optimize.linprog
• #10088: ENH: optimize: linprog test CHOLMOD/UMFPACK solvers when available
• #10090: MAINT: Fix CubicSplinerInterpolator for pandas
• #10091: MAINT: improve logcdf and logsf of hypergeometric distribution
• #10095: MAINT: Clean ‘‘_clean_inputs‘‘ in linprog
• #10116: MAINT: update scipy-sphinx-theme
• #10135: BUG: fix linprog revised simplex docstring problem failure
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3.3 SciPy 1.2.1 Release Notes

Contents

• SciPy 1.2.1 Release Notes

– Authors

∗ Issues closed for 1.2.1

∗ Pull requests for 1.2.1

SciPy 1.2.1 is a bug-fix release with no new features compared to 1.2.0. Most importantly, it solves the issue that 1.2.0
cannot be installed from source on Python 2.7 because of non-ascii character issues.
It is also notable that SciPy 1.2.1 wheels were built with OpenBLAS 0.3.5.dev, which may alleviate some linear algebra
issues observed in SciPy 1.2.0.

3.3.1 Authors

• Eric Larson
• Mark Mikofski
• Evgeni Burovski
• Ralf Gommers
• Eric Moore
• Tyler Reddy

Issues closed for 1.2.1

• #9606: SyntaxError: Non-ASCII character ‘xe2’ in file scipy/stats/_continuous_distns.py on line 3346, but no
encoding declared

• #9608: Version 1.2.0 introduces too many indices for array error in…
• #9709: scipy.stats.gaussian_kde normalizes the weights keyword argument…
• #9733: scipy.linalg.qr_update gives NaN result
• #9724: CI: Is scipy.scipy Windows Python36-32bit-full working?

Pull requests for 1.2.1

• #9612: BUG: don’t use array newton unless size is greater than 1
• #9615: ENH: Add test for encoding
• #9720: BUG: stats: weighted KDE does not modify the weights array
• #9739: BUG: qr_updates fails if u is exactly in span Q
• #9725: TST: pin mingw for Azure Win CI
• #9736: TST: adjust to vmImage dispatch in Azure
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• #9681: BUG: Fix failing stats tests (partial backport)
• #9662: TST: interpolate: avoid pytest deprecations

3.4 SciPy 1.2.0 Release Notes

Contents

• SciPy 1.2.0 Release Notes

– Highlights of this release

– New features

∗ scipy.ndimage improvements

∗ scipy.fftpack improvements

∗ scipy.interpolate improvements

∗ scipy.cluster improvements

∗ scipy.special improvements

∗ scipy.optimize improvements

∗ scipy.signal improvements

∗ scipy.sparse improvements

∗ scipy.spatial improvements

∗ scipy.stats improvements

∗ scipy.linalg improvements

– Deprecated features

– Backwards incompatible changes

– Other changes

– Authors

∗ Issues closed for 1.2.0

∗ Pull requests for 1.2.0

SciPy 1.2.0 is the culmination of 6 months of hard work. It contains many new features, numerous bug-fixes, improved
test coverage and better documentation. There have been a number of deprecations and API changes in this release,
which are documented below. All users are encouraged to upgrade to this release, as there are a large number of bug-fixes
and optimizations. Before upgrading, we recommend that users check that their own code does not use deprecated SciPy
functionality (to do so, run your code with python -Wd and check for DeprecationWarning s). Our development
attention will now shift to bug-fix releases on the 1.2.x branch, and on adding new features on the master branch.
This release requires Python 2.7 or 3.4+ and NumPy 1.8.2 or greater.

Note: This will be the last SciPy release to support Python 2.7. Consequently, the 1.2.x series will be a long term support
(LTS) release; we will backport bug fixes until 1 Jan 2020.

26 Chapter 3. Release Notes

https://github.com/scipy/scipy/pull/9681
https://github.com/scipy/scipy/pull/9662


SciPy Reference Guide, Release 1.3.1

For running on PyPy, PyPy3 6.0+ and NumPy 1.15.0 are required.

3.4.1 Highlights of this release

• 1-D root finding improvements with a new solver, toms748, and a new unified interface, root_scalar
• New dual_annealing optimization method that combines stochastic and local deterministic searching
• A new optimization algorithm, shgo (simplicial homology global optimization) for derivative free optimization
problems

• A new category of quaternion-based transformations are available in scipy.spatial.transform

3.4.2 New features

scipy.ndimage improvements

Proper spline coefficient calculations have been added for the mirror, wrap, and reflect modes of scipy.
ndimage.rotate

scipy.fftpack improvements

DCT-IV, DST-IV, DCT-I, and DST-I orthonormalization are now supported in scipy.fftpack.

scipy.interpolate improvements

scipy.interpolate.pade now accepts a new argument for the order of the numerator

scipy.cluster improvements

scipy.cluster.vq.kmeans2 gained a new initialization method, kmeans++.

scipy.special improvements

The function softmax was added to scipy.special.

scipy.optimize improvements

The one-dimensional nonlinear solvers have been given a unified interface scipy.optimize.root_scalar,
similar to the scipy.optimize.root interface for multi-dimensional solvers. scipy.optimize.
root_scalar(f, bracket=[a ,b], method="brenth") is equivalent to scipy.optimize.
brenth(f, a ,b). If no method is specified, an appropriate one will be selected based upon the bracket and the
number of derivatives available.
The so-called Algorithm 748 of Alefeld, Potra and Shi for root-finding within an enclosing interval has been added as
scipy.optimize.toms748. This provides guaranteed convergence to a root with convergence rate per function
evaluation of approximately 1.65 (for sufficiently well-behaved functions.)
differential_evolution now has the updating and workers keywords. The first chooses between contin-
uous updating of the best solution vector (the default), or once per generation. Continuous updating can lead to faster
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convergence. The workers keyword accepts an int or map-like callable, and parallelises the solver (having the side
effect of updating once per generation). Supplying an int evaluates the trial solutions in N parallel parts. Supplying a
map-like callable allows other parallelisation approaches (such as mpi4py, or joblib) to be used.
dual_annealing (and shgo below) is a powerful new general purpose global optizimation (GO) algorithm.
dual_annealing uses two annealing processes to accelerate the convergence towards the global minimum of an
objective mathematical function. The first annealing process controls the stochastic Markov chain searching and the sec-
ond annealing process controls the deterministic minimization. So, dual annealing is a hybrid method that takes advantage
of stochastic and local deterministic searching in an efficient way.
shgo (simplicial homology global optimization) is a similar algorithm appropriate for solving black box and derivative free
optimization (DFO) problems. The algorithm generally converges to the global solution in finite time. The convergence
holds for non-linear inequality and equality constraints. In addition to returning a global minimum, the algorithm also
returns any other global and local minima found after every iteration. This makes it useful for exploring the solutions in
a domain.
scipy.optimize.newton can now accept a scalar or an array
MINPACK usage is now thread-safe, such that MINPACK + callbacks may be used on multiple threads.

scipy.signal improvements

Digital filter design functions now include a parameter to specify the sampling rate. Previously, digital filters could only
be specified using normalized frequency, but different functions used different scales (e.g. 0 to 1 for butter vs 0 to π
for freqz), leading to errors and confusion. With the fs parameter, ordinary frequencies can now be entered directly
into functions, with the normalization handled internally.
find_peaks and related functions no longer raise an exception if the properties of a peak have unexpected values (e.g.
a prominence of 0). A PeakPropertyWarning is given instead.
The new keyword argument plateau_size was added to find_peaks. plateau_size may be used to select
peaks based on the length of the flat top of a peak.
welch() and csd() methods in scipy.signal now support calculation of a median average PSD, using
average='mean' keyword

scipy.sparse improvements

The scipy.sparse.bsr_matrix.tocsr method is now implemented directly instead of converting via COO
format, and the scipy.sparse.bsr_matrix.tocsc method is now also routed via CSR conversion instead of
COO. The efficiency of both conversions is now improved.
The issue where SuperLU or UMFPACK solvers crashed on matrices with non-canonical format in scipy.sparse.
linalg was fixed. The solver wrapper canonicalizes the matrix if necessary before calling the SuperLU or UMFPACK
solver.
The largest option of scipy.sparse.linalg.lobpcg() was fixed to have a correct (and expected) behavior. The order of
the eigenvalues was made consistent with the ARPACK solver (eigs()), i.e. ascending for the smallest eigenvalues,
and descending for the largest eigenvalues.
The scipy.sparse.random function is now faster and also supports integer and complex values by passing the
appropriate value to the dtype argument.

scipy.spatial improvements

The function scipy.spatial.distance.jaccard was modified to return 0 instead of np.nan when two all-
zero vectors are compared.
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Support for the Jensen Shannon distance, the square-root of the divergence, has been added under scipy.spatial.
distance.jensenshannon

An optional keyword was added to the function scipy.spatial.cKDTree.query_ball_point() to sort or not sort the returned
indices. Not sorting the indices can speed up calls.
A new category of quaternion-based transformations are available in scipy.spatial.transform, including
spherical linear interpolation of rotations (Slerp), conversions to and from quaternions, Euler angles, and general
rotation and inversion capabilities (spatial.transform.Rotation), and uniform random sampling of 3D rotations (spa-
tial.transform.Rotation.random).

scipy.stats improvements

The Yeo-Johnson power transformation is now supported (yeojohnson, yeojohnson_llf,
yeojohnson_normmax, yeojohnson_normplot). Unlike the Box-Cox transformation, the Yeo-Johnson
transformation can accept negative values.
Added a general method to sample random variates based on the density only, in the new function
rvs_ratio_uniforms.
The Yule-Simon distribution (yulesimon) was added – this is a new discrete probability distribution.
stats andmstats now have access to a new regressionmethod, siegelslopes, a robust linear regression algorithm
scipy.stats.gaussian_kde now has the ability to deal with weighted samples, and should have a modest im-
provement in performance
Levy Stable Parameter Estimation, PDF, and CDF calculations are now supported forscipy.stats.levy_stable.
The Brunner-Munzel test is now available as brunnermunzel in stats and mstats

scipy.linalg improvements

scipy.linalg.lapack now exposes the LAPACK routines using the Rectangular Full Packed storage (RFP) for
upper triangular, lower triangular, symmetric, or Hermitian matrices; the upper trapezoidal fat matrix RZ decomposition
routines are now available as well.

3.4.3 Deprecated features

The functions hyp2f0, hyp1f2 and hyp3f0 in scipy.special have been deprecated.

3.4.4 Backwards incompatible changes

LAPACK version 3.4.0 or later is now required. Building with Apple Accelerate is no longer supported.
The function scipy.linalg.subspace_angles(A, B) now gives correct results for all angles. Before this, the
function only returned correct values for those angles which were greater than pi/4.
Support for the Bento build system has been removed. Bento has not been maintained for several years, and did not have
good Python 3 or wheel support, hence it was time to remove it.
The required signature of scipy.optimize.lingprog method=simplex callback function has changed. Before iteration
begins, the simplex solver first converts the problem into a standard form that does not, in general, have the same variables
or constraints as the problem defined by the user. Previously, the simplex solver would pass a user-specified callback
function several separate arguments, such as the current solution vector xk, corresponding to this standard form problem.
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Unfortunately, the relationship between the standard form problem and the user-defined problem was not documented,
limiting the utility of the information passed to the callback function.
In addition to numerous bug fix changes, the simplex solver now passes a user-specified callback function a single
OptimizeResult object containing information that corresponds directly to the user-defined problem. In future
releases, this OptimizeResult object may be expanded to include additional information, such as variables cor-
responding to the standard-form problem and information concerning the relationship between the standard-form and
user-defined problems.
The implementation of scipy.sparse.random has changed, and this affects the numerical values returned for both
sparse.random and sparse.rand for some matrix shapes and a given seed.
scipy.optimize.newton will no longer use Halley’s method in cases where it negatively impacts convergence

3.4.5 Other changes

3.4.6 Authors

• @endolith
• @luzpaz
• Hameer Abbasi +
• akahard2dj +
• Anton Akhmerov
• Joseph Albert
• alexthomas93 +
• ashish +
• atpage +
• Blair Azzopardi +
• Yoshiki Vázquez Baeza
• Bence Bagi +
• Christoph Baumgarten
• Lucas Bellomo +
• BH4 +
• Aditya Bharti
• Max Bolingbroke
• François Boulogne
• Ward Bradt +
• Matthew Brett
• Evgeni Burovski
• Rafał Byczek +
• Alfredo Canziani +
• CJ Carey
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• Lucía Cheung +
• Poom Chiarawongse +
• Jeanne Choo +
• Robert Cimrman
• Graham Clenaghan +
• cynthia-rempel +
• Johannes Damp +
• Jaime Fernandez del Rio
• Dowon +
• emmi474 +
• Stefan Endres +
• Thomas Etherington +
• Piotr Figiel
• Alex Fikl +
• fo40225 +
• Joseph Fox-Rabinovitz
• Lars G
• Abhinav Gautam +
• Stiaan Gerber +
• C.A.M. Gerlach +
• Ralf Gommers
• Todd Goodall
• Lars Grueter +
• Sylvain Gubian +
• Matt Haberland
• David Hagen
• Will Handley +
• Charles Harris
• Ian Henriksen
• Thomas Hisch +
• Theodore Hu
• Michael Hudson-Doyle +
• Nicolas Hug +
• jakirkham +
• Jakob Jakobson +
• James +
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• Jan Schlüter
• jeanpauphilet +
• josephmernst +
• Kai +
• Kai-Striega +
• kalash04 +
• Toshiki Kataoka +
• Konrad0 +
• Tom Krauss +
• Johannes Kulick
• Lars Grüter +
• Eric Larson
• Denis Laxalde
• Will Lee +
• Katrin Leinweber +
• Yin Li +
• P. L. Lim +
• Jesse Livezey +
• Duncan Macleod +
• MatthewFlamm +
• Nikolay Mayorov
• Mike McClurg +
• Christian Meyer +
• Mark Mikofski
• Naoto Mizuno +
• mohmmadd +
• Nathan Musoke
• Anju Geetha Nair +
• Andrew Nelson
• Ayappan P +
• Nick Papior
• Haesun Park +
• Ronny Pfannschmidt +
• pijyoi +
• Ilhan Polat
• Anthony Polloreno +
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• Ted Pudlik
• puenka
• Eric Quintero
• Pradeep Reddy Raamana +
• Vyas Ramasubramani +
• Ramon Viñas +
• Tyler Reddy
• Joscha Reimer
• Antonio H Ribeiro
• richardjgowers +
• Rob +
• robbystk +
• Lucas Roberts +
• rohan +
• Joaquin Derrac Rus +
• Josua Sassen +
• Bruce Sharpe +
• Max Shinn +
• Scott Sievert
• Sourav Singh
• Strahinja Lukić +
• Kai Striega +
• Shinya SUZUKI +
• Mike Toews +
• Piotr Uchwat
• Miguel de Val-Borro +
• Nicky van Foreest
• Paul van Mulbregt
• Gael Varoquaux
• Pauli Virtanen
• Stefan van der Walt
• Warren Weckesser
• Joshua Wharton +
• Bernhard M. Wiedemann +
• Eric Wieser
• Josh Wilson
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• Tony Xiang +
• Roman Yurchak +
• Roy Zywina +

A total of 137 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
This list of names is automatically generated, and may not be fully complete.

Issues closed for 1.2.0

• #9520: signal.correlate with method=’fft’ doesn’t benefit from long…
• #9547: signature of dual_annealing doesn’t match other optimizers
• #9540: SciPy v1.2.0rc1 cannot be imported on Python 2.7.15
• #1240: Allowing multithreaded use of minpack through scipy.optimize…
• #1432: scipy.stats.mode extremely slow (Trac #905)
• #3372: Please add Sphinx search field to online scipy html docs
• #3678: _clough_tocher_2d_single direction between centroids
• #4174: lobpcg “largest” option invalid?
• #5493: anderson_ksamp p-values>1
• #5743: slsqp fails to detect infeasible problem
• #6139: scipy.optimize.linprog failed to find a feasible starting point…
• #6358: stats: docstring for vonmises_line points to vonmises_line…
• #6498: runtests.py is missing in pypi distfile
• #7426: scipy.stats.ksone(n).pdf(x) returns nan for positive values of…
• #7455: scipy.stats.ksone.pdf(2,x) return incorrect values for x near…
• #7456: scipy.special.smirnov and scipy.special.smirnovi have accuracy…
• #7492: scipy.special.kolmogorov(x)/kolmogi(p) inefficient, inaccurate…
• #7914: TravisCI not failing when it should for -OO run
• #8064: linalg.solve test crashes on Windows
• #8212: LAPACK Rectangular Full Packed routines
• #8256: differential_evolution bug converges to wrong results in complex…
• #8443: Deprecate hyp2f0, hyp1f2, and hyp3f0?
• #8452: DOC: ARPACK tutorial has two conflicting equations
• #8680: scipy fails compilation when building from source
• #8686: Division by zero in _trustregion.py when x0 is exactly equal…
• #8700: _MINPACK_LOCK not held when calling into minpack from least_squares
• #8786: erroneous moment values for t-distribution
• #8791: Checking COLA condition in istft should be optional (or omitted)
• #8843: imresize cannot be deprecated just yet

34 Chapter 3. Release Notes

https://github.com/scipy/scipy/issues/9520
https://github.com/scipy/scipy/issues/9547
https://github.com/scipy/scipy/issues/9540
https://github.com/scipy/scipy/issues/1240
https://github.com/scipy/scipy/issues/1432
https://github.com/scipy/scipy/issues/3372
https://github.com/scipy/scipy/issues/3678
https://github.com/scipy/scipy/issues/4174
https://github.com/scipy/scipy/issues/5493
https://github.com/scipy/scipy/issues/5743
https://github.com/scipy/scipy/issues/6139
https://github.com/scipy/scipy/issues/6358
https://github.com/scipy/scipy/issues/6498
https://github.com/scipy/scipy/issues/7426
https://github.com/scipy/scipy/issues/7455
https://github.com/scipy/scipy/issues/7456
https://github.com/scipy/scipy/issues/7492
https://github.com/scipy/scipy/issues/7914
https://github.com/scipy/scipy/issues/8064
https://github.com/scipy/scipy/issues/8212
https://github.com/scipy/scipy/issues/8256
https://github.com/scipy/scipy/issues/8443
https://github.com/scipy/scipy/issues/8452
https://github.com/scipy/scipy/issues/8680
https://github.com/scipy/scipy/issues/8686
https://github.com/scipy/scipy/issues/8700
https://github.com/scipy/scipy/issues/8786
https://github.com/scipy/scipy/issues/8791
https://github.com/scipy/scipy/issues/8843


SciPy Reference Guide, Release 1.3.1

• #8844: Inverse Wishart Log PDF Incorrect for Non-diagonal Scale Matrix?
• #8878: vonmises and vonmises_line in stats: vonmises wrong and superfluous?
• #8895: v1.1.0 ndi.rotate documentation – reused parameters not filled…
• #8900: Missing complex conjugation in scipy.sparse.linalg.LinearOperator
• #8904: BUG: if zero derivative at root, then Newton fails with RuntimeWarning
• #8911: make_interp_spline bc_type incorrect input interpretation
• #8942: MAINT: Refactor _linprog.py and _linprog_ip.py to remove…
• #8947: np.int64 in scipy.fftpack.next_fast_len
• #9020: BUG: linalg.subspace_angles gives wrong results
• #9033: scipy.stats.normaltest sometimes gives incorrect returns b/c…
• #9036: Bizarre times for scipy.sparse.rand function with ‘low’ density…
• #9044: optimize.minimize(method=‘trust-constr‘) result dict does not…
• #9071: doc/linalg: add cho_solve_banded to see also of cholesky_banded
• #9082: eigenvalue sorting in scipy.sparse.linalg.eigsh
• #9086: signaltools.py:491: FutureWarning: Using a non-tuple sequence…
• #9091: test_spline_filter failure on 32-bit
• #9122: Typo on scipy minimization tutorial
• #9135: doc error at https://docs.scipy.org/doc/scipy/reference/tutorial/stats/discrete_poisson.html
• #9167: DOC: BUG: typo in ndimage LowLevelCallable tutorial example
• #9169: truncnorm does not work if b < a in scipy.stats
• #9250: scipy.special.tests.test_mpmath::TestSystematic::test_pcfw fails…
• #9259: rv.expect() == rv.mean() is false for rv.mean() == nan (and inf)
• #9286: DOC: Rosenbrock expression in optimize.minimize tutorial
• #9316: SLSQP fails in nested optimization
• #9337: scipy.signal.find_peaks key typo in documentation
• #9345: Example from documentation of scipy.sparse.linalg.eigs raises…
• #9383: Default value for “mode” in “ndimage.shift”
• #9419: dual_annealing off by one in the number of iterations
• #9442: Error in Defintion of Rosenbrock Function
• #9453: TST: test_eigs_consistency() doesn’t have consistent results

Pull requests for 1.2.0

• #9526: TST: relax precision requirements in signal.correlate tests
• #9507: CI: MAINT: Skip a ckdtree test on pypy
• #9512: TST: test_random_sampling 32-bit handling
• #9494: TST: test_kolmogorov xfail 32-bit
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• #9486: BUG: fix sparse random int handling
• #9550: BUG: scipy/_lib/_numpy_compat: get_randint
• #9549: MAINT: make dual_annealing signature match other optimizers
• #9541: BUG: fix SyntaxError due to non-ascii character on Python 2.7
• #7352: ENH: add Brunner Munzel test to scipy.stats.
• #7373: BUG: Jaccard distance for all-zero arrays would return np.nan
• #7374: ENH: Add PDF, CDF and parameter estimation for Stable Distributions
• #8098: ENH: Add shgo for global optimization of NLPs.
• #8203: ENH: adding simulated dual annealing to optimize
• #8259: Option to follow original Storn and Price algorithm and its parallelisation
• #8293: ENH add ratio-of-uniforms method for rv generation to scipy.stats
• #8294: BUG: Fix slowness in stats.mode
• #8295: ENH: add Jensen Shannon distance to scipy.spatial.distance
• #8357: ENH: vectorize scalar zero-search-functions
• #8397: Add fs= parameter to filter design functions
• #8537: ENH: Implement mode parameter for spline filtering.
• #8558: ENH: small speedup for stats.gaussian_kde
• #8560: BUG: fix p-value calc of anderson_ksamp in scipy.stats
• #8614: ENH: correct p-values for stats.kendalltau and stats.mstats.kendalltau
• #8670: ENH: Require Lapack 3.4.0
• #8683: Correcting kmeans documentation
• #8725: MAINT: Cleanup scipy.optimize.leastsq
• #8726: BUG: Fix _get_output in scipy.ndimage to support string
• #8733: MAINT: stats: A bit of clean up.
• #8737: BUG: Improve numerical precision/convergence failures of smirnov/kolmogorov
• #8738: MAINT: stats: A bit of clean up in test_distributions.py.
• #8740: BF/ENH: make minpack thread safe
• #8742: BUG: Fix division by zero in trust-region optimization methods
• #8746: MAINT: signal: Fix a docstring of a private function, and fix…
• #8750: DOC clarified description of norminvgauss in scipy.stats
• #8753: DOC: signal: Fix a plot title in the chirp docstring.
• #8755: DOC: MAINT: Fix link to the wheel documentation in developer…
• #8760: BUG: stats: boltzmann wasn’t setting the upper bound.
• #8763: [DOC] Improved scipy.cluster.hierarchy documentation
• #8765: DOC: added example for scipy.stat.mstats.tmin
• #8788: DOC: fix definition of optional disp parameter
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• #8802: MAINT: Suppress dd_real unused function compiler warnings.
• #8803: ENH: Add full_output support to optimize.newton()
• #8804: MAINT: stats cleanup
• #8808: DOC: add note about isinstance for frozen rvs
• #8812: Updated numpydoc submodule
• #8813: MAINT: stats: Fix multinomial docstrings, and do some clean up.
• #8816: BUG: fixed _stats of t-distribution in scipy.stats
• #8817: BUG: ndimage: Fix validation of the origin argument in correlate…
• #8822: BUG: integrate: Fix crash with repeated t values in odeint.
• #8832: Hyperlink DOIs against preferred resolver
• #8837: BUG: sparse: Ensure correct dtype for sparse comparison operations.
• #8839: DOC: stats: A few tweaks to the linregress docstring.
• #8846: BUG: stats: Fix logpdf method of invwishart.
• #8849: DOC: signal: Fixed mistake in the firwin docstring.
• #8854: DOC: fix type descriptors in ltisys documentation
• #8865: Fix tiny typo in docs for chi2 pdf
• #8870: Fixes related to invertibility of STFT
• #8872: ENH: special: Add the softmax function
• #8874: DOC correct gamma function in docstrings in scipy.stats
• #8876: ENH: Added TOMS Algorithm 748 as 1-d root finder; 17 test function…
• #8882: ENH: Only use Halley’s adjustment to Newton if close enough.
• #8883: FIX: optimize: make jac and hess truly optional for ‘trust-constr’
• #8885: TST: Do not error on warnings raised about non-tuple indexing.
• #8887: MAINT: filter out np.matrix PendingDeprecationWarning’s in numpy…
• #8889: DOC: optimize: separate legacy interfaces from new ones
• #8890: ENH: Add optimize.root_scalar() as a universal dispatcher for…
• #8899: DCT-IV, DST-IV and DCT-I, DST-I orthonormalization support in…
• #8901: MAINT: Reorganize flapack.pyf.src file
• #8907: BUG: ENH: Check if guess for newton is already zero before checking…
• #8908: ENH: Make sorting optional for cKDTree.query_ball_point()
• #8910: DOC: sparse.csgraph simple examples.
• #8914: DOC: interpolate: fix equivalences of string aliases
• #8918: add float_control(precise, on) to _fpumode.c
• #8919: MAINT: interpolate: improve error messages for common bc_type…
• #8920: DOC: update Contributing to SciPy to say “prefer no PEP8 only…
• #8924: MAINT: special: deprecate hyp2f0, hyp1f2, and hyp3f0
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• #8927: MAINT: special: remove errprint
• #8932: Fix broadcasting scale arg of entropy
• #8936: Fix (some) non-tuple index warnings
• #8937: ENH: implement sparse matrix BSR to CSR conversion directly.
• #8938: DOC: add @_ni_docstrings.docfiller in ndimage.rotate
• #8940: Update _discrete_distns.py
• #8943: DOC: Finish dangling sentence in convolve docstring
• #8944: MAINT: Address tuple indexing and warnings
• #8945: ENH: spatial.transform.Rotation [GSOC2018]
• #8950: csgraph Dijkstra function description rewording
• #8953: DOC, MAINT: HTTP -> HTTPS, and other linkrot fixes
• #8955: BUG: np.int64 in scipy.fftpack.next_fast_len
• #8958: MAINT: Add more descriptive error message for phase one simplex.
• #8962: BUG: sparse.linalg: add missing conjugate to _ScaledLinearOperator.adjoint
• #8963: BUG: sparse.linalg: downgrade LinearOperator TypeError to warning
• #8965: ENH: Wrapped RFP format and RZ decomposition routines
• #8969: MAINT: doc and code fixes for optimize.newton
• #8970: Added ‘average’ keyword for welch/csd to enable median averaging
• #8971: Better imresize deprecation warning
• #8972: MAINT: Switch np.where(c) for np.nonzero(c)
• #8975: MAINT: Fix warning-based failures
• #8979: DOC: fix description of count_sort keyword of dendrogram
• #8982: MAINT: optimize: Fixed minor mistakes in test_linprog.py (#8978)
• #8984: BUG: sparse.linalg: ensure expm casts integer inputs to float
• #8986: BUG: optimize/slsqp: do not exit with convergence on steps where…
• #8989: MAINT: use collections.abc in basinhopping
• #8990: ENH extend p-values of anderson_ksamp in scipy.stats
• #8991: ENH: Weighted kde
• #8993: ENH: spatial.transform.Rotation.random [GSOC 2018]
• #8994: ENH: spatial.transform.Slerp [GSOC 2018]
• #8995: TST: time.time in test
• #9007: Fix typo in fftpack.rst
• #9013: Added correct plotting code for two sided output from spectrogram
• #9014: BUG: differential_evolution with inf objective functions
• #9017: BUG: fixed #8446 corner case for asformat(array|dense)
• #9018: MAINT: _lib/ccallback: remove unused code
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• #9021: BUG: Issue with subspace_angles
• #9022: DOC: Added “See Also” section to lombscargle docstring
• #9034: BUG: Fix tolerance printing behavior, remove meaningless tol…
• #9035: TST: improve signal.bsplines test coverage
• #9037: ENH: add a new init method for k-means
• #9039: DOC: Add examples to fftpack.irfft docstrings
• #9048: ENH: scipy.sparse.random
• #9050: BUG: scipy.io.hb_write: fails for matrices not in csc format
• #9051: MAINT: Fix slow sparse.rand for k < mn/3 (#9036).
• #9054: MAINT: spatial: Explicitly initialize LAPACK output parameters.
• #9055: DOC: Add examples to scipy.special docstrings
• #9056: ENH: Use one thread in OpenBLAS
• #9059: DOC: Update README with link to Code of Conduct
• #9060: BLD: remove support for the Bento build system.
• #9062: DOC add sections to overview in scipy.stats
• #9066: BUG: Correct “remez” error message
• #9069: DOC: update linalg section of roadmap for LAPACK versions.
• #9079: MAINT: add spatial.transform to refguide check; complete some…
• #9081: MAINT: Add warnings if pivot value is close to tolerance in linprog(method=’simplex’)
• #9084: BUG fix incorrect p-values of kurtosistest in scipy.stats
• #9095: DOC: add sections to mstats overview in scipy.stats
• #9096: BUG: Add test for Stackoverflow example from issue 8174.
• #9101: ENH: add Siegel slopes (robust regression) to scipy.stats
• #9105: allow resample_poly() to output float32 for float32 inputs.
• #9112: MAINT: optimize: make trust-constr accept constraint dict (#9043)
• #9118: Add doc entry to cholesky_banded
• #9120: eigsh documentation parameters
• #9125: interpolative: correctly reconstruct full rank matrices
• #9126: MAINT: Use warnings for unexpected peak properties
• #9129: BUG: Do not catch and silence KeyboardInterrupt
• #9131: DOC: Correct the typo in scipy.optimize tutorial page
• #9133: FIX: Avoid use of bare except
• #9134: DOC: Update of ‘return_eigenvectors’ description
• #9137: DOC: typo fixes for discrete Poisson tutorial
• #9139: FIX: Doctest failure in optimize tutorial
• #9143: DOC: missing sigma in Pearson r formula
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• #9145: MAINT: Refactor linear programming solvers
• #9149: FIX: Make scipy.odr.ODR ifixx equal to its data.fix if given
• #9156: DOC: special: Mention the sigmoid function in the expit docstring.
• #9160: Fixed a latex delimiter error in levy()
• #9170: DOC: correction / update of docstrings of distributions in scipy.stats
• #9171: better description of the hierarchical clustering parameter
• #9174: domain check for a < b in stats.truncnorm
• #9175: DOC: Minor grammar fix
• #9176: BUG: CloughTocher2DInterpolator: fix miscalculation at neighborless…
• #9177: BUILD: Document the “clean” target in the doc/Makefile.
• #9178: MAINT: make refguide-check more robust for printed numpy arrays
• #9186: MAINT: Remove np.ediff1d occurence
• #9188: DOC: correct typo in extending ndimage with C
• #9190: ENH: Support specifying axes for fftconvolve
• #9192: MAINT: optimize: fixed @pv style suggestions from #9112
• #9200: Fix make_interp_spline(…, k=0 or 1, axis<0)
• #9201: BUG: sparse.linalg/gmres: use machine eps in breakdown check
• #9204: MAINT: fix up stats.spearmanr and match mstats.spearmanr with…
• #9206: MAINT: include benchmarks and dev files in sdist.
• #9208: TST: signal: bump bsplines test tolerance for complex data
• #9210: TST: mark tests as slow, fix missing random seed
• #9211: ENH: add capability to specify orders in pade func
• #9217: MAINT: Include success and nit in OptimizeResult returned…
• #9222: ENH: interpolate: Use scipy.spatial.distance to speed-up Rbf
• #9229: MNT: Fix Fourier filter double case
• #9233: BUG: spatial/distance: fix pdist/cdist performance regression…
• #9234: FIX: Proper suppression
• #9235: BENCH: rationalize slow benchmarks + miscellaneous fixes
• #9238: BENCH: limit number of parameter combinations in spatial.*KDTree…
• #9239: DOC: stats: Fix LaTeX markup of a couple distribution PDFs.
• #9241: ENH: Evaluate plateau size during peak finding
• #9242: ENH: stats: Implement _ppf and _logpdf for crystalball, and do…
• #9246: DOC: Properly render versionadded directive in HTML documentation
• #9255: DOC: mention RootResults in optimization reference guide
• #9260: TST: relax some tolerances so tests pass with x87 math
• #9264: TST Use assert_raises “match” parameter instead of the “message”…
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• #9267: DOC: clarify expect() return val when moment is inf/nan
• #9272: DOC: Add description of default bounds to linprog
• #9277: MAINT: sparse/linalg: make test deterministic
• #9278: MAINT: interpolate: pep8 cleanup in test_polyint
• #9279: Fixed docstring for resample
• #9280: removed first check for float in get_sum_dtype
• #9281: BUG: only accept 1d input for bartlett / levene in scipy.stats
• #9282: MAINT: dense_output and t_eval are mutually exclusive inputs
• #9283: MAINT: add docs and do some cleanups in interpolate.Rbf
• #9288: Run distance_transform_edt tests on all types
• #9294: DOC: fix the formula typo
• #9298: MAINT: optimize/trust-constr: restore .niter attribute for backward-compat
• #9299: DOC: clarification of default rvs method in scipy.stats
• #9301: MAINT: removed unused import sys
• #9302: MAINT: removed unused imports
• #9303: DOC: signal: Refer to fs instead of nyq in the firwin docstring.
• #9305: ENH: Added Yeo-Johnson power transformation
• #9306: ENH - add dual annealing
• #9309: ENH add the yulesimon distribution to scipy.stats
• #9317: Nested SLSQP bug fix.
• #9320: MAINT: stats: avoid underflow in stats.geom.ppf
• #9326: Add example for Rosenbrock function
• #9332: Sort file lists
• #9340: Fix typo in find_peaks documentation
• #9343: MAINT Use np.full when possible
• #9344: DOC: added examples to docstring of dirichlet class
• #9346: DOC: Fix import of scipy.sparse.linalg in example (#9345)
• #9350: Fix interpolate read only
• #9351: MAINT: special.erf: use the x->-x symmetry
• #9356: Fix documentation typo
• #9358: DOC: improve doc for ksone and kstwobign in scipy.stats
• #9362: DOC: Change datatypes of A matrices in linprog
• #9364: MAINT: Adds implicit none to fftpack fortran sources
• #9369: DOC: minor tweak to CoC (updated NumFOCUS contact address).
• #9373: Fix exception if python is called with -OO option
• #9374: FIX: AIX compilation issue with NAN and INFINITY
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• #9376: COBLYA -> COBYLA in docs
• #9377: DOC: Add examples integrate: fixed_quad and quadrature
• #9379: MAINT: TST: Make tests NumPy 1.8 compatible
• #9385: CI: On Travis matrix “OPTIMIZE=-OO” flag ignored
• #9387: Fix defaut value for ‘mode’ in ‘ndimage.shift’ in the doc
• #9392: BUG: rank has to be integer in rank_filter: fixed issue 9388
• #9399: DOC: Misc. typos
• #9400: TST: stats: Fix the expected r-value of a linregress test.
• #9405: BUG: np.hstack does not accept generator expressions
• #9408: ENH: linalg: Shorter ill-conditioned warning message
• #9418: DOC: Fix ndimage docstrings and reduce doc build warnings
• #9421: DOC: Add missing docstring examples in scipy.spatial
• #9422: DOC: Add an example to integrate.newton_cotes
• #9427: BUG: Fixed defect with maxiter #9419 in dual annealing
• #9431: BENCH: Add dual annealing to scipy benchmark (see #9415)
• #9435: DOC: Add docstring examples for stats.binom_test
• #9443: DOC: Fix the order of indices in optimize tutorial
• #9444: MAINT: interpolate: use operator.index for checking/coercing…
• #9445: DOC: Added missing example to stats.mstats.kruskal
• #9446: DOC: Add note about version changed for jaccard distance
• #9447: BLD: version-script handling in setup.py
• #9448: TST: skip a problematic linalg test
• #9449: TST: fix missing seed in lobpcg test.
• #9456: TST: test_eigs_consistency() now sorts output

3.5 SciPy 1.1.0 Release Notes

Contents

• SciPy 1.1.0 Release Notes

– New features

∗ scipy.integrate improvements

∗ scipy.linalg improvements

∗ scipy.misc improvements

∗ scipy.ndimage improvements

∗ scipy.optimize improvements
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∗ scipy.signal improvements

∗ scipy.sparse improvements

∗ scipy.special improvements

∗ scipy.stats improvements

– Deprecated features

– Backwards incompatible changes

– Other changes

– Authors

∗ Issues closed for 1.1.0

∗ Pull requests for 1.1.0

SciPy 1.1.0 is the culmination of 7 months of hard work. It contains many new features, numerous bug-fixes, improved
test coverage and better documentation. There have been a number of deprecations and API changes in this release,
which are documented below. All users are encouraged to upgrade to this release, as there are a large number of bug-fixes
and optimizations. Before upgrading, we recommend that users check that their own code does not use deprecated SciPy
functionality (to do so, run your code with python -Wd and check for DeprecationWarning s). Our development
attention will now shift to bug-fix releases on the 1.1.x branch, and on adding new features on the master branch.
This release requires Python 2.7 or 3.4+ and NumPy 1.8.2 or greater.
This release has improved but not necessarily 100% compatibility with the PyPy Python implementation. For running on
PyPy, PyPy 6.0+ and Numpy 1.15.0+ are required.

3.5.1 New features

scipy.integrate improvements

The argument tfirst has been added to the function scipy.integrate.odeint. This allows odeint to use
the same user functions as scipy.integrate.solve_ivp and scipy.integrate.ode without the need for
wrapping them in a function that swaps the first two arguments.
Error messages from quad() are now clearer.

scipy.linalg improvements

The function scipy.linalg.ldl has been added for factorization of indefinite symmetric/hermitian matrices into
triangular and block diagonal matrices.
Python wrappers for LAPACK sygst, hegst added in scipy.linalg.lapack.
Added scipy.linalg.null_space, scipy.linalg.cdf2rdf, scipy.linalg.rsf2csf.

scipy.misc improvements

An electrocardiogram has been added as an example dataset for a one-dimensional signal. It can be accessed through
scipy.misc.electrocardiogram.
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scipy.ndimage improvements

The routines scipy.ndimage.binary_opening, and scipy.ndimage.binary_closing now support
masks and different border values.

scipy.optimize improvements

The method trust-constr has been added to scipy.optimize.minimize. The method switches between
two implementations depending on the problem definition. For equality constrained problems it is an implementation
of a trust-region sequential quadratic programming solver and, when inequality constraints are imposed, it switches to
a trust-region interior point method. Both methods are appropriate for large scale problems. Quasi-Newton options
BFGS and SR1 were implemented and can be used to approximate second order derivatives for this new method. Also,
finite-differences can be used to approximate either first-order or second-order derivatives.
Random-to-Best/1/bin and Random-to-Best/1/exp mutation strategies were added to scipy.optimize.
differential_evolution as randtobest1bin and randtobest1exp, respectively. Note: These
names were already in use but implemented a different mutation strategy. See Backwards incompatible changes, below.
The init keyword for the scipy.optimize.differential_evolution function can now accept an array.
This array allows the user to specify the entire population.
Add an adaptive option to Nelder-Mead to use step parameters adapted to the dimensionality of the problem.
Minor improvements in scipy.optimize.basinhopping.

scipy.signal improvements

Three new functions for peak finding in one-dimensional arrays were added. scipy.signal.find_peaks searches
for peaks (local maxima) based on simple value comparison of neighbouring samples and returns those peaks whose
properties match optionally specified conditions for their height, prominence, width, threshold and distance to each other.
scipy.signal.peak_prominences and scipy.signal.peak_widths can directly calculate the promi-
nences or widths of known peaks.
Added ZPK versions of frequency transformations: scipy.signal.bilinear_zpk, scipy.signal.
lp2bp_zpk, scipy.signal.lp2bs_zpk, scipy.signal.lp2hp_zpk, scipy.signal.lp2lp_zpk.
Added scipy.signal.windows.dpss, scipy.signal.windows.general_cosine and scipy.
signal.windows.general_hamming.

scipy.sparse improvements

Previously, the reshape method only worked on scipy.sparse.lil_matrix, and in-place reshaping did not
work on anymatrices. Both operations are now implemented for all matrices. Handling of shapes has beenmade consistent
with numpy.matrix throughout the scipy.sparsemodule (shape can be a tuple or splatted, negative number acts
as placeholder, padding and unpadding dimensions of size 1 to ensure length-2 shape).

scipy.special improvements

Added Owen’s T function as scipy.special.owens_t.
Accuracy improvements in chndtr, digamma, gammaincinv, lambertw, zetac.
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scipy.stats improvements

The Moyal distribution has been added as scipy.stats.moyal.
Added the normal inverse Gaussian distribution as scipy.stats.norminvgauss.

3.5.2 Deprecated features

The iterative linear equation solvers in scipy.sparse.linalg had a sub-optimal way of how absolute tolerance is
considered. The default behavior will be changed in a future Scipy release to a more standard and less surprising one. To
silence deprecation warnings, set the atol= parameter explicitly.
scipy.signal.windows.slepian is deprecated, replaced by scipy.signal.windows.dpss.
The window functions in scipy.signal are now available in scipy.signal.windows. They will remain also
available in the old location in the scipy.signal namespace in future Scipy versions. However, importing them from
scipy.signal.windows is preferred, and new window functions will be added only there.
Indexing sparse matrices with floating-point numbers instead of integers is deprecated.
The function scipy.stats.itemfreq is deprecated.

3.5.3 Backwards incompatible changes

Previously, scipy.linalg.orth used a singular value cutoff value appropriate for double precision numbers also
for single-precision input. The cutoff value is now tunable, and the default has been changed to depend on the input data
precision.
In previous versions of Scipy, the randtobest1bin and randtobest1exp mutation strategies in scipy.
optimize.differential_evolution were actually implemented using the Current-to-Best/1/bin and
Current-to-Best/1/exp strategies, respectively. These strategies were renamed to currenttobest1bin and
currenttobest1exp and the implementations of randtobest1bin and randtobest1exp strategies were
corrected.
Functions in the ndimage module now always return their output array. Before this most functions only returned the
output array if it had been allocated by the function, and would return None if it had been provided by the user.
Distance metrics in scipy.spatial.distance now require non-negative weights.
scipy.special.loggamma returns now real-valued result when the input is real-valued.

3.5.4 Other changes

When building on Linux with GNU compilers, the .so Python extension files now hide all symbols except those required
by Python, which can avoid problems when embedding the Python interpreter.

3.5.5 Authors

• Saurabh Agarwal +
• Diogo Aguiam +
• Joseph Albert +
• Gerrit Ansmann +
• Jean-François B +
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• Vahan Babayan +
• Alessandro Pietro Bardelli
• Christoph Baumgarten +
• Felix Berkenkamp
• Lilian Besson +
• Aditya Bharti +
• Matthew Brett
• Evgeni Burovski
• CJ Carey
• Martin Ø. Christensen +
• Robert Cimrman
• Vicky Close +
• Peter Cock +
• Philip DeBoer
• Jaime Fernandez del Rio
• Dieter Werthmüller +
• Tom Donoghue +
• Matt Dzugan +
• Lars G +
• Jacques Gaudin +
• Andriy Gelman +
• Sean Gillies +
• Dezmond Goff
• Christoph Gohlke
• Ralf Gommers
• Uri Goren +
• Deepak Kumar Gouda +
• Douglas Lessa Graciosa +
• Matt Haberland
• David Hagen
• Charles Harris
• Jordan Heemskerk +
• Danny Hermes +
• Stephan Hoyer +
• Theodore Hu +
• Jean-François B. +
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• Mads Jensen +
• Jon Haitz Legarreta Gorroño +
• Ben Jude +
• Noel Kippers +
• Julius Bier Kirkegaard +
• Maria Knorps +
• Mikkel Kristensen +
• Eric Larson
• Kasper Primdal Lauritzen +
• Denis Laxalde
• KangWon Lee +
• Jan Lehky +
• Jackie Leng +
• P.L. Lim +
• Nikolay Mayorov
• Mihai Capotă +
• Max Mikhaylov +
• Mark Mikofski +
• Jarrod Millman
• Raden Muhammad +
• Paul Nation
• Andrew Nelson
• Nico Schlömer
• Joel Nothman
• Kyle Oman +
• Egor Panfilov +
• Nick Papior
• Anubhav Patel +
• Oleksandr Pavlyk
• Ilhan Polat
• Robert Pollak +
• Anant Prakash +
• Aman Pratik
• Sean Quinn +
• Giftlin Rajaiah +
• Tyler Reddy
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• Joscha Reimer
• Antonio H Ribeiro +
• Antonio Horta Ribeiro
• Benjamin Rose +
• Fabian Rost
• Divakar Roy +
• Scott Sievert
• Leo Singer
• Sourav Singh
• Martino Sorbaro +
• Eric Stansifer +
• Martin Thoma
• Phil Tooley +
• Piotr Uchwat +
• Paul van Mulbregt
• Pauli Virtanen
• Stefan van der Walt
• Warren Weckesser
• Florian Weimer +
• Eric Wieser
• Josh Wilson
• Ted Ying +
• Evgeny Zhurko
• Zé Vinícius
• @Astrofysicus +
• @awakenting +
• @endolith
• @FormerPhysicist +
• @gaulinmp +
• @hugovk
• @ksemb +
• @kshitij12345 +
• @luzpaz +
• @NKrvavica +
• @rafalalgo +
• @samyak0210 +
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• @soluwalana +
• @sudheerachary +
• @Tokixix +
• @tttthomasssss +
• @vkk800 +
• @xoviat
• @ziejcow +

A total of 122 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
This list of names is automatically generated, and may not be fully complete.

Issues closed for 1.1.0

• #979: Allow Hermitian matrices in lobpcg (Trac #452)
• #2694: Solution of iterative solvers can be less accurate than tolerance…
• #3164: RectBivariateSpline usage inconsistent with other interpolation…
• #4161: Missing ITMAX optional argument in scipy.optimize.nnls
• #4354: signal.slepian should use definition of digital window
• #4866: Shouldn’t scipy.linalg.sqrtm raise an error if matrix is singular?
• #4953: The dirichlet distribution unnecessarily requires strictly positive…
• #5336: sqrtm on a diagonal matrix can warn “Matrix is singular and may…
• #5922: Suboptimal convergence of Halley’s method?
• #6036: Incorrect edge case in scipy.stats.triang.pdf
• #6202: Enhancement: Add LDLt factorization to scipy
• #6589: sparse.random with custom rvs callable does pass on arg to subclass
• #6654: Spearman’s rank correlation coefficient slow with nan values…
• #6794: Remove NumarrayType struct with numarray type names from ndimage
• #7136: The dirichlet distribution unnecessarily rejects probabilities…
• #7169: Will it be possible to add LDL’ factorization for Hermitian indefinite…
• #7291: fsolve docs should say it doesn’t handle over- or under-determined…
• #7453: binary_opening/binary_closing missing arguments
• #7500: linalg.solve test failure on OS X with Accelerate
• #7555: Integratig a function with singularities using the quad routine
• #7624: allow setting both absolute and relative tolerance of sparse…
• #7724: odeint documentation refers to t0 instead of t
• #7746: False CDF values for skew normal distribution
• #7750: mstats.winsorize documentation needs clarification
• #7787: Documentation error in spherical Bessel, Neumann, modified spherical…
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• #7836: Scipy mmwrite incorrectly writes the zeros for skew-symmetric,…
• #7839: sqrtm is unable to compute square root of zero matrix
• #7847: solve is very slow since #6775
• #7888: Scipy 1.0.0b1 prints spurious DVODE/ZVODE/lsoda messages
• #7909: bessel kv function in 0 is nan
• #7915: LinearOperator’s __init__ runs two times when instantiating the…
• #7958: integrate.quad could use better error messages when given bad…
• #7968: integrate.quad handles decreasing limits (b<a) inconsistently
• #7970: ENH: matching return dtype for loggamma/gammaln
• #7991: lfilter segfaults for integer inputs
• #8076: “make dist” for the docs doesn’t complete cleanly
• #8080: Use JSON in special/_generate_pyx.py?
• #8127: scipy.special.psi(x) very slow for some values of x
• #8145: BUG: ndimage geometric_transform and zoom using deprecated NumPy…
• #8158: BUG: romb print output requires correction
• #8181: loadmat() raises TypeError instead of FileNotFound when reading…
• #8228: bug for log1p on csr_matrix
• #8235: scipy.stats multinomial pmf return nan
• #8271: scipy.io.mmwrite raises type error for uint16
• #8288: Should tests be written for scipy.sparse.linalg.isolve.minres…
• #8298: Broken links on scipy API web page
• #8329: _gels fails for fat A matrix
• #8346: Avoidable overflow in scipy.special.binom(n, k)
• #8371: BUG: special: zetac(x) returns 0 for x < -30.8148
• #8382: collections.OrderedDict in test_mio.py
• #8492: Missing documentation for brute_force parameter in scipy.ndimage.morphology
• #8532: leastsq needlessly appends extra dimension for scalar problems
• #8544: [feature request] Convert complex diagonal form to real block…
• #8561: [Bug?] Example of Bland’s Rule for optimize.linprog (simplex)…
• #8562: CI: Appveyor builds fail because it can’t import ConvexHull from…
• #8576: BUG: optimize: show_options(solver=’minimize’, method=’Newton-CG’)…
• #8603: test_roots_gegenbauer/chebyt/chebyc failures on manylinux
• #8604: Test failures in scipy.sparse test_inplace_dense
• #8616: special: ellpj.c code can be cleaned up a bit
• #8625: scipy 1.0.1 no longer allows overwriting variables in netcdf…
• #8629: gcrotmk.test_atol failure with MKL
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• #8632: Sigma clipping on data with the same value
• #8646: scipy.special.sinpi test failures in test_zero_sign on old MSVC
• #8663: linprog with method=interior-point produced incorrect answer…
• #8694: linalg:TestSolve.test_all_type_size_routine_combinations fails…
• #8703: Q: Does runtests.py –refguide-check need env (or other) variables…

Pull requests for 1.1.0

• #6590: BUG: sparse: fix custom rvs callable argument in sparse.random
• #7004: ENH: scipy.linalg.eigsh cannot get all eigenvalues
• #7120: ENH: implemented Owen’s T function
• #7483: ENH: Addition/multiplication operators for StateSpace systems
• #7566: Informative exception when passing a sparse matrix
• #7592: Adaptive Nelder-Mead
• #7729: WIP: ENH: optimize: large-scale constrained optimization algorithms…
• #7802: MRG: Add dpss window function
• #7803: DOC: Add examples to spatial.distance
• #7821: Add Returns section to the docstring
• #7833: ENH: Performance improvements in scipy.linalg.special_matrices
• #7864: MAINT: sparse: Simplify sputils.isintlike
• #7865: ENH: Improved speed of copy into L, U matrices
• #7871: ENH: sparse: Add 64-bit integer to sparsetools
• #7879: ENH: re-enabled old sv lapack routine as defaults
• #7889: DOC: Show probability density functions as math
• #7900: API: Soft deprecate signal.* windows
• #7910: ENH: allow sqrtm to compute the root of some singular matrices
• #7911: MAINT: Avoid unnecessary array copies in xdist
• #7913: DOC: Clarifies the meaning of initial of scipy.integrate.cumtrapz()
• #7916: BUG: sparse.linalg: fix wrong use of __new__ in LinearOperator
• #7921: BENCH: split spatial benchmark imports
• #7927: ENH: added sygst/hegst routines to lapack
• #7934: MAINT: add io/_test_fortranmodule to gitignore

• #7936: DOC: Fixed typo in scipy.special.roots_jacobi documentation
• #7937: MAINT: special: Mark a test that fails on i686 as a known failure.
• #7941: ENH: LDLt decomposition for indefinite symmetric/hermitian matrices
• #7945: ENH: Implement reshape method on sparse matrices
• #7947: DOC: update docs on releasing and installing/upgrading
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• #7954: Basin-hopping changes
• #7964: BUG: test_falker not robust against numerical fuss in eigenvalues
• #7967: QUADPACK Errors - human friendly errors to replace ‘Invalid Input’
• #7975: Make sure integrate.quad doesn’t double-count singular points
• #7978: TST: ensure negative weights are not allowed in distance metrics
• #7980: MAINT: Truncate the warning msg about ill-conditioning
• #7981: BUG: special: fix hyp2f1 behavior in certain circumstances
• #7983: ENH: special: Add a real dispatch to loggamma

• #7989: BUG: special: make kv return inf at a zero real argument
• #7990: TST: special: test ufuncs in special at nan inputs
• #7994: DOC: special: fix typo in spherical Bessel function documentation
• #7995: ENH: linalg: add null_space for computing null spaces via svd
• #7999: BUG: optimize: Protect _minpack calls with a lock.
• #8003: MAINT: consolidate c99 compatibility
• #8004: TST: special: get all cython_special tests running again
• #8006: MAINT: Consolidate an additional _c99compat.h
• #8011: Add new example of integrate.quad
• #8015: DOC: special: remove jn from the refguide (again)
• #8018: BUG - Issue with uint datatypes for array in get_index_dtype
• #8021: DOC: spatial: Simplify Delaunay plotting
• #8024: Documentation fix
• #8027: BUG: io.matlab: fix saving unicode matrix names on py2
• #8028: BUG: special: some fixes for lambertw

• #8030: MAINT: Bump Cython version
• #8034: BUG: sparse.linalg: fix corner-case bug in expm
• #8035: MAINT: special: remove complex division hack
• #8038: ENH: Cythonize pyx files if pxd dependencies change
• #8042: TST: stats: reduce required precision in test_fligner
• #8043: TST: Use diff. values for decimal keyword for single and doubles
• #8044: TST: accuracy of tests made different for singles and doubles
• #8049: Unhelpful error message when calling scipy.sparse.save_npz on…
• #8052: TST: spatial: add a regression test for gh-8051
• #8059: BUG: special: fix ufunc results for nan arguments
• #8066: MAINT: special: reimplement inverses of incomplete gamma functions
• #8072: Example for scipy.fftpack.ifft, https://github.com/scipy/scipy/issues/7168
• #8073: Example for ifftn, https://github.com/scipy/scipy/issues/7168
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• #8078: Link to CoC in contributing.rst doc
• #8085: BLD: Fix npy_isnan of integer variables in cephes
• #8088: DOC: note version for which new attributes have been added to…
• #8090: BUG: special: add nan check to _legacy_cast_check functions
• #8091: Doxy Typos + trivial comment typos (2nd attempt)
• #8096: TST: special: simplify Arg

• #8101: MAINT: special: run _generate_pyx.py when add_newdocs.py…
• #8104: Input checking for scipy.sparse.linalg.inverse()
• #8105: DOC: special: Update the ‘euler’ docstring.
• #8109: MAINT: fixing code comments and hyp2f1 docstring: see issues…
• #8112: More trivial typos
• #8113: MAINT: special: generate test data npz files in setup.py and…
• #8116: DOC: add build instructions
• #8120: DOC: Clean up README
• #8121: DOC: Add missing colons in docstrings
• #8123: BLD: update Bento build config files for recent C99 changes.
• #8124: Change to avoid use of fmod in scipy.signal.chebwin
• #8126: Added examples for mode arg in geometric_transform
• #8128: relax relative tolerance parameter in TestMinumumPhase.test_hilbert
• #8129: ENH: special: use rational approximation for ‘digamma‘ on ‘[1,…
• #8137: DOC Correct matrix width
• #8141: MAINT: optimize: remove unused __main__ code in L-BSGS-B
• #8147: BLD: update Bento build for removal of .npz scipy.special test…
• #8148: Alias hanning as an explanatory function of hann
• #8149: MAINT: special: small fixes for digamma

• #8159: Update version classifiers
• #8164: BUG: riccati solvers don’t catch ill-conditioned problems sufficiently…
• #8168: DOC: release note for sparse resize methods
• #8170: BUG: correctly pad netCDF files with null bytes
• #8171: ENH added normal inverse gaussian distribution to scipy.stats
• #8175: DOC: Add example to scipy.ndimage.zoom
• #8177: MAINT: diffev small speedup in ensure constraint
• #8178: FIX: linalg._qz String formatter syntax error
• #8179: TST: Added pdist to asv spatial benchmark suite
• #8180: TST: ensure constraint test improved
• #8183: 0d conj correlate
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• #8186: BUG: special: fix derivative of spherical_jn(1, 0)
• #8194: Fix warning message
• #8196: BUG: correctly handle inputs with nan’s and ties in spearmanr
• #8198: MAINT: stats.triang edge case fixes #6036
• #8200: DOC: Completed “Examples” sections of all linalg funcs
• #8201: MAINT: stats.trapz edge cases
• #8204: ENH: sparse.linalg/lobpcg: change .T to .T.conj() to support…
• #8206: MAINT: missed triang edge case.
• #8214: BUG: Fix memory corruption in linalg._decomp_update C extension
• #8222: DOC: recommend scipy.integrate.solve_ivp
• #8223: ENH: added Moyal distribution to scipy.stats
• #8232: BUG: sparse: Use deduped data for numpy ufuncs
• #8236: Fix #8235
• #8253: BUG: optimize: fix bug related with function call calculation…
• #8264: ENH: Extend peak finding capabilities in scipy.signal
• #8273: BUG fixed printing of convergence message in minimize_scalar…
• #8276: DOC: Add notes to explain constrains on overwrite_<>
• #8279: CI: fixing doctests
• #8282: MAINT: weightedtau, change search for nan
• #8287: Improving documentation of solve_ivp and the underlying solvers
• #8291: DOC: fix non-ascii characters in docstrings which broke the doc…
• #8292: CI: use numpy 1.13 for refguide check build
• #8296: Fixed bug reported in issue #8181
• #8297: DOC: Examples for linalg/decomp eigvals function
• #8300: MAINT: Housekeeping for minimizing the linalg compiler warnings
• #8301: DOC: make public API documentation cross-link to refguide.
• #8302: make sure _onenorm_matrix_power_nnm actually returns a float
• #8313: Change copyright to outdated 2008-2016 to 2008-year
• #8315: TST: Add tests for ‘scipy.sparse.linalg.isolve.minres‘
• #8318: ENH: odeint: Add the argument ‘tfirst’ to odeint.
• #8328: ENH: optimize: trust-constr optimization algorithms [GSoC…
• #8330: ENH: add a maxiter argument to NNLS
• #8331: DOC: tweak the Moyal distribution docstring
• #8333: FIX: Rewrapped ?gels and ?gels_lwork routines
• #8336: MAINT: integrate: handle b < a in quad
• #8337: BUG: special: Ensure zetac(1) returns inf.
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• #8347: BUG: Fix overflow in special.binom. Issue #8346
• #8356: DOC: Corrected Documentation Issue #7750 winsorize function
• #8358: ENH: stats: Use explicit MLE formulas in lognorm.fit and expon.fit
• #8374: BUG: gh7854, maxiter for l-bfgs-b closes #7854
• #8379: CI: enable gcov coverage on travis
• #8383: Removed collections.OrderedDict import ignore.
• #8384: TravisCI: tool pep8 is now pycodestyle
• #8387: MAINT: special: remove unused specfun code for Struve functions
• #8393: DOC: Replace old type names in ndimage tutorial.
• #8400: Fix tolerance specification in sparse.linalg iterative solvers
• #8402: MAINT: Some small cleanups in ndimage.
• #8403: FIX: Make scipy.optimize.zeros run under PyPy
• #8407: BUG: sparse.linalg: fix termination bugs for cg, cgs
• #8409: MAINT: special: add a pxd file for Cephes functions
• #8412: MAINT: special: remove cephes/protos.h
• #8421: Setting “unknown” message in OptimizeResult when calling MINPACK.
• #8423: FIX: Handle unsigned integers in mmio
• #8426: DOC: correct FAQ entry on Apache license compatibility. Closes…
• #8433: MAINT: add pytest_cache to the gitignore
• #8436: MAINT: scipy.sparse: less copies at transpose method
• #8437: BUG: correct behavior for skew-symmetric matrices in io.mmwrite
• #8440: DOC:Add examples to integrate.quadpack docstrings
• #8441: BUG: sparse.linalg/gmres: deal with exact breakdown in gmres
• #8442: MAINT: special: clean up Cephes header files
• #8448: TST: Generalize doctest stopwords .axis( .plot(
• #8457: MAINT: special: use JSON for function signatures in _generate_pyx.py

• #8461: MAINT: Simplify return value of ndimage functions.
• #8464: MAINT: Trivial typos
• #8474: BUG: spatial: make qhull.pyx more pypy-friendly
• #8476: TST: _lib: disable refcounting tests on PyPy
• #8479: BUG: io/matlab: fix issues in matlab i/o on pypy
• #8481: DOC: Example for signal.cmplx_sort
• #8482: TST: integrate: use integers instead of PyCapsules to store pointers
• #8483: ENH: io/netcdf: make mmap=False the default on PyPy
• #8484: BUG: io/matlab: work around issue in to_writeable on PyPy
• #8488: MAINT: special: add const/static specifiers where possible
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• #8489: BUG: ENH: use common halley’s method instead of parabolic variant
• #8491: DOC: fix typos
• #8496: ENH: special: make Chebyshev nodes symmetric
• #8501: BUG: stats: Split the integral used to compute skewnorm.cdf.
• #8502: WIP: Port CircleCI to v2
• #8507: DOC: Add missing description to brute_force parameter.
• #8509: BENCH: forgot to add nelder-mead to list of methods
• #8512: MAINT: Move spline interpolation code to spline.c
• #8513: TST: special: mark a slow test as xslow
• #8514: CircleCI: Share data between jobs
• #8515: ENH: special: improve accuracy of zetac for negative arguments
• #8520: TST: Decrease the array sizes for two linalg tests
• #8522: TST: special: restrict range of test_besselk/test_besselk_int
• #8527: Documentation - example added for voronoi_plot_2d
• #8528: DOC: Better, shared docstrings in ndimage
• #8533: BUG: Fix PEP8 errors introduced in #8528.
• #8534: ENH: Expose additional window functions
• #8538: MAINT: Fix a couple mistakes in .pyf files.
• #8540: ENH: interpolate: allow string aliases in make_interp_spline…
• #8541: ENH: Cythonize peak_prominences
• #8542: Remove numerical arguments from convolve2d / correlate2d
• #8546: ENH: New arguments, documentation, and tests for ndimage.binary_opening
• #8547: Giving both size and input now raises UserWarning (#7334)
• #8549: DOC: stats: invweibull is also known as Frechet or type II extreme…
• #8550: add cdf2rdf function
• #8551: ENH: Port of most of the dd_real part of the qd high-precision…
• #8553: Note in docs to address issue #3164.
• #8554: ENH: stats: Use explicit MLE formulas in uniform.fit()
• #8555: MAINT: adjust benchmark config
• #8557: [DOC]: fix Nakagami density docstring
• #8559: DOC: Fix docstring of diric(x, n)
• #8563: [DOC]: fix gamma density docstring
• #8564: BLD: change default Python version for doc build from 2.7 to…
• #8568: BUG: Fixes Bland’s Rule for pivot row/leaving variable, closes…
• #8572: ENH: Add previous/next to interp1d
• #8578: Example for linalg.eig()
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• #8580: DOC: update link to asv docs
• #8584: filter_design: switch to explicit arguments, keeping None as…
• #8586: DOC: stats: Add parentheses that were missing in the exponnorm…
• #8587: TST: add benchmark for newton, secant, halley
• #8588: DOC: special: Remove heaviside from “functions not in special”…
• #8591: DOC: cdf2rdf Added version info and “See also”
• #8594: ENH: Cythonize peak_widths
• #8595: MAINT/ENH/BUG/TST: cdf2rdf: Address review comments made after…
• #8597: DOC: add versionadded 1.1.0 for new keywords in ndimage.morphology
• #8605: MAINT: special: improve implementations of sinpi and cospi

• #8607: MAINT: add 2D benchmarks for convolve
• #8608: FIX: Fix int check
• #8613: fix typo in doc of signal.peak_widths
• #8615: TST: fix failing linalg.qz float32 test by decreasing precision.
• #8617: MAINT: clean up code in ellpj.c
• #8618: add fsolve docs it doesn’t handle over- or under-determined problems
• #8620: DOC: add note on dtype attribute of aslinearoperator() argument
• #8627: ENH: Add example 1D signal (ECG) to scipy.misc
• #8630: ENH: Remove unnecessary copying in stats.percentileofscore
• #8631: BLD: fix pdf doc build. closes gh-8076
• #8633: BUG: fix regression in io.netcdf_file with append mode.
• #8635: MAINT: remove spurious warning from (z)vode and lsoda. Closes…
• #8636: BUG: sparse.linalg/gcrotmk: avoid rounding error in termination…
• #8637: For pdf build
• #8639: CI: build pdf documentation on circleci
• #8640: TST: fix special test that was importing np.testing.utils (deprecated)
• #8641: BUG: optimize: fixed sparse redundancy removal bug
• #8645: BUG: modified sigmaclip to avoid clipping of constant input in…
• #8647: TST: sparse: skip test_inplace_dense for numpy<1.13
• #8657: Latex reduce left margins
• #8659: TST: special: skip sign-of-zero test on 32-bit win32 with old…
• #8661: Fix dblquad and tplquad not accepting float boundaries
• #8666: DOC: fixes #8532
• #8667: BUG: optimize: fixed issue #8663
• #8668: Fix example in docstring of netcdf_file
• #8671: DOC: Replace deprecated matplotlib kwarg
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• #8673: BUG: special: Use a stricter tolerance for the chndtr calculation.
• #8674: ENH: In the Dirichlet distribution allow x_i to be 0 if alpha_i…
• #8676: BUG: optimize: partial fix to linprog fails to detect infeasibility…
• #8685: DOC: Add interp1d-next/previous example to tutorial
• #8687: TST: netcdf: explicit mmap=True in test
• #8688: BUG: signal, stats: use Python sum() instead of np.sum for summing…
• #8689: TST: bump tolerances in tests
• #8690: DEP: deprecate stats.itemfreq
• #8691: BLD: special: fix build vs. dd_real.h package
• #8695: DOC: Improve examples in signal.find_peaks with ECG signal
• #8697: BUG: Fix setup.py build install egg_info, which did not previously…
• #8704: TST: linalg: drop large size from solve() test
• #8705: DOC: Describe signal.find_peaks and related functions behavior…
• #8706: DOC: Specify encoding of rst file, remove an ambiguity in an…
• #8710: MAINT: fix an import cycle sparse -> special -> integrate ->…
• #8711: ENH: remove an avoidable overflow in scipy.stats.norminvgauss.pdf()
• #8716: BUG: interpolate: allow list inputs for make_interp_spline(…,…
• #8720: np.testing import that is compatible with numpy 1.15
• #8724: CI: don’t use pyproject.toml in the CI builds

3.6 SciPy 1.0.1 Release Notes

Contents

• SciPy 1.0.1 Release Notes

– Authors

∗ Issues closed for 1.0.1

∗ Pull requests for 1.0.1

SciPy 1.0.1 is a bug-fix release with no new features compared to 1.0.0. Probably the most important change is a fix for
an incompatibility between SciPy 1.0.0 and numpy.f2py in the NumPy master branch.

3.6.1 Authors

• Saurabh Agarwal +
• Alessandro Pietro Bardelli
• Philip DeBoer
• Ralf Gommers
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• Matt Haberland
• Eric Larson
• Denis Laxalde
• Mihai Capotă +
• Andrew Nelson
• Oleksandr Pavlyk
• Ilhan Polat
• Anant Prakash +
• Pauli Virtanen
• Warren Weckesser
• @xoviat
• Ted Ying +

A total of 16 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
This list of names is automatically generated, and may not be fully complete.

Issues closed for 1.0.1

• #7493: ndimage.morphology functions are broken with numpy 1.13.0
• #8118: minimize_cobyla broken if disp=True passed
• #8142: scipy-v1.0.0 pdist with metric=‘minkowski‘ raises ‘ValueError:…
• #8173: scipy.stats.ortho_group produces all negative determinants…
• #8207: gaussian_filter seg faults on float16 numpy arrays
• #8234: scipy.optimize.linprog interior-point presolve bug with trivial…
• #8243: Make csgraph importable again via from scipy.sparse import*

• #8320: scipy.root segfaults with optimizer ‘lm’

Pull requests for 1.0.1

• #8068: BUG: fix numpy deprecation test failures
• #8082: BUG: fix solve_lyapunov import
• #8144: MRG: Fix for cobyla
• #8150: MAINT: resolve UPDATEIFCOPY deprecation errors
• #8156: BUG: missing check on minkowski w kwarg
• #8187: BUG: Sign of elements in random orthogonal 2D matrices in “ortho_group_gen”…
• #8197: CI: uninstall oclint
• #8215: Fixes Numpy datatype compatibility issues
• #8237: BUG: optimize: fix bug when variables fixed by bounds are inconsistent…
• #8248: BUG: declare “gfk” variable before call of terminate() in newton-cg
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• #8280: REV: reintroduce csgraph import in scipy.sparse
• #8322: MAINT: prevent scipy.optimize.root segfault closes #8320
• #8334: TST: stats: don’t use exact equality check for hdmedian test
• #8477: BUG: signal/signaltools: fix wrong refcounting in PyArray_OrderFilterND
• #8530: BUG: linalg: Fixed typo in flapack.pyf.src.
• #8566: CI: Temporarily pin Cython version to 0.27.3
• #8573: Backports for 1.0.1
• #8581: Fix Cython 0.28 build break of qhull.pyx

3.7 SciPy 1.0.0 Release Notes

Contents

• SciPy 1.0.0 Release Notes

– Why 1.0 now?

– Some history and perspectives

– Highlights of this release

– Upgrading and compatibility

∗ New features

– scipy.cluster improvements

– scipy.fftpack improvements

– scipy.integrate improvements

– scipy.linalg improvements

– scipy.ndimage improvements

– scipy.optimize improvements

– scipy.signal improvements

– scipy.sparse improvements

– scipy.sparse.linalg improvements

– scipy.spatial improvements

– scipy.stats improvements

∗ Deprecated features

∗ Backwards incompatible changes

∗ Other changes

∗ Authors

– Issues closed for 1.0.0

– Pull requests for 1.0.0
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We are extremely pleased to announce the release of SciPy 1.0, 16 years after version 0.1 saw the light of day. It has been
a long, productive journey to get here, and we anticipate many more exciting new features and releases in the future.

3.7.1 Why 1.0 now?

A version number should reflect the maturity of a project - and SciPy was a mature and stable library that is heavily used
in production settings for a long time already. From that perspective, the 1.0 version number is long overdue.
Some key project goals, both technical (e.g. Windows wheels and continuous integration) and organisational (a governance
structure, code of conduct and a roadmap), have been achieved recently.
Many of us are a bit perfectionist, and therefore are reluctant to call something “1.0” because it may imply that it’s
“finished” or “we are 100% happy with it”. This is normal for many open source projects, however that doesn’t make it
right. We acknowledge to ourselves that it’s not perfect, and there are some dusty corners left (that will probably always
be the case). Despite that, SciPy is extremely useful to its users, on average has high quality code and documentation, and
gives the stability and backwards compatibility guarantees that a 1.0 label imply.

3.7.2 Some history and perspectives

• 2001: the first SciPy release
• 2005: transition to NumPy
• 2007: creation of scikits
• 2008: scipy.spatial module and first Cython code added
• 2010: moving to a 6-monthly release cycle
• 2011: SciPy development moves to GitHub
• 2011: Python 3 support
• 2012: adding a sparse graph module and unified optimization interface
• 2012: removal of scipy.maxentropy
• 2013: continuous integration with TravisCI
• 2015: adding Cython interface for BLAS/LAPACK and a benchmark suite
• 2017: adding a unified C API with scipy.LowLevelCallable; removal of scipy.weave
• 2017: SciPy 1.0 release

Pauli Virtanen is SciPy’s Benevolent Dictator For Life (BDFL). He says:
Truthfully speaking, we could have released a SciPy 1.0 a long time ago, so I’m happy we do it now at long last. The project
has a long history, and during the years it has matured also as a software project. I believe it has well proved its merit to
warrant a version number starting with unity.

Since its conception 15+ years ago, SciPy has largely been written by and for scientists, to provide a box of basic tools that
they need. Over time, the set of people active in its development has undergone some rotation, and we have evolved towards
a somewhat more systematic approach to development. Regardless, this underlying drive has stayed the same, and I think it
will also continue propelling the project forward in future. This is all good, since not long after 1.0 comes 1.1.

Travis Oliphant is one of SciPy’s creators. He says:
I’m honored to write a note of congratulations to the SciPy developers and the entire SciPy community for the release of SciPy
1.0. This release represents a dream of many that has been patiently pursued by a stalwart group of pioneers for nearly 2
decades. Efforts have been broad and consistent over that time from many hundreds of people. From initial discussions to
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efforts coding and packaging to documentation efforts to extensive conference and community building, the SciPy effort has
been a global phenomenon that it has been a privilege to participate in.

The idea of SciPy was already in multiple people’s minds in 1997 when I first joined the Python community as a young
graduate student who had just fallen in love with the expressibility and extensibility of Python. The internet was just starting
to bringing together like-minded mathematicians and scientists in nascent electronically-connected communities. In 1998,
there was a concerted discussion on the matrix-SIG, python mailing list with people like Paul Barrett, Joe Harrington, Perry
Greenfield, Paul Dubois, Konrad Hinsen, David Ascher, and others. This discussion encouraged me in 1998 and 1999 to
procrastinate my PhD and spend a lot of time writing extension modules to Python that mostly wrapped battle-tested Fortran
and C-code making it available to the Python user. This work attracted the help of others like Robert Kern, Pearu Peterson
and Eric Jones who joined their efforts with mine in 2000 so that by 2001, the first SciPy release was ready. This was long
before Github simplified collaboration and input from others and the “patch” command and email was how you helped a
project improve.

Since that time, hundreds of people have spent an enormous amount of time improving the SciPy library and the community
surrounding this library has dramatically grown. I stopped being able to participate actively in developing the SciPy library
around 2010. Fortunately, at that time, Pauli Virtanen and Ralf Gommers picked up the pace of development supported
by dozens of other key contributors such as David Cournapeau, Evgeni Burovski, Josef Perktold, and Warren Weckesser.
While I have only been able to admire the development of SciPy from a distance for the past 7 years, I have never lost my
love of the project and the concept of community-driven development. I remain driven even now by a desire to help sustain
the development of not only the SciPy library but many other affiliated and related open-source projects. I am extremely
pleased that SciPy is in the hands of a world-wide community of talented developers who will ensure that SciPy remains an
example of how grass-roots, community-driven development can succeed.

Fernando Perez offers a wider community perspective:
The existence of a nascent Scipy library, and the incredible –if tiny by today’s standards– community surrounding it is what
drew me into the scientific Python world while still a physics graduate student in 2001. Today, I am awed when I see these
tools power everything from high school education to the research that led to the 2017 Nobel Prize in physics.

Don’t be fooled by the 1.0 number: this project is a mature cornerstone of the modern scientific computing ecosystem. I am
grateful for the many who have made it possible, and hope to be able to contribute again to it in the future. My sincere
congratulations to the whole team!

3.7.3 Highlights of this release

Some of the highlights of this release are:
• Major build improvements. Windows wheels are available on PyPI for the first time, and continuous integration
has been set up on Windows and OS X in addition to Linux.

• A set of new ODE solvers and a unified interface to them (scipy.integrate.solve_ivp).
• Two new trust region optimizers and a new linear programming method, with improved performance compared to
what scipy.optimize offered previously.

• Many new BLAS and LAPACK functions were wrapped. The BLAS wrappers are now complete.

3.7.4 Upgrading and compatibility

There have been a number of deprecations and API changes in this release, which are documented below. Before up-
grading, we recommend that users check that their own code does not use deprecated SciPy functionality (to do so, run
your code with python -Wd and check for DeprecationWarning s).
This release requires Python 2.7 or >=3.4 and NumPy 1.8.2 or greater.
This is also the last release to support LAPACK 3.1.x - 3.3.x. Moving the lowest supported LAPACK version to >3.2.x
was long blocked by Apple Accelerate providing the LAPACK 3.2.1 API. We have decided that it’s time to either drop
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Accelerate or, if there is enough interest, provide shims for functions added in more recent LAPACK versions so it can
still be used.

New features

3.7.5 scipy.cluster improvements

scipy.cluster.hierarchy.optimal_leaf_ordering, a function to reorder a linkage matrix to minimize
distances between adjacent leaves, was added.

3.7.6 scipy.fftpack improvements

N-dimensional versions of the discrete sine and cosine transforms and their inverses were added as dctn, idctn, dstn
and idstn.

3.7.7 scipy.integrate improvements

A set of newODE solvers have been added to scipy.integrate. The convenience function scipy.integrate.
solve_ivp allows uniform access to all solvers. The individual solvers (RK23, RK45, Radau, BDF and LSODA) can
also be used directly.

3.7.8 scipy.linalg improvements

The BLAS wrappers in scipy.linalg.blas have been completed. Added functions are *gbmv, *hbmv, *hpmv,
*hpr, *hpr2, *spmv, *spr, *tbmv, *tbsv, *tpmv, *tpsv, *trsm, *trsv, *sbmv, *spr2,
Wrappers for the LAPACK functions *gels, *stev, *sytrd, *hetrd, *sytf2, *hetrf, *sytrf, *sycon,
*hecon, *gglse, *stebz, *stemr, *sterf, and *stein have been added.
The function scipy.linalg.subspace_angles has been added to compute the subspace angles between two
matrices.
The function scipy.linalg.clarkson_woodruff_transform has been added. It finds low-rank matrix ap-
proximation via the Clarkson-Woodruff Transform.
The functions scipy.linalg.eigh_tridiagonal and scipy.linalg.eigvalsh_tridiagonal,
which find the eigenvalues and eigenvectors of tridiagonal hermitian/symmetric matrices, were added.

3.7.9 scipy.ndimage improvements

Support for homogeneous coordinate transforms has been added to scipy.ndimage.affine_transform.
The ndimage C code underwent a significant refactoring, and is now a lot easier to understand and maintain.

3.7.10 scipy.optimize improvements

The methods trust-region-exact and trust-krylov have been added to the function scipy.optimize.
minimize. These new trust-region methods solve the subproblem with higher accuracy at the cost of more Hessian
factorizations (compared to dogleg) or more matrix vector products (compared to ncg) but usually require less nonlinear
iterations and are able to deal with indefinite Hessians. They seem very competitive against the other Newton methods
implemented in scipy.
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scipy.optimize.linprog gained an interior point method. Its performance is superior (both in accuracy and
speed) to the older simplex method.

3.7.11 scipy.signal improvements

An argument fs (sampling frequency) was added to the following functions: firwin, firwin2, firls, and remez.
This makes these functions consistent with many other functions in scipy.signal in which the sampling frequency
can be specified.
scipy.signal.freqz has been sped up significantly for FIR filters.

3.7.12 scipy.sparse improvements

Iterating over and slicing of CSC and CSR matrices is now faster by up to ~35%.
The tocsr method of COO matrices is now several times faster.
The diagonal method of sparse matrices now takes a parameter, indicating which diagonal to return.

3.7.13 scipy.sparse.linalg improvements

A new iterative solver for large-scale nonsymmetric sparse linear systems, scipy.sparse.linalg.gcrotmk, was
added. It implements GCROT(m,k), a flexible variant of GCROT.
scipy.sparse.linalg.lsmr now accepts an initial guess, yielding potentially faster convergence.
SuperLU was updated to version 5.2.1.

3.7.14 scipy.spatial improvements

Many distance metrics in scipy.spatial.distance gained support for weights.
The signatures of scipy.spatial.distance.pdist and scipy.spatial.distance.cdist were
changed to *args, **kwargs in order to support a wider range of metrics (e.g. string-based metrics that need
extra keywords). Also, an optional out parameter was added to pdist and cdist allowing the user to specify where
the resulting distance matrix is to be stored

3.7.15 scipy.stats improvements

The methods cdf and logcdfwere added to scipy.stats.multivariate_normal, providing the cumulative
distribution function of the multivariate normal distribution.
New statistical distance functions were added, namely scipy.stats.wasserstein_distance for the first
Wasserstein distance and scipy.stats.energy_distance for the energy distance.

Deprecated features

The following functions in scipy.misc are deprecated: bytescale, fromimage, imfilter, imread,
imresize, imrotate, imsave, imshow and toimage. Most of those functions have unexpected behavior (like
rescaling and type casting image data without the user asking for that). Other functions simply have better alternatives.
scipy.interpolate.interpolate_wrapper and all functions in that submodule are deprecated. This was a
never finished set of wrapper functions which is not relevant anymore.
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The fillvalue of scipy.signal.convolve2d will be cast directly to the dtypes of the input arrays in the
future and checked that it is a scalar or an array with a single element.
scipy.spatial.distance.matching is deprecated. It is an alias of scipy.spatial.distance.
hamming, which should be used instead.
Implementation of scipy.spatial.distance.wminkowski was based on a wrong interpretation of the metric
definition. In scipy 1.0 it has been just deprecated in the documentation to keep retro-compatibility but is recommended
to use the new version of scipy.spatial.distance.minkowski that implements the correct behaviour.
Positional arguments of scipy.spatial.distance.pdist and scipy.spatial.distance.cdist
should be replaced with their keyword version.

Backwards incompatible changes

The following deprecated functions have been removed from scipy.stats: betai, chisqprob, f_value,
histogram, histogram2, pdf_fromgamma, signaltonoise, square_of_sums, ss and threshold.
The following deprecated functions have been removed from scipy.stats.mstats: betai,
f_value_wilks_lambda, signaltonoise and threshold.
The deprecated a and reta keywords have been removed from scipy.stats.shapiro.
The deprecated functions sparse.csgraph.cs_graph_components and sparse.linalg.symeig have
been removed from scipy.sparse.
The following deprecated keywords have been removed in scipy.sparse.linalg: drop_tol from splu, and
xtype from bicg, bicgstab, cg, cgs, gmres, qmr and minres.
The deprecated functions expm2 and expm3 have been removed from scipy.linalg. The deprecated keyword q
was removed from scipy.linalg.expm. And the deprecated submodule linalg.calc_lwork was removed.
The deprecated functions C2K, K2C, F2C, C2F, F2K and K2F have been removed from scipy.constants.
The deprecated ppform class was removed from scipy.interpolate.
The deprecated keyword iprint was removed from scipy.optimize.fmin_cobyla.
The default value for the zero_phase keyword of scipy.signal.decimate has been changed to True.
The kmeans and kmeans2 functions in scipy.cluster.vq changed the method used for random initialization,
so using a fixed random seed will not necessarily produce the same results as in previous versions.
scipy.special.gammaln does not accept complex arguments anymore.
The deprecated functions sph_jn, sph_yn, sph_jnyn, sph_in, sph_kn, and sph_inkn have been removed.
Users should instead use the functions spherical_jn, spherical_yn, spherical_in, and spherical_kn.
Be aware that the new functions have different signatures.
The cross-class properties of scipy.signal.lti systems have been removed. The following properties/setters have
been removed:
Name - (accessing/setting has been removed) - (setting has been removed)

• StateSpace - (num, den, gain) - (zeros, poles)
• TransferFunction (A, B, C, D, gain) - (zeros, poles)
• ZerosPolesGain (A, B, C, D, num, den) - ()

signal.freqz(b, a) with b or a >1-D raises a ValueError. This was a corner case for which it was unclear
that the behavior was well-defined.
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The method var of scipy.stats.dirichlet now returns a scalar rather than an ndarray when the length of alpha
is 1.

Other changes

SciPy now has a formal governance structure. It consists of a BDFL (Pauli Virtanen) and a Steering Committee. See the
governance document for details.
It is now possible to build SciPy on Windows with MSVC + gfortran! Continuous integration has been set up for this
build configuration on Appveyor, building against OpenBLAS.
Continuous integration for OS X has been set up on TravisCI.
The SciPy test suite has been migrated from nose to pytest.
scipy/_distributor_init.py was added to allow redistributors of SciPy to add custom code that needs to run
when importing SciPy (e.g. checks for hardware, DLL search paths, etc.).
Support for PEP 518 (specifying build system requirements) was added - see pyproject.toml in the root of the
SciPy repository.
In order to have consistent function names, the function scipy.linalg.solve_lyapunov is renamed to scipy.
linalg.solve_continuous_lyapunov. The old name is kept for backwards-compatibility.

Authors

• @arcady +
• @xoviat +
• Anton Akhmerov
• Dominic Antonacci +
• Alessandro Pietro Bardelli
• Ved Basu +
• Michael James Bedford +
• Ray Bell +
• Juan M. Bello-Rivas +
• Sebastian Berg
• Felix Berkenkamp
• Jyotirmoy Bhattacharya +
• Matthew Brett
• Jonathan Bright
• Bruno Jiménez +
• Evgeni Burovski
• Patrick Callier
• Mark Campanelli +
• CJ Carey
• Robert Cimrman
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• Adam Cox +
• Michael Danilov +
• David Haberthür +
• Andras Deak +
• Philip DeBoer
• Anne-Sylvie Deutsch
• Cathy Douglass +
• Dominic Else +
• Guo Fei +
• Roman Feldbauer +
• Yu Feng
• Jaime Fernandez del Rio
• Orestis Floros +
• David Freese +
• Adam Geitgey +
• James Gerity +
• Dezmond Goff +
• Christoph Gohlke
• Ralf Gommers
• Dirk Gorissen +
• Matt Haberland +
• David Hagen +
• Charles Harris
• Lam Yuen Hei +
• Jean Helie +
• Gaute Hope +
• Guillaume Horel +
• Franziska Horn +
• Yevhenii Hyzyla +
• Vladislav Iakovlev +
• Marvin Kastner +
• Mher Kazandjian
• Thomas Keck
• Adam Kurkiewicz +
• Ronan Lamy +
• J.L. Lanfranchi +
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• Eric Larson
• Denis Laxalde
• Gregory R. Lee
• Felix Lenders +
• Evan Limanto
• Julian Lukwata +
• François Magimel
• Syrtis Major +
• Charles Masson +
• Nikolay Mayorov
• Tobias Megies
• Markus Meister +
• Roman Mirochnik +
• Jordi Montes +
• Nathan Musoke +
• Andrew Nelson
• M.J. Nichol
• Juan Nunez-Iglesias
• Arno Onken +
• Nick Papior +
• Dima Pasechnik +
• Ashwin Pathak +
• Oleksandr Pavlyk +
• Stefan Peterson
• Ilhan Polat
• Andrey Portnoy +
• Ravi Kumar Prasad +
• Aman Pratik
• Eric Quintero
• Vedant Rathore +
• Tyler Reddy
• Joscha Reimer
• Philipp Rentzsch +
• Antonio Horta Ribeiro
• Ned Richards +
• Kevin Rose +
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• Benoit Rostykus +
• Matt Ruffalo +
• Eli Sadoff +
• Pim Schellart
• Nico Schlömer +
• Klaus Sembritzki +
• Nikolay Shebanov +
• Jonathan Tammo Siebert
• Scott Sievert
• Max Silbiger +
• Mandeep Singh +
• Michael Stewart +
• Jonathan Sutton +
• Deep Tavker +
• Martin Thoma
• James Tocknell +
• Aleksandar Trifunovic +
• Paul van Mulbregt +
• Jacob Vanderplas
• Aditya Vijaykumar
• Pauli Virtanen
• James Webber
• Warren Weckesser
• Eric Wieser +
• Josh Wilson
• Zhiqing Xiao +
• Evgeny Zhurko
• Nikolay Zinov +
• Zé Vinícius +

A total of 121 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
This list of names is automatically generated, and may not be fully complete.

3.7.16 Issues closed for 1.0.0

• #2300: scipy.misc.toimage (and therefore imresize) converts to uint32…
• #2347: Several misc.im* functions incorrectly handle 3 or 4-channeled…
• #2442: scipy.misc.pilutil -> scipy.ndimage?
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• #2829: Mingw Gfortran on Windows?
• #3154: scipy.misc.imsave creates wrong bitmap header
• #3505: scipy.linalg.lstsq() residual’s help text is a lil strange
• #3808: Is Brent’s method for minimizing the value of a function implemented…
• #4121: Add cdf() method to stats.multivariate_normal
• #4458: scipy.misc.imresize changes image range
• #4575: Docs for L-BFGS-B mention non-existent parameter
• #4893: misc.imsave does not work with file type defined
• #5231: Discrepancies in scipy.optimize.minimize(method=’L-BFGS-B’)
• #5238: Optimal leaf ordering in scipy.cluster.hierarchy.dendrogram
• #5305: Wrong image scaling in scipy/misc/pilutil.py with misc.imsave?
• #5823: test failure in filter_design
• #6061: scipy.stats.spearmanr return values outside range -1 to 1
• #6242: Inconsistency / duplication for imread and imshow, imsave
• #6265: BUG: signal.iirfilter of bandpass type is unstable when high…
• #6370: scipy.optimize.linear_sum_assignment hangs on undefined matrix
• #6417: scipy.misc.imresize converts images to uint8
• #6618: splrep and splprep inconsistent
• #6854: Support PEP 519 in I/O functions
• #6921: [Feature request] Random unitary matrix
• #6930: uniform_filter1d appears to truncate rather than round when output…
• #6949: interp2d function crashes python
• #6959: scipy.interpolate.LSQUnivariateSpline - check for increasing…
• #7005: linear_sum_assignment in scipy.optimize never return if one of…
• #7010: scipy.statsbinned_statistic_2d: incorrect binnumbers returned
• #7049: expm_multiply is excessively slow when called for intervals
• #7050: Documenting _argcheck for rv_discrete
• #7077: coo_matrix.tocsr() still slow
• #7093: Wheels licensing
• #7122: Sketching-based Matrix Computations
• #7133: Discontinuity of a scipy special function
• #7141: Improve documentation for Elliptic Integrals
• #7181: A change in numpy.poly1d is causing the scipy tests to fail.
• #7220: String Formatting Issue in LinearOperator.__init__
• #7239: Source tarball distribution
• #7247: genlaguerre poly1d-object doesn’t respect ‘monic’ option at evaluation
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• #7248: BUG: regression in Legendre polynomials on master
• #7316: dgels is missing
• #7381: Krogh interpolation fails to produce derivatives for complex…
• #7416: scipy.stats.kappa4(h,k) raise a ValueError for positive integer…
• #7421: scipy.stats.arcsine().pdf and scipy.stats.beta(0.5, 0.5).pdf…
• #7429: test_matrix_norms() in scipy/linalg/tests/test_basic.py calls…
• #7444: Doc: stats.dirichlet.var output description is wrong
• #7475: Parameter amax in scalar_search_wolfe2 is not used
• #7510: Operations between numpy.array and scipy.sparse matrix return…
• #7550: DOC: signal tutorial: Typo in explanation of convolution
• #7551: stdint.h included in SuperLU header files, but does not exist…
• #7553: Build for master broken on OS X
• #7557: Error in scipy.signal.periodogram example
• #7590: OSX test fail - test_ltisys.TestPlacePoles.test_real
• #7658: optimize.BenchGlobal broken
• #7669: nan result from multivariate_normal.cdf
• #7733: Inconsistent usage of indices, indptr in Delaunay.vertex_neighbor_vertices
• #7747: Numpy changes in np.random.dirichlet cause test failures
• #7772: Fix numpy lstsq rcond= parameter
• #7776: tests require ‘nose‘
• #7798: contributor names for 1.0 release notes
• #7828: 32-bit Linux test errors on TestCephes
• #7893: scipy.spatial.distance.wminkowski behaviour change in 1.0.0b1
• #7898: DOC: Window functions
• #7959: BUG maybe: fmin_bfgs possibly broken in 1.0
• #7969: scipy 1.0.0rc1 windows wheels depend on missing msvcp140.dll

3.7.17 Pull requests for 1.0.0

• #4978: WIP: add pre_center and normalize options to lombscargle
• #5796: TST: Remove all permanent filter changes from tests
• #5910: ENH: sparse.linalg: add GCROT(m,k)
• #6326: ENH: New ODE solvers
• #6480: ENH: Make signal.decimate default to zero_phase=True
• #6705: ENH: add initial guess to sparse.linalg.lsqr
• #6706: ENH: add initial guess to sparse.linalg.lsmr
• #6769: BUG: optimize: add sufficient descent condition check to CG line…
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• #6855: Handle objects supporting PEP 519 in I/O functions
• #6945: MAINT: ckdtree codebase clean up
• #6953: DOC: add a SciPy Project Governance document
• #6998: fix documentation of spearman rank corrcoef
• #7017: ENH: add methods logcdf and cdf to scipy.stats.multivariate_normal
• #7027: Add random unitary matrices
• #7030: ENH: Add strictly-increasing checks for x to 1D splines
• #7031: BUG: Fix linear_sum_assignment hanging on an undefined matrix
• #7041: DOC: Clairfy that windows are DFT-even by default
• #7048: DOC: modified docs for find_peak_cwt. Fixes #6922
• #7056: Fix insufficient precision when calculating spearman/kendall…
• #7057: MAINT: change dtype comparison in optimize.linear_sum_assignment.
• #7059: TST: make Xdist_deprecated_args cover all metrics
• #7061: Fix msvc 9 and 10 compile errors
• #7070: ENH: sparse: optimizing CSR/CSC slicing fast paths
• #7078: ENH: sparse: defer sum_duplicates to csr/csc
• #7079: ENH: sparse: allow subclasses to override specific math operations
• #7081: ENH: sparse: speed up CSR/CSC toarray()
• #7082: MAINT: Add missing PyType_Ready(&SuperLUGlobalType) for Py3
• #7083: Corrected typo in the doc of scipy.linalg.lstsq()
• #7086: Fix bug #7049 causing excessive slowness in expm_multiply
• #7088: Documented _argcheck for rv_discrete
• #7094: MAINT: Fix mistake in PR #7082
• #7098: BF: return NULL from failed Py3 module check
• #7105: MAINT: Customize ?TRSYL call in lyapunov solver
• #7111: Fix error message typo in UnivariateSpline
• #7113: FIX: Add add float to return type in documentation
• #7119: ENH: sparse.linalg: remove _count_nonzero hack
• #7123: ENH: added “interior-point” method for scipy.optimize.linprog
• #7137: DOC: clarify stats.linregress docstring, closes gh-7074
• #7138: DOC: special: Add an example to the airy docstring.
• #7139: DOC: stats: Update stats tutorial
• #7142: BUG: special: prevent segfault in pbwa
• #7143: DOC: special: warn about alternate elliptic integral parameterizations
• #7146: fix docstring of NearestNDInterpolator
• #7148: DOC: special: Add Parameters, Returns and Examples to gamma docstring
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• #7152: MAINT: spatial: Remove two unused variables in ckdtree/src/distance.h
• #7153: MAINT: special: remove deprecated variant of gammaln
• #7154: MAINT: Fix some code that generates C compiler warnings
• #7155: DOC: linalg: Add examples for solve_banded and solve_triangular
• #7156: DOC: fix docstring of NearestNDInterpolator
• #7159: BUG: special: fix sign of derivative when x < 0 in pbwa
• #7161: MAINT: interpolate: make Rbf.A array a property
• #7163: MAINT: special: return nan for inaccurate regions of pbwa
• #7165: ENH: optimize: changes to make BFGS implementation more efficient.
• #7166: BUG: Prevent infinite loop in optimize._lsq.trf_linear.py
• #7173: BUG: sparse: return a numpy matrix from _add_dense

• #7179: DOC: Fix an error in sparse argmax docstring
• #7180: MAINT: interpolate: A bit of clean up in interpolate/src/_interpolate.cpp
• #7182: Allow homogeneous coordinate transforms in affine_transform
• #7184: MAINT: Remove hack modifying a readonly attr
• #7185: ENH: Add evaluation of periodic splines #6730
• #7186: MAINT: PPoly: improve error messages for wrong shape/axis
• #7187: DEP: interpolate: deprecate interpolate_wrapper
• #7198: DOC: linalg: Add examples for solveh_banded and solve_toeplitz.
• #7200: DOC: stats: Added tutorial documentation for the generalized…
• #7208: DOC: Added docstrings to issparse/isspmatrix(_...) methods and…
• #7213: DOC: Added examples to circmean, circvar, circstd
• #7215: DOC: Adding examples to scipy.sparse.linalg…. docstrings
• #7223: DOC: special: Add examples for expit and logit.
• #7224: BUG: interpolate: fix integer overflow in fitpack.bispev
• #7225: DOC: update 1.0 release notes for several recent PRs.
• #7226: MAINT: update docs and code for mailing list move to python.org
• #7233: Fix issue #7232: Do not mask exceptions in objective func evaluation
• #7234: MAINT: cluster: cleaning up VQ/k-means code
• #7236: DOC: Fixed typo
• #7238: BUG: fix syntaxerror due to unicode character in trustregion_exact.
• #7243: DOC: Update docstring in misc/pilutil.py
• #7246: DEP: misc: deprecate imported names
• #7249: DOC: Add plotted example to scipy.cluster.vq.kmeans
• #7252: Fix 5231: docs of factr, ftol in sync w/ code
• #7254: ENH: SphericalVoronoi Input Handling
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• #7256: fix for issue #7255 - Circular statistics functions give wrong…
• #7263: CI: use python’s faulthandler to ease tracing segfaults
• #7288: ENH: linalg: add subspace_angles function.
• #7290: BUG: stats: Fix spurious warnings in genextreme.
• #7292: ENH: optimize: added trust region method trust-trlib
• #7296: DOC: stats: Add an example to the ttest_ind_from_stats docstring.
• #7297: DOC: signal: Add examples for chirp() and sweep_poly().
• #7299: DOC: Made difference between brent and fminbound clearer
• #7305: Simplify if-statements and constructor calls in integrate._ode
• #7309: Comply with PEP 518.
• #7313: REL: add python_requires to setup.py, fix Python version check.
• #7315: BUG: Fixed bug with Laguerre and Legendre polynomials
• #7320: DOC: clarify meaning of flags in ode.integrate
• #7333: DOC: Add examples to scipy.ndimage.gaussian_filter1d
• #7337: ENH: add n-dimensional DCT and IDCT to fftpack
• #7353: Add _gels functions
• #7357: DOC: linalg: Add examples to the svdvals docstring.
• #7359: Bump Sphinx version to 1.5.5
• #7361: DOC: linalg: Add some ‘See Also’ links among special matrices…
• #7362: TST: Fix some Fedora 25 test failures.
• #7363: DOC: linalg: tweak the docstring example of svd
• #7365: MAINT: fix refguide_check.py for Sphinx >= 1.5
• #7367: BUG: odrpack: fix invalid stride checks in d_lpkbls.f
• #7368: DOC: constants: Add examples to the ‘find’ docstring.
• #7376: MAINT: bundle Mathjax with built docs
• #7377: MAINT: optimize: Better name for trust-region-exact method.
• #7378: Improve wording in tutorial
• #7383: fix KroghInterpolator.derivatives failure with complex input
• #7389: FIX: Copy mutable window in resample_poly
• #7390: DOC: optimize: A few tweaks of the examples in the curve_fit
• #7391: DOC: Add examples to scipy.stats
• #7394: “Weight” is actually mass. Add slugs and slinches/blobs to mass
• #7398: DOC: Correct minor typo in optimize.{brenth,brentq}
• #7401: DOC: zeta only accepts real input
• #7413: BUG: fix error messages in _minimize_trustregion_exact
• #7414: DOC: fix ndimage.distance_transform_bf docstring [ci skip]
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• #7415: DOC: fix skew docstring [ci skip]
• #7423: Expand binnumbers with correct dimensions
• #7431: BUG: Extend scipy.stats.arcsine.pdf to endpoints 0 and 1 #7427
• #7432: DOC: Add examples to scipy.cluster.hierarchy
• #7448: ENH: stats: Implement the survival function for pareto.
• #7454: FIX Replaced np.assert_allclose with imported assert_allclose
• #7460: TST: fix integrate.ivp test that fails on 32-bit Python.
• #7461: Doc: Added tutorial documentation for stats distributions ksone
• #7463: DOC: Fix typos and remove trailing whitespace
• #7465: Fix some ndimage.interpolation endianness bugs
• #7468: del redundance in interpolate.py
• #7470: Initialize “info” in minpack_lmdif
• #7478: Added more testing of smirnov/smirnovi functions
• #7479: MAINT: update for new FutureWarning’s in numpy 1.13.0
• #7480: DOC: correctly describe output shape of dirichlet.mean() and…
• #7482: signal.lti: Remove deprecated cross-system properties
• #7484: MAINT: Clean-up uses of np.asarray in ndimage
• #7485: ENH: support any order >=0 in ndimage.gaussian_filter
• #7486: ENH: Support k!=0 for sparse.diagonal()
• #7498: BUG: sparse: pass assumeSortedIndices option to scikit.umfpack
• #7501: ENH: add optimal leaf ordering for linkage matrices
• #7506: MAINT: remove overflow in Metropolis fixes #7495
• #7507: TST: speed up full test suite by less eval points in mpmath tests.
• #7509: BUG: fix issue when using python setup.py somecommand --force.
• #7511: fix some alerts found with lgtm
• #7514: Add explanation what the integer returned mean.
• #7516: BUG: Fix roundoff errors in ndimage.uniform_filter1d.
• #7517: TST: fix signal.convolve test that was effectively being skipped.
• #7523: ENH: linalg: allow lstsq to work with 0-shaped arrays
• #7525: TST: Warning cleanup
• #7526: DOC: params in ndimage.interpolation functions not optional
• #7527: MAINT: Encapsulate error message handling in NI_LineBuffer.
• #7528: MAINT: Remove ndimage aliases for NPY_MAXDIMS.
• #7529: MAINT: Remove NI_(UN)LIKELY macros in favor of numpy ones.
• #7537: MAINT: Use accessor function for numpy array internals
• #7541: MAINT: Remove some uses of Numarray types in ndimage.
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• #7543: MAINT: Replace all NumarrayTypes uses in ni_fourier.c
• #7544: MAINT: Replace all uses of NumarrayTypes in ni_interpolation.c
• #7545: MAINT: Replace all uses of NumarrayTypes in ni_measure.c
• #7546: MAINT: Replace all uses of NumarrayTypes in ni_morphology.c
• #7548: DOC: make a note in benchmarks README on how to run without rebuilding.
• #7549: MAINT: Get rid of NumarrayTypes.
• #7552: TST: Fix new warnings -> error bugs found on OSX
• #7554: Update superlu to 5.2.1 + fix stdint.h issue on MSVC
• #7556: MAINT: Fix some types from #7549 + miscellaneous warnings.
• #7558: MAINT: Use correct #define NO_IMPORT_ARRAY, not NO_ARRAY_IMPORT…
• #7562: BUG: Copy import_nose from numpy.
• #7563: ENH: Add the first Wasserstein and the Cramér-von Mises statistical…
• #7568: Test janitoring
• #7571: Test janitoring pt. 2
• #7572: Pytestifying
• #7574: TST: Remove ignore warnings filters from stats
• #7577: MAINT: Remove unused code in ndimage/ni_measure.c and .h
• #7578: TST: Remove ignore warnings filters from sparse, clean up warning…
• #7581: BUG: properly deallocate memory from PyArray_IntpConverter.
• #7582: DOC: signal tutorial: Typo in explanation of convolution
• #7583: Remove remaining ignore warnings filters
• #7586: DOC: add note to HACKING.rst on where to find build docs.
• #7587: DOC: Add examples to scipy.optimize
• #7594: TST: Add tests for ndimage converter functions.
• #7596: Added a sanity check to signal.savgol_filter
• #7599: _upfirdn_apply stopping condition bugfix
• #7601: MAINT: special: remove sph_jn et al.
• #7602: TST: fix test failures in trimmed statistics tests with numpy…
• #7605: Be clear about required dimension order
• #7606: MAINT: Remove unused function NI_NormalizeType.
• #7607: TST: add osx to travis matrix
• #7608: DOC: improve HACKING guide - mention reviewing PRs as contribution.
• #7609: MAINT: Remove unnecessary warning filter by avoiding unnecessary…
• #7610: #7557 : fix example code in periodogram
• #7611: #7220 : fix TypeError while raising ValueError for invalid shape
• #7612: Convert yield tests to pytest parametrized tests
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• #7613: Add distributor init file
• #7614: fixup header
• #7615: BUG: sparse: Fix assignment w/ non-canonical sparse argument
• #7617: DOC: Clarify digital filter functions
• #7619: ENH: scipy.sparse.spmatrix.astype: casting and copy parameter…
• #7621: Expose VODE/ZVODE/LSODE IDID return code to user
• #7622: MAINT: special: remove out-of-date comment for ellpk
• #7625: TST: Add a test for “ignore” warning filters
• #7628: MAINT: refactoring and cleaning distance.py/.c/.h
• #7629: DEP: deprecate args usage in xdist
• #7630: ENH: weighted metrics
• #7634: Follow-up to #6855
• #7635: interpolate.splprep: Test some error cases, give slightly better…
• #7642: Add an example to interpolate.lagrange
• #7643: ENH: Added wrappers for LAPACK <s,d>stev
• #7649: Fix #7636, add PEP 519 test coverage to remaining I/O functions
• #7650: DOC: signal: Add ‘Examples’ to the docstring for sosfiltfilt.
• #7651: Fix up ccache usage on Travis + try enabling on OSX
• #7653: DOC: transition of examples from 2 to 3. Closes #7366
• #7659: BENCH: fix optimize.BenchGlobal. Closes gh-7658.
• #7662: CI: speed up continuous integration builds
• #7664: Update odr documentation
• #7665: BUG: wolfe2 line/scalar search now uses amax parameter
• #7671: MAINT: _lib/ccallback.h: PyCapsule_GetName returns const char*
• #7672: TST: interpolate: test integrating periodic b-splines against…
• #7674: Tests tuning
• #7675: CI: move refguide-check to faster build
• #7676: DOC: bump scipy-sphinx-theme to fix copybutton.js
• #7678: Note the zero-padding of the results of splrep and splprep
• #7681: MAINT: _lib: add user-overridable available memory determination
• #7684: TST: linalg: explicitly close opened npz files
• #7686: MAINT: remove unnecessary shebang lines and executable bits
• #7687: BUG: stats: don’t emit invalid warnings if moments are infinite
• #7690: ENH: allow int-like parameters in several routines
• #7691: DOC: Drop non-working source links from docs
• #7694: fix ma.rray to ma.array in func median_cihs
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• #7698: BUG: stats: fix nan result from multivariate_normal.cdf (#7669)
• #7703: DOC: special: Update the docstrings for noncentral F functions.
• #7709: BLD: integrate: avoid symbol clash between lsoda and vode
• #7711: TST: _lib: make test_parallel_threads to not fail falsely
• #7712: TST: stats: bump test tolerance in TestMultivariateNormal.test_broadcasting
• #7715: MAINT: fix deprecated use of numpy.issubdtype
• #7716: TST: integrate: drop timing tests
• #7717: MAINT: mstats.winsorize inclusion bug fix
• #7719: DOC: stats: Add a note about the special cases of the rdist distribution.
• #7720: DOC: Add example and math to stats.pearsonr
• #7723: DOC: Added Mann-Whitney U statistic reference
• #7727: BUG: special/cdflib: deal with nan and nonfinite inputs
• #7728: BLD: spatial: fix ckdtree depends header list
• #7732: BLD: update Bento build for optimal_leaf_ordering addition
• #7734: DOC: signal: Copy-edit and add examples to the Kaiser-related…
• #7736: BUG: Fixes #7735: Prevent integer overflow in concatenated index…
• #7737: DOC: rename indices/indptr for spatial.Delaunay vertex_neighbor_vertices

• #7738: ENH: Speed up freqz computation
• #7739: TST: ignore ncfdtridfn failure in win32 and warn on FPU mode changes
• #7740: Fix overflow in Anderson-Darling k-sample test
• #7742: TST: special: limit expm1 mpmath comparison range
• #7748: TST: stats: don’t pass invalid alpha to np.random.dirichlet
• #7749: BUG/DOC: optimize: method is ‘interior-point’, not ‘interior…
• #7751: BUG: optimize: show_options('linprog', method='interior-point')…
• #7753: ENH: io: easier syntax for FortranFile read/write of mixed records
• #7754: BLD: add _lib._fpumode extension to Bento build.
• #7756: DOC: Show probability density functions as math
• #7757: MAINT: remove outdated OS X build scripts. Fixes pytest failure.
• #7758: MAINT: stats: pep8, wrap lines
• #7760: DOC: special: add instructions on how to add special functions
• #7761: DOC: allow specifying Python version for Sphinx makefile
• #7765: TST: fix test coverage of mstats_extras.py
• #7767: DOC: update 1.0 release notes.
• #7768: DOC: update notes on how to release. Also change paver file to…
• #7769: Add the _sf and _logsf function for planck dist
• #7770: DOC: Replace rotten links in the docstring of minres
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• #7771: MAINT: f2py build output cleanup
• #7773: DOC: optimize: Some copy-editing of linprog docs.
• #7774: MAINT: set rcond explicitly for np.linalg.lstsq calls
• #7777: remove leftover nose imports
• #7780: ENH: Wrap LAPACK’s dsytrd
• #7781: DOC: Link rfft
• #7782: MAINT: run pyx autogeneration in cythonize & remove autogen files
• #7783: FIX: Disallow Wn==1 in digital filters
• #7790: Fix test errors introduced by gh-5910
• #7792: MAINT: fix syntax in pyproject.toml
• #7809: ENH: sketches - Clarkson Woodruff Transform
• #7810: ENH: Add eig(vals)_tridiagonal
• #7811: BUG: stats: Fix warnings in binned_statistics_dd
• #7814: ENH: signal: Replace ‘nyq’ and ‘Hz’ arguments with ‘fs’.
• #7820: DOC: update 1.0 release notes and mailmap
• #7823: BUG: memory leak in messagestream / qhull.pyx
• #7830: DOC: linalg: Add an example to the lstsq docstring.
• #7835: ENH: Automatic FIR order for decimate
• #7838: MAINT: stats: Deprecate frechet_l and frechet_r.
• #7841: slsqp PEP8 formatting fixes, typos, etc.
• #7843: ENH: Wrap all BLAS routines
• #7844: DOC: update LICENSE.txt with licenses of bundled libs as needed.
• #7851: ENH: Add wrappers for ?GGLSE, ?(HE/SY)CON, ?SYTF2, ?(HE/SY)TRF
• #7856: ENH: added out argument to Xdist
• #7858: BUG: special/cdflib: fix fatal loss of precision issues in cumfnc
• #7859: FIX: Squash place_poles warning corner case
• #7861: dummy statement for undefined WITH_THREAD
• #7863: MAINT: add license texts to binary distributions
• #7866: DOC, MAINT: fix links in the doc
• #7867: DOC: fix up descriptions of pdf’s in distribution docstrings.
• #7869: DEP: deprecate misc.pilutil functions
• #7870: DEP: remove deprecated functions
• #7872: TST: silence RuntimeWarning for stats.truncnorm test marked as…
• #7874: TST: fix an optimize.linprog test that fails intermittently.
• #7875: TST: filter two integration warnings in stats tests.
• #7876: GEN: Add comments to the tests for clarification
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• #7891: ENH: backport #7879 to 1.0.x
• #7902: MAINT: signal: Make freqz handling of multidim. arrays match…
• #7905: REV: restore wminkowski
• #7908: FIX: Avoid bad __del__ (close) behavior
• #7918: TST: mark two optimize.linprog tests as xfail. See gh-7877.
• #7929: MAINT: changed defaults to lower in sytf2, sytrf and hetrf
• #7939: Fix umfpack solver construction for win-amd64
• #7948: DOC: add note on checking for deprecations before upgrade to…
• #7952: DOC: update SciPy Roadmap for 1.0 release and recent discussions.
• #7960: BUG: optimize: revert changes to bfgs in gh-7165
• #7962: TST: special: mark a failing hyp2f1 test as xfail
• #7973: BUG: fixed keyword in ‘info’ in _get_mem_available utility
• #8001: TST: fix test failures from Matplotlib 2.1 update
• #8010: BUG: signal: fix crash in lfilter
• #8019: MAINT: fix test failures with NumPy master

3.8 SciPy 0.19.1 Release Notes

SciPy 0.19.1 is a bug-fix release with no new features compared to 0.19.0. The most important change is a fix for a severe
memory leak in integrate.quad.

3.8.1 Authors

• Evgeni Burovski
• Patrick Callier +
• Yu Feng
• Ralf Gommers
• Ilhan Polat
• Eric Quintero
• Scott Sievert
• Pauli Virtanen
• Warren Weckesser

A total of 9 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
This list of names is automatically generated, and may not be fully complete.
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Issues closed for 0.19.1

• #7214: Memory use in integrate.quad in scipy-0.19.0
• #7258: linalg.matrix_balance gives wrong transformation matrix
• #7262: Segfault in daily testing
• #7273: scipy.interpolate._bspl.evaluate_spline gets wrong type
• #7335: scipy.signal.dlti(A,B,C,D).freqresp() fails

Pull requests for 0.19.1

• #7211: BUG: convolve may yield inconsistent dtypes with method changed
• #7216: BUG: integrate: fix refcounting bug in quad()
• #7229: MAINT: special: Rewrite a test of wrightomega
• #7261: FIX: Corrected the transformation matrix permutation
• #7265: BUG: Fix broken axis handling in spectral functions
• #7266: FIX 7262: ckdtree crashes in query_knn.
• #7279: Upcast half- and single-precision floats to doubles in BSpline…
• #7336: BUG: Fix signal.dfreqresp for StateSpace systems
• #7419: Fix several issues in sparse.load_npz, save_npz
• #7420: BUG: stats: allow integers as kappa4 shape parameters

3.9 SciPy 0.19.0 Release Notes

Contents

• SciPy 0.19.0 Release Notes

– New features

∗ Foreign function interface improvements

∗ scipy.linalg improvements

∗ scipy.spatial improvements

∗ scipy.ndimage improvements

∗ scipy.optimize improvements

∗ scipy.signal improvements

∗ scipy.fftpack improvements

∗ scipy.cluster improvements

∗ scipy.sparse improvements

∗ scipy.special improvements
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∗ scipy.stats improvements

∗ scipy.interpolate improvements

∗ scipy.integrate improvements

– Deprecated features

– Backwards incompatible changes

– Other changes

– Authors

∗ Issues closed for 0.19.0

∗ Pull requests for 0.19.0

SciPy 0.19.0 is the culmination of 7 months of hard work. It contains many new features, numerous bug-fixes, improved
test coverage and better documentation. There have been a number of deprecations and API changes in this release, which
are documented below. All users are encouraged to upgrade to this release, as there are a large number of bug-fixes and
optimizations. Moreover, our development attention will now shift to bug-fix releases on the 0.19.x branch, and on adding
new features on the master branch.
This release requires Python 2.7 or 3.4-3.6 and NumPy 1.8.2 or greater.
Highlights of this release include:

• A unified foreign function interface layer, scipy.LowLevelCallable.
• Cython API for scalar, typed versions of the universal functions from the scipy.special module, via cimport

scipy.special.cython_special.

3.9.1 New features

Foreign function interface improvements

scipy.LowLevelCallable provides a new unified interface for wrapping low-level compiled callback functions
in the Python space. It supports Cython imported “api” functions, ctypes function pointers, CFFI function pointers,
PyCapsules, Numba jitted functions and more. See gh-6509 for details.

scipy.linalg improvements

The function scipy.linalg.solve obtained two more keywords assume_a and transposed. The underlying
LAPACK routines are replaced with “expert” versions and now can also be used to solve symmetric, hermitian and
positive definite coefficient matrices. Moreover, ill-conditioned matrices now cause a warning to be emitted with the
estimated condition number information. Old sym_pos keyword is kept for backwards compatibility reasons however
it is identical to using assume_a='pos'. Moreover, the debug keyword, which had no function but only printing the
overwrite_<a, b> values, is deprecated.
The function scipy.linalg.matrix_balance was added to perform the so-called matrix balancing using the
LAPACK xGEBAL routine family. This can be used to approximately equate the row and column norms through diagonal
similarity transformations.
The functions scipy.linalg.solve_continuous_are and scipy.linalg.solve_discrete_are
have numerically more stable algorithms. These functions can also solve generalized algebraic matrix Riccati equations.
Moreover, both gained a balanced keyword to turn balancing on and off.
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scipy.spatial improvements

scipy.spatial.SphericalVoronoi.sort_vertices_of_regions has been re-written in Cython to
improve performance.
scipy.spatial.SphericalVoronoi can handle > 200 k points (at least 10 million) and has improved perfor-
mance.
The function scipy.spatial.distance.directed_hausdorff was added to calculate the directed Haus-
dorff distance.
count_neighbors method of scipy.spatial.cKDTree gained an ability to perform weighted pair counting
via the new keywords weights and cumulative. See gh-5647 for details.
scipy.spatial.distance.pdist and scipy.spatial.distance.cdist now support non-double cus-
tom metrics.

scipy.ndimage improvements

The callback function C API supports PyCapsules in Python 2.7
Multidimensional filters now allow having different extrapolation modes for different axes.

scipy.optimize improvements

The scipy.optimize.basinhopping global minimizer obtained a new keyword, seed, which can be used to seed
the random number generator and obtain repeatable minimizations.
The keyword sigma in scipy.optimize.curve_fit was overloaded to also accept the covariance matrix of errors
in the data.

scipy.signal improvements

The function scipy.signal.correlate and scipy.signal.convolve have a new optional parameter
method. The default value of auto estimates the fastest of two computation methods, the direct approach and the Fourier
transform approach.
A new function has been added to choose the convolution/correlation method, scipy.signal.
choose_conv_method which may be appropriate if convolutions or correlations are performed on many
arrays of the same size.
New functions have been added to calculate complex short time fourier transforms of an input signal, and to invert the
transform to recover the original signal: scipy.signal.stft and scipy.signal.istft. This implementa-
tion also fixes the previously incorrect output of scipy.signal.spectrogram when complex output data were
requested.
The function scipy.signal.sosfreqz was added to compute the frequency response from second-order sections.
The function scipy.signal.unit_impulse was added to conveniently generate an impulse function.
The function scipy.signal.iirnotch was added to design second-order IIR notch filters that can be used to
remove a frequency component from a signal. The dual function scipy.signal.iirpeak was added to compute
the coefficients of a second-order IIR peak (resonant) filter.
The function scipy.signal.minimum_phase was added to convert linear-phase FIR filters to minimum phase.
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The functions scipy.signal.upfirdn and scipy.signal.resample_poly are now substantially faster
when operating on some n-dimensional arrays when n > 1. The largest reduction in computation time is realized in cases
where the size of the array is small (<1k samples or so) along the axis to be filtered.

scipy.fftpack improvements

Fast Fourier transform routines now accept np.float16 inputs and upcast them to np.float32. Previously, they would raise
an error.

scipy.cluster improvements

Methods "centroid" and "median" of scipy.cluster.hierarchy.linkage have been significantly sped
up. Long-standing issues with using linkage on large input data (over 16 GB) have been resolved.

scipy.sparse improvements

The functions scipy.sparse.save_npz and scipy.sparse.load_npz were added, providing simple seri-
alization for some sparse formats.
The prunemethod of classes bsr_matrix, csc_matrix, and csr_matrixwas updated to reallocate backing arrays under certain
conditions, reducing memory usage.
The methods argmin and argmax were added to classes coo_matrix, csc_matrix, csr_matrix, and bsr_matrix.
New functionscipy.sparse.csgraph.structural_rank computes the structural rank of a graph with a given
sparsity pattern.
New function scipy.sparse.linalg.spsolve_triangular solves a sparse linear system with a triangular
left hand side matrix.

scipy.special improvements

Scalar, typed versions of universal functions from scipy.special are available in the Cython space via cimport
from the new module scipy.special.cython_special. These scalar functions can be expected to be signifi-
cantly faster then the universal functions for scalar arguments. See the scipy.special tutorial for details.
Better control over special-function errors is offered by the functions scipy.special.geterr and scipy.
special.seterr and the context manager scipy.special.errstate.
The names of orthogonal polynomial root functions have been changed to be consistent with other functions relat-
ing to orthogonal polynomials. For example, scipy.special.j_roots has been renamed scipy.special.
roots_jacobi for consistency with the related functions scipy.special.jacobi and scipy.special.
eval_jacobi. To preserve back-compatibility the old names have been left as aliases.
Wright Omega function is implemented as scipy.special.wrightomega.

scipy.stats improvements

The function scipy.stats.weightedtau was added. It provides a weighted version of Kendall’s tau.
New class scipy.stats.multinomial implements the multinomial distribution.
New class scipy.stats.rv_histogram constructs a continuous univariate distribution with a piecewise linear
CDF from a binned data sample.
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New class scipy.stats.argus implements the Argus distribution.

scipy.interpolate improvements

New class scipy.interpolate.BSpline represents splines. BSpline objects contain knots and coefficients and
can evaluate the spline. The format is consistent with FITPACK, so that one can do, for example:

>>> t, c, k = splrep(x, y, s=0)
>>> spl = BSpline(t, c, k)
>>> np.allclose(spl(x), y)

spl* functions, scipy.interpolate.splev, scipy.interpolate.splint, scipy.interpolate.
splder and scipy.interpolate.splantider, accept both BSpline objects and (t, c, k) tuples for
backwards compatibility.
For multidimensional splines, c.ndim > 1, BSpline objects are consistent with piecewise polynomials, scipy.
interpolate.PPoly. This means that BSpline objects are not immediately consistent with scipy.
interpolate.splprep, and one cannot do >>> BSpline(*splprep([x, y])[0]). Consult the scipy.
interpolate test suite for examples of the precise equivalence.
In new code, prefer using scipy.interpolate.BSpline objects instead of manipulating (t, c, k) tuples
directly.
New function scipy.interpolate.make_interp_spline constructs an interpolating spline given data points
and boundary conditions.
New function scipy.interpolate.make_lsq_spline constructs a least-squares spline approximation given
data points.

scipy.integrate improvements

Now scipy.integrate.fixed_quad supports vector-valued functions.

3.9.2 Deprecated features

scipy.interpolate.splmake, scipy.interpolate.spleval and scipy.interpolate.spline are deprecated. The format used by
splmake/spleval was inconsistent with splrep/splev which was confusing to users.
scipy.special.errprint is deprecated. Improved functionality is available in scipy.special.seterr.
calling scipy.spatial.distance.pdist or scipy.spatial.distance.cdist with arguments not
needed by the chosen metric is deprecated. Also, metrics “old_cosine” and “old_cos” are deprecated.

3.9.3 Backwards incompatible changes

The deprecated scipy.weave submodule was removed.
scipy.spatial.distance.squareform now returns arrays of the same dtype as the input, instead of always
float64.
scipy.special.errprint now returns a boolean.
The function scipy.signal.find_peaks_cwt now returns an array instead of a list.
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scipy.stats.kendalltau now computes the correct p-value in case the input contains ties. The p-value is also
identical to that computed by scipy.stats.mstats.kendalltau and by R. If the input does not contain ties
there is no change w.r.t. the previous implementation.
The function scipy.linalg.block_diag will not ignore zero-sized matrices anymore. Instead it will insert rows
or columns of zeros of the appropriate size. See gh-4908 for more details.

3.9.4 Other changes

SciPy wheels will now report their dependency on numpy on all platforms. This change was made be-
cause Numpy wheels are available, and because the pip upgrade behavior is finally changing for the better (use
--upgrade-strategy=only-if-needed for pip >= 8.2; that behavior will become the default in the next
major version of pip).
Numerical values returned by scipy.interpolate.interp1d with kind="cubic" and "quadratic"may
change relative to previous scipy versions. If your code depended on specific numeric values (i.e., on implementation
details of the interpolators), you may want to double-check your results.

3.9.5 Authors

• @endolith
• Max Argus +
• Hervé Audren
• Alessandro Pietro Bardelli +
• Michael Benfield +
• Felix Berkenkamp
• Matthew Brett
• Per Brodtkorb
• Evgeni Burovski
• Pierre de Buyl
• CJ Carey
• Brandon Carter +
• Tim Cera
• Klesk Chonkin
• Christian Häggström +
• Luca Citi
• Peadar Coyle +
• Daniel da Silva +
• Greg Dooper +
• John Draper +
• drlvk +
• David Ellis +
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• Yu Feng
• Baptiste Fontaine +
• Jed Frey +
• Siddhartha Gandhi +
• Wim Glenn +
• Akash Goel +
• Christoph Gohlke
• Ralf Gommers
• Alexander Goncearenco +
• Richard Gowers +
• Alex Griffing
• Radoslaw Guzinski +
• Charles Harris
• Callum Jacob Hays +
• Ian Henriksen
• Randy Heydon +
• Lindsey Hiltner +
• Gerrit Holl +
• Hiroki IKEDA +
• jfinkels +
• Mher Kazandjian +
• Thomas Keck +
• keuj6 +
• Kornel Kielczewski +
• Sergey B Kirpichev +
• Vasily Kokorev +
• Eric Larson
• Denis Laxalde
• Gregory R. Lee
• Josh Lefler +
• Julien Lhermitte +
• Evan Limanto +
• Jin-Guo Liu +
• Nikolay Mayorov
• Geordie McBain +
• Josue Melka +
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• Matthieu Melot
• michaelvmartin15 +
• Surhud More +
• Brett M. Morris +
• Chris Mutel +
• Paul Nation
• Andrew Nelson
• David Nicholson +
• Aaron Nielsen +
• Joel Nothman
• nrnrk +
• Juan Nunez-Iglesias
• Mikhail Pak +
• Gavin Parnaby +
• Thomas Pingel +
• Ilhan Polat +
• Aman Pratik +
• Sebastian Pucilowski
• Ted Pudlik
• puenka +
• Eric Quintero
• Tyler Reddy
• Joscha Reimer
• Antonio Horta Ribeiro +
• Edward Richards +
• Roman Ring +
• Rafael Rossi +
• Colm Ryan +
• Sami Salonen +
• Alvaro Sanchez-Gonzalez +
• Johannes Schmitz
• Kari Schoonbee
• Yurii Shevchuk +
• Jonathan Siebert +
• Jonathan Tammo Siebert +
• Scott Sievert +
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• Sourav Singh
• Byron Smith +
• Srikiran +
• Samuel St-Jean +
• Yoni Teitelbaum +
• Bhavika Tekwani
• Martin Thoma
• timbalam +
• Svend Vanderveken +
• Sebastiano Vigna +
• Aditya Vijaykumar +
• Santi Villalba +
• Ze Vinicius
• Pauli Virtanen
• Matteo Visconti
• Yusuke Watanabe +
• Warren Weckesser
• Phillip Weinberg +
• Nils Werner
• Jakub Wilk
• Josh Wilson
• wirew0rm +
• David Wolever +
• Nathan Woods
• ybeltukov +
• G Young
• Evgeny Zhurko +

A total of 121 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
This list of names is automatically generated, and may not be fully complete.

Issues closed for 0.19.0

• #1767: Function definitions in __fitpack.h should be moved. (Trac #1240)
• #1774: _kmeans chokes on large thresholds (Trac #1247)
• #2089: Integer overflows cause segfault in linkage function with large…
• #2190: Are odd-length window functions supposed to be always symmetrical?…
• #2251: solve_discrete_are in scipy.linalg does (sometimes) not solve…
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• #2580: scipy.interpolate.UnivariateSpline (or a new superclass of it)…
• #2592: scipy.stats.anderson assumes gumbel_l
• #3054: scipy.linalg.eig does not handle infinite eigenvalues
• #3160: multinomial pmf / logpmf
• #3904: scipy.special.ellipj dn wrong values at quarter period
• #4044: Inconsistent code book initialization in kmeans
• #4234: scipy.signal.flattop documentation doesn’t list a source for…
• #4831: Bugs in C code in __quadpack.h
• #4908: bug: unnessesary validity check for block dimension in scipy.sparse.block_diag
• #4917: BUG: indexing error for sparse matrix with ix_
• #4938: Docs on extending ndimage need to be updated.
• #5056: sparse matrix element-wise multiplying dense matrix returns dense…
• #5337: Formula in documentation for correlate is wrong
• #5537: use OrderedDict in io.netcdf
• #5750: [doc] missing data index value in KDTree, cKDTree
• #5755: p-value computation in scipy.stats.kendalltau() in broken in…
• #5757: BUG: Incorrect complex output of signal.spectrogram
• #5964: ENH: expose scalar versions of scipy.special functions to cython
• #6107: scipy.cluster.hierarchy.single segmentation fault with 2**16…
• #6278: optimize.basinhopping should take a RandomState object
• #6296: InterpolatedUnivariateSpline: check_finite fails when w is unspecified
• #6306: Anderson-Darling bad results
• #6314: scipy.stats.kendaltau() p value not in agreement with R, SPSS…
• #6340: Curve_fit bounds and maxfev
• #6377: expm_multiply, complex matrices not working using start,stop,etc…
• #6382: optimize.differential_evolution stopping criterion has unintuitive…
• #6391: Global Benchmarking times out at 600s.
• #6397: mmwrite errors with large (but still 64-bit) integers
• #6413: scipy.stats.dirichlet computes multivariate gaussian differential…
• #6428: scipy.stats.mstats.mode modifies input
• #6440: Figure out ABI break policy for scipy.special Cython API
• #6441: Using Qhull for halfspace intersection : segfault
• #6442: scipy.spatial : In incremental mode volume is not recomputed
• #6451: Documentation for scipy.cluster.hierarchy.to_tree is confusing…
• #6490: interp1d (kind=zero) returns wrong value for rightmost interpolation…
• #6521: scipy.stats.entropy does not calculate the KL divergence
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• #6530: scipy.stats.spearmanr unexpected NaN handling
• #6541: Test runner does not run scipy._lib/tests?
• #6552: BUG: misc.bytescale returns unexpected results when using cmin/cmax…
• #6556: RectSphereBivariateSpline(u, v, r) fails if min(v) >= pi
• #6559: Differential_evolution maxiter causing memory overflow
• #6565: Coverage of spectral functions could be improved
• #6628: Incorrect parameter name in binomial documentation
• #6634: Expose LAPACK’s xGESVX family for linalg.solve ill-conditioned…
• #6657: Confusing documentation for scipy.special.sph_harm
• #6676: optimize: Incorrect size of Jacobian returned by ‘minimize(…,…
• #6681: add a new context manager to wrap scipy.special.seterr
• #6700: BUG: scipy.io.wavfile.read stays in infinite loop, warns on wav…
• #6721: scipy.special.chebyt(N) throw a ‘TypeError’ when N > 64
• #6727: Documentation for scipy.stats.norm.fit is incorrect
• #6764: Documentation for scipy.spatial.Delaunay is partially incorrect
• #6811: scipy.spatial.SphericalVoronoi fails for large number of points
• #6841: spearmanr fails when nan_policy=’omit’ is set
• #6869: Currently in gaussian_kde, the logpdf function is calculated…
• #6875: SLSQP inconsistent handling of invalid bounds
• #6876: Python stopped working (Segfault?) with minimum/maximum filter…
• #6889: dblquad gives different results under scipy 0.17.1 and 0.18.1
• #6898: BUG: dblquad ignores error tolerances
• #6901: Solving sparse linear systems in CSR format with complex values
• #6903: issue in spatial.distance.pdist docstring
• #6917: Problem in passing drop_rule to scipy.sparse.linalg.spilu
• #6926: signature mismatches for LowLevelCallable
• #6961: Scipy contains shebang pointing to /usr/bin/python and /bin/bash…
• #6972: BUG: special: generate_ufuncs.py is broken
• #6984: Assert raises test failure for test_ill_condition_warning
• #6990: BUG: sparse: Bad documentation of the k argument in sparse.linalg.eigs

• #6991: Division by zero in linregress()
• #7011: possible speed improvment in rv_continuous.fit()
• #7015: Test failure with Python 3.5 and numpy master
• #7055: SciPy 0.19.0rc1 test errors and failures on Windows
• #7096: macOS test failues for test_solve_continuous_are
• #7100: test_distance.test_Xdist_deprecated_args test error in 0.19.0rc2
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Pull requests for 0.19.0

• #2908: Scipy 1.0 Roadmap
• #3174: add b-splines
• #4606: ENH: Add a unit impulse waveform function
• #5608: Adds keyword argument to choose faster convolution method
• #5647: ENH: Faster count_neighour in cKDTree / + weighted input data
• #6021: Netcdf append
• #6058: ENH: scipy.signal - Add stft and istft
• #6059: ENH: More accurate signal.freqresp for zpk systems
• #6195: ENH: Cython interface for special
• #6234: DOC: Fixed a typo in ward() help
• #6261: ENH: add docstring and clean up code for signal.normalize
• #6270: MAINT: special: add tests for cdflib
• #6271: Fix for scipy.cluster.hierarchy.is_isomorphic
• #6273: optimize: rewrite while loops as for loops
• #6279: MAINT: Bessel tweaks
• #6291: Fixes gh-6219: remove runtime warning from genextreme distribution
• #6294: STY: Some PEP8 and cleaning up imports in stats/_continuous_distns.py
• #6297: Clarify docs in misc/__init__.py
• #6300: ENH: sparse: Loosen input validation for diags with empty inputs
• #6301: BUG: standardizes check_finite behavior re optional weights,…
• #6303: Fixing example in _lazyselect docstring.
• #6307: MAINT: more improvements to gammainc/gammaincc
• #6308: Clarified documentation of hypergeometric distribution.
• #6309: BUG: stats: Improve calculation of the Anderson-Darling statistic.
• #6315: ENH: Descending order of x in PPoly
• #6317: ENH: stats: Add support for nan_policy to stats.median_test
• #6321: TST: fix a typo in test name
• #6328: ENH: sosfreqz
• #6335: Define LinregressResult outside of linregress
• #6337: In anderson test, added support for right skewed gumbel distribution.
• #6341: Accept several spellings for the curve_fit max number of function…
• #6342: DOC: cluster: clarify hierarchy.linkage usage
• #6352: DOC: removed brentq from its own ‘see also’
• #6362: ENH: stats: Use explicit formulas for sf, logsf, etc in weibull…
• #6369: MAINT: special: add a comment to hyp0f1_complex
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• #6375: Added the multinomial distribution.
• #6387: MAINT: special: improve accuracy of ellipj’s dn at quarter…
• #6388: BenchmarkGlobal - getting it to work in Python3
• #6394: ENH: scipy.sparse: add save and load functions for sparse matrices
• #6400: MAINT: moves global benchmark run from setup_cache to track_all
• #6403: ENH: seed kwd for basinhopping. Closes #6278
• #6404: ENH: signal: added irrnotch and iirpeak functions.
• #6406: ENH: special: extend sici/shichi to complex arguments
• #6407: ENH: Window functions should not accept non-integer or negative…
• #6408: MAINT: _differentialevolution now uses _lib._util.check_random_state
• #6427: MAINT: Fix gmpy build & test that mpmath uses gmpy
• #6439: MAINT: ndimage: update callback function c api
• #6443: BUG: Fix volume computation in incremental mode
• #6447: Fixes issue #6413 - Minor documentation fix in the entropy function…
• #6448: ENH: Add halfspace mode to Qhull
• #6449: ENH: rtol and atol for differential_evolution termination fixes…
• #6453: DOC: Add some See Also links between similar functions
• #6454: DOC: linalg: clarify callable signature in ordqz

• #6457: ENH: spatial: enable non-double dtypes in squareform
• #6459: BUG: Complex matrices not handled correctly by expm_multiply…
• #6465: TST DOC Window docs, tests, etc.
• #6469: ENH: linalg: better handling of infinite eigenvalues in eig/eigvals
• #6475: DOC: calling interp1d/interp2d with NaNs is undefined
• #6477: Document magic numbers in optimize.py
• #6481: TST: Supress some warnings from test_windows
• #6485: DOC: spatial: correct typo in procrustes
• #6487: Fix Bray-Curtis formula in pdist docstring
• #6493: ENH: Add covariance functionality to scipy.optimize.curve_fit
• #6494: ENH: stats: Use log1p() to improve some calculations.
• #6495: BUG: Use MST algorithm instead of SLINK for single linkage clustering
• #6497: MRG: Add minimum_phase filter function
• #6505: reset scipy.signal.resample window shape to 1-D
• #6507: BUG: linkage: Raise exception if y contains non-finite elements
• #6509: ENH: _lib: add common machinery for low-level callback functions
• #6520: scipy.sparse.base.__mul__ non-numpy/scipy objects with ‘shape’…
• #6522: Replace kl_div by rel_entr in entropy
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• #6524: DOC: add next_fast_len to list of functions
• #6527: DOC: Release notes to reflect the new covariance feature in optimize.curve_fit
• #6532: ENH: Simplify _cos_win, document it, add symmetric/periodic arg
• #6535: MAINT: sparse.csgraph: updating old cython loops
• #6540: DOC: add to documentation of orthogonal polynomials
• #6544: TST: Ensure tests for scipy._lib are run by scipy.test()
• #6546: updated docstring of stats.linregress
• #6553: commited changes that I originally submitted for scipy.signal.cspline…
• #6561: BUG: modify signal.find_peaks_cwt() to return array and accept…
• #6562: DOC: Negative binomial distribution clarification
• #6563: MAINT: be more liberal in requiring numpy
• #6567: MAINT: use xrange for iteration in differential_evolution fixes…
• #6572: BUG: “sp.linalg.solve_discrete_are” fails for random data
• #6578: BUG: misc: allow both cmin/cmax and low/high params in bytescale
• #6581: Fix some unfortunate typos
• #6582: MAINT: linalg: make handling of infinite eigenvalues in ordqz…
• #6585: DOC: interpolate: correct seealso links to ndimage
• #6588: Update docstring of scipy.spatial.distance_matrix
• #6592: DOC: Replace ‘first’ by ‘smallest’ in mode
• #6593: MAINT: remove scipy.weave submodule
• #6594: DOC: distance.squareform: fix html docs, add note about dtype…
• #6598: [DOC] Fix incorrect error message in medfilt2d
• #6599: MAINT: linalg: turn a solve_discrete_are test back on
• #6600: DOC: Add SOS goals to roadmap
• #6601: DEP: Raise minimum numpy version to 1.8.2
• #6605: MAINT: ‘new’ module is deprecated, don’t use it
• #6607: DOC: add note on change in wheel dependency on numpy and pip…
• #6609: Fixes #6602 - Typo in docs
• #6616: ENH: generalization of continuous and discrete Riccati solvers…
• #6621: DOC: improve cluster.hierarchy docstrings.
• #6623: CS matrix prune method should copy data from large unpruned arrays
• #6625: DOC: special: complete documentation of eval_* functions
• #6626: TST: special: silence some deprecation warnings
• #6631: fix parameter name doc for discrete distributions
• #6632: MAINT: stats: change some instances of special to sc

• #6633: MAINT: refguide: py2k long integers are equal to py3k integers
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• #6638: MAINT: change type declaration in cluster.linkage, prevent overflow
• #6640: BUG: fix issue with duplicate values used in cluster.vq.kmeans
• #6641: BUG: fix corner case in cluster.vq.kmeans for large thresholds
• #6643: MAINT: clean up truncation modes of dendrogram
• #6645: MAINT: special: rename *_roots functions
• #6646: MAINT: clean up mpmath imports
• #6647: DOC: add sqrt to Mahalanobis description for pdist
• #6648: DOC: special: add a section on cython_special to the tutorial
• #6649: ENH: Added scipy.spatial.distance.directed_hausdorff
• #6650: DOC: add Sphinx roles for DOI and arXiv links
• #6651: BUG: mstats: make sure mode(…, None) does not modify its input
• #6652: DOC: special: add section to tutorial on functions not in special
• #6653: ENH: special: add the Wright Omega function
• #6656: ENH: don’t coerce input to double with custom metric in cdist…
• #6658: Faster/shorter code for computation of discordances
• #6659: DOC: special: make __init__ summaries and html summaries match
• #6661: general.rst: Fix a typo
• #6664: TST: Spectral functions’ window correction factor
• #6665: [DOC] Conditions on v in RectSphereBivariateSpline
• #6668: DOC: Mention negative masses for center of mass
• #6675: MAINT: special: remove outdated README
• #6677: BUG: Fixes computation of p-values.
• #6679: BUG: optimize: return correct Jacobian for method ‘SLSQP’ in…
• #6680: ENH: Add structural rank to sparse.csgraph
• #6686: TST: Added Airspeed Velocity benchmarks for SphericalVoronoi
• #6687: DOC: add section “deciding on new features” to developer guide.
• #6691: ENH: Clearer error when fmin_slsqp obj doesn’t return scalar
• #6702: TST: Added airspeed velocity benchmarks for scipy.spatial.distance.cdist
• #6707: TST: interpolate: test fitpack wrappers, not _impl
• #6709: TST: fix a number of test failures on 32-bit systems
• #6711: MAINT: move function definitions from __fitpack.h to _fitpackmodule.c
• #6712: MAINT: clean up wishlist in stats.morestats, and copyright statement.
• #6715: DOC: update the release notes with BSpline et al.
• #6716: MAINT: scipy.io.wavfile: No infinite loop when trying to read…
• #6717: some style cleanup
• #6723: BUG: special: cast to float before in-place multiplication in…
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• #6726: address performance regressions in interp1d
• #6728: DOC: made code examples in integrate tutorial copy-pasteable
• #6731: DOC: scipy.optimize: Added an example for wrapping complex-valued…
• #6732: MAINT: cython_special: remove errprint
• #6733: MAINT: special: fix some pyflakes warnings
• #6734: DOC: sparse.linalg: fixed matrix description in bicgstab doc
• #6737: BLD: update cythonize.py to detect changes in pxi files
• #6740: DOC: special: some small fixes to docstrings
• #6741: MAINT: remove dead code in interpolate.py
• #6742: BUG: fix linalg.block_diag to support zero-sized matrices.
• #6744: ENH: interpolate: make PPoly.from_spline accept BSpline objects
• #6746: DOC: special: clarify use of Condon-Shortley phase in sph_harm/lpmv

• #6750: ENH: sparse: avoid densification on broadcasted elem-wise mult
• #6751: sinm doc explained cosm
• #6753: ENH: special: allow for more fine-tuned error handling
• #6759: Move logsumexp and pade from scipy.misc to scipy.special and…
• #6761: ENH: argmax and argmin methods for sparse matrices
• #6762: DOC: Improve docstrings of sparse matrices
• #6763: ENH: Weighted tau
• #6768: ENH: cythonized spherical Voronoi region polygon vertex sorting
• #6770: Correction of Delaunay class’ documentation
• #6775: ENH: Integrating LAPACK “expert” routines with conditioning warnings…
• #6776: MAINT: Removing the trivial f2py warnings
• #6777: DOC: Update rv_continuous.fit doc.
• #6778: MAINT: cluster.hierarchy: Improved wording of error msgs
• #6786: BLD: increase minimum Cython version to 0.23.4
• #6787: DOC: expand on linalg.block_diag changes in 0.19.0 release…
• #6789: ENH: Add further documentation for norm.fit
• #6790: MAINT: Fix a potential problem in nn_chain linkage algorithm
• #6791: DOC: Add examples to scipy.ndimage.fourier
• #6792: DOC: fix some numpydoc / Sphinx issues.
• #6793: MAINT: fix circular import after moving functions out of misc
• #6796: TST: test importing each submodule. Regression test for gh-6793.
• #6799: ENH: stats: Argus distribution
• #6801: ENH: stats: Histogram distribution
• #6803: TST: make sure tests for _build_utils are run.
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• #6804: MAINT: more fixes in loggamma

• #6806: ENH: Faster linkage for ‘centroid’ and ‘median’ methods
• #6810: ENH: speed up upfirdn and resample_poly for n-dimensional arrays
• #6812: TST: Added ConvexHull asv benchmark code
• #6814: ENH: Different extrapolation modes for different dimensions in…
• #6826: Signal spectral window default fix
• #6828: BUG: SphericalVoronoi Space Complexity (Fixes #6811)
• #6830: RealData docstring correction
• #6834: DOC: Added reference for skewtest function. See #6829
• #6836: DOC: Added mode=’mirror’ in the docstring for the functions accepting…
• #6838: MAINT: sparse: start removing old BSR methods
• #6844: handle incompatible dimensions when input is not an ndarray in…
• #6847: Added maxiter to golden search.
• #6850: BUG: added check for optional param scipy.stats.spearmanr
• #6858: MAINT: Removing redundant tests
• #6861: DEP: Fix escape sequences deprecated in Python 3.6.
• #6862: DOC: dx should be float, not int
• #6863: updated documentation curve_fit
• #6866: DOC : added some documentation to j1 referring to spherical_jn
• #6867: DOC: cdist move long examples list into Notes section
• #6868: BUG: Make stats.mode return a ModeResult namedtuple on empty…
• #6871: Corrected documentation.
• #6874: ENH: gaussian_kde.logpdf based on logsumexp
• #6877: BUG: ndimage: guard against footprints of all zeros
• #6881: python 3.6
• #6885: Vectorized integrate.fixed_quad
• #6886: fixed typo
• #6891: TST: fix failures for linalg.dare/care due to tightened test…
• #6892: DOC: fix a bunch of Sphinx errors.
• #6894: TST: Added asv benchmarks for scipy.spatial.Voronoi
• #6908: BUG: Fix return dtype for complex input in spsolve
• #6909: ENH: fftpack: use float32 routines for float16 inputs.
• #6911: added min/max support to binned_statistic
• #6913: Fix 6875: SLSQP raise ValueError for all invalid bounds.
• #6914: DOCS: GH6903 updating docs of Spatial.distance.pdist
• #6916: MAINT: fix some issues for 32-bit Python
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• #6924: BLD: update Bento build for scipy.LowLevelCallable
• #6932: ENH: Use OrderedDict in io.netcdf. Closes gh-5537
• #6933: BUG: fix LowLevelCallable issue on 32-bit Python.
• #6936: BUG: sparse: handle size-1 2D indexes correctly
• #6938: TST: fix test failures in special on 32-bit Python.
• #6939: Added attributes list to cKDTree docstring
• #6940: improve efficiency of dok_matrix.tocoo
• #6942: DOC: add link to liac-arff package in the io.arff docstring.
• #6943: MAINT: Docstring fixes and an additional test for linalg.solve
• #6944: DOC: Add example of odeint with a banded Jacobian to the integrate…
• #6946: ENH: hypergeom.logpmf in terms of betaln
• #6947: TST: speedup distance tests
• #6948: DEP: Deprecate the keyword “debug” from linalg.solve
• #6950: BUG: Correctly treat large integers in MMIO (fixes #6397)
• #6952: ENH: Minor user-friendliness cleanup in LowLevelCallable
• #6956: DOC: improve description of ‘output’ keyword for convolve
• #6957: ENH more informative error in sparse.bmat
• #6962: Shebang fixes
• #6964: DOC: note argmin/argmax addition
• #6965: BUG: Fix issues passing error tolerances in dblquad and tplquad.
• #6971: fix the docstring of signaltools.correlate
• #6973: Silence expected numpy warnings in scipy.ndimage.interpolation.zoom()
• #6975: BUG: special: fix regex in generate_ufuncs.py

• #6976: Update docstring for griddata
• #6978: Avoid division by zero in zoom factor calculation
• #6979: BUG: ARE solvers did not check the generalized case carefully
• #6985: ENH: sparse: add scipy.sparse.linalg.spsolve_triangular
• #6994: MAINT: spatial: updates to plotting utils
• #6995: DOC: Bad documentation of k in sparse.linalg.eigs See #6990
• #6997: TST: Changed the test with a less singular example
• #7000: DOC: clarify interp1d ‘zero’ argument
• #7007: BUG: Fix division by zero in linregress() for 2 data points
• #7009: BUG: Fix problem in passing drop_rule to scipy.sparse.linalg.spilu
• #7012: speed improvment in _distn_infrastructure.py
• #7014: Fix Typo: add a single quotation mark to fix a slight typo
• #7021: MAINT: stats: use machine constants from np.finfo, not machar
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• #7026: MAINT: update .mailmap
• #7032: Fix layout of rv_histogram docs
• #7035: DOC: update 0.19.0 release notes
• #7036: ENH: Add more boundary options to signal.stft
• #7040: TST: stats: skip too slow tests
• #7042: MAINT: sparse: speed up setdiag tests
• #7043: MAINT: refactory and code cleaning Xdist
• #7053: Fix msvc 9 and 10 compile errors
• #7060: DOC: updated release notes with #7043 and #6656
• #7062: MAINT: Change defaut STFT boundary kwarg to “zeros”
• #7064: Fix ValueError: path is on mount ‘X:’, start on mount ‘D:’ on…
• #7067: TST: Fix PermissionError: [Errno 13] Permission denied on Windows
• #7068: TST: Fix UnboundLocalError: local variable ‘data’ referenced…
• #7069: Fix OverflowError: Python int too large to convert to C long…
• #7071: TST: silence RuntimeWarning for nan test of stats.spearmanr
• #7072: Fix OverflowError: Python int too large to convert to C long…
• #7084: TST: linalg: bump tolerance in test_falker
• #7095: TST: linalg: bump more tolerances in test_falker
• #7101: TST: Relax solve_continuous_are test case 2 and 12
• #7106: BUG: stop cdist “correlation” modifying input
• #7116: Backports to 0.19.0rc2

3.10 SciPy 0.18.1 Release Notes

SciPy 0.18.1 is a bug-fix release with no new features compared to 0.18.0.

3.10.1 Authors

• @kleskjr
• Evgeni Burovski
• CJ Carey
• Luca Citi +
• Yu Feng
• Ralf Gommers
• Johannes Schmitz +
• Josh Wilson
• Nathan Woods
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A total of 9 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
This list of names is automatically generated, and may not be fully complete.

Issues closed for 0.18.1

• #6357: scipy 0.17.1 piecewise cubic hermite interpolation does not return…
• #6420: circmean() changed behaviour from 0.17 to 0.18
• #6421: scipy.linalg.solve_banded overwrites input ‘b’ when the inversion…
• #6425: cKDTree INF bug
• #6435: scipy.stats.ks_2samp returns different values on different computers
• #6458: Error in scipy.integrate.dblquad when using variable integration…

Pull requests for 0.18.1

• #6405: BUG: sparse: fix elementwise divide for CSR/CSC
• #6431: BUG: result for insufficient neighbours from cKDTree is wrong.
• #6432: BUG Issue #6421: scipy.linalg.solve_banded overwrites input ‘b’…
• #6455: DOC: add links to release notes
• #6462: BUG: interpolate: fix .roots method of PchipInterpolator
• #6492: BUG: Fix regression in dblquad: #6458
• #6543: fix the regression in circmean
• #6545: Revert gh-5938, restore ks_2samp
• #6557: Backports for 0.18.1

3.11 SciPy 0.18.0 Release Notes

Contents

• SciPy 0.18.0 Release Notes

– New features

∗ scipy.integrate improvements

∗ scipy.interpolate improvements

∗ scipy.fftpack improvements

∗ scipy.signal improvements

· Discrete-time linear systems

∗ scipy.sparse improvements

∗ scipy.optimize improvements

∗ scipy.stats improvements
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· Random matrices

∗ scipy.linalg improvements

∗ scipy.spatial improvements

∗ scipy.cluster improvements

∗ scipy.special improvements

– Deprecated features

– Backwards incompatible changes

∗ scipy.optimize

∗ scipy.ndimage

∗ scipy.stats

∗ scipy.io

∗ scipy.interpolate

– Other changes

– Authors

∗ Issues closed for 0.18.0

∗ Pull requests for 0.18.0

SciPy 0.18.0 is the culmination of 6 months of hard work. It contains many new features, numerous bug-fixes, improved
test coverage and better documentation. There have been a number of deprecations and API changes in this release, which
are documented below. All users are encouraged to upgrade to this release, as there are a large number of bug-fixes and
optimizations. Moreover, our development attention will now shift to bug-fix releases on the 0.19.x branch, and on adding
new features on the master branch.
This release requires Python 2.7 or 3.4-3.5 and NumPy 1.7.1 or greater.
Highlights of this release include:

• A new ODE solver for two-point boundary value problems, scipy.optimize.solve_bvp.
• A new class, CubicSpline, for cubic spline interpolation of data.
• N-dimensional tensor product polynomials, scipy.interpolate.NdPPoly.
• Spherical Voronoi diagrams, scipy.spatial.SphericalVoronoi.
• Support for discrete-time linear systems, scipy.signal.dlti.

3.11.1 New features

scipy.integrate improvements

A solver of two-point boundary value problems for ODE systems has been implemented in scipy.integrate.
solve_bvp. The solver allows for non-separated boundary conditions, unknown parameters and certain singular terms.
It finds a C1 continious solution using a fourth-order collocation algorithm.
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scipy.interpolate improvements

Cubic spline interpolation is now available via scipy.interpolate.CubicSpline. This class represents a piece-
wise cubic polynomial passing through given points and C2 continuous. It is represented in the standard polynomial basis
on each segment.
A representation of n-dimensional tensor product piecewise polynomials is available as the scipy.interpolate.
NdPPoly class.
Univariate piecewise polynomial classes, PPoly and Bpoly, can now be evaluated on periodic domains. Use
extrapolate="periodic" keyword argument for this.

scipy.fftpack improvements

scipy.fftpack.next_fast_len function computes the next “regular” number for FFTPACK. Padding the input
to this length can give significant performance increase for scipy.fftpack.fft.

scipy.signal improvements

Resampling using polyphase filtering has been implemented in the function scipy.signal.resample_poly.
This method upsamples a signal, applies a zero-phase low-pass FIR filter, and downsamples using scipy.signal.
upfirdn (which is also new in 0.18.0). This method can be faster than FFT-based filtering provided by scipy.
signal.resample for some signals.
scipy.signal.firls, which constructs FIR filters using least-squares error minimization, was added.
scipy.signal.sosfiltfilt, which does forward-backward filtering like scipy.signal.filtfilt but for
second-order sections, was added.

Discrete-time linear systems
scipy.signal.dlti provides an implementation of discrete-time linear systems. Accordingly, the StateSpace,
TransferFunction and ZerosPolesGain classes have learned a the new keyword, dt, which can be used to create discrete-
time instances of the corresponding system representation.

scipy.sparse improvements

The functions sum, max, mean, min, transpose, and reshape in scipy.sparse have had their signatures augmented
with additional arguments and functionality so as to improve compatibility with analogously defined functions in numpy.
Sparse matrices now have a count_nonzero method, which counts the number of nonzero elements in the matrix. Unlike
getnnz() and nnz property, which return the number of stored entries (the length of the data attribute), this method counts
the actual number of non-zero entries in data.

scipy.optimize improvements

The implementation of Nelder-Meadminimization, scipy.minimize(…, method=”Nelder-Mead”), obtained a new keyword,
initial_simplex, which can be used to specify the initial simplex for the optimization process.
Initial step size selection in CG and BFGS minimizers has been improved. We expect that this change will improve
numeric stability of optimization in some cases. See pull request gh-5536 for details.
Handling of infinite bounds in SLSQP optimization has been improved. We expect that this change will improve numeric
stability of optimization in the some cases. See pull request gh-6024 for details.
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A large suite of global optimization benchmarks has been added to scipy/benchmarks/
go_benchmark_functions. See pull request gh-4191 for details.
Nelder-Mead and Powell minimization will now only set defaults for maximum iterations or function evaluations if neither
limit is set by the caller. In some cases with a slow converging function and only 1 limit set, the minimization may continue
for longer than with previous versions and so is more likely to reach convergence. See issue gh-5966.

scipy.stats improvements

Trapezoidal distribution has been implemented as scipy.stats.trapz. Skew normal distribution has been im-
plemented as scipy.stats.skewnorm. Burr type XII distribution has been implemented as scipy.stats.
burr12. Three- and four-parameter kappa distributions have been implemented as scipy.stats.kappa3 and
scipy.stats.kappa4, respectively.
New scipy.stats.iqr function computes the interquartile region of a distribution.

Random matrices
scipy.stats.special_ortho_group and scipy.stats.ortho_group provide generators of random
matrices in the SO(N) and O(N) groups, respectively. They generate matrices in the Haar distribution, the only uniform
distribution on these group manifolds.
scipy.stats.random_correlation provides a generator for random correlation matrices, given specified
eigenvalues.

scipy.linalg improvements

scipy.linalg.svd gained a new keyword argument, lapack_driver. Available drivers are gesdd (default)
and gesvd.
scipy.linalg.lapack.ilaver returns the version of the LAPACK library SciPy links to.

scipy.spatial improvements

Boolean distances, scipy.spatial.pdist, have been sped up. Improvements vary by the function and the input size. In many
cases, one can expect a speed-up of x2–x10.
New class scipy.spatial.SphericalVoronoi constructs Voronoi diagrams on the surface of a sphere. See
pull request gh-5232 for details.

scipy.cluster improvements

A new clustering algorithm, the nearest neighbor chain algorithm, has been implemented for scipy.cluster.
hierarchy.linkage. As a result, one can expect a significant algorithmic improvement (O(N2) instead ofO(N3))
for several linkage methods.

scipy.special improvements

The new function scipy.special.loggamma computes the principal branch of the logarithm of the Gamma func-
tion. For real input, loggamma is compatible with scipy.special.gammaln. For complex input, it has more
consistent behavior in the complex plane and should be preferred over gammaln.
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Vectorized forms of spherical Bessel functions have been implemented as scipy.special.spherical_jn,
scipy.special.spherical_kn, scipy.special.spherical_in and scipy.special.
spherical_yn. They are recommended for use over sph_* functions, which are now deprecated.
Several special functions have been extended to the complex domain and/or have seen domain/stability improvements.
This includes spence, digamma, log1p and several others.

3.11.2 Deprecated features

The cross-class properties of lti systems have been deprecated. The following properties/setters will raise a Deprecation-
Warning:
Name - (accessing/setting raises warning) - (setting raises warning) * StateSpace - (num, den, gain) - (zeros, poles) *
TransferFunction (A, B, C, D, gain) - (zeros, poles) * ZerosPolesGain (A, B, C, D, num, den) - ()
Spherical Bessel functions, sph_in, sph_jn, sph_kn, sph_yn, sph_jnyn and sph_inkn have been deprecated
in favor of scipy.special.spherical_jn and spherical_kn, spherical_yn, spherical_in.
The following functions in scipy.constants are deprecated: C2K, K2C, C2F, F2C, F2K and K2F. They are su-
perceded by a new function scipy.constants.convert_temperature that can perform all those conversions
plus to/from the Rankine temperature scale.

3.11.3 Backwards incompatible changes

scipy.optimize

The convergence criterion for optimize.bisect, optimize.brentq, optimize.brenth, and optimize.
ridder now works the same as numpy.allclose.

scipy.ndimage

The offset in ndimage.iterpolation.affine_transform is now consistently added after the matrix is ap-
plied, independent of if the matrix is specified using a one-dimensional or a two-dimensional array.

scipy.stats

stats.ks_2samp used to return nonsensical values if the input was not real or contained nans. It now raises an
exception for such inputs.
Several deprecated methods of scipy.stats distributions have been removed: est_loc_scale, vecfunc,
veccdf and vec_generic_moment.
Deprecated functionsnanmean, nanstd andnanmedian have been removed fromscipy.stats. These functions
were deprecated in scipy 0.15.0 in favor of their numpy equivalents.
A bug in the rvs() method of the distributions in scipy.stats has been fixed. When arguments to rvs() were
given that were shaped for broadcasting, in many cases the returned random samples were not random. A simple example
of the problem isstats.norm.rvs(loc=np.zeros(10)). Because of the bug, that call would return 10 identical
values. The bug only affected code that relied on the broadcasting of the shape, location and scale parameters.
The rvs() method also accepted some arguments that it should not have. There is a potential for backwards incom-
patibility in cases where rvs() accepted arguments that are not, in fact, compatible with broadcasting. An example
is

stats.gamma.rvs([2, 5, 10, 15], size=(2,2))
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The shape of the first argument is not compatible with the requested size, but the function still returned an array with
shape (2, 2). In scipy 0.18, that call generates a ValueError.

scipy.io

scipy.io.netcdf masking now gives precedence to the _FillValue attribute over the missing_value at-
tribute, if both are given. Also, data are only treated as missing if they match one of these attributes exactly: values that
differ by roundoff from _FillValue or missing_value are no longer treated as missing values.

scipy.interpolate

scipy.interpolate.PiecewisePolynomial class has been removed. It has been deprecated in scipy 0.14.0, and scipy.
interpolate.BPoly.from_derivatives serves as a drop-in replacement.

3.11.4 Other changes

Scipy now uses setuptools for its builds instead of plain distutils. This fixes usage of
install_requires='scipy' in the setup.py files of projects that depend on Scipy (see Numpy issue
gh-6551 for details). It potentially affects the way that build/install methods for Scipy itself behave though. Please report
any unexpected behavior on the Scipy issue tracker.
PR #6240 changes the interpretation of the maxfun option in L-BFGS-B based routines in the scipy.optimize
module. An L-BFGS-B search consists of multiple iterations, with each iteration consisting of one or more function
evaluations. Whereas the old search strategy terminated immediately upon reaching maxfun function evaluations, the
new strategy allows the current iteration to finish despite reaching maxfun.
The bundled copy of Qhull in the scipy.spatial subpackage has been upgraded to version 2015.2.
The bundled copy of ARPACK in the scipy.sparse.linalg subpackage has been upgraded to arpack-ng 3.3.0.
The bundled copy of SuperLU in the scipy.sparse subpackage has been upgraded to version 5.1.1.

3.11.5 Authors

• @endolith
• @yanxun827 +
• @kleskjr +
• @MYheavyGo +
• @solarjoe +
• Gregory Allen +
• Gilles Aouizerate +
• Tom Augspurger +
• Henrik Bengtsson +
• Felix Berkenkamp
• Per Brodtkorb
• Lars Buitinck
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• Daniel Bunting +
• Evgeni Burovski
• CJ Carey
• Tim Cera
• Grey Christoforo +
• Robert Cimrman
• Philip DeBoer +
• Yves Delley +
• Dávid Bodnár +
• Ion Elberdin +
• Gabriele Farina +
• Yu Feng
• Andrew Fowlie +
• Joseph Fox-Rabinovitz
• Simon Gibbons +
• Neil Girdhar +
• Kolja Glogowski +
• Christoph Gohlke
• Ralf Gommers
• Todd Goodall +
• Johnnie Gray +
• Alex Griffing
• Olivier Grisel
• Thomas Haslwanter +
• Michael Hirsch +
• Derek Homeier
• Golnaz Irannejad +
• Marek Jacob +
• InSuk Joung +
• Tetsuo Koyama +
• Eugene Krokhalev +
• Eric Larson
• Denis Laxalde
• Antony Lee
• Jerry Li +
• Henry Lin +
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• Nelson Liu +
• Loïc Estève
• Lei Ma +
• Osvaldo Martin +
• Stefano Martina +
• Nikolay Mayorov
• Matthieu Melot +
• Sturla Molden
• Eric Moore
• Alistair Muldal +
• Maniteja Nandana
• Tavi Nathanson +
• Andrew Nelson
• Joel Nothman
• Behzad Nouri
• Nikolai Nowaczyk +
• Juan Nunez-Iglesias +
• Ted Pudlik
• Eric Quintero
• Yoav Ram
• Jonas Rauber +
• Tyler Reddy +
• Juha Remes
• Garrett Reynolds +
• Ariel Rokem +
• Fabian Rost +
• Bill Sacks +
• Jona Sassenhagen +
• Kari Schoonbee +
• Marcello Seri +
• Sourav Singh +
• Martin Spacek +
• Søren Fuglede Jørgensen +
• Bhavika Tekwani +
• Martin Thoma +
• Sam Tygier +
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• Meet Udeshi +
• Utkarsh Upadhyay
• Bram Vandekerckhove +
• Sebastián Vanrell +
• Ze Vinicius +
• Pauli Virtanen
• Stefan van der Walt
• Warren Weckesser
• Jakub Wilk +
• Josh Wilson
• Phillip J. Wolfram +
• Nathan Woods
• Haochen Wu
• G Young +

A total of 99 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
This list of names is automatically generated, and may not be fully complete.

Issues closed for 0.18.0

• #1484: SVD using *GESVD lapack drivers (Trac #957)
• #1547: Inconsistent use of offset in ndimage.interpolation.affine_transform()…
• #1609: special.hyp0f1 returns nan (Trac #1082)
• #1656: fmin_slsqp enhancement (Trac #1129)
• #2069: stats broadcasting in rvs (Trac #1544)
• #2165: sph_jn returns false results for some orders/values (Trac #1640)
• #2255: Incorrect order of translation and rotation in affine_transform…
• #2332: hyp0f1 args and return values are unnumpyic (Trac #1813)
• #2534: The sparse .sum() method with uint8 dtype does not act like the…
• #3113: Implement ufuncs for CSPHJY, SPHJ, SPHY, CSPHIK, SPHI, SPHIK…
• #3568: SciPy 0.13.3 - CentOS5 - Errors in test_arpack
• #3581: optimize: stepsize in fmin_bfgs is “bad”
• #4476: scipy.sparse non-native endian bug
• #4484: ftol in optimize.fmin fails to work
• #4510: sparsetools.cxx call_thunk can segfault due to out of bounds…
• #5051: ftol and xtol for _minimize_neldermead are absolute instead of…
• #5097: proposal: spherical Voronoi diagrams
• #5123: Call to scipy.sparse.coo_matrix fails when passed Cython typed…
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• #5220: scipy.cluster.hierarchy.{ward,median,centroid} does not work…
• #5379: Add a build step at the end of .travis.yml that uploads working…
• #5440: scipy.optimize.basinhopping: accept_test returning numpy.bool_…
• #5452: Error in scipy.integrate.nquad when using variable integration…
• #5520: Cannot inherit csr_matrix properly
• #5533: Kendall tau implementation uses Python mergesort
• #5553: stats.tiecorrect overflows
• #5589: Add the Type XII Burr distribution to stats.
• #5612: sparse.linalg factorizations slow for small k due to default…
• #5626: io.netcdf masking should use masked_equal rather than masked_value
• #5637: Simple cubic spline interpolation?
• #5683: BUG: Akima1DInterpolator may return nans given multidimensional…
• #5686: scipy.stats.ttest_ind_from_stats does not accept arrays
• #5702: scipy.ndimage.interpolation.affine_transform lacks documentation…
• #5718: Wrong computation of weighted minkowski distance in cdist
• #5745: move to setuptools for next release
• #5752: DOC: solve_discrete_lyapunov equation puts transpose in wrong…
• #5760: signal.ss2tf doesn’t handle zero-order state-space models
• #5764: Hypergeometric function hyp0f1 behaves incorrectly for complex…
• #5814: stats NaN Policy Error message inconsistent with code
• #5833: docstring of stats.binom_test() needs an update
• #5853: Error in scipy.linalg.expm for complex matrix with shape (1,1)
• #5856: Specify Nelder-Mead initial simplex
• #5865: scipy.linalg.expm fails for certain numpy matrices
• #5915: optimize.basinhopping - variable referenced before assignment.
• #5916: LSQUnivariateSpline fitting failed with knots generated from…
• #5927: unicode vs. string comparison in scipy.stats.binned_statistic_dd
• #5936: faster implementation of ks_2samp
• #5948: csc matrix .mean returns single element matrix rather than scalar
• #5959: BUG: optimize test error for root when using lgmres
• #5972: Test failures for sparse sum tests on 32-bit Python
• #5976: Unexpected exception in scipy.sparse.bmat while using 0 x 0 matrix
• #6008: scipy.special.kl_div not available in 0.14.1
• #6011: The von-Mises entropy is broken
• #6016: python crashes for linalg.interpolative.svd with certain large…
• #6017: Wilcoxon signed-rank test with zero_method=”pratt” or “zsplit”…
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• #6028: stats.distributions does not have trapezoidal distribution
• #6035: Wrong link in f_oneway
• #6056: BUG: signal.decimate should only accept discrete LTI objects
• #6093: Precision error on Linux 32 bit with openblas
• #6101: Barycentric transforms test error on Python3, 32-bit Linux
• #6105: scipy.misc.face docstring is incorrect
• #6113: scipy.linalg.logm fails for a trivial matrix
• #6128: Error in dot method of sparse COO array, when used with numpy…
• #6132: Failures with latest MKL
• #6136: Failures on master with MKL
• #6162: fmin_l_bfgs_b returns inconsistent results (fmin ̸= f(xmin)) and…
• #6165: optimize.minimize infinite loop with Newton-CG
• #6167: incorrect distribution fitting for data containing boundary values.
• #6194: lstsq() and others detect numpy.complex256 as real
• #6216: ENH: improve accuracy of ppf cdf roundtrip for bradford
• #6217: BUG: weibull_min.logpdf return nan for c=1 and x=0
• #6218: Is there a method to cap shortest path search distances?
• #6222: PchipInterpolator no longer handles a 2-element array
• #6226: ENH: improve accuracy for logistic.ppf and logistic.isf
• #6227: ENH: improve accuracy for rayleigh.logpdf and rayleigh.logsf…
• #6228: ENH: improve accuracy of ppf cdf roundtrip for gumbel_l
• #6235: BUG: alpha.pdf and alpha.logpdf returns nan for x=0
• #6245: ENH: improve accuracy for ppf-cdf and sf-isf roundtrips for invgamma
• #6263: BUG: stats: Inconsistency in the multivariate_normal docstring
• #6292: Python 3 unorderable type errors in test_sparsetools.TestInt32Overflow
• #6316: TestCloughTocher2DInterpolator.test_dense crashes python3.5.2rc1_64bit…
• #6318: Scipy interp1d ‘nearest’ not working for high values on x-axis

Pull requests for 0.18.0

• #3226: DOC: Change nb and na to conventional m and n
• #3867: allow cKDTree.query taking a list input in k.
• #4191: ENH: Benchmarking global optimizers
• #4356: ENH: add PPoly.solve(y) for solving p(x) == y

• #4370: DOC separate boolean distance functions for clarity
• #4678: BUG: sparse: ensure index dtype is large enough to pass all parameters…
• #4881: scipy.signal: Add the class dlti for linear discrete-time systems….
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• #4901: MAINT: add benchmark and improve docstring for signal.lfilter
• #5043: ENH: sparse: add count_nonzero method
• #5136: Attribute kurtosistest() to Anscombe & Glynn (1983)
• #5186: ENH: Port upfirdn
• #5232: ENH: adding spherical Voronoi diagram algorithm to scipy.spatial
• #5279: ENH: Bessel filters with different normalizations, high order
• #5384: BUG: Closes #5027 distance function always casts bool to double
• #5392: ENH: Add zero_phase kwarg to signal.decimate
• #5394: MAINT: sparse: non-canonical test cleanup and fixes
• #5424: DOC: add Scipy developers guide
• #5442: STY: PEP8 amendments
• #5472: Online QR in LGMRES
• #5526: BUG: stats: Fix broadcasting in the rvs() method of the distributions.
• #5530: MAINT: sparse: set format attr explicitly
• #5536: optimize: fix up cg/bfgs initial step sizes
• #5548: PERF: improves performance in stats.kendalltau
• #5549: ENH: Nearest-neighbor chain algorithm for hierarchical clustering
• #5554: MAINT/BUG: closes overflow bug in stats.tiecorrect
• #5557: BUG: modify optimize.bisect to achieve desired tolerance
• #5581: DOC: Tutorial for least_squares
• #5606: ENH: differential_evolution - moving core loop of solve method…
• #5609: [MRG] test against numpy dev
• #5611: use setuptools for bdist_egg distributions
• #5615: MAINT: linalg: tighten _decomp_update + special: remove unused…
• #5622: Add SO(N) rotation matrix generator
• #5623: ENH: special: Add vectorized spherical Bessel functions.
• #5627: Response to issue #5160, implements the skew normal distribution…
• #5628: DOC: Align the description and operation
• #5632: DOC: special: Expanded docs for Airy, elliptic, Bessel functions.
• #5633: MAINT: linalg: unchecked malloc in _decomp_update
• #5634: MAINT: optimize: tighten _group_columns
• #5640: Fixes for io.netcdf masking
• #5645: MAINT: size 0 vector handling in cKDTree range queries
• #5649: MAINT: update license text
• #5650: DOC: Clarify Exponent Order in ltisys.py
• #5651: DOC: Clarify Documentation for scipy.special.gammaln
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• #5652: DOC: Fixed scipy.special.betaln Doc
• #5653: [MRG] ENH: CubicSpline interpolator
• #5654: ENH: Burr12 distribution to stats module
• #5659: DOC: Define BEFORE/AFTER in runtests.py -h for bench-compare
• #5660: MAINT: remove functions deprecated before 0.16.0
• #5662: ENH: Circular statistic optimization
• #5663: MAINT: remove uses of np.testing.rand
• #5665: MAINT: spatial: remove matching distance implementation
• #5667: Change some HTTP links to HTTPS
• #5669: DOC: zpk2sos can’t do analog, array_like, etc.
• #5670: Update conf.py
• #5672: MAINT: move a sample distribution to a subclass of rv_discrete
• #5678: MAINT: stats: remove est_loc_scale method
• #5679: MAINT: DRY up generic computations for discrete distributions
• #5680: MAINT: stop shadowing builtins in stats.distributions
• #5681: forward port ENH: Re-enable broadcasting of fill_value
• #5684: BUG: Fix Akima1DInterpolator returning nans
• #5690: BUG: fix stats.ttest_ind_from_stats to handle arrays.
• #5691: BUG: fix generator in io._loadarff to comply with PEP 0479
• #5693: ENH: use math.factorial for exact factorials
• #5695: DOC: dx might be a float, not only an integer
• #5699: MAINT: io: micro-optimize Matlab reading code for size
• #5701: Implement OptimizeResult.__dir__
• #5703: ENH: stats: make R2 printing optional in probplot
• #5704: MAINT: typo ouf->out
• #5705: BUG: fix typo in query_pairs
• #5707: DOC:Add some explanation for ftol xtol in scipy.optimize.fmin
• #5708: DOC: optimize: PEP8 minimize docstring
• #5709: MAINT: optimize Cython code for speed and size
• #5713: [DOC] Fix broken link to reference
• #5717: DOC: curve_fit raises RuntimeError on failure.
• #5724: forward port gh-5720
• #5728: STY: remove a blank line
• #5729: ENH: spatial: speed up boolean distances
• #5732: MAINT: differential_evolution changes to default keywords break…
• #5733: TST: differential_evolution - population initiation tests
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• #5736: Complex number support in log1p, expm1, and xlog1py
• #5741: MAINT: sparse: clean up extraction functions
• #5742: DOC: signal: Explain fftbins in get_window
• #5748: ENH: Add O(N) random matrix generator
• #5749: ENH: Add polyphase resampling
• #5756: RFC: Bump the minimum numpy version, drop older python versions
• #5761: DOC: Some improvements to least squares docstrings
• #5762: MAINT: spatial: distance refactoring
• #5768: DOC: Fix io.loadmat docstring for mdict param
• #5770: BUG: Accept anything np.dtype can handle for a dtype in sparse.random
• #5772: Update sparse.csgraph.laplacian docstring
• #5777: BUG: fix special.hyp0f1 to work correctly for complex inputs.
• #5780: DOC: Update PIL error install URL
• #5781: DOC: Fix documentation on solve_discrete_lyapunov
• #5782: DOC: cKDTree and KDTree now reference each other
• #5783: DOC: Clarify finish behaviour in scipy.optimize.brute
• #5784: MAINT: Change default tolerances of least_squares to 1e-8
• #5787: BUG: Allow Processing of Zero Order State Space Models in signal.ss2tf
• #5788: DOC, BUG: Clarify and Enforce Input Types to ‘Data’ Objects
• #5789: ENH: sparse: speedup LIL matrix slicing (was #3338)
• #5791: DOC: README: remove coveralls.io
• #5792: MAINT: remove uses of deprecated np.random.random_integers
• #5794: fix affine_transform (fixes #1547 and #5702)
• #5795: DOC: Removed uniform method from kmeans2 doc
• #5797: DOC: Clarify the computation of weighted minkowski
• #5798: BUG: Ensure scipy’s _asfarray returns ndarray
• #5799: TST: Mpmath testing patch
• #5801: allow reading of certain IDL 8.0 .sav files
• #5803: DOC: fix module name in error message
• #5804: DOC: special: Expanded docs for special functions.
• #5805: DOC: Fix order of returns in _spectral_helper
• #5806: ENH: sparse: vectorized coo_matrix.diagonal
• #5808: ENH: Added iqr function to compute IQR metric in scipy/stats/stats.py
• #5810: MAINT/BENCH: sparse: Benchmark cleanup and additions
• #5811: DOC: sparse.linalg: shape, not size
• #5813: Update sparse ARPACK functions min ncv value
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• #5815: BUG: Error message contained wrong values
• #5816: remove dead code from stats tests
• #5820: “in”->”a” in order_filter docstring
• #5821: DOC: README: INSTALL.txt was renamed in 2014
• #5825: DOC: typo in the docstring of least_squares
• #5826: MAINT: sparse: increase test coverage
• #5827: NdPPoly rebase
• #5828: Improve numerical stability of hyp0f1 for large orders
• #5829: ENH: sparse: Add copy parameter to all .toXXX() methods in sparse…
• #5830: DOC: rework INSTALL.rst.txt
• #5831: Adds plotting options to voronoi_plot_2d
• #5834: Update stats.binom_test() docstring
• #5836: ENH, TST: Allow SIMO tf’s for tf2ss
• #5837: DOC: Image examples
• #5838: ENH: sparse: add eliminate_zeros() to coo_matrix
• #5839: BUG: Fixed name of NumpyVersion.__repr__
• #5845: MAINT: Fixed typos in documentation
• #5847: Fix bugs in sparsetools
• #5848: BUG: sparse.linalg: add locks to ensure ARPACK threadsafety
• #5849: ENH: sparse.linalg: upgrade to superlu 5.1.1
• #5851: ENH: expose lapack’s ilaver to python to allow lapack verion…
• #5852: MAINT: runtests.py: ensure Ctrl-C interrupts the build
• #5854: DOC: Minor update to documentation
• #5855: Pr 5640
• #5859: ENH: Add random correlation matrix generator
• #5862: BUG: Allow expm for complex matrix with shape (1, 1)
• #5863: FIX: Fix test
• #5864: DOC: add a little note about the Normal survival function (Q-function)
• #5867: Fix for #5865
• #5869: extend normal distribution cdf to complex domain
• #5872: DOC: Note that morlet and cwt don’t work together
• #5875: DOC: interp2d class description
• #5876: MAINT: spatial: remove a stray print statement
• #5878: MAINT: Fixed noisy UserWarnings in ndimage tests. Fixes #5877
• #5879: MAINT: sparse.linalg/superlu: add explicit casts to resolve compiler…
• #5880: MAINT: signal: import gcd from math and not fractions when on…
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• #5887: Neldermead initial simplex
• #5894: BUG: _CustomLinearOperator unpickalable in python3.5
• #5895: DOC: special: slightly improve the multigammaln docstring
• #5900: Remove duplicate assignment.
• #5901: Update bundled ARPACK
• #5904: ENH: Make convolve and correlate order-agnostic
• #5905: ENH: sparse.linalg: further LGMRES cleanups
• #5906: Enhancements and cleanup in scipy.integrate (attempt #2)
• #5907: ENH: Change sparse sum and mean dtype casting to match…
• #5909: changes for convolution symmetry
• #5913: MAINT: basinhopping remove instance test closes #5440
• #5919: MAINT: uninitialised var if basinhopping niter=0. closes #5915
• #5920: BLD: Fix missing lsame.c error for MKL
• #5921: DOC: interpolate: add example showing how to work around issue…
• #5926: MAINT: spatial: upgrade to Qhull 2015.2
• #5928: MAINT: sparse: optimize DIA sum/diagonal, csgraph.laplacian
• #5929: Update info/URL for octave-maintainers discussion
• #5930: TST: special: silence DeprecationWarnings from sph_yn
• #5931: ENH: implement the principle branch of the logarithm of Gamma.
• #5934: Typo: “mush” => “must”
• #5935: BUG:string comparison stats._binned_statistic closes #5927
• #5938: Cythonize stats.ks_2samp for a ~33% gain in speed.
• #5939: DOC: fix optimize.fmin convergence docstring
• #5941: Fix minor typo in squareform docstring
• #5942: Update linregress stderr description.
• #5943: ENH: Improve numerical accuracy of lognorm
• #5944: Merge vonmises into stats pyx
• #5945: MAINT: interpolate: Tweak declaration to avoid cython warning…
• #5946: MAINT: sparse: clean up format conversion methods
• #5949: BUG: fix sparse .mean to return a scalar instead of a matrix
• #5955: MAINT: Replace calls to hanning with hann

• #5956: DOC: Missing periods interfering with parsing
• #5958: MAINT: add a test for lognorm.sf underflow
• #5961: MAINT _centered(): rename size to shape
• #5962: ENH: constants: Add multi-scale temperature conversion function
• #5965: ENH: special: faster way for calculating comb() for exact=True

3.11. SciPy 0.18.0 Release Notes 115

https://github.com/scipy/scipy/pull/5887
https://github.com/scipy/scipy/pull/5894
https://github.com/scipy/scipy/pull/5895
https://github.com/scipy/scipy/pull/5900
https://github.com/scipy/scipy/pull/5901
https://github.com/scipy/scipy/pull/5904
https://github.com/scipy/scipy/pull/5905
https://github.com/scipy/scipy/pull/5906
https://github.com/scipy/scipy/pull/5907
https://github.com/scipy/scipy/pull/5909
https://github.com/scipy/scipy/pull/5913
https://github.com/scipy/scipy/pull/5919
https://github.com/scipy/scipy/pull/5920
https://github.com/scipy/scipy/pull/5921
https://github.com/scipy/scipy/pull/5926
https://github.com/scipy/scipy/pull/5928
https://github.com/scipy/scipy/pull/5929
https://github.com/scipy/scipy/pull/5930
https://github.com/scipy/scipy/pull/5931
https://github.com/scipy/scipy/pull/5934
https://github.com/scipy/scipy/pull/5935
https://github.com/scipy/scipy/pull/5938
https://github.com/scipy/scipy/pull/5939
https://github.com/scipy/scipy/pull/5941
https://github.com/scipy/scipy/pull/5942
https://github.com/scipy/scipy/pull/5943
https://github.com/scipy/scipy/pull/5944
https://github.com/scipy/scipy/pull/5945
https://github.com/scipy/scipy/pull/5946
https://github.com/scipy/scipy/pull/5949
https://github.com/scipy/scipy/pull/5955
https://github.com/scipy/scipy/pull/5956
https://github.com/scipy/scipy/pull/5958
https://github.com/scipy/scipy/pull/5961
https://github.com/scipy/scipy/pull/5962
https://github.com/scipy/scipy/pull/5965


SciPy Reference Guide, Release 1.3.1

• #5975: ENH: Improve FIR path of signal.decimate
• #5977: MAINT/BUG: sparse: remove overzealous bmat checks
• #5978: minimize_neldermead() stop at user requested maxiter or maxfev
• #5983: ENH: make sparse sum cast dtypes like NumPy sum for 32-bit…
• #5985: BUG, API: Add jac parameter to curve_fit
• #5989: ENH: Add firls least-squares fitting
• #5990: BUG: read tries to handle 20-bit WAV files but shouldn’t
• #5991: DOC: Cleanup wav read/write docs and add tables for common types
• #5994: ENH: Add gesvd method for svd
• #5996: MAINT: Wave cleanup
• #5997: TST: Break up upfirdn tests & compare to lfilter
• #6001: Filter design docs
• #6002: COMPAT: Expand compatibility fromnumeric.py
• #6007: ENH: Skip conversion of TF to TF in freqresp
• #6009: DOC: fix incorrect versionadded for entr, rel_entr, kl_div
• #6013: Fixed the entropy calculation of the von Mises distribution.
• #6014: MAINT: make gamma, rgamma use loggamma for complex arguments
• #6020: WIP: ENH: add exact=True factorial for vectors
• #6022: Added ‘lanczos’ to the image interpolation function list.
• #6024: BUG: optimize: do not use dummy constraints in SLSQP when no…
• #6025: ENH: Boundary value problem solver for ODE systems
• #6029: MAINT: Future imports for optimize._lsq
• #6030: ENH: stats.trap - adding trapezoidal distribution closes #6028
• #6031: MAINT: Some improvements to optimize._numdiff
• #6032: MAINT: Add special/_comb.c to .gitignore
• #6033: BUG: check the requested approximation rank in interpolative.svd
• #6034: DOC: Doc for mannwhitneyu in stats.py corrected
• #6040: FIX: Edit the wrong link in f_oneway
• #6044: BUG: (ordqz) always increase parameter lwork by 1.
• #6047: ENH: extend special.spence to complex arguments.
• #6049: DOC: Add documentation of PR #5640 to the 0.18.0 release notes
• #6050: MAINT: small cleanups related to loggamma
• #6070: Add asarray to explicitly cast list to numpy array in wilcoxon…
• #6071: DOC: antialiasing filter and link decimate resample, etc.
• #6075: MAINT: reimplement special.digamma for complex arguments
• #6080: avoid multiple computation in kstest
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• #6081: Clarified pearson correlation return value
• #6085: ENH: allow long indices of sparse matrix with umfpack in spsolve()
• #6086: fix description for associated Laguerre polynomials
• #6087: Corrected docstring of splrep.
• #6094: ENH: special: change zeta signature to zeta(x, q=1)
• #6095: BUG: fix integer overflow in special.spence
• #6106: Fixed Issue #6105
• #6116: BUG: matrix logarithm edge case
• #6119: TST: DeprecationWarnings in stats on python 3.5 closes #5885
• #6120: MAINT: sparse: clean up sputils.isintlike
• #6122: DOC: optimize: linprog docs should say minimize instead of maximize
• #6123: DOC: optimize: document the fun field in scipy.optimize.OptimizeResult
• #6124: Move FFT zero-padding calculation from signaltools to fftpack
• #6125: MAINT: improve special.gammainc in the a ~ x regime.
• #6130: BUG: sparse: Fix COO dot with zero columns
• #6138: ENH: stats: Improve behavior of genextreme.sf and genextreme.isf
• #6146: MAINT: simplify the expit implementation
• #6151: MAINT: special: make generate_ufuncs.py output deterministic
• #6152: TST: special: better test for gammainc at large arguments
• #6153: ENH: Make next_fast_len public and faster
• #6154: fix typo “mush”–>”must”
• #6155: DOC: Fix some incorrect RST definition lists
• #6160: make logsumexp error out on a masked array
• #6161: added missing bracket to rosen documentation
• #6163: ENH: Added “kappa4” and “kappa3” distributions.
• #6164: DOC: Minor clean-up in integrate._bvp
• #6169: Fix mpf_assert_allclose to handle iterable results, such as maps
• #6170: Fix pchip_interpolate convenience function
• #6172: Corrected misplaced bracket in doc string
• #6175: ENH: sparse.csgraph: Pass indices to shortest_path
• #6178: TST: increase test coverage of sf and isf of a generalized extreme…
• #6179: TST: avoid a deprecation warning from numpy
• #6181: ENH: Boundary conditions for CubicSpline
• #6182: DOC: Add examples/graphs to max_len_seq
• #6183: BLD: update Bento build config files for recent changes.
• #6184: BUG: fix issue in io/wavfile for float96 input.
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• #6186: ENH: Periodic extrapolation for PPoly and BPoly
• #6192: MRG: Add circle-CI
• #6193: ENH: sparse: avoid setitem densification
• #6196: Fixed missing sqrt in docstring of Mahalanobis distance in cdist,…
• #6206: MAINT: Minor changes in solve_bvp
• #6207: BUG: linalg: for BLAS, downcast complex256 to complex128, not…
• #6209: BUG: io.matlab: avoid buffer overflows in read_element_into
• #6210: BLD: use setuptools when building.
• #6214: BUG: sparse.linalg: fix bug in LGMRES breakdown handling
• #6215: MAINT: special: make loggamma use zdiv
• #6220: DOC: Add parameter
• #6221: ENH: Improve Newton solver for solve_bvp
• #6223: pchip should work for length-2 arrays
• #6224: signal.lti: deprecate cross-class properties/setters
• #6229: BUG: optimize: avoid an infinite loop in Newton-CG
• #6230: Add example for application of gaussian filter
• #6236: MAINT: gumbel_l accuracy
• #6237: MAINT: rayleigh accuracy
• #6238: MAINT: logistic accuracy
• #6239: MAINT: bradford distribution accuracy
• #6240: MAINT: avoid bad fmin in l-bfgs-b due to maxfun interruption
• #6241: MAINT: weibull_min accuracy
• #6246: ENH: Add _support_mask to distributions
• #6247: fixed a print error for an example of ode
• #6249: MAINT: change x-axis label for stats.probplot to “theoretical…
• #6250: DOC: fix typos
• #6251: MAINT: constants: filter out test noise from deprecated conversions
• #6252: MAINT: io/arff: remove unused variable
• #6253: Add examples to scipy.ndimage.filters
• #6254: MAINT: special: fix some build warnings
• #6258: MAINT: inverse gamma distribution accuracy
• #6260: MAINT: signal.decimate - Use discrete-time objects
• #6262: BUG: odr: fix string formatting
• #6267: TST: fix some test issues in interpolate and stats.
• #6269: TST: fix some warnings in the test suite
• #6274: ENH: Add sosfiltfilt
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• #6276: DOC: update release notes for 0.18.0
• #6277: MAINT: update the author name mapping
• #6282: DOC: Correcting references for scipy.stats.normaltest
• #6283: DOC: some more additions to 0.18.0 release notes.
• #6284: Add versionadded:: directive to loggamma.
• #6285: BUG: stats: Inconsistency in the multivariate_normal docstring…
• #6290: Add author list, gh-lists to 0.18.0 release notes
• #6293: TST: special: relax a test’s precision
• #6295: BUG: sparse: stop comparing None and int in bsr_matrix constructor
• #6313: MAINT: Fix for python 3.5 travis-ci build problem.
• #6327: TST: signal: use assert_allclose for testing near-equality in…
• #6330: BUG: spatial/qhull: allocate qhT via malloc to ensure CRT likes…
• #6332: TST: fix stats.iqr test to not emit warnings, and fix line lengths.
• #6334: MAINT: special: fix a test for hyp0f1
• #6347: TST: spatial.qhull: skip a test on 32-bit platforms
• #6350: BUG: optimize/slsqp: don’t overwrite an array out of bounds
• #6351: BUG: #6318 Interp1d ‘nearest’ integer x-axis overflow issue fixed
• #6355: Backports for 0.18.0

3.12 SciPy 0.17.1 Release Notes

SciPy 0.17.1 is a bug-fix release with no new features compared to 0.17.0.

3.12.1 Issues closed for 0.17.1

• #5817: BUG: skew, kurtosis return np.nan instead of “propagate”
• #5850: Test failed with sgelsy
• #5898: interpolate.interp1d crashes using float128
• #5953: Massive performance regression in cKDTree.query with L_inf distance…
• #6062: mannwhitneyu breaks backward compatibility in 0.17.0
• #6134: T test does not handle nans

3.12.2 Pull requests for 0.17.1

• #5902: BUG: interpolate: make interp1d handle np.float128 again
• #5957: BUG: slow down with p=np.inf in 0.17 cKDTree.query
• #5970: Actually propagate nans through stats functions with nan_policy=”propagate”
• #5971: BUG: linalg: fix lwork check in *gelsy

3.12. SciPy 0.17.1 Release Notes 119

https://github.com/scipy/scipy/pull/6276
https://github.com/scipy/scipy/pull/6277
https://github.com/scipy/scipy/pull/6282
https://github.com/scipy/scipy/pull/6283
https://github.com/scipy/scipy/pull/6284
https://github.com/scipy/scipy/pull/6285
https://github.com/scipy/scipy/pull/6290
https://github.com/scipy/scipy/pull/6293
https://github.com/scipy/scipy/pull/6295
https://github.com/scipy/scipy/pull/6313
https://github.com/scipy/scipy/pull/6327
https://github.com/scipy/scipy/pull/6330
https://github.com/scipy/scipy/pull/6332
https://github.com/scipy/scipy/pull/6334
https://github.com/scipy/scipy/pull/6347
https://github.com/scipy/scipy/pull/6350
https://github.com/scipy/scipy/pull/6351
https://github.com/scipy/scipy/pull/6355
https://github.com/scipy/scipy/issues/5817
https://github.com/scipy/scipy/issues/5850
https://github.com/scipy/scipy/issues/5898
https://github.com/scipy/scipy/issues/5953
https://github.com/scipy/scipy/issues/6062
https://github.com/scipy/scipy/issues/6134
https://github.com/scipy/scipy/pull/5902
https://github.com/scipy/scipy/pull/5957
https://github.com/scipy/scipy/pull/5970
https://github.com/scipy/scipy/pull/5971


SciPy Reference Guide, Release 1.3.1

• #6074: BUG: special: fixed violation of strict aliasing rules.
• #6083: BUG: Fix dtype for sum of linear operators
• #6100: BUG: Fix mannwhitneyu to be backward compatible
• #6135: Don’t pass null pointers to LAPACK, even during workspace queries.
• #6148: stats: fix handling of nan values in T tests and kendalltau

3.13 SciPy 0.17.0 Release Notes

Contents

• SciPy 0.17.0 Release Notes

– New features

∗ scipy.cluster improvements

∗ scipy.io improvements

∗ scipy.optimize improvements

· Linear assignment problem solver

· Least squares optimization

∗ scipy.signal improvements

∗ scipy.stats improvements

∗ scipy.sparse improvements

∗ scipy.spatial improvements

∗ scipy.interpolate improvements

∗ scipy.linalg improvements

– Deprecated features

– Backwards incompatible changes

– Other changes

– Authors

∗ Issues closed for 0.17.0

∗ Pull requests for 0.17.0

SciPy 0.17.0 is the culmination of 6 months of hard work. It contains many new features, numerous bug-fixes, improved
test coverage and better documentation. There have been a number of deprecations and API changes in this release, which
are documented below. All users are encouraged to upgrade to this release, as there are a large number of bug-fixes and
optimizations. Moreover, our development attention will now shift to bug-fix releases on the 0.17.x branch, and on adding
new features on the master branch.
This release requires Python 2.6, 2.7 or 3.2-3.5 and NumPy 1.6.2 or greater.
Release highlights:
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• New functions for linear and nonlinear least squares optimization with constraints: scipy.optimize.
lsq_linear and scipy.optimize.least_squares

• Support for fitting with bounds in scipy.optimize.curve_fit.
• Significant improvements to scipy.stats, providing many functions with better handing of inputs which have
NaNs or are empty, improved documentation, and consistent behavior between scipy.stats and scipy.
stats.mstats.

• Significant performance improvements and new functionality in scipy.spatial.cKDTree.

3.13.1 New features

scipy.cluster improvements

A new function scipy.cluster.hierarchy.cut_tree, which determines a cut tree from a linkage matrix, was
added.

scipy.io improvements

scipy.io.mmwrite gained support for symmetric sparse matrices.
scipy.io.netcdf gained support for masking and scaling data based on data attributes.

scipy.optimize improvements

Linear assignment problem solver
scipy.optimize.linear_sum_assignment is a new function for solving the linear sum assignment problem.
It uses the Hungarian algorithm (Kuhn-Munkres).

Least squares optimization
A new function for nonlinear least squares optimization with constraints was added: scipy.optimize.
least_squares. It provides several methods: Levenberg-Marquardt for unconstrained problems, and two trust-region
methods for constrained ones. Furthermore it provides different loss functions. New trust-region methods also handle
sparse Jacobians.
A new function for linear least squares optimization with constraints was added: scipy.optimize.lsq_linear.
It provides a trust-region method as well as an implementation of the Bounded-Variable Least-Squares (BVLS) algorithm.
scipy.optimize.curve_fit now supports fitting with bounds.

scipy.signal improvements

A mode keyword was added to scipy.signal.spectrogram, to let it return other spectrograms than power
spectral density.

scipy.stats improvements

Many functions in scipy.stats have gained a nan_policy keyword, which allows specifying how to treat input
with NaNs in them: propagate the NaNs, raise an error, or omit the NaNs.
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Many functions in scipy.stats have been improved to correctly handle input arrays that are empty or contain
infs/nans.
A number of functions with the same name in scipy.stats and scipy.stats.mstats were changed to have
matching signature and behavior. See gh-5474 for details.
scipy.stats.binom_test and scipy.stats.mannwhitneyu gained a keyword alternative, which
allows specifying the hypothesis to test for. Eventually all hypothesis testing functions will get this keyword.
For methods of many continuous distributions, complex input is now accepted.
Matrix normal distribution has been implemented as scipy.stats.matrix_normal.

scipy.sparse improvements

The axis keyword was added to sparse norms, scipy.sparse.linalg.norm.

scipy.spatial improvements

scipy.spatial.cKDTree was partly rewritten for improved performance and several new features were added to
it:

• the query_ball_point method became significantly faster
• query and query_ball_point gained an n_jobs keyword for parallel execution
• build and query methods now release the GIL
• full pickling support
• support for periodic spaces
• the sparse_distance_matrix method can now return and sparse matrix type

scipy.interpolate improvements

Out-of-bounds behavior of scipy.interpolate.interp1d has been improved. Use a two-element tu-
ple for the fill_value argument to specify separate fill values for input below and above the interpolation
range. Linear and nearest interpolation kinds of scipy.interpolate.interp1d support extrapolation via the
fill_value="extrapolate" keyword.
fill_value can also be set to an array-like (or a two-element tuple of array-likes for separate below and above values)
so long as it broadcasts properly to the non-interpolated dimensions of an array. This was implicitly supported by previous
versions of scipy, but support has now been formalized and gets compatibility-checked before use. For example, a set
of y values to interpolate with shape (2, 3, 5) interpolated along the last axis (2) could accept a fill_value
array with shape () (singleton), (1,), (2, 1), (1, 3), (3,), or (2, 3); or it can be a 2-element tuple to specify
separate below and above bounds, where each of the two tuple elements obeys proper broadcasting rules.

scipy.linalg improvements

The default algorithm for scipy.linalg.leastsq has been changed to use LAPACK’s function *gelsd. Users wanting to
get the previous behavior can use a new keyword lapack_driver="gelss" (allowed values are “gelss”, “gelsd” and
“gelsy”).
scipy.sparsematrices and linear operators now support the matmul (@) operator when available (Python 3.5+). See
[PEP 465](https://legacy.python.org/dev/peps/pep-0465/)
A new function scipy.linalg.ordqz, for QZ decomposition with reordering, has been added.
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3.13.2 Deprecated features

scipy.stats.histogram is deprecated in favor of np.histogram, which is faster and provides the same func-
tionality.
scipy.stats.threshold and scipy.mstats.threshold are deprecated in favor of np.clip. See issue
#617 for details.
scipy.stats.ss is deprecated. This is a support function, not meant to be exposed to the user. Also, the name is
unclear. See issue #663 for details.
scipy.stats.square_of_sums is deprecated. This too is a support function not meant to be exposed to the user.
See issues #665 and #663 for details.
scipy.stats.f_value, scipy.stats.f_value_multivariate, scipy.stats.
f_value_wilks_lambda, and scipy.mstats.f_value_wilks_lambda are deprecated. These are
related to ANOVA, for which scipy.stats provides quite limited functionality and these functions are not very
useful standalone. See issues #660 and #650 for details.
scipy.stats.chisqprob is deprecated. This is an alias. stats.chi2.sf should be used instead.
scipy.stats.betai is deprecated. This is an alias for special.betainc which should be used instead.

3.13.3 Backwards incompatible changes

The functions stats.trim1 and stats.trimboth now make sure the elements trimmed are the lowest and/or
highest, depending on the case. Slicing without at least partial sorting was previously done, but didn’t make sense for
unsorted input.
When variable_names is set to an empty list, scipy.io.loadmat now correctly returns no values instead of all
the contents of the MAT file.
Element-wise multiplication of sparse matrices now returns a sparse result in all cases. Previously, multiplying a sparse
matrix with a dense matrix or array would return a dense matrix.
The function misc.lena has been removed due to license incompatibility.
The constructor for sparse.coo_matrix no longer accepts (None, (m,n)) to construct an all-zero matrix of
shape (m,n). This functionality was deprecated since at least 2007 and was already broken in the previous SciPy release.
Use coo_matrix((m,n)) instead.
The Cython wrappers in linalg.cython_lapack for the LAPACK routines *gegs, *gegv, *gelsx, *geqpf,
*ggsvd, *ggsvp, *lahrd, *latzm, *tzrqf have been removed since these routines are not present in the new
LAPACK 3.6.0 release. With the exception of the routines *ggsvd and *ggsvp, these were all deprecated in favor of
routines that are currently present in our Cython LAPACK wrappers.
Because the LAPACK *gegv routines were removed in LAPACK 3.6.0. The corresponding Python wrappers in
scipy.linalg.lapack are now deprecated and will be removed in a future release. The source files for these
routines have been temporarily included as a part of scipy.linalg so that SciPy can be built against LAPACK
versions that do not provide these deprecated routines.

3.13.4 Other changes

Html and pdf documentation of development versions of Scipy is now automatically rebuilt after everymerged pull request.
scipy.constants is updated to the CODATA 2014 recommended values.
Usage of scipy.fftpack functions within Scipy has been changed in such a way that PyFFTW can easily replace
scipy.fftpack functions (with improved performance). See gh-5295 for details.

3.13. SciPy 0.17.0 Release Notes 123

https://hgomersall.github.io/pyFFTW/
https://github.com/scipy/scipy/pull/5295


SciPy Reference Guide, Release 1.3.1

The imread functions in scipy.misc and scipy.ndimage were unified, for which a mode argument was added
to scipy.misc.imread. Also, bugs for 1-bit and indexed RGB image formats were fixed.
runtests.py, the development script to build and test Scipy, now allows building in parallel with --parallel.

3.13.5 Authors

• @cel4 +
• @chemelnucfin +
• @endolith
• @mamrehn +
• @tosh1ki +
• Joshua L. Adelman +
• Anne Archibald
• Hervé Audren +
• Vincent Barrielle +
• Bruno Beltran +
• Sumit Binnani +
• Joseph Jon Booker
• Olga Botvinnik +
• Michael Boyle +
• Matthew Brett
• Zaz Brown +
• Lars Buitinck
• Pete Bunch +
• Evgeni Burovski
• CJ Carey
• Ien Cheng +
• Cody +
• Jaime Fernandez del Rio
• Ales Erjavec +
• Abraham Escalante
• Yves-Rémi Van Eycke +
• Yu Feng +
• Eric Firing
• Francis T. O’Donovan +
• André Gaul
• Christoph Gohlke
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• Ralf Gommers
• Alex Griffing
• Alexander Grigorievskiy
• Charles Harris
• Jörn Hees +
• Ian Henriksen
• Derek Homeier +
• David Menéndez Hurtado
• Gert-Ludwig Ingold
• Aakash Jain +
• Rohit Jamuar +
• Jan Schlüter
• Johannes Ballé
• Luke Zoltan Kelley +
• Jason King +
• Andreas Kopecky +
• Eric Larson
• Denis Laxalde
• Antony Lee
• Gregory R. Lee
• Josh Levy-Kramer +
• Sam Lewis +
• François Magimel +
• Martín Gaitán +
• Sam Mason +
• Andreas Mayer
• Nikolay Mayorov
• Damon McDougall +
• Robert McGibbon
• Sturla Molden
• Will Monroe +
• Eric Moore
• Maniteja Nandana
• Vikram Natarajan +
• Andrew Nelson
• Marti Nito +

3.13. SciPy 0.17.0 Release Notes 125



SciPy Reference Guide, Release 1.3.1

• Behzad Nouri +
• Daisuke Oyama +
• Giorgio Patrini +
• Fabian Paul +
• Christoph Paulik +
• Mad Physicist +
• Irvin Probst
• Sebastian Pucilowski +
• Ted Pudlik +
• Eric Quintero
• Yoav Ram +
• Joscha Reimer +
• Juha Remes
• Frederik Rietdijk +
• Rémy Léone +
• Christian Sachs +
• Skipper Seabold
• Sebastian Skoupý +
• Alex Seewald +
• Andreas Sorge +
• Bernardo Sulzbach +
• Julian Taylor
• Louis Tiao +
• Utkarsh Upadhyay +
• Jacob Vanderplas
• Gael Varoquaux +
• Pauli Virtanen
• Fredrik Wallner +
• Stefan van der Walt
• James Webber +
• Warren Weckesser
• Raphael Wettinger +
• Josh Wilson +
• Nat Wilson +
• Peter Yin +
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A total of 101 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
This list of names is automatically generated, and may not be fully complete.

Issues closed for 0.17.0

• #1923: problem with numpy 0’s in stats.poisson.rvs (Trac #1398)
• #2138: scipy.misc.imread segfaults on 1 bit png (Trac #1613)
• #2237: distributions do not accept complex arguments (Trac #1718)
• #2282: scipy.special.hyp1f1(0.5, 1.5, -1000) fails (Trac #1763)
• #2618: poisson.pmf returns NaN if mu is 0
• #2957: hyp1f1 precision issue
• #2997: FAIL: test_qhull.TestUtilities.test_more_barycentric_transforms
• #3129: No way to set ranges for fitting parameters in Optimize functions
• #3191: interp1d should contain a fill_value_below and a fill_value_above…
• #3453: PchipInterpolator sets slopes at edges differently than Matlab’s…
• #4106: ndimage._ni_support._normalize_sequence() fails with numpy.int64
• #4118: scipy.integrate.ode.set_solout called after scipy.integrate.ode.
set_initial_value fails silently

• #4233: 1D scipy.interpolate.griddata using method=nearest produces nans…
• #4375: All tests fail due to bad file permissions
• #4580: scipy.ndimage.filters.convolve documenation is incorrect
• #4627: logsumexp with sign indicator - enable calculation with negative…
• #4702: logsumexp with zero scaling factor
• #4834: gammainc should return 1.0 instead of NaN for infinite x
• #4838: enh: exprel special function
• #4862: the scipy.special.boxcox function is inaccurate for denormal…
• #4887: Spherical harmonic incongruences
• #4895: some scipy ufuncs have inconsistent output dtypes?
• #4923: logm does not aggressively convert complex outputs to float
• #4932: BUG: stats: The fit method of the distributions silently ignores…
• #4956: Documentation error in scipy.special.bi_zeros
• #4957: Docstring for pbvv_seq is wrong
• #4967: block_diag should look at dtypes of all arguments, not only the…
• #5037: scipy.optimize.minimize error messages are printed to stdout…
• #5039: Cubic interpolation: On entry to DGESDD parameter number 12 had…
• #5163: Base case example of Hierarchical Clustering (offer)
• #5181: BUG: stats.genextreme.entropy should use the explicit formula
• #5184: Some? wheels don’t express a numpy dependency
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• #5197: mstats: test_kurtosis fails (ULP max is 2)
• #5260: Typo causing an error in splrep
• #5263: Default epsilon in rbf.py fails for colinear points
• #5276: Reading empty (no data) arff file fails
• #5280: 1d scipy.signal.convolve much slower than numpy.convolve
• #5326: Implementation error in scipy.interpolate.PchipInterpolator
• #5370: Test issue with test_quadpack and libm.so as a linker script
• #5426: ERROR: test_stats.test_chisquare_masked_arrays
• #5427: Automate installing correct numpy versions in numpy-vendor image
• #5430: Python3 : Numpy scalar types “not iterable”; specific instance…
• #5450: BUG: spatial.ConvexHull triggers a seg. fault when given nans.
• #5478: clarify the relation between matrix normal distribution and multivariate_normal

• #5539: lstsq related test failures on windows binaries from numpy-vendor
• #5560: doc: scipy.stats.burr pdf issue
• #5571: lstsq test failure after lapack_driver change
• #5577: ordqz segfault on Python 3.4 in Wine
• #5578: scipy.linalg test failures on python 3 in Wine
• #5607: Overloaded ‘isnan(double&)’ is ambiguous when compiling with…
• #5629: Test for lstsq randomly failed
• #5630: memory leak with scipy 0.16 spatial cKDEtree
• #5689: isnan errors compiling scipy/special/Faddeeva.cc with clang++
• #5694: fftpack test failure in test_import
• #5719: curve_fit(method!=”lm”) ignores initial guess

Pull requests for 0.17.0

• #3022: hyp1f1: better handling of large negative arguments
• #3107: ENH: Add ordered QZ decomposition
• #4390: ENH: Allow axis and keepdims arguments to be passed to scipy.linalg.norm.
• #4671: ENH: add axis to sparse norms
• #4796: ENH: Add cut tree function to scipy.cluster.hierarchy
• #4809: MAINT: cauchy moments are undefined
• #4821: ENH: stats: make distribution instances picklable
• #4839: ENH: Add scipy.special.exprel relative error exponential ufunc
• #4859: Logsumexp fixes - allows sign flags and b==0
• #4865: BUG: scipy.io.mmio.write: error with big indices and low precision
• #4869: add as_inexact option to _lib._util._asarray_validated
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• #4884: ENH: Finite difference approximation of Jacobian matrix
• #4890: ENH: Port cKDTree query methods to C++, allow pickling on Python…
• #4892: how much doctesting is too much?
• #4896: MAINT: work around a possible numpy ufunc loop selection bug
• #4898: MAINT: A bit of pyflakes-driven cleanup.
• #4899: ENH: add ‘alternative’ keyword to hypothesis tests in stats
• #4903: BENCH: Benchmarks for interpolate module
• #4905: MAINT: prepend underscore to mask_to_limits; delete masked_var.
• #4906: MAINT: Benchmarks for optimize.leastsq
• #4910: WIP: Trimmed statistics functions have inconsistent API.
• #4912: MAINT: fix typo in stats tutorial. Closes gh-4911.
• #4914: DEP: deprecate scipy.stats.ss and scipy.stats.square_of_sums.
• #4924: MAINT: if the imaginary part of logm of a real matrix is small,…
• #4930: BENCH: Benchmarks for signal module
• #4941: ENH: update find_repeats.
• #4942: MAINT: use np.float64_t instead of np.float_t in cKDTree
• #4944: BUG: integer overflow in correlate_nd
• #4951: do not ignore invalid kwargs in distributions fit method
• #4958: Add some detail to docstrings for special functions
• #4961: ENH: stats.describe: add bias kw and empty array handling
• #4963: ENH: scipy.sparse.coo.coo_matrix.__init__: less memory needed
• #4968: DEP: deprecate stats.f_value* and mstats.f_value* functions.
• #4969: ENH: review stats.relfreq and stats.cumfreq; fixes to stats.histogram

• #4971: Extend github source links to line ranges
• #4972: MAINT: impove the error message in validate_runtests_log
• #4976: DEP: deprecate scipy.stats.threshold
• #4977: MAINT: more careful dtype treatment in block diagonal matrix…
• #4979: ENH: distributions, complex arguments
• #4984: clarify dirichlet distribution error handling
• #4992: ENH: stats.fligner and stats.bartlett empty input handling.
• #4996: DOC: fix stats.spearmanr docs
• #4997: Fix up boxcox for underflow / loss of precision
• #4998: DOC: improved documentation for stats.ppcc_max

• #5000: ENH: added empty input handling scipy.moment; doc enhancements
• #5003: ENH: improves rankdata algorithm
• #5005: scipy.stats: numerical stability improvement
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• #5007: ENH: nan handling in functions that use stats._chk_asarray
• #5009: remove coveralls.io
• #5010: Hypergeometric distribution log survival function
• #5014: Patch to compute the volume and area of convex hulls
• #5015: DOC: Fix mistaken variable name in sawtooth
• #5016: DOC: resample example
• #5017: DEP: deprecate stats.betai and stats.chisqprob

• #5018: ENH: Add test on random inpu to volume computations
• #5026: BUG: Fix return dtype of lil_matrix.getnnz(axis=0)
• #5030: DOC: resample slow for prime output too
• #5033: MAINT: integrate, special: remove unused R1MACH and Makefile
• #5034: MAINT: signal: lift max_len_seq validation out of Cython
• #5035: DOC/MAINT: refguide / doctest drudgery
• #5041: BUG: fixing some small memory leaks detected by cppcheck
• #5044: [GSoC] ENH: New least-squares algorithms
• #5050: MAINT: C fixes, trimmed a lot of dead code from Cephes
• #5057: ENH: sparse: avoid densifying on sparse/dense elementwise mult
• #5058: TST: stats: add a sample distribution to the test loop
• #5061: ENH: spatial: faster 2D Voronoi and Convex Hull plotting
• #5065: TST: improve test coverage for stats.mvsdist and stats.bayes_mvs

• #5066: MAINT: fitpack: remove a noop
• #5067: ENH: empty and nan input handling for stats.kstat and stats.kstatvar

• #5071: DOC: optimize: Correct paper reference, add doi
• #5072: MAINT: scipy.sparse cleanup
• #5073: DOC: special: Add an example showing the relation of diric to…
• #5075: DOC: clarified parameterization of stats.lognorm
• #5076: use int, float, bool instead of np.int, np.float, np.bool
• #5078: DOC: Rename fftpack docs to README
• #5081: BUG: Correct handling of scalar ‘b’ in lsmr and lsqr
• #5082: loadmat variable_names: don’t confuse [] and None.
• #5083: Fix integrate.fixed_quad docstring to indicate None return value
• #5086: Use solve() instead of inv() for gaussian_kde
• #5090: MAINT: stats: add explicit _sf, _isf to gengamma distribution
• #5094: ENH: scipy.interpolate.NearestNDInterpolator: cKDTree configurable
• #5098: DOC: special: fix typesetting in *_roots quadrature functions
• #5099: DOC: make the docstring of stats.moment raw
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• #5104: DOC/ENH fixes and micro-optimizations for scipy.linalg
• #5105: enh: made l-bfgs-b parameter for the maximum number of line search…
• #5106: TST: add NIST test cases to stats.f_oneway

• #5110: [GSoC]: Bounded linear least squares
• #5111: MAINT: special: Cephes cleanup
• #5118: BUG: FIR path failed if len(x) < len(b) in lfilter.
• #5124: ENH: move the filliben approximation to a publicly visible function
• #5126: StatisticsCleanup: stats.kruskal review
• #5130: DOC: update PyPi trove classifiers. Beta -> Stable. Add license.
• #5131: DOC: differential_evolution, improve docstring for mutation and…
• #5132: MAINT: differential_evolution improve init_population_lhs comments…
• #5133: MRG: rebased mmio refactoring
• #5135: MAINT: stats.mstats consistency with stats.stats

• #5139: TST: linalg: add a smoke test for gh-5039
• #5140: EHN: Update constants.codata to CODATA 2014
• #5145: added ValueError to docstring as possible error raised
• #5146: MAINT: Improve implementation details and doc in stats.shapiro

• #5147: [GSoC] ENH: Upgrades to curve_fit
• #5150: Fix misleading wavelets/cwt example
• #5152: BUG: cluster.hierarchy.dendrogram: missing font size doesn’t…
• #5153: add keywords to control the summation in discrete distributions…
• #5156: DOC: added comments on algorithms used in Legendre function
• #5158: ENH: optimize: add the Hungarian algorithm
• #5162: FIX: Remove lena
• #5164: MAINT: fix cluster.hierarchy.dendrogram issues and docs
• #5166: MAINT: changed stats.pointbiserialr to delegate to stats.pearsonr

• #5167: ENH: add nan_policy to stats.kendalltau.
• #5168: TST: added nist test case (Norris) to stats.linregress.
• #5169: update lpmv docstring
• #5171: Clarify metric parameter in linkage docstring
• #5172: ENH: add mode keyword to signal.spectrogram
• #5177: DOC: graphical example for KDTree.query_ball_point
• #5179: MAINT: stats: tweak the formula for ncx2.pdf
• #5188: MAINT: linalg: A bit of clean up.
• #5189: BUG: stats: Use the explicit formula in stats.genextreme.entropy
• #5193: BUG: fix uninitialized use in lartg
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• #5194: BUG: properly return error to fortran from ode_jacobian_function
• #5198: TST: Fix TestCtypesQuad failure on Python 3.5 for Windows
• #5201: allow extrapolation in interp1d
• #5209: MAINT: Change complex parameter to boolean in Y_()
• #5213: BUG: sparse: fix logical comparison dtype conflicts
• #5216: BUG: sparse: fixing unbound local error
• #5218: DOC and BUG: Bessel function docstring improvements, fix array_like,…
• #5222: MAINT: sparse: fix COO ctor
• #5224: DOC: optimize: type of OptimizeResult.hess_inv varies
• #5228: ENH: Add maskandscale support to netcdf; based on pupynere and…
• #5229: DOC: sparse.linalg.svds doc typo fixed
• #5234: MAINT: sparse: simplify COO ctor
• #5235: MAINT: sparse: warn on todia() with many diagonals
• #5236: MAINT: ndimage: simplify thread handling/recursion + constness
• #5239: BUG: integrate: Fixed issue 4118
• #5241: qr_insert fixes, closes #5149
• #5246: Doctest tutorial files
• #5247: DOC: optimize: typo/import fix in linear_sum_assignment
• #5248: remove inspect.getargspec and test python 3.5 on Travis CI
• #5250: BUG: Fix sparse multiply by single-element zero
• #5261: Fix bug causing a TypeError in splrep when a runtime warning…
• #5262: Follow up to 4489 (Addition LAPACK routines in linalg.lstsq)
• #5264: ignore zero-length edges for default epsilon
• #5269: DOC: Typos and spell-checking
• #5272: MAINT: signal: Convert array syntax to memoryviews
• #5273: DOC: raw strings for docstrings with math
• #5274: MAINT: sparse: update cython code for MST
• #5278: BUG: io: Stop guessing the data delimiter in ARFF files.
• #5289: BUG: misc: Fix the Pillow work-around for 1-bit images.
• #5291: ENH: call np.correlate for 1d in scipy.signal.correlate
• #5294: DOC: special: Remove a potentially misleading example from the…
• #5295: Simplify replacement of fftpack by pyfftw
• #5296: ENH: Add matrix normal distribution to stats
• #5297: Fixed leaf_rotation and leaf_font_size in Python 3
• #5303: MAINT: stats: rewrite find_repeats
• #5307: MAINT: stats: remove unused Fortran routine
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• #5313: BUG: sparse: fix diags for nonsquare matrices
• #5315: MAINT: special: Cephes cleanup
• #5316: fix input check for sparse.linalg.svds
• #5319: MAINT: Cython code maintenance
• #5328: BUG: Fix place_poles return values
• #5329: avoid a spurious divide-by-zero in Student t stats
• #5334: MAINT: integrate: miscellaneous cleanup
• #5340: MAINT: Printing Error Msg to STDERR and Removing iterate.dat
• #5347: ENH: add Py3.5-style matmul operator (e.g. A @ B) to sparse linear…
• #5350: FIX error, when reading 32-bit float wav files
• #5351: refactor the PCHIP interpolant’s algorithm
• #5354: MAINT: construct csr and csc matrices from integer lists
• #5359: add a fast path to interp1d
• #5364: Add two fill_values to interp1d.
• #5365: ABCD docstrings
• #5366: Fixed typo in the documentation for scipy.signal.cwt() per #5290.
• #5367: DOC updated scipy.spatial.Delaunay example
• #5368: ENH: Do not create a throwaway class at every function call
• #5372: DOC: spectral: fix reference formatting
• #5375: PEP8 amendments to ffpack_basic.py
• #5377: BUG: integrate: builtin name no longer shadowed
• #5381: PEP8ified fftpack_pseudo_diffs.py
• #5385: BLD: fix Bento build for changes to optimize and spatial
• #5386: STY: PEP8 amendments to interpolate.py
• #5387: DEP: deprecate stats.histogram
• #5388: REL: add “make upload” command to doc/Makefile.
• #5389: DOC: updated origin param of scipy.ndimage.filters.convolve
• #5395: BUG: special: fix a number of edge cases related to x = np.inf.
• #5398: MAINT: stats: avoid spurious warnings in lognorm.pdf(0, s)
• #5407: ENH: stats: Handle mu=0 in stats.poisson
• #5409: Fix the behavior of discrete distributions at the right-hand…
• #5412: TST: stats: skip a test to avoid a spurious log(0) warning
• #5413: BUG: linalg: work around LAPACK single-precision lwork computation…
• #5414: MAINT: stats: move creation of namedtuples outside of function…
• #5415: DOC: fix up sections in ToC in the pdf reference guide
• #5416: TST: fix issue with a ctypes test for integrate on Fedora.
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• #5418: DOC: fix bugs in signal.TransferFunction docstring. Closes gh-5287.
• #5419: MAINT: sparse: fix usage of NotImplementedError
• #5420: Raise proper error if maxiter < 1
• #5422: DOC: changed documentation of brent to be consistent with bracket
• #5444: BUG: gaussian_filter, BPoly.from_derivatives fail on numpy int…
• #5445: MAINT: stats: fix incorrect deprecation warnings and test noise
• #5446: DOC: add note about PyFFTW in fftpack tutorial.
• #5459: DOC: integrate: Some improvements to the differential equation…
• #5465: BUG: Relax mstats kurtosis test tolerance by a few ulp
• #5471: ConvexHull should raise ValueError for NaNs.
• #5473: MAINT: update decorators.py module to version 4.0.5
• #5476: BUG: imsave searches for wrong channel axis if image has 3 or…
• #5477: BLD: add numpy to setup/install_requires for OS X wheels
• #5479: ENH: return Jacobian/Hessian from BasinHopping
• #5484: BUG: fix ttest zero division handling
• #5486: Fix crash on kmeans2
• #5491: MAINT: Expose parallel build option to runtests.py
• #5494: Sort OptimizeResult.__repr__ by key
• #5496: DOC: update the author name mapping
• #5497: Enhancement to binned_statistic: option to unraveled returned…
• #5498: BUG: sparse: fix a bug in sparsetools input dtype resolution
• #5500: DOC: detect unprintable characters in docstrings
• #5505: BUG: misc: Ensure fromimage converts mode ‘P’ to ‘RGB’ or ‘RGBA’.
• #5514: DOC: further update the release notes
• #5515: ENH: optionally disable fixed-point acceleration
• #5517: DOC: Improvements and additions to the matrix_normal doc
• #5518: Remove wrappers for LAPACK deprecated routines
• #5521: TST: skip a linalg.orth memory test on 32-bit platforms.
• #5523: DOC: change a few floats to integers in docstring examples
• #5524: DOC: more updates to 0.17.0 release notes.
• #5525: Fix to minor typo in documentation for scipy.integrate.ode
• #5527: TST: bump arccosh tolerance to allow for inaccurate numpy or…
• #5535: DOC: signal: minor clarification to docstring of TransferFunction.
• #5538: DOC: signal: fix find_peaks_cwt documentation
• #5545: MAINT: Fix typo in linalg/basic.py
• #5547: TST: mark TestEig.test_singular as knownfail in master.
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• #5550: MAINT: work around lstsq driver selection issue
• #5556: BUG: Fixed broken dogbox trust-region radius update
• #5561: BUG: eliminate warnings, exception (on Win) in test_maskandscale;…
• #5567: TST: a few cleanups in the test suite; run_module_suite and clearer…
• #5568: MAINT: simplify poisson’s _argcheck
• #5569: TST: bump GMean test tolerance to make it pass on Wine
• #5572: TST: lstsq: bump test tolerance for TravisCI
• #5573: TST: remove use of np.fromfile from cluster.vq tests
• #5576: Lapack deprecations
• #5579: TST: skip tests of linalg.norm axis keyword on numpy <= 1.7.x
• #5582: Clarify language of survival function documentation
• #5583: MAINT: stats/tests: A bit of clean up.
• #5588: DOC: stats: Add a note that stats.burr is the Type III Burr distribution.
• #5595: TST: fix test_lamch failures on Python 3
• #5600: MAINT: Ignore spatial/ckdtree.cxx and .h
• #5602: Explicitly numbered replacement fields for maintainability
• #5605: MAINT: collection of small fixes to test suite
• #5614: Minor doc change.
• #5624: FIX: Fix interpolate
• #5625: BUG: msvc9 binaries crash when indexing std::vector of size 0
• #5635: BUG: misspelled __dealloc__ in cKDTree.
• #5642: STY: minor fixup of formatting of 0.17.0 release notes.
• #5643: BLD: fix a build issue in special/Faddeeva.cc with isnan.
• #5661: TST: linalg tests used stdlib random instead of numpy.random.
• #5682: backports for 0.17.0
• #5696: Minor improvements to least_squares’ docstring.
• #5697: BLD: fix for isnan/isinf issues in special/Faddeeva.cc
• #5720: TST: fix for file opening error in fftpack test_import.py
• #5722: BUG: Make curve_fit respect an initial guess with bounds
• #5726: Backports for v0.17.0rc2
• #5727: API: Changes to least_squares API

3.14 SciPy 0.16.1 Release Notes

SciPy 0.16.1 is a bug-fix release with no new features compared to 0.16.0.
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3.14.1 Issues closed for 0.16.1

• #5077: cKDTree not indexing properly for arrays with too many elements
• #5127: Regression in 0.16.0: solve_banded errors out in patsy test suite
• #5149: linalg tests apparently cause python to crash with numpy 1.10.0b1
• #5154: 0.16.0 fails to build on OS X; can’t find Python.h
• #5173: failing stats.histogram test with numpy 1.10
• #5191: Scipy 0.16.x - TypeError: _asarray_validated() got an unexpected…
• #5195: tarballs missing documentation source
• #5363: FAIL: test_orthogonal.test_j_roots, test_orthogonal.test_js_roots

3.14.2 Pull requests for 0.16.1

• #5088: BUG: fix logic error in cKDTree.sparse_distance_matrix
• #5089: BUG: Don’t overwrite b in lfilter’s FIR path
• #5128: BUG: solve_banded failed when solving 1x1 systems
• #5155: BLD: fix missing Python include for Homebrew builds.
• #5192: BUG: backport as_inexact kwarg to _asarray_validated
• #5203: BUG: fix uninitialized use in lartg 0.16 backport
• #5204: BUG: properly return error to fortran from ode_jacobian_function…
• #5207: TST: Fix TestCtypesQuad failure on Python 3.5 for Windows
• #5352: TST: sparse: silence warnings about boolean indexing
• #5355: MAINT: backports for 0.16.1 release
• #5356: REL: update Paver file to ensure sdist contents are OK for releases.
• #5382: 0.16.x backport: MAINT: work around a possible numpy ufunc loop…
• #5393: TST:special: bump tolerance levels for test_j_roots and test_js_roots
• #5417: MAINT: stats: move namedtuple creating outside function calls.

3.15 SciPy 0.16.0 Release Notes

Contents

• SciPy 0.16.0 Release Notes

– New features

∗ Benchmark suite

∗ scipy.linalg improvements

∗ scipy.signal improvements

136 Chapter 3. Release Notes

https://github.com/scipy/scipy/issues/5077
https://github.com/scipy/scipy/issues/5127
https://github.com/scipy/scipy/issues/5149
https://github.com/scipy/scipy/issues/5154
https://github.com/scipy/scipy/issues/5173
https://github.com/scipy/scipy/issues/5191
https://github.com/scipy/scipy/issues/5195
https://github.com/scipy/scipy/issues/5363
https://github.com/scipy/scipy/pull/5088
https://github.com/scipy/scipy/pull/5089
https://github.com/scipy/scipy/pull/5128
https://github.com/scipy/scipy/pull/5155
https://github.com/scipy/scipy/pull/5192
https://github.com/scipy/scipy/pull/5203
https://github.com/scipy/scipy/pull/5204
https://github.com/scipy/scipy/pull/5207
https://github.com/scipy/scipy/pull/5352
https://github.com/scipy/scipy/pull/5355
https://github.com/scipy/scipy/pull/5356
https://github.com/scipy/scipy/pull/5382
https://github.com/scipy/scipy/pull/5393
https://github.com/scipy/scipy/pull/5417


SciPy Reference Guide, Release 1.3.1

∗ scipy.sparse improvements

∗ scipy.spatial improvements

∗ scipy.stats improvements

∗ scipy.optimize improvements

– Deprecated features

– Backwards incompatible changes

– Other changes

– Authors

∗ Issues closed for 0.16.0

∗ Pull requests for 0.16.0

SciPy 0.16.0 is the culmination of 7 months of hard work. It contains many new features, numerous bug-fixes, improved
test coverage and better documentation. There have been a number of deprecations and API changes in this release, which
are documented below. All users are encouraged to upgrade to this release, as there are a large number of bug-fixes and
optimizations. Moreover, our development attention will now shift to bug-fix releases on the 0.16.x branch, and on adding
new features on the master branch.
This release requires Python 2.6, 2.7 or 3.2-3.4 and NumPy 1.6.2 or greater.
Highlights of this release include:

• A Cython API for BLAS/LAPACK in scipy.linalg
• A new benchmark suite. It’s now straightforward to add new benchmarks, and they’re routinely included with
performance enhancement PRs.

• Support for the second order sections (SOS) format in scipy.signal.

3.15.1 New features

Benchmark suite

The benchmark suite has switched to usingAirspeedVelocity for benchmarking. You can run the suite locally viapython
runtests.py --bench. For more details, see benchmarks/README.rst.

scipy.linalg improvements

A full set of Cython wrappers for BLAS and LAPACK has been added in the modules scipy.linalg.
cython_blas and scipy.linalg.cython_lapack. In Cython, these wrappers can now be cimported from
their corresponding modules and used without linking directly against BLAS or LAPACK.
The functions scipy.linalg.qr_delete, scipy.linalg.qr_insert and scipy.linalg.
qr_update for updating QR decompositions were added.
The function scipy.linalg.solve_circulant solves a linear system with a circulant coefficient matrix.
The function scipy.linalg.invpascal computes the inverse of a Pascal matrix.
The function scipy.linalg.solve_toeplitz, a Levinson-Durbin Toeplitz solver, was added.
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Added wrapper for potentially useful LAPACK function *lasd4. It computes the square root of the i-th updated
eigenvalue of a positive symmetric rank-one modification to a positive diagonal matrix. See its LAPACK documentation
and unit tests for it to get more info.
Added two extra wrappers for LAPACK least-square solvers. Namely, they are *gelsd and *gelsy.
Wrappers for the LAPACK *lange functions, which calculate various matrix norms, were added.
Wrappers for *gtsv and *ptsv, which solve A*X = B for tri-diagonal matrix A, were added.

scipy.signal improvements

Support for second order sections (SOS) as a format for IIR filters was added. The new functions are:
• scipy.signal.sosfilt

• scipy.signal.sosfilt_zi,
• scipy.signal.sos2tf

• scipy.signal.sos2zpk

• scipy.signal.tf2sos

• scipy.signal.zpk2sos.
Additionally, the filter design functions iirdesign, iirfilter, butter, cheby1, cheby2, ellip, and bessel can return the filter in
the SOS format.
The function scipy.signal.place_poles, which provides two methods to place poles for linear systems, was
added.
The option to use Gustafsson’s method for choosing the initial conditions of the forward and backward passes was added
to scipy.signal.filtfilt.
New classes TransferFunction, StateSpace and ZerosPolesGain were added. These classes are now re-
turned when instantiating scipy.signal.lti. Conversion between those classes can be done explicitly now.
An exponential (Poisson) window was added as scipy.signal.exponential, and a Tukey window was added as
scipy.signal.tukey.
The function for computing digital filter group delay was added as scipy.signal.group_delay.
The functionality for spectral analysis and spectral density estimation has been significantly improved: scipy.signal.
welch became ~8x faster and the functions scipy.signal.spectrogram, scipy.signal.coherence and
scipy.signal.csd (cross-spectral density) were added.
scipy.signal.lsim was rewritten - all known issues are fixed, so this function can now be used instead of lsim2;
lsim is orders of magnitude faster than lsim2 in most cases.

scipy.sparse improvements

The function scipy.sparse.norm, which computes sparse matrix norms, was added.
The function scipy.sparse.random, which allows to draw random variates from an arbitrary distribution, was
added.
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scipy.spatial improvements

scipy.spatial.cKDTree has seen a major rewrite, which improved the performance of the query method sig-
nificantly, added support for parallel queries, pickling, and options that affect the tree layout. See pull request 4374 for
more details.
The function scipy.spatial.procrustes for Procrustes analysis (statistical shape analysis) was added.

scipy.stats improvements

The Wishart distribution and its inverse have been added, as scipy.stats.wishart and scipy.stats.
invwishart.
The Exponentially Modified Normal distribution has been added as scipy.stats.exponnorm.
The Generalized Normal distribution has been added as scipy.stats.gennorm.
All distributions now contain a random_state property and allow specifying a specific numpy.random.
RandomState random number generator when generating random variates.
Many statistical tests and other scipy.stats functions that have multiple return values now return namedtuples.
See pull request 4709 for details.

scipy.optimize improvements

A new derivative-free method DF-SANE has been added to the nonlinear equation system solving function scipy.
optimize.root.

3.15.2 Deprecated features

scipy.stats.pdf_fromgamma is deprecated. This function was undocumented, untested and rarely used.
Statsmodels provides equivalent functionality with statsmodels.distributions.ExpandedNormal.
scipy.stats.fastsort is deprecated. This function is unnecessary, numpy.argsort can be used instead.
scipy.stats.signaltonoise andscipy.stats.mstats.signaltonoise are deprecated. These func-
tions did not belong in scipy.stats and are rarely used. See issue #609 for details.
scipy.stats.histogram2 is deprecated. This function is unnecessary, numpy.histogram2d can be used
instead.

3.15.3 Backwards incompatible changes

The deprecated global optimizer scipy.optimize.anneal was removed.
The following deprecated modules have been removed: scipy.lib.blas, scipy.lib.lapack, scipy.
linalg.cblas, scipy.linalg.fblas, scipy.linalg.clapack, scipy.linalg.flapack. They
had been deprecated since Scipy 0.12.0, the functionality should be accessed as scipy.linalg.blas and scipy.
linalg.lapack.
The deprecated function scipy.special.all_mat has been removed.
The deprecated functions fprob, ksprob, zprob, randwcdf and randwppf have been removed from scipy.
stats.
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3.15.4 Other changes

The version numbering for development builds has been updated to comply with PEP 440.
Building with python setup.py develop is now supported.

3.15.5 Authors

• @axiru +
• @endolith
• Elliott Sales de Andrade +
• Anne Archibald
• Yoshiki Vázquez Baeza +
• Sylvain Bellemare
• Felix Berkenkamp +
• Raoul Bourquin +
• Matthew Brett
• Per Brodtkorb
• Christian Brueffer
• Lars Buitinck
• Evgeni Burovski
• Steven Byrnes
• CJ Carey
• George Castillo +
• Alex Conley +
• Liam Damewood +
• Rupak Das +
• Abraham Escalante +
• Matthias Feurer +
• Eric Firing +
• Clark Fitzgerald
• Chad Fulton
• André Gaul
• Andreea Georgescu +
• Christoph Gohlke
• Andrey Golovizin +
• Ralf Gommers
• J.J. Green +
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• Alex Griffing
• Alexander Grigorievskiy +
• Hans Moritz Gunther +
• Jonas Hahnfeld +
• Charles Harris
• Ian Henriksen
• Andreas Hilboll
• Åsmund Hjulstad +
• Jan Schlüter +
• Janko Slavič +
• Daniel Jensen +
• Johannes Ballé +
• Terry Jones +
• Amato Kasahara +
• Eric Larson
• Denis Laxalde
• Antony Lee
• Gregory R. Lee
• Perry Lee +
• Loïc Estève
• Martin Manns +
• Eric Martin +
• Matěj Kocián +
• Andreas Mayer +
• Nikolay Mayorov +
• Robert McGibbon +
• Sturla Molden
• Nicola Montecchio +
• Eric Moore
• Jamie Morton +
• Nikolas Moya +
• Maniteja Nandana +
• Andrew Nelson
• Joel Nothman
• Aldrian Obaja
• Regina Ongowarsito +
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• Paul Ortyl +
• Pedro López-Adeva Fernández-Layos +
• Stefan Peterson +
• Irvin Probst +
• Eric Quintero +
• John David Reaver +
• Juha Remes +
• Thomas Robitaille
• Clancy Rowley +
• Tobias Schmidt +
• Skipper Seabold
• Aman Singh +
• Eric Soroos
• Valentine Svensson +
• Julian Taylor
• Aman Thakral +
• Helmut Toplitzer +
• Fukumu Tsutsumi +
• Anastasiia Tsyplia +
• Jacob Vanderplas
• Pauli Virtanen
• Matteo Visconti +
• Warren Weckesser
• Florian Wilhelm +
• Nathan Woods
• Haochen Wu +
• Daan Wynen +

A total of 93 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
This list of names is automatically generated, and may not be fully complete.

Issues closed for 0.16.0

• #1063: Implement a whishart distribution (Trac #536)
• #1885: Rbf: floating point warnings - possible bug (Trac #1360)
• #2020: Rbf default epsilon too large (Trac #1495)
• #2325: extending distributions, hypergeom, to degenerate cases (Trac…
• #3502: [ENH] linalg.hessenberg should use ORGHR for calc_q=True
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• #3603: Passing array as window into signal.resample() fails
• #3675: Intermittent failures for signal.slepian on Windows
• #3742: Pchipinterpolator inconvenient as ppoly
• #3786: add procrustes?
• #3798: scipy.io.savemat fails for empty dicts
• #3975: Use RandomState in scipy.stats
• #4022: savemat incorrectly saves logical arrays
• #4028: scipy.stats.geom.logpmf(1,1) returns nan. The correct value is…
• #4030: simplify scipy.stats.betaprime.cdf
• #4031: improve accuracy of scipy.stats.gompertz distribution for small…
• #4033: improve accuracy of scipy.stats.lomax distribution for small…
• #4034: improve accuracy of scipy.stats.rayleigh distribution for large…
• #4035: improve accuracy of scipy.stats.truncexpon distribution for small…
• #4081: Error when reading matlab file: buffer is too small for requested…
• #4100: Why does qr(a, lwork=0) not fail?
• #4134: scipy.stats: rv_frozen has no expect() method
• #4204: Please add docstring to scipy.optimize.RootResults
• #4206: Wrap LAPACK tridiagonal solve routine gtsv
• #4208: Empty sparse matrices written to MAT file cannot be read by MATLAB
• #4217: use a TravisCI configuration with numpy built with NPY_RELAXED_STRIDES_CHECKING=1
• #4282: integrate.odeint raises an exception when full_output=1 and the…
• #4301: scipy and numpy version names do not follow pep 440
• #4355: PPoly.antiderivative() produces incorrect output
• #4391: spsolve becomes extremely slow with large b matrix
• #4393: Documentation glitsch in sparse.linalg.spilu
• #4408: Vector-valued constraints in minimize() et al
• #4412: Documentation of scipy.signal.cwt error
• #4428: dok.__setitem__ problem with negative indices
• #4434: Incomplete documentation for sparse.linalg.spsolve
• #4438: linprog() documentation example wrong
• #4445: Typo in scipy.special.expit doc
• #4467: Documentation Error in scipy.optimize options for TNC
• #4492: solve_toeplitz benchmark is bitrotting already
• #4506: lobpcg/sparse performance regression Jun 2014?
• #4520: g77_abi_wrappers needed on Linux for MKL as well
• #4521: Broken check in uses_mkl for newer versions of the library
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• #4523: rbf with gaussian kernel seems to produce more noise than original…
• #4526: error in site documentation for poisson.pmf() method
• #4527: KDTree example doesn’t work in Python 3
• #4550: scipy.stats.mode - UnboundLocalError on empty sequence
• #4554: filter out convergence warnings in optimization tests
• #4565: odeint messages
• #4569: remez: “ValueError: Failure to converge after 25 iterations….
• #4582: DOC: optimize: _minimize_scalar_brent does not have a disp option
• #4585: DOC: Erroneous latex-related characters in tutorial.
• #4590: sparse.linalg.svds should throw an exception if which not in…
• #4594: scipy.optimize.linprog IndexError when a callback is providen
• #4596: scipy.linalg.block_diag misbehavior with empty array inputs (v0.13.3)
• #4599: scipy.integrate.nquad should call _OptFunc when called with only…
• #4612: Crash in signal.lfilter on nd input with wrong shaped zi
• #4613: scipy.io.readsav error on reading sav file
• #4673: scipy.interpolate.RectBivariateSpline construction locks PyQt…
• #4681: Broadcasting in signal.lfilter still not quite right.
• #4705: kmeans k_or_guess parameter error if guess is not square array
• #4719: Build failure on 14.04.2
• #4724: GenGamma _munp function fails due to overflow
• #4726: FAIL: test_cobyla.test_vector_constraints
• #4734: Failing tests in stats with numpy master.
• #4736: qr_update bug or incompatibility with numpy 1.10?
• #4746: linprog returns solution violating equality constraint
• #4757: optimize.leastsq docstring mismatch
• #4774: Update contributor list for v0.16
• #4779: circmean and others do not appear in the documentation
• #4788: problems with scipy sparse linalg isolve iterative.py when complex
• #4791: BUG: scipy.spatial: incremental Voronoi doesn’t increase size…

Pull requests for 0.16.0

• #3116: sparse: enhancements for DIA format
• #3157: ENH: linalg: add the function ‘solve_circulant’ for solving a…
• #3442: ENH: signal: Add Gustafsson’s method as an option for the filtfilt…
• #3679: WIP: fix sporadic slepian failures
• #3680: Some cleanups in stats
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• #3717: ENH: Add second-order sections filtering
• #3741: Dltisys changes
• #3956: add note to scipy.signal.resample about prime sample numbers
• #3980: Add check_finite flag to UnivariateSpline
• #3996: MAINT: stricter linalg argument checking
• #4001: BUG: numerical precision in dirichlet
• #4012: ENH: linalg: Add a function to compute the inverse of a Pascal…
• #4021: ENH: Cython api for lapack and blas
• #4089: Fixes for various PEP8 issues.
• #4116: MAINT: fitpack: trim down compiler warnings (unused labels, variables)
• #4129: ENH: stats: add a random_state property to distributions
• #4135: ENH: Add Wishart and inverse Wishart distributions
• #4195: improve the interpolate docs
• #4200: ENH: Add t-test from descriptive stats function.
• #4202: Dendrogram threshold color
• #4205: BLD: fix a number of Bento build warnings.
• #4211: add an ufunc for the inverse Box-Cox transfrom
• #4212: MRG:fix for gh-4208
• #4213: ENH: specific warning if matlab file is empty
• #4215: Issue #4209: splprep documentation updated to reflect dimensional…
• #4219: DOC: silence several Sphinx warnings when building the docs
• #4223: MAINT: remove two redundant lines of code
• #4226: try forcing the numpy rebuild with relaxed strides
• #4228: BLD: some updates to Bento config files and docs. Closes gh-3978.
• #4232: wrong references in the docs
• #4242: DOC: change example sample spacing
• #4245: Arff fixes
• #4246: MAINT: C fixes
• #4247: MAINT: remove some unused code
• #4249: Add routines for updating QR decompositions
• #4250: MAINT: Some pyflakes-driven cleanup in linalg and sparse
• #4252: MAINT trim away >10 kLOC of generated C code
• #4253: TST: stop shadowing ellip* tests vs boost data
• #4254: MAINT: special: use NPY_PI, not M_PI
• #4255: DOC: INSTALL: use Py3-compatible print syntax, and don’t mention…
• #4256: ENH: spatial: reimplement cdist_cosine using np.dot
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• #4258: BUG: io.arff #4429 #2088
• #4261: MAINT: signal: PEP8 and related style clean up.
• #4262: BUG: newton_krylov() was ignoring norm_tol argument, closes #4259
• #4263: MAINT: clean up test noise and optimize tests for docstrings…
• #4266: MAINT: io: Give an informative error when attempting to read…
• #4268: MAINT: fftpack benchmark integer division vs true division
• #4269: MAINT: avoid shadowing the eigvals function
• #4272: BUG: sparse: Fix bench_sparse.py
• #4276: DOC: remove confusing parts of the documentation related to writing…
• #4281: Sparse matrix multiplication: only convert array if needed (with…
• #4284: BUG: integrate: odeint crashed when the integration time was…
• #4286: MRG: fix matlab output type of logical array
• #4287: DEP: deprecate stats.pdf_fromgamma. Closes gh-699.
• #4291: DOC: linalg: fix layout in cholesky_banded docstring
• #4292: BUG: allow empty dict as proxy for empty struct
• #4293: MAINT: != -> not_equal in hamming distance implementation
• #4295: Pole placement
• #4296: MAINT: some cleanups in tests of several modules
• #4302: ENH: Solve toeplitz linear systems
• #4306: Add benchmark for conjugate gradient solver.
• #4307: BLD: PEP 440
• #4310: BUG: make stats.geom.logpmf(1,1) return 0.0 instead of nan
• #4311: TST: restore a test that uses slogdet now that we have dropped…
• #4313: Some minor fixes for stats.wishart addition.
• #4315: MAINT: drop numpy 1.5 compatibility code in sparse matrix tests
• #4318: ENH: Add random_state to multivariate distributions
• #4319: MAINT: fix hamming distance regression for exotic arrays, with…
• #4320: TST: a few changes like self.assertTrue(x == y, message) -> assert_equal(x,…
• #4321: TST: more changes like self.assertTrue(x == y, message) -> assert_equal(x,…
• #4322: TST: in test_signaltools, changes like self.assertTrue(x == y,…
• #4323: MAINT: clean up benchmarks so they can all be run as single files.
• #4324: Add more detailed committer guidelines, update MAINTAINERS.txt
• #4326: TST: use numpy.testing in test_hierarchy.py
• #4329: MAINT: stats: rename check_random_state test function
• #4330: Update distance tests
• #4333: MAINT: import comb, factorial from scipy.special, not scipy.misc
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• #4338: TST: more conversions from nose to numpy.testing
• #4339: MAINT: remove the deprecated all_mat function from special_matrices.py
• #4340: add several features to frozen distributions
• #4344: BUG: Fix/test invalid lwork param in qr
• #4345: Fix test noise visible with Python 3.x
• #4347: Remove deprecated blas/lapack imports, rename lib to _lib
• #4349: DOC: add a nontrivial example to stats.binned_statistic.
• #4350: MAINT: remove optimize.anneal for 0.16.0 (was deprecated in 0.14.0).
• #4351: MAINT: fix usage of deprecated Numpy C API in optimize…
• #4352: MAINT: fix a number of special test failures
• #4353: implement cdf for betaprime distribution
• #4357: BUG: piecewise polynomial antiderivative
• #4358: BUG: integrate: fix handling of banded Jacobians in odeint, plus…
• #4359: MAINT: remove a code path taken for Python version < 2.5
• #4360: MAINT: stats.mstats: Remove some unused variables (thanks, pyflakes).
• #4362: Removed erroneous reference to smoothing parameter #4072
• #4363: MAINT: interpolate: clean up in fitpack.py
• #4364: MAINT: lib: don’t export “partial” from decorator
• #4365: svdvals now returns a length-0 sequence of singular values given…
• #4367: DOC: slightly improve TeX rendering of wishart/invwishart docstring
• #4373: ENH: wrap gtsv and ptsv for solve_banded and solveh_banded.
• #4374: ENH: Enhancements to spatial.cKDTree
• #4376: BF: fix reading off-spec matlab logical sparse
• #4377: MAINT: integrate: Clean up some Fortran test code.
• #4378: MAINT: fix usage of deprecated Numpy C API in signal
• #4380: MAINT: scipy.optimize, removing further anneal references
• #4381: ENH: Make DCT and DST accept int and complex types like fft
• #4392: ENH: optimize: add DF-SANE nonlinear derivative-free solver
• #4394: Make reordering algorithms 64-bit clean
• #4396: BUG: bundle cblas.h in Accelerate ABI wrappers to enable compilation…
• #4398: FIX pdist bug where wminkowski’s w.dtype != double
• #4402: BUG: fix stat.hypergeom argcheck
• #4404: MAINT: Fill in the full symmetric squareform in the C loop
• #4405: BUG: avoid X += X.T (refs #4401)
• #4407: improved accuracy of gompertz distribution for small x
• #4414: DOC:fix error in scipy.signal.cwt documentation.
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• #4415: ENH: Improve accuracy of lomax for small x.
• #4416: DOC: correct a parameter name in docstring of SuperLU.solve….
• #4419: Restore scipy.linalg.calc_lwork also in master
• #4420: fix a performance issue with a sparse solver
• #4423: ENH: improve rayleigh accuracy for large x.
• #4424: BUG: optimize.minimize: fix overflow issue with integer x0 input.
• #4425: ENH: Improve accuracy of truncexpon for small x
• #4426: ENH: improve rayleigh accuracy for large x.
• #4427: MAINT: optimize: cleanup of TNC code
• #4429: BLD: fix build failure with numpy 1.7.x and 1.8.x.
• #4430: BUG: fix a sparse.dok_matrix set/get copy-paste bug
• #4433: Update _minimize.py
• #4435: ENH: release GIL around batch distance computations
• #4436: Fixed incomplete documentation for spsolve
• #4439: MAINT: integrate: Some clean up in the tests.
• #4440: Fast permutation t-test
• #4442: DOC: optimize: fix wrong result in docstring
• #4447: DOC: signal: Some additional documentation to go along with the…
• #4448: DOC: tweak the docstring of lapack.linalg module
• #4449: fix a typo in the expit docstring
• #4451: ENH: vectorize distance loops with gcc
• #4456: MAINT: don’t fail large data tests on MemoryError
• #4461: CI: use travis_retry to deal with network timeouts
• #4462: DOC: rationalize minimize() et al. documentation
• #4470: MAINT: sparse: inherit dok_matrix.toarray from spmatrix
• #4473: BUG: signal: Fix validation of the zi shape in sosfilt.
• #4475: BLD: setup.py: update min numpy version and support “setup.py…
• #4481: ENH: add a new linalg special matrix: the Helmert matrix
• #4485: MRG: some changes to allow reading bad mat files
• #4490: [ENH] linalg.hessenberg: use orghr - rebase
• #4491: ENH: linalg: Adding wrapper for potentially useful LAPACK function…
• #4493: BENCH: the solve_toeplitz benchmark used outdated syntax and…
• #4494: MAINT: stats: remove duplicated code
• #4496: References added for watershed_ift algorithm
• #4499: DOC: reshuffle stats distributions documentation
• #4501: Replace benchmark suite with airspeed velocity
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• #4502: SLSQP should strictly satisfy bound constraints
• #4503: DOC: forward port 0.15.x release notes and update author name…
• #4504: ENH: option to avoid computing possibly unused svd matrix
• #4505: Rebase of PR 3303 (sparse matrix norms)
• #4507: MAINT: fix lobpcg performance regression
• #4509: DOC: sparse: replace dead link
• #4511: Fixed differential evolution bug
• #4512: Change to fully PEP440 compliant dev version numbers (always…
• #4525: made tiny style corrections (pep8)
• #4533: Add exponentially modified gaussian distribution (scipy.stats.expongauss)
• #4534: MAINT: benchmarks: make benchmark suite importable on all scipy…
• #4535: BUG: Changed zip() to list(zip()) so that it could work in Python…
• #4536: Follow up to pr 4348 (exponential window)
• #4540: ENH: spatial: Add procrustes analysis
• #4541: Bench fixes
• #4542: TST: NumpyVersion dev -> dev0
• #4543: BUG: Overflow in savgol_coeffs
• #4544: pep8 fixes for stats
• #4546: MAINT: use reduction axis arguments in one-norm estimation
• #4549: ENH : Added group_delay to scipy.signal
• #4553: ENH: Significantly faster moment function
• #4556: DOC: document the changes of the sparse.linalg.svds (optional…
• #4559: DOC: stats: describe loc and scale parameters in the docstring…
• #4563: ENH: rewrite of stats.ppcc_plot
• #4564: Be more (or less) forgiving when user passes +-inf instead of…
• #4566: DEP: remove a bunch of deprecated function from scipy.stats,…
• #4570: MNT: Suppress LineSearchWarning’s in scipy.optimize tests
• #4572: ENH: Extract inverse hessian information from L-BFGS-B
• #4576: ENH: Split signal.lti into subclasses, part of #2912
• #4578: MNT: Reconcile docstrings and function signatures
• #4581: Fix build with Intel MKL on Linux
• #4583: DOC: optimize: remove references to unused disp kwarg
• #4584: ENH: scipy.signal - Tukey window
• #4587: Hermite asymptotic
• #4593: DOC - add example to RegularGridInterpolator
• #4595: DOC: Fix erroneous latex characters in tutorial/optimize.
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• #4600: Add return codes to optimize.tnc docs
• #4603: ENH: Wrap LAPACK *lange functions for matrix norms
• #4604: scipy.stats: generalized normal distribution
• #4609: MAINT: interpolate: fix a few inconsistencies between docstrings…
• #4610: MAINT: make runtest.py –bench-compare use asv continuous and…
• #4611: DOC: stats: explain rice scaling; add a note to the tutorial…
• #4614: BUG: lfilter, the size of zi was not checked correctly for nd…
• #4617: MAINT: integrate: Clean the C code behind odeint.
• #4618: FIX: Raise error when window length != data length
• #4619: Issue #4550: scipy.stats.mode - UnboundLocalError on empty…
• #4620: Fixed a problem (#4590) with svds accepting wrong eigenvalue…
• #4621: Speed up special.ai_zeros/bi_zeros by 10x
• #4623: MAINT: some tweaks to spatial.procrustes (private file, html…
• #4628: Speed up signal.lfilter and add a convolution path for FIR filters
• #4629: Bug: integrate.nquad; resolve issue #4599
• #4631: MAINT: integrate: Remove unused variables in a Fortran test function.
• #4633: MAINT: Fix convergence message for remez
• #4635: PEP8: indentation (so that pep8 bot does not complain)
• #4637: MAINT: generalize a sign function to do the right thing for complex…
• #4639: Amended typo in apple_sgemv_fix.c
• #4642: MAINT: use lapack for scipy.linalg.norm
• #4643: RBF default epsilon too large 2020
• #4646: Added atleast_1d around poly in invres and invresz
• #4647: fix doc pdf build
• #4648: BUG: Fixes #4408: Vector-valued constraints in minimize() et…
• #4649: Vonmisesfix
• #4650: Signal example clean up in Tukey and place_poles
• #4652: DOC: Fix the error in convolve for same mode
• #4653: improve erf performance
• #4655: DEP: deprecate scipy.stats.histogram2 in favour of np.histogram2d
• #4656: DEP: deprecate scipy.stats.signaltonoise
• #4660: Avoid extra copy for sparse compressed [:, seq] and [seq, :]…
• #4661: Clean, rebase of #4478, adding ?gelsy and ?gelsd wrappers
• #4662: MAINT: Correct odeint messages
• #4664: Update _monotone.py
• #4672: fix behavior of scipy.linalg.block_diag for empty input
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• #4675: Fix lsim
• #4676: Added missing colon to :math: directive in docstring.
• #4679: ENH: sparse randn
• #4682: ENH: scipy.signal - Addition of CSD, coherence; Enhancement of…
• #4684: BUG: various errors in weight calculations in orthogonal.py
• #4685: BUG: Fixes #4594: optimize.linprog IndexError when a callback…
• #4686: MAINT: cluster: Clean up duplicated exception raising code.
• #4688: Improve is_distance_dm exception message
• #4692: MAINT: stats: Simplify the calculation in tukeylambda._ppf
• #4693: ENH: added functionality to handle scalars in stats._chk_asarray

• #4694: Vectorization of Anderson-Darling computations.
• #4696: Fix singleton expansion in lfilter.
• #4698: MAINT: quiet warnings from cephes.
• #4701: add Bpoly.antiderivatives / integrals
• #4703: Add citation of published paper
• #4706: MAINT: special: avoid out-of-bounds access in specfun
• #4707: MAINT: fix issues with np.matrix as input to functions related…
• #4709: ENH: scipy.stats now returns namedtuples.
• #4710: scipy.io.idl: make reader more robust to missing variables in…
• #4711: Fix crash for unknown chunks at the end of file
• #4712: Reduce onenormest memory usage
• #4713: MAINT: interpolate: no need to pass dtype around if it can be…
• #4714: BENCH: Add benchmarks for stats module
• #4715: MAINT: polish signal.place_poles and signal/test_ltisys.py
• #4716: DEP: deprecate mstats.signaltonoise …
• #4717: MAINT: basinhopping: fix error in tests, silence /0 warning,…
• #4718: ENH: stats: can specify f-shapes to fix in fitting by name
• #4721: Document that imresize converts the input to a PIL image
• #4722: MAINT: PyArray_BASE is not an lvalue unless the deprecated API…
• #4725: Fix gengamma _nump failure
• #4728: DOC: add poch to the list of scipy special function descriptions
• #4735: MAINT: stats: avoid (a spurious) division-by-zero in skew
• #4738: TST: silence runtime warnings for some corner cases in stats…
• #4739: BLD: try to build numpy instead of using the one on TravisCI
• #4740: DOC: Update some docstrings with ‘versionadded’.
• #4742: BLD: make sure that relaxed strides checking is in effect on…
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• #4750: DOC: special: TeX typesetting of rel_entr, kl_div and pseudo_huber
• #4751: BENCH: add sparse null slice benchmark
• #4753: BUG: Fixed compilation with recent Cython versions.
• #4756: BUG: Fixes #4733: optimize.brute finish option is not compatible…
• #4758: DOC: optimize.leastsq default maxfev clarification
• #4759: improved stats mle fit
• #4760: MAINT: count bfgs updates more carefully
• #4762: BUGS: Fixes #4746 and #4594: linprog returns solution violating…
• #4763: fix small linprog bugs
• #4766: BENCH: add signal.lsim benchmark
• #4768: fix python syntax errors in docstring examples
• #4769: Fixes #4726: test_cobyla.test_vector_constraints
• #4770: Mark FITPACK functions as thread safe.
• #4771: edited scipy/stats/stats.py to fix doctest for fisher_exact
• #4773: DOC: update 0.16.0 release notes.
• #4775: DOC: linalg: add funm_psd as a docstring example
• #4778: Use a dictionary for function name synonyms
• #4780: Include apparently-forgotten functions in docs
• #4783: Added many missing special functions to docs
• #4784: add an axis attribute to PPoly and friends
• #4785: Brief note about origin of Lena image
• #4786: DOC: reformat the Methods section of the KDE docstring
• #4787: Add rice cdf and ppf.
• #4792: CI: add a kludge for detecting test failures which try to disguise…
• #4795: Make refguide_check smarter about false positives
• #4797: BUG/TST: numpoints not updated for incremental Voronoi
• #4799: BUG: spatial: Fix a couple edge cases for the Mahalanobis metric…
• #4801: BUG: Fix TypeError in scipy.optimize._trust-region.py when disp=True.
• #4803: Issues with relaxed strides in QR updating routines
• #4806: MAINT: use an informed initial guess for cauchy fit
• #4810: PEP8ify codata.py
• #4812: BUG: Relaxed strides cleanup in decomp_update.pyx.in
• #4820: BLD: update Bento build for sgemv fix and install cython blas/lapack…
• #4823: ENH: scipy.signal - Addition of spectrogram function
• #4827: DOC: add csd and coherence to __init__.py
• #4833: BLD: fix issue in linalg *lange wrappers for g77 builds.
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• #4841: TST: fix test failures in scipy.special with mingw32 due to test…
• #4842: DOC: update site.cfg.example. Mostly taken over from Numpy
• #4845: BUG: signal: Make spectrogram’s return values order match the…
• #4849: DOC:Fix error in ode docstring example
• #4856: BUG: fix typo causing memleak

3.16 SciPy 0.15.1 Release Notes

SciPy 0.15.1 is a bug-fix release with no new features compared to 0.15.0.

3.16.1 Issues fixed

• #4413: BUG: Tests too strict, f2py doesn’t have to overwrite this array
• #4417: BLD: avoid using NPY_API_VERSION to check not using deprecated…
• #4418: Restore and deprecate scipy.linalg.calc_work

3.17 SciPy 0.15.0 Release Notes

Contents

• SciPy 0.15.0 Release Notes
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∗ Linear Programming Interface

∗ Differential evolution, a global optimizer

∗ scipy.signal improvements
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∗ scipy.special improvements

∗ scipy.sparse.csgraph improvements

∗ scipy.stats improvements

– Deprecated features

– Backwards incompatible changes
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∗ scipy.integrate

– Authors

∗ Issues closed
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∗ Pull requests

SciPy 0.15.0 is the culmination of 6 months of hard work. It contains several new features, numerous bug-fixes, improved
test coverage and better documentation. There have been a number of deprecations and API changes in this release, which
are documented below. All users are encouraged to upgrade to this release, as there are a large number of bug-fixes and
optimizations. Moreover, our development attention will now shift to bug-fix releases on the 0.16.x branch, and on adding
new features on the master branch.
This release requires Python 2.6, 2.7 or 3.2-3.4 and NumPy 1.5.1 or greater.

3.17.1 New features

Linear Programming Interface

The new function scipy.optimize.linprog provides a generic linear programming similar to the way scipy.
optimize.minimize provides a generic interface to nonlinear programming optimizers. Currently the only method
supported is simplex which provides a two-phase, dense-matrix-based simplex algorithm. Callbacks functions are sup-
ported, allowing the user to monitor the progress of the algorithm.

Differential evolution, a global optimizer

A new scipy.optimize.differential_evolution function has been added to the optimize module.
Differential Evolution is an algorithm used for finding the global minimum of multivariate functions. It is stochastic in
nature (does not use gradient methods), and can search large areas of candidate space, but often requires larger numbers
of function evaluations than conventional gradient based techniques.

scipy.signal improvements

The function scipy.signal.max_len_seq was added, which computes a Maximum Length Sequence (MLS)
signal.

scipy.integrate improvements

It is now possible to use scipy.integrate routines to integrate multivariate ctypes functions, thus avoiding callbacks
to Python and providing better performance.

scipy.linalg improvements

The function scipy.linalg.orthogonal_procrustes for solving the procrustes linear algebra problem was
added.
BLAS level 2 functions her, syr, her2 and syr2 are now wrapped in scipy.linalg.

scipy.sparse improvements

scipy.sparse.linalg.svds can now take a LinearOperator as its main input.
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scipy.special improvements

Values of ellipsoidal harmonic (i.e. Lame) functions and associated normalization constants can be now computed using
ellip_harm, ellip_harm_2, and ellip_normal.
New convenience functions entr, rel_entr kl_div, huber, and pseudo_huber were added.

scipy.sparse.csgraph improvements

Routines reverse_cuthill_mckee and maximum_bipartite_matching for computing reorderings of
sparse graphs were added.

scipy.stats improvements

Added a Dirichlet multivariate distribution, scipy.stats.dirichlet.
The new function scipy.stats.median_test computes Mood’s median test.
The new function scipy.stats.combine_pvalues implements Fisher’s and Stouffer’s methods for combining
p-values.
scipy.stats.describe returns a namedtuple rather than a tuple, allowing users to access results by index or by
name.

3.17.2 Deprecated features

The scipy.weavemodule is deprecated. It was the only module never ported to Python 3.x, and is not recommended to be
used for new code - use Cython instead. In order to support existing code, scipy.weave has been packaged separately:
https://github.com/scipy/weave. It is a pure Python package, and can easily be installed with pip install weave.
scipy.special.bessel_diff_formula is deprecated. It is a private function, and therefore will be removed
from the public API in a following release.
scipy.stats.nanmean, nanmedian and nanstd functions are deprecated in favor of their numpy equivalents.

3.17.3 Backwards incompatible changes

scipy.ndimage

The functions scipy.ndimage.minimum_positions, scipy.ndimage.maximum_positions‘ and scipy.ndimage.
extrema return positions as ints instead of floats.

scipy.integrate

The format of banded Jacobians in scipy.integrate.ode solvers is changed. Note that the previous documentation
of this feature was erroneous.
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• Carl Kleffner +
• Andreas Kloeckner
• Thomas Kluyver +
• Adrian Kretz +
• Johannes Kulick +
• Eric Larson
• Brianna Laugher +
• Denis Laxalde
• Antony Lee +
• Gregory R. Lee +
• Brandon Liu
• Alex Loew +
• Loïc Estève +
• Jaakko Luttinen +
• Benny Malengier
• Tobias Megies +
• Sturla Molden
• Eric Moore
• Brett R. Murphy +
• Paul Nation +
• Andrew Nelson
• Brian Newsom +
• Joel Nothman
• Sergio Oller +
• Janani Padmanabhan +
• Tiago M.D. Pereira +

3.17. SciPy 0.15.0 Release Notes 157



SciPy Reference Guide, Release 1.3.1

• Nicolas Del Piano +
• Manuel Reinhardt +
• Thomas Robitaille
• Mike Romberg +
• Alex Rothberg +
• Sebastian Pölsterl +
• Maximilian Singh +
• Brigitta Sipocz +
• Alex Stewart +
• Julian Taylor
• Collin Tokheim +
• James Tomlinson +
• Benjamin Trendelkamp-Schroer +
• Richard Tsai
• Alexey Umnov +
• Jacob Vanderplas
• Joris Vankerschaver
• Bastian Venthur +
• Pauli Virtanen
• Stefan van der Walt
• Yuxiang Wang +
• James T. Webber
• Warren Weckesser
• Axl West +
• Nathan Woods
• Benda Xu +
• Víctor Zabalza +
• Tiziano Zito +

A total of 99 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
This list of names is automatically generated, and may not be fully complete.

Issues closed

• #1431: ellipk(x) extending its domain for x<0 (Trac #904)
• #1727: consistency of std interface (Trac #1200)
• #1851: Shape parameter negated in genextreme (relative to R, MATLAB,…
• #1889: interp2d is weird (Trac #1364)
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• #2188: splev gives wrong values or crashes outside of support when der…
• #2343: scipy.insterpolate’s splrep function fails with certain combinations…
• #2669: .signal.ltisys.ss2tf should only apply to MISO systems in current…
• #2911: interpolate.splder() failure on Fedora
• #3171: future of weave in scipy
• #3176: Suggestion to improve error message in scipy.integrate.odeint
• #3198: pdf() and logpdf() methods for scipy.stats.gaussian_kde
• #3318: Travis CI is breaking on test(“full”)
• #3329: scipy.stats.scoreatpercentile backward-incompatible change not…
• #3362: Reference cycle in scipy.sparse.linalg.eigs with shift-invert…
• #3364: BUG: linalg.hessenberg broken (wrong results)
• #3376: stats f_oneway needs floats
• #3379: Installation of scipy 0.13.3 via zc.buildout fails
• #3403: hierarchy.linkage raises an ugly exception for a compressed 2x2…
• #3422: optimize.curve_fit() handles NaN by returning all parameters…
• #3457: linalg.fractional_matrix_power has no docstring
• #3469: DOC: ndimage.find_object ignores zero-values
• #3491: optimize.leastsq() documentation should mention it does not work…
• #3499: cluster.vq.whiten return nan for all zeros column in observations
• #3503: minimize attempts to do vector addition when numpy arrays are…
• #3508: exponweib.logpdf fails for valid parameters
• #3509: libatlas3-base-dev does not exist
• #3550: BUG: anomalous values computed by special.ellipkinc
• #3555: scipy.ndimage positions are float instead of int
• #3557: UnivariateSpline.__call__ should pass all relevant args through…
• #3569: No license statement for test data imported from boost?
• #3576: mstats test failure (too sensitive?)
• #3579: Errors on scipy 0.14.x branch using MKL, Ubuntu 14.04 x86_64
• #3580: Operator overloading with sparse matrices
• #3587: Wrong alphabetical order in continuous statistical distribution…
• #3596: scipy.signal.fftconvolve no longer threadsafe
• #3623: BUG: signal.convolve takes longer than it needs to
• #3655: Integer returned from integer data in scipy.signal.periodogram…
• #3662: Travis failure on Numpy 1.5.1 (not reproducible?)
• #3668: dendogram(orientation=’foo’)
• #3669: KroghInterpolator doesn’t pass through points
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• #3672: Inserting a knot in a spline
• #3682: misleading documentation of scipy.optimize.curve_fit
• #3699: BUG?: minor problem with scipy.signal.lfilter w/initial conditions
• #3700: Inconsistent exceptions raised by scipy.io.loadmat
• #3703: TypeError for RegularGridInterpolator with big-endian data
• #3714: Misleading error message in eigsh: k must be between 1 and rank(A)-1
• #3720: coo_matrix.setdiag() fails
• #3740: Scipy.Spatial.KdTree (Query) Return Type?
• #3761: Invalid result from scipy.special.btdtri
• #3784: DOC - Special Functions - Drum example fix for higher modes
• #3785: minimize() should have friendlier args=
• #3787: BUG: signal: Division by zero in lombscargle
• #3800: BUG: scipy.sparse.csgraph.shortest_path overwrites input matrix
• #3817: Warning in calculating moments from Binomial distribution for…
• #3821: review scipy usage of np.ma.is_masked

• #3829: Linear algebra function documentation doesn’t mention default…
• #3830: A bug in Docstring of scipy.linalg.eig
• #3844: Issue with shape parameter returned by genextreme
• #3858: “ImportError: No module named Cython.Compiler.Main” on install
• #3876: savgol_filter not in release notes and has no versionadded
• #3884: scipy.stats.kendalltau empty array error
• #3895: ValueError: illegal value in 12-th argument of internal gesdd…
• #3898: skimage test broken by minmax filter change
• #3901: scipy sparse errors with numpy master
• #3905: DOC: optimize: linprog docstring has two “Returns” sections
• #3915: DOC: sphinx warnings because of **kwds in the stats distributions…
• #3935: Split stats.distributions files in tutorial
• #3969: gh-3607 breaks backward compatibility in ode solver banded jacobians
• #4025: DOC: signal: The return value of find_peaks_cwt is not documented.
• #4029: scipy.stats.nbinom.logpmf(0,1,1) returns nan. Correct value is…
• #4032: ERROR: test_imresize (test_pilutil.TestPILUtil)
• #4038: errors do not propagate through scipy.integrate.odeint properly
• #4171: orthogonal_procrustes always returns scale.
• #4176: Solving the Discrete Lyapunov Equation does not work with matrix…
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Pull requests

• #3109: ENH Added Fisher’s method and Stouffer’s Z-score method
• #3225: Add the limiting distributions to generalized Pareto distribution…
• #3262: Implement back end of faster multivariate integration
• #3266: ENH: signal: add type=False as parameter for periodogram and…
• #3273: Add PEP8 check to Travis-CI
• #3342: ENH: linprog function for linear programming
• #3348: BUG: add proper error handling when using interp2d on regular…
• #3351: ENH: Add MLS method
• #3382: ENH: scipy.special information theory functions
• #3396: ENH: improve stats.nanmedian more by assuming nans are rare
• #3398: Added two wrappers to the gaussian_kde class.
• #3405: BUG: cluster.linkage array conversion to double dtype
• #3407: MAINT: use assert_warns instead of a more complicated mechanism
• #3409: ENH: change to use array view in signal/_peak_finding.py
• #3416: Issue 3376 : stats f_oneway needs floats
• #3419: BUG: tools: Fix list of FMA instructions in detect_cpu_extensions_wine.py
• #3420: DOC: stats: Add ‘entropy’ to the stats package-level documentation.
• #3429: BUG: close intermediate file descriptor right after it is used…
• #3430: MAINT: Fix some cython variable declarations to avoid warnings…
• #3433: Correcting the normalization of chebwin window function
• #3435: Add more precise link to R’s quantile documentation
• #3446: ENH: scipy.optimize - adding differential_evolution
• #3450: MAINT: remove unused function scipy.stats.mstats_basic._kolmog1
• #3458: Reworked version of PR-3084 (mstats-stats comparison)
• #3462: MAINT : Returning a warning for low attenuation values of chebwin…
• #3463: DOC: linalg: Add examples to functions in matfuncs.py
• #3477: ENH: sparse: release GIL in sparsetools routines
• #3480: DOC: Add more details to deconvolve docstring
• #3484: BLD: fix Qhull build issue with MinGW-w64. Closes gh-3237.
• #3498: MAINT: io: remove old warnings from idl.py
• #3504: BUG: cluster.vq.whiten returns nan or inf when std==0
• #3510: MAINT: stats: Reimplement the pdf and logpdf methods of exponweib.
• #3512: Fix PEP8 errors showing up on TravisCI after pep8 1.5 release
• #3514: DOC: libatlas3-base-dev seems to have never been a thing
• #3516: DOC improve scipy.sparse docstrings
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• #3517: ENH: speed-up ndimage.filters.min(max)imum_filter1d
• #3518: Issues in scipy.misc.logsumexp
• #3526: DOC: graphical example for cwt, and use a more interesting signal
• #3527: ENH: Implement min(max)imum_filter1d using the MINLIST algorithm
• #3537: STY: reduce number of C compiler warnings
• #3540: DOC: linalg: add docstring to fractional_matrix_power
• #3542: kde.py Doc Typo
• #3545: BUG: stats: stats.levy.cdf with small arguments loses precision.
• #3547: BUG: special: erfcinv with small arguments loses precision.
• #3553: DOC: Convolve examples
• #3561: FIX: in ndimage.measurements return positions as int instead…
• #3564: Fix test failures with numpy master. Closes gh-3554
• #3565: ENH: make interp2d accept unsorted arrays for interpolation.
• #3566: BLD: add numpy requirement to metadata if it can’t be imported.
• #3567: DOC: move matfuncs docstrings to user-visible functions
• #3574: Fixes multiple bugs in mstats.theilslopes
• #3577: TST: decrease sensitivity of an mstats test
• #3585: Cleanup of code in scipy.constants
• #3589: BUG: sparse: allow operator overloading
• #3594: BUG: lobpcg returned wrong values for small matrices (n < 10)
• #3598: MAINT: fix coverage and coveralls
• #3599: MAINT: symeig – now that’s a name I’ve not heard in a long time
• #3602: MAINT: clean up the new optimize.linprog and add a few more tests
• #3607: BUG: integrate: Fix some bugs and documentation errors in the…
• #3609: MAINT integrate/odepack: kill dead Fortran code
• #3616: FIX: Invalid values
• #3617: Sort netcdf variables in a Python-3 compatible way
• #3622: DOC: Added 0.15.0 release notes entry for linprog function.
• #3625: Fix documentation for cKDTree.sparse_distance_matrix
• #3626: MAINT: linalg.orth memory efficiency
• #3627: MAINT: stats: A bit of clean up
• #3628: MAINT: signal: remove a useless function from wavelets.py
• #3632: ENH: stats: Add Mood’s median test.
• #3636: MAINT: cluster: some clean up
• #3638: DOC: docstring of optimize.basinhopping confuses singular and…
• #3639: BUG: change ddof default to 1 in mstats.sem, consistent with…
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• #3640: Weave: deprecate the module and disable slow tests on TravisCI
• #3641: ENH: Added support for date attributes to io.arff.arffread
• #3644: MAINT: stats: remove superfluous alias in mstats_basic.py
• #3646: ENH: adding sum_duplicates method to COO sparse matrix
• #3647: Fix for #3596: Make fftconvolve threadsafe
• #3650: BUG: sparse: smarter random index selection
• #3652: fix wrong option name in power_divergence dosctring example
• #3654: Changing EPD to Canopy
• #3657: BUG: signal.welch: ensure floating point dtype regardless of…
• #3660: TST: mark a test as known fail
• #3661: BLD: ignore pep8 E302 (expected 2 blank lines, found 1)
• #3663: BUG: fix leaking errstate, and ignore invalid= errors in a test
• #3664: BUG: correlate was extremely slow when in2.size > in1.size
• #3667: ENH: Adds default params to pdfs of multivariate_norm
• #3670: ENH: Small speedup of FFT size check
• #3671: DOC: adding differential_evolution function to 0.15 release notes
• #3673: BUG: interpolate/fitpack: arguments to fortran routines may not…
• #3674: Add support for appending to existing netcdf files
• #3681: Speed up test(‘full’), solve Travis CI timeout issues
• #3683: ENH: cluster: rewrite and optimize vq in Cython
• #3684: Update special docs
• #3688: Spacing in special docstrings
• #3692: ENH: scipy.special: Improving sph_harm function
• #3693: Update refguide entries for signal and fftpack
• #3695: Update continuous.rst
• #3696: ENH: check for valid ‘orientation’ kwarg in dendrogram()
• #3701: make ‘a’ and ‘b’ coefficients atleast_1d array in filtfilt
• #3702: BUG: cluster: _vq unable to handle large features
• #3704: BUG: special: ellip(k,e)inc nan and double expected value
• #3707: BUG: handle fill_value dtype checks correctly in RegularGridInterpolator
• #3708: Reraise exception on failure to read mat file.
• #3709: BUG: cast ‘x’ to correct dtype in KroghInterpolator._evaluate
• #3712: ENH: cluster: reimplement the update-step of K-means in Cython
• #3713: FIX: Check type of lfiltic
• #3718: Changed INSTALL file extension to rst
• #3719: address svds returning nans for zero input matrix
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• #3722: MAINT: spatial: static, unused code, sqrt(sqeuclidean)
• #3725: ENH: use numpys nanmedian if available
• #3727: TST: add a new fixed_point test and change some test function…
• #3731: BUG: fix romb in scipy.integrate.quadrature
• #3734: DOC: simplify examples with semilogx
• #3735: DOC: Add minimal docstrings to lti.impulse/step
• #3736: BUG: cast pchip arguments to floats
• #3744: stub out inherited methods of Akima1DInterpolator
• #3746: DOC: Fix formatting for Raises section
• #3748: ENH: Added discrete Lyapunov transformation solve
• #3750: Enable automated testing with Python 3.4
• #3751: Reverse Cuthill-McKee and Maximum Bipartite Matching reorderings…
• #3759: MAINT: avoid indexing with a float array
• #3762: TST: filter out RuntimeWarning in vq tests
• #3766: TST: cluster: some cleanups in test_hierarchy.py
• #3767: ENH/BUG: support negative m in elliptic integrals
• #3769: ENH: avoid repeated matrix inverse
• #3770: BUG: signal: In lfilter_zi, b was not rescaled correctly when…
• #3772: STY avoid unnecessary transposes in csr_matrix.getcol/row
• #3773: ENH: Add ext parameter to UnivariateSpline call
• #3774: BUG: in integrate/quadpack.h, put all declarations before statements.
• #3779: Incbet fix
• #3788: BUG: Fix lombscargle ZeroDivisionError
• #3791: Some maintenance for doc builds
• #3795: scipy.special.legendre docstring
• #3796: TYPO: sheroidal -> spheroidal
• #3801: BUG: shortest_path overwrite
• #3803: TST: lombscargle regression test related to atan vs atan2
• #3809: ENH: orthogonal procrustes solver
• #3811: ENH: scipy.special, Implemented Ellipsoidal harmonic function:…
• #3819: BUG: make a fully connected csgraph from an ndarray with no zeros
• #3820: MAINT: avoid spurious warnings in binom(n, p=0).mean() etc
• #3825: Don’t claim scipy.cluster does distance matrix calculations.
• #3827: get and set diagonal of coo_matrix, and related csgraph laplacian…
• #3832: DOC: Minor additions to integrate/nquad docstring.
• #3845: Bug fix for #3842: Bug in scipy.optimize.line_search
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• #3848: BUG: edge case where the covariance matrix is exactly zero
• #3850: DOC: typo
• #3851: DOC: document default argument values for some arpack functions
• #3860: DOC: sparse: add the function ‘find’ to the module-level docstring
• #3861: BUG: Removed unnecessary storage of args as instance variables…
• #3862: BUG: signal: fix handling of multi-output systems in ss2tf.
• #3865: Feature request: ability to read heterogeneous types in FortranFile
• #3866: MAINT: update pip wheelhouse for installs
• #3871: MAINT: linalg: get rid of calc_lwork.f
• #3872: MAINT: use scipy.linalg instead of np.dual
• #3873: BLD: show a more informative message if Cython wasn’t installed.
• #3874: TST: cluster: cleanup the hierarchy test data
• #3877: DOC: Savitzky-Golay filter version added
• #3878: DOC: move versionadded to notes
• #3879: small tweaks to the docs
• #3881: FIX incorrect sorting during fancy assignment
• #3885: kendalltau function now returns a nan tuple if empty arrays used…
• #3886: BUG: fixing linprog’s kwarg order to match docs
• #3888: BUG: optimize: In _linprog_simplex, handle the case where the…
• #3891: BUG: stats: Fix ValueError message in chi2_contingency.
• #3892: DOC: sparse.linalg: Fix lobpcg docstring.
• #3894: DOC: stats: Assorted docstring edits.
• #3896: Fix 2 mistakes in MatrixMarket format parsing
• #3897: BUG: associated Legendre function of second kind for 1<x<1.0001
• #3899: BUG: fix undefined behavior in alngam
• #3906: MAINT/DOC: Whitespace tweaks in several docstrings.
• #3907: TST: relax bounds of interpolate test to accomodate rounding…
• #3909: MAINT: Create a common version of count_nonzero for compatibility…
• #3910: Fix a couple of test errors in master
• #3911: Use MathJax for the html docs
• #3914: Rework the _roots functions and document them.
• #3916: Remove all linpack_lite code and replace with LAPACK routines
• #3917: splines, constant extrapolation
• #3918: DOC: tweak the rv_discrete docstring example
• #3919: Quadrature speed-up: scipy.special.orthogonal.p_roots with cache
• #3920: DOC: Clarify docstring for sigma parameter for curve_fit
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• #3922: Fixed Docstring issues in linprog (Fixes #3905).
• #3924: Coerce args into tuple if necessary.
• #3926: DOC: Surround stats class methods in docstrings with backticks.
• #3927: Changed doc for romb’s dx parameter to int.
• #3928: check FITPACK conditions in LSQUnivariateSpline
• #3929: Added a warning about leastsq using with NaNs.
• #3930: ENH: optimize: curve_fit now warns if pcov is undetermined
• #3932: Clarified the k > n case.
• #3933: DOC: remove import scipy as sp abbreviation here and there
• #3936: Add license and copyright holders to test data imported from…
• #3938: DOC: Corrected documentation for return types.
• #3939: DOC: fitpack: add a note about Sch-W conditions to splrep docstring
• #3940: TST: integrate: Remove an invalid test of odeint.
• #3942: FIX: Corrected error message of eigsh.
• #3943: ENH: release GIL for filter and interpolation of ndimage
• #3944: FIX: Raise value error if window data-type is unsupported
• #3946: Fixed signal.get_window with unicode window name
• #3947: MAINT: some docstring fixes and style cleanups in stats.mstats
• #3949: DOC: fix a couple of issues in stats docstrings.
• #3950: TST: sparse: remove known failure that doesn’t fail
• #3951: TST: switch from Rackspace wheelhouse to numpy/cython source…
• #3952: DOC: stats: Small formatting correction to the ‘chi’ distribution…
• #3953: DOC: stats: Several corrections and small additions to docstrings.
• #3955: signal.__init__.py: remove duplicated get_window entry
• #3959: TST: sparse: more “known failures” for DOK that don’t fail
• #3960: BUG: io.netcdf: do not close mmap if there are references left…
• #3965: DOC: Fix a few more sphinx warnings that occur when building…
• #3966: DOC: add guidelines for using test generators in HACKING
• #3968: BUG: sparse.linalg: make Inv objects in arpack garbage-collectable…
• #3971: Remove all linpack_lite code and replace with LAPACK routines
• #3972: fix typo in error message
• #3973: MAINT: better error message for multivariate normal.
• #3981: turn the cryptically named scipy.special information theory functions…
• #3984: Wrap her, syr, her2, syr2 blas routines
• #3990: improve UnivariateSpline docs
• #3991: ENH: stats: return namedtuple for describe output
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• #3993: DOC: stats: percentileofscore references np.percentile
• #3997: BUG: linalg: pascal(35) was incorrect: last element overflowed…
• #3998: MAINT: use isMaskedArray instead of is_masked to check type
• #3999: TST: test against all of boost data files.
• #4000: BUG: stats: Fix edge-case handling in a few distributions.
• #4003: ENH: using python’s warnings instead of prints in fitpack.
• #4004: MAINT: optimize: remove a couple unused variables in zeros.c
• #4006: BUG: Fix C90 compiler warnings in NI_MinOrMaxFilter1D

• #4007: MAINT/DOC: Fix spelling of ‘decomposition’ in several files.
• #4008: DOC: stats: Split the descriptions of the distributions in the…
• #4015: TST: logsumexp regression test
• #4016: MAINT: remove some inf-related warnings from logsumexp
• #4020: DOC: stats: fix whitespace in docstrings of several distributions
• #4023: Exactly one space required before assignments
• #4024: In dendrogram(): Correct an argument name and a grammar issue…
• #4041: BUG: misc: Ensure that the ‘size’ argument of PIL’s ‘resize’…
• #4049: BUG: Return of _logpmf
• #4051: BUG: expm of integer matrices
• #4052: ENH: integrate: odeint: Handle exceptions in the callback functions.
• #4053: BUG: stats: Refactor argument validation to avoid a unicode issue.
• #4057: Added newline to scipy.sparse.linalg.svds documentation for correct…
• #4058: MAINT: stats: Add note about change to scoreatpercentile in release…
• #4059: ENH: interpolate: Allow splev to accept an n-dimensional array.
• #4064: Documented the return value for scipy.signal.find_peaks_cwt
• #4074: ENH: Support LinearOperator as input to svds
• #4084: BUG: Match exception declarations in scipy/io/matlab/streams.pyx…
• #4091: DOC: special: more clear instructions on how to evaluate polynomials
• #4105: BUG: Workaround for SGEMV segfault in Accelerate
• #4107: DOC: get rid of ‘import *’ in examples
• #4113: DOC: fix typos in distance.yule
• #4114: MAINT C fixes
• #4117: deprecate nanmean, nanmedian and nanstd in favor of their numpy…
• #4126: scipy.io.idl: support description records and fix bug with null…
• #4131: ENH: release GIL in more ndimage functions
• #4132: MAINT: stats: fix a typo [skip ci]
• #4145: DOC: Fix documentation error for nc chi-squared dist
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• #4150: Fix _nd_image.geometric_transform endianness bug
• #4153: MAINT: remove use of deprecated numpy API in lib/lapack/ f2py…
• #4156: MAINT: optimize: remove dead code
• #4159: MAINT: optimize: clean up Zeros code
• #4165: DOC: add missing special functions to __doc__
• #4172: DOC: remove misleading procrustes docstring line
• #4175: DOC: sparse: clarify CSC and CSR constructor usage
• #4177: MAINT: enable np.matrix inputs to solve_discrete_lyapunov
• #4179: TST: fix an intermittently failing test case for special.legendre
• #4181: MAINT: remove unnecessary null checks before free
• #4182: Ellipsoidal harmonics
• #4183: Skip Cython build in Travis-CI
• #4184: Pr 4074
• #4187: Pr/3923
• #4190: BUG: special: fix up ellip_harm build
• #4193: BLD: fix msvc compiler errors
• #4194: BUG: fix buffer dtype mismatch on win-amd64
• #4199: ENH: Changed scipy.stats.describe output from datalen to nobs
• #4201: DOC: add blas2 and nan* deprecations to the release notes
• #4243: TST: bump test tolerances

3.18 SciPy 0.14.1 Release Notes

SciPy 0.14.1 is a bug-fix release with no new features compared to 0.14.0.

3.18.1 Issues closed

• #3630: NetCDF reading results in a segfault
• #3631: SuperLU object not working as expected for complex matrices
• #3733: segfault from map_coordinates
• #3780: Segfault when using CSR/CSC matrix and uint32/uint64
• #3781: BUG: sparse: fix omitted types in sparsetools typemaps
• #3802: 0.14.0 API breakage: _gen generators are missing from scipy.stats.distributions API
• #3805: ndimage test failures with numpy 1.10
• #3812: == sometimes wrong on csr_matrix
• #3853: Many scipy.sparse test errors/failures with numpy 1.9.0b2
• #4084: fix exception declarations for Cython 0.21.1 compatibility
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• #4093: BUG: fitpack: avoid a memory error in splev(x, tck, der=k)
• #4104: BUG: Workaround SGEMV segfault in Accelerate (maintenance 0.14.x)
• #4143: BUG: fix ndimage functions for large data
• #4149: Bug in expm for integer arrays
• #4154: Backport gh-4041 for 0.14.1 (Ensure that the ‘size’ argument of PIL’s ‘resize’ method is a tuple)
• #4163: Backport #4142 (ZeroDivisionError in scipy.sparse.linalg.lsqr)
• #4164: Backport gh-4153 (remove use of deprecated numpy API in lib/lapack/ f2py wrapper)
• #4180: backport pil resize support tuple fix
• #4168: Lots of arpack test failures on windows 32 bits with numpy 1.9.1
• #4203: Matrix multiplication in 0.14.x is more than 10x slower compared…
• #4218: attempt to make ndimage interpolation compatible with numpy relaxed…
• #4225: BUG: off-by-one error in PPoly shape checks
• #4248: BUG: optimize: fix issue with incorrect use of closure for slsqp.

3.19 SciPy 0.14.0 Release Notes

Contents

• SciPy 0.14.0 Release Notes

– New features

∗ scipy.interpolate improvements

∗ scipy.linalg improvements

∗ scipy.optimize improvements

∗ scipy.stats improvements

∗ scipy.signal improvements

∗ scipy.special improvements

∗ scipy.sparse improvements

– Deprecated features

∗ anneal

∗ scipy.stats

∗ scipy.interpolate

– Backwards incompatible changes

∗ scipy.special.lpmn

∗ scipy.sparse.linalg

∗ scipy.stats

∗ scipy.interpolate
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– Other changes

– Authors

∗ Issues closed

∗ Pull requests

SciPy 0.14.0 is the culmination of 8 months of hard work. It contains many new features, numerous bug-fixes, improved
test coverage and better documentation. There have been a number of deprecations and API changes in this release, which
are documented below. All users are encouraged to upgrade to this release, as there are a large number of bug-fixes and
optimizations. Moreover, our development attention will now shift to bug-fix releases on the 0.14.x branch, and on adding
new features on the master branch.
This release requires Python 2.6, 2.7 or 3.2-3.4 and NumPy 1.5.1 or greater.

3.19.1 New features

scipy.interpolate improvements

A new wrapper function scipy.interpolate.interpn for interpolation on regular grids has been added. interpn
supports linear and nearest-neighbor interpolation in arbitrary dimensions and spline interpolation in two dimensions.
Faster implementations of piecewise polynomials in power and Bernstein polynomial bases have been added as
scipy.interpolate.PPoly and scipy.interpolate.BPoly. New users should use these in favor of
scipy.interpolate.PiecewisePolynomial.
scipy.interpolate.interp1d now accepts non-monotonic inputs and sorts them. If performance is critical,
sorting can be turned off by using the new assume_sorted keyword.
Functionality for evaluation of bivariate spline derivatives in scipy.interpolate has been added.
The new class scipy.interpolate.Akima1DInterpolator implements the piecewise cubic polynomial in-
terpolation scheme devised by H. Akima.
Functionality for fast interpolation on regular, unevenly spaced grids in arbitrary dimensions has been added as scipy.
interpolate.RegularGridInterpolator .

scipy.linalg improvements

The new function scipy.linalg.dft computes the matrix of the discrete Fourier transform.
A condition number estimation function for matrix exponential, scipy.linalg.expm_cond, has been added.

scipy.optimize improvements

A set of benchmarks for optimize, which can be run with optimize.bench(), has been added.
scipy.optimize.curve_fit now has more controllable error estimation via the absolute_sigma keyword.
Support for passing custom minimization methods to optimize.minimize() and optimize.
minimize_scalar() has been added, currently useful especially for combining optimize.basinhopping()
with custom local optimizer routines.
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scipy.stats improvements

A new class scipy.stats.multivariate_normal with functionality for multivariate normal random variables
has been added.
A lot of work on the scipy.stats distribution framework has been done. Moment calculations (skew and kurtosis
mainly) are fixed and verified, all examples are now runnable, and many small accuracy and performance improvements
for individual distributions were merged.
The new function scipy.stats.anderson_ksamp computes the k-sample Anderson-Darling test for the null hy-
pothesis that k samples come from the same parent population.

scipy.signal improvements

scipy.signal.iirfilter and related functions to design Butterworth, Chebyshev, elliptical and Bessel IIR filters
now all use pole-zero (“zpk”) format internally instead of using transformations to numerator/denominator format. The
accuracy of the produced filters, especially high-order ones, is improved significantly as a result.
The Savitzky-Golay filter was added with the new functions scipy.signal.savgol_filter and scipy.
signal.savgol_coeffs.
The new function scipy.signal.vectorstrength computes the vector strength, a measure of phase synchrony,
of a set of events.

scipy.special improvements

The functions scipy.special.boxcox and scipy.special.boxcox1p, which compute the Box-Cox trans-
formation, have been added.

scipy.sparse improvements

• Significant performance improvement in CSR, CSC, and DOK indexing speed.
• When using Numpy >= 1.9 (to be released in MM 2014), sparse matrices function correctly when given to argu-
ments of np.dot, np.multiply and other ufuncs. With earlier Numpy and Scipy versions, the results of such
operations are undefined and usually unexpected.

• Sparse matrices are no longer limited to 2^31 nonzero elements. They automatically switch to using 64-bit index
data type for matrices containing more elements. User code written assuming the sparse matrices use int32 as the
index data type will continue to work, except for such large matrices. Code dealing with larger matrices needs to
accept either int32 or int64 indices.

3.19.2 Deprecated features

anneal

The global minimization function scipy.optimize.anneal is deprecated. All users should use the scipy.optimize.
basinhopping function instead.
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scipy.stats

randwcdf and randwppf functions are deprecated. All users should use distribution-specific rvs methods instead.
Probability calculation aliases zprob, fprob and ksprob are deprecated. Use instead the sf methods of the corre-
sponding distributions or the special functions directly.

scipy.interpolate

PiecewisePolynomial class is deprecated.

3.19.3 Backwards incompatible changes

scipy.special.lpmn

lpmn no longer accepts complex-valued arguments. A new function clpmn with uniform complex analytic behavior has
been added, and it should be used instead.

scipy.sparse.linalg

Eigenvectors in the case of generalized eigenvalue problem are normalized to unit vectors in 2-norm, rather than following
the LAPACK normalization convention.
The deprecated UMFPACK wrapper in scipy.sparse.linalg has been removed due to license and install issues.
If available, scikits.umfpack is still used transparently in the spsolve and factorized functions. Otherwise,
SuperLU is used instead in these functions.

scipy.stats

The deprecated functions glm, oneway and cmedian have been removed from scipy.stats.
stats.scoreatpercentile now returns an array instead of a list of percentiles.

scipy.interpolate

The API for computing derivatives of a monotone piecewise interpolation has changed: if p is a PchipInterpolator
object, p.derivative(der) returns a callable object representing the derivative of p. For in-place derivatives use the second
argument of the __call__ method: p(0.1, der=2) evaluates the second derivative of p at x=0.1.
The method p.derivatives has been removed.

3.19.4 Other changes

3.19.5 Authors

• Marc Abramowitz +
• Anders Bech Borchersen +
• Vincent Arel-Bundock +
• Petr Baudis +
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• Max Bolingbroke
• François Boulogne
• Matthew Brett
• Lars Buitinck
• Evgeni Burovski
• CJ Carey +
• Thomas A Caswell +
• Pawel Chojnacki +
• Phillip Cloud +
• Stefano Costa +
• David Cournapeau
• David Menendez Hurtado +
• Matthieu Dartiailh +
• Christoph Deil +
• Jörg Dietrich +
• endolith
• Francisco de la Peña +
• Ben FrantzDale +
• Jim Garrison +
• André Gaul
• Christoph Gohlke
• Ralf Gommers
• Robert David Grant
• Alex Griffing
• Blake Griffith
• Yaroslav Halchenko
• Andreas Hilboll
• Kat Huang
• Gert-Ludwig Ingold
• James T. Webber +
• Dorota Jarecka +
• Todd Jennings +
• Thouis (Ray) Jones
• Juan Luis Cano Rodríguez
• ktritz +
• Jacques Kvam +
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• Eric Larson +
• Justin Lavoie +
• Denis Laxalde
• Jussi Leinonen +
• lemonlaug +
• Tim Leslie
• Alain Leufroy +
• George Lewis +
• Max Linke +
• Brandon Liu +
• Benny Malengier +
• Matthias Kümmerer +
• Cimarron Mittelsteadt +
• Eric Moore
• Andrew Nelson +
• Niklas Hambüchen +
• Joel Nothman +
• Clemens Novak
• Emanuele Olivetti +
• Stefan Otte +
• peb +
• Josef Perktold
• pjwerneck
• poolio
• Jérôme Roy +
• Carl Sandrock +
• Andrew Sczesnak +
• Shauna +
• Fabrice Silva
• Daniel B. Smith
• Patrick Snape +
• Thomas Spura +
• Jacob Stevenson
• Julian Taylor
• Tomas Tomecek
• Richard Tsai
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• Jacob Vanderplas
• Joris Vankerschaver +
• Pauli Virtanen
• Warren Weckesser

A total of 80 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
This list of names is automatically generated, and may not be fully complete.

Issues closed

• #1325: add custom axis keyword to dendrogram function in scipy.cluster.hierarchy…
• #1437: Wrong pochhammer symbol for negative integers (Trac #910)
• #1555: scipy.io.netcdf leaks file descriptors (Trac #1028)
• #1569: sparse matrix failed with element-wise multiplication using numpy.multiply()…
• #1833: Sparse matrices are limited to 2^32 non-zero elements (Trac #1307)
• #1834: scipy.linalg.eig does not normalize eigenvector if B is given…
• #1866: stats for invgamma (Trac #1340)
• #1886: stats.zipf floating point warnings (Trac #1361)
• #1887: Stats continuous distributions - floating point warnings (Trac…
• #1897: scoreatpercentile() does not handle empty list inputs (Trac #1372)
• #1918: splint returns incorrect results (Trac #1393)
• #1949: kurtosistest fails in mstats with type error (Trac #1424)
• #2092: scipy.test leaves darwin27compiled_catalog, cpp and so files…
• #2106: stats ENH: shape parameters in distribution docstrings (Trac…
• #2123: Bad behavior of sparse matrices in a binary ufunc (Trac #1598)
• #2152: Fix mmio/fromfile on gzip on Python 3 (Trac #1627)
• #2164: stats.rice.pdf(x, 0) returns nan (Trac #1639)
• #2169: scipy.optimize.fmin_bfgs not handling functions with boundaries…
• #2177: scipy.cluster.hierarchy.ClusterNode.pre_order returns IndexError…
• #2179: coo.todense() segfaults (Trac #1654)
• #2185: Precision of scipy.ndimage.gaussian_filter*() limited (Trac #1660)
• #2186: scipy.stats.mstats.kurtosistest crashes on 1d input (Trac #1661)
• #2238: Negative p-value on hypergeom.cdf (Trac #1719)
• #2283: ascending order in interpolation routines (Trac #1764)
• #2288: mstats.kurtosistest is incorrectly converting to float, and fails…
• #2396: lpmn wrong results for |z| > 1 (Trac #1877)
• #2398: ss2tf returns num as 2D array instead of 1D (Trac #1879)
• #2406: linkage does not take Unicode strings as method names (Trac #1887)
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• #2443: IIR filter design should not transform to tf representation internally
• #2572: class method solve of splu return object corrupted or falsely…
• #2667: stats endless loop ?
• #2671: .stats.hypergeom documentation error in the note about pmf
• #2691: BUG scipy.linalg.lapack: potrf/ptroi interpret their ‘lower’…
• #2721: Allow use of ellipsis in scipy.sparse slicing
• #2741: stats: deprecate and remove alias for special functions
• #2742: stats add rvs to rice distribution
• #2765: bugs stats entropy
• #2832: argrelextrema returns tuple of 2 empty arrays when no peaks found…
• #2861: scipy.stats.scoreatpercentile broken for vector per
• #2891: COBYLA successful termination when constraints violated
• #2919: test failure with the current master
• #2922: ndimage.percentile_filter ignores origin argument for multidimensional…
• #2938: Sparse/dense matrix inplace operations fail due to __numpy_ufunc__
• #2944: MacPorts builds yield 40Mb worth of build warnings
• #2945: FAIL: test_random_complex (test_basic.TestDet)
• #2947: FAIL: Test some trivial edge cases for savgol_filter()
• #2953: Scipy Delaunay triangulation is not oriented
• #2971: scipy.stats.mstats.winsorize documentation error
• #2980: Problems running what seems a perfectly valid example
• #2996: entropy for rv_discrete is incorrect?!
• #2998: Fix numpy version comparisons
• #3002: python setup.py install fails
• #3014: Bug in stats.fisher_exact
• #3030: relative entropy using scipy.stats.distribution.entropy when…
• #3037: scipy.optimize.curve_fit leads to unexpected behavior when input…
• #3047: mstats.ttest_rel axis=None, requires masked array
• #3059: BUG: Slices of sparse matrices return incorrect dtype
• #3063: range keyword in binned_statistics incorrect
• #3067: cumtrapz not working as expected
• #3069: sinc
• #3086: standard error calculation inconsistent between ‘stats’ and ‘mstats’
• #3094: Add a perm function into scipy.misc and an enhancement of…
• #3111: scipy.sparse.[hv]stack don’t respect anymore the dtype parameter
• #3172: optimize.curve_fit uses different nomenclature from optimize.leastsq

176 Chapter 3. Release Notes

https://github.com/scipy/scipy/issues/2443
https://github.com/scipy/scipy/issues/2572
https://github.com/scipy/scipy/issues/2667
https://github.com/scipy/scipy/issues/2671
https://github.com/scipy/scipy/issues/2691
https://github.com/scipy/scipy/issues/2721
https://github.com/scipy/scipy/issues/2741
https://github.com/scipy/scipy/issues/2742
https://github.com/scipy/scipy/issues/2765
https://github.com/scipy/scipy/issues/2832
https://github.com/scipy/scipy/issues/2861
https://github.com/scipy/scipy/issues/2891
https://github.com/scipy/scipy/issues/2919
https://github.com/scipy/scipy/issues/2922
https://github.com/scipy/scipy/issues/2938
https://github.com/scipy/scipy/issues/2944
https://github.com/scipy/scipy/issues/2945
https://github.com/scipy/scipy/issues/2947
https://github.com/scipy/scipy/issues/2953
https://github.com/scipy/scipy/issues/2971
https://github.com/scipy/scipy/issues/2980
https://github.com/scipy/scipy/issues/2996
https://github.com/scipy/scipy/issues/2998
https://github.com/scipy/scipy/issues/3002
https://github.com/scipy/scipy/issues/3014
https://github.com/scipy/scipy/issues/3030
https://github.com/scipy/scipy/issues/3037
https://github.com/scipy/scipy/issues/3047
https://github.com/scipy/scipy/issues/3059
https://github.com/scipy/scipy/issues/3063
https://github.com/scipy/scipy/issues/3067
https://github.com/scipy/scipy/issues/3069
https://github.com/scipy/scipy/issues/3086
https://github.com/scipy/scipy/issues/3094
https://github.com/scipy/scipy/issues/3111
https://github.com/scipy/scipy/issues/3172


SciPy Reference Guide, Release 1.3.1

• #3196: scipy.stats.mstats.gmean does not actually take dtype
• #3212: Dot product of csr_matrix causes segmentation fault
• #3227: ZeroDivisionError in broyden1 when initial guess is the right…
• #3238: lbfgsb output not suppressed by disp=0
• #3249: Sparse matrix min/max/etc don’t support axis=-1
• #3251: cdist performance issue with ‘sqeuclidean’ metric
• #3279: logm fails for singular matrix
• #3285: signal.chirp(method=’hyp’) disallows hyperbolic upsweep
• #3299: MEMORY LEAK: fmin_tnc
• #3330: test failures with the current master
• #3345: scipy and/or numpy change is causing tests to fail in another…
• #3363: splu does not work for non-vector inputs
• #3385: expit does not handle large arguments well
• #3395: specfun.f doesn’t compile with MinGW
• #3399: Error message bug in scipy.cluster.hierarchy.linkage
• #3404: interpolate._ppoly doesn’t build with MinGW
• #3412: Test failures in signal
• #3466: `scipy.sparse.csgraph.shortest_path` does not work on `scipy.sparse.
csr_matrix` or `lil_matrix`

Pull requests

• #442: ENH: sparse: enable 64-bit index arrays & nnz > 2**31
• #2766: DOC: remove doc/seps/technology-preview.rst
• #2772: TST: stats: Added a regression test for stats.wilcoxon. Closes…
• #2778: Clean up stats._support, close statistics review issues
• #2792: BUG io: fix file descriptor closing for netcdf variables
• #2847: Rice distribution: extend to b=0, add an explicit rvs method.
• #2878: [stats] fix formulas for higher moments of dweibull distribution
• #2904: ENH: moments for the zipf distribution
• #2907: ENH: add coverage info with coveralls.io for Travis runs.
• #2932: BUG+TST: setdiag implementation for dia_matrix (Close #2931)…
• #2942: Misc fixes pointed out by Eclipse PyDev static code analysis
• #2946: ENH: allow non-monotonic input in interp1d
• #2986: BUG: runtests: chdir away from root when running tests
• #2987: DOC: linalg: don’t recommend np.linalg.norm
• #2992: ENH: Add “limit” parameter to dijkstra calculation
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• #2995: ENH: Use int shape
• #3006: DOC: stats: add a log base note to the docstring
• #3007: DEP: stats: Deprecate randwppf and randwcdf
• #3008: Fix mstats.kurtosistest, and test coverage for skewtest/normaltest
• #3009: Minor reST typo
• #3010: Add scipy.optimize.Result to API docs
• #3012: Corrects documentation error
• #3052: PEP-8 conformance improvements
• #3064: Binned statistic
• #3068: Fix Issue #3067 fix cumptrapz that was raising an exception when…
• #3073: Arff reader with nominal value of 1 character
• #3074: Some maintenance work
• #3080: Review and clean up all Box-Cox functions
• #3083: Bug: should return 0 if no regions found
• #3085: BUG: Use zpk in IIR filter design to improve accuracy
• #3101: refactor stats tests a bit
• #3112: ENH: implement Akima interpolation in 1D
• #3123: MAINT: an easier way to make ranges from slices
• #3124: File object support for imread and imsave
• #3126: pep8ify stats/distributions.py
• #3134: MAINT: split distributions.py into three files
• #3138: clean up tests for discrete distributions
• #3155: special: handle the edge case lambda=0 in pdtr, pdtrc and pdtrik
• #3156: Rename optimize.Result to OptimizeResult
• #3166: BUG: make curve_fit() work with array_like input. Closes gh-3037.
• #3170: Fix numpy version checks
• #3175: use numpy sinc
• #3177: Update numpy version warning, remove oldnumeric import
• #3178: DEP: remove deprecated umfpack wrapper. Closes gh-3002.
• #3179: DOC: add BPoly to the docs
• #3180: Suppress warnings when running stats.test()
• #3181: altered sem func in mstats to match stats
• #3182: Make weave tests behave
• #3183: ENH: Add k-sample Anderson-Darling test to stats module
• #3186: Fix stats.scoreatpercentile
• #3187: DOC: make curve_fit nomenclature same as leastsq
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• #3201: Added axis keyword to dendrogram function
• #3207: Make docstring examples in stats.distributions docstrings runnable
• #3218: BUG: integrate: Fix banded jacobian handling in the “vode” and…
• #3222: BUG: limit input ranges in special.nctdtr
• #3223: Fix test errors with numpy master
• #3224: Fix int32 overflows in sparsetools
• #3228: DOC: tf2ss zpk2ss note controller canonical form
• #3234: Add See Also links and Example graphs to filter design *ord functions
• #3235: Updated the buttord function to be consistent with the other…
• #3239: correct doc for pchip interpolation
• #3240: DOC: fix ReST errors in the BPoly docstring
• #3241: RF: check write attr of fileobject without writing
• #3243: a bit of maintanence work in stats
• #3245: BUG/ENH: stats: make frozen distributions hold separate instances
• #3247: ENH function to return nnz per row/column in some sparse matrices
• #3248: ENH much more efficient sparse min/max with axis
• #3252: Fast sqeuclidean
• #3253: FIX support axis=-1 and -2 for sparse reduce methods
• #3254: TST tests for non-canonical input to sparse matrix operations
• #3272: BUG: sparse: fix bugs in dia_matrix.setdiag
• #3278: Also generate a tar.xz when running paver sdist
• #3286: DOC: update 0.14.0 release notes.
• #3289: TST: remove insecure mktemp use in tests
• #3292: MAINT: fix a backwards incompatible change to stats.distributions.__all__
• #3293: ENH: signal: Allow upsweeps of frequency in the ‘hyperbolic’…
• #3302: ENH: add dtype arg to stats.mstats.gmean and stats.mstats.hmean
• #3307: DOC: add note about different ba forms in tf2zpk
• #3309: doc enhancements to scipy.stats.mstats.winsorize
• #3310: DOC: clarify matrix vs array in mmio docstrings
• #3314: BUG: fix scipy.io.mmread() of gzipped files under Python3
• #3323: ENH: Efficient interpolation on regular grids in arbitrary dimensions
• #3332: DOC: clean up scipy.special docs
• #3335: ENH: improve nanmedian performance
• #3347: BUG: fix use of np.max in stats.fisher_exact
• #3356: ENH: sparse: speed up LIL indexing + assignment via Cython
• #3357: Fix “imresize does not work with size = int”
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• #3358: MAINT: rename AkimaInterpolator to Akima1DInterpolator
• #3366: WHT: sparse: reindent dsolve/*.c *.h

• #3367: BUG: sparse/dsolve: fix dense matrix fortran order bugs in superlu…
• #3369: ENH minimize, minimize_scalar: Add support for user-provided…
• #3371: scipy.stats.sigmaclip doesn’t appear in the html docs.
• #3373: BUG: sparse/dsolve: detect invalid LAPACK parameters in superlu…
• #3375: ENH: sparse/dsolve: make the L and U factors of splu and spilu…
• #3377: MAINT: make travis build one target against Numpy 1.5
• #3378: MAINT: fftpack: Remove the use of 'import *' in a couple test…
• #3381: MAINT: replace np.isinf(x) & (x>0) -> np.isposinf(x) to avoid…
• #3383: MAINT: skip float96 tests on platforms without float96
• #3384: MAINT: add pyflakes to Travis-CI
• #3386: BUG: stable evaluation of expit
• #3388: BUG: SuperLU: fix missing declaration of dlamch
• #3389: BUG: sparse: downcast 64-bit indices safely to intp when required
• #3390: BUG: nonlinear solvers are not confused by lucky guess
• #3391: TST: fix sparse test errors due to axis=-1,-2 usage in np.matrix.sum().
• #3392: BUG: sparse/lil: fix up Cython bugs in fused type lookup
• #3393: BUG: sparse/compressed: work around bug in np.unique in earlier…
• #3394: BUG: allow ClusterNode.pre_order() for non-root nodes
• #3400: BUG: cluster.linkage ValueError typo bug
• #3402: BUG: special: In specfun.f, replace the use of CMPLX with DCMPLX,…
• #3408: MAINT: sparse: Numpy 1.5 compatibility fixes
• #3410: MAINT: interpolate: fix blas defs in _ppoly
• #3411: MAINT: Numpy 1.5 fixes in interpolate
• #3413: Fix more test issues with older numpy versions
• #3414: TST: signal: loosen some error tolerances in the filter tests….
• #3415: MAINT: tools: automated close issue + pr listings for release…
• #3440: MAINT: wrap sparsetools manually instead via SWIG
• #3460: TST: open image file in binary mode
• #3467: BUG: fix validation in csgraph.shortest_path

3.20 SciPy 0.13.2 Release Notes

SciPy 0.13.2 is a bug-fix release with no new features compared to 0.13.1.
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3.20.1 Issues fixed

• 3096: require Cython 0.19, earlier versions have memory leaks in fused types
• 3079: ndimage.label fix swapped 64-bitness test
• 3108: optimize.fmin_slsqp constraint violation

3.21 SciPy 0.13.1 Release Notes

SciPy 0.13.1 is a bug-fix release with no new features compared to 0.13.0. The only changes are several fixes inndimage,
one of which was a serious regression in ndimage.label (Github issue 3025), which gave incorrect results in 0.13.0.

3.21.1 Issues fixed

• 3025: ndimage.label returns incorrect results in scipy 0.13.0
• 1992: ndimage.label return type changed from int32 to uint32
• 1992: ndimage.find_objects doesn’t work with int32 input in some cases

3.22 SciPy 0.13.0 Release Notes

Contents

• SciPy 0.13.0 Release Notes

– New features

∗ scipy.integrate improvements

· N-dimensional numerical integration

· dopri* improvements

∗ scipy.linalg improvements

· Interpolative decompositions

· Polar decomposition

· BLAS level 3 functions

· Matrix functions

∗ scipy.optimize improvements

· Trust-region unconstrained minimization algorithms

∗ scipy.sparse improvements

· Boolean comparisons and sparse matrices

· CSR and CSC fancy indexing

∗ scipy.sparse.linalg improvements

∗ scipy.spatial improvements
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∗ scipy.signal improvements

∗ scipy.special improvements

∗ scipy.io improvements

· Unformatted Fortran file reader

· scipy.io.wavfile enhancements

∗ scipy.interpolate improvements

· B-spline derivatives and antiderivatives

∗ scipy.stats improvements

– Deprecated features

∗ expm2 and expm3

∗ scipy.stats functions

– Backwards incompatible changes

∗ LIL matrix assignment

∗ Deprecated radon function removed

∗ Removed deprecated keywords xa and xb from stats.distributions

∗ Changes to MATLAB file readers / writers

– Other changes

– Authors

SciPy 0.13.0 is the culmination of 7 months of hard work. It contains many new features, numerous bug-fixes, improved
test coverage and better documentation. There have been a number of deprecations and API changes in this release, which
are documented below. All users are encouraged to upgrade to this release, as there are a large number of bug-fixes and
optimizations. Moreover, our development attention will now shift to bug-fix releases on the 0.13.x branch, and on adding
new features on the master branch.
This release requires Python 2.6, 2.7 or 3.1-3.3 and NumPy 1.5.1 or greater. Highlights of this release are:

• support for fancy indexing and boolean comparisons with sparse matrices
• interpolative decompositions and matrix functions in the linalg module
• two new trust-region solvers for unconstrained minimization

3.22.1 New features

scipy.integrate improvements

N-dimensional numerical integration
A new function scipy.integrate.nquad, which provides N-dimensional integration functionality with a more
flexible interface than dblquad and tplquad, has been added.

dopri* improvements
The intermediate results from the dopri family of ODE solvers can now be accessed by a solout callback function.
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scipy.linalg improvements

Interpolative decompositions
Scipy now includes a new module scipy.linalg.interpolative containing routines for computing interpola-
tive matrix decompositions (ID). This feature is based on the ID software package by P.G. Martinsson, V. Rokhlin, Y.
Shkolnisky, and M. Tygert, previously adapted for Python in the PymatrixId package by K.L. Ho.

Polar decomposition
A new function scipy.linalg.polar, to compute the polar decomposition of a matrix, was added.

BLAS level 3 functions
The BLAS functions symm, syrk, syr2k, hemm, herk and her2k are now wrapped in scipy.linalg.

Matrix functions
Several matrix function algorithms have been implemented or updated following detailed descriptions in recent pa-
pers of Nick Higham and his co-authors. These include the matrix square root (sqrtm), the matrix logarithm
(logm), the matrix exponential (expm) and its Frechet derivative (expm_frechet), and fractional matrix powers
(fractional_matrix_power).

scipy.optimize improvements

Trust-region unconstrained minimization algorithms
The minimize function gained two trust-region solvers for unconstrained minimization: dogleg and trust-ncg.

scipy.sparse improvements

Boolean comparisons and sparse matrices
All sparse matrix types now support boolean data, and boolean operations. Two sparse matrices A and B can be compared
in all the expected ways A < B, A >= B, A != B, producing similar results as dense Numpy arrays. Comparisons with
dense matrices and scalars are also supported.

CSR and CSC fancy indexing
Compressed sparse row and column sparse matrix types now support fancy indexing with boolean matrices, slices, and
lists. So where A is a (CSC or CSR) sparse matrix, you can do things like:

>>> A[A > 0.5] = 1 # since Boolean sparse matrices work
>>> A[:2, :3] = 2
>>> A[[1,2], 2] = 3

scipy.sparse.linalg improvements

The new function onenormest provides a lower bound of the 1-norm of a linear operator and has been implemented
according to Higham and Tisseur (2000). This function is not only useful for sparse matrices, but can also be used to
estimate the norm of products or powers of dense matrices without explicitly building the intermediate matrix.
The multiplicative action of the matrix exponential of a linear operator (expm_multiply) has been implemented
following the description in Al-Mohy and Higham (2011).
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Abstract linear operators (scipy.sparse.linalg.LinearOperator) can now be multiplied, added to each
other, and exponentiated, producing new linear operators. This enables easier construction of composite linear operations.

scipy.spatial improvements

The vertices of a ConvexHull can now be accessed via the vertices attribute, which gives proper orientation in 2-D.

scipy.signal improvements

The cosine window function scipy.signal.cosine was added.

scipy.special improvements

New functions scipy.special.xlogy and scipy.special.xlog1py were added. These functions can sim-
plify and speed up code that has to calculate x * log(y) and give 0 when x == 0.

scipy.io improvements

Unformatted Fortran file reader
The new class scipy.io.FortranFile facilitates reading unformatted sequential files written by Fortran code.

scipy.io.wavfile enhancements
scipy.io.wavfile.write now accepts a file buffer. Previously it only accepted a filename.
scipy.io.wavfile.read and scipy.io.wavfile.write can now handle floating point WAV files.

scipy.interpolate improvements

B-spline derivatives and antiderivatives
scipy.interpolate.splder and scipy.interpolate.splantider functions for computing B-splines
that represent derivatives and antiderivatives of B-splines were added. These functions are also available in the class-based
FITPACK interface as UnivariateSpline.derivative and UnivariateSpline.antiderivative.

scipy.stats improvements

Distributions now allow using keyword parameters in addition to positional parameters in all methods.
The function scipy.stats.power_divergence has been added for the Cressie-Read power divergence statistic
and goodness of fit test. Included in this family of statistics is the “G-test” (https://en.wikipedia.org/wiki/G-test).
scipy.stats.mood now accepts multidimensional input.
An option was added to scipy.stats.wilcoxon for continuity correction.
scipy.stats.chisquare now has an axis argument.
scipy.stats.mstats.chisquare now has axis and ddof arguments.
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3.22.2 Deprecated features

expm2 and expm3

The matrix exponential functions scipy.linalg.expm2 and scipy.linalg.expm3 are deprecated. All users should use the
numerically more robust scipy.linalg.expm function instead.

scipy.stats functions

scipy.stats.oneway is deprecated; scipy.stats.f_oneway should be used instead.
scipy.stats.glm is deprecated. scipy.stats.ttest_ind is an equivalent function; more full-featured general (and
generalized) linear model implementations can be found in statsmodels.
scipy.stats.cmedian is deprecated; numpy.median should be used instead.

3.22.3 Backwards incompatible changes

LIL matrix assignment

Assigning values to LIL matrices with two index arrays now works similarly as assigning into ndarrays:

>>> x = lil_matrix((3, 3))
>>> x[[0,1,2],[0,1,2]]=[0,1,2]
>>> x.todense()
matrix([[ 0., 0., 0.],

[ 0., 1., 0.],
[ 0., 0., 2.]])

rather than giving the result:

>>> x.todense()
matrix([[ 0., 1., 2.],

[ 0., 1., 2.],
[ 0., 1., 2.]])

Users relying on the previous behavior will need to revisit their code. The previous behavior is obtained by x[numpy.
ix_([0,1,2],[0,1,2])] = ....

Deprecated radon function removed

Themisc.radon function, which was deprecated in scipy 0.11.0, has been removed. Users can find amore full-featured
radon function in scikit-image.

Removed deprecated keywords xa and xb from stats.distributions

The keywords xa and xb, which were deprecated since 0.11.0, have been removed from the distributions in scipy.
stats.
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Changes to MATLAB file readers / writers

The major change is that 1D arrays in numpy now become row vectors (shape 1, N) when saved to a MATLAB 5 format
file. Previously 1D arrays saved as column vectors (N, 1). This is to harmonize the behavior of writing MATLAB 4 and
5 formats, and adapt to the defaults of numpy and MATLAB - for example np.atleast_2d returns 1D arrays as row
vectors.
Trying to save arrays of greater than 2 dimensions in MATLAB 4 format now raises an error instead of silently reshaping
the array as 2D.
scipy.io.loadmat('afile') used to look for afile on the Python system path (sys.path); now loadmat
only looks in the current directory for a relative path filename.

3.22.4 Other changes

Security fix: scipy.weave previously used temporary directories in an insecure manner under certain circumstances.
Cython is now required to build unreleased versions of scipy. The C files generated from Cython sources are not included
in the git repo anymore. They are however still shipped in source releases.
The code base received a fairly large PEP8 cleanup. A tox pep8 command has been added; new code should pass this
test command.
Scipy cannot be compiled with gfortran 4.1 anymore (at least on RH5), likely due to that compiler version not supporting
entry constructs well.

3.22.5 Authors

This release contains work by the following people (contributed at least one patch to this release, names in alphabetical
order):

• Jorge Cañardo Alastuey +
• Tom Aldcroft +
• Max Bolingbroke +
• Joseph Jon Booker +
• François Boulogne
• Matthew Brett
• Christian Brodbeck +
• Per Brodtkorb +
• Christian Brueffer +
• Lars Buitinck
• Evgeni Burovski +
• Tim Cera
• Lawrence Chan +
• David Cournapeau
• Dražen Lučanin +
• Alexander J. Dunlap +
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• endolith
• André Gaul +
• Christoph Gohlke
• Ralf Gommers
• Alex Griffing +
• Blake Griffith +
• Charles Harris
• Bob Helmbold +
• Andreas Hilboll
• Kat Huang +
• Oleksandr (Sasha) Huziy +
• Gert-Ludwig Ingold +
• Thouis (Ray) Jones
• Juan Luis Cano Rodríguez +
• Robert Kern
• Andreas Kloeckner +
• Sytse Knypstra +
• Gustav Larsson +
• Denis Laxalde
• Christopher Lee
• Tim Leslie
• Wendy Liu +
• Clemens Novak +
• Takuya Oshima +
• Josef Perktold
• Illia Polosukhin +
• Przemek Porebski +
• Steve Richardson +
• Branden Rolston +
• Skipper Seabold
• Fazlul Shahriar
• Leo Singer +
• Rohit Sivaprasad +
• Daniel B. Smith +
• Julian Taylor
• Louis Thibault +
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• Tomas Tomecek +
• John Travers
• Richard Tsai +
• Jacob Vanderplas
• Patrick Varilly
• Pauli Virtanen
• Stefan van der Walt
• Warren Weckesser
• Pedro Werneck +
• Nils Werner +
• Michael Wimmer +
• Nathan Woods +
• Tony S. Yu +

A total of 65 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

3.23 SciPy 0.12.1 Release Notes

SciPy 0.12.1 is a bug-fix release with no new features compared to 0.12.0. The single issue fixed by this release is a
security issue in scipy.weave, which was previously using temporary directories in an insecure manner under certain
circumstances.

3.24 SciPy 0.12.0 Release Notes

Contents

• SciPy 0.12.0 Release Notes

– New features

∗ scipy.spatial improvements

· cKDTree feature-complete

· Voronoi diagrams and convex hulls

· Delaunay improvements

∗ Spectral estimators (scipy.signal)

∗ scipy.optimize improvements

· Callback functions in L-BFGS-B and TNC

· Basin hopping global optimization (scipy.optimize.basinhopping)

∗ scipy.special improvements

· Revised complex error functions
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· Faster orthogonal polynomials

∗ scipy.sparse.linalg features

∗ Listing Matlab(R) file contents in scipy.io

∗ Documented BLAS and LAPACK low-level interfaces (scipy.linalg)

∗ Polynomial interpolation improvements (scipy.interpolate)

– Deprecated features

∗ scipy.lib.lapack
∗ fblas and cblas

– Backwards incompatible changes

∗ Removal of scipy.io.save_as_module

∗ axis argument added to scipy.stats.scoreatpercentile

– Authors

SciPy 0.12.0 is the culmination of 7 months of hard work. It contains many new features, numerous bug-fixes, improved
test coverage and better documentation. There have been a number of deprecations and API changes in this release, which
are documented below. All users are encouraged to upgrade to this release, as there are a large number of bug-fixes and
optimizations. Moreover, our development attention will now shift to bug-fix releases on the 0.12.x branch, and on adding
new features on the master branch.
Some of the highlights of this release are:

• Completed QHull wrappers in scipy.spatial.
• cKDTree now a drop-in replacement for KDTree.
• A new global optimizer, basinhopping.
• Support for Python 2 and Python 3 from the same code base (no more 2to3).

This release requires Python 2.6, 2.7 or 3.1-3.3 and NumPy 1.5.1 or greater. Support for Python 2.4 and 2.5 has been
dropped as of this release.

3.24.1 New features

scipy.spatial improvements

cKDTree feature-complete
Cython version of KDTree, cKDTree, is now feature-complete. Most operations (construction, query, query_ball_point,
query_pairs, count_neighbors and sparse_distance_matrix) are between 200 and 1000 times faster in cKDTree than in
KDTree. With very minor caveats, cKDTree has exactly the same interface as KDTree, and can be used as a drop-in
replacement.

Voronoi diagrams and convex hulls
scipy.spatial now contains functionality for computing Voronoi diagrams and convex hulls using the Qhull library.
(Delaunay triangulation was available since Scipy 0.9.0.)

Delaunay improvements
It’s now possible to pass in custom Qhull options in Delaunay triangulation. Coplanar points are now also recorded, if
present. Incremental construction of Delaunay triangulations is now also possible.
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Spectral estimators (scipy.signal)

The functions scipy.signal.periodogram and scipy.signal.welch were added, providing DFT-based
spectral estimators.

scipy.optimize improvements

Callback functions in L-BFGS-B and TNC
A callback mechanism was added to L-BFGS-B and TNC minimization solvers.

Basin hopping global optimization (scipy.optimize.basinhopping)
A new global optimization algorithm. Basinhopping is designed to efficiently find the global minimum of a smooth
function.

scipy.special improvements

Revised complex error functions
The computation of special functions related to the error function now uses a new Faddeeva library from MIT which
increases their numerical precision. The scaled and imaginary error functions erfcx and erfi were also added, and
the Dawson integral dawsn can now be evaluated for a complex argument.

Faster orthogonal polynomials
Evaluation of orthogonal polynomials (the eval_* routines) in now faster in scipy.special, and their out= ar-
gument functions properly.

scipy.sparse.linalg features

• In scipy.sparse.linalg.spsolve, the b argument can now be either a vector or a matrix.
• scipy.sparse.linalg.inv was added. This uses spsolve to compute a sparse matrix inverse.
• scipy.sparse.linalg.expm was added. This computes the exponential of a sparse matrix using a similar
algorithm to the existing dense array implementation in scipy.linalg.expm.

Listing Matlab(R) file contents in scipy.io

A new function whosmat is available in scipy.io for inspecting contents of MAT files without reading them to
memory.

Documented BLAS and LAPACK low-level interfaces (scipy.linalg)

The modules scipy.linalg.blas and scipy.linalg.lapack can be used to access low-level BLAS and
LAPACK functions.

Polynomial interpolation improvements (scipy.interpolate)

The barycentric, Krogh, piecewise and pchip polynomial interpolators in scipy.interpolate accept now an axis
argument.
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3.24.2 Deprecated features

scipy.lib.lapack

The module scipy.lib.lapack is deprecated. You can use scipy.linalg.lapack instead. The module scipy.lib.blas
was deprecated earlier in Scipy 0.10.0.

fblas and cblas

Accessing the modules scipy.linalg.fblas, cblas, flapack, clapack is deprecated. Instead, use the modules scipy.
linalg.lapack and scipy.linalg.blas.

3.24.3 Backwards incompatible changes

Removal of scipy.io.save_as_module

The function scipy.io.save_as_module was deprecated in Scipy 0.11.0, and is now removed.
Its private support modules scipy.io.dumbdbm_patched and scipy.io.dumb_shelve are also removed.

axis argument added to scipy.stats.scoreatpercentile

The function scipy.stats.scoreatpercentile has been given an axis argument. The default argument is
axis=None, which means the calculation is done on the flattened array. Before this change, scoreatpercentile would act
as if axis=0 had been given. Code using scoreatpercentile with a multidimensional array will need to add axis=0 to the
function call to preserve the old behavior. (This API change was not noticed until long after the release of 0.12.0.)

3.24.4 Authors

• Anton Akhmerov +
• Alexander Eberspächer +
• Anne Archibald
• Jisk Attema +
• K.-Michael Aye +
• bemasc +
• Sebastian Berg +
• François Boulogne +
• Matthew Brett
• Lars Buitinck
• Steven Byrnes +
• Tim Cera +
• Christian +
• Keith Clawson +
• David Cournapeau
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• Nathan Crock +
• endolith
• Bradley M. Froehle +
• Matthew R Goodman
• Christoph Gohlke
• Ralf Gommers
• Robert David Grant +
• Yaroslav Halchenko
• Charles Harris
• Jonathan Helmus
• Andreas Hilboll
• Hugo +
• Oleksandr Huziy
• Jeroen Demeyer +
• Johannes Schönberger +
• Steven G. Johnson +
• Chris Jordan-Squire
• Jonathan Taylor +
• Niklas Kroeger +
• Jerome Kieffer +
• kingson +
• Josh Lawrence
• Denis Laxalde
• Alex Leach +
• Tim Leslie
• Richard Lindsley +
• Lorenzo Luengo +
• Stephen McQuay +
• MinRK
• Sturla Molden +
• Eric Moore +
• mszep +
• Matt Newville +
• Vlad Niculae
• Travis Oliphant
• David Parker +
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• Fabian Pedregosa
• Josef Perktold
• Zach Ploskey +
• Alex Reinhart +
• Gilles Rochefort +
• Ciro Duran Santillli +
• Jan Schlueter +
• Jonathan Scholz +
• Anthony Scopatz
• Skipper Seabold
• Fabrice Silva +
• Scott Sinclair
• Jacob Stevenson +
• Sturla Molden +
• Julian Taylor +
• thorstenkranz +
• John Travers +
• True Price +
• Nicky van Foreest
• Jacob Vanderplas
• Patrick Varilly
• Daniel Velkov +
• Pauli Virtanen
• Stefan van der Walt
• Warren Weckesser

A total of 75 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

3.25 SciPy 0.11.0 Release Notes

Contents

• SciPy 0.11.0 Release Notes

– New features

∗ Sparse Graph Submodule

∗ scipy.optimize improvements

· Unified interfaces to minimizers
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· Unified interface to root finding algorithms

∗ scipy.linalg improvements

· New matrix equation solvers

· QZ and QR Decomposition

· Pascal matrices

∗ Sparse matrix construction and operations

∗ LSMR iterative solver

∗ Discrete Sine Transform

∗ scipy.interpolate improvements

∗ Binned statistics (scipy.stats)

– Deprecated features

– Backwards incompatible changes

∗ Removal of scipy.maxentropy

∗ Minor change in behavior of splev

∗ Behavior of scipy.integrate.complex_ode

∗ Minor change in behavior of T-tests

– Other changes

– Authors

SciPy 0.11.0 is the culmination of 8 months of hard work. It contains many new features, numerous bug-fixes, improved
test coverage and better documentation. Highlights of this release are:

• A new module has been added which provides a number of common sparse graph algorithms.
• New unified interfaces to the existing optimization and root finding functions have been added.

All users are encouraged to upgrade to this release, as there are a large number of bug-fixes and optimizations. Our
development attention will now shift to bug-fix releases on the 0.11.x branch, and on adding new features on the master
branch.
This release requires Python 2.4-2.7 or 3.1-3.2 and NumPy 1.5.1 or greater.

3.25.1 New features

Sparse Graph Submodule

The new submodule scipy.sparse.csgraph implements a number of efficient graph algorithms for graphs stored
as sparse adjacency matrices. Available routines are:

• connected_components - determine connected components of a graph
• laplacian - compute the laplacian of a graph
• shortest_path - compute the shortest path between points on a positive graph
• dijkstra - use Dijkstra’s algorithm for shortest path
• floyd_warshall - use the Floyd-Warshall algorithm for shortest path
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• breadth_first_order - compute a breadth-first order of nodes
• depth_first_order - compute a depth-first order of nodes
• breadth_first_tree - construct the breadth-first tree from a given node
• depth_first_tree - construct a depth-first tree from a given node
• minimum_spanning_tree - construct the minimum spanning tree of a graph

scipy.optimize improvements

The optimize module has received a lot of attention this release. In addition to added tests, documentation improvements,
bug fixes and code clean-up, the following improvements were made:

• A unified interface to minimizers of univariate and multivariate functions has been added.
• A unified interface to root finding algorithms for multivariate functions has been added.
• The L-BFGS-B algorithm has been updated to version 3.0.

Unified interfaces to minimizers
Two new functions scipy.optimize.minimize and scipy.optimize.minimize_scalar were added
to provide a common interface to minimizers of multivariate and univariate functions respectively. For mul-
tivariate functions, scipy.optimize.minimize provides an interface to methods for unconstrained opti-
mization (fmin, fmin_powell, fmin_cg, fmin_ncg, fmin_bfgs and anneal) or constrained optimiza-
tion (fmin_l_bfgs_b, fmin_tnc, fmin_cobyla and fmin_slsqp). For univariate functions, scipy.
optimize.minimize_scalar provides an interface to methods for unconstrained and bounded optimization
(brent, golden, fminbound). This allows for easier comparing and switching between solvers.

Unified interface to root finding algorithms
The new function scipy.optimize.root provides a common interface to root finding algorithms for multivariate
functions, embedding fsolve, leastsq and nonlin solvers.

scipy.linalg improvements

New matrix equation solvers
Solvers for the Sylvester equation (scipy.linalg.solve_sylvester, discrete and continuous Lyapunov equa-
tions (scipy.linalg.solve_lyapunov, scipy.linalg.solve_discrete_lyapunov) and discrete
and continuous algebraic Riccati equations (scipy.linalg.solve_continuous_are, scipy.linalg.
solve_discrete_are) have been added to scipy.linalg. These solvers are often used in the field of linear
control theory.

QZ and QR Decomposition
It is now possible to calculate the QZ, or Generalized Schur, decomposition using scipy.linalg.qz. This function
wraps the LAPACK routines sgges, dgges, cgges, and zgges.
The function scipy.linalg.qr_multiply, which allows efficient computation of the matrix product of Q (from
a QR decomposition) and a vector, has been added.

Pascal matrices
A function for creating Pascal matrices, scipy.linalg.pascal, was added.

3.25. SciPy 0.11.0 Release Notes 195



SciPy Reference Guide, Release 1.3.1

Sparse matrix construction and operations

Two new functions, scipy.sparse.diags and scipy.sparse.block_diag, were added to easily construct
diagonal and block-diagonal sparse matrices respectively.
scipy.sparse.csc_matrix and csr_matrix now support the operations sin, tan, arcsin, arctan,
sinh, tanh, arcsinh, arctanh, rint, sign, expm1, log1p, deg2rad, rad2deg, floor, ceil and
trunc. Previously, these operations had to be performed by operating on the matrices’ data attribute.

LSMR iterative solver

LSMR, an iterative method for solving (sparse) linear and linear least-squares systems, was added as scipy.sparse.
linalg.lsmr.

Discrete Sine Transform

Bindings for the discrete sine transform functions have been added to scipy.fftpack.

scipy.interpolate improvements

For interpolation in spherical coordinates, the three classes scipy.interpolate.
SmoothSphereBivariateSpline, scipy.interpolate.LSQSphereBivariateSpline, and
scipy.interpolate.RectSphereBivariateSpline have been added.

Binned statistics (scipy.stats)

The stats module has gained functions to do binned statistics, which are a generalization of histograms, in 1-D, 2-
D and multiple dimensions: scipy.stats.binned_statistic, scipy.stats.binned_statistic_2d
and scipy.stats.binned_statistic_dd.

3.25.2 Deprecated features

scipy.sparse.cs_graph_components has been made a part of the sparse graph submodule, and renamed to
scipy.sparse.csgraph.connected_components. Calling the former routine will result in a deprecation
warning.
scipy.misc.radon has been deprecated. A more full-featured radon transform can be found in scikits-image.
scipy.io.save_as_module has been deprecated. A better way to save multiple Numpy arrays is the numpy.
savez function.
The xa and xb parameters for all distributions in scipy.stats.distributions already weren’t used; they have
now been deprecated.

3.25.3 Backwards incompatible changes

Removal of scipy.maxentropy

The scipy.maxentropymodule, which was deprecated in the 0.10.0 release, has been removed. Logistic regression
in scikits.learn is a good and modern alternative for this functionality.
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Minor change in behavior of splev

The spline evaluation function now behaves similarly to interp1d for size-1 arrays. Previous behavior:

>>> from scipy.interpolate import splev, splrep, interp1d
>>> x = [1,2,3,4,5]
>>> y = [4,5,6,7,8]
>>> tck = splrep(x, y)
>>> splev([1], tck)
4.
>>> splev(1, tck)
4.

Corrected behavior:

>>> splev([1], tck)
array([ 4.])
>>> splev(1, tck)
array(4.)

This affects also the UnivariateSpline classes.

Behavior of scipy.integrate.complex_ode

The behavior of the y attribute of complex_ode is changed. Previously, it expressed the complex-valued solution in
the form:

z = ode.y[::2] + 1j * ode.y[1::2]

Now, it is directly the complex-valued solution:

z = ode.y

Minor change in behavior of T-tests

The T-tests scipy.stats.ttest_ind, scipy.stats.ttest_rel and scipy.stats.ttest_1samp
have been changed so that 0 / 0 now returns NaN instead of 1.

3.25.4 Other changes

The SuperLU sources in scipy.sparse.linalg have been updated to version 4.3 from upstream.
The function scipy.signal.bode, which calculates magnitude and phase data for a continuous-time system, has
been added.
The two-sample T-test scipy.stats.ttest_ind gained an option to compare samples with unequal variances, i.e.
Welch’s T-test.
scipy.misc.logsumexp now takes an optional axis keyword argument.
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3.25.5 Authors

This release contains work by the following people (contributed at least one patch to this release, names in alphabetical
order):

• Jeff Armstrong
• Chad Baker
• Brandon Beacher +
• behrisch +
• borishim +
• Matthew Brett
• Lars Buitinck
• Luis Pedro Coelho +
• Johann Cohen-Tanugi
• David Cournapeau
• dougal +
• Ali Ebrahim +
• endolith +
• Bjørn Forsman +
• Robert Gantner +
• Sebastian Gassner +
• Christoph Gohlke
• Ralf Gommers
• Yaroslav Halchenko
• Charles Harris
• Jonathan Helmus +
• Andreas Hilboll +
• Marc Honnorat +
• Jonathan Hunt +
• Maxim Ivanov +
• Thouis (Ray) Jones
• Christopher Kuster +
• Josh Lawrence +
• Denis Laxalde +
• Travis Oliphant
• Joonas Paalasmaa +
• Fabian Pedregosa
• Josef Perktold
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• Gavin Price +
• Jim Radford +
• Andrew Schein +
• Skipper Seabold
• Jacob Silterra +
• Scott Sinclair
• Alexis Tabary +
• Martin Teichmann
• Matt Terry +
• Nicky van Foreest +
• Jacob Vanderplas
• Patrick Varilly +
• Pauli Virtanen
• Nils Wagner +
• Darryl Wally +
• Stefan van der Walt
• Liming Wang +
• David Warde-Farley +
• Warren Weckesser
• Sebastian Werk +
• Mike Wimmer +
• Tony S Yu +

A total of 55 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

3.26 SciPy 0.10.1 Release Notes

Contents

• SciPy 0.10.1 Release Notes

– Main changes

– Other issues fixed

SciPy 0.10.1 is a bug-fix release with no new features compared to 0.10.0.
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3.26.1 Main changes

The most important changes are:
1. The single precision routines of eigs and eigsh in scipy.sparse.linalg have been disabled (they inter-

nally use double precision now).
2. A compatibility issue related to changes in NumPy macros has been fixed, in order to make scipy 0.10.1 compile

with the upcoming numpy 1.7.0 release.

3.26.2 Other issues fixed

• #835: stats: nan propagation in stats.distributions
• #1202: io: netcdf segfault
• #1531: optimize: make curve_fit work with method as callable.
• #1560: linalg: fixed mistake in eig_banded documentation.
• #1565: ndimage: bug in ndimage.variance
• #1457: ndimage: standard_deviation does not work with sequence of indexes
• #1562: cluster: segfault in linkage function
• #1568: stats: One-sided fisher_exact() returns p < 1 for 0 successful attempts
• #1575: stats: zscore and zmap handle the axis keyword incorrectly

3.27 SciPy 0.10.0 Release Notes

Contents

• SciPy 0.10.0 Release Notes

– New features

∗ Bento: new optional build system

∗ Generalized and shift-invert eigenvalue problems in scipy.sparse.linalg

∗ Discrete-Time Linear Systems (scipy.signal)

∗ Enhancements to scipy.signal

∗ Additional decomposition options (scipy.linalg)

∗ Additional special matrices (scipy.linalg)

∗ Enhancements to scipy.stats

∗ Enhancements to scipy.special

∗ Basic support for Harwell-Boeing file format for sparse matrices

– Deprecated features

∗ scipy.maxentropy

∗ scipy.lib.blas
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∗ Numscons build system

– Backwards-incompatible changes

– Other changes

– Authors

SciPy 0.10.0 is the culmination of 8 months of hard work. It contains many new features, numerous bug-fixes, improved
test coverage and better documentation. There have been a limited number of deprecations and backwards-incompatible
changes in this release, which are documented below. All users are encouraged to upgrade to this release, as there are a
large number of bug-fixes and optimizations. Moreover, our development attention will now shift to bug-fix releases on
the 0.10.x branch, and on adding new features on the development master branch.
Release highlights:

• Support for Bento as optional build system.
• Support for generalized eigenvalue problems, and all shift-invert modes available in ARPACK.

This release requires Python 2.4-2.7 or 3.1- and NumPy 1.5 or greater.

3.27.1 New features

Bento: new optional build system

Scipy can now be built with Bento. Bento has some nice features like parallel builds and partial rebuilds, that are not
possible with the default build system (distutils). For usage instructions see BENTO_BUILD.txt in the scipy top-level
directory.
Currently Scipy has three build systems, distutils, numscons and bento. Numscons is deprecated and is planned and will
likely be removed in the next release.

Generalized and shift-invert eigenvalue problems in scipy.sparse.linalg

The sparse eigenvalue problem solver functions scipy.sparse.eigs/eigh now support generalized eigenvalue
problems, and all shift-invert modes available in ARPACK.

Discrete-Time Linear Systems (scipy.signal)

Support for simulating discrete-time linear systems, including scipy.signal.dlsim, scipy.signal.
dimpulse, and scipy.signal.dstep, has been added to SciPy. Conversion of linear systems from continuous-
time to discrete-time representations is also present via the scipy.signal.cont2discrete function.

Enhancements to scipy.signal

A Lomb-Scargle periodogram can now be computed with the new function scipy.signal.lombscargle.
The forward-backward filter function scipy.signal.filtfilt can now filter the data in a given axis of an n-
dimensional numpy array. (Previously it only handled a 1-dimensional array.) Options have been added to allow more
control over how the data is extended before filtering.
FIR filter design with scipy.signal.firwin2 now has options to create filters of type III (zero at zero and Nyquist
frequencies) and IV (zero at zero frequency).
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Additional decomposition options (scipy.linalg)

A sort keyword has been added to the Schur decomposition routine (scipy.linalg.schur) to allow the sorting of
eigenvalues in the resultant Schur form.

Additional special matrices (scipy.linalg)

The functions hilbert and invhilbert were added to scipy.linalg.

Enhancements to scipy.stats

• The one-sided form of Fisher’s exact test is now also implemented in stats.fisher_exact.
• The function stats.chi2_contingency for computing the chi-square test of independence of factors in a
contingency table has been added, along with the related utility functions stats.contingency.margins
and stats.contingency.expected_freq.

Enhancements to scipy.special

The functions logit(p) = log(p/(1-p)) and expit(x) = 1/(1+exp(-x)) have been implemented as
scipy.special.logit and scipy.special.expit respectively.

Basic support for Harwell-Boeing file format for sparse matrices

Both read and write are support through a simple function-based API, as well as a more complete API to control number
format. The functions may be found in scipy.sparse.io.
The following features are supported:

• Read and write sparse matrices in the CSC format
• Only real, symmetric, assembled matrix are supported (RUA format)

3.27.2 Deprecated features

scipy.maxentropy

The maxentropy module is unmaintained, rarely used and has not been functioning well for several releases. Therefore
it has been deprecated for this release, and will be removed for scipy 0.11. Logistic regression in scikits.learn is a good
alternative for this functionality. Thescipy.maxentropy.logsumexp function has beenmoved toscipy.misc.

scipy.lib.blas

There are similar BLASwrappers inscipy.linalg andscipy.lib. These have now been consolidated asscipy.
linalg.blas, and scipy.lib.blas is deprecated.

Numscons build system

The numscons build system is being replaced by Bento, and will be removed in one of the next scipy releases.
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3.27.3 Backwards-incompatible changes

The deprecated name invnorm was removed from scipy.stats.distributions, this distribution is available as
invgauss.
The following deprecated nonlinear solvers from scipy.optimize have been removed:

- ``broyden_modified`` (bad performance)
- ``broyden1_modified`` (bad performance)
- ``broyden_generalized`` (equivalent to ``anderson``)
- ``anderson2`` (equivalent to ``anderson``)
- ``broyden3`` (obsoleted by new limited-memory broyden methods)
- ``vackar`` (renamed to ``diagbroyden``)

3.27.4 Other changes

scipy.constants has been updated with the CODATA 2010 constants.
__all__ dicts have been added to all modules, which has cleaned up the namespaces (particularly useful for interactive
work).
An API section has been added to the documentation, giving recommended import guidelines and specifying which
submodules are public and which aren’t.

3.27.5 Authors

This release contains work by the following people (contributed at least one patch to this release, names in alphabetical
order):

• Jeff Armstrong +
• Matthew Brett
• Lars Buitinck +
• David Cournapeau
• FI$H 2000 +
• Michael McNeil Forbes +
• Matty G +
• Christoph Gohlke
• Ralf Gommers
• Yaroslav Halchenko
• Charles Harris
• Thouis (Ray) Jones +
• Chris Jordan-Squire +
• Robert Kern
• Chris Lasher +
• Wes McKinney +
• Travis Oliphant
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• Fabian Pedregosa
• Josef Perktold
• Thomas Robitaille +
• Pim Schellart +
• Anthony Scopatz +
• Skipper Seabold +
• Fazlul Shahriar +
• David Simcha +
• Scott Sinclair +
• Andrey Smirnov +
• Collin RM Stocks +
• Martin Teichmann +
• Jake Vanderplas +
• Gaël Varoquaux +
• Pauli Virtanen
• Stefan van der Walt
• Warren Weckesser
• Mark Wiebe +

A total of 35 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

3.28 SciPy 0.9.0 Release Notes

Contents

• SciPy 0.9.0 Release Notes

– Python 3

– Scipy source code location to be changed

– New features

∗ Delaunay tessellations (scipy.spatial)

∗ N-dimensional interpolation (scipy.interpolate)

∗ Nonlinear equation solvers (scipy.optimize)

∗ New linear algebra routines (scipy.linalg)

∗ Improved FIR filter design functions (scipy.signal)

∗ Improved statistical tests (scipy.stats)

– Deprecated features

∗ Obsolete nonlinear solvers (in scipy.optimize)
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– Removed features

∗ Old correlate/convolve behavior (in scipy.signal)

∗ scipy.stats

∗ scipy.sparse

∗ scipy.sparse.linalg.arpack.speigs

– Other changes

∗ ARPACK interface changes

SciPy 0.9.0 is the culmination of 6 months of hard work. It contains many new features, numerous bug-fixes, improved
test coverage and better documentation. There have been a number of deprecations and API changes in this release, which
are documented below. All users are encouraged to upgrade to this release, as there are a large number of bug-fixes and
optimizations. Moreover, our development attention will now shift to bug-fix releases on the 0.9.x branch, and on adding
new features on the development trunk.
This release requires Python 2.4 - 2.7 or 3.1 - and NumPy 1.5 or greater.
Please note that SciPy is still considered to have “Beta” status, as we work toward a SciPy 1.0.0 release. The 1.0.0 release
will mark a major milestone in the development of SciPy, after which changing the package structure or API will be much
more difficult. Whilst these pre-1.0 releases are considered to have “Beta” status, we are committed to making them as
bug-free as possible.
However, until the 1.0 release, we are aggressively reviewing and refining the functionality, organization, and interface.
This is being done in an effort to make the package as coherent, intuitive, and useful as possible. To achieve this, we need
help from the community of users. Specifically, we need feedback regarding all aspects of the project - everything - from
which algorithms we implement, to details about our function’s call signatures.

3.28.1 Python 3

Scipy 0.9.0 is the first SciPy release to support Python 3. The only module that is not yet ported is scipy.weave.

3.28.2 Scipy source code location to be changed

Soon after this release, Scipy will stop using SVN as the version control system, and move to Git. The development source
code for Scipy can from then on be found at

https://github.com/scipy/scipy

3.28.3 New features

Delaunay tessellations (scipy.spatial)

Scipy now includes routines for computing Delaunay tessellations in N dimensions, powered by the Qhull computational
geometry library. Such calculations can now make use of the new scipy.spatial.Delaunay interface.

N-dimensional interpolation (scipy.interpolate)

Support for scattered data interpolation is now significantly improved. This version includes a scipy.interpolate.
griddata function that can perform linear and nearest-neighbour interpolation for N-dimensional scattered data, in
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addition to cubic spline (C1-smooth) interpolation in 2D and 1D. An object-oriented interface to each interpolator type
is also available.

Nonlinear equation solvers (scipy.optimize)

Scipy includes new routines for large-scale nonlinear equation solving in scipy.optimize. The following methods
are implemented:

• Newton-Krylov (scipy.optimize.newton_krylov)
• (Generalized) secant methods:

– Limited-memory Broyden methods (scipy.optimize.broyden1, scipy.optimize.
broyden2)

– Anderson method (scipy.optimize.anderson)
• Simple iterations (scipy.optimize.diagbroyden, scipy.optimize.excitingmixing,
scipy.optimize.linearmixing)

The scipy.optimize.nonlin module was completely rewritten, and some of the functions were deprecated (see
above).

New linear algebra routines (scipy.linalg)

Scipy now contains routines for effectively solving triangular equation systems (scipy.linalg.
solve_triangular).

Improved FIR filter design functions (scipy.signal)

The function scipy.signal.firwin was enhanced to allow the design of highpass, bandpass, bandstop and multi-
band FIR filters.
The function scipy.signal.firwin2 was added. This function uses the window method to create a linear phase
FIR filter with an arbitrary frequency response.
The functions scipy.signal.kaiser_atten and scipy.signal.kaiser_beta were added.

Improved statistical tests (scipy.stats)

A new function scipy.stats.fisher_exact was added, that provides Fisher’s exact test for 2x2 contingency
tables.
The function scipy.stats.kendalltau was rewritten to make it much faster (O(n log(n)) vs O(n^2)).

3.28.4 Deprecated features

Obsolete nonlinear solvers (in scipy.optimize)

The following nonlinear solvers from scipy.optimize are deprecated:
• broyden_modified (bad performance)
• broyden1_modified (bad performance)
• broyden_generalized (equivalent to anderson)
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• anderson2 (equivalent to anderson)
• broyden3 (obsoleted by new limited-memory broyden methods)
• vackar (renamed to diagbroyden)

3.28.5 Removed features

The deprecated modules helpmod, pexec and ppimport were removed from scipy.misc.
The output_type keyword in many scipy.ndimage interpolation functions has been removed.
The econ keyword in scipy.linalg.qr has been removed. The same functionality is still available by specifying
mode='economic'.

Old correlate/convolve behavior (in scipy.signal)

The old behavior for scipy.signal.convolve, scipy.signal.convolve2d, scipy.signal.
correlate and scipy.signal.correlate2d was deprecated in 0.8.0 and has now been removed. Convolve
and correlate used to swap their arguments if the second argument has dimensions larger than the first one, and the mode
was relative to the input with the largest dimension. The current behavior is to never swap the inputs, which is what most
people expect, and is how correlation is usually defined.

scipy.stats

Many functions in scipy.stats that are either available from numpy or have been superseded, and have been dep-
recated since version 0.7, have been removed: std, var, mean, median, cov, corrcoef, z, zs, stderr, samplestd, samplevar,
pdfapprox, pdf_moments and erfc. These changes are mirrored in scipy.stats.mstats.

scipy.sparse

Several methods of the sparse matrix classes in scipy.sparse which had been deprecated since version 0.7 were
removed: save, rowcol, getdata, listprint, ensure_sorted_indices, matvec, matmat and rmatvec.
The functions spkron, speye, spidentity, lil_eye and lil_diags were removed from scipy.sparse.
The first three functions are still available as scipy.sparse.kron, scipy.sparse.eye and scipy.sparse.
identity.
The dims and nzmax keywords were removed from the sparse matrix constructor. The colind and rowind attributes were
removed from CSR and CSC matrices respectively.

scipy.sparse.linalg.arpack.speigs

A duplicated interface to the ARPACK library was removed.

3.28.6 Other changes

ARPACK interface changes

The interface to the ARPACK eigenvalue routines in scipy.sparse.linalg was changed for more robustness.
The eigenvalue and SVD routines now raise ArpackNoConvergence if the eigenvalue iteration fails to converge. If
partially converged results are desired, they can be accessed as follows:
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import numpy as np
from scipy.sparse.linalg import eigs, ArpackNoConvergence

m = np.random.randn(30, 30)
try:

w, v = eigs(m, 6)
except ArpackNoConvergence, err:

partially_converged_w = err.eigenvalues
partially_converged_v = err.eigenvectors

Several bugs were also fixed.
The routines were moreover renamed as follows:

• eigen –> eigs
• eigen_symmetric –> eigsh
• svd –> svds

3.29 SciPy 0.8.0 Release Notes

Contents

• SciPy 0.8.0 Release Notes

– Python 3

– Major documentation improvements

– Deprecated features

∗ Swapping inputs for correlation functions (scipy.signal)

∗ Obsolete code deprecated (scipy.misc)

∗ Additional deprecations

– New features

∗ DCT support (scipy.fftpack)

∗ Single precision support for fft functions (scipy.fftpack)

∗ Correlation functions now implement the usual definition (scipy.signal)

∗ Additions and modification to LTI functions (scipy.signal)

∗ Improved waveform generators (scipy.signal)

∗ New functions and other changes in scipy.linalg

∗ New function and changes in scipy.optimize

∗ New sparse least squares solver

∗ ARPACK-based sparse SVD

∗ Alternative behavior available for scipy.constants.find

∗ Incomplete sparse LU decompositions
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∗ Faster matlab file reader and default behavior change

∗ Faster evaluation of orthogonal polynomials

∗ Lambert W function

∗ Improved hypergeometric 2F1 function

∗ More flexible interface for Radial basis function interpolation

– Removed features

∗ scipy.io

SciPy 0.8.0 is the culmination of 17 months of hard work. It contains many new features, numerous bug-fixes, improved
test coverage and better documentation. There have been a number of deprecations and API changes in this release, which
are documented below. All users are encouraged to upgrade to this release, as there are a large number of bug-fixes and
optimizations. Moreover, our development attention will now shift to bug-fix releases on the 0.8.x branch, and on adding
new features on the development trunk. This release requires Python 2.4 - 2.6 and NumPy 1.4.1 or greater.
Please note that SciPy is still considered to have “Beta” status, as we work toward a SciPy 1.0.0 release. The 1.0.0 release
will mark a major milestone in the development of SciPy, after which changing the package structure or API will be much
more difficult. Whilst these pre-1.0 releases are considered to have “Beta” status, we are committed to making them as
bug-free as possible.
However, until the 1.0 release, we are aggressively reviewing and refining the functionality, organization, and interface.
This is being done in an effort to make the package as coherent, intuitive, and useful as possible. To achieve this, we need
help from the community of users. Specifically, we need feedback regarding all aspects of the project - everything - from
which algorithms we implement, to details about our function’s call signatures.

3.29.1 Python 3

Python 3 compatibility is planned and is currently technically feasible, since Numpy has been ported. However, since the
Python 3 compatible Numpy 1.5 has not been released yet, support for Python 3 in Scipy is not yet included in Scipy 0.8.
SciPy 0.9, planned for fall 2010, will very likely include experimental support for Python 3.

3.29.2 Major documentation improvements

SciPy documentation is greatly improved.

3.29.3 Deprecated features

Swapping inputs for correlation functions (scipy.signal)

Concern correlate, correlate2d, convolve and convolve2d. If the second input is larger than the first input, the inputs are
swapped before calling the underlying computation routine. This behavior is deprecated, and will be removed in scipy
0.9.0.

Obsolete code deprecated (scipy.misc)

The modules helpmod, ppimport and pexec from scipy.misc are deprecated. They will be removed from SciPy in
version 0.9.
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Additional deprecations

• linalg: The function solveh_banded currently returns a tuple containing the Cholesky factorization and the solution
to the linear system. In SciPy 0.9, the return value will be just the solution.

• The function constants.codata.find will generate a DeprecationWarning. In Scipy version 0.8.0, the keyword argu-
ment ‘disp’ was added to the function, with the default value ‘True’. In 0.9.0, the default will be ‘False’.

• The qshape keyword argument of signal.chirp is deprecated. Use the argument vertex_zero instead.
• Passing the coefficients of a polynomial as the argument f0 to signal.chirp is deprecated. Use the function sig-

nal.sweep_poly instead.
• The io.recaster module has been deprecated and will be removed in 0.9.0.

3.29.4 New features

DCT support (scipy.fftpack)

New realtransforms have been added, namely dct and idct for Discrete Cosine Transform; type I, II and III are available.

Single precision support for fft functions (scipy.fftpack)

fft functions can now handle single precision inputs as well: fft(x) will return a single precision array if x is single precision.
At the moment, for FFT sizes that are not composites of 2, 3, and 5, the transform is computed internally in double
precision to avoid rounding error in FFTPACK.

Correlation functions now implement the usual definition (scipy.signal)

The outputs should now correspond to their matlab and R counterparts, and do what most people expect if the
old_behavior=False argument is passed:

• correlate, convolve and their 2d counterparts do not swap their inputs depending on their relative shape anymore;
• correlation functions now conjugate their second argument while computing the slided sum-products, which cor-
respond to the usual definition of correlation.

Additions and modification to LTI functions (scipy.signal)

• The functions impulse2 and step2 were added to scipy.signal. They use the function scipy.signal.
lsim2 to compute the impulse and step response of a system, respectively.

• The functionscipy.signal.lsim2was changed to pass any additional keyword arguments to the ODE solver.

Improved waveform generators (scipy.signal)

Several improvements to the chirp function in scipy.signal were made:
• The waveform generated whenmethod=”logarithmic” was corrected; it now generates a waveform that is also known
as an “exponential” or “geometric” chirp. (See https://en.wikipedia.org/wiki/Chirp.)

• A new chirp method, “hyperbolic”, was added.
• Instead of the keyword qshape, chirp now uses the keyword vertex_zero, a boolean.
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• chirp no longer handles an arbitrary polynomial. This functionality has been moved to a new function, sweep_poly.
A new function, sweep_poly, was added.

New functions and other changes in scipy.linalg

The functions cho_solve_banded, circulant, companion, hadamard and leslie were added to scipy.linalg.
The function block_diag was enhanced to accept scalar and 1D arguments, along with the usual 2D arguments.

New function and changes in scipy.optimize

The curve_fit function has been added; it takes a function and uses non-linear least squares to fit that to the provided data.
The leastsq and fsolve functions now return an array of size one instead of a scalar when solving for a single parameter.

New sparse least squares solver

The lsqr function was added to scipy.sparse. This routine finds a least-squares solution to a large, sparse, linear
system of equations.

ARPACK-based sparse SVD

A naive implementation of SVD for sparse matrices is available in scipy.sparse.linalg.eigen.arpack. It is based on using
an symmetric solver on <A, A>, and as such may not be very precise.

Alternative behavior available for scipy.constants.find

The keyword argument disp was added to the function scipy.constants.find, with the default value True. When
disp is True, the behavior is the same as in Scipy version 0.7. When False, the function returns the list of keys instead of
printing them. (In SciPy version 0.9, the default will be reversed.)

Incomplete sparse LU decompositions

Scipy now wraps SuperLU version 4.0, which supports incomplete sparse LU decompositions. These can be accessed via
scipy.sparse.linalg.spilu. Upgrade to SuperLU 4.0 also fixes some known bugs.

Faster matlab file reader and default behavior change

We’ve rewritten the matlab file reader in Cython and it should now read matlab files at around the same speed that Matlab
does.
The reader reads matlab named and anonymous functions, but it can’t write them.
Until scipy 0.8.0 we have returned arrays ofmatlab structs as numpy object arrays, where the objects have attributes named
for the struct fields. As of 0.8.0, we return matlab structs as numpy structured arrays. You can get the older behavior by
using the optional struct_as_record=False keyword argument to scipy.io.loadmat and friends.
There is an inconsistency in the matlab file writer, in that it writes numpy 1D arrays as column vectors in matlab 5 files, and
row vectors in matlab 4 files. We will change this in the next version, so both write row vectors. There is a FutureWarning
when calling the writer to warn of this change; for now we suggest using the oned_as='row' keyword argument to
scipy.io.savemat and friends.
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Faster evaluation of orthogonal polynomials

Values of orthogonal polynomials can be evaluated with new vectorized functions in scipy.special: eval_legendre,
eval_chebyt, eval_chebyu, eval_chebyc, eval_chebys, eval_jacobi, eval_laguerre, eval_genlaguerre, eval_hermite,
eval_hermitenorm, eval_gegenbauer, eval_sh_legendre, eval_sh_chebyt, eval_sh_chebyu, eval_sh_jacobi. This is faster
than constructing the full coefficient representation of the polynomials, which was previously the only available way.
Note that the previous orthogonal polynomial routines will now also invoke this feature, when possible.

Lambert W function

scipy.special.lambertw can now be used for evaluating the Lambert W function.

Improved hypergeometric 2F1 function

Implementation of scipy.special.hyp2f1 for real parameters was revised. The new version should produce ac-
curate values for all real parameters.

More flexible interface for Radial basis function interpolation

The scipy.interpolate.Rbf class now accepts a callable as input for the “function” argument, in addition to the
built-in radial basis functions which can be selected with a string argument.

3.29.5 Removed features

scipy.stsci: the package was removed
The module scipy.misc.limits was removed.

scipy.io

The IO code in both NumPy and SciPy is being extensively reworked. NumPy will be where basic code for reading and
writing NumPy arrays is located, while SciPy will house file readers and writers for various data formats (data, audio,
video, images, matlab, etc.).
Several functions in scipy.io are removed in the 0.8.0 release including: npfile, save, load, create_module, cre-
ate_shelf, objload, objsave, fopen, read_array, write_array, fread, fwrite, bswap, packbits, unpackbits, and con-
vert_objectarray. Some of these functions have been replaced by NumPy’s raw reading and writing capabilities, memory-
mapping capabilities, or array methods. Others have been moved from SciPy to NumPy, since basic array reading and
writing capability is now handled by NumPy.

3.30 SciPy 0.7.2 Release Notes

Contents

• SciPy 0.7.2 Release Notes
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SciPy 0.7.2 is a bug-fix release with no new features compared to 0.7.1. The only change is that all C sources from
Cython code have been regenerated with Cython 0.12.1. This fixes the incompatibility between binaries of SciPy 0.7.1
and NumPy 1.4.

3.31 SciPy 0.7.1 Release Notes

Contents

• SciPy 0.7.1 Release Notes

– scipy.io

– scipy.odr

– scipy.signal

– scipy.sparse

– scipy.special

– scipy.stats

– Windows binaries for python 2.6

– Universal build for scipy

SciPy 0.7.1 is a bug-fix release with no new features compared to 0.7.0.

3.31.1 scipy.io

Bugs fixed:
• Several fixes in Matlab file IO

3.31.2 scipy.odr

Bugs fixed:
• Work around a failure with Python 2.6

3.31.3 scipy.signal

Memory leak in lfilter have been fixed, as well as support for array object
Bugs fixed:

• #880, #925: lfilter fixes
• #871: bicgstab fails on Win32

3.31.4 scipy.sparse

Bugs fixed:
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• #883: scipy.io.mmread with scipy.sparse.lil_matrix broken
• lil_matrix and csc_matrix reject now unexpected sequences, cf. http://thread.gmane.org/gmane.comp.python.
scientific.user/19996 (dead link)

3.31.5 scipy.special

Several bugs of varying severity were fixed in the special functions:
• #503, #640: iv: problems at large arguments fixed by new implementation
• #623: jv: fix errors at large arguments
• #679: struve: fix wrong output for v < 0
• #803: pbdv produces invalid output
• #804: lqmn: fix crashes on some input
• #823: betainc: fix documentation
• #834: exp1 strange behavior near negative integer values
• #852: jn_zeros: more accurate results for large s, also in jnp/yn/ynp_zeros
• #853: jv, yv, iv: invalid results for non-integer v < 0, complex x
• #854: jv, yv, iv, kv: return nan more consistently when out-of-domain
• #927: ellipj: fix segfault on Windows
• #946: ellpj: fix segfault on Mac OS X/python 2.6 combination.
• ive, jve, yve, kv, kve: with real-valued input, return nan for out-of-domain instead of returning only the real part
of the result.

Also, whenscipy.special.errprint(1) has been enabled, warningmessages are now issued as Pythonwarnings
instead of printing them to stderr.

3.31.6 scipy.stats

• linregress, mannwhitneyu, describe: errors fixed
• kstwobign, norm, expon, exponweib, exponpow, frechet, genexpon, rdist, truncexpon, planck: improvements to
numerical accuracy in distributions

3.31.7 Windows binaries for python 2.6

python 2.6 binaries for windows are now included. The binary for python 2.5 requires numpy 1.2.0 or above, and the one
for python 2.6 requires numpy 1.3.0 or above.

3.31.8 Universal build for scipy

Mac OS X binary installer is now a proper universal build, and does not depend on gfortran anymore (libgfortran is
statically linked). The python 2.5 version of scipy requires numpy 1.2.0 or above, the python 2.6 version requires numpy
1.3.0 or above.
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3.32 SciPy 0.7.0 Release Notes

Contents

• SciPy 0.7.0 Release Notes

– Python 2.6 and 3.0

– Major documentation improvements

– Running Tests

– Building SciPy

– Sandbox Removed

– Sparse Matrices

– Statistics package

– Reworking of IO package

– New Hierarchical Clustering module

– New Spatial package

– Reworked fftpack package

– New Constants package

– New Radial Basis Function module

– New complex ODE integrator

– New generalized symmetric and hermitian eigenvalue problem solver

– Bug fixes in the interpolation package

– Weave clean up

– Known problems

SciPy 0.7.0 is the culmination of 16 months of hard work. It contains many new features, numerous bug-fixes, improved
test coverage and better documentation. There have been a number of deprecations and API changes in this release, which
are documented below. All users are encouraged to upgrade to this release, as there are a large number of bug-fixes and
optimizations. Moreover, our development attention will now shift to bug-fix releases on the 0.7.x branch, and on adding
new features on the development trunk. This release requires Python 2.4 or 2.5 and NumPy 1.2 or greater.
Please note that SciPy is still considered to have “Beta” status, as we work toward a SciPy 1.0.0 release. The 1.0.0 release
will mark a major milestone in the development of SciPy, after which changing the package structure or API will be much
more difficult. Whilst these pre-1.0 releases are considered to have “Beta” status, we are committed to making them as
bug-free as possible. For example, in addition to fixing numerous bugs in this release, we have also doubled the number
of unit tests since the last release.
However, until the 1.0 release, we are aggressively reviewing and refining the functionality, organization, and interface.
This is being done in an effort to make the package as coherent, intuitive, and useful as possible. To achieve this, we need
help from the community of users. Specifically, we need feedback regarding all aspects of the project - everything - from
which algorithms we implement, to details about our function’s call signatures.
Over the last year, we have seen a rapid increase in community involvement, and numerous infrastructure improvements
to lower the barrier to contributions (e.g., more explicit coding standards, improved testing infrastructure, better docu-
mentation tools). Over the next year, we hope to see this trend continue and invite everyone to become more involved.
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3.32.1 Python 2.6 and 3.0

A significant amount of work has gone into making SciPy compatible with Python 2.6; however, there are still some
issues in this regard. The main issue with 2.6 support is NumPy. On UNIX (including Mac OS X), NumPy 1.2.1 mostly
works, with a few caveats. On Windows, there are problems related to the compilation process. The upcoming NumPy
1.3 release will fix these problems. Any remaining issues with 2.6 support for SciPy 0.7 will be addressed in a bug-fix
release.
Python 3.0 is not supported at all; it requires NumPy to be ported to Python 3.0. This requires immense effort, since a
lot of C code has to be ported. The transition to 3.0 is still under consideration; currently, we don’t have any timeline or
roadmap for this transition.

3.32.2 Major documentation improvements

SciPy documentation is greatly improved; you can view a HTML reference manual online or download it as a PDF file.
The new reference guide was built using the popular Sphinx tool.
This release also includes an updated tutorial, which hadn’t been available since SciPy was ported to NumPy in 2005.
Though not comprehensive, the tutorial shows how to use several essential parts of Scipy. It also includes the ndimage
documentation from the numarray manual.
Nevertheless, more effort is needed on the documentation front. Luckily, contributing to Scipy documentation is now
easier than before: if you find that a part of it requires improvements, and want to help us out, please register a user name
in our web-based documentation editor at https://docs.scipy.org/ and correct the issues.

3.32.3 Running Tests

NumPy 1.2 introduced a new testing framework based on nose. Starting with this release, SciPy now uses the newNumPy
test framework as well. Taking advantage of the new testing framework requires nose version 0.10, or later. One major
advantage of the new framework is that it greatly simplifies writing unit tests - which has all ready paid off, given the rapid
increase in tests. To run the full test suite:

>>> import scipy
>>> scipy.test('full')

For more information, please see The NumPy/SciPy Testing Guide.
We have also greatly improved our test coverage. There were just over 2,000 unit tests in the 0.6.0 release; this release
nearly doubles that number, with just over 4,000 unit tests.

3.32.4 Building SciPy

Support for NumScons has been added. NumScons is a tentative new build system for NumPy/SciPy, using SCons at its
core.
SCons is a next-generation build system, intended to replace the venerable Make with the integrated functionality of
autoconf/automake and ccache. Scons is written in Python and its configuration files are Python scripts. Num-
Scons is meant to replace NumPy’s custom version of distutils providing more advanced functionality, such as
autoconf, improved fortran support, more tools, and support for numpy.distutils/scons cooperation.
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3.32.5 Sandbox Removed

While porting SciPy toNumPy in 2005, several packages andmodules weremoved intoscipy.sandbox. The sandbox
was a staging ground for packages that were undergoing rapid development and whose APIs were in flux. It was also a
place where broken code could live. The sandbox has served its purpose well, but was starting to create confusion. Thus
scipy.sandbox was removed. Most of the code was moved into scipy, some code was made into a scikit, and
the remaining code was just deleted, as the functionality had been replaced by other code.

3.32.6 Sparse Matrices

Sparse matrices have seen extensive improvements. There is now support for integer dtypes such int8, uint32, etc.
Two new sparse formats were added:

• new class dia_matrix : the sparse DIAgonal format
• new class bsr_matrix : the Block CSR format

Several new sparse matrix construction functions were added:
• sparse.kron : sparse Kronecker product
• sparse.bmat : sparse version of numpy.bmat
• sparse.vstack : sparse version of numpy.vstack
• sparse.hstack : sparse version of numpy.hstack

Extraction of submatrices and nonzero values have been added:
• sparse.tril : extract lower triangle
• sparse.triu : extract upper triangle
• sparse.find : nonzero values and their indices

csr_matrix and csc_matrix now support slicing and fancy indexing (e.g., A[1:3, 4:7] and A[[3,2,6,8],
:]). Conversions among all sparse formats are now possible:

• using member functions such as .tocsr() and .tolil()
• using the .asformat() member function, e.g. A.asformat('csr')
• using constructors A = lil_matrix([[1,2]]); B = csr_matrix(A)

All sparse constructors now accept dense matrices and lists of lists. For example:
• A = csr_matrix( rand(3,3) ) and B = lil_matrix( [[1,2],[3,4]] )

The handling of diagonals in the spdiags function has been changed. It now agrees with the MATLAB(TM) function
of the same name.
Numerous efficiency improvements to format conversions and sparse matrix arithmetic have been made. Finally, this
release contains numerous bugfixes.

3.32.7 Statistics package

Statistical functions for masked arrays have been added, and are accessible through scipy.stats.mstats. The
functions are similar to their counterparts in scipy.stats but they have not yet been verified for identical interfaces
and algorithms.
Several bugs were fixed for statistical functions, of those, kstest and percentileofscore gained new keyword
arguments.

3.32. SciPy 0.7.0 Release Notes 217



SciPy Reference Guide, Release 1.3.1

Added deprecation warning for mean, median, var, std, cov, and corrcoef. These functions should be replaced
by their numpy counterparts. Note, however, that some of the default options differ between the scipy.stats and
numpy versions of these functions.
Numerous bug fixes to stats.distributions: all generic methods now work correctly, several methods in individ-
ual distributions were corrected. However, a few issues remain with higher moments (skew, kurtosis) and entropy.
The maximum likelihood estimator, fit, does not work out-of-the-box for some distributions - in some cases, starting
values have to be carefully chosen, in other cases, the generic implementation of the maximum likelihood method might
not be the numerically appropriate estimation method.
We expect more bugfixes, increases in numerical precision and enhancements in the next release of scipy.

3.32.8 Reworking of IO package

The IO code in both NumPy and SciPy is being extensively reworked. NumPy will be where basic code for reading and
writing NumPy arrays is located, while SciPy will house file readers and writers for various data formats (data, audio,
video, images, matlab, etc.).
Several functions inscipy.io have been deprecated and will be removed in the 0.8.0 release includingnpfile, save,
load, create_module, create_shelf, objload, objsave, fopen, read_array, write_array,
fread, fwrite, bswap, packbits, unpackbits, and convert_objectarray. Some of these functions
have been replaced by NumPy’s raw reading and writing capabilities, memory-mapping capabilities, or array methods.
Others have been moved from SciPy to NumPy, since basic array reading and writing capability is now handled by
NumPy.
The Matlab (TM) file readers/writers have a number of improvements:

• default version 5
• v5 writers for structures, cell arrays, and objects
• v5 readers/writers for function handles and 64-bit integers
• new struct_as_record keyword argument to loadmat, which loads struct arrays in matlab as record arrays in
numpy

• string arrays have dtype='U...' instead of dtype=object
• loadmat no longer squeezes singleton dimensions, i.e. squeeze_me=False by default

3.32.9 New Hierarchical Clustering module

This module adds new hierarchical clustering functionality to the scipy.cluster package. The function inter-
faces are similar to the functions provided MATLAB(TM)’s Statistics Toolbox to help facilitate easier migration to the
NumPy/SciPy framework. Linkage methods implemented include single, complete, average, weighted, centroid, median,
and ward.
In addition, several functions are provided for computing inconsistency statistics, cophenetic distance, and maximum
distance between descendants. The fcluster and fclusterdata functions transform a hierarchical clustering into
a set of flat clusters. Since these flat clusters are generated by cutting the tree into a forest of trees, the leaders function
takes a linkage and a flat clustering, and finds the root of each tree in the forest. The ClusterNode class represents a
hierarchical clusterings as a field-navigable tree object. to_tree converts a matrix-encoded hierarchical clustering to a
ClusterNode object. Routines for converting between MATLAB and SciPy linkage encodings are provided. Finally,
a dendrogram function plots hierarchical clusterings as a dendrogram, using matplotlib.
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3.32.10 New Spatial package

The new spatial package contains a collection of spatial algorithms and data structures, useful for spatial statistics and
clustering applications. It includes rapidly compiled code for computing exact and approximate nearest neighbors, as well
as a pure-python kd-tree with the same interface, but that supports annotation and a variety of other algorithms. The API
for both modules may change somewhat, as user requirements become clearer.
It also includes a distance module, containing a collection of distance and dissimilarity functions for computing dis-
tances between vectors, which is useful for spatial statistics, clustering, and kd-trees. Distance and dissimilarity functions
provided include Bray-Curtis, Canberra, Chebyshev, City Block, Cosine, Dice, Euclidean, Hamming, Jaccard, Kulsin-
ski, Mahalanobis, Matching, Minkowski, Rogers-Tanimoto, Russell-Rao, Squared Euclidean, Standardized Euclidean,
Sokal-Michener, Sokal-Sneath, and Yule.
The pdist function computes pairwise distance between all unordered pairs of vectors in a set of vectors. The cdist
computes the distance on all pairs of vectors in the Cartesian product of two sets of vectors. Pairwise distance matrices
are stored in condensed form; only the upper triangular is stored. squareform converts distance matrices between
square and condensed forms.

3.32.11 Reworked fftpack package

FFTW2, FFTW3, MKL and DJBFFT wrappers have been removed. Only (NETLIB) fftpack remains. By focusing on
one backend, we hope to add new features - like float32 support - more easily.

3.32.12 New Constants package

scipy.constants provides a collection of physical constants and conversion factors. These constants are taken
from CODATA Recommended Values of the Fundamental Physical Constants: 2002. They may be found at
physics.nist.gov/constants. The values are stored in the dictionary physical_constants as a tuple containing the value,
the units, and the relative precision - in that order. All constants are in SI units, unless otherwise stated. Several helper
functions are provided.

3.32.13 New Radial Basis Function module

scipy.interpolate now contains a Radial Basis Function module. Radial basis functions can be used for smooth-
ing/interpolating scattered data in n-dimensions, but should be used with caution for extrapolation outside of the observed
data range.

3.32.14 New complex ODE integrator

scipy.integrate.ode now contains a wrapper for the ZVODE complex-valued ordinary differential equation
solver (by Peter N. Brown, Alan C. Hindmarsh, and George D. Byrne).

3.32.15 New generalized symmetric and hermitian eigenvalue problem solver

scipy.linalg.eigh now contains wrappers for more LAPACK symmetric and hermitian eigenvalue problem
solvers. Users can now solve generalized problems, select a range of eigenvalues only, and choose to use a faster al-
gorithm at the expense of increased memory usage. The signature of the scipy.linalg.eigh changed accordingly.
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3.32.16 Bug fixes in the interpolation package

The shape of return values from scipy.interpolate.interp1d used to be incorrect, if interpolated data had
more than 2 dimensions and the axis keyword was set to a non-default value. This has been fixed. Moreover, interp1d
returns now a scalar (0D-array) if the input is a scalar. Users of scipy.interpolate.interp1d may need to
revise their code if it relies on the previous behavior.

3.32.17 Weave clean up

There were numerous improvements to scipy.weave. blitz++ was relicensed by the author to be compatible with
the SciPy license. wx_spec.py was removed.

3.32.18 Known problems

Here are known problems with scipy 0.7.0:
• weave test failures on windows: those are known, and are being revised.
• weave test failure with gcc 4.3 (std::labs): this is a gcc 4.3 bug. A workaround is to add #include <cstdlib> in
scipy/weave/blitz/blitz/funcs.h (line 27). You can make the change in the installed scipy (in site-packages).
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FOUR

TUTORIAL

Tutorials with worked examples and background information for most SciPy submodules.

4.1 SciPy Tutorial

4.1.1 Introduction

Contents

• Introduction

– SciPy Organization

– Finding Documentation

SciPy is a collection of mathematical algorithms and convenience functions built on the NumPy extension of Python.
It adds significant power to the interactive Python session by providing the user with high-level commands and classes
for manipulating and visualizing data. With SciPy an interactive Python session becomes a data-processing and system-
prototyping environment rivaling systems such as MATLAB, IDL, Octave, R-Lab, and SciLab.
The additional benefit of basing SciPy on Python is that this also makes a powerful programming language available for
use in developing sophisticated programs and specialized applications. Scientific applications using SciPy benefit from
the development of additional modules in numerous niches of the software landscape by developers across the world.
Everything from parallel programming to web and data-base subroutines and classes have been made available to the
Python programmer. All of this power is available in addition to the mathematical libraries in SciPy.
This tutorial will acquaint the first-time user of SciPy with some of its most important features. It assumes that the
user has already installed the SciPy package. Some general Python facility is also assumed, such as could be acquired
by working through the Python distribution’s Tutorial. For further introductory help the user is directed to the NumPy
documentation.
For brevity and convenience, we will often assume that the main packages (numpy, scipy, and matplotlib) have been
imported as:

>>> import numpy as np
>>> import matplotlib as mpl
>>> import matplotlib.pyplot as plt

These are the import conventions that our community has adopted after discussion on public mailing lists. You will see
these conventions used throughout NumPy and SciPy source code and documentation. While we obviously don’t require
you to follow these conventions in your own code, it is highly recommended.
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SciPy Organization

SciPy is organized into subpackages covering different scientific computing domains. These are summarized in the fol-
lowing table:

Subpackage Description
cluster Clustering algorithms
constants Physical and mathematical constants
fftpack Fast Fourier Transform routines
integrate Integration and ordinary differential equation solvers
interpolate Interpolation and smoothing splines
io Input and Output
linalg Linear algebra
ndimage N-dimensional image processing
odr Orthogonal distance regression
optimize Optimization and root-finding routines
signal Signal processing
sparse Sparse matrices and associated routines
spatial Spatial data structures and algorithms
special Special functions
stats Statistical distributions and functions

SciPy sub-packages need to be imported separately, for example:

>>> from scipy import linalg, optimize

Because of their ubiquitousness, some of the functions in these subpackages are also made available in the scipy names-
pace to ease their use in interactive sessions and programs. In addition, many basic array functions from numpy are also
available at the top-level of the scipy package. Before looking at the sub-packages individually, we will first look at
some of these common functions.

Finding Documentation

SciPy and NumPy have documentation versions in both HTML and PDF format available at https://docs.scipy.org/, that
cover nearly all available functionality. However, this documentation is still work-in-progress and some parts may be
incomplete or sparse. As we are a volunteer organization and depend on the community for growth, your participation -
everything from providing feedback to improving the documentation and code - is welcome and actively encouraged.
Python’s documentation strings are used in SciPy for on-line documentation. There are two methods for reading them
and getting help. One is Python’s command help in the pydoc module. Entering this command with no arguments
(i.e. >>> help ) launches an interactive help session that allows searching through the keywords and modules available
to all of Python. Secondly, running the command help(obj) with an object as the argument displays that object’s calling
signature, and documentation string.
The pydoc method of help is sophisticated but uses a pager to display the text. Sometimes this can interfere with the
terminal you are running the interactive session within. A numpy/scipy-specific help system is also available under the
command numpy.info. The signature and documentation string for the object passed to the help command are
printed to standard output (or to a writeable object passed as the third argument). The second keyword argument of
numpy.info defines the maximum width of the line for printing. If a module is passed as the argument to help then
a list of the functions and classes defined in that module is printed. For example:

>>> np.info(optimize.fmin)
fmin(func, x0, args=(), xtol=0.0001, ftol=0.0001, maxiter=None, maxfun=None,

(continues on next page)
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(continued from previous page)
full_output=0, disp=1, retall=0, callback=None)

Minimize a function using the downhill simplex algorithm.

Parameters
----------
func : callable func(x,*args)

The objective function to be minimized.
x0 : ndarray

Initial guess.
args : tuple

Extra arguments passed to func, i.e. ``f(x,*args)``.
callback : callable

Called after each iteration, as callback(xk), where xk is the
current parameter vector.

Returns
-------
xopt : ndarray

Parameter that minimizes function.
fopt : float

Value of function at minimum: ``fopt = func(xopt)``.
iter : int

Number of iterations performed.
funcalls : int

Number of function calls made.
warnflag : int

1 : Maximum number of function evaluations made.
2 : Maximum number of iterations reached.

allvecs : list
Solution at each iteration.

Other parameters
----------------
xtol : float

Relative error in xopt acceptable for convergence.
ftol : number

Relative error in func(xopt) acceptable for convergence.
maxiter : int

Maximum number of iterations to perform.
maxfun : number

Maximum number of function evaluations to make.
full_output : bool

Set to True if fopt and warnflag outputs are desired.
disp : bool

Set to True to print convergence messages.
retall : bool

Set to True to return list of solutions at each iteration.

Notes
-----
Uses a Nelder-Mead simplex algorithm to find the minimum of function of

(continues on next page)
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(continued from previous page)
one or more variables.

Another useful command is dir, which can be used to look at the namespace of a module or package.

4.1.2 Basic functions

Contents

• Basic functions

– Interaction with NumPy

∗ Index Tricks

∗ Shape manipulation

∗ Polynomials

∗ Vectorizing functions (vectorize)

∗ Type handling

∗ Other useful functions

Interaction with NumPy

SciPy builds on NumPy, and for all basic array handling needs you can use NumPy functions:

>>> import numpy as np
>>> np.some_function()

Rather than giving a detailed description of each of these functions (which is available in the NumPy Reference Guide or
by using the help, info and source commands), this tutorial will discuss some of the more useful commands which
require a little introduction to use to their full potential.
To use functions from some of the SciPy modules, you can do:

>>> from scipy import some_module
>>> some_module.some_function()

The top level of scipy also contains functions from numpy and numpy.lib.scimath. However, it is better to use
them directly from the numpy module instead.

Index Tricks
There are some class instances that make special use of the slicing functionality to provide efficient means for array
construction. This part will discuss the operation of numpy.mgrid , numpy.ogrid , numpy.r_ , and numpy.c_
for quickly constructing arrays.
For example, rather than writing something like the following

>>> a = np.concatenate(([3], [0]*5, np.arange(-1, 1.002, 2/9.0)))

with the r_ command one can enter this as
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>>> a = np.r_[3,[0]*5,-1:1:10j]

which can ease typing and make for more readable code. Notice how objects are concatenated, and the slicing syntax is
(ab)used to construct ranges. The other term that deserves a little explanation is the use of the complex number 10j as
the step size in the slicing syntax. This non-standard use allows the number to be interpreted as the number of points to
produce in the range rather than as a step size (note we would have used the long integer notation, 10L, but this notation
may go away in Python as the integers become unified). This non-standard usage may be unsightly to some, but it gives
the user the ability to quickly construct complicated vectors in a very readable fashion. When the number of points is
specified in this way, the end- point is inclusive.
The “r” stands for row concatenation because if the objects between commas are 2 dimensional arrays, they are stacked by
rows (and thus must have commensurate columns). There is an equivalent command c_ that stacks 2d arrays by columns
but works identically to r_ for 1d arrays.
Another very useful class instance which makes use of extended slicing notation is the function mgrid. In the simplest
case, this function can be used to construct 1d ranges as a convenient substitute for arange. It also allows the use of
complex-numbers in the step-size to indicate the number of points to place between the (inclusive) end-points. The real
purpose of this function however is to produce N, N-d arrays which provide coordinate arrays for an N-dimensional
volume. The easiest way to understand this is with an example of its usage:

>>> np.mgrid[0:5,0:5]
array([[[0, 0, 0, 0, 0],

[1, 1, 1, 1, 1],
[2, 2, 2, 2, 2],
[3, 3, 3, 3, 3],
[4, 4, 4, 4, 4]],

[[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4]]])

>>> np.mgrid[0:5:4j,0:5:4j]
array([[[ 0. , 0. , 0. , 0. ],

[ 1.6667, 1.6667, 1.6667, 1.6667],
[ 3.3333, 3.3333, 3.3333, 3.3333],
[ 5. , 5. , 5. , 5. ]],

[[ 0. , 1.6667, 3.3333, 5. ],
[ 0. , 1.6667, 3.3333, 5. ],
[ 0. , 1.6667, 3.3333, 5. ],
[ 0. , 1.6667, 3.3333, 5. ]]])

Having meshed arrays like this is sometimes very useful. However, it is not always needed just to evaluate some N-
dimensional function over a grid due to the array-broadcasting rules of NumPy and SciPy. If this is the only purpose
for generating a meshgrid, you should instead use the function ogrid which generates an “open” grid using newaxis
judiciously to create N, N-d arrays where only one dimension in each array has length greater than 1. This will save
memory and create the same result if the only purpose for the meshgrid is to generate sample points for evaluation of an
N-d function.

Shape manipulation
In this category of functions are routines for squeezing out length- one dimensions from N-dimensional arrays, ensuring
that an array is at least 1-, 2-, or 3-dimensional, and stacking (concatenating) arrays by rows, columns, and “pages “(in
the third dimension). Routines for splitting arrays (roughly the opposite of stacking arrays) are also available.
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Polynomials
There are two (interchangeable) ways to deal with 1-d polynomials in SciPy. The first is to use the poly1d class from
NumPy. This class accepts coefficients or polynomial roots to initialize a polynomial. The polynomial object can then be
manipulated in algebraic expressions, integrated, differentiated, and evaluated. It even prints like a polynomial:

>>> from numpy import poly1d
>>> p = poly1d([3,4,5])
>>> print(p)

2
3 x + 4 x + 5
>>> print(p*p)

4 3 2
9 x + 24 x + 46 x + 40 x + 25
>>> print(p.integ(k=6))

3 2
1 x + 2 x + 5 x + 6
>>> print(p.deriv())
6 x + 4
>>> p([4, 5])
array([ 69, 100])

The other way to handle polynomials is as an array of coefficients with the first element of the array giving the coefficient
of the highest power. There are explicit functions to add, subtract, multiply, divide, integrate, differentiate, and evaluate
polynomials represented as sequences of coefficients.

Vectorizing functions (vectorize)
One of the features that NumPy provides is a class vectorize to convert an ordinary Python function which accepts
scalars and returns scalars into a “vectorized-function” with the same broadcasting rules as other NumPy functions (i.e.
the Universal functions, or ufuncs). For example, suppose you have a Python function named addsubtract defined
as:

>>> def addsubtract(a,b):
... if a > b:
... return a - b
... else:
... return a + b

which defines a function of two scalar variables and returns a scalar result. The class vectorize can be used to “vectorize
“this function so that

>>> vec_addsubtract = np.vectorize(addsubtract)

returns a function which takes array arguments and returns an array result:

>>> vec_addsubtract([0,3,6,9],[1,3,5,7])
array([1, 6, 1, 2])

This particular function could have been written in vector form without the use of vectorize. However, functions that
employ optimization or integration routines can likely only be vectorized using vectorize.

Type handling
Note the difference between numpy.iscomplex/numpy.isreal and numpy.iscomplexobj/numpy.
isrealobj. The former command is array based and returns byte arrays of ones and zeros providing the result of
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the element-wise test. The latter command is object based and returns a scalar describing the result of the test on the
entire object.
Often it is required to get just the real and/or imaginary part of a complex number. While complex numbers and arrays
have attributes that return those values, if one is not sure whether or not the object will be complex-valued, it is better to
use the functional forms numpy.real and numpy.imag . These functions succeed for anything that can be turned
into a NumPy array. Consider also the function numpy.real_if_closewhich transforms a complex-valued number
with tiny imaginary part into a real number.
Occasionally the need to check whether or not a number is a scalar (Python (long)int, Python float, Python complex,
or rank-0 array) occurs in coding. This functionality is provided in the convenient function numpy.isscalar which
returns a 1 or a 0.

Other useful functions
There are also several other useful functions which should be mentioned. For doing phase processing, the functions
angle, and unwrap are useful. Also, the linspace and logspace functions return equally spaced samples in a
linear or log scale. Finally, it’s useful to be aware of the indexing capabilities of NumPy. Mention should be made of
the function select which extends the functionality of where to include multiple conditions and multiple choices.
The calling convention is select(condlist, choicelist, default=0). numpy.select is a vectorized
form of the multiple if-statement. It allows rapid construction of a function which returns an array of results based on a
list of conditions. Each element of the return array is taken from the array in a choicelist corresponding to the first
condition in condlist that is true. For example

>>> x = np.arange(10)
>>> condlist = [x<3, x>5]
>>> choicelist = [x, x**2]
>>> np.select(condlist, choicelist)
array([ 0, 1, 2, 0, 0, 0, 36, 49, 64, 81])

Some additional useful functions can also be found in the module scipy.special. For example the factorial
and comb functions compute n! and n!/k!(n−k)! using either exact integer arithmetic (thanks to Python’s Long integer
object), or by using floating-point precision and the gamma function.
Other useful functions can be found in scipy.misc. For example, two functions are provided that are useful for
approximating derivatives of functions using discrete-differences. The function central_diff_weights returns
weighting coefficients for an equally-spaced N -point approximation to the derivative of order o. These weights must be
multiplied by the function corresponding to these points and the results added to obtain the derivative approximation.
This function is intended for use when only samples of the function are available. When the function is an object that can
be handed to a routine and evaluated, the function derivative can be used to automatically evaluate the object at the
correct points to obtain an N-point approximation to the o-th derivative at a given point.

4.1.3 Special functions (scipy.special)

The main feature of the scipy.special package is the definition of numerous special functions of mathematical
physics. Available functions include airy, elliptic, bessel, gamma, beta, hypergeometric, parabolic cylinder, mathieu,
spheroidal wave, struve, and kelvin. There are also some low-level stats functions that are not intended for general use as
an easier interface to these functions is provided by the statsmodule. Most of these functions can take array arguments
and return array results following the same broadcasting rules as other math functions in Numerical Python. Many of these
functions also accept complex numbers as input. For a complete list of the available functions with a one-line description
type >>> help(special). Each function also has its own documentation accessible using help. If you don’t see a
function you need, consider writing it and contributing it to the library. You can write the function in either C, Fortran,
or Python. Look in the source code of the library for examples of each of these kinds of functions.
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Bessel functions of real order(jv, jn_zeros)

Bessel functions are a family of solutions to Bessel’s differential equation with real or complex order alpha:

x2
d2y

dx2
+ x

dy

dx
+ (x2 − α2)y = 0

Among other uses, these functions arise in wave propagation problems such as the vibrational modes of a thin drum head.
Here is an example of a circular drum head anchored at the edge:

>>> from scipy import special
>>> def drumhead_height(n, k, distance, angle, t):
... kth_zero = special.jn_zeros(n, k)[-1]
... return np.cos(t) * np.cos(n*angle) * special.jn(n, distance*kth_zero)
>>> theta = np.r_[0:2*np.pi:50j]
>>> radius = np.r_[0:1:50j]
>>> x = np.array([r * np.cos(theta) for r in radius])
>>> y = np.array([r * np.sin(theta) for r in radius])
>>> z = np.array([drumhead_height(1, 1, r, theta, 0.5) for r in radius])

>>> import matplotlib.pyplot as plt
>>> from mpl_toolkits.mplot3d import Axes3D
>>> from matplotlib import cm
>>> fig = plt.figure()
>>> ax = Axes3D(fig)
>>> ax.plot_surface(x, y, z, rstride=1, cstride=1, cmap=cm.jet)
>>> ax.set_xlabel('X')
>>> ax.set_ylabel('Y')
>>> ax.set_zlabel('Z')
>>> plt.show()

X

1.000.750.500.250.000.250.500.751.00

Y
1.000.750.500.250.000.250.500.751.00

Z

0.4
0.2
0.0
0.2
0.4

Cython Bindings for Special Functions (scipy.special.cython_special)

SciPy also offers Cython bindings for scalar, typed versions of many of the functions in special. The following Cython
code gives a simple example of how to use these functions:
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cimport scipy.special.cython_special as csc

cdef:
double x = 1
double complex z = 1 + 1j
double si, ci, rgam
double complex cgam

rgam = csc.gamma(x)
print(rgam)
cgam = csc.gamma(z)
print(cgam)
csc.sici(x, &si, &ci)
print(si, ci)

(See the Cython documentation for help with compiling Cython.) In the example the function csc.gamma works
essentially like its ufunc counterpart gamma, though it takes C types as arguments instead of NumPy arrays. Note
in particular that the function is overloaded to support real and complex arguments; the correct variant is selected at
compile time. The function csc.sici works slightly differently from sici; for the ufunc we could write ai, bi =
sici(x) whereas in the Cython version multiple return values are passed as pointers. It might help to think of this as
analogous to calling a ufunc with an output array: sici(x, out=(si, ci)).
There are two potential advantages to using the Cython bindings:

• They avoid Python function overhead
• They do not require the Python Global Interpreter Lock (GIL)

The following sections discuss how to use these advantages to potentially speed up your code, though of course one should
always profile the code first to make sure putting in the extra effort will be worth it.

Avoiding Python Function Overhead
For the ufuncs in special, Python function overhead is avoided by vectorizing, that is, by passing an array to the function.
Typically this approach works quite well, but sometimes it is more convenient to call a special function on scalar inputs
inside a loop, for example when implementing your own ufunc. In this case the Python function overhead can become
significant. Consider the following example:

import scipy.special as sc
cimport scipy.special.cython_special as csc

def python_tight_loop():
cdef:

int n
double x = 1

for n in range(100):
sc.jv(n, x)

def cython_tight_loop():
cdef:

int n
double x = 1

for n in range(100):
csc.jv(n, x)
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On one computer python_tight_loop took about 131 microseconds to run and cython_tight_loop took
about 18.2 microseconds to run. Obviously this example is contrived: one could just call special.jv(np.
arange(100), 1) and get results just as fast as in cython_tight_loop. The point is that if Python function
overhead becomes significant in your code then the Cython bindings might be useful.

Releasing the GIL
One often needs to evaluate a special function at many points, and typically the evaluations are trivially parallelizable.
Since the Cython bindings do not require the GIL, it is easy to run them in parallel using Cython’s prange function. For
example, suppose that we wanted to compute the fundamental solution to the Helmholtz equation:

∆xG(x, y) + k2G(x, y) = δ(x− y),

where k is the wavenumber and δ is the Dirac delta function. It is known that in two dimensions the unique (radiating)
solution is

G(x, y) =
i

4
H

(1)
0 (k|x− y|),

where H(1)
0 is the Hankel function of the first kind, i.e. the function hankel1. The following example shows how we

could compute this function in parallel:

from libc.math cimport fabs
cimport cython
from cython.parallel cimport prange

import numpy as np
import scipy.special as sc
cimport scipy.special.cython_special as csc

def serial_G(k, x, y):
return 0.25j*sc.hankel1(0, k*np.abs(x - y))

@cython.boundscheck(False)
@cython.wraparound(False)
cdef void _parallel_G(double k, double[:,:] x, double[:,:] y,

double complex[:,:] out) nogil:
cdef int i, j

for i in prange(x.shape[0]):
for j in range(y.shape[0]):

out[i,j] = 0.25j*csc.hankel1(0, k*fabs(x[i,j] - y[i,j]))

def parallel_G(k, x, y):
out = np.empty_like(x, dtype='complex128')
_parallel_G(k, x, y, out)
return out

(For help with compiling parallel code in Cython see here.) If the above Cython code is in a file test.pyx, then we
can write an informal benchmark which compares the parallel and serial versions of the function:

import timeit

import numpy as np

(continues on next page)
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(continued from previous page)
from test import serial_G, parallel_G

def main():
k = 1
x, y = np.linspace(-100, 100, 1000), np.linspace(-100, 100, 1000)
x, y = np.meshgrid(x, y)

def serial():
serial_G(k, x, y)

def parallel():
parallel_G(k, x, y)

time_serial = timeit.timeit(serial, number=3)
time_parallel = timeit.timeit(parallel, number=3)
print("Serial method took {:.3} seconds".format(time_serial))
print("Parallel method took {:.3} seconds".format(time_parallel))

if __name__ == "__main__":
main()

On one quad-core computer the serial method took 1.29 seconds and the parallel method took 0.29 seconds.

Functions not in scipy.special

Some functions are not included in special because they are straightforward to implement with existing functions in
NumPy and SciPy. To prevent reinventing the wheel, this section provides implementations of several such functions
which hopefully illustrate how to handle similar functions. In all examples NumPy is imported as np and special is
imported as sc.
The binary entropy function:

def binary_entropy(x):
return -(sc.xlogy(x, x) + sc.xlog1py(1 - x, -x))/np.log(2)

A rectangular step function on [0, 1]:

def step(x):
return 0.5*(np.sign(x) + np.sign(1 - x))

Translating and scaling can be used to get an arbitrary step function.
The ramp function:

def ramp(x):
return np.maximum(0, x)

4.1.4 Integration (scipy.integrate)

The scipy.integrate sub-package provides several integration techniques including an ordinary differential equa-
tion integrator. An overview of the module is provided by the help command:
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>>> help(integrate)
Methods for Integrating Functions given function object.

quad -- General purpose integration.
dblquad -- General purpose double integration.
tplquad -- General purpose triple integration.
fixed_quad -- Integrate func(x) using Gaussian quadrature of order n.
quadrature -- Integrate with given tolerance using Gaussian quadrature.
romberg -- Integrate func using Romberg integration.

Methods for Integrating Functions given fixed samples.

trapz -- Use trapezoidal rule to compute integral from samples.
cumtrapz -- Use trapezoidal rule to cumulatively compute integral.
simps -- Use Simpson's rule to compute integral from samples.
romb -- Use Romberg Integration to compute integral from

(2**k + 1) evenly-spaced samples.

See the special module's orthogonal polynomials (special) for Gaussian
quadrature roots and weights for other weighting factors and regions.

Interface to numerical integrators of ODE systems.

odeint -- General integration of ordinary differential equations.
ode -- Integrate ODE using VODE and ZVODE routines.

General integration (quad)

The function quad is provided to integrate a function of one variable between two points. The points can be ±∞ (±
inf) to indicate infinite limits. For example, suppose you wish to integrate a bessel function jv(2.5, x) along the
interval [0, 4.5].

I =

∫ 4.5

0

J2.5 (x) dx.

This could be computed using quad:

>>> import scipy.integrate as integrate
>>> import scipy.special as special
>>> result = integrate.quad(lambda x: special.jv(2.5,x), 0, 4.5)
>>> result
(1.1178179380783249, 7.8663172481899801e-09)

>>> from numpy import sqrt, sin, cos, pi
>>> I = sqrt(2/pi)*(18.0/27*sqrt(2)*cos(4.5) - 4.0/27*sqrt(2)*sin(4.5) +
... sqrt(2*pi) * special.fresnel(3/sqrt(pi))[0])
>>> I
1.117817938088701

>>> print(abs(result[0]-I))
1.03761443881e-11
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The first argument to quad is a “callable” Python object (i.e. a function, method, or class instance). Notice the use of a
lambda- function in this case as the argument. The next two arguments are the limits of integration. The return value is
a tuple, with the first element holding the estimated value of the integral and the second element holding an upper bound
on the error. Notice, that in this case, the true value of this integral is

I =

√
2

π

(
18

27

√
2 cos (4.5)− 4

27

√
2 sin (4.5) +

√
2πSi

(
3√
π

))
,

where

Si (x) =
∫ x

0

sin
(π
2
t2
)
dt.

is the Fresnel sine integral. Note that the numerically-computed integral is within 1.04 × 10−11 of the exact result —
well below the reported error bound.
If the function to integrate takes additional parameters, the can be provided in the args argument. Suppose that the
following integral shall be calculated:

I(a, b) =

∫ 1

0

ax2 + b dx.

This integral can be evaluated by using the following code:

>>> from scipy.integrate import quad
>>> def integrand(x, a, b):
... return a*x**2 + b
...
>>> a = 2
>>> b = 1
>>> I = quad(integrand, 0, 1, args=(a,b))
>>> I
(1.6666666666666667, 1.8503717077085944e-14)

Infinite inputs are also allowed in quad by using± inf as one of the arguments. For example, suppose that a numerical
value for the exponential integral:

En (x) =

∫ ∞

1

e−xt

tn
dt.

is desired (and the fact that this integral can be computed as special.expn(n,x) is forgotten). The functionality of
the function special.expn can be replicated by defining a new function vec_expint based on the routine quad:

>>> from scipy.integrate import quad
>>> def integrand(t, n, x):
... return np.exp(-x*t) / t**n
...

>>> def expint(n, x):
... return quad(integrand, 1, np.inf, args=(n, x))[0]
...

>>> vec_expint = np.vectorize(expint)
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>>> vec_expint(3, np.arange(1.0, 4.0, 0.5))
array([ 0.1097, 0.0567, 0.0301, 0.0163, 0.0089, 0.0049])
>>> import scipy.special as special
>>> special.expn(3, np.arange(1.0,4.0,0.5))
array([ 0.1097, 0.0567, 0.0301, 0.0163, 0.0089, 0.0049])

The function which is integrated can even use the quad argument (though the error bound may underestimate the error
due to possible numerical error in the integrand from the use of quad ). The integral in this case is

In =

∫ ∞

0

∫ ∞

1

e−xt

tn
dt dx =

1

n
.

>>> result = quad(lambda x: expint(3, x), 0, np.inf)
>>> print(result)
(0.33333333324560266, 2.8548934485373678e-09)

>>> I3 = 1.0/3.0
>>> print(I3)
0.333333333333

>>> print(I3 - result[0])
8.77306560731e-11

This last example shows that multiple integration can be handled using repeated calls to quad.

General multiple integration (dblquad, tplquad, nquad)

The mechanics for double and triple integration have been wrapped up into the functions dblquad and tplquad.
These functions take the function to integrate and four, or six arguments, respectively. The limits of all inner integrals
need to be defined as functions.
An example of using double integration to compute several values of In is shown below:

>>> from scipy.integrate import quad, dblquad
>>> def I(n):
... return dblquad(lambda t, x: np.exp(-x*t)/t**n, 0, np.inf, lambda x: 1,
↪→ lambda x: np.inf)
...

>>> print(I(4))
(0.2500000000043577, 1.29830334693681e-08)
>>> print(I(3))
(0.33333333325010883, 1.3888461883425516e-08)
>>> print(I(2))
(0.4999999999985751, 1.3894083651858995e-08)

As example for non-constant limits consider the integral

I =

∫ 1/2

y=0

∫ 1−2y

x=0

xy dx dy =
1

96
.

This integral can be evaluated using the expression below (Note the use of the non-constant lambda functions for the
upper limit of the inner integral):
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>>> from scipy.integrate import dblquad
>>> area = dblquad(lambda x, y: x*y, 0, 0.5, lambda x: 0, lambda x: 1-2*x)
>>> area
(0.010416666666666668, 1.1564823173178715e-16)

For n-fold integration, scipy provides the function nquad. The integration bounds are an iterable object: either a list of
constant bounds, or a list of functions for the non-constant integration bounds. The order of integration (and therefore
the bounds) is from the innermost integral to the outermost one.
The integral from above

In =

∫ ∞

0

∫ ∞

1

e−xt

tn
dt dx =

1

n

can be calculated as

>>> from scipy import integrate
>>> N = 5
>>> def f(t, x):
... return np.exp(-x*t) / t**N
...
>>> integrate.nquad(f, [[1, np.inf],[0, np.inf]])
(0.20000000000002294, 1.2239614263187945e-08)

Note that the order of arguments for f must match the order of the integration bounds; i.e. the inner integral with respect
to t is on the interval [1,∞] and the outer integral with respect to x is on the interval [0,∞].
Non-constant integration bounds can be treated in a similar manner; the example from above

I =

∫ 1/2

y=0

∫ 1−2y

x=0

xy dx dy =
1

96
.

can be evaluated by means of

>>> from scipy import integrate
>>> def f(x, y):
... return x*y
...
>>> def bounds_y():
... return [0, 0.5]
...
>>> def bounds_x(y):
... return [0, 1-2*y]
...
>>> integrate.nquad(f, [bounds_x, bounds_y])
(0.010416666666666668, 4.101620128472366e-16)

which is the same result as before.

Gaussian quadrature

A few functions are also provided in order to perform simple Gaussian quadrature over a fixed interval. The first is
fixed_quad which performs fixed-order Gaussian quadrature. The second function is quadrature which performs
Gaussian quadrature of multiple orders until the difference in the integral estimate is beneath some tolerance supplied
by the user. These functions both use the module scipy.special.orthogonal which can calculate the roots
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and quadrature weights of a large variety of orthogonal polynomials (the polynomials themselves are available as special
functions returning instances of the polynomial class — e.g. special.legendre).

Romberg Integration

Romberg’s method [WPR] is another method for numerically evaluating an integral. See the help function for romberg
for further details.

Integrating using Samples

If the samples are equally-spaced and the number of samples available is 2k + 1 for some integer k, then Romberg
romb integration can be used to obtain high-precision estimates of the integral using the available samples. Romberg
integration uses the trapezoid rule at step-sizes related by a power of two and then performs Richardson extrapolation on
these estimates to approximate the integral with a higher-degree of accuracy.
In case of arbitrary spaced samples, the two functions trapz and simps are available. They are using Newton-Coates
formulas of order 1 and 2 respectively to perform integration. The trapezoidal rule approximates the function as a straight
line between adjacent points, while Simpson’s rule approximates the function between three adjacent points as a parabola.
For an odd number of samples that are equally spaced Simpson’s rule is exact if the function is a polynomial of order 3 or
less. If the samples are not equally spaced, then the result is exact only if the function is a polynomial of order 2 or less.

>>> import numpy as np
>>> def f1(x):
... return x**2
...
>>> def f2(x):
... return x**3
...
>>> x = np.array([1,3,4])
>>> y1 = f1(x)
>>> from scipy.integrate import simps
>>> I1 = simps(y1, x)
>>> print(I1)
21.0

This corresponds exactly to ∫ 4

1

x2 dx = 21,

whereas integrating the second function

>>> y2 = f2(x)
>>> I2 = integrate.simps(y2, x)
>>> print(I2)
61.5

does not correspond to ∫ 4

1

x3 dx = 63.75

because the order of the polynomial in f2 is larger than two.
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Faster integration using low-level callback functions

A user desiring reduced integration times may pass a C function pointer through scipy.LowLevelCallable to
quad, dblquad, tplquad or nquad and it will be integrated and return a result in Python. The performance increase
here arises from two factors. The primary improvement is faster function evaluation, which is provided by compilation
of the function itself. Additionally we have a speedup provided by the removal of function calls between C and Python
in quad. This method may provide a speed improvements of ~2x for trivial functions such as sine but can produce a
much more noticeable improvements (10x+) for more complex functions. This feature then, is geared towards a user with
numerically intensive integrations willing to write a little C to reduce computation time significantly.
The approach can be used, for example, via ctypes in a few simple steps:
1.) Write an integrand function in C with the function signature double f(int n, double *x, void
*user_data), where x is an array containing the point the function f is evaluated at, and user_data to arbitrary
additional data you want to provide.

/* testlib.c */
double f(int n, double *x, void *user_data) {

double c = *(double *)user_data;
return c + x[0] - x[1] * x[2]; /* corresponds to c + x - y * z */

}

2.) Now compile this file to a shared/dynamic library (a quick search will help with this as it is OS-dependent). The user
must link any math libraries, etc. used. On linux this looks like:

$ gcc -shared -fPIC -o testlib.so testlib.c

The output library will be referred to as testlib.so, but it may have a different file extension. A library has now been
created that can be loaded into Python with ctypes.
3.) Load shared library into Python using ctypes and set restypes and argtypes - this allows SciPy to interpret
the function correctly:

import os, ctypes
from scipy import integrate, LowLevelCallable

lib = ctypes.CDLL(os.path.abspath('testlib.so'))
lib.f.restype = ctypes.c_double
lib.f.argtypes = (ctypes.c_int, ctypes.POINTER(ctypes.c_double), ctypes.c_
↪→void_p)

c = ctypes.c_double(1.0)
user_data = ctypes.cast(ctypes.pointer(c), ctypes.c_void_p)

func = LowLevelCallable(lib.f, user_data)

The last void *user_data in the function is optional and can be omitted (both in the C function and ctypes argtypes)
if not needed. Note that the coordinates are passed in as an array of doubles rather than a separate argument.
4.) Now integrate the library function as normally, here using nquad:

>>> integrate.nquad(func, [[0, 10], [-10, 0], [-1, 1]])
(1200.0, 1.1102230246251565e-11)

The Python tuple is returned as expected in a reduced amount of time. All optional parameters can be used with this
method including specifying singularities, infinite bounds, etc.
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Ordinary differential equations (odeint)

Integrating a set of ordinary differential equations (ODEs) given initial conditions is another useful example. The function
odeint is available in SciPy for integrating a first-order vector differential equation:

dy

dt
= f (y, t) ,

given initial conditions y (0) = y0, where y is a length N vector and f is a mapping from RN to RN . A higher-order
ordinary differential equation can always be reduced to a differential equation of this type by introducing intermediate
derivatives into the y vector.
For example suppose it is desired to find the solution to the following second-order differential equation:

d2w

dz2
− zw(z) = 0

with initial conditions w (0) = 1
3√
32Γ( 2

3 )
and dw

dz

∣∣
z=0

= − 1
3√3Γ( 1

3 )
. It is known that the solution to this differential

equation with these boundary conditions is the Airy function

w = Ai (z) ,

which gives a means to check the integrator using special.airy.
First, convert this ODE into standard form by setting y =

[
dw
dz , w

]
and t = z. Thus, the differential equation becomes

dy

dt
=

[
ty1
y0

]
=

[
0 t
1 0

] [
y0
y1

]
=

[
0 t
1 0

]
y.

In other words,

f (y, t) = A (t)y.

As an interesting reminder, ifA (t) commutes with
∫ t

0
A (τ) dτ under matrix multiplication, then this linear differential

equation has an exact solution using the matrix exponential:

y (t) = exp

(∫ t

0

A (τ) dτ

)
y (0) ,

However, in this case,A (t) and its integral do not commute.
There are many optional inputs and outputs available when using odeint which can help tune the solver. These additional
inputs and outputs are not needed much of the time, however, and the three required input arguments and the output
solution suffice. The required inputs are the function defining the derivative, fprime, the initial conditions vector, y0, and
the time points to obtain a solution, t, (with the initial value point as the first element of this sequence). The output to
odeint is a matrix where each row contains the solution vector at each requested time point (thus, the initial conditions
are given in the first output row).
The following example illustrates the use of odeint including the usage of theDfun option which allows the user to specify
a gradient (with respect to y ) of the function, f (y, t).

>>> from scipy.integrate import odeint
>>> from scipy.special import gamma, airy
>>> y1_0 = 1.0 / 3**(2.0/3.0) / gamma(2.0/3.0)
>>> y0_0 = -1.0 / 3**(1.0/3.0) / gamma(1.0/3.0)
>>> y0 = [y0_0, y1_0]
>>> def func(y, t):
... return [t*y[1],y[0]]
...
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>>> def gradient(y, t):
... return [[0,t], [1,0]]
...

>>> x = np.arange(0, 4.0, 0.01)
>>> t = x
>>> ychk = airy(x)[0]
>>> y = odeint(func, y0, t)
>>> y2 = odeint(func, y0, t, Dfun=gradient)

>>> ychk[:36:6]
array([0.355028, 0.339511, 0.324068, 0.308763, 0.293658, 0.278806])

>>> y[:36:6,1]
array([0.355028, 0.339511, 0.324067, 0.308763, 0.293658, 0.278806])

>>> y2[:36:6,1]
array([0.355028, 0.339511, 0.324067, 0.308763, 0.293658, 0.278806])

Solving a system with a banded Jacobian matrix
odeint can be told that the Jacobian is banded. For a large system of differential equations that are known to be stiff,
this can improve performance significantly.
As an example, we’ll solve the one-dimensional Gray-Scott partial differential equations using the method of lines [MOL].
The Gray-Scott equations for the functions u(x, t) and v(x, t) on the interval x ∈ [0, L] are

∂u

∂t
= Du

∂2u

∂x2
− uv2 + f(1− u)

∂v

∂t
= Dv

∂2v

∂x2
+ uv2 − (f + k)v

whereDu andDv are the diffusion coefficients of the components u and v, respectively, and f and k are constants. (For
more information about the system, see http://groups.csail.mit.edu/mac/projects/amorphous/GrayScott/)
We’ll assume Neumann (i.e. “no flux”) boundary conditions:

∂u

∂x
(0, t) = 0,

∂v

∂x
(0, t) = 0,

∂u

∂x
(L, t) = 0,

∂v

∂x
(L, t) = 0

To apply the method of lines, we discretize the x variable by defining the uniformly spaced grid of N points
{x0, x1, . . . , xN−1}, with x0 = 0 and xN−1 = L. We define uj(t) ≡ u(xk, t) and vj(t) ≡ v(xk, t), and replace
the x derivatives with finite differences. That is,

∂2u

∂x2
(xj , t) →

uj−1(t)− 2uj(t) + uj+1(t)

(∆x)2

We then have a system of 2N ordinary differential equations:

duj
dt

=
Du

(∆x)2
(uj−1 − 2uj + uj+1)− ujv

2
j + f(1− uj)

dvj
dt

=
Dv

(∆x)2
(vj−1 − 2vj + vj+1) + ujv

2
j − (f + k)vj

(4.1)

For convenience, the (t) arguments have been dropped.
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To enforce the boundary conditions, we introduce “ghost” points x−1 and xN , and define u−1(t) ≡ u1(t), uN (t) ≡
uN−2(t); v−1(t) and vN (t) are defined analogously.
Then

du0
dt

=
Du

(∆x)2
(2u1 − 2u0)− u0v

2
0 + f(1− u0)

dv0
dt

=
Dv

(∆x)2
(2v1 − 2v0) + u0v

2
0 − (f + k)v0

(4.2)

and
duN−1

dt
=

Du

(∆x)2
(2uN−2 − 2uN−1)− uN−1v

2
N−1 + f(1− uN−1)

dvN−1

dt
=

Dv

(∆x)2
(2vN−2 − 2vN−1) + uN−1v

2
N−1 − (f + k)vN−1

(4.3)

Our complete system of 2N ordinary differential equations is (4.1) for k = 1, 2, . . . , N − 2, along with (4.2) and (4.3).
We can now starting implementing this system in code. We must combine {uk} and {vk} into a single vector of length
2N . The two obvious choices are {u0, u1, . . . , uN−1, v0, v1, . . . , vN−1} and {u0, v0, u1, v1, . . . , uN−1, vN−1}. Math-
ematically, it does not matter, but the choice affects how efficiently odeint can solve the system. The reason is in how
the order affects the pattern of the nonzero elements of the Jacobian matrix.
When the variables are ordered as {u0, u1, . . . , uN−1, v0, v1, . . . , vN−1}, the pattern of nonzero elements of the Jacobian
matrix is

∗ ∗ 0 0 0 0 0 ∗ 0 0 0 0 0 0
∗ ∗ ∗ 0 0 0 0 0 ∗ 0 0 0 0 0
0 ∗ ∗ ∗ 0 0 0 0 0 ∗ 0 0 0 0
0 0 ∗ ∗ ∗ 0 0 0 0 0 ∗ 0 0 0
0 0 0 ∗ ∗ ∗ 0 0 0 0 0 ∗ 0 0
0 0 0 0 ∗ ∗ ∗ 0 0 0 0 0 ∗ 0
0 0 0 0 0 ∗ ∗ 0 0 0 0 0 0 ∗
∗ 0 0 0 0 0 0 ∗ ∗ 0 0 0 0 0
0 ∗ 0 0 0 0 0 ∗ ∗ ∗ 0 0 0 0
0 0 ∗ 0 0 0 0 0 ∗ ∗ ∗ 0 0 0
0 0 0 ∗ 0 0 0 0 0 ∗ ∗ ∗ 0 0
0 0 0 0 ∗ 0 0 0 0 0 ∗ ∗ ∗ 0
0 0 0 0 0 ∗ 0 0 0 0 0 ∗ ∗ ∗
0 0 0 0 0 0 ∗ 0 0 0 0 ) ∗ ∗

The Jacobian pattern with variables interleaved as {u0, v0, u1, v1, . . . , uN−1, vN−1} is
∗ ∗ ∗ 0 0 0 0 0 0 0 0 0 0 0
∗ ∗ 0 ∗ 0 0 0 0 0 0 0 0 0 0
∗ 0 ∗ ∗ ∗ 0 0 0 0 0 0 0 0 0
0 ∗ ∗ ∗ 0 ∗ 0 0 0 0 0 0 0 0
0 0 ∗ 0 ∗ ∗ ∗ 0 0 0 0 0 0 0
0 0 0 ∗ ∗ ∗ 0 ∗ 0 0 0 0 0 0
0 0 0 0 ∗ 0 ∗ ∗ ∗ 0 0 0 0 0
0 0 0 0 0 ∗ ∗ ∗ 0 ∗ 0 0 0 0
0 0 0 0 0 0 ∗ 0 ∗ ∗ ∗ 0 0 0
0 0 0 0 0 0 0 ∗ ∗ ∗ 0 ∗ 0 0
0 0 0 0 0 0 0 0 ∗ 0 ∗ ∗ ∗ 0
0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ 0 ∗
0 0 0 0 0 0 0 0 0 0 ∗ 0 ∗ ∗
0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗

In both cases, there are just five nontrivial diagonals, but when the variables are interleaved, the bandwidth is much smaller.
That is, the main diagonal and the two diagonals immediately above and the two immediately below the main diagonal are
the nonzero diagonals. This is important, because the inputs mu and ml of odeint are the upper and lower bandwidths
of the Jacobian matrix. When the variables are interleaved, mu and ml are 2. When the variables are stacked with {vk}
following {uk}, the upper and lower bandwidths are N .
With that decision made, we can write the function that implements the system of differential equations.
First, we define the functions for the source and reaction terms of the system:

def G(u, v, f, k):
return f * (1 - u) - u*v**2

def H(u, v, f, k):
return -(f + k) * v + u*v**2
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Next we define the function that computes the right-hand-side of the system of differential equations:

def grayscott1d(y, t, f, k, Du, Dv, dx):
"""
Differential equations for the 1D Gray-Scott equations.

The ODEs are derived using the method of lines.
"""
# The vectors u and v are interleaved in y. We define
# views of u and v by slicing y.
u = y[::2]
v = y[1::2]

# dydt is the return value of this function.
dydt = np.empty_like(y)

# Just like u and v are views of the interleaved vectors
# in y, dudt and dvdt are views of the interleaved output
# vectors in dydt.
dudt = dydt[::2]
dvdt = dydt[1::2]

# Compute du/dt and dv/dt. The end points and the interior points
# are handled separately.
dudt[0] = G(u[0], v[0], f, k) + Du * (-2.0*u[0] + 2.0*u[1]) /␣

↪→dx**2
dudt[1:-1] = G(u[1:-1], v[1:-1], f, k) + Du * np.diff(u,2) / dx**2
dudt[-1] = G(u[-1], v[-1], f, k) + Du * (- 2.0*u[-1] + 2.0*u[-2]) /␣

↪→dx**2
dvdt[0] = H(u[0], v[0], f, k) + Dv * (-2.0*v[0] + 2.0*v[1]) /␣

↪→dx**2
dvdt[1:-1] = H(u[1:-1], v[1:-1], f, k) + Dv * np.diff(v,2) / dx**2
dvdt[-1] = H(u[-1], v[-1], f, k) + Dv * (-2.0*v[-1] + 2.0*v[-2]) /␣

↪→dx**2

return dydt

We won’t implement a function to compute the Jacobian, but we will tell odeint that the Jacobian matrix is banded.
This allows the underlying solver (LSODA) to avoid computing values that it knows are zero. For a large system, this
improves the performance significantly, as demonstrated in the following ipython session.
First, we define the required inputs:

In [31]: y0 = np.random.randn(5000)

In [32]: t = np.linspace(0, 50, 11)

In [33]: f = 0.024

In [34]: k = 0.055

In [35]: Du = 0.01

In [36]: Dv = 0.005
(continues on next page)
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(continued from previous page)

In [37]: dx = 0.025

Time the computation without taking advantage of the banded structure of the Jacobian matrix:

In [38]: %timeit sola = odeint(grayscott1d, y0, t, args=(f, k, Du, Dv, dx))
1 loop, best of 3: 25.2 s per loop

Now set ml=2 and mu=2, so odeint knows that the Jacobian matrix is banded:

In [39]: %timeit solb = odeint(grayscott1d, y0, t, args=(f, k, Du, Dv, dx),␣
↪→ml=2, mu=2)
10 loops, best of 3: 191 ms per loop

That is quite a bit faster!
Let’s ensure that they have computed the same result:

In [41]: np.allclose(sola, solb)
Out[41]: True

References

4.1.5 Optimization (scipy.optimize)

The scipy.optimize package provides several commonly used optimization algorithms. A detailed listing is avail-
able: scipy.optimize (can also be found by help(scipy.optimize)).
The module contains:

1. Unconstrained and constrained minimization of multivariate scalar functions (minimize) using a variety of al-
gorithms (e.g. BFGS, Nelder-Mead simplex, Newton Conjugate Gradient, COBYLA or SLSQP)

2. Global optimization routines (e.g. basinhopping, differential_evolution, shgo,
dual_annealing).

3. Least-squares minimization (least_squares) and curve fitting (curve_fit) algorithms
4. Scalar univariate functions minimizers (minimize_scalar) and root finders (root_scalar)
5. Multivariate equation system solvers (root) using a variety of algorithms (e.g. hybrid Powell, Levenberg-

Marquardt or large-scale methods such as Newton-Krylov [KK]).
Below, several examples demonstrate their basic usage.

Unconstrained minimization of multivariate scalar functions (minimize)

The minimize function provides a common interface to unconstrained and constrained minimization algorithms for
multivariate scalar functions in scipy.optimize. To demonstrate the minimization function consider the problem of
minimizing the Rosenbrock function of N variables:

f (x) =

N∑
i=2

100
(
xi+1 − x2i

)2
+ (1− xi)

2
.

The minimum value of this function is 0 which is achieved when xi = 1.
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Note that the Rosenbrock function and its derivatives are included in scipy.optimize. The implementations shown
in the following sections provide examples of how to define an objective function as well as its jacobian and hessian
functions.

Nelder-Mead Simplex algorithm (method='Nelder-Mead')
In the example below, the minimize routine is used with the Nelder-Mead simplex algorithm (selected through the
method parameter):

>>> import numpy as np
>>> from scipy.optimize import minimize

>>> def rosen(x):
... """The Rosenbrock function"""
... return sum(100.0*(x[1:]-x[:-1]**2.0)**2.0 + (1-x[:-1])**2.0)

>>> x0 = np.array([1.3, 0.7, 0.8, 1.9, 1.2])
>>> res = minimize(rosen, x0, method='nelder-mead',
... options={'xtol': 1e-8, 'disp': True})
Optimization terminated successfully.

Current function value: 0.000000
Iterations: 339
Function evaluations: 571

>>> print(res.x)
[1. 1. 1. 1. 1.]

The simplex algorithm is probably the simplest way to minimize a fairly well-behaved function. It requires only function
evaluations and is a good choice for simple minimization problems. However, because it does not use any gradient
evaluations, it may take longer to find the minimum.
Another optimization algorithm that needs only function calls to find the minimum is Powell’s method available by setting
method='powell' in minimize.

Broyden-Fletcher-Goldfarb-Shanno algorithm (method='BFGS')
In order to converge more quickly to the solution, this routine uses the gradient of the objective function. If the gradient is
not given by the user, then it is estimated using first-differences. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method
typically requires fewer function calls than the simplex algorithm even when the gradient must be estimated.
To demonstrate this algorithm, the Rosenbrock function is again used. The gradient of the Rosenbrock function is the
vector:

∂f

∂xj
=

N∑
i=1

200
(
xi − x2i−1

)
(δi,j − 2xi−1δi−1,j)− 2 (1− xi−1) δi−1,j .

= 200
(
xj − x2j−1

)
− 400xj

(
xj+1 − x2j

)
− 2 (1− xj) .

This expression is valid for the interior derivatives. Special cases are

∂f

∂x0
= −400x0

(
x1 − x20

)
− 2 (1− x0) ,

∂f

∂xN−1
= 200

(
xN−1 − x2N−2

)
.

A Python function which computes this gradient is constructed by the code-segment:
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>>> def rosen_der(x):
... xm = x[1:-1]
... xm_m1 = x[:-2]
... xm_p1 = x[2:]
... der = np.zeros_like(x)
... der[1:-1] = 200*(xm-xm_m1**2) - 400*(xm_p1 - xm**2)*xm - 2*(1-xm)
... der[0] = -400*x[0]*(x[1]-x[0]**2) - 2*(1-x[0])
... der[-1] = 200*(x[-1]-x[-2]**2)
... return der

This gradient information is specified in the minimize function through the jac parameter as illustrated below.

>>> res = minimize(rosen, x0, method='BFGS', jac=rosen_der,
... options={'disp': True})
Optimization terminated successfully.

Current function value: 0.000000
Iterations: 51 # may vary
Function evaluations: 63
Gradient evaluations: 63

>>> res.x
array([1., 1., 1., 1., 1.])

Newton-Conjugate-Gradient algorithm (method='Newton-CG')
Newton-Conjugate Gradient algorithm is a modified Newton’s method and uses a conjugate gradient algorithm to (ap-
proximately) invert the local Hessian [NW]. Newton’s method is based on fitting the function locally to a quadratic
form:

f (x) ≈ f (x0) +∇f (x0) · (x− x0) +
1

2
(x− x0)

T
H (x0) (x− x0) .

whereH (x0) is a matrix of second-derivatives (the Hessian). If the Hessian is positive definite then the local minimum
of this function can be found by setting the gradient of the quadratic form to zero, resulting in

xopt = x0 −H−1∇f.

The inverse of the Hessian is evaluated using the conjugate-gradient method. An example of employing this method to
minimizing the Rosenbrock function is given below. To take full advantage of the Newton-CG method, a function which
computes the Hessian must be provided. The Hessian matrix itself does not need to be constructed, only a vector which
is the product of the Hessian with an arbitrary vector needs to be available to the minimization routine. As a result, the
user can provide either a function to compute the Hessian matrix, or a function to compute the product of the Hessian
with an arbitrary vector.

Full Hessian example:

The Hessian of the Rosenbrock function is

Hij =
∂2f

∂xi∂xj
= 200 (δi,j − 2xi−1δi−1,j)− 400xi (δi+1,j − 2xiδi,j)− 400δi,j

(
xi+1 − x2i

)
+ 2δi,j ,

=
(
202 + 1200x2i − 400xi+1

)
δi,j − 400xiδi+1,j − 400xi−1δi−1,j ,
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if i, j ∈ [1, N − 2] with i, j ∈ [0, N − 1] defining the N ×N matrix. Other non-zero entries of the matrix are

∂2f

∂x20
= 1200x20 − 400x1 + 2,

∂2f

∂x0∂x1
=

∂2f

∂x1∂x0
= −400x0,

∂2f

∂xN−1∂xN−2
=

∂2f

∂xN−2∂xN−1
= −400xN−2,

∂2f

∂x2N−1

= 200.

For example, the Hessian when N = 5 is

H =


1200x20 − 400x1 + 2 −400x0 0 0 0

−400x0 202 + 1200x21 − 400x2 −400x1 0 0
0 −400x1 202 + 1200x22 − 400x3 −400x2 0
0 −400x2 202 + 1200x23 − 400x4 −400x3
0 0 0 −400x3 200

 .
The code which computes this Hessian along with the code to minimize the function using Newton-CG method is shown
in the following example:

>>> def rosen_hess(x):
... x = np.asarray(x)
... H = np.diag(-400*x[:-1],1) - np.diag(400*x[:-1],-1)
... diagonal = np.zeros_like(x)
... diagonal[0] = 1200*x[0]**2-400*x[1]+2
... diagonal[-1] = 200
... diagonal[1:-1] = 202 + 1200*x[1:-1]**2 - 400*x[2:]
... H = H + np.diag(diagonal)
... return H

>>> res = minimize(rosen, x0, method='Newton-CG',
... jac=rosen_der, hess=rosen_hess,
... options={'xtol': 1e-8, 'disp': True})
Optimization terminated successfully.

Current function value: 0.000000
Iterations: 19 # may vary
Function evaluations: 22
Gradient evaluations: 19
Hessian evaluations: 19

>>> res.x
array([1., 1., 1., 1., 1.])

Hessian product example:

For larger minimization problems, storing the entire Hessian matrix can consume considerable time and memory. The
Newton-CG algorithm only needs the product of the Hessian times an arbitrary vector. As a result, the user can supply
code to compute this product rather than the full Hessian by giving a hess function which take the minimization vector
as the first argument and the arbitrary vector as the second argument (along with extra arguments passed to the function
to be minimized). If possible, using Newton-CG with the Hessian product option is probably the fastest way to minimize
the function.
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In this case, the product of the Rosenbrock Hessian with an arbitrary vector is not difficult to compute. If p is the arbitrary
vector, thenH (x)p has elements:

H (x)p =



(
1200x20 − 400x1 + 2

)
p0 − 400x0p1

...
−400xi−1pi−1 +

(
202 + 1200x2i − 400xi+1

)
pi − 400xipi+1

...
−400xN−2pN−2 + 200pN−1

 .

Code which makes use of this Hessian product to minimize the Rosenbrock function using minimize follows:

>>> def rosen_hess_p(x, p):
... x = np.asarray(x)
... Hp = np.zeros_like(x)
... Hp[0] = (1200*x[0]**2 - 400*x[1] + 2)*p[0] - 400*x[0]*p[1]
... Hp[1:-1] = -400*x[:-2]*p[:-2]+(202+1200*x[1:-1]**2-400*x[2:])*p[1:-1]␣
↪→\
... -400*x[1:-1]*p[2:]
... Hp[-1] = -400*x[-2]*p[-2] + 200*p[-1]
... return Hp

>>> res = minimize(rosen, x0, method='Newton-CG',
... jac=rosen_der, hessp=rosen_hess_p,
... options={'xtol': 1e-8, 'disp': True})
Optimization terminated successfully.

Current function value: 0.000000
Iterations: 20 # may vary
Function evaluations: 23
Gradient evaluations: 20
Hessian evaluations: 44

>>> res.x
array([1., 1., 1., 1., 1.])

According to [NW] p. 170 the Newton-CG algorithm can be inefficient when the Hessian is ill-condiotioned because
of the poor quality search directions provided by the method in those situations. The method trust-ncg, according to
the authors, deals more effectively with this problematic situation and will be described next.

Trust-Region Newton-Conjugate-Gradient Algorithm (method='trust-ncg')
The Newton-CG method is a line search method: it finds a direction of search minimizing a quadratic approximation
of the function and then uses a line search algorithm to find the (nearly) optimal step size in that direction. An alternative
approach is to, first, fix the step size limit ∆ and then find the optimal step p inside the given trust-radius by solving the
following quadratic subproblem:

min
p
f (xk) +∇f (xk) · p+

1

2
pTH (xk)p;

subject to: ∥p∥ ≤ ∆.

The solution is then updated xk+1 = xk + p and the trust-radius∆ is adjusted according to the degree of agreement of
the quadratic model with the real function. This family of methods is known as trust-region methods. The trust-ncg
algorithm is a trust-region method that uses a conjugate gradient algorithm to solve the trust-region subproblem [NW].
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Full Hessian example:

>>> res = minimize(rosen, x0, method='trust-ncg',
... jac=rosen_der, hess=rosen_hess,
... options={'gtol': 1e-8, 'disp': True})
Optimization terminated successfully.

Current function value: 0.000000
Iterations: 20 # may vary
Function evaluations: 21
Gradient evaluations: 20
Hessian evaluations: 19

>>> res.x
array([1., 1., 1., 1., 1.])

Hessian product example:

>>> res = minimize(rosen, x0, method='trust-ncg',
... jac=rosen_der, hessp=rosen_hess_p,
... options={'gtol': 1e-8, 'disp': True})
Optimization terminated successfully.

Current function value: 0.000000
Iterations: 20 # may vary
Function evaluations: 21
Gradient evaluations: 20
Hessian evaluations: 0

>>> res.x
array([1., 1., 1., 1., 1.])

Trust-Region Truncated Generalized Lanczos / Conjugate Gradient Algorithm
(method='trust-krylov')
Similar to the trust-ncg method, the trust-krylov method is a method suitable for large-scale problems as it
uses the hessian only as linear operator by means of matrix-vector products. It solves the quadratic subproblem more
accurately than the trust-ncg method.

min
p
f (xk) +∇f (xk) · p+

1

2
pTH (xk)p;

subject to: ∥p∥ ≤ ∆.

This method wraps the [TRLIB] implementation of the [GLTR] method solving exactly a trust-region subproblem re-
stricted to a truncated Krylov subspace. For indefinite problems it is usually better to use this method as it reduces the
number of nonlinear iterations at the expense of few more matrix-vector products per subproblem solve in comparison
to the trust-ncg method.

Full Hessian example:

>>> res = minimize(rosen, x0, method='trust-krylov',
... jac=rosen_der, hess=rosen_hess,
... options={'gtol': 1e-8, 'disp': True})
Optimization terminated successfully.

(continues on next page)
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(continued from previous page)
Current function value: 0.000000
Iterations: 19 # may vary
Function evaluations: 20
Gradient evaluations: 20
Hessian evaluations: 18

>>> res.x
array([1., 1., 1., 1., 1.])

Hessian product example:

>>> res = minimize(rosen, x0, method='trust-krylov',
... jac=rosen_der, hessp=rosen_hess_p,
... options={'gtol': 1e-8, 'disp': True})
Optimization terminated successfully.

Current function value: 0.000000
Iterations: 19 # may vary
Function evaluations: 20
Gradient evaluations: 20
Hessian evaluations: 0

>>> res.x
array([1., 1., 1., 1., 1.])

Trust-Region Nearly Exact Algorithm (method='trust-exact')
All methods Newton-CG, trust-ncg and trust-krylov are suitable for dealing with large-scale problems (prob-
lems with thousands of variables). That is because the conjugate gradient algorithm approximatelly solve the trust-region
subproblem (or invert the Hessian) by iterations without the explicit Hessian factorization. Since only the product of the
Hessian with an arbitrary vector is needed, the algorithm is specially suited for dealing with sparse Hessians, allowing low
storage requirements and significant time savings for those sparse problems.
For medium-size problems, for which the storage and factorization cost of the Hessian are not critical, it is possible to
obtain a solution within fewer iteration by solving the trust-region subproblems almost exactly. To achieve that, a certain
nonlinear equations is solved iteratively for each quadratic subproblem [CGT]. This solution requires usually 3 or 4
Cholesky factorizations of the Hessian matrix. As the result, the method converges in fewer number of iterations and
takes fewer evaluations of the objective function than the other implemented trust-region methods. The Hessian product
option is not supported by this algorithm. An example using the Rosenbrock function follows:

>>> res = minimize(rosen, x0, method='trust-exact',
... jac=rosen_der, hess=rosen_hess,
... options={'gtol': 1e-8, 'disp': True})
Optimization terminated successfully.

Current function value: 0.000000
Iterations: 13 # may vary
Function evaluations: 14
Gradient evaluations: 13
Hessian evaluations: 14

>>> res.x
array([1., 1., 1., 1., 1.])
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Constrained minimization of multivariate scalar functions (minimize)

The minimize function provides algorithms for constrained minimization, namely 'trust-constr' , 'SLSQP'
and 'COBYLA'. They require the constraints to be defined using slightly different structures. The method
'trust-constr' requires the constraints to be defined as a sequence of objects LinearConstraint and
NonlinearConstraint. Methods 'SLSQP' and 'COBYLA', on the other hand, require constraints to be defined
as a sequence of dictionaries, with keys type, fun and jac.
As an example let us consider the constrained minimization of the Rosenbrock function:

min
x0,x1

100
(
x1 − x20

)2
+ (1− x0)

2

subject to: x0 + 2x1 ≤ 1

x20 + x1 ≤ 1

x20 − x1 ≤ 1

2x0 + x1 = 1

0 ≤ x0 ≤ 1

−0.5 ≤ x1 ≤ 2.0.

This optimization problem has the unique solution [x0, x1] = [0.4149, 0.1701], for which only the first and fourth
constraints are active.

Trust-Region Constrained Algorithm (method='trust-constr')
The trust-region constrained method deals with constrained minimization problems of the form:

min
x

f(x)

subject to: cl ≤ c(x) ≤ cu,

xl ≤ x ≤ xu.

When clj = cuj the method reads the j-th constraint as an equality constraint and deals with it accordingly. Besides that,
one-sided constraint can be specified by setting the upper or lower bound to np.inf with the appropriate sign.
The implementation is based on [EQSQP] for equality constraint problems and on [TRIP] for problems with inequality
constraints. Both are trust-region type algorithms suitable for large-scale problems.

Defining Bounds Constraints:

The bound constraints 0 ≤ x0 ≤ 1 and −0.5 ≤ x1 ≤ 2.0 are defined using a Bounds object.

>>> from scipy.optimize import Bounds
>>> bounds = Bounds([0, -0.5], [1.0, 2.0])

Defining Linear Constraints:

The constraints x0 + 2x1 ≤ 1 and 2x0 + x1 = 1 can be written in the linear constraint standard format:[
−∞
1

]
≤
[
1 2
2 1

] [
x0
x1

]
≤
[
1
1

]
,

and defined using a LinearConstraint object.
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>>> from scipy.optimize import LinearConstraint
>>> linear_constraint = LinearConstraint([[1, 2], [2, 1]], [-np.inf, 1], [1,␣
↪→1])

Defining Nonlinear Constraints:

The nonlinear constraint:
c(x) =

[
x20 + x1
x20 − x1

]
≤
[
1
1

]
,

with Jacobian matrix:
J(x) =

[
2x0 1
2x0 −1

]
,

and linear combination of the Hessians:

H(x, v) =
1∑

i=0

vi∇2ci(x) = v0

[
2 0
0 0

]
+ v1

[
2 0
0 0

]
,

is defined using a NonlinearConstraint object.

>>> def cons_f(x):
... return [x[0]**2 + x[1], x[0]**2 - x[1]]
>>> def cons_J(x):
... return [[2*x[0], 1], [2*x[0], -1]]
>>> def cons_H(x, v):
... return v[0]*np.array([[2, 0], [0, 0]]) + v[1]*np.array([[2, 0], [0,␣
↪→0]])
>>> from scipy.optimize import NonlinearConstraint
>>> nonlinear_constraint = NonlinearConstraint(cons_f, -np.inf, 1, jac=cons_J,
↪→ hess=cons_H)

Alternatively, it is also possible to define the HessianH(x, v) as a sparse matrix,

>>> from scipy.sparse import csc_matrix
>>> def cons_H_sparse(x, v):
... return v[0]*csc_matrix([[2, 0], [0, 0]]) + v[1]*csc_matrix([[2, 0],␣
↪→[0, 0]])
>>> nonlinear_constraint = NonlinearConstraint(cons_f, -np.inf, 1,
... jac=cons_J, hess=cons_H_sparse)

or as a LinearOperator object.

>>> from scipy.sparse.linalg import LinearOperator
>>> def cons_H_linear_operator(x, v):
... def matvec(p):
... return np.array([p[0]*2*(v[0]+v[1]), 0])
... return LinearOperator((2, 2), matvec=matvec)
>>> nonlinear_constraint = NonlinearConstraint(cons_f, -np.inf, 1,
... jac=cons_J, hess=cons_H_linear_
↪→operator)

When the evaluation of the Hessian H(x, v) is difficult to implement or computationally infeasible, one may use
HessianUpdateStrategy. Currently available strategies are BFGS and SR1.
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>>> from scipy.optimize import BFGS
>>> nonlinear_constraint = NonlinearConstraint(cons_f, -np.inf, 1, jac=cons_J,
↪→ hess=BFGS())

Alternatively, the Hessian may be approximated using finite differences.

>>> nonlinear_constraint = NonlinearConstraint(cons_f, -np.inf, 1, jac=cons_J,
↪→ hess='2-point')

The Jacobian of the constraints can be approximated by finite differences as well. In this case, however, the Hessian cannot
be computed with finite differences and needs to be provided by the user or defined using HessianUpdateStrategy.

>>> nonlinear_constraint = NonlinearConstraint(cons_f, -np.inf, 1, jac='2-
↪→point', hess=BFGS())

Solving the Optimization Problem:

The optimization problem is solved using:

>>> x0 = np.array([0.5, 0])
>>> res = minimize(rosen, x0, method='trust-constr', jac=rosen_der,␣
↪→hess=rosen_hess,
... constraints=[linear_constraint, nonlinear_constraint],
... options={'verbose': 1}, bounds=bounds)
# may vary
`gtol` termination condition is satisfied.
Number of iterations: 12, function evaluations: 8, CG iterations: 7,␣
↪→optimality: 2.99e-09, constraint violation: 1.11e-16, execution time: 0.016␣
↪→s.
>>> print(res.x)
[0.41494531 0.17010937]

When needed, the objective function Hessian can be defined using a LinearOperator object,

>>> def rosen_hess_linop(x):
... def matvec(p):
... return rosen_hess_p(x, p)
... return LinearOperator((2, 2), matvec=matvec)
>>> res = minimize(rosen, x0, method='trust-constr', jac=rosen_der,␣
↪→hess=rosen_hess_linop,
... constraints=[linear_constraint, nonlinear_constraint],
... options={'verbose': 1}, bounds=bounds)
# may vary
`gtol` termination condition is satisfied.
Number of iterations: 12, function evaluations: 8, CG iterations: 7,␣
↪→optimality: 2.99e-09, constraint violation: 1.11e-16, execution time: 0.018␣
↪→s.
>>> print(res.x)
[0.41494531 0.17010937]

or a Hessian-vector product through the parameter hessp.
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>>> res = minimize(rosen, x0, method='trust-constr', jac=rosen_der,␣
↪→hessp=rosen_hess_p,
... constraints=[linear_constraint, nonlinear_constraint],
... options={'verbose': 1}, bounds=bounds)
# may vary
`gtol` termination condition is satisfied.
Number of iterations: 12, function evaluations: 8, CG iterations: 7,␣
↪→optimality: 2.99e-09, constraint violation: 1.11e-16, execution time: 0.018␣
↪→s.
>>> print(res.x)
[0.41494531 0.17010937]

Alternatively, the first and second derivatives of the objective function can be approximated. For instance, the Hessian
can be approximated with SR1 quasi-Newton approximation and the gradient with finite differences.

>>> from scipy.optimize import SR1
>>> res = minimize(rosen, x0, method='trust-constr', jac="2-point",␣
↪→hess=SR1(),
... constraints=[linear_constraint, nonlinear_constraint],
... options={'verbose': 1}, bounds=bounds)
# may vary
`gtol` termination condition is satisfied.
Number of iterations: 12, function evaluations: 24, CG iterations: 7,␣
↪→optimality: 4.48e-09, constraint violation: 0.00e+00, execution time: 0.016␣
↪→s.
>>> print(res.x)
[0.41494531 0.17010937]

Sequential Least SQuares Programming (SLSQP) Algorithm (method='SLSQP')
The SLSQP method deals with constrained minimization problems of the form:

min
x

f(x)

subject to: cj(x) = 0, j ∈ E
cj(x) ≥ 0, j ∈ I

lbi ≤ xi ≤ ubi, i = 1, ..., N.

Where E or I are sets of indices containing equality and inequality constraints.
Both linear and nonlinear constraints are defined as dictionaries with keys type, fun and jac.

>>> ineq_cons = {'type': 'ineq',
... 'fun' : lambda x: np.array([1 - x[0] - 2*x[1],
... 1 - x[0]**2 - x[1],
... 1 - x[0]**2 + x[1]]),
... 'jac' : lambda x: np.array([[-1.0, -2.0],
... [-2*x[0], -1.0],
... [-2*x[0], 1.0]])}
>>> eq_cons = {'type': 'eq',
... 'fun' : lambda x: np.array([2*x[0] + x[1] - 1]),
... 'jac' : lambda x: np.array([2.0, 1.0])}

And the optimization problem is solved with:
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>>> x0 = np.array([0.5, 0])
>>> res = minimize(rosen, x0, method='SLSQP', jac=rosen_der,
... constraints=[eq_cons, ineq_cons], options={'ftol': 1e-9,
↪→'disp': True},
... bounds=bounds)
# may vary
Optimization terminated successfully. (Exit mode 0)

Current function value: 0.342717574857755
Iterations: 5
Function evaluations: 6
Gradient evaluations: 5

>>> print(res.x)
[0.41494475 0.1701105 ]

Most of the options available for the method 'trust-constr' are not available for 'SLSQP'.

Global optimization

Global optimization aims to find the global minimum of a function within given bounds, in the presence of potentially
many local minima. Typically global minimizers efficiently search the parameter space, while using a local minimizer
(e.g. minimize) under the hood. SciPy contains a number of good global optimizers. Here we’ll use those on the same
objective function, namely the (aptly named) eggholder function:

>>> def eggholder(x):
... return (-(x[1] + 47) * np.sin(np.sqrt(abs(x[0]/2 + (x[1] + 47))))
... -x[0] * np.sin(np.sqrt(abs(x[0] - (x[1] + 47)))))

>>> bounds = [(-512, 512), (-512, 512)]

This function looks like an egg carton:

>>> import matplotlib.pyplot as plt
>>> from mpl_toolkits.mplot3d import Axes3D

>>> x = np.arange(-512, 513)
>>> y = np.arange(-512, 513)
>>> xgrid, ygrid = np.meshgrid(x, y)
>>> xy = np.stack([xgrid, ygrid])

>>> fig = plt.figure()
>>> ax = fig.add_subplot(111, projection='3d')
>>> ax.view_init(45, -45)
>>> ax.plot_surface(xgrid, ygrid, eggholder(xy), cmap='terrain')
>>> ax.set_xlabel('x')
>>> ax.set_ylabel('y')
>>> ax.set_zlabel('eggholder(x, y)')
>>> plt.show()

We now use the global optimizers to obtain the minimum and the function value at the minimum. We’ll store the results
in a dictionary so we can compare different optimization results later.
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>>> from scipy import optimize
>>> results = dict()
>>> results['shgo'] = optimize.shgo(eggholder, bounds)
>>> results['shgo']

fun: -935.3379515604197 # may vary
funl: array([-935.33795156])

message: 'Optimization terminated successfully.'
nfev: 42
nit: 2

nlfev: 37
nlhev: 0
nljev: 9

success: True
x: array([439.48096952, 453.97740589])
xl: array([[439.48096952, 453.97740589]])

>>> results['DA'] = optimize.dual_annealing(eggholder, bounds)
>>> results['DA']

fun: -956.9182316237413 # may vary
message: ['Maximum number of iteration reached']

nfev: 4091
nhev: 0
nit: 1000

njev: 0
x: array([482.35324114, 432.87892901])

All optimizers return an OptimizeResult, which in addition to the solution contains information on the number of
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function evaluations, whether the optimization was successful, and more. For brevity we won’t show the full output of the
other optimizers:

>>> results['DE'] = optimize.differential_evolution(eggholder, bounds)
>>> results['BH'] = optimize.basinhopping(eggholder, bounds)

shgo has a second method, which returns all local minima rather than only what it thinks is the global minimum:

>>> results['shgo_sobol'] = optimize.shgo(eggholder, bounds, n=200, iters=5,
... sampling_method='sobol')

We’ll now plot all found minima on a heatmap of the function:

>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> im = ax.imshow(eggholder(xy), interpolation='bilinear', origin='lower',
... cmap='gray')
>>> ax.set_xlabel('x')
>>> ax.set_ylabel('y')
>>>
>>> def plot_point(res, marker='o', color=None):
... ax.plot(512+res.x[0], 512+res.x[1], marker=marker, color=color, ms=10)

>>> plot_point(results['BH'], color='y') # basinhopping - yellow
>>> plot_point(results['DE'], color='c') # differential_evolution - cyan
>>> plot_point(results['DA'], color='w') # dual_annealing. - white

>>> # SHGO produces multiple minima, plot them all (with a smaller marker␣
↪→size)
>>> plot_point(results['shgo'], color='r', marker='+')
>>> plot_point(results['shgo_sobol'], color='r', marker='x')
>>> for i in range(results['shgo_sobol'].xl.shape[0]):
... ax.plot(512 + results['shgo_sobol'].xl[i, 0],
... 512 + results['shgo_sobol'].xl[i, 1],
... 'ro', ms=2)

>>> ax.set_xlim([-4, 514*2])
>>> ax.set_ylim([-4, 514*2])
>>> plt.show()

Least-squares minimization (least_squares)

SciPy is capable of solving robustified bound constrained nonlinear least-squares problems:

min
x

1

2

m∑
i=1

ρ
(
fi(x)

2
)

(4.4)

subject to lb ≤ x ≤ ub (4.5)

Here fi(x) are smooth functions from Rn to R, we refer to them as residuals. The purpose of a scalar valued function
ρ(·) is to reduce the influence of outlier residuals and contribute to robustness of the solution, we refer to it as a loss
function. A linear loss function gives a standard least-squares problem. Additionally, constraints in a form of lower and
upper bounds on some of xj are allowed.
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All methods specific to least-squares minimization utilize am×nmatrix of partial derivatives called Jacobian and defined
as Jij = ∂fi/∂xj . It is highly recommended to compute this matrix analytically and pass it to least_squares,
otherwise it will be estimated by finite differences which takes a lot of additional time and can be very inaccurate in hard
cases.
Function least_squares can be used for fitting a function φ(t;x) to empirical data {(ti, yi), i = 0, . . . ,m − 1}.
To do this one should simply precompute residuals as fi(x) = wi(φ(ti;x)− yi), where wi are weights assigned to each
observation.

Example of solving a fitting problem
Here we consider “Analysis of an Enzyme Reaction” problem formulated in1. There are 11 residuals defined as

fi(x) =
x0(u

2
i + uix1)

u2i + uix2 + x3
− yi, i = 0, . . . , 10,

1 Brett M. Averick et al., “The MINPACK-2 Test Problem Collection”.
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where yi are measurement values and ui are values of the independent variable. The unknown vector of parameters is
x = (x0, x1, x2, x3)

T . As was said previously, it is recommended to compute Jacobian matrix in a closed form:

Ji0 =
∂fi
∂x0

=
u2i + uix1

u2i + uix2 + x3
(4.6)

Ji1 =
∂fi
∂x1

=
uix0

u2i + uix2 + x3
(4.7)

Ji2 =
∂fi
∂x2

= − x0(u
2
i + uix1)ui

(u2i + uix2 + x3)2
(4.8)

Ji3 =
∂fi
∂x3

= − x0(u
2
i + uix1)

(u2i + uix2 + x3)2
(4.9)

We are going to use the “hard” starting point defined in1. To find a physically meaningful solution, avoid potential division
by zero and assure convergence to the global minimum we impose constraints 0 ≤ xj ≤ 100, j = 0, 1, 2, 3.
The code below implements least-squares estimation of x and finally plots the original data and the fitted model function:

>>> from scipy.optimize import least_squares

>>> def model(x, u):
... return x[0] * (u ** 2 + x[1] * u) / (u ** 2 + x[2] * u + x[3])

>>> def fun(x, u, y):
... return model(x, u) - y

>>> def jac(x, u, y):
... J = np.empty((u.size, x.size))
... den = u ** 2 + x[2] * u + x[3]
... num = u ** 2 + x[1] * u
... J[:, 0] = num / den
... J[:, 1] = x[0] * u / den
... J[:, 2] = -x[0] * num * u / den ** 2
... J[:, 3] = -x[0] * num / den ** 2
... return J

>>> u = np.array([4.0, 2.0, 1.0, 5.0e-1, 2.5e-1, 1.67e-1, 1.25e-1, 1.0e-1,
... 8.33e-2, 7.14e-2, 6.25e-2])
>>> y = np.array([1.957e-1, 1.947e-1, 1.735e-1, 1.6e-1, 8.44e-2, 6.27e-2,
... 4.56e-2, 3.42e-2, 3.23e-2, 2.35e-2, 2.46e-2])
>>> x0 = np.array([2.5, 3.9, 4.15, 3.9])
>>> res = least_squares(fun, x0, jac=jac, bounds=(0, 100), args=(u, y),␣
↪→verbose=1)
# may vary
`ftol` termination condition is satisfied.
Function evaluations 130, initial cost 4.4383e+00, final cost 1.5375e-04,␣
↪→first-order optimality 4.92e-08.
>>> res.x
array([ 0.19280596, 0.19130423, 0.12306063, 0.13607247])

>>> import matplotlib.pyplot as plt
>>> u_test = np.linspace(0, 5)
>>> y_test = model(res.x, u_test)

(continues on next page)
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(continued from previous page)
>>> plt.plot(u, y, 'o', markersize=4, label='data')
>>> plt.plot(u_test, y_test, label='fitted model')
>>> plt.xlabel("u")
>>> plt.ylabel("y")
>>> plt.legend(loc='lower right')
>>> plt.show()
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Further examples
Three interactive examples below illustrate usage of least_squares in greater detail.

1. Large-scale bundle adjustment in scipy demonstrates large-scale capabilities of least_squares and how to
efficiently compute finite difference approximation of sparse Jacobian.

2. Robust nonlinear regression in scipy shows how to handle outliers with a robust loss function in a nonlinear regres-
sion.

3. Solving a discrete boundary-value problem in scipy examines how to solve a large system of equations and use
bounds to achieve desired properties of the solution.

For the details about mathematical algorithms behind the implementation refer to documentation of least_squares.

Univariate function minimizers (minimize_scalar)

Often only the minimum of an univariate function (i.e. a function that takes a scalar as input) is needed. In these
circumstances, other optimization techniques have been developed that can work faster. These are accessible from the
minimize_scalar function which proposes several algorithms.

Unconstrained minimization (method='brent')
There are actually two methods that can be used to minimize an univariate function: brent and golden, but golden
is included only for academic purposes and should rarely be used. These can be respectively selected through the method
parameter in minimize_scalar. The brent method uses Brent’s algorithm for locating a minimum. Optimally a
bracket (the bracket parameter) should be given which contains the minimum desired. A bracket is a triple (a, b, c)
such that f (a) > f (b) < f (c) and a < b < c . If this is not given, then alternatively two starting points can be chosen
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and a bracket will be found from these points using a simple marching algorithm. If these two starting points are not
provided 0 and 1 will be used (this may not be the right choice for your function and result in an unexpected minimum
being returned).
Here is an example:

>>> from scipy.optimize import minimize_scalar
>>> f = lambda x: (x - 2) * (x + 1)**2
>>> res = minimize_scalar(f, method='brent')
>>> print(res.x)
1.0

Bounded minimization (method='bounded')
Very often, there are constraints that can be placed on the solution space before minimization occurs. The bounded
method in minimize_scalar is an example of a constrained minimization procedure that provides a rudimentary
interval constraint for scalar functions. The interval constraint allows the minimization to occur only between two fixed
endpoints, specified using the mandatory bounds parameter.
For example, to find the minimum of J1 (x) near x = 5 , minimize_scalar can be called using the interval [4, 7]
as a constraint. The result is xmin = 5.3314 :

>>> from scipy.special import j1
>>> res = minimize_scalar(j1, bounds=(4, 7), method='bounded')
>>> res.x
5.33144184241

Custom minimizers

Sometimes, it may be useful to use a custom method as a (multivariate or univariate) minimizer, for example when using
some library wrappers of minimize (e.g. basinhopping).
We can achieve that by, instead of passing a method name, we pass a callable (either a function or an object implementing
a __call__ method) as the method parameter.
Let us consider an (admittedly rather virtual) need to use a trivial custom multivariate minimization method that will just
search the neighborhood in each dimension independently with a fixed step size:

>>> from scipy.optimize import OptimizeResult
>>> def custmin(fun, x0, args=(), maxfev=None, stepsize=0.1,
... maxiter=100, callback=None, **options):
... bestx = x0
... besty = fun(x0)
... funcalls = 1
... niter = 0
... improved = True
... stop = False
...
... while improved and not stop and niter < maxiter:
... improved = False
... niter += 1
... for dim in range(np.size(x0)):
... for s in [bestx[dim] - stepsize, bestx[dim] + stepsize]:
... testx = np.copy(bestx)
... testx[dim] = s

(continues on next page)
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... testy = fun(testx, *args)
... funcalls += 1
... if testy < besty:
... besty = testy
... bestx = testx
... improved = True
... if callback is not None:
... callback(bestx)
... if maxfev is not None and funcalls >= maxfev:
... stop = True
... break
...
... return OptimizeResult(fun=besty, x=bestx, nit=niter,
... nfev=funcalls, success=(niter > 1))
>>> x0 = [1.35, 0.9, 0.8, 1.1, 1.2]
>>> res = minimize(rosen, x0, method=custmin, options=dict(stepsize=0.05))
>>> res.x
array([1., 1., 1., 1., 1.])

This will work just as well in case of univariate optimization:

>>> def custmin(fun, bracket, args=(), maxfev=None, stepsize=0.1,
... maxiter=100, callback=None, **options):
... bestx = (bracket[1] + bracket[0]) / 2.0
... besty = fun(bestx)
... funcalls = 1
... niter = 0
... improved = True
... stop = False
...
... while improved and not stop and niter < maxiter:
... improved = False
... niter += 1
... for testx in [bestx - stepsize, bestx + stepsize]:
... testy = fun(testx, *args)
... funcalls += 1
... if testy < besty:
... besty = testy
... bestx = testx
... improved = True
... if callback is not None:
... callback(bestx)
... if maxfev is not None and funcalls >= maxfev:
... stop = True
... break
...
... return OptimizeResult(fun=besty, x=bestx, nit=niter,
... nfev=funcalls, success=(niter > 1))
>>> def f(x):
... return (x - 2)**2 * (x + 2)**2
>>> res = minimize_scalar(f, bracket=(-3.5, 0), method=custmin,
... options=dict(stepsize = 0.05))

(continues on next page)
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>>> res.x
-2.0

Root finding

Scalar functions
If one has a single-variable equation, there are multiple different root finding algorithms that can be tried. Most of these
algorithms require the endpoints of an interval in which a root is expected (because the function changes signs). In general
brentq is the best choice, but the other methods may be useful in certain circumstances or for academic purposes.
When a bracket is not available, but one or more derivatives are available, then newton (or halley, secant) may
be applicable. This is especially the case if the function is defined on a subset of the complex plane, and the bracketing
methods cannot be used.

Fixed-point solving
A problem closely related to finding the zeros of a function is the problem of finding a fixed-point of a function. A fixed
point of a function is the point at which evaluation of the function returns the point: g (x) = x. Clearly the fixed point
of g is the root of f (x) = g (x) − x. Equivalently, the root of f is the fixed_point of g (x) = f (x) + x. The routine
fixed_point provides a simple iterative method using Aitkens sequence acceleration to estimate the fixed point of g
given a starting point.

Sets of equations
Finding a root of a set of non-linear equations can be achieve using the root function. Several methods are available,
amongst which hybr (the default) and lm which respectively use the hybrid method of Powell and the Levenberg-
Marquardt method from MINPACK.
The following example considers the single-variable transcendental equation

x+ 2 cos (x) = 0,

a root of which can be found as follows:

>>> import numpy as np
>>> from scipy.optimize import root
>>> def func(x):
... return x + 2 * np.cos(x)
>>> sol = root(func, 0.3)
>>> sol.x
array([-1.02986653])
>>> sol.fun
array([ -6.66133815e-16])

Consider now a set of non-linear equations

x0 cos (x1) = 4,

x0x1 − x1 = 5.

We define the objective function so that it also returns the Jacobian and indicate this by setting the jac parameter to
True. Also, the Levenberg-Marquardt solver is used here.
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>>> def func2(x):
... f = [x[0] * np.cos(x[1]) - 4,
... x[1]*x[0] - x[1] - 5]
... df = np.array([[np.cos(x[1]), -x[0] * np.sin(x[1])],
... [x[1], x[0] - 1]])
... return f, df
>>> sol = root(func2, [1, 1], jac=True, method='lm')
>>> sol.x
array([ 6.50409711, 0.90841421])

Root finding for large problems
Methods hybr and lm in root cannot deal with a very large number of variables (N), as they need to calculate and
invert a dense N x N Jacobian matrix on every Newton step. This becomes rather inefficient when N grows.
Consider for instance the following problem: we need to solve the following integrodifferential equation on the square
[0, 1]× [0, 1]:

(∂2x + ∂2y)P + 5

(∫ 1

0

∫ 1

0

cosh(P ) dx dy

)2

= 0

with the boundary condition P (x, 1) = 1 on the upper edge and P = 0 elsewhere on the boundary of the square. This
can be done by approximating the continuous function P by its values on a grid, Pn,m ≈ P (nh,mh), with a small grid
spacing h. The derivatives and integrals can then be approximated; for instance ∂2xP (x, y) ≈ (P (x+h, y)−2P (x, y)+
P (x − h, y))/h2. The problem is then equivalent to finding the root of some function residual(P), where P is a
vector of length NxNy .
Now, becauseNxNy can be large, methods hybr or lm in rootwill take a long time to solve this problem. The solution
can however be found using one of the large-scale solvers, for example krylov, broyden2, or anderson. These
use what is known as the inexact Newton method, which instead of computing the Jacobian matrix exactly, forms an
approximation for it.
The problem we have can now be solved as follows:

import numpy as np
from scipy.optimize import root
from numpy import cosh, zeros_like, mgrid, zeros

# parameters
nx, ny = 75, 75
hx, hy = 1./(nx-1), 1./(ny-1)

P_left, P_right = 0, 0
P_top, P_bottom = 1, 0

def residual(P):
d2x = zeros_like(P)
d2y = zeros_like(P)

d2x[1:-1] = (P[2:] - 2*P[1:-1] + P[:-2]) / hx/hx
d2x[0] = (P[1] - 2*P[0] + P_left)/hx/hx
d2x[-1] = (P_right - 2*P[-1] + P[-2])/hx/hx

d2y[:,1:-1] = (P[:,2:] - 2*P[:,1:-1] + P[:,:-2])/hy/hy
d2y[:,0] = (P[:,1] - 2*P[:,0] + P_bottom)/hy/hy

(continues on next page)
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d2y[:,-1] = (P_top - 2*P[:,-1] + P[:,-2])/hy/hy

return d2x + d2y + 5*cosh(P).mean()**2

# solve
guess = zeros((nx, ny), float)
sol = root(residual, guess, method='krylov', options={'disp': True})
#sol = root(residual, guess, method='broyden2', options={'disp': True, 'max_
↪→rank': 50})
#sol = root(residual, guess, method='anderson', options={'disp': True, 'M':␣
↪→10})
print('Residual: %g' % abs(residual(sol.x)).max())

# visualize
import matplotlib.pyplot as plt
x, y = mgrid[0:1:(nx*1j), 0:1:(ny*1j)]
plt.pcolor(x, y, sol.x)
plt.colorbar()
plt.show()
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Still too slow? Preconditioning.
When looking for the zero of the functions fi(x) = 0, i = 1, 2, …, N, the krylov solver spends most of its time inverting
the Jacobian matrix,

Jij =
∂fi
∂xj

.

If you have an approximation for the inverse matrix M ≈ J−1, you can use it for preconditioning the linear inversion
problem. The idea is that instead of solving Js = y one solvesMJs =My: since matrixMJ is “closer” to the identity
matrix than J is, the equation should be easier for the Krylov method to deal with.
The matrix M can be passed to root with method krylov as an option
options['jac_options']['inner_M']. It can be a (sparse) matrix or a scipy.sparse.linalg.
LinearOperator instance.
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For the problem in the previous section, we note that the function to solve consists of two parts: the first one is applica-
tion of the Laplace operator, [∂2x + ∂2y ]P , and the second is the integral. We can actually easily compute the Jacobian
corresponding to the Laplace operator part: we know that in one dimension

∂2x ≈ 1

h2x


−2 1 0 0 · · ·
1 −2 1 0 · · ·
0 1 −2 1 · · ·
. . .

 = h−2
x L

so that the whole 2-D operator is represented by

J1 = ∂2x + ∂2y ≃ h−2
x L⊗ I + h−2

y I ⊗ L

The matrix J2 of the Jacobian corresponding to the integral is more difficult to calculate, and since all of it entries are
nonzero, it will be difficult to invert. J1 on the other hand is a relatively simple matrix, and can be inverted by scipy.
sparse.linalg.splu (or the inverse can be approximated by scipy.sparse.linalg.spilu). So we are
content to takeM ≈ J−1

1 and hope for the best.
In the example below, we use the preconditionerM = J−1

1 .

import numpy as np
from scipy.optimize import root
from scipy.sparse import spdiags, kron
from scipy.sparse.linalg import spilu, LinearOperator
from numpy import cosh, zeros_like, mgrid, zeros, eye

# parameters
nx, ny = 75, 75
hx, hy = 1./(nx-1), 1./(ny-1)

P_left, P_right = 0, 0
P_top, P_bottom = 1, 0

def get_preconditioner():
"""Compute the preconditioner M"""
diags_x = zeros((3, nx))
diags_x[0,:] = 1/hx/hx
diags_x[1,:] = -2/hx/hx
diags_x[2,:] = 1/hx/hx
Lx = spdiags(diags_x, [-1,0,1], nx, nx)

diags_y = zeros((3, ny))
diags_y[0,:] = 1/hy/hy
diags_y[1,:] = -2/hy/hy
diags_y[2,:] = 1/hy/hy
Ly = spdiags(diags_y, [-1,0,1], ny, ny)

J1 = kron(Lx, eye(ny)) + kron(eye(nx), Ly)

# Now we have the matrix `J_1`. We need to find its inverse `M` --
# however, since an approximate inverse is enough, we can use
# the *incomplete LU* decomposition

J1_ilu = spilu(J1)

(continues on next page)
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# This returns an object with a method .solve() that evaluates
# the corresponding matrix-vector product. We need to wrap it into
# a LinearOperator before it can be passed to the Krylov methods:

M = LinearOperator(shape=(nx*ny, nx*ny), matvec=J1_ilu.solve)
return M

def solve(preconditioning=True):
"""Compute the solution"""
count = [0]

def residual(P):
count[0] += 1

d2x = zeros_like(P)
d2y = zeros_like(P)

d2x[1:-1] = (P[2:] - 2*P[1:-1] + P[:-2])/hx/hx
d2x[0] = (P[1] - 2*P[0] + P_left)/hx/hx
d2x[-1] = (P_right - 2*P[-1] + P[-2])/hx/hx

d2y[:,1:-1] = (P[:,2:] - 2*P[:,1:-1] + P[:,:-2])/hy/hy
d2y[:,0] = (P[:,1] - 2*P[:,0] + P_bottom)/hy/hy
d2y[:,-1] = (P_top - 2*P[:,-1] + P[:,-2])/hy/hy

return d2x + d2y + 5*cosh(P).mean()**2

# preconditioner
if preconditioning:

M = get_preconditioner()
else:

M = None

# solve
guess = zeros((nx, ny), float)

sol = root(residual, guess, method='krylov',
options={'disp': True,

'jac_options': {'inner_M': M}})
print('Residual', abs(residual(sol.x)).max())
print('Evaluations', count[0])

return sol.x

def main():
sol = solve(preconditioning=True)

# visualize
import matplotlib.pyplot as plt
x, y = mgrid[0:1:(nx*1j), 0:1:(ny*1j)]
plt.clf()
plt.pcolor(x, y, sol)

(continues on next page)
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plt.clim(0, 1)
plt.colorbar()
plt.show()

if __name__ == "__main__":
main()

Resulting run, first without preconditioning:

0: |F(x)| = 803.614; step 1; tol 0.000257947
1: |F(x)| = 345.912; step 1; tol 0.166755
2: |F(x)| = 139.159; step 1; tol 0.145657
3: |F(x)| = 27.3682; step 1; tol 0.0348109
4: |F(x)| = 1.03303; step 1; tol 0.00128227
5: |F(x)| = 0.0406634; step 1; tol 0.00139451
6: |F(x)| = 0.00344341; step 1; tol 0.00645373
7: |F(x)| = 0.000153671; step 1; tol 0.00179246
8: |F(x)| = 6.7424e-06; step 1; tol 0.00173256
Residual 3.57078908664e-07
Evaluations 317

and then with preconditioning:

0: |F(x)| = 136.993; step 1; tol 7.49599e-06
1: |F(x)| = 4.80983; step 1; tol 0.00110945
2: |F(x)| = 0.195942; step 1; tol 0.00149362
3: |F(x)| = 0.000563597; step 1; tol 7.44604e-06
4: |F(x)| = 1.00698e-09; step 1; tol 2.87308e-12
Residual 9.29603061195e-11
Evaluations 77

Using a preconditioner reduced the number of evaluations of the residual function by a factor of 4. For problems
where the residual is expensive to compute, good preconditioning can be crucial— it can even decide whether the problem
is solvable in practice or not.
Preconditioning is an art, science, and industry. Here, we were lucky in making a simple choice that worked reasonably
well, but there is a lot more depth to this topic than is shown here.

References

Some further reading and related software, such as Newton-Krylov [KK], PETSc [PP], and PyAMG [AMG]:

4.1.6 Interpolation (scipy.interpolate)

Contents

• Interpolation (scipy.interpolate)

– 1-D interpolation (interp1d)

266 Chapter 4. Tutorial



SciPy Reference Guide, Release 1.3.1

– Multivariate data interpolation (griddata)

– Spline interpolation

∗ Spline interpolation in 1-d: Procedural (interpolate.splXXX)

∗ Spline interpolation in 1-d: Object-oriented (UnivariateSpline)

∗ Two-dimensional spline representation: Procedural (bisplrep)

∗ Two-dimensional spline representation: Object-oriented (BivariateSpline)

– Using radial basis functions for smoothing/interpolation

∗ 1-d Example

∗ 2-d Example

There are several general interpolation facilities available in SciPy, for data in 1, 2, and higher dimensions:
• A class representing an interpolant (interp1d) in 1-D, offering several interpolation methods.
• Convenience function griddata offering a simple interface to interpolation in N dimensions (N = 1, 2, 3, 4, …).
Object-oriented interface for the underlying routines is also available.

• Functions for 1- and 2-dimensional (smoothed) cubic-spline interpolation, based on the FORTRAN library FIT-
PACK. There are both procedural and object-oriented interfaces for the FITPACK library.

• Interpolation using Radial Basis Functions.

1-D interpolation (interp1d)

The interp1d class in scipy.interpolate is a convenient method to create a function based on fixed data points
which can be evaluated anywhere within the domain defined by the given data using linear interpolation. An instance of
this class is created by passing the 1-d vectors comprising the data. The instance of this class defines a __call__ method
and can therefore by treated like a function which interpolates between known data values to obtain unknown values (it
also has a docstring for help). Behavior at the boundary can be specified at instantiation time. The following example
demonstrates its use, for linear and cubic spline interpolation:

>>> from scipy.interpolate import interp1d

>>> x = np.linspace(0, 10, num=11, endpoint=True)
>>> y = np.cos(-x**2/9.0)
>>> f = interp1d(x, y)
>>> f2 = interp1d(x, y, kind='cubic')

>>> xnew = np.linspace(0, 10, num=41, endpoint=True)
>>> import matplotlib.pyplot as plt
>>> plt.plot(x, y, 'o', xnew, f(xnew), '-', xnew, f2(xnew), '--')
>>> plt.legend(['data', 'linear', 'cubic'], loc='best')
>>> plt.show()

Another set of interpolations in interp1d is nearest, previous, and next, where they return the nearest, previous, or next
point along the x-axis. Nearest and next can be thought of as a special case of a causal interpolating filter. The following
example demonstrates their use, using the same data as in the previous example:

>>> from scipy.interpolate import interp1d
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>>> x = np.linspace(0, 10, num=11, endpoint=True)
>>> y = np.cos(-x**2/9.0)
>>> f1 = interp1d(x, y, kind='nearest')
>>> f2 = interp1d(x, y, kind='previous')
>>> f3 = interp1d(x, y, kind='next')

>>> xnew = np.linspace(0, 10, num=1001, endpoint=True)
>>> import matplotlib.pyplot as plt
>>> plt.plot(x, y, 'o')
>>> plt.plot(xnew, f1(xnew), '-', xnew, f2(xnew), '--', xnew, f3(xnew), ':')
>>> plt.legend(['data', 'nearest', 'previous', 'next'], loc='best')
>>> plt.show()
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Multivariate data interpolation (griddata)

Suppose you have multidimensional data, for instance for an underlying function f(x, y) you only know the values at points
(x[i], y[i]) that do not form a regular grid.
Suppose we want to interpolate the 2-D function

>>> def func(x, y):
... return x*(1-x)*np.cos(4*np.pi*x) * np.sin(4*np.pi*y**2)**2

on a grid in [0, 1]x[0, 1]

>>> grid_x, grid_y = np.mgrid[0:1:100j, 0:1:200j]

but we only know its values at 1000 data points:

>>> points = np.random.rand(1000, 2)
>>> values = func(points[:,0], points[:,1])

This can be done with griddata – below we try out all of the interpolation methods:

>>> from scipy.interpolate import griddata
>>> grid_z0 = griddata(points, values, (grid_x, grid_y), method='nearest')
>>> grid_z1 = griddata(points, values, (grid_x, grid_y), method='linear')
>>> grid_z2 = griddata(points, values, (grid_x, grid_y), method='cubic')

One can see that the exact result is reproduced by all of the methods to some degree, but for this smooth function the
piecewise cubic interpolant gives the best results:

>>> import matplotlib.pyplot as plt
>>> plt.subplot(221)
>>> plt.imshow(func(grid_x, grid_y).T, extent=(0,1,0,1), origin='lower')
>>> plt.plot(points[:,0], points[:,1], 'k.', ms=1)
>>> plt.title('Original')
>>> plt.subplot(222)
>>> plt.imshow(grid_z0.T, extent=(0,1,0,1), origin='lower')
>>> plt.title('Nearest')
>>> plt.subplot(223)
>>> plt.imshow(grid_z1.T, extent=(0,1,0,1), origin='lower')
>>> plt.title('Linear')
>>> plt.subplot(224)
>>> plt.imshow(grid_z2.T, extent=(0,1,0,1), origin='lower')
>>> plt.title('Cubic')
>>> plt.gcf().set_size_inches(6, 6)
>>> plt.show()

Spline interpolation

Spline interpolation in 1-d: Procedural (interpolate.splXXX)
Spline interpolation requires two essential steps: (1) a spline representation of the curve is computed, and (2) the spline is
evaluated at the desired points. In order to find the spline representation, there are two different ways to represent a curve
and obtain (smoothing) spline coefficients: directly and parametrically. The direct method finds the spline representation
of a curve in a two- dimensional plane using the function splrep. The first two arguments are the only ones required,
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and these provide the x and y components of the curve. The normal output is a 3-tuple, (t, c, k) , containing the knot-
points, t , the coefficients c and the order k of the spline. The default spline order is cubic, but this can be changed with
the input keyword, k.
For curves inN -dimensional space the functionsplprep allows defining the curve parametrically. For this function only
1 input argument is required. This input is a list ofN -arrays representing the curve inN -dimensional space. The length
of each array is the number of curve points, and each array provides one component of the N -dimensional data point.
The parameter variable is given with the keyword argument, u, which defaults to an equally-spaced monotonic sequence
between 0 and 1 . The default output consists of two objects: a 3-tuple, (t, c, k) , containing the spline representation and
the parameter variable u.
The keyword argument, s , is used to specify the amount of smoothing to perform during the spline fit. The default value
of s is s = m −

√
2m where m is the number of data-points being fit. Therefore, if no smoothing is desired a value

of s = 0 should be passed to the routines.
Once the spline representation of the data has been determined, functions are available for evaluating the spline (splev)
and its derivatives (splev, spalde) at any point and the integral of the spline between any two points ( splint). In
addition, for cubic splines ( k = 3 ) with 8 or more knots, the roots of the spline can be estimated ( sproot). These
functions are demonstrated in the example that follows.

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from scipy import interpolate

Cubic-spline

>>> x = np.arange(0, 2*np.pi+np.pi/4, 2*np.pi/8)
>>> y = np.sin(x)
>>> tck = interpolate.splrep(x, y, s=0)
>>> xnew = np.arange(0, 2*np.pi, np.pi/50)
>>> ynew = interpolate.splev(xnew, tck, der=0)

>>> plt.figure()
>>> plt.plot(x, y, 'x', xnew, ynew, xnew, np.sin(xnew), x, y, 'b')
>>> plt.legend(['Linear', 'Cubic Spline', 'True'])
>>> plt.axis([-0.05, 6.33, -1.05, 1.05])
>>> plt.title('Cubic-spline interpolation')
>>> plt.show()

Derivative of spline

>>> yder = interpolate.splev(xnew, tck, der=1)
>>> plt.figure()
>>> plt.plot(xnew, yder, xnew, np.cos(xnew),'--')
>>> plt.legend(['Cubic Spline', 'True'])
>>> plt.axis([-0.05, 6.33, -1.05, 1.05])
>>> plt.title('Derivative estimation from spline')
>>> plt.show()

Integral of spline

>>> def integ(x, tck, constant=-1):
... x = np.atleast_1d(x)
... out = np.zeros(x.shape, dtype=x.dtype)
... for n in range(len(out)):

(continues on next page)
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(continued from previous page)
... out[n] = interpolate.splint(0, x[n], tck)
... out += constant
... return out

>>> yint = integ(xnew, tck)
>>> plt.figure()
>>> plt.plot(xnew, yint, xnew, -np.cos(xnew), '--')
>>> plt.legend(['Cubic Spline', 'True'])
>>> plt.axis([-0.05, 6.33, -1.05, 1.05])
>>> plt.title('Integral estimation from spline')
>>> plt.show()
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Roots of spline

>>> interpolate.sproot(tck)
array([3.1416])

Notice that sproot failed to find an obvious solution at the edge of the approximation interval, x = 0. If we define the
spline on a slightly larger interval, we recover both roots x = 0 and x = 2π:

>>> x = np.linspace(-np.pi/4, 2.*np.pi + np.pi/4, 21)
>>> y = np.sin(x)
>>> tck = interpolate.splrep(x, y, s=0)
>>> interpolate.sproot(tck)
array([0., 3.1416])

Parametric spline

>>> t = np.arange(0, 1.1, .1)
>>> x = np.sin(2*np.pi*t)
>>> y = np.cos(2*np.pi*t)
>>> tck, u = interpolate.splprep([x, y], s=0)
>>> unew = np.arange(0, 1.01, 0.01)

(continues on next page)
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(continued from previous page)
>>> out = interpolate.splev(unew, tck)
>>> plt.figure()
>>> plt.plot(x, y, 'x', out[0], out[1], np.sin(2*np.pi*unew), np.cos(2*np.
↪→pi*unew), x, y, 'b')
>>> plt.legend(['Linear', 'Cubic Spline', 'True'])
>>> plt.axis([-1.05, 1.05, -1.05, 1.05])
>>> plt.title('Spline of parametrically-defined curve')
>>> plt.show()
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Spline interpolation in 1-d: Object-oriented (UnivariateSpline)
The spline-fitting capabilities described above are also available via an objected-oriented interface. The one dimensional
splines are objects of theUnivariateSpline class, and are created with the x and y components of the curve provided
as arguments to the constructor. The class defines __call__, allowing the object to be called with the x-axis values
at which the spline should be evaluated, returning the interpolated y-values. This is shown in the example below for the
subclass InterpolatedUnivariateSpline. The integral, derivatives, and roots methods are also
available on UnivariateSpline objects, allowing definite integrals, derivatives, and roots to be computed for the
spline.
The UnivariateSpline class can also be used to smooth data by providing a non-zero value of the smoothing parameter
s, with the same meaning as the s keyword of the splrep function described above. This results in a spline that has
fewer knots than the number of data points, and hence is no longer strictly an interpolating spline, but rather a smooth-
ing spline. If this is not desired, the InterpolatedUnivariateSpline class is available. It is a subclass of
UnivariateSpline that always passes through all points (equivalent to forcing the smoothing parameter to 0). This
class is demonstrated in the example below.
The LSQUnivariateSpline class is the other subclass of UnivariateSpline. It allows the user to specify the
number and location of internal knots explicitly with the parameter t. This allows creation of customized splines with
non-linear spacing, to interpolate in some domains and smooth in others, or change the character of the spline.

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from scipy import interpolate

InterpolatedUnivariateSpline
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>>> x = np.arange(0, 2*np.pi+np.pi/4, 2*np.pi/8)
>>> y = np.sin(x)
>>> s = interpolate.InterpolatedUnivariateSpline(x, y)
>>> xnew = np.arange(0, 2*np.pi, np.pi/50)
>>> ynew = s(xnew)

>>> plt.figure()
>>> plt.plot(x, y, 'x', xnew, ynew, xnew, np.sin(xnew), x, y, 'b')
>>> plt.legend(['Linear', 'InterpolatedUnivariateSpline', 'True'])
>>> plt.axis([-0.05, 6.33, -1.05, 1.05])
>>> plt.title('InterpolatedUnivariateSpline')
>>> plt.show()
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LSQUnivarateSpline with non-uniform knots

>>> t = [np.pi/2-.1, np.pi/2+.1, 3*np.pi/2-.1, 3*np.pi/2+.1]
>>> s = interpolate.LSQUnivariateSpline(x, y, t, k=2)
>>> ynew = s(xnew)

>>> plt.figure()
>>> plt.plot(x, y, 'x', xnew, ynew, xnew, np.sin(xnew), x, y, 'b')
>>> plt.legend(['Linear', 'LSQUnivariateSpline', 'True'])
>>> plt.axis([-0.05, 6.33, -1.05, 1.05])
>>> plt.title('Spline with Specified Interior Knots')
>>> plt.show()

Two-dimensional spline representation: Procedural (bisplrep)
For (smooth) spline-fitting to a two dimensional surface, the function bisplrep is available. This function takes as
required inputs the 1-D arrays x, y, and z which represent points on the surface z = f (x, y) . The default output is a
list [tx, ty, c, kx, ky] whose entries represent respectively, the components of the knot positions, the coefficients of the
spline, and the order of the spline in each coordinate. It is convenient to hold this list in a single object, tck, so that it can
be passed easily to the function bisplev. The keyword, s , can be used to change the amount of smoothing performed
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on the data while determining the appropriate spline. The default value is s = m−
√
2m wherem is the number of data

points in the x, y, and z vectors. As a result, if no smoothing is desired, then s = 0 should be passed to bisplrep .
To evaluate the two-dimensional spline and it’s partial derivatives (up to the order of the spline), the function bisplev
is required. This function takes as the first two arguments two 1-D arrays whose cross-product specifies the domain over
which to evaluate the spline. The third argument is the tck list returned from bisplrep. If desired, the fourth and fifth
arguments provide the orders of the partial derivative in the x and y direction respectively.
It is important to note that two dimensional interpolation should not be used to find the spline representation of images.
The algorithm used is not amenable to large numbers of input points. The signal processing toolbox contains more
appropriate algorithms for finding the spline representation of an image. The two dimensional interpolation commands
are intended for use when interpolating a two dimensional function as shown in the example that follows. This example
uses the mgrid command in NumPy which is useful for defining a “mesh-grid” in many dimensions. (See also the
ogrid command if the full-mesh is not needed). The number of output arguments and the number of dimensions of
each argument is determined by the number of indexing objects passed in mgrid.

>>> import numpy as np
>>> from scipy import interpolate
>>> import matplotlib.pyplot as plt

Define function over sparse 20x20 grid

>>> x, y = np.mgrid[-1:1:20j, -1:1:20j]
>>> z = (x+y) * np.exp(-6.0*(x*x+y*y))

>>> plt.figure()
>>> plt.pcolor(x, y, z)
>>> plt.colorbar()
>>> plt.title("Sparsely sampled function.")
>>> plt.show()

Interpolate function over new 70x70 grid

>>> xnew, ynew = np.mgrid[-1:1:70j, -1:1:70j]
>>> tck = interpolate.bisplrep(x, y, z, s=0)

(continues on next page)
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(continued from previous page)
>>> znew = interpolate.bisplev(xnew[:,0], ynew[0,:], tck)

>>> plt.figure()
>>> plt.pcolor(xnew, ynew, znew)
>>> plt.colorbar()
>>> plt.title("Interpolated function.")
>>> plt.show()
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Two-dimensional spline representation: Object-oriented (BivariateSpline)
The BivariateSpline class is the 2-dimensional analog of the UnivariateSpline class. It and its subclasses
implement the FITPACK functions described above in an object oriented fashion, allowing objects to be instantiated that
can be called to compute the spline value by passing in the two coordinates as the two arguments.
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Using radial basis functions for smoothing/interpolation

Radial basis functions can be used for smoothing/interpolating scattered data in n-dimensions, but should be used with
caution for extrapolation outside of the observed data range.

1-d Example
This example compares the usage of the Rbf and UnivariateSpline classes from the scipy.interpolate module.

>>> import numpy as np
>>> from scipy.interpolate import Rbf, InterpolatedUnivariateSpline
>>> import matplotlib.pyplot as plt

>>> # setup data
>>> x = np.linspace(0, 10, 9)
>>> y = np.sin(x)
>>> xi = np.linspace(0, 10, 101)

>>> # use fitpack2 method
>>> ius = InterpolatedUnivariateSpline(x, y)
>>> yi = ius(xi)

>>> plt.subplot(2, 1, 1)
>>> plt.plot(x, y, 'bo')
>>> plt.plot(xi, yi, 'g')
>>> plt.plot(xi, np.sin(xi), 'r')
>>> plt.title('Interpolation using univariate spline')

>>> # use RBF method
>>> rbf = Rbf(x, y)
>>> fi = rbf(xi)

>>> plt.subplot(2, 1, 2)
>>> plt.plot(x, y, 'bo')
>>> plt.plot(xi, fi, 'g')
>>> plt.plot(xi, np.sin(xi), 'r')
>>> plt.title('Interpolation using RBF - multiquadrics')
>>> plt.show()

2-d Example
This example shows how to interpolate scattered 2d data.

>>> import numpy as np
>>> from scipy.interpolate import Rbf
>>> import matplotlib.pyplot as plt
>>> from matplotlib import cm

>>> # 2-d tests - setup scattered data
>>> x = np.random.rand(100)*4.0-2.0
>>> y = np.random.rand(100)*4.0-2.0
>>> z = x*np.exp(-x**2-y**2)

(continues on next page)
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(continued from previous page)
>>> ti = np.linspace(-2.0, 2.0, 100)
>>> XI, YI = np.meshgrid(ti, ti)

>>> # use RBF
>>> rbf = Rbf(x, y, z, epsilon=2)
>>> ZI = rbf(XI, YI)

>>> # plot the result
>>> plt.subplot(1, 1, 1)
>>> plt.pcolor(XI, YI, ZI, cmap=cm.jet)
>>> plt.scatter(x, y, 100, z, cmap=cm.jet)
>>> plt.title('RBF interpolation - multiquadrics')
>>> plt.xlim(-2, 2)
>>> plt.ylim(-2, 2)
>>> plt.colorbar()

4.1.7 Fourier Transforms (scipy.fftpack)

Contents

• Fourier Transforms (scipy.fftpack)

– Fast Fourier transforms

∗ One dimensional discrete Fourier transforms

∗ Two and n-dimensional discrete Fourier transforms

∗ FFT convolution

– Discrete Cosine Transforms
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Fourier analysis is a method for expressing a function as a sum of periodic components, and for recovering the signal
from those components. When both the function and its Fourier transform are replaced with discretized counterparts, it
is called the discrete Fourier transform (DFT). The DFT has become a mainstay of numerical computing in part because
of a very fast algorithm for computing it, called the Fast Fourier Transform (FFT), which was known to Gauss (1805)
and was brought to light in its current form by Cooley and Tukey [CT65]. Press et al. [NR07] provide an accessible
introduction to Fourier analysis and its applications.

Note: PyFFTW provides a way to replace a number of functions in scipy.fftpack with its own functions, which
are usually significantly faster, via pyfftw.interfaces. Because PyFFTW relies on the GPL-licensed FFTW it cannot be
included in SciPy. Users for whom the speed of FFT routines is critical should consider installing PyFFTW.

Fast Fourier transforms
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One dimensional discrete Fourier transforms
The FFT y[k] of length N of the length-N sequence x[n] is defined as

y[k] =

N−1∑
n=0

e−2πj kn
N x[n] ,

and the inverse transform is defined as follows

x[n] =
1

N

N−1∑
k=0

e2πj
kn
N y[k] .

These transforms can be calculated by means of fft and ifft, respectively as shown in the following example.

>>> from scipy.fftpack import fft, ifft
>>> x = np.array([1.0, 2.0, 1.0, -1.0, 1.5])
>>> y = fft(x)
>>> y
array([ 4.5 +0.j , 2.08155948-1.65109876j,

-1.83155948+1.60822041j, -1.83155948-1.60822041j,
2.08155948+1.65109876j])

>>> yinv = ifft(y)
>>> yinv
array([ 1.0+0.j, 2.0+0.j, 1.0+0.j, -1.0+0.j, 1.5+0.j])

From the definition of the FFT it can be seen that

y[0] =

N−1∑
n=0

x[n] .

In the example

>>> np.sum(x)
4.5

which corresponds to y[0]. For N even, the elements y[1]...y[N/2 − 1] contain the positive-frequency terms, and the
elements y[N/2]...y[N − 1] contain the negative-frequency terms, in order of decreasingly negative frequency. For N
odd, the elements y[1]...y[(N − 1)/2] contain the positive- frequency terms, and the elements y[(N + 1)/2]...y[N − 1]
contain the negative- frequency terms, in order of decreasingly negative frequency.
In case the sequence x is real-valued, the values of y[n] for positive frequencies is the conjugate of the values y[n] for
negative frequencies (because the spectrum is symmetric). Typically, only the FFT corresponding to positive frequencies
is plotted.
The example plots the FFT of the sum of two sines.

>>> from scipy.fftpack import fft
>>> # Number of sample points
>>> N = 600
>>> # sample spacing
>>> T = 1.0 / 800.0
>>> x = np.linspace(0.0, N*T, N)
>>> y = np.sin(50.0 * 2.0*np.pi*x) + 0.5*np.sin(80.0 * 2.0*np.pi*x)
>>> yf = fft(y)
>>> xf = np.linspace(0.0, 1.0/(2.0*T), N//2)

(continues on next page)
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(continued from previous page)
>>> import matplotlib.pyplot as plt
>>> plt.plot(xf, 2.0/N * np.abs(yf[0:N//2]))
>>> plt.grid()
>>> plt.show()
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The FFT input signal is inherently truncated. This truncation can be modelled as multiplication of an infinite signal with a
rectangular window function. In the spectral domain this multiplication becomes convolution of the signal spectrum with
the window function spectrum, being of form sin(x)/x. This convolution is the cause of an effect called spectral leakage
(see [WPW]). Windowing the signal with a dedicated window function helps mitigate spectral leakage. The example
below uses a Blackman window from scipy.signal and shows the effect of windowing (the zero component of the FFT has
been truncated for illustrative purposes).

>>> from scipy.fftpack import fft
>>> # Number of sample points
>>> N = 600
>>> # sample spacing
>>> T = 1.0 / 800.0
>>> x = np.linspace(0.0, N*T, N)
>>> y = np.sin(50.0 * 2.0*np.pi*x) + 0.5*np.sin(80.0 * 2.0*np.pi*x)
>>> yf = fft(y)
>>> from scipy.signal import blackman
>>> w = blackman(N)
>>> ywf = fft(y*w)
>>> xf = np.linspace(0.0, 1.0/(2.0*T), N//2)
>>> import matplotlib.pyplot as plt
>>> plt.semilogy(xf[1:N//2], 2.0/N * np.abs(yf[1:N//2]), '-b')
>>> plt.semilogy(xf[1:N//2], 2.0/N * np.abs(ywf[1:N//2]), '-r')
>>> plt.legend(['FFT', 'FFT w. window'])
>>> plt.grid()
>>> plt.show()

In case the sequence x is complex-valued, the spectrum is no longer symmetric. To simplify working with the FFT
functions, scipy provides the following two helper functions.
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The function fftfreq returns the FFT sample frequency points.

>>> from scipy.fftpack import fftfreq
>>> freq = fftfreq(8, 0.125)
>>> freq
array([ 0., 1., 2., 3., -4., -3., -2., -1.])

In a similar spirit, the function fftshift allows swapping the lower and upper halves of a vector, so that it becomes
suitable for display.

>>> from scipy.fftpack import fftshift
>>> x = np.arange(8)
>>> fftshift(x)
array([4, 5, 6, 7, 0, 1, 2, 3])

The example below plots the FFT of two complex exponentials; note the asymmetric spectrum.

>>> from scipy.fftpack import fft, fftfreq, fftshift
>>> # number of signal points
>>> N = 400
>>> # sample spacing
>>> T = 1.0 / 800.0
>>> x = np.linspace(0.0, N*T, N)
>>> y = np.exp(50.0 * 1.j * 2.0*np.pi*x) + 0.5*np.exp(-80.0 * 1.j * 2.0*np.
↪→pi*x)
>>> yf = fft(y)
>>> xf = fftfreq(N, T)
>>> xf = fftshift(xf)
>>> yplot = fftshift(yf)
>>> import matplotlib.pyplot as plt
>>> plt.plot(xf, 1.0/N * np.abs(yplot))
>>> plt.grid()
>>> plt.show()

The function rfft calculates the FFT of a real sequence and outputs the FFT coefficients y[n] with separate real
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and imaginary parts. In case of N being even: [y[0], Re(y[1]), Im(y[1]), ..., Re(y[N/2])]; in case N being odd
[y[0], Re(y[1]), Im(y[1]), ..., Re(y[N/2]), Im(y[N/2])].
The corresponding function irfft calculates the IFFT of the FFT coefficients with this special ordering.

>>> from scipy.fftpack import fft, rfft, irfft
>>> x = np.array([1.0, 2.0, 1.0, -1.0, 1.5, 1.0])
>>> fft(x)
array([ 5.5 +0.j , 2.25-0.4330127j , -2.75-1.29903811j,

1.5 +0.j , -2.75+1.29903811j, 2.25+0.4330127j ])
>>> yr = rfft(x)
>>> yr
array([ 5.5 , 2.25 , -0.4330127 , -2.75 , -1.29903811,

1.5 ])
>>> irfft(yr)
array([ 1. , 2. , 1. , -1. , 1.5, 1. ])
>>> x = np.array([1.0, 2.0, 1.0, -1.0, 1.5])
>>> fft(x)
array([ 4.5 +0.j , 2.08155948-1.65109876j,

-1.83155948+1.60822041j, -1.83155948-1.60822041j,
2.08155948+1.65109876j])

>>> yr = rfft(x)
>>> yr
array([ 4.5 , 2.08155948, -1.65109876, -1.83155948, 1.60822041])

Two and n-dimensional discrete Fourier transforms
The functions fft2 and ifft2 provide 2-dimensional FFT, and IFFT, respectively. Similar, fftn and ifftn provide
n-dimensional FFT, and IFFT, respectively.
The example below demonstrates a 2-dimensional IFFT and plots the resulting (2-dimensional) time-domain signals.

>>> from scipy.fftpack import ifftn
>>> import matplotlib.pyplot as plt
>>> import matplotlib.cm as cm

(continues on next page)
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(continued from previous page)
>>> N = 30
>>> f, ((ax1, ax2, ax3), (ax4, ax5, ax6)) = plt.subplots(2, 3, sharex='col',␣
↪→sharey='row')
>>> xf = np.zeros((N,N))
>>> xf[0, 5] = 1
>>> xf[0, N-5] = 1
>>> Z = ifftn(xf)
>>> ax1.imshow(xf, cmap=cm.Reds)
>>> ax4.imshow(np.real(Z), cmap=cm.gray)
>>> xf = np.zeros((N, N))
>>> xf[5, 0] = 1
>>> xf[N-5, 0] = 1
>>> Z = ifftn(xf)
>>> ax2.imshow(xf, cmap=cm.Reds)
>>> ax5.imshow(np.real(Z), cmap=cm.gray)
>>> xf = np.zeros((N, N))
>>> xf[5, 10] = 1
>>> xf[N-5, N-10] = 1
>>> Z = ifftn(xf)
>>> ax3.imshow(xf, cmap=cm.Reds)
>>> ax6.imshow(np.real(Z), cmap=cm.gray)
>>> plt.show()

0

10

20

0 20

0

10

20

0 20 0 20

FFT convolution
scipy.fftpack.convolve performs a convolution of two one-dimensional arrays in frequency domain.

Discrete Cosine Transforms

SciPy provides a DCT with the function dct and a corresponding IDCT with the function idct. There are 8 types of the
DCT [WPC], [Mak]; however, only the first 3 types are implemented in scipy. “The” DCT generally refers to DCT type
2, and “the” Inverse DCT generally refers to DCT type 3. In addition, the DCT coefficients can be normalized differently
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(for most types, scipy provides None and ortho). Two parameters of the dct/idct function calls allow setting the DCT
type and coefficient normalization.
For a single dimension array x, dct(x, norm=’ortho’) is equal to MATLAB dct(x).

Type I DCT
SciPy uses the following definition of the unnormalized DCT-I (norm='None'):

y[k] = x0 + (−1)kxN−1 + 2

N−2∑
n=1

x[n] cos

(
πnk

N − 1

)
, 0 ≤ k < N.

Only None is supported as normalization mode for DCT-I. Note also that the DCT-I is only supported for input size > 1

Type II DCT
SciPy uses the following definition of the unnormalized DCT-II (norm='None'):

y[k] = 2

N−1∑
n=0

x[n] cos

(
π(2n+ 1)k

2N

)
0 ≤ k < N.

In case of the normalized DCT (norm='ortho'), the DCT coefficients y[k] are multiplied by a scaling factor f:

f =

{√
1/(4N), if k = 0√
1/(2N), otherwise

.

In this case, the DCT “base functions” ϕk[n] = 2f cos
(

π(2n+1)k
2N

)
become orthonormal:

N−1∑
n=0

ϕk[n]ϕl[n] = δlk

Type III DCT
SciPy uses the following definition of the unnormalized DCT-III (norm='None'):

y[k] = x0 + 2

N−1∑
n=1

x[n] cos

(
πn(2k + 1)

2N

)
0 ≤ k < N,

or, for norm='ortho':

y[k] =
x0√
N

+
2√
N

N−1∑
n=1

x[n] cos

(
πn(2k + 1)

2N

)
0 ≤ k < N.

DCT and IDCT
The (unnormalized) DCT-III is the inverse of the (unnormalized) DCT-II, up to a factor 2N. The orthonormalized DCT-
III is exactly the inverse of the orthonormalized DCT- II. The function idct performs the mappings between the DCT
and IDCT types.
The example below shows the relation between DCT and IDCT for different types and normalizations.

>>> from scipy.fftpack import dct, idct
>>> x = np.array([1.0, 2.0, 1.0, -1.0, 1.5])
>>> dct(dct(x, type=2, norm='ortho'), type=3, norm='ortho')

(continues on next page)
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(continued from previous page)
[1.0, 2.0, 1.0, -1.0, 1.5]
>>> # scaling factor 2*N = 10
>>> idct(dct(x, type=2), type=2)
array([ 10., 20., 10., -10., 15.])
>>> # no scaling factor
>>> idct(dct(x, type=2, norm='ortho'), type=2, norm='ortho')
array([ 1. , 2. , 1. , -1. , 1.5])
>>> # scaling factor 2*N = 10
>>> idct(dct(x, type=3), type=3)
array([ 10., 20., 10., -10., 15.])
>>> # no scaling factor
>>> idct(dct(x, type=3, norm='ortho'), type=3, norm='ortho')
array([ 1. , 2. , 1. , -1. , 1.5])
>>> # scaling factor 2*(N-1) = 8
>>> idct(dct(x, type=1), type=1)
array([ 8., 16., 8., -8., 12.])

Example
The DCT exhibits the “energy compaction property”, meaning that for many signals only the first few DCT coefficients
have significant magnitude. Zeroing out the other coefficients leads to a small reconstruction error, a fact which is exploited
in lossy signal compression (e.g. JPEG compression).
The example below shows a signal x and two reconstructions (x20 and x15)from the signal’s DCT coefficients. The signal
x20 is reconstructed from the first 20 DCT coefficients, x15 is reconstructed from the first 15 DCT coefficients. It can be
seen that the relative error of using 20 coefficients is still very small (~0.1%), but provides a five-fold compression rate.

>>> from scipy.fftpack import dct, idct
>>> import matplotlib.pyplot as plt
>>> N = 100
>>> t = np.linspace(0,20,N)
>>> x = np.exp(-t/3)*np.cos(2*t)
>>> y = dct(x, norm='ortho')
>>> window = np.zeros(N)
>>> window[:20] = 1
>>> yr = idct(y*window, norm='ortho')
>>> sum(abs(x-yr)**2) / sum(abs(x)**2)
0.0010901402257
>>> plt.plot(t, x, '-bx')
>>> plt.plot(t, yr, 'ro')
>>> window = np.zeros(N)
>>> window[:15] = 1
>>> yr = idct(y*window, norm='ortho')
>>> sum(abs(x-yr)**2) / sum(abs(x)**2)
0.0718818065008
>>> plt.plot(t, yr, 'g+')
>>> plt.legend(['x', '$x_{20}$', '$x_{15}$'])
>>> plt.grid()
>>> plt.show()
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Discrete Sine Transforms

SciPy provides a DST [Mak] with the function dst and a corresponding IDST with the function idst.
There are theoretically 8 types of the DST for different combinations of even/odd boundary conditions and boundary off
sets [WPS], only the first 3 types are implemented in scipy.

Type I DST
DST-I assumes the input is odd around n=-1 and n=N. SciPy uses the following definition of the unnormalized DST-I
(norm='None'):

y[k] = 2

N−1∑
n=0

x[n] sin

(
π(n+ 1)(k + 1)

N + 1

)
, 0 ≤ k < N.

Only None is supported as normalization mode for DST-I. Note also that the DST-I is only supported for input size > 1.
The (unnormalized) DST-I is its own inverse, up to a factor 2(N+1).

Type II DST
DST-II assumes the input is odd around n=-1/2 and even around n=N. SciPy uses the following definition of the unnor-
malized DST-II (norm='None'):

y[k] = 2

N−1∑
n=0

x[n] sin

(
π(n+ 1/2)(k + 1)

N

)
, 0 ≤ k < N.

Type III DST
DST-III assumes the input is odd around n=-1 and even around n=N-1. SciPy uses the following definition of the unnor-
malized DST-III (norm='None'):

y[k] = (−1)kx[N − 1] + 2

N−2∑
n=0

x[n] sin

(
π(n+ 1)(k + 1/2)

N

)
, 0 ≤ k < N.
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DST and IDST
The example below shows the relation between DST and IDST for different types and normalizations.

>>> from scipy.fftpack import dst, idst
>>> x = np.array([1.0, 2.0, 1.0, -1.0, 1.5])
>>> # scaling factor 2*N = 10
>>> idst(dst(x, type=2), type=2)
array([ 10., 20., 10., -10., 15.])
>>> # no scaling factor
>>> idst(dst(x, type=2, norm='ortho'), type=2, norm='ortho')
array([ 1. , 2. , 1. , -1. , 1.5])
>>> # scaling factor 2*N = 10
>>> idst(dst(x, type=3), type=3)
array([ 10., 20., 10., -10., 15.])
>>> # no scaling factor
>>> idst(dst(x, type=3, norm='ortho'), type=3, norm='ortho')
array([ 1. , 2. , 1. , -1. , 1.5])
>>> # scaling factor 2*(N+1) = 8
>>> idst(dst(x, type=1), type=1)
array([ 12., 24., 12., -12., 18.])

Cache Destruction

To accelerate repeat transforms on arrays of the same shape and dtype, scipy.fftpack keeps a cache of the prime factor-
ization of length of the array and pre-computed trigonometric functions. These caches can be destroyed by calling the
appropriate function in scipy.fftpack._fftpack. dst(type=1) and idst(type=1) share a cache (*dst1_cache).
As do dst(type=2), dst(type=3), idst(type=3), and idst(type=3) (*dst2_cache).

References

4.1.8 Signal Processing (scipy.signal)

The signal processing toolbox currently contains some filtering functions, a limited set of filter design tools, and a few
B-spline interpolation algorithms for one- and two-dimensional data. While the B-spline algorithms could technically be
placed under the interpolation category, they are included here because they only work with equally-spaced data and make
heavy use of filter-theory and transfer-function formalism to provide a fast B-spline transform. To understand this section
you will need to understand that a signal in SciPy is an array of real or complex numbers.

B-splines

A B-spline is an approximation of a continuous function over a finite- domain in terms of B-spline coefficients and knot
points. If the knot- points are equally spaced with spacing ∆x , then the B-spline approximation to a 1-dimensional
function is the finite-basis expansion.

y (x) ≈
∑
j

cjβ
o
( x

∆x
− j
)
.

In two dimensions with knot-spacing∆x and ∆y , the function representation is

z (x, y) ≈
∑
j

∑
k

cjkβ
o
( x

∆x
− j
)
βo

(
y

∆y
− k

)
.

4.1. SciPy Tutorial 289



SciPy Reference Guide, Release 1.3.1

In these expressions, βo (·) is the space-limited B-spline basis function of order, o . The requirement of equally-spaced
knot-points and equally-spaced data points, allows the development of fast (inverse-filtering) algorithms for determining
the coefficients, cj , from sample-values, yn . Unlike the general spline interpolation algorithms, these algorithms can
quickly find the spline coefficients for large images.
The advantage of representing a set of samples via B-spline basis functions is that continuous-domain operators (deriva-
tives, re- sampling, integral, etc.) which assume that the data samples are drawn from an underlying continuous function
can be computed with relative ease from the spline coefficients. For example, the second-derivative of a spline is

y′′ (x) =
1

∆x2

∑
j

cjβ
o′′
( x

∆x
− j
)
.

Using the property of B-splines that

d2βo (w)

dw2
= βo−2 (w + 1)− 2βo−2 (w) + βo−2 (w − 1)

it can be seen that

y′′ (x) =
1

∆x2

∑
j

cj

[
βo−2

( x

∆x
− j + 1

)
− 2βo−2

( x

∆x
− j
)
+ βo−2

( x

∆x
− j − 1

)]
.

If o = 3 , then at the sample points,

∆x2 y′ (x)|x=n∆x =
∑
j

cjδn−j+1 − 2cjδn−j + cjδn−j−1,

= cn+1 − 2cn + cn−1.

Thus, the second-derivative signal can be easily calculated from the spline fit. if desired, smoothing splines can be found
to make the second-derivative less sensitive to random-errors.
The savvy reader will have already noticed that the data samples are related to the knot coefficients via a convolution
operator, so that simple convolution with the sampled B-spline function recovers the original data from the spline coef-
ficients. The output of convolutions can change depending on how boundaries are handled (this becomes increasingly
more important as the number of dimensions in the data- set increases). The algorithms relating to B-splines in the
signal- processing sub package assume mirror-symmetric boundary conditions. Thus, spline coefficients are computed
based on that assumption, and data-samples can be recovered exactly from the spline coefficients by assuming them to
be mirror-symmetric also.
Currently the package provides functions for determining second- and third- order cubic spline coefficients from equally
spaced samples in one- and two- dimensions (qspline1d, qspline2d, cspline1d, cspline2d). The package
also supplies a function ( bspline ) for evaluating the bspline basis function, βo (x) for arbitrary order and x. For large
o , the B-spline basis function can be approximated well by a zero-mean Gaussian function with standard-deviation equal
to σo = (o+ 1) /12 :

βo (x) ≈ 1√
2πσ2

o

exp

(
− x2

2σo

)
.

A function to compute this Gaussian for arbitrary x and o is also available ( gauss_spline ). The following code
and Figure uses spline-filtering to compute an edge-image (the second-derivative of a smoothed spline) of a raccoon’s
face which is an array returned by the command scipy.misc.face. The command sepfir2d was used to apply a
separable two-dimensional FIR filter with mirror- symmetric boundary conditions to the spline coefficients. This function
is ideally suited for reconstructing samples from spline coefficients and is faster than convolve2d which convolves
arbitrary two-dimensional filters and allows for choosing mirror-symmetric boundary conditions.

>>> import numpy as np
>>> from scipy import signal, misc
>>> import matplotlib.pyplot as plt
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>>> image = misc.face(gray=True).astype(np.float32)
>>> derfilt = np.array([1.0, -2, 1.0], dtype=np.float32)
>>> ck = signal.cspline2d(image, 8.0)
>>> deriv = (signal.sepfir2d(ck, derfilt, [1]) +
... signal.sepfir2d(ck, [1], derfilt))

Alternatively we could have done:

laplacian = np.array([[0,1,0], [1,-4,1], [0,1,0]], dtype=np.float32)
deriv2 = signal.convolve2d(ck,laplacian,mode='same',boundary='symm')

>>> plt.figure()
>>> plt.imshow(image)
>>> plt.gray()
>>> plt.title('Original image')
>>> plt.show()
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>>> plt.figure()
>>> plt.imshow(deriv)
>>> plt.gray()
>>> plt.title('Output of spline edge filter')
>>> plt.show()

Filtering

Filtering is a generic name for any system that modifies an input signal in some way. In SciPy a signal can be thought of as
a NumPy array. There are different kinds of filters for different kinds of operations. There are two broad kinds of filtering
operations: linear and non-linear. Linear filters can always be reduced to multiplication of the flattened NumPy array by
an appropriate matrix resulting in another flattened NumPy array. Of course, this is not usually the best way to compute
the filter as the matrices and vectors involved may be huge. For example filtering a 512 × 512 image with this method
would require multiplication of a 5122×5122 matrix with a 5122 vector. Just trying to store the 5122×5122 matrix using
a standard NumPy array would require 68, 719, 476, 736 elements. At 4 bytes per element this would require 256GB of
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memory. In most applications most of the elements of this matrix are zero and a different method for computing the
output of the filter is employed.

Convolution/Correlation
Many linear filters also have the property of shift-invariance. This means that the filtering operation is the same at different
locations in the signal and it implies that the filtering matrix can be constructed from knowledge of one row (or column)
of the matrix alone. In this case, the matrix multiplication can be accomplished using Fourier transforms.
Let x [n] define a one-dimensional signal indexed by the integer n. Full convolution of two one-dimensional signals can
be expressed as

y [n] =

∞∑
k=−∞

x [k]h [n− k] .

This equation can only be implemented directly if we limit the sequences to finite support sequences that can be stored in
a computer, choose n = 0 to be the starting point of both sequences, letK + 1 be that value for which x [n] = 0 for all
n ≥ K + 1 andM + 1 be that value for which h [n] = 0 for all n ≥M + 1 , then the discrete convolution expression is

y [n] =

min(n,K)∑
k=max(n−M,0)

x [k]h [n− k] .

292 Chapter 4. Tutorial



SciPy Reference Guide, Release 1.3.1

For convenience assumeK ≥M. Then, more explicitly the output of this operation is

y [0] = x [0]h [0]

y [1] = x [0]h [1] + x [1]h [0]

y [2] = x [0]h [2] + x [1]h [1] + x [2]h [0]

...
...

...
y [M ] = x [0]h [M ] + x [1]h [M − 1] + · · ·+ x [M ]h [0]

y [M + 1] = x [1]h [M ] + x [2]h [M − 1] + · · ·+ x [M + 1]h [0]

...
...

...
y [K] = x [K −M ]h [M ] + · · ·+ x [K]h [0]

y [K + 1] = x [K + 1−M ]h [M ] + · · ·+ x [K]h [1]

...
...

...
y [K +M − 1] = x [K − 1]h [M ] + x [K]h [M − 1]

y [K +M ] = x [K]h [M ] .

Thus, the full discrete convolution of two finite sequences of lengths K + 1 and M + 1 respectively results in a finite
sequence of lengthK +M + 1 = (K + 1) + (M + 1)− 1.

One dimensional convolution is implemented in SciPy with the function convolve. This function takes as inputs the
signals x, h , and two optional flags ‘mode’ and ‘method’ and returns the signal y.
The first optional flag ‘mode’ allows for specification of which part of the output signal to return. The default value of
‘full’ returns the entire signal. If the flag has a value of ‘same’ then only the middle K values are returned starting at
y
[⌊

M−1
2

⌋]
so that the output has the same length as the first input. If the flag has a value of ‘valid’ then only the middle

K −M + 1 = (K + 1)− (M + 1) + 1 output values are returned where z depends on all of the values of the smallest
input from h [0] to h [M ] . In other words only the values y [M ] to y [K] inclusive are returned.
The second optional flag ‘method’ determines how the convolution is computed, either through the Fourier transform
approach with fftconvolve or through the direct method. By default, it selects the expected faster method. The
Fourier transform method has order O(N logN) while the direct method has order O(N2). Depending on the big O
constant and the value ofN , one of these two methods may be faster. The default value ‘auto’ performs a rough calculation
and chooses the expected faster method, while the values ‘direct’ and ‘fft’ force computation with the other two methods.
The code below shows a simple example for convolution of 2 sequences

>>> x = np.array([1.0, 2.0, 3.0])
>>> h = np.array([0.0, 1.0, 0.0, 0.0, 0.0])
>>> signal.convolve(x, h)
array([ 0., 1., 2., 3., 0., 0., 0.])
>>> signal.convolve(x, h, 'same')
array([ 2., 3., 0.])

This same function convolve can actually take N -dimensional arrays as inputs and will return the N -dimensional
convolution of the two arrays as is shown in the code example below. The same input flags are available for that case as
well.

>>> x = np.array([[1., 1., 0., 0.], [1., 1., 0., 0.], [0., 0., 0., 0.], [0.,␣
↪→0., 0., 0.]])
>>> h = np.array([[1., 0., 0., 0.], [0., 0., 0., 0.], [0., 0., 1., 0.], [0.,␣
↪→0., 0., 0.]])
>>> signal.convolve(x, h)
array([[ 1., 1., 0., 0., 0., 0., 0.],

(continues on next page)
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(continued from previous page)
[ 1., 1., 0., 0., 0., 0., 0.],
[ 0., 0., 1., 1., 0., 0., 0.],
[ 0., 0., 1., 1., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 0.]])

Correlation is very similar to convolution except for the minus sign becomes a plus sign. Thus

w [n] =

∞∑
k=−∞

y [k]x [n+ k]

is the (cross) correlation of the signals y and x. For finite-length signals with y [n] = 0 outside of the range [0,K] and
x [n] = 0 outside of the range [0,M ] , the summation can simplify to

w [n] =

min(K,M−n)∑
k=max(0,−n)

y [k]x [n+ k] .

Assuming again thatK ≥M this is

w [−K] = y [K]x [0]

w [−K + 1] = y [K − 1]x [0] + y [K]x [1]

...
...

...
w [M −K] = y [K −M ]x [0] + y [K −M + 1]x [1] + · · ·+ y [K]x [M ]

w [M −K + 1] = y [K −M − 1]x [0] + · · ·+ y [K − 1]x [M ]

...
...

...
w [−1] = y [1]x [0] + y [2]x [1] + · · ·+ y [M + 1]x [M ]

w [0] = y [0]x [0] + y [1]x [1] + · · ·+ y [M ]x [M ]

w [1] = y [0]x [1] + y [1]x [2] + · · ·+ y [M − 1]x [M ]

w [2] = y [0]x [2] + y [1]x [3] + · · ·+ y [M − 2]x [M ]

...
...

...
w [M − 1] = y [0]x [M − 1] + y [1]x [M ]

w [M ] = y [0]x [M ] .

The SciPy function correlate implements this operation. Equivalent flags are available for this operation to re-
turn the full K + M + 1 length sequence (‘full’) or a sequence with the same size as the largest sequence starting at
w
[
−K +

⌊
M−1

2

⌋]
(‘same’) or a sequence where the values depend on all the values of the smallest sequence (‘valid’).

This final option returns theK −M + 1 values w [M −K] to w [0] inclusive.
The function correlate can also take arbitrary N -dimensional arrays as input and return the N -dimensional convo-
lution of the two arrays on output.
When N = 2, correlate and/or convolve can be used to construct arbitrary image filters to perform actions such
as blurring, enhancing, and edge-detection for an image.

>>> import numpy as np
>>> from scipy import signal, misc
>>> import matplotlib.pyplot as plt
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>>> image = misc.face(gray=True)
>>> w = np.zeros((50, 50))
>>> w[0][0] = 1.0
>>> w[49][25] = 1.0
>>> image_new = signal.fftconvolve(image, w)

>>> plt.figure()
>>> plt.imshow(image)
>>> plt.gray()
>>> plt.title('Original image')
>>> plt.show()
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>>> plt.figure()
>>> plt.imshow(image_new)
>>> plt.gray()
>>> plt.title('Filtered image')
>>> plt.show()

Calculating the convolution in the time domain as above is mainly used for filtering when one of the signals is much smaller
than the other ( K ≫ M ), otherwise linear filtering is more efficiently calculated in the frequency domain provided by
the function fftconvolve. By default, convolve estimates the fastest method using choose_conv_method.
If the filter function w[n,m] can be factored according to

h[n,m] = h1[n]h2[m],

convolution can be calculated by means of the function sepfir2d. As an example we consider a Gaussian filter
gaussian

h[n,m] ∝ e−x2−y2

= e−x2

e−y2

which is often used for blurring.
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>>> import numpy as np
>>> from scipy import signal, misc
>>> import matplotlib.pyplot as plt

>>> image = misc.ascent()
>>> w = signal.gaussian(50, 10.0)
>>> image_new = signal.sepfir2d(image, w, w)

>>> plt.figure()
>>> plt.imshow(image)
>>> plt.gray()
>>> plt.title('Original image')
>>> plt.show()
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>>> plt.figure()
>>> plt.imshow(image_new)
>>> plt.gray()
>>> plt.title('Filtered image')
>>> plt.show()
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Difference-equation filtering
A general class of linear one-dimensional filters (that includes convolution filters) are filters described by the difference
equation

N∑
k=0

aky [n− k] =

M∑
k=0

bkx [n− k]

where x [n] is the input sequence and y [n] is the output sequence. If we assume initial rest so that y [n] = 0 for n < 0
, then this kind of filter can be implemented using convolution. However, the convolution filter sequence h [n] could be
infinite if ak ̸= 0 for k ≥ 1. In addition, this general class of linear filter allows initial conditions to be placed on y [n]
for n < 0 resulting in a filter that cannot be expressed using convolution.
The difference equation filter can be thought of as finding y [n] recursively in terms of it’s previous values

a0y [n] = −a1y [n− 1]− · · · − aNy [n−N ] + · · ·+ b0x [n] + · · ·+ bMx [n−M ] .

Often a0 = 1 is chosen for normalization. The implementation in SciPy of this general difference equation filter is a little
more complicated then would be implied by the previous equation. It is implemented so that only one signal needs to be
delayed. The actual implementation equations are (assuming a0 = 1 ).

y [n] = b0x [n] + z0 [n− 1]

z0 [n] = b1x [n] + z1 [n− 1]− a1y [n]

z1 [n] = b2x [n] + z2 [n− 1]− a2y [n]

...
...

...
zK−2 [n] = bK−1x [n] + zK−1 [n− 1]− aK−1y [n]

zK−1 [n] = bKx [n]− aKy [n] ,
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where K = max (N,M) . Note that bK = 0 if K > M and aK = 0 if K > N. In this way, the output at time n
depends only on the input at time n and the value of z0 at the previous time. This can always be calculated as long as the
K values z0 [n− 1] . . . zK−1 [n− 1] are computed and stored at each time step.
The difference-equation filter is called using the command lfilter in SciPy. This command takes as inputs the vector
b, the vector, a, a signal x and returns the vector y (the same length as x ) computed using the equation given above. If x
is N -dimensional, then the filter is computed along the axis provided. If, desired, initial conditions providing the values
of z0 [−1] to zK−1 [−1] can be provided or else it will be assumed that they are all zero. If initial conditions are provided,
then the final conditions on the intermediate variables are also returned. These could be used, for example, to restart the
calculation in the same state.
Sometimes it is more convenient to express the initial conditions in terms of the signals x [n] and y [n] . In other words,
perhaps you have the values of x [−M ] to x [−1] and the values of y [−N ] to y [−1] and would like to determine what
values of zm [−1] should be delivered as initial conditions to the difference-equation filter. It is not difficult to show that
for 0 ≤ m < K,

zm [n] =

K−m−1∑
p=0

(bm+p+1x [n− p]− am+p+1y [n− p]) .

Using this formula we can find the initial condition vector z0 [−1] to zK−1 [−1] given initial conditions on y (and x ).
The command lfiltic performs this function.
As an example consider the following system:

y[n] =
1

2
x[n] +

1

4
x[n− 1] +

1

3
y[n− 1]

The code calculates the signal y[n] for a given signal x[n]; first for initial conditions y[−1] = 0 (default case), then for
y[−1] = 2 by means of lfiltic.

>>> import numpy as np
>>> from scipy import signal

>>> x = np.array([1., 0., 0., 0.])
>>> b = np.array([1.0/2, 1.0/4])
>>> a = np.array([1.0, -1.0/3])
>>> signal.lfilter(b, a, x)
array([0.5, 0.41666667, 0.13888889, 0.0462963])
>>> zi = signal.lfiltic(b, a, y=[2.])
>>> signal.lfilter(b, a, x, zi=zi)
(array([ 1.16666667, 0.63888889, 0.21296296, 0.07098765]), array([0.
↪→02366]))

Note that the output signal y[n] has the same length as the length as the input signal x[n].

Analysis of Linear Systems

Linear system described a linear difference equation can be fully described by the coefficient vectors a and b as was done
above; an alternative representation is to provide a factor k, Nz zeros zk and Np poles pk, respectively, to describe the
system by means of its transfer functionH(z) according to

H(z) = k
(z − z1)(z − z2)...(z − zNz

)

(z − p1)(z − p2)...(z − pNp
)

This alternative representation can be obtain with the scipy function tf2zpk; the inverse is provided by zpk2tf.
For the example from above we have
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>>> b = np.array([1.0/2, 1.0/4])
>>> a = np.array([1.0, -1.0/3])
>>> signal.tf2zpk(b, a)
(array([-0.5]), array([ 0.33333333]), 0.5)

i.e. the system has a zero at z = −1/2 and a pole at z = 1/3.
The scipy function freqz allows calculation of the frequency response of a system described by the coefficients ak and
bk. See the help of the freqz function of a comprehensive example.

Filter Design
Time-discrete filters can be classified into finite response (FIR) filters and infinite response (IIR) filters. FIR filters can
provide a linear phase response, whereas IIR filters cannot. SciPy provides functions for designing both types of filters.

FIR Filter

The function firwin designs filters according to the window method. Depending on the provided arguments, the func-
tion returns different filter types (e.g. low-pass, band-pass…).
The example below designs a low-pass and a band-stop filter, respectively.

>>> import numpy as np
>>> import scipy.signal as signal
>>> import matplotlib.pyplot as plt

>>> b1 = signal.firwin(40, 0.5)
>>> b2 = signal.firwin(41, [0.3, 0.8])
>>> w1, h1 = signal.freqz(b1)
>>> w2, h2 = signal.freqz(b2)

>>> plt.title('Digital filter frequency response')
>>> plt.plot(w1, 20*np.log10(np.abs(h1)), 'b')
>>> plt.plot(w2, 20*np.log10(np.abs(h2)), 'r')
>>> plt.ylabel('Amplitude Response (dB)')
>>> plt.xlabel('Frequency (rad/sample)')
>>> plt.grid()
>>> plt.show()

Note that firwin uses per default a normalized frequency defined such that the value 1 corresponds to the Nyquist
frequency, whereas the function freqz is defined such that the value π corresponds to the Nyquist frequency.
The function firwin2 allows design of almost arbitrary frequency responses by specifying an array of corner frequencies
and corresponding gains, respectively.
The example below designs a filter with such an arbitrary amplitude response.

>>> import numpy as np
>>> import scipy.signal as signal
>>> import matplotlib.pyplot as plt

>>> b = signal.firwin2(150, [0.0, 0.3, 0.6, 1.0], [1.0, 2.0, 0.5, 0.0])
>>> w, h = signal.freqz(b)
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>>> plt.title('Digital filter frequency response')
>>> plt.plot(w, np.abs(h))
>>> plt.title('Digital filter frequency response')
>>> plt.ylabel('Amplitude Response')
>>> plt.xlabel('Frequency (rad/sample)')
>>> plt.grid()
>>> plt.show()
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Note the linear scaling of the y-axis and the different definition of the Nyquist frequency in firwin2 and freqz (as
explained above).
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IIR Filter

SciPy provides two functions to directly design IIR iirdesign and iirfilter where the filter type (e.g. elliptic) is
passed as an argument and several more filter design functions for specific filter types; e.g. ellip.
The example below designs an elliptic low-pass filter with defined passband and stopband ripple, respectively. Note the
much lower filter order (order 4) compared with the FIR filters from the examples above in order to reach the same
stop-band attenuation of ≈ 60 dB.

>>> import numpy as np
>>> import scipy.signal as signal
>>> import matplotlib.pyplot as plt

>>> b, a = signal.iirfilter(4, Wn=0.2, rp=5, rs=60, btype='lowpass', ftype=
↪→'ellip')
>>> w, h = signal.freqz(b, a)

>>> plt.title('Digital filter frequency response')
>>> plt.plot(w, 20*np.log10(np.abs(h)))
>>> plt.title('Digital filter frequency response')
>>> plt.ylabel('Amplitude Response [dB]')
>>> plt.xlabel('Frequency (rad/sample)')
>>> plt.grid()
>>> plt.show()
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Digital filter frequency response

Filter Coefficients

Filter coefficients can be stored in several different formats:
• ‘ba’ or ‘tf’ = transfer function coefficients
• ‘zpk’ = zeros, poles, and overall gain
• ‘ss’ = state-space system representation

4.1. SciPy Tutorial 301



SciPy Reference Guide, Release 1.3.1

• ‘sos’ = transfer function coefficients of second-order sections
Functions such as tf2zpk and zpk2ss can convert between them.

Transfer function representation

The ba or tf format is a 2-tuple (b, a) representing a transfer function, where b is a length M+1 array of coefficients
of theM-order numerator polynomial, and a is a length N+1 array of coefficients of the N-order denominator, as positive,
descending powers of the transfer function variable. So the tuple of b = [b0, b1, ..., bM ] and a = [a0, a1, ..., aN ] can
represent an analog filter of the form:

H(s) =
b0s

M + b1s
(M−1) + · · ·+ bM

a0sN + a1s(N−1) + · · ·+ aN
=

∑M
i=0 bis

(M−i)∑N
i=0 ais

(N−i)

or a discrete-time filter of the form:

H(z) =
b0z

M + b1z
(M−1) + · · ·+ bM

a0zN + a1z(N−1) + · · ·+ aN
=

∑M
i=0 biz

(M−i)∑N
i=0 aiz

(N−i)

This “positive powers” form is found more commonly in controls engineering. If M and N are equal (which is true for
all filters generated by the bilinear transform), then this happens to be equivalent to the “negative powers” discrete-time
form preferred in DSP:

H(z) =
b0 + b1z

−1 + · · ·+ bMz
−M

a0 + a1z−1 + · · ·+ aNz−N
=

∑M
i=0 biz

−i∑N
i=0 aiz

−i

Although this is true for common filters, remember that this is not true in the general case. IfM and N are not equal, the
discrete-time transfer function coefficients must first be converted to the “positive powers” form before finding the poles
and zeros.
This representation suffers from numerical error at higher orders, so other formats are preferred when possible.

Zeros and poles representation

The zpk format is a 3-tuple (z, p, k), where z is an M-length array of the complex zeros of the transfer function
z = [z0, z1, ..., zM−1], p is an N-length array of the complex poles of the transfer function p = [p0, p1, ..., pN−1], and k
is a scalar gain. These represent the digital transfer function:

H(z) = k ·
(z − z0)(z − z1) · · · (z − z(M−1))

(z − p0)(z − p1) · · · (z − p(N−1))
= k

∏M−1
i=0 (z − zi)∏N−1
i=0 (z − pi)

or the analog transfer function:

H(s) = k ·
(s− z0)(s− z1) · · · (s− z(M−1))

(s− p0)(s− p1) · · · (s− p(N−1))
= k

∏M−1
i=0 (s− zi)∏N−1
i=0 (s− pi)

Although the sets of roots are stored as ordered NumPy arrays, their ordering does not matter; ([-1, -2], [-3,
-4], 1) is the same filter as ([-2, -1], [-4, -3], 1).

State-space system representation

The ss format is a 4-tuple of arrays (A, B, C, D) representing the state-space of an N-order digital/discrete-time
system of the form:

x[k + 1] = Ax[k] +Bu[k]

y[k] = Cx[k] +Du[k]
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or a continuous/analog system of the form:

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

with P inputs, Q outputs and N state variables, where:
• x is the state vector
• y is the output vector of length Q

• u is the input vector of length P

• A is the state matrix, with shape (N, N)

• B is the input matrix with shape (N, P)

• C is the output matrix with shape (Q, N)

• D is the feedthrough or feedforward matrix with shape (Q, P). (In cases where the system does not have a direct
feedthrough, all values in D are zero.)

State-space is the most general representation, and the only one that allows for multiple-input, multiple-output (MIMO)
systems. There are multiple state-space representations for a given transfer function. Specifically, the “controllable canon-
ical form” and “observable canonical form” have the same coefficients as the tf representation, and therefore suffer from
the same numerical errors.

Second-order sections representation

The sos format is a single 2D array of shape (n_sections, 6), representing a sequence of second-order transfer
functions which, when cascaded in series, realize a higher-order filter withminimal numerical error. Each row corresponds
to a second-order tf representation, with the first three columns providing the numerator coefficients and the last three
providing the denominator coefficients:

[b0, b1, b2, a0, a1, a2]

The coefficients are typically normalized such that a0 is always 1. The section order is usually not important with floating-
point computation; the filter output will be the same regardless.

Filter transformations

The IIR filter design functions first generate a prototype analog lowpass filter with a normalized cutoff frequency of 1
rad/sec. This is then transformed into other frequencies and band types using the following substitutions:

Type Transformation
lp2lp s→ s

ω0

lp2hp s→ ω0

s

lp2bp s→ s2+ω0
2

s·BW

lp2bs s→ s·BW
s2+ω0

2

Here, ω0 is the new cutoff or center frequency, and BW is the bandwidth. These preserve symmetry on a logarithmic
frequency axis.
To convert the transformed analog filter into a digital filter, the bilinear transform is used, which makes the following
substitution:

s→ 2

T

z − 1

z + 1
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where T is the sampling time (the inverse of the sampling frequency).

Other filters
The signal processing package provides many more filters as well.

Median Filter

A median filter is commonly applied when noise is markedly non-Gaussian or when it is desired to preserve edges. The
median filter works by sorting all of the array pixel values in a rectangular region surrounding the point of interest. The
sample median of this list of neighborhood pixel values is used as the value for the output array. The sample median
is the middle array value in a sorted list of neighborhood values. If there are an even number of elements in the neigh-
borhood, then the average of the middle two values is used as the median. A general purpose median filter that works
on N-dimensional arrays is medfilt . A specialized version that works only for two-dimensional arrays is available as
medfilt2d .

Order Filter

A median filter is a specific example of a more general class of filters called order filters. To compute the output at a
particular pixel, all order filters use the array values in a region surrounding that pixel. These array values are sorted and
then one of them is selected as the output value. For the median filter, the sample median of the list of array values is
used as the output. A general order filter allows the user to select which of the sorted values will be used as the output.
So, for example one could choose to pick the maximum in the list or the minimum. The order filter takes an additional
argument besides the input array and the region mask that specifies which of the elements in the sorted list of neighbor
array values should be used as the output. The command to perform an order filter is order_filter.

Wiener filter

The Wiener filter is a simple deblurring filter for denoising images. This is not the Wiener filter commonly described in
image reconstruction problems but instead it is a simple, local-mean filter. Let x be the input signal, then the output is

y =

{
σ2

σ2
x
mx +

(
1− σ2

σ2
x

)
x σ2

x ≥ σ2,

mx σ2
x < σ2,

wheremx is the local estimate of the mean and σ2
x is the local estimate of the variance. The window for these estimates

is an optional input parameter (default is 3× 3 ). The parameter σ2 is a threshold noise parameter. If σ is not given then
it is estimated as the average of the local variances.

Hilbert filter

The Hilbert transform constructs the complex-valued analytic signal from a real signal. For example if x = cosωn then
y = hilbert (x) would return (except near the edges) y = exp (jωn) . In the frequency domain, the hilbert transform
performs

Y = X ·H

whereH is 2 for positive frequencies, 0 for negative frequencies and 1 for zero-frequencies.

304 Chapter 4. Tutorial



SciPy Reference Guide, Release 1.3.1

Analog Filter Design
The functions iirdesign, iirfilter, and the filter design functions for specific filter types (e.g. ellip) all have
a flag analog which allows design of analog filters as well.
The example below designs an analog (IIR) filter, obtains via tf2zpk the poles and zeros and plots them in the complex
s-plane. The zeros at ω ≈ 150 and ω ≈ 300 can be clearly seen in the amplitude response.

>>> import numpy as np
>>> import scipy.signal as signal
>>> import matplotlib.pyplot as plt

>>> b, a = signal.iirdesign(wp=100, ws=200, gpass=2.0, gstop=40., analog=True)
>>> w, h = signal.freqs(b, a)

>>> plt.title('Analog filter frequency response')
>>> plt.plot(w, 20*np.log10(np.abs(h)))
>>> plt.ylabel('Amplitude Response [dB]')
>>> plt.xlabel('Frequency')
>>> plt.grid()
>>> plt.show()
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>>> z, p, k = signal.tf2zpk(b, a)

>>> plt.plot(np.real(z), np.imag(z), 'xb')
>>> plt.plot(np.real(p), np.imag(p), 'or')
>>> plt.legend(['Zeros', 'Poles'], loc=2)

>>> plt.title('Pole / Zero Plot')
>>> plt.ylabel('Real')
>>> plt.xlabel('Imaginary')
>>> plt.grid()
>>> plt.show()
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Spectral Analysis

Periodogram Measurements
The scipy function periodogram provides a method to estimate the spectral density using the periodogram method.
The example below calculates the periodogram of a sine signal in white Gaussian noise.

>>> import numpy as np
>>> import scipy.signal as signal
>>> import matplotlib.pyplot as plt

>>> fs = 10e3
>>> N = 1e5
>>> amp = 2*np.sqrt(2)
>>> freq = 1270.0
>>> noise_power = 0.001 * fs / 2
>>> time = np.arange(N) / fs
>>> x = amp*np.sin(2*np.pi*freq*time)
>>> x += np.random.normal(scale=np.sqrt(noise_power), size=time.shape)

>>> f, Pper_spec = signal.periodogram(x, fs, 'flattop', scaling='spectrum')

>>> plt.semilogy(f, Pper_spec)
>>> plt.xlabel('frequency [Hz]')
>>> plt.ylabel('PSD')
>>> plt.grid()
>>> plt.show()

Spectral Analysis using Welch’s Method
An improved method, especially with respect to noise immunity, is Welch’s method which is implemented by the scipy
function welch.
The example below estimates the spectrum using Welch’s method and uses the same parameters as the example above.
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Note the much smoother noise floor of the spectrogram.

>>> import numpy as np
>>> import scipy.signal as signal
>>> import matplotlib.pyplot as plt

>>> fs = 10e3
>>> N = 1e5
>>> amp = 2*np.sqrt(2)
>>> freq = 1270.0
>>> noise_power = 0.001 * fs / 2
>>> time = np.arange(N) / fs
>>> x = amp*np.sin(2*np.pi*freq*time)
>>> x += np.random.normal(scale=np.sqrt(noise_power), size=time.shape)

>>> f, Pwelch_spec = signal.welch(x, fs, scaling='spectrum')

>>> plt.semilogy(f, Pwelch_spec)
>>> plt.xlabel('frequency [Hz]')
>>> plt.ylabel('PSD')
>>> plt.grid()
>>> plt.show()

Lomb-Scargle Periodograms (lombscargle)
Least-squares spectral analysis (LSSA)12 is a method of estimating a frequency spectrum, based on a least squares fit of
sinusoids to data samples, similar to Fourier analysis. Fourier analysis, the most used spectral method in science, generally
boosts long-periodic noise in long gapped records; LSSA mitigates such problems.
The Lomb-Scargle method performs spectral analysis on unevenly sampled data and is known to be a powerful way to
find, and test the significance of, weak periodic signals.

1 N.R. Lomb “Least-squares frequency analysis of unequally spaced data”, Astrophysics and Space Science, vol 39, pp. 447-462, 1976
2 J.D. Scargle “Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data”, The Astrophysical

Journal, vol 263, pp. 835-853, 1982
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For a time series comprisingNt measurementsXj ≡ X(tj) sampled at times tj where (j = 1, . . . , Nt), assumed to have
been scaled and shifted such that its mean is zero and its variance is unity, the normalized Lomb-Scargle periodogram at
frequency f is

Pn(f)
1

2


[∑Nt

j Xj cosω(tj − τ)
]2

∑Nt

j cos2 ω(tj − τ)
+

[∑Nt

j Xj sinω(tj − τ)
]2

∑Nt

j sin2 ω(tj − τ)

 .

Here, ω ≡ 2πf is the angular frequency. The frequency dependent time offset τ is given by

tan 2ωτ =

∑Nt

j sin 2ωtj∑Nt

j cos 2ωtj
.

The lombscargle function calculates the periodogram using a slightly modified algorithm due to Townsend3 which
allows the periodogram to be calculated using only a single pass through the input arrays for each frequency.
The equation is refactored as:

Pn(f) =
1

2

[
(cτXC + sτXS)

2

c2τCC + 2cτsτCS + s2τSS
+

(cτXS − sτXC)
2

c2τSS − 2cτsτCS + s2τCC

]
and

tan 2ωτ =
2CS

CC − SS
.

Here,

cτ = cosωτ, sτ = sinωτ

3 R.H.D. Townsend, “Fast calculation of the Lomb-Scargle periodogram using graphics processing units.”, The Astrophysical Journal Supplement
Series, vol 191, pp. 247-253, 2010
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while the sums are

XC =

Nt∑
j

Xj cosωtj

XS =

Nt∑
j

Xj sinωtj

CC =

Nt∑
j

cos2 ωtj

SS =

Nt∑
j

sin2 ωtj

CS =

Nt∑
j

cosωtj sinωtj .

This requiresNf (2Nt + 3) trigonometric function evaluations giving a factor of ∼ 2 speed increase over the straightfor-
ward implementation.

Detrend

SciPy provides the function detrend to remove a constant or linear trend in a data series in order to see effect of higher
order.
The example below removes the constant and linear trend of a 2-nd order polynomial time series and plots the remaining
signal components.

>>> import numpy as np
>>> import scipy.signal as signal
>>> import matplotlib.pyplot as plt

>>> t = np.linspace(-10, 10, 20)
>>> y = 1 + t + 0.01*t**2
>>> yconst = signal.detrend(y, type='constant')
>>> ylin = signal.detrend(y, type='linear')

>>> plt.plot(t, y, '-rx')
>>> plt.plot(t, yconst, '-bo')
>>> plt.plot(t, ylin, '-k+')
>>> plt.grid()
>>> plt.legend(['signal', 'const. detrend', 'linear detrend'])
>>> plt.show()

References

Some further reading and related software:

4.1.9 Linear Algebra (scipy.linalg)

When SciPy is built using the optimized ATLAS LAPACK and BLAS libraries, it has very fast linear algebra capabilities.
If you dig deep enough, all of the raw lapack and blas libraries are available for your use for even more speed. In this
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section, some easier-to-use interfaces to these routines are described.
All of these linear algebra routines expect an object that can be converted into a 2-dimensional array. The output of these
routines is also a two-dimensional array.

scipy.linalg vs numpy.linalg

scipy.linalg contains all the functions in numpy.linalg. plus some other more advanced ones not contained in
numpy.linalg.
Another advantage of using scipy.linalg over numpy.linalg is that it is always compiled with BLAS/LAPACK
support, while for numpy this is optional. Therefore, the scipy version might be faster depending on how numpy was
installed.
Therefore, unless you don’t want to add scipy as a dependency to your numpy program, use scipy.linalg instead
of numpy.linalg.

numpy.matrix vs 2D numpy.ndarray

The classes that represent matrices, and basic operations such as matrix multiplications and transpose are a part of numpy.
For convenience, we summarize the differences between numpy.matrix and numpy.ndarray here.
numpy.matrix is matrix class that has a more convenient interface than numpy.ndarray for matrix operations.
This class supports for example MATLAB-like creation syntax via the semicolon, has matrix multiplication as default for
the * operator, and contains I and T members that serve as shortcuts for inverse and transpose:

>>> import numpy as np
>>> A = np.mat('[1 2;3 4]')
>>> A
matrix([[1, 2],

[3, 4]])
>>> A.I
matrix([[-2. , 1. ],

[ 1.5, -0.5]])
(continues on next page)
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(continued from previous page)
>>> b = np.mat('[5 6]')
>>> b
matrix([[5, 6]])
>>> b.T
matrix([[5],

[6]])
>>> A*b.T
matrix([[17],

[39]])

Despite its convenience, the use of the numpy.matrix class is discouraged, since it adds nothing that cannot be ac-
complished with 2D numpy.ndarray objects, and may lead to a confusion of which class is being used. For example,
the above code can be rewritten as:

>>> import numpy as np
>>> from scipy import linalg
>>> A = np.array([[1,2],[3,4]])
>>> A
array([[1, 2],

[3, 4]])
>>> linalg.inv(A)
array([[-2. , 1. ],

[ 1.5, -0.5]])
>>> b = np.array([[5,6]]) #2D array
>>> b
array([[5, 6]])
>>> b.T
array([[5],

[6]])
>>> A*b #not matrix multiplication!
array([[ 5, 12],

[15, 24]])
>>> A.dot(b.T) #matrix multiplication
array([[17],

[39]])
>>> b = np.array([5,6]) #1D array
>>> b
array([5, 6])
>>> b.T #not matrix transpose!
array([5, 6])
>>> A.dot(b) #does not matter for multiplication
array([17, 39])

scipy.linalg operations can be applied equally to numpy.matrix or to 2D numpy.ndarray objects.

Basic routines

Finding Inverse
The inverse of a matrixA is the matrix B such thatAB = I where I is the identity matrix consisting of ones down the
main diagonal. Usually B is denoted B = A−1 . In SciPy, the matrix inverse of the NumPy array, A, is obtained using
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linalg.inv (A) , or using A.I if A is a Matrix. For example, let

A =

 1 3 5
2 5 1
2 3 8


then

A−1 =
1

25

 −37 9 22
14 2 −9
4 −3 1

 =

 −1.48 0.36 0.88
0.56 0.08 −0.36
0.16 −0.12 0.04

 .
The following example demonstrates this computation in SciPy

>>> import numpy as np
>>> from scipy import linalg
>>> A = np.array([[1,3,5],[2,5,1],[2,3,8]])
>>> A
array([[1, 3, 5],

[2, 5, 1],
[2, 3, 8]])

>>> linalg.inv(A)
array([[-1.48, 0.36, 0.88],

[ 0.56, 0.08, -0.36],
[ 0.16, -0.12, 0.04]])

>>> A.dot(linalg.inv(A)) #double check
array([[ 1.00000000e+00, -1.11022302e-16, -5.55111512e-17],

[ 3.05311332e-16, 1.00000000e+00, 1.87350135e-16],
[ 2.22044605e-16, -1.11022302e-16, 1.00000000e+00]])

Solving linear system
Solving linear systems of equations is straightforward using the scipy commandlinalg.solve. This command expects
an input matrix and a right-hand-side vector. The solution vector is then computed. An option for entering a symmetric
matrix is offered which can speed up the processing when applicable. As an example, suppose it is desired to solve the
following simultaneous equations:

x+ 3y + 5z = 10

2x+ 5y + z = 8

2x+ 3y + 8z = 3

We could find the solution vector using a matrix inverse: x
y
z

 =

 1 3 5
2 5 1
2 3 8

−1  10
8
3

 =
1

25

 −232
129
19

 =

 −9.28
5.16
0.76

 .
However, it is better to use the linalg.solve command which can be faster and more numerically stable. In this case it
however gives the same answer as shown in the following example:

>>> import numpy as np
>>> from scipy import linalg
>>> A = np.array([[1, 2], [3, 4]])
>>> A
array([[1, 2],

(continues on next page)

312 Chapter 4. Tutorial



SciPy Reference Guide, Release 1.3.1

(continued from previous page)
[3, 4]])

>>> b = np.array([[5], [6]])
>>> b
array([[5],

[6]])
>>> linalg.inv(A).dot(b) # slow
array([[-4. ],

[ 4.5]])
>>> A.dot(linalg.inv(A).dot(b)) - b # check
array([[ 8.88178420e-16],

[ 2.66453526e-15]])
>>> np.linalg.solve(A, b) # fast
array([[-4. ],

[ 4.5]])
>>> A.dot(np.linalg.solve(A, b)) - b # check
array([[ 0.],

[ 0.]])

Finding Determinant
The determinant of a square matrix A is often denoted |A| and is a quantity often used in linear algebra. Suppose aij
are the elements of the matrixA and letMij = |Aij | be the determinant of the matrix left by removing the ith row and
jth column fromA . Then for any row i,

|A| =
∑
j

(−1)
i+j

aijMij .

This is a recursive way to define the determinant where the base case is defined by accepting that the determinant of a
1× 1 matrix is the only matrix element. In SciPy the determinant can be calculated with linalg.det . For example,
the determinant of

A =

 1 3 5
2 5 1
2 3 8


is

|A| = 1

∣∣∣∣ 5 1
3 8

∣∣∣∣− 3

∣∣∣∣ 2 1
2 8

∣∣∣∣+ 5

∣∣∣∣ 2 5
2 3

∣∣∣∣
= 1 (5 · 8− 3 · 1)− 3 (2 · 8− 2 · 1) + 5 (2 · 3− 2 · 5) = −25.

In SciPy this is computed as shown in this example:

>>> import numpy as np
>>> from scipy import linalg
>>> A = np.array([[1,2],[3,4]])
>>> A
array([[1, 2],

[3, 4]])
>>> linalg.det(A)
-2.0

Computing norms
Matrix and vector norms can also be computed with SciPy. A wide range of norm definitions are available using different
parameters to the order argument of linalg.norm . This function takes a rank-1 (vectors) or a rank-2 (matrices) array
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and an optional order argument (default is 2). Based on these inputs a vector or matrix norm of the requested order is
computed.
For vector x , the order parameter can be any real number including inf or -inf. The computed norm is

∥x∥ =


max |xi| ord = inf
min |xi| ord = −inf(∑
i |xi|

ord
)1/ord

|ord| <∞.

For matrixA the only valid values for norm are ±2,±1, ± inf, and ‘fro’ (or ‘f’) Thus,

∥A∥ =



maxi
∑

j |aij | ord = inf
mini

∑
j |aij | ord = −inf

maxj
∑

i |aij | ord = 1
minj

∑
i |aij | ord = −1

maxσi ord = 2
minσi ord = −2√

trace (AHA) ord = ’fro’
where σi are the singular values ofA .
Examples:

>>> import numpy as np
>>> from scipy import linalg
>>> A=np.array([[1,2],[3,4]])
>>> A
array([[1, 2],

[3, 4]])
>>> linalg.norm(A)
5.4772255750516612
>>> linalg.norm(A,'fro') # frobenius norm is the default
5.4772255750516612
>>> linalg.norm(A,1) # L1 norm (max column sum)
6
>>> linalg.norm(A,-1)
4
>>> linalg.norm(A,np.inf) # L inf norm (max row sum)
7

Solving linear least-squares problems and pseudo-inverses
Linear least-squares problems occur in many branches of applied mathematics. In this problem a set of linear scaling
coefficients is sought that allow a model to fit data. In particular it is assumed that data yi is related to data xi through a
set of coefficients cj and model functions fj (xi) via the model

yi =
∑
j

cjfj (xi) + ϵi

where ϵi represents uncertainty in the data. The strategy of least squares is to pick the coefficients cj to minimize

J (c) =
∑
i

∣∣∣∣∣∣yi −
∑
j

cjfj (xi)

∣∣∣∣∣∣
2

.

Theoretically, a global minimum will occur when

∂J

∂c∗n
= 0 =

∑
i

yi −∑
j

cjfj (xi)

 (−f∗n (xi))
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or ∑
j

cj
∑
i

fj (xi) f
∗
n (xi) =

∑
i

yif
∗
n (xi)

AHAc = AHy

where

{A}ij = fj (xi) .

WhenAHA is invertible, then

c =
(
AHA

)−1
AHy = A†y

whereA† is called the pseudo-inverse ofA. Notice that using this definition ofA the model can be written

y = Ac+ ϵ.

The command linalg.lstsq will solve the linear least squares problem for c givenA and y . In addition linalg.
pinv or linalg.pinv2 (uses a different method based on singular value decomposition) will findA† givenA.
The following example and figure demonstrate the use of linalg.lstsq and linalg.pinv for solving a data-fitting
problem. The data shown below were generated using the model:

yi = c1e
−xi + c2xi

where xi = 0.1i for i = 1 . . . 10 , c1 = 5 , and c2 = 4. Noise is added to yi and the coefficients c1 and c2 are estimated
using linear least squares.

>>> import numpy as np
>>> from scipy import linalg
>>> import matplotlib.pyplot as plt

>>> c1, c2 = 5.0, 2.0
>>> i = np.r_[1:11]
>>> xi = 0.1*i
>>> yi = c1*np.exp(-xi) + c2*xi
>>> zi = yi + 0.05 * np.max(yi) * np.random.randn(len(yi))

>>> A = np.c_[np.exp(-xi)[:, np.newaxis], xi[:, np.newaxis]]
>>> c, resid, rank, sigma = linalg.lstsq(A, zi)

>>> xi2 = np.r_[0.1:1.0:100j]
>>> yi2 = c[0]*np.exp(-xi2) + c[1]*xi2

>>> plt.plot(xi,zi,'x',xi2,yi2)
>>> plt.axis([0,1.1,3.0,5.5])
>>> plt.xlabel('$x_i$')
>>> plt.title('Data fitting with linalg.lstsq')
>>> plt.show()

Generalized inverse
The generalized inverse is calculated using the command linalg.pinv or linalg.pinv2. These two commands
differ in how they compute the generalized inverse. The first uses the linalg.lstsq algorithm while the second uses singular
value decomposition. LetA be anM ×N matrix, then ifM > N the generalized inverse is

A† =
(
AHA

)−1
AH
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while ifM < N matrix the generalized inverse is

A# = AH
(
AAH

)−1
.

In both cases forM = N , then

A† = A# = A−1

as long asA is invertible.

Decompositions

In many applications it is useful to decompose a matrix using other representations. There are several decompositions
supported by SciPy.

Eigenvalues and eigenvectors
The eigenvalue-eigenvector problem is one of the most commonly employed linear algebra operations. In one popular
form, the eigenvalue-eigenvector problem is to find for some square matrixA scalars λ and corresponding vectors v such
that

Av = λv.

For an N ×N matrix, there are N (not necessarily distinct) eigenvalues — roots of the (characteristic) polynomial

|A− λI| = 0.

The eigenvectors, v , are also sometimes called right eigenvectors to distinguish them from another set of left eigenvectors
that satisfy

vH
L A = λvH

L

or

AHvL = λ∗vL.
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With it’s default optional arguments, the command linalg.eig returns λ and v. However, it can also return vL and
just λ by itself ( linalg.eigvals returns just λ as well).
In addition, linalg.eig can also solve the more general eigenvalue problem

Av = λBv

AHvL = λ∗BHvL

for square matrices A and B. The standard eigenvalue problem is an example of the general eigenvalue problem for
B = I.When a generalized eigenvalue problem can be solved, then it provides a decomposition ofA as

A = BVΛV−1

whereV is the collection of eigenvectors into columns and Λ is a diagonal matrix of eigenvalues.
By definition, eigenvectors are only defined up to a constant scale factor. In SciPy, the scaling factor for the eigenvectors
is chosen so that ∥v∥2 =

∑
i v

2
i = 1.

As an example, consider finding the eigenvalues and eigenvectors of the matrix

A =

 1 5 2
2 4 1
3 6 2

 .
The characteristic polynomial is

|A− λI| = (1− λ) [(4− λ) (2− λ)− 6]−
5 [2 (2− λ)− 3] + 2 [12− 3 (4− λ)]

= −λ3 + 7λ2 + 8λ− 3.

The roots of this polynomial are the eigenvalues ofA :

λ1 = 7.9579

λ2 = −1.2577

λ3 = 0.2997.

The eigenvectors corresponding to each eigenvalue can be found using the original equation. The eigenvectors associated
with these eigenvalues can then be found.

>>> import numpy as np
>>> from scipy import linalg
>>> A = np.array([[1, 2], [3, 4]])
>>> la, v = linalg.eig(A)
>>> l1, l2 = la
>>> print(l1, l2) # eigenvalues
(-0.3722813232690143+0j) (5.372281323269014+0j)
>>> print(v[:, 0]) # first eigenvector
[-0.82456484 0.56576746]
>>> print(v[:, 1]) # second eigenvector
[-0.41597356 -0.90937671]
>>> print(np.sum(abs(v**2), axis=0)) # eigenvectors are unitary
[1. 1.]
>>> v1 = np.array(v[:, 0]).T
>>> print(linalg.norm(A.dot(v1) - l1*v1)) # check the computation
3.23682852457e-16
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Singular value decomposition
Singular Value Decomposition (SVD) can be thought of as an extension of the eigenvalue problem to matrices that are
not square. Let A be anM ×N matrix withM and N arbitrary. The matrices AHA and AAH are square hermitian
matrices1 of sizeN ×N andM ×M respectively. It is known that the eigenvalues of square hermitian matrices are real
and non-negative. In addition, there are at mostmin (M,N) identical non-zero eigenvalues ofAHA andAAH . Define
these positive eigenvalues as σ2

i . The square-root of these are called singular values ofA. The eigenvectors ofAHA are
collected by columns into an N ×N unitary2 matrixV while the eigenvectors ofAAH are collected by columns in the
unitary matrix U , the singular values are collected in an M × N zero matrix Σ with main diagonal entries set to the
singular values. Then

A = UΣVH

is the singular-value decomposition of A. Every matrix has a singular value decomposition. Sometimes, the singular
values are called the spectrum ofA. The command linalg.svd will returnU ,VH , and σi as an array of the singular
values. To obtain the matrix Σ use linalg.diagsvd. The following example illustrates the use of linalg.svd .

>>> import numpy as np
>>> from scipy import linalg
>>> A = np.array([[1,2,3],[4,5,6]])
>>> A
array([[1, 2, 3],

[4, 5, 6]])
>>> M,N = A.shape
>>> U,s,Vh = linalg.svd(A)
>>> Sig = linalg.diagsvd(s,M,N)
>>> U, Vh = U, Vh
>>> U
array([[-0.3863177 , -0.92236578],

[-0.92236578, 0.3863177 ]])
>>> Sig
array([[ 9.508032 , 0. , 0. ],

[ 0. , 0.77286964, 0. ]])
>>> Vh
array([[-0.42866713, -0.56630692, -0.7039467 ],

[ 0.80596391, 0.11238241, -0.58119908],
[ 0.40824829, -0.81649658, 0.40824829]])

>>> U.dot(Sig.dot(Vh)) #check computation
array([[ 1., 2., 3.],

[ 4., 5., 6.]])

LU decomposition
The LU decomposition finds a representation for theM ×N matrixA as

A = PLU

where P is an M ×M permutation matrix (a permutation of the rows of the identity matrix), L is in M × K lower
triangular or trapezoidal matrix ( K = min (M,N) ) with unit-diagonal, and U is an upper triangular or trapezoidal
matrix. The SciPy command for this decomposition is linalg.lu .
Such a decomposition is often useful for solving many simultaneous equations where the left-hand-side does not change
but the right hand side does. For example, suppose we are going to solve

Axi = bi

1 A hermitian matrixD satisfiesDH = D.
2 A unitary matrixD satisfiesDHD = I = DDH so thatD−1 = DH .
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for many different bi . The LU decomposition allows this to be written as

PLUxi = bi.

Because L is lower-triangular, the equation can be solved for Uxi and finally xi very rapidly using forward- and back-
substitution. An initial time spent factoringA allows for very rapid solution of similar systems of equations in the future.
If the intent for performing LU decomposition is for solving linear systems then the command linalg.lu_factor
should be used followed by repeated applications of the command linalg.lu_solve to solve the system for each
new right-hand-side.

Cholesky decomposition
Cholesky decomposition is a special case of LU decomposition applicable to Hermitian positive definite matrices. When
A = AH and xHAx ≥ 0 for all x , then decompositions ofA can be found so that

A = UHU

A = LLH

whereL is lower-triangular andU is upper triangular. Notice thatL = UH . The command linalg.cholesky com-
putes the cholesky factorization. For using cholesky factorization to solve systems of equations there are also linalg.
cho_factor and linalg.cho_solve routines that work similarly to their LU decomposition counterparts.

QR decomposition
The QR decomposition (sometimes called a polar decomposition) works for any M × N array and finds an M ×M
unitary matrixQ and anM ×N upper-trapezoidal matrixR such that

A = QR.

Notice that if the SVD ofA is known then the QR decomposition can be found

A = UΣVH = QR

implies thatQ = U andR = ΣVH . Note, however, that in SciPy independent algorithms are used to find QR and SVD
decompositions. The command for QR decomposition is linalg.qr .

Schur decomposition
For a square N ×N matrix,A , the Schur decomposition finds (not-necessarily unique) matrices T and Z such that

A = ZTZH

where Z is a unitary matrix andT is either upper-triangular or quasi-upper triangular depending on whether or not a real
schur form or complex schur form is requested. For a real schur form bothT andZ are real-valued whenA is real-valued.
When A is a real-valued matrix the real schur form is only quasi-upper triangular because 2 × 2 blocks extrude from
the main diagonal corresponding to any complex- valued eigenvalues. The command linalg.schur finds the Schur
decomposition while the command linalg.rsf2csf converts T and Z from a real Schur form to a complex Schur
form. The Schur form is especially useful in calculating functions of matrices.
The following example illustrates the schur decomposition:

>>> from scipy import linalg
>>> A = np.mat('[1 3 2; 1 4 5; 2 3 6]')
>>> T, Z = linalg.schur(A)
>>> T1, Z1 = linalg.schur(A, 'complex')
>>> T2, Z2 = linalg.rsf2csf(T, Z)
>>> T

(continues on next page)
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(continued from previous page)
array([[ 9.90012467, 1.78947961, -0.65498528],

[ 0. , 0.54993766, -1.57754789],
[ 0. , 0.51260928, 0.54993766]])

>>> T2
array([[ 9.90012467+0.00000000e+00j, -0.32436598+1.55463542e+00j,

-0.88619748+5.69027615e-01j],
[ 0. +0.00000000e+00j, 0.54993766+8.99258408e-01j,

1.06493862+3.05311332e-16j],
[ 0. +0.00000000e+00j, 0. +0.00000000e+00j,

0.54993766-8.99258408e-01j]])
>>> abs(T1 - T2) # different
array([[ 1.06604538e-14, 2.06969555e+00, 1.69375747e+00], # may vary

[ 0.00000000e+00, 1.33688556e-15, 4.74146496e-01],
[ 0.00000000e+00, 0.00000000e+00, 1.13220977e-15]])

>>> abs(Z1 - Z2) # different
array([[ 0.06833781, 0.88091091, 0.79568503], # may vary

[ 0.11857169, 0.44491892, 0.99594171],
[ 0.12624999, 0.60264117, 0.77257633]])

>>> T, Z, T1, Z1, T2, Z2 = map(np.mat,(T,Z,T1,Z1,T2,Z2))
>>> abs(A - Z*T*Z.H) # same
matrix([[ 5.55111512e-16, 1.77635684e-15, 2.22044605e-15],

[ 0.00000000e+00, 3.99680289e-15, 8.88178420e-16],
[ 1.11022302e-15, 4.44089210e-16, 3.55271368e-15]])

>>> abs(A - Z1*T1*Z1.H) # same
matrix([[ 4.26993904e-15, 6.21793362e-15, 8.00007092e-15],

[ 5.77945386e-15, 6.21798014e-15, 1.06653681e-14],
[ 7.16681444e-15, 8.90271058e-15, 1.77635764e-14]])

>>> abs(A - Z2*T2*Z2.H) # same
matrix([[ 6.02594127e-16, 1.77648931e-15, 2.22506907e-15],

[ 2.46275555e-16, 3.99684548e-15, 8.91642616e-16],
[ 8.88225111e-16, 8.88312432e-16, 4.44104848e-15]])

Interpolative Decomposition
scipy.linalg.interpolative contains routines for computing the interpolative decomposition (ID) of a matrix.
For a matrix A ∈ Cm×n of rank k ≤ min{m,n} this is a factorization

AΠ =
[
AΠ1 AΠ2

]
= AΠ1

[
I T

]
,

whereΠ = [Π1,Π2] is a permutation matrix withΠ1 ∈ {0, 1}n×k, i.e.,AΠ2 = AΠ1T . This can equivalently be written
as A = BP , where B = AΠ1 and P = [I, T ]ΠT are the skeleton and interpolation matrices, respectively.
See also:
scipy.linalg.interpolative— for more information.

Matrix Functions

Consider the function f (x) with Taylor series expansion

f (x) =

∞∑
k=0

f (k) (0)

k!
xk.
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A matrix function can be defined using this Taylor series for the square matrixA as

f (A) =

∞∑
k=0

f (k) (0)

k!
Ak.

While, this serves as a useful representation of a matrix function, it is rarely the best way to calculate a matrix function.

Exponential and logarithm functions
The matrix exponential is one of the more common matrix functions. The preferred method for implementing the matrix
exponential is to use scaling and a Padé approximation for ex . This algorithm is implemented as linalg.expm .
The inverse of the matrix exponential is the matrix logarithm defined as the inverse of the matrix exponential.

A ≡ exp (log (A)) .

The matrix logarithm can be obtained with linalg.logm .

Trigonometric functions
The trigonometric functions sin , cos , and tan are implemented for matrices in linalg.sinm, linalg.cosm, and
linalg.tanm respectively. The matrix sin and cosine can be defined using Euler’s identity as

sin (A) =
ejA − e−jA

2j

cos (A) =
ejA + e−jA

2
.

The tangent is

tan (x) =
sin (x)

cos (x)
= [cos (x)]

−1
sin (x)

and so the matrix tangent is defined as

[cos (A)]
−1

sin (A) .

Hyperbolic trigonometric functions
The hyperbolic trigonometric functions sinh , cosh , and tanh can also be defined for matrices using the familiar defini-
tions:

sinh (A) =
eA − e−A

2

cosh (A) =
eA + e−A

2

tanh (A) = [cosh (A)]
−1

sinh (A) .

These matrix functions can be found using linalg.sinhm, linalg.coshm , and linalg.tanhm.

Arbitrary function
Finally, any arbitrary function that takes one complex number and returns a complex number can be called as a matrix
function using the command linalg.funm. This command takes the matrix and an arbitrary Python function. It then
implements an algorithm from Golub and Van Loan’s book “Matrix Computations” to compute the function applied to
the matrix using a Schur decomposition. Note that the function needs to accept complex numbers as input in order to work
with this algorithm. For example the following code computes the zeroth-order Bessel function applied to a matrix.
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>>> from scipy import special, random, linalg
>>> np.random.seed(1234)
>>> A = random.rand(3, 3)
>>> B = linalg.funm(A, lambda x: special.jv(0, x))
>>> A
array([[ 0.19151945, 0.62210877, 0.43772774],

[ 0.78535858, 0.77997581, 0.27259261],
[ 0.27646426, 0.80187218, 0.95813935]])

>>> B
array([[ 0.86511146, -0.19676526, -0.13856748],

[-0.17479869, 0.7259118 , -0.16606258],
[-0.19212044, -0.32052767, 0.73590704]])

>>> linalg.eigvals(A)
array([ 1.73881510+0.j, -0.20270676+0.j, 0.39352627+0.j])
>>> special.jv(0, linalg.eigvals(A))
array([ 0.37551908+0.j, 0.98975384+0.j, 0.96165739+0.j])
>>> linalg.eigvals(B)
array([ 0.37551908+0.j, 0.98975384+0.j, 0.96165739+0.j])

Note how, by virtue of how matrix analytic functions are defined, the Bessel function has acted on the matrix eigenvalues.

Special matrices

SciPy and NumPy provide several functions for creating special matrices that are frequently used in engineering and
science.

Type Function Description
block diagonal scipy.linalg.block_diag Create a block diagonal matrix from the provided arrays.
circulant scipy.linalg.circulant Construct a circulant matrix.
companion scipy.linalg.companion Create a companion matrix.
Hadamard scipy.linalg.hadamard Construct a Hadamard matrix.
Hankel scipy.linalg.hankel Construct a Hankel matrix.
Hilbert scipy.linalg.hilbert Construct a Hilbert matrix.
Inverse Hilbert scipy.linalg.invhilbert Construct the inverse of a Hilbert matrix.
Leslie scipy.linalg.leslie Create a Leslie matrix.
Pascal scipy.linalg.pascal Create a Pascal matrix.
Toeplitz scipy.linalg.toeplitz Construct a Toeplitz matrix.
Van der Monde numpy.vander Generate a Van der Monde matrix.

For examples of the use of these functions, see their respective docstrings.

4.1.10 Sparse Eigenvalue Problems with ARPACK

Introduction

ARPACK1 is a Fortran package which provides routines for quickly finding a few eigenvalues/eigenvectors of large sparse
matrices. In order to find these solutions, it requires only left-multiplication by the matrix in question. This operation
is performed through a reverse-communication interface. The result of this structure is that ARPACK is able to find
eigenvalues and eigenvectors of any linear function mapping a vector to a vector.

1 http://www.caam.rice.edu/software/ARPACK/
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All of the functionality provided in ARPACK is contained within the two high-level interfaces scipy.sparse.
linalg.eigs and scipy.sparse.linalg.eigsh. eigs provides interfaces to find the eigenvalues/vectors
of real or complex nonsymmetric square matrices, while eigsh provides interfaces for real-symmetric or complex-
hermitian matrices.

Basic Functionality

ARPACK can solve either standard eigenvalue problems of the form

Ax = λx

or general eigenvalue problems of the form

Ax = λMx

The power of ARPACK is that it can compute only a specified subset of eigenvalue/eigenvector pairs. This is accomplished
through the keyword which. The following values of which are available:

• which = 'LM' : Eigenvalues with largest magnitude (eigs, eigsh), that is, largest eigenvalues in the euclidean
norm of complex numbers.

• which = 'SM' : Eigenvalues with smallest magnitude (eigs, eigsh), that is, smallest eigenvalues in the
euclidean norm of complex numbers.

• which = 'LR' : Eigenvalues with largest real part (eigs)
• which = 'SR' : Eigenvalues with smallest real part (eigs)
• which = 'LI' : Eigenvalues with largest imaginary part (eigs)
• which = 'SI' : Eigenvalues with smallest imaginary part (eigs)
• which = 'LA' : Eigenvalues with largest algebraic value (eigsh), that is, largest eigenvalues inclusive of any
negative sign.

• which = 'SA' : Eigenvalues with smallest algebraic value (eigsh), that is, smallest eigenvalues inclusive of
any negative sign.

• which = 'BE' : Eigenvalues from both ends of the spectrum (eigsh)
Note that ARPACK is generally better at finding extremal eigenvalues: that is, eigenvalues with large magnitudes. In
particular, using which = 'SM' may lead to slow execution time and/or anomalous results. A better approach is to
use shift-invert mode.

Shift-Invert Mode

Shift invert mode relies on the following observation. For the generalized eigenvalue problem

Ax = λMx

it can be shown that

(A− σM)−1Mx = νx

where

ν =
1

λ− σ
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Examples

Imagine you’d like to find the smallest and largest eigenvalues and the corresponding eigenvectors for a large matrix.
ARPACK can handle many forms of input: dense matrices such as numpy.ndarray instances, sparse matrices
such as scipy.sparse.csr_matrix, or a general linear operator derived from scipy.sparse.linalg.
LinearOperator. For this example, for simplicity, we’ll construct a symmetric, positive-definite matrix.

>>> import numpy as np
>>> from scipy.linalg import eig, eigh
>>> from scipy.sparse.linalg import eigs, eigsh
>>> np.set_printoptions(suppress=True)
>>>
>>> np.random.seed(0)
>>> X = np.random.random((100,100)) - 0.5
>>> X = np.dot(X, X.T) #create a symmetric matrix

We now have a symmetric matrix X with which to test the routines. First compute a standard eigenvalue decomposition
using eigh:

>>> evals_all, evecs_all = eigh(X)

As the dimension of X grows, this routine becomes very slow. Especially if only a few eigenvectors and eigenvalues are
needed, ARPACK can be a better option. First let’s compute the largest eigenvalues (which = 'LM') of X and compare
them to the known results:

>>> evals_large, evecs_large = eigsh(X, 3, which='LM')
>>> print(evals_all[-3:])
[29.1446102 30.05821805 31.19467646]
>>> print(evals_large)
[29.1446102 30.05821805 31.19467646]
>>> print(np.dot(evecs_large.T, evecs_all[:,-3:]))
array([[-1. 0. 0.], # may vary (signs)

[ 0. 1. 0.],
[-0. 0. -1.]])

The results are as expected. ARPACK recovers the desired eigenvalues, and they match the previously known results.
Furthermore, the eigenvectors are orthogonal, as we’d expect. Now let’s attempt to solve for the eigenvalues with smallest
magnitude:

>>> evals_small, evecs_small = eigsh(X, 3, which='SM')
Traceback (most recent call last): # may vary (convergence)
...
scipy.sparse.linalg.eigen.arpack.arpack.ArpackNoConvergence:
ARPACK error -1: No convergence (1001 iterations, 0/3 eigenvectors converged)

Oops. We see that as mentioned above, ARPACK is not quite as adept at finding small eigenvalues. There are a few ways
this problem can be addressed. We could increase the tolerance (tol) to lead to faster convergence:

>>> evals_small, evecs_small = eigsh(X, 3, which='SM', tol=1E-2)
>>> evals_all[:3]
array([0.0003783, 0.00122714, 0.00715878])
>>> evals_small
array([0.00037831, 0.00122714, 0.00715881])
>>> np.dot(evecs_small.T, evecs_all[:,:3])

(continues on next page)
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array([[ 0.99999999 0.00000024 -0.00000049], # may vary (signs)

[-0.00000023 0.99999999 0.00000056],
[ 0.00000031 -0.00000037 0.99999852]])

This works, but we lose the precision in the results. Another option is to increase the maximum number of iterations
(maxiter) from 1000 to 5000:

>>> evals_small, evecs_small = eigsh(X, 3, which='SM', maxiter=5000)
>>> evals_all[:3]
array([0.0003783, 0.00122714, 0.00715878])
>>> evals_small
array([0.0003783, 0.00122714, 0.00715878])
>>> np.dot(evecs_small.T, evecs_all[:,:3])
array([[ 1. 0. 0.], # may vary (signs)

[-0. 1. 0.],
[ 0. 0. -1.]])

We get the results we’d hoped for, but the computation time is much longer. Fortunately, ARPACK contains a mode
that allows quick determination of non-external eigenvalues: shift-invert mode. As mentioned above, this mode involves
transforming the eigenvalue problem to an equivalent problem with different eigenvalues. In this case, we hope to find
eigenvalues near zero, so we’ll choose sigma = 0. The transformed eigenvalues will then satisfy ν = 1/(λ−σ) = 1/λ,
so our small eigenvalues λ become large eigenvalues ν.

>>> evals_small, evecs_small = eigsh(X, 3, sigma=0, which='LM')
>>> evals_all[:3]
array([0.0003783, 0.00122714, 0.00715878])
>>> evals_small
array([0.0003783, 0.00122714, 0.00715878])
>>> np.dot(evecs_small.T, evecs_all[:,:3])
array([[ 1. 0. 0.], # may vary (signs)

[ 0. -1. -0.],
[-0. -0. 1.]])

We get the results we were hoping for, with much less computational time. Note that the transformation from ν → λ
takes place entirely in the background. The user need not worry about the details.
The shift-invert mode provides more than just a fast way to obtain a few small eigenvalues. Say you desire to find internal
eigenvalues and eigenvectors, e.g. those nearest to λ = 1. Simply set sigma = 1 and ARPACK takes care of the rest:

>>> evals_mid, evecs_mid = eigsh(X, 3, sigma=1, which='LM')
>>> i_sort = np.argsort(abs(1. / (1 - evals_all)))[-3:]
>>> evals_all[i_sort]
array([1.16577199, 0.85081388, 1.06642272])
>>> evals_mid
array([0.85081388, 1.06642272, 1.16577199])
>>> print(np.dot(evecs_mid.T, evecs_all[:,i_sort]))
array([[-0. 1. 0.], # may vary (signs)

[-0. -0. 1.],
[ 1. 0. 0.]]

The eigenvalues come out in a different order, but they’re all there. Note that the shift-invert mode requires the internal
solution of a matrix inverse. This is taken care of automatically by eigsh and eigs, but the operation can also be
specified by the user. See the docstring of scipy.sparse.linalg.eigsh and scipy.sparse.linalg.
eigs for details.
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Use of LinearOperator

We consider now the case where you’d like to avoid creating a dense matrix and use scipy.sparse.linalg.
LinearOperator instead. Our first linear operator applies element-wise multiplication between the input vector and
a vector d provided by the user to the operator itself. This operator mimics a diagonal matrix with the elements of
d along the main diagonal and it has the main benefit that the forward and adjoint operations are simple element-wise
multiplications other than matrix-vector multiplications. For a diagonal matrix, we expect the eigenvalues to be equal
to the elements along the main diagonal, in this case d. The eigenvalues and eigenvectors obtained with eigsh are
compared those obtained by using eigh when applied to the dense matrix:

>>> from scipy.sparse.linalg import LinearOperator
>>> class Diagonal(LinearOperator):
... def __init__(self, diag, dtype='float32'):
... self.diag = diag
... self.shape = (len(self.diag), len(self.diag))
... self.dtype = np.dtype(dtype)
... def _matvec(self, x):
... return self.diag*x
... def _rmatvec(self, x):
... return self.diag*x

>>> np.random.seed(0)
>>> N = 100
>>> d = np.random.normal(0, 1, N).astype(np.float64)
>>> D = np.diag(d)
>>> Dop = Diagonal(d, dtype=np.float64)

>>> evals_all, evecs_all = eigh(D)
>>> evals_large, evecs_large = eigsh(Dop, 3, which='LA', maxiter=1e3)
>>> evals_all[-3:]
array([1.9507754 , 2.2408932 , 2.26975462])
>>> evals_large
array([1.9507754 , 2.2408932 , 2.26975462])
>>> print(np.dot(evecs_large.T, evecs_all[:,-3:]))
array([[-1. 0. 0.], # may vary (signs)

[-0. -1. 0.],
[ 0. 0. -1.]]

In this case we have created a quick and easy Diagonal operator. The external library PyLops provides similar capa-
bilities in the Diagonal operator as well as several other operators.
Finally, we consider a linear operator that mimics the application of a first derivative stencil. In this case the operator is
equivalent to a real nonsymmetric matrix. Once again we compare the estimated eigenvalues and eigenvectors with those
from a dense matrix that applies the same first derivative to an input signal:

>>> class FirstDerivative(LinearOperator):
... def __init__(self, N, dtype='float32'):
... self.N = N
... self.shape = (self.N, self.N)
... self.dtype = np.dtype(dtype)
... def _matvec(self, x):
... y = np.zeros(self.N, self.dtype)
... y[1:-1] = (0.5*x[2:]-0.5*x[0:-2])

(continues on next page)

326 Chapter 4. Tutorial

https://pylops.readthedocs.io
https://pylops.readthedocs.io/en/latest/api/generated/pylops.Diagonal.html#pylops.Diagonal


SciPy Reference Guide, Release 1.3.1

(continued from previous page)
... return y
... def _rmatvec(self, x):
... y = np.zeros(self.N, self.dtype)
... y[0:-2] = y[0:-2] - (0.5*x[1:-1])
... y[2:] = y[2:] + (0.5*x[1:-1])
... return y

>>> N = 21
>>> D = np.diag(0.5*np.ones(N-1), k=1) - np.diag(0.5*np.ones(N-1), k=-1)
>>> D[0] = D[-1] = 0 # take away edge effects
>>> Dop = FirstDerivative(N, dtype=np.float64)

>>> evals_all, evecs_all = eig(D)
>>> evals_large, evecs_large = eigs(Dop, 4, which='LI')
>>> evals_all_imag = evals_all.imag
>>> isort_imag = np.argsort(np.abs(evals_all_imag))
>>> evals_all_imag = evals_all_imag[isort_imag]
>>> evals_large_imag = evals_large.imag
>>> isort_imag = np.argsort(np.abs(evals_large_imag))
>>> evals_large_imag = evals_large_imag[isort_imag]
>>> evals_all_imag[-4:]
array([-0.95105652, 0.95105652, -0.98768834, 0.98768834])
>>> evals_large_imag
array([0.95105652, -0.95105652, 0.98768834, -0.98768834])

Note that the eigenvalues of this operator are all imaginary. Moreover, the keyword which='LI' of scipy.
sparse.linalg.eigs produces the eigenvalues with largest absolute imaginary part (both positive and negative).
Again, a more advanced implementation of the first derivative operator is available in the PyLops library under the name
of FirstDerivative operator.

References

4.1.11 Compressed Sparse Graph Routines (scipy.sparse.csgraph)

Example: Word Ladders

A Word Ladder is a word game invented by Lewis Carroll in which players find paths between words by switching one
letter at a time. For example, one can link “ape” and “man” in the following way:

ape → apt → ait → bit → big → bag → mag → man

Note that each step involves changing just one letter of the word. This is just one possible path from “ape” to “man”, but
is it the shortest possible path? If we desire to find the shortest word ladder path between two given words, the sparse
graph submodule can help.
First we need a list of valid words. Many operating systems have such a list built-in. For example, on linux, a word list
can often be found at one of the following locations:

/usr/share/dict
/var/lib/dict
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Another easy source for words are the scrabble word lists available at various sites around the internet (search with your
favorite search engine). We’ll first create this list. The system word lists consist of a file with one word per line. The
following should be modified to use the particular word list you have available:

>>> word_list = open('/usr/share/dict/words').readlines()
>>> word_list = map(str.strip, word_list)

Wewant to look at words of length 3, so let’s select just those words of the correct length. We’ll also eliminate words which
start with upper-case (proper nouns) or contain non alpha-numeric characters like apostrophes and hyphens. Finally, we’ll
make sure everything is lower-case for comparison later:

>>> word_list = [word for word in word_list if len(word) == 3]
>>> word_list = [word for word in word_list if word[0].islower()]
>>> word_list = [word for word in word_list if word.isalpha()]
>>> word_list = list(map(str.lower, word_list))
>>> len(word_list)
586 # may vary

Now we have a list of 586 valid three-letter words (the exact number may change depending on the particular list used).
Each of these words will become a node in our graph, and we will create edges connecting the nodes associated with each
pair of words which differs by only one letter.
There are efficient ways to do this, and inefficient ways to do this. To do this as efficiently as possible, we’re going to use
some sophisticated numpy array manipulation:

>>> import numpy as np
>>> word_list = np.asarray(word_list)
>>> word_list.dtype # these are unicode characters in Python 3
dtype('<U3')
>>> word_list.sort() # sort for quick searching later

We have an array where each entry is three unicode characters long. We’d like to find all pairs where exactly one character
is different. We’ll start by converting each word to a three-dimensional vector:

>>> word_bytes = np.ndarray((word_list.size, word_list.itemsize),
... dtype='uint8',
... buffer=word_list.data)
>>> # each unicode character is four bytes long. We only need first byte
>>> # we know that there are three characters in each word
>>> word_bytes = word_bytes[:, ::word_list.itemsize//3]
>>> word_bytes.shape
(586, 3) # may vary

Nowwe’ll use the Hamming distance between each point to determine which pairs of words are connected. The Hamming
distance measures the fraction of entries between two vectors which differ: any two words with a hamming distance equal
to 1/N , where N is the number of letters, are connected in the word ladder:

>>> from scipy.spatial.distance import pdist, squareform
>>> from scipy.sparse import csr_matrix
>>> hamming_dist = pdist(word_bytes, metric='hamming')
>>> # there are three characters in each word
>>> graph = csr_matrix(squareform(hamming_dist < 1.5 / 3))

When comparing the distances, we don’t use an equality because this can be unstable for floating point values. The
inequality produces the desired result as long as no two entries of the word list are identical. Now that our graph is set up,
we’ll use a shortest path search to find the path between any two words in the graph:
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>>> i1 = word_list.searchsorted('ape')
>>> i2 = word_list.searchsorted('man')
>>> word_list[i1]
'ape'
>>> word_list[i2]
'man'

We need to check that these match, because if the words are not in the list that will not be the case. Now all we need is to
find the shortest path between these two indices in the graph. We’ll use Dijkstra’s algorithm, because it allows us to find
the path for just one node:

>>> from scipy.sparse.csgraph import dijkstra
>>> distances, predecessors = dijkstra(graph, indices=i1,
... return_predecessors=True)
>>> print(distances[i2])
5.0 # may vary

So we see that the shortest path between ‘ape’ and ‘man’ contains only five steps. We can use the predecessors returned
by the algorithm to reconstruct this path:

>>> path = []
>>> i = i2
>>> while i != i1:
... path.append(word_list[i])
... i = predecessors[i]
>>> path.append(word_list[i1])
>>> print(path[::-1])
['ape', 'apt', 'opt', 'oat', 'mat', 'man'] # may vary

This is three fewer links than our initial example: the path from ape to man is only five steps.
Using other tools in the module, we can answer other questions. For example, are there three-letter words which are not
linked in a word ladder? This is a question of connected components in the graph:

>>> from scipy.sparse.csgraph import connected_components
>>> N_components, component_list = connected_components(graph)
>>> print(N_components)
15 # may vary

In this particular sample of three-letter words, there are 15 connected components: that is, 15 distinct sets of words with
no paths between the sets. How many words are in each of these sets? We can learn this from the list of components:

>>> [np.sum(component_list == i) for i in range(N_components)]
[571, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] # may vary

There is one large connected set, and 14 smaller ones. Let’s look at the words in the smaller ones:

>>> [list(word_list[np.nonzero(component_list == i)]) for i in range(1, N_
↪→components)]
[['aha'], # may vary
['chi'],
['ebb'],
['ems', 'emu'],
['gnu'],

(continues on next page)
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['ism'],
['khz'],
['nth'],
['ova'],
['qua'],
['ugh'],
['ups'],
['urn'],
['use']]

These are all the three-letter words which do not connect to others via a word ladder.
We might also be curious about which words are maximally separated. Which two words take the most links to connect?
We can determine this by computing the matrix of all shortest paths. Note that by convention, the distance between two
non-connected points is reported to be infinity, so we’ll need to remove these before finding the maximum:

>>> distances, predecessors = dijkstra(graph, return_predecessors=True)
>>> max_distance = np.max(distances[~np.isinf(distances)])
>>> print(max_distance)
13.0 # may vary

So there is at least one pair of words which takes 13 steps to get from one to the other! Let’s determine which these are:

>>> i1, i2 = np.nonzero(distances == max_distance)
>>> list(zip(word_list[i1], word_list[i2]))
[('imp', 'ohm'), # may vary
('imp', 'ohs'),
('ohm', 'imp'),
('ohm', 'ump'),
('ohs', 'imp'),
('ohs', 'ump'),
('ump', 'ohm'),
('ump', 'ohs')]

We see that there are two pairs of words which are maximally separated from each other: ‘imp’ and ‘ump’ on one hand,
and ‘ohm’ and ‘ohs’ on the other hand. We can find the connecting list in the same way as above:

>>> path = []
>>> i = i2[0]
>>> while i != i1[0]:
... path.append(word_list[i])
... i = predecessors[i1[0], i]
>>> path.append(word_list[i1[0]])
>>> print(path[::-1])
['imp', 'amp', 'asp', 'ass', 'ads', 'add', 'aid', 'mid', 'mod', 'moo', 'too',
↪→'tho', 'oho', 'ohm'] # may vary

This gives us the path we desired to see.
Word ladders are just one potential application of scipy’s fast graph algorithms for sparse matrices. Graph theory makes
appearances inmany areas of mathematics, data analysis, andmachine learning. The sparse graph tools are flexible enough
to handle many of these situations.
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4.1.12 Spatial data structures and algorithms (scipy.spatial)

scipy.spatial can compute triangulations, Voronoi diagrams, and convex hulls of a set of points, by leveraging the
Qhull library.
Moreover, it contains KDTree implementations for nearest-neighbor point queries, and utilities for distance computations
in various metrics.

Delaunay triangulations

The Delaunay triangulation is a subdivision of a set of points into a non-overlapping set of triangles, such that no point is
inside the circumcircle of any triangle. In practice, such triangulations tend to avoid triangles with small angles.
Delaunay triangulation can be computed using scipy.spatial as follows:

>>> from scipy.spatial import Delaunay
>>> points = np.array([[0, 0], [0, 1.1], [1, 0], [1, 1]])
>>> tri = Delaunay(points)

We can visualize it:

>>> import matplotlib.pyplot as plt
>>> plt.triplot(points[:,0], points[:,1], tri.simplices)
>>> plt.plot(points[:,0], points[:,1], 'o')

And add some further decorations:

>>> for j, p in enumerate(points):
... plt.text(p[0]-0.03, p[1]+0.03, j, ha='right') # label the points
>>> for j, s in enumerate(tri.simplices):
... p = points[s].mean(axis=0)
... plt.text(p[0], p[1], '#%d' % j, ha='center') # label triangles
>>> plt.xlim(-0.5, 1.5); plt.ylim(-0.5, 1.5)
>>> plt.show()
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The structure of the triangulation is encoded in the following way: the simplices attribute contains the indices of the
points in the points array that make up the triangle. For instance:

>>> i = 1
>>> tri.simplices[i,:]
array([3, 1, 0], dtype=int32)
>>> points[tri.simplices[i,:]]
array([[ 1. , 1. ],

[ 0. , 1.1],
[ 0. , 0. ]])

Moreover, neighboring triangles can also be found out:

>>> tri.neighbors[i]
array([-1, 0, -1], dtype=int32)

What this tells us is that this triangle has triangle #0 as a neighbor, but no other neighbors. Moreover, it tells us that
neighbor 0 is opposite the vertex 1 of the triangle:

>>> points[tri.simplices[i, 1]]
array([ 0. , 1.1])

Indeed, from the figure we see that this is the case.
Qhull can also perform tessellations to simplices also for higher-dimensional point sets (for instance, subdivision into
tetrahedra in 3-D).

Coplanar points
It is important to note that not all points necessarily appear as vertices of the triangulation, due to numerical precision
issues in forming the triangulation. Consider the above with a duplicated point:

>>> points = np.array([[0, 0], [0, 1], [1, 0], [1, 1], [1, 1]])
>>> tri = Delaunay(points)
>>> np.unique(tri.simplices.ravel())
array([0, 1, 2, 3], dtype=int32)

Observe that point #4, which is a duplicate, does not occur as a vertex of the triangulation. That this happened is recorded:

>>> tri.coplanar
array([[4, 0, 3]], dtype=int32)

This means that point 4 resides near triangle 0 and vertex 3, but is not included in the triangulation.
Note that such degeneracies can occur not only because of duplicated points, but also for more complicated geometrical
reasons, even in point sets that at first sight seem well-behaved.
However, Qhull has the “QJ” option, which instructs it to perturb the input data randomly until degeneracies are resolved:

>>> tri = Delaunay(points, qhull_options="QJ Pp")
>>> points[tri.simplices]
array([[[1, 0],

[1, 1],
[0, 0]],

[[1, 1],
[1, 1],

(continues on next page)
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(continued from previous page)
[1, 0]],

[[1, 1],
[0, 1],
[0, 0]],

[[0, 1],
[1, 1],
[1, 1]]])

Two new triangles appeared. However, we see that they are degenerate and have zero area.

Convex hulls

Convex hull is the smallest convex object containing all points in a given point set.
These can be computed via the Qhull wrappers in scipy.spatial as follows:

>>> from scipy.spatial import ConvexHull
>>> points = np.random.rand(30, 2) # 30 random points in 2-D
>>> hull = ConvexHull(points)

The convex hull is represented as a set of N-1 dimensional simplices, which in 2-D means line segments. The storage
scheme is exactly the same as for the simplices in the Delaunay triangulation discussed above.
We can illustrate the above result:

>>> import matplotlib.pyplot as plt
>>> plt.plot(points[:,0], points[:,1], 'o')
>>> for simplex in hull.simplices:
... plt.plot(points[simplex,0], points[simplex,1], 'k-')
>>> plt.show()
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The same can be achieved with scipy.spatial.convex_hull_plot_2d.
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Voronoi diagrams

A Voronoi diagram is a subdivision of the space into the nearest neighborhoods of a given set of points.
There are two ways to approach this object using scipy.spatial. First, one can use the KDTree to answer the
question “which of the points is closest to this one”, and define the regions that way:

>>> from scipy.spatial import KDTree
>>> points = np.array([[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2],
... [2, 0], [2, 1], [2, 2]])
>>> tree = KDTree(points)
>>> tree.query([0.1, 0.1])
(0.14142135623730953, 0)

So the point (0.1, 0.1) belongs to region 0. In color:

>>> x = np.linspace(-0.5, 2.5, 31)
>>> y = np.linspace(-0.5, 2.5, 33)
>>> xx, yy = np.meshgrid(x, y)
>>> xy = np.c_[xx.ravel(), yy.ravel()]
>>> import matplotlib.pyplot as plt
>>> plt.pcolor(x, y, tree.query(xy)[1].reshape(33, 31))
>>> plt.plot(points[:,0], points[:,1], 'ko')
>>> plt.show()
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This does not, however, give the Voronoi diagram as a geometrical object.
The representation in terms of lines and points can be again obtained via the Qhull wrappers in scipy.spatial:

>>> from scipy.spatial import Voronoi
>>> vor = Voronoi(points)
>>> vor.vertices
array([[ 0.5, 0.5],

[ 1.5, 0.5],
[ 0.5, 1.5],
[ 1.5, 1.5]])
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The Voronoi vertices denote the set of points forming the polygonal edges of the Voronoi regions. In this case, there are
9 different regions:

>>> vor.regions
[[], [-1, 0], [-1, 1], [1, -1, 0], [3, -1, 2], [-1, 3], [-1, 2], [3, 2, 0, 1],
↪→ [2, -1, 0], [3, -1, 1]]

Negative value -1 again indicates a point at infinity. Indeed, only one of the regions, [3, 1, 0, 2], is bounded.
Note here that due to similar numerical precision issues as in Delaunay triangulation above, there may be fewer Voronoi
regions than input points.
The ridges (lines in 2-D) separating the regions are described as a similar collection of simplices as the convex hull pieces:

>>> vor.ridge_vertices
[[-1, 0], [-1, 0], [-1, 1], [-1, 1], [0, 1], [-1, 3], [-1, 2], [2, 3], [-1,␣
↪→3], [-1, 2], [0, 2], [1, 3]]

These numbers indicate indices of the Voronoi vertices making up the line segments. -1 is again a point at infinity —
only four of the 12 lines is a bounded line segment while the others extend to infinity.
The Voronoi ridges are perpendicular to lines drawn between the input points. Which two points each ridge corresponds
to is also recorded:

>>> vor.ridge_points
array([[0, 1],

[0, 3],
[6, 3],
[6, 7],
[3, 4],
[5, 8],
[5, 2],
[5, 4],
[8, 7],
[2, 1],
[4, 1],
[4, 7]], dtype=int32)

This information, taken together, is enough to construct the full diagram.
We can plot it as follows. First the points and the Voronoi vertices:

>>> plt.plot(points[:, 0], points[:, 1], 'o')
>>> plt.plot(vor.vertices[:, 0], vor.vertices[:, 1], '*')
>>> plt.xlim(-1, 3); plt.ylim(-1, 3)

Plotting the finite line segments goes as for the convex hull, but now we have to guard for the infinite edges:

>>> for simplex in vor.ridge_vertices:
... simplex = np.asarray(simplex)
... if np.all(simplex >= 0):
... plt.plot(vor.vertices[simplex, 0], vor.vertices[simplex, 1], 'k-')

The ridges extending to infinity require a bit more care:

>>> center = points.mean(axis=0)
>>> for pointidx, simplex in zip(vor.ridge_points, vor.ridge_vertices):

(continues on next page)
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(continued from previous page)
... simplex = np.asarray(simplex)
... if np.any(simplex < 0):
... i = simplex[simplex >= 0][0] # finite end Voronoi vertex
... t = points[pointidx[1]] - points[pointidx[0]] # tangent
... t = t / np.linalg.norm(t)
... n = np.array([-t[1], t[0]]) # normal
... midpoint = points[pointidx].mean(axis=0)
... far_point = vor.vertices[i] + np.sign(np.dot(midpoint - center,␣
↪→n)) * n * 100
... plt.plot([vor.vertices[i,0], far_point[0]],
... [vor.vertices[i,1], far_point[1]], 'k--')
>>> plt.show()
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This plot can also be created using scipy.spatial.voronoi_plot_2d.

4.1.13 Statistics (scipy.stats)

Introduction

In this tutorial we discuss many, but certainly not all, features of scipy.stats. The intention here is to provide a user
with a working knowledge of this package. We refer to the reference manual for further details.
Note: This documentation is work in progress.

Discrete Statistical Distributions
Discrete random variables take on only a countable number of values. The commonly used distributions are included in
SciPy and described in this document. Each discrete distribution can take one extra integer parameter: L.The relationship
between the general distribution p and the standard distribution p0 is

p (x) = p0 (x− L)
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which allows for shifting of the input. When a distribution generator is initialized, the discrete distribution can either
specify the beginning and ending (integer) values a and b which must be such that

p0 (x) = 0 x < a or x > b

in which case, it is assumed that the pdf function is specified on the integers a+mk ≤ b where k is a non-negative integer
( 0, 1, 2, . . . ) andm is a positive integer multiplier. Alternatively, the two lists xk and p (xk) can be provided directly in
which case a dictionary is set up internally to evaluate probabilities and generate random variates.

Probability Mass Function (PMF)

The probability mass function of a random variable X is defined as the probability that the random variable takes on a
particular value.

p (xk) = P [X = xk]

This is also sometimes called the probability density function, although technically

f (x) =
∑
k

p (xk) δ (x− xk)

is the probability density function for a discrete distribution1 .

Cumulative Distribution Function (CDF)

The cumulative distribution function is

F (x) = P [X ≤ x] =
∑
xk≤x

p (xk)

and is also useful to be able to compute. Note that

F (xk)− F (xk−1) = p (xk)

Survival Function

The survival function is just

S (x) = 1− F (x) = P [X > k]

the probability that the random variable is strictly larger than k .

Percent Point Function (Inverse CDF)

The percent point function is the inverse of the cumulative distribution function and is

G (q) = F−1 (q)

for discrete distributions, this must be modified for cases where there is no xk such that F (xk) = q. In these cases we
choose G (q) to be the smallest value xk = G (q) for which F (xk) ≥ q . If q = 0 then we define G (0) = a− 1 . This
definition allows random variates to be defined in the same way as with continuous rv’s using the inverse cdf on a uniform
distribution to generate random variates.

1 XXX: Unknown layout Plain Layout: Note that we will be using p to represent the probability mass function and a parameter (a XXX: probability).
The usage should be obvious from context.
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Inverse survival function

The inverse survival function is the inverse of the survival function

Z (α) = S−1 (α) = G (1− α)

and is thus the smallest non-negative integer k for which F (k) ≥ 1− α or the smallest non-negative integer k for which
S (k) ≤ α.

Hazard functions

If desired, the hazard function and the cumulative hazard function could be defined as

h (xk) =
p (xk)

1− F (xk)

and

H (x) =
∑
xk≤x

h (xk) =
∑
xk≤x

F (xk)− F (xk−1)

1− F (xk)
.

Moments

Non-central moments are defined using the PDF

µ′
m = E [Xm] =

∑
k

xmk p (xk) .

Central moments are computed similarly µ = µ′
1

µm = E [(X − µ)
m
] =

∑
k

(xk − µ)
m
p (xk)

=

m∑
k=0

(−1)
m−k

(
m
k

)
µm−kµ′

k

The mean is the first moment

µ = µ′
1 = E [X] =

∑
k

xkp (xk)

the variance is the second central moment

µ2 = E
[
(X − µ)

2
]
=
∑
xk

x2kp (xk)− µ2.

Skewness is defined as

γ1 =
µ3

µ
3/2
2

while (Fisher) kurtosis is

γ2 =
µ4

µ2
2

− 3,

so that a normal distribution has a kurtosis of zero.
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Moment generating function

The moment generating function is defined as

MX (t) = E
[
eXt
]
=
∑
xk

exktp (xk)

Moments are found as the derivatives of the moment generating function evaluated at 0.

Fitting data

To fit data to a distribution, maximizing the likelihood function is common. Alternatively, some distributions have well-
known minimum variance unbiased estimators. These will be chosen by default, but the likelihood function will always
be available for minimizing.
If fi (k;θ) is the PDF of a random-variable where θ is a vector of parameters ( e.g. L and S ), then for a collection of
N independent samples from this distribution, the joint distribution the random vector k is

f (k;θ) =

N∏
i=1

fi (ki;θ) .

The maximum likelihood estimate of the parameters θ are the parameters which maximize this function with x fixed and
given by the data:

θ̂ = argmax
θ

f (k;θ)

= argmin
θ
lk (θ) .

Where

lk (θ) = −
N∑
i=1

log f (ki;θ)

= −N log f (ki;θ)

Standard notation for mean

We will use

y (x) =
1

N

N∑
i=1

y (xi)

where N should be clear from context.

Combinations

Note that

k! = k · (k − 1) · (k − 2) · · · · · 1 = Γ (k + 1)

and has special cases of

0! ≡ 1

k! ≡ 0 k < 0
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and (
n
k

)
=

n!

(n− k)!k!
.

If n < 0 or k < 0 or k > n we define
(
n
k

)
= 0

Discrete Distributions in scipy.stats

Bernoulli Distribution

A Bernoulli random variable of parameter p takes one of only two values X = 0 or X = 1 . The probability of success
(X = 1 ) is p , and the probability of failure (X = 0 ) is 1− p. It can be thought of as a binomial random variable with
n = 1 . The PMF is p (k) = 0 for k ̸= 0, 1 and

p (k; p) =

{
1− p k = 0

p k = 1

F (x; p) =


0 x < 0

1− p 0 ≤ x < 1

1 1 ≤ x

G (q; p) =

{
0 0 ≤ q < 1− p

1 1− p ≤ q ≤ 1

µ = p

µ2 = p (1− p)

γ3 =
1− 2p√
p (1− p)

γ4 =
1− 6p (1− p)

p (1− p)

M (t) = 1− p
(
1− et

)
µ′
m = p

h [X] = p log p+ (1− p) log (1− p)

Implementation: scipy.stats.bernoulli

Binomial Distribution

A binomial random variable with parameters (n, p) can be described as the sum of n independent Bernoulli random
variables of parameter p;

Y =

n∑
i=1

Xi.

Therefore, this random variable counts the number of successes in n independent trials of a random experiment where
the probability of success is p.

p (k;n, p) =

(
n
k

)
pk (1− p)

n−k
k ∈ {0, 1, . . . n} ,

F (x;n, p) =
∑
k≤x

(
n
k

)
pk (1− p)

n−k
= I1−p (n− ⌊x⌋ , ⌊x⌋+ 1) x ≥ 0
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where the incomplete beta integral is

Ix (a, b) =
Γ (a+ b)

Γ (a) Γ (b)

∫ x

0

ta−1 (1− t)
b−1

dt.

Now

µ = np

µ2 = np (1− p)

γ1 =
1− 2p√
np (1− p)

γ2 =
1− 6p (1− p)

np (1− p)
.

M (t) =
[
1− p

(
1− et

)]n
Implementation: scipy.stats.binom

Boltzmann (truncated Planck) Distribution

p (k;N,λ) =
1− e−λ

1− e−λN
exp (−λk) k ∈ {0, 1, . . . , N − 1}

F (x;N,λ) =


0 x < 0

1−exp[−λ(⌊x⌋+1)]
1−exp(−λN) 0 ≤ x ≤ N − 1

1 x ≥ N − 1

G (q, λ) =

⌈
− 1

λ
log
[
1− q

(
1− e−λN

)]
− 1

⌉
Define z = e−λ

µ =
z

1− z
− NzN

1− zN

µ2 =
z

(1− z)
2 − N2zN

(1− zN )
2

γ1 =
z (1 + z)

(
1−zN

1−z

)3
−N3zN

(
1 + zN

)
[
z
(

1−zN

1−z

)2
−N2zN

]3/2

γ2 =
z
(
1 + 4z + z2

) (
1−zN

1−z

)4
−N4zN

(
1 + 4zN + z2N

)
[
z
(

1−zN

1−z

)2
−N2zN

]2

M (t) =
1− eN(t−λ)

1− et−λ

1− e−λ

1− e−λN

Implementation: scipy.stats.boltzmann
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Planck (discrete exponential) Distribution

Named Planck because of its relationship to the black-body problem he solved.

p (k;λ) =
(
1− e−λ

)
e−λk kλ ≥ 0

F (x;λ) = 1− e−λ(⌊x⌋+1) xλ ≥ 0

G (q;λ) =

⌈
− 1

λ
log [1− q]− 1

⌉
.

µ =
1

eλ − 1

µ2 =
e−λ

(1− e−λ)
2

γ1 = 2 cosh

(
λ

2

)
γ2 = 4 + 2 cosh (λ)

M (t) =
1− e−λ

1− et−λ

h [X] =
λe−λ

1− e−λ
− log

(
1− e−λ

)
Implementation: scipy.stats.planck

Poisson Distribution

The Poisson random variable counts the number of successes in n independent Bernoulli trials in the limit as n→ ∞ and
p→ 0 where the probability of success in each trial is p and np = λ ≥ 0 is a constant. It can be used to approximate the
Binomial random variable or in its own right to count the number of events that occur in the interval [0, t] for a process
satisfying certain “sparsity” constraints. The functions are:

p (k;λ) = e−λλ
k

k!
k ≥ 0,

F (x;λ) =

⌊x⌋∑
n=0

e−λλ
n

n!
=

1

Γ (⌊x⌋+ 1)

∫ ∞

λ

t⌊x⌋e−tdt,

µ = λ

µ2 = λ

γ1 =
1√
λ

γ2 =
1

λ
.

M (t) = exp
[
λ
(
et − 1

)]
.

Implementation: scipy.stats.poisson
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Geometric Distribution

The geometric random variable with parameter p ∈ (0, 1) can be defined as the number of trials required to obtain a
success where the probability of success on each trial is p . Thus,

p (k; p) = (1− p)
k−1

p k ≥ 1

F (x; p) = 1− (1− p)
⌊x⌋

x ≥ 1

G (q; p) =

⌈
log (1− q)

log (1− p)

⌉
µ =

1

p

µ2 =
1− p

p2

γ1 =
2− p√
1− p

γ2 =
p2 − 6p+ 6

1− p
.

M (t) =
p

e−t − (1− p)

Implementation: scipy.stats.geom

Negative Binomial Distribution

The negative binomial random variable with parameters n and p ∈ (0, 1) can be defined as the number of extra inde-
pendent trials (beyond n ) required to accumulate a total of n successes where the probability of a success on each trial
is p. Equivalently, this random variable is the number of failures encountered while accumulating n successes during
independent trials of an experiment that succeeds with probability p. Thus,

p (k;n, p) =

(
k + n− 1
n− 1

)
pn (1− p)

k
k ≥ 0

F (x;n, p) =

⌊x⌋∑
i=0

(
i+ n− 1

i

)
pn (1− p)

i
x ≥ 0

= Ip (n, ⌊x⌋+ 1) x ≥ 0

µ = n
1− p

p

µ2 = n
1− p

p2

γ1 =
2− p√
n (1− p)

γ2 =
p2 + 6 (1− p)

n (1− p)
.

Recall that Ip (a, b) is the incomplete beta integral.
Implementation: scipy.stats.nbinom
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Hypergeometric Distribution

The hypergeometric random variable with parameters (M,n,N) counts the number of “good “objects in a sample of
size N chosen without replacement from a population ofM objects where n is the number of “good “objects in the total
population.

p (k;N,n,M) =

(
n
k

)(
M − n
N − k

)
(
M
N

) N − (M − n) ≤ k ≤ min (n,N)

F (x;N,n,M) =

⌊x⌋∑
k=0

(
m
k

)(
N −m
n− k

)
(
N
n

) ,

µ =
nN

M

µ2 =
nN (M − n) (M −N)

M2 (M − 1)

γ1 =
(M − 2n) (M − 2N)

M − 2

√
M − 1

nN (M −m) (M − n)

γ2 =
g (N,n,M)

nN (M − n) (M − 3) (M − 2) (N −M)

where (definingm =M − n )

g (N,n,M) = m3 −m5 + 3m2n− 6m3n+m4n+ 3mn2

−12m2n2 + 8m3n2 + n3 − 6mn3 + 8m2n3

+mn4 − n5 − 6m3N + 6m4N + 18m2nN

−6m3nN + 18mn2N − 24m2n2N − 6n3N

−6mn3N + 6n4N + 6m2N2 − 6m3N2 − 24mnN2

+12m2nN2 + 6n2N2 + 12mn2N2 − 6n3N2.

Implementation: scipy.stats.hypergeom

Zipf (Zeta) Distribution

A random variable has the zeta distribution (also called the zipf distribution) with parameter α > 1 if it’s probability
mass function is given by

p (k;α) =
1

ζ (α) kα
k ≥ 1

where

ζ (α) =

∞∑
n=1

1

nα
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is the Riemann zeta function. Other functions of this distribution are

F (x;α) =
1

ζ (α)

⌊x⌋∑
k=1

1

kα

µ =
ζ1
ζ0

α > 2

µ2 =
ζ2ζ0 − ζ21

ζ20
α > 3

γ1 =
ζ3ζ

2
0 − 3ζ0ζ1ζ2 + 2ζ31

[ζ2ζ0 − ζ21 ]
3/2

α > 4

γ2 =
ζ4ζ

3
0 − 4ζ3ζ1ζ

2
0 + 12ζ2ζ

2
1ζ0 − 6ζ41 − 3ζ22ζ

2
0

(ζ2ζ0 − ζ21 )
2 .

M (t) =
Liα (et)

ζ (α)

where ζi = ζ (α− i) and Lin (z) is the nth polylogarithm function of z defined as

Lin (z) ≡
∞∑
k=1

zk

kn

µ′
n = M (n) (t)

∣∣∣
t=0

=
Liα−n (e

t)

ζ (a)

∣∣∣∣
t=0

=
ζ (α− n)

ζ (α)

Implementation: scipy.stats.zipf

Logarithmic (Log-Series, Series) Distribution

The logarithmic distribution with parameter p has a probability mass function with terms proportional to the Taylor series
expansion of log (1− p)

p (k; p) = − pk

k log (1− p)
k ≥ 1

F (x; p) = − 1

log (1− p)

⌊x⌋∑
k=1

pk

k
= 1 +

p1+⌊x⌋Φ(p, 1, 1 + ⌊x⌋)
log (1− p)

where

Φ(z, s, a) =

∞∑
k=0

zk

(a+ k)
s

is the Lerch Transcendent. Also define r = log (1− p)

µ = − p

(1− p) r

µ2 = − p [p+ r]

(1− p)
2
r2

γ1 = −2p2 + 3pr + (1 + p) r2

r (p+ r)
√
−p (p+ r)

r

γ2 = −
6p3 + 12p2r + p (4p+ 7) r2 +

(
p2 + 4p+ 1

)
r3

p (p+ r)
2 .
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M (t) = − 1

log (1− p)

∞∑
k=1

etkpk

k

=
log (1− pet)

log (1− p)

Thus,

µ′
n = M (n) (t)

∣∣∣
t=0

=
Li1−n (pe

t)

log (1− p)

∣∣∣∣
t=0

= − Li1−n (p)

log (1− p)
.

Implementation: scipy.stats.logser

Discrete Uniform (randint) Distribution

The discrete uniform distribution with parameters (a, b) constructs a random variable that has an equal probability of being
any one of the integers in the half-open range [a, b). If a is not given it is assumed to be zero and the only parameter is
b. Therefore,

p (k, a, b) =
1

b− a
a ≤ k < b

F (x; a, b) =
⌊x⌋ − a

b− a
a ≤ x ≤ b

G (q; a, b) = ⌈q (b− a) + a⌉

µ =
b+ a− 1

2

µ2 =
(b− a− 1) (b− a+ 1)

12
γ1 = 0

γ2 = −6

5

(b− a)
2
+ 1

(b− a− 1) (b− a+ 1)
.

M (t) =
1

b− a

b−1∑
k=a

etk

=
ebt − eat

(b− a) (et − 1)

Implementation: scipy.stats.randint

Discrete Laplacian Distribution

Defined over all integers for a > 0

p (k) = tanh
(a
2

)
e−a|k|,

F (x) =

{
ea(⌊x⌋+1)

ea+1 ⌊x⌋ < 0,

1− e−a⌊x⌋

ea+1 ⌊x⌋ ≥ 0.

G (q) =

{ ⌈
1
a log [q (ea + 1)]− 1

⌉
q < 1

1+e−a ,⌈
− 1

a log [(1− q) (1 + ea)]
⌉

q ≥ 1
1+e−a .
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M (t) = tanh
(a
2

) ∞∑
k=−∞

etke−a|k|

= C

(
1 +

∞∑
k=1

e−(t+a)k +

∞∑
1

e(t−a)k

)

= tanh
(a
2

)(
1 +

e−(t+a)

1− e−(t+a)
+

et−a

1− et−a

)
=

tanh
(
a
2

)
sinh a

cosh a− cosh t
.

Thus,

µ′
n =M (n) (0) = [1 + (−1)

n
]Li−n

(
e−a
)

where Li−n (z) is the polylogarithm function of order −n evaluated at z.

h [X] = − log
(
tanh

(a
2

))
+

a

sinh a

Implementation: scipy.stats.dlaplace

Continuous Statistical Distributions
Overview

All distributions will have location (L) and Scale (S) parameters along with any shape parameters needed, the names for
the shape parameters will vary. Standard form for the distributions will be given where L = 0.0 and S = 1.0. The
nonstandard forms can be obtained for the various functions using (note U is a standard uniform random variate).

Function Name Standard Function Transformation
Cumulative Distribution Function
(CDF)

F (x) F (x;L, S) = F
(

(x−L)
S

)
Probability Density Function (PDF) f (x) = F ′ (x) f (x;L, S) = 1

S f
(

(x−L)
S

)
Percent Point Function (PPF) G (q) = F−1 (q) G (q;L, S) = L+ SG (q)
Probability Sparsity Function (PSF) g (q) = G′ (q) g (q;L, S) = Sg (q)

Hazard Function (HF) ha (x) =
f(x)

1−F (x) ha (x;L, S) =
1
Sha

(
(x−L)

S

)
Cumulative Hazard Function (CHF) Ha (x) = log 1

1−F (x) Ha (x;L, S) = Ha

(
(x−L)

S

)
Survival Function (SF) S (x) = 1− F (x) S (x;L, S) = S

(
(x−L)

S

)
Inverse Survival Function (ISF) Z (α) = S−1 (α) =

G (1− α)
Z (α;L, S) = L+ SZ (α)

Moment Generating Function (MGF) MY (t) = E
[
eY t
]

MX (t) = eLtMY (St)
Random Variates Y = G (U) X = L+ SY
(Differential) Entropy h [Y ] = −

∫
f (y) log f (y) dy h [X] = h [Y ] + logS

(Non-central) Moments µ′
n = E [Y n] E [Xn] =

Ln
∑N

k=0

(
n
k

)(
S
L

)k
µ′
k

Central Moments µn = E [(Y − µ)
n
] E [(X − µX)

n
] = Snµn

mean (mode, median), var µ, µ2 L+ Sµ, S2µ2

skewness γ1 = µ3

(µ2)
3/2 γ1

kurtosis γ2 = µ4

(µ2)
2 − 3 γ2
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Moments

Non-central moments are defined using the PDF

µ′
n =

∫ ∞

−∞
xnf (x) dx.

Note, that these can always be computed using the PPF. Substitute x = G (q) in the above equation and get

µ′
n =

∫ 1

0

Gn (q) dq

which may be easier to compute numerically. Note that q = F (x) so that dq = f (x) dx.Central moments are computed
similarly µ = µ′

1

µn =

∫ ∞

−∞
(x− µ)

n
f (x) dx

=

∫ 1

0

(G (q)− µ)
n
dq

=

n∑
k=0

(
n
k

)
(−µ)k µ′

n−k

In particular

µ3 = µ′
3 − 3µµ′

2 + 2µ3

= µ′
3 − 3µµ2 − µ3

µ4 = µ′
4 − 4µµ′

3 + 6µ2µ′
2 − 3µ4

= µ′
4 − 4µµ3 − 6µ2µ2 − µ4

Skewness is defined as

γ1 =
√
β1 =

µ3

µ
3/2
2

while (Fisher) kurtosis is

γ2 =
µ4

µ2
2

− 3,

so that a normal distribution has a kurtosis of zero.

Median and mode

The median,mn is defined as the point at which half of the density is on one side and half on the other. In other words,
F (mn) =

1
2 so that

mn = G

(
1

2

)
.

In addition, the mode,md , is defined as the value for which the probability density function reaches it’s peak

md = argmax
x

f (x) .
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Fitting data

To fit data to a distribution, maximizing the likelihood function is common. Alternatively, some distributions have well-
known minimum variance unbiased estimators. These will be chosen by default, but the likelihood function will always
be available for minimizing.
If f (x;θ) is the PDF of a random-variable where θ is a vector of parameters ( e.g. L and S ), then for a collection ofN
independent samples from this distribution, the joint distribution the random vector x is

f (x;θ) =

N∏
i=1

f (xi;θ) .

The maximum likelihood estimate of the parameters θ are the parameters which maximize this function with x fixed and
given by the data:

θes = argmax
θ

f (x;θ)

= argmin
θ
lx (θ) .

Where

lx (θ) = −
N∑
i=1

log f (xi;θ)

= −N log f (xi;θ)

Note that if θ includes only shape parameters, the location and scale-parameters can be fit by replacing xi with
(xi − L) /S in the log-likelihood function adding N logS and minimizing, thus

lx (L, S;θ) = N logS −
N∑
i=1

log f

(
xi − L

S
;θ

)
= N logS + l x−S

L
(θ)

If desired, sample estimates for L and S (not necessarily maximum likelihood estimates) can be obtained from samples
estimates of the mean and variance using

Ŝ =

√
µ̂2

µ2

L̂ = µ̂− Ŝµ

where µ and µ2 are assumed known as the mean and variance of the untransformed distribution (when L = 0 and
S = 1 ) and

µ̂ =
1

N

N∑
i=1

xi = x̄

µ̂2 =
1

N − 1

N∑
i=1

(xi − µ̂)
2
=

N

N − 1
(x− x̄)

2

Standard notation for mean

We will use

y (x) =
1

N

N∑
i=1

y (xi)

where N should be clear from context as the number of samples xi
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• Norman Johnson, Samuel Kotz, and N. Balakrishnan Continuous Univariate Distributions, second edition, Volumes
I and II, Wiley & Sons, 1994.

In the tutorials several special functions appear repeatedly and are listed here.

Symbol Description Definition
γ (s, x) lower incomplete Gamma function

∫ x

0
ts−1e−tdt

Γ (s, x) upper incomplete Gamma function
∫∞
x
ts−1e−tdt

B (x; a, b) incomplete Beta function
∫ x

0
ta−1 (1− t)

b−1
dt

I (x; a, b) regularized incomplete Beta function Γ(a+b)
Γ(a)Γ(b)

∫ x

0
ta−1 (1− t)

b−1
dt

ϕ (x) PDF for normal distribution 1√
2π
e−x2/2

Φ(x) CDF for normal distribution
∫ x

−∞ ϕ (t) dt = 1
2 + 1

2erf
(

x√
2

)
ψ (z) digamma function d

dz log (Γ (z))

ψn (z) polygamma function dn+1

dzn+1 log (Γ (z))
Iν (y) modified Bessel function of the first kind
Ei(z) exponential integral −

∫∞
−x

e−t

t dt

ζ (n) Riemann zeta function
∑∞

k=1
1
kn

ζ (n, z) Hurwitz zeta function
∑∞

k=0
1

(k+z)n

pFq(a1, . . . , ap; b1, . . . , bq; z) Hypergeometric function
∑∞

n=0
(a1)n···(ap)n
(b1)n···(bq)n

zn

n!

Continuous Distributions in scipy.stats

Alpha Distribution

One shape parameter α > 0 (parameter β in DATAPLOT is a scale-parameter). The suport for the standard form is
x > 0.

f (x;α) =
1

x2Φ(α)
√
2π

exp

(
−1

2

(
α− 1

x

)2
)

F (x;α) =
Φ
(
α− 1

x

)
Φ(α)

G (q;α) =
[
α− Φ−1 (qΦ(α))

]−1

M (t) =
1

Φ (a)
√
2π

∫ ∞

0

ext

x2
exp

(
−1

2

(
α− 1

x

)2
)
dx

No moments?

lx (α) = N log
[
Φ(α)

√
2π
]
+ 2N logx+

N

2
α2 − αx−1 +

1

2
x−2

Implementation: scipy.stats.alpha
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Anglit Distribution

Defined over x ∈
[
−π

4 ,
π
4

]
.

f (x) = sin
(
2x+

π

2

)
= cos (2x)

F (x) = sin2
(
x+

π

4

)
G (q) = arcsin (

√
q)− π

4

µ = 0

µ2 =
π2

16
− 1

2
γ1 = 0

γ2 = −2
π4 − 96

(π2 − 8)
2

h [X] = 1− log 2

≈ 0.30685281944005469058

M (t) =

∫ π
4

−π
4

cos (2x) extdx

=
4 cosh

(
πt
4

)
t2 + 4

lx (·) = −N log [cos (2x)]

Implementation: scipy.stats.anglit

Arcsine Distribution

Defined over x ∈ [0, 1]. To get the JKB definition put x = u+1
2 . i.e. L = −1 and S = 2.

f (x) =
1

π
√
x (1− x)

F (x) =
2

π
arcsin

(√
x
)

G (q) = sin2
(π
2
q
)

M (t) = Et/2I0

(
t

2

)

µ′
n =

1

π

∫ 1

0

xn−1/2 (1− x)
−1/2

dx

=
1

π
B

(
1

2
, n+

1

2

)
=

(2n− 1)!!

2nn!
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µ =
1

2

µ2 =
1

8
γ1 = 0

γ2 = −3

2

h [X] = log(
π

4
) ≈ −0.24156447527049044468

lx (·) = N log π +
N

2
logx+

N

2
log (1− x)

Implementation: scipy.stats.arcsine

Beta Distribution

There are two shape parameters a, b > 0 and the support is x ∈ [0, 1].

f (x; a, b) =
Γ (a+ b)

Γ (a) Γ (b)
xa−1 (1− x)

b−1

F (x; a, b) =

∫ x

0

f (y; a, b) dy = I (x; a, b)

G (q; a, b) = I−1 (q; a, b)

M (t) =
Γ (a) Γ (b)

Γ (a+ b)
1F1 (a; a+ b; t)

µ =
a

a+ b

µ2 =
ab (a+ b+ 1)

(a+ b)
2

γ1 = 2
b− a

a+ b+ 2

√
a+ b+ 1

ab

γ2 =
6
(
a3 + a2 (1− 2b) + b2 (b+ 1)− 2ab (b+ 2)

)
ab (a+ b+ 2) (a+ b+ 3)

md =
(a− 1)

(a+ b− 2)
a+ b ̸= 2

where I (x; a, b) is the regularized incomplete Beta function. f (x; a, 1) is also called the Power-function distribution.

lx (a, b) = −N log Γ (a+ b) +N log Γ (a) +N log Γ (b)−N (a− 1) logx−N (b− 1) log (1− x)

Implementation: scipy.stats.beta

Beta Prime Distribution

There are two shape parameters a, b > 0 and the support is x ∈ [0,∞). Note the CDF evaluation uses Eq. 3.194.1 on
pg. 313 of Gradshteyn & Ryzhik (sixth edition).

f (x;α, β) =
Γ (α+ β)

Γ (α) Γ (β)
xα−1 (1 + x)

−α−β

F (x;α, β) =
Γ (α+ β)

αΓ (α) Γ (β)
xα 2F1 (α+ β, α; 1 + α;−x)

G (q;α, β) = F−1 (x;α, β)
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µ′
n =

{
Γ(n+α)Γ(β−n)

Γ(α)Γ(β) =
(α)n

(β−n)n
β > n

∞ otherwise

Therefore,

µ =
α

β − 1
for β > 1

µ2 =
α (α+ 1)

(β − 2) (β − 1)
− α2

(β − 1)
2 for β > 2

γ1 =

α(α+1)(α+2)
(β−3)(β−2)(β−1) − 3µµ2 − µ3

µ
3/2
2

for β > 3

γ2 =
µ4

µ2
2

− 3

µ4 =
α (α+ 1) (α+ 2) (α+ 3)

(β − 4) (β − 3) (β − 2) (β − 1)
− 4µµ3 − 6µ2µ2 − µ4 for β > 4

Implementation: scipy.stats.betaprime

Bradford Distribution

There is one shape parameter, c > 0, and the support is x ∈ [0, 1].

Let k = log (1 + c)

Then
f (x; c) =

c

k (1 + cx)

F (x; c) =
log (1 + cx)

k

G (q c) =
(1 + c)

q − 1

c

M (t) =
1

k
e−t/c

[
Ei

(
t+

t

c

)
− Ei

(
t

c

)]
µ =

c− k

ck

µ2 =
(c+ 2) k − 2c

2ck2

γ1 =

√
2
(
12c2 − 9kc (c+ 2) + 2k2 (c (c+ 3) + 3)

)√
c (c (k − 2) + 2k) (3c (k − 2) + 6k)

γ2 =
c3 (k − 3) (k (3k − 16) + 24) + 12kc2 (k − 4) (k − 3) + 6ck2 (3k − 14) + 12k3

3c (c (k − 2) + 2k)
2

md = 0

mn =
√
1 + c− 1

h [X] =
1

2
log (1 + c)− log

(
c

log (1 + c)

)
where Ei (z) is the exponential integral function.
Implementation: scipy.stats.bradford
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Burr Distribution

There are two shape parameters c, d > 0 and the support is x ∈ [0,∞).

Let k = Γ (d) Γ

(
1− 2

c

)
Γ

(
2

c
+ d

)
− Γ2

(
1− 1

c

)
Γ2

(
1

c
+ d

)
f (x; c, d) =

cd

xc+1 (1 + x−c)
d+1

F (x; c, d) =
(
1 + x−c

)−d

G (q; c, d) =
(
q−1/d − 1

)−1/c

µ =
Γ
(
1− 1

c

)
Γ
(
1
c + d

)
Γ (d)

µ2 =
k

Γ2 (d)

γ1 =
1√
k3

[
2Γ3

(
1− 1

c

)
Γ3

(
1

c
+ d

)
+ Γ2 (d) Γ

(
1− 3

c

)
Γ

(
3

c
+ d

)
−3Γ (d) Γ

(
1− 2

c

)
Γ

(
1− 1

c

)
Γ

(
1

c
+ d

)
Γ

(
2

c
+ d

)]
γ2 = −3 +

1

k2

[
6Γ (d) Γ

(
1− 2

c

)
Γ2

(
1− 1

c

)
Γ2

(
1

c
+ d

)
Γ

(
2

c
+ d

)
−3Γ4

(
1− 1

c

)
Γ4

(
1

c
+ d

)
+ Γ3 (d) Γ

(
1− 4

c

)
Γ

(
4

c
+ d

)
−4Γ2 (d) Γ

(
1− 3

c

)
Γ

(
1− 1

c

)
Γ

(
1

c
+ d

)
Γ

(
3

c
+ d

)]
md =

(
cd− 1

c+ 1

)1/c

if cd > 1, otherwise 0

mn =
(
21/d − 1

)−1/c

Implementation: scipy.stats.burr

Cauchy Distribution

The support is x ∈ R.

f (x) =
1

π (1 + x2)

F (x) =
1

2
+

1

π
tan−1 x

G (q) = tan
(
πq − π

2

)
md = 0

mn = 0

No finite moments. This is the t distribution with one degree of freedom.

h [X] = log (4π)

≈ 2.5310242469692907930.

Implementation: scipy.stats.cauchy
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Chi Distribution

Generated by taking the (positive) square-root of chi-squared variates. The one shape parameter is ν, a positive integer,
the degrees of freedom. The support is x ≥ 0.

f (x; ν) =
xν−1e−x2/2

2ν/2−1Γ
(
ν
2

)
F (x; ν) =

γ
(

ν
2 ,

x2

2

)
Γ(ν2 )

G (q; ν) =

√
2γ−1

(ν
2
, qΓ(

ν

2
)
)

M (t) = Γ
(v
2

)
1F1

(
v

2
;
1

2
;
t2

2

)
+

t√
2
Γ

(
1 + ν

2

)
1F1

(
1 + ν

2
;
3

2
;
t2

2

)
µ =

√
2Γ
(
ν+1
2

)
Γ
(
ν
2

)
µ2 = ν − µ2

γ1 =
2µ3 + µ (1− 2ν)

µ
3/2
2

γ2 =
2ν (1− ν)− 6µ4 + 4µ2 (2ν − 1)

µ2
2

md =
√
ν − 1 ν ≥ 1

mn =

√
2γ−1

(
ν

2
,
1

2
Γ(
ν

2
)

)
Implementation: scipy.stats.chi

Chi-squared Distribution

This is the gamma distribution with L = 0.0 and S = 2.0 and α = ν/2 where ν is called the degrees of freedom. If
Z1 . . . Zν are all standard normal distributions, thenW =

∑
k Z

2
k has (standard) chi-square distribution with ν degrees

of freedom.
The standard form (most often used in standard form only) has support x ≥ 0.

f (x;α) =
1

2Γ
(
ν
2

) (x
2

)ν/2−1

e−x/2

F (x;α) =
γ
(
ν
2 ,

x
2

)
Γ(ν2 )

G (q;α) = 2γ−1
(ν
2
, qΓ(

ν

2
)
)

where γ is the lower incomplete gamma function, γ (s, x) =
∫ x

0
ts−1e−tdt.

M (t) =
Γ
(
ν
2

)(
1
2 − t

)ν/2
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µ = ν

µ2 = 2ν

γ1 =
2
√
2√
ν

γ2 =
12

ν

md =
ν

2
− 1

Implementation: scipy.stats.chi2

Cosine Distribution

Approximation to the normal distribution. The support is [−π, π].

f (x) =
1

2π
(1 + cosx)

F (x) =
1

2π
(π + x+ sinx)

G (q) = F−1 (q)

M (t) =
sinh (πt)

πt (1 + t2)

µ = md = mn = 0

µ2 =
π2

3
− 2

γ1 = 0

γ2 =
−6
(
π4 − 90

)
5 (π2 − 6)

2

h [X] = log (4π)− 1

≈ 1.5310242469692907930.

Implementation: scipy.stats.cosine

Double Gamma Distribution

The double gamma is the signed version of the Gamma distribution. For α > 0 :

f (x;α) =
1

2Γ (α)
|x|α−1

e−|x|

F (x;α) =

{
1
2 − γ(α,|x|)

2Γ(α) x ≤ 0
1
2 + γ(α,|x|)

2Γ(α) x > 0

G (q;α) =

{
−γ−1 (α, |2q − 1|Γ (α)) q ≤ 1

2
γ−1 (α, |2q − 1|Γ (α)) q > 1

2

M (t) =
1

2 (1− t)
a +

1

2 (1 + t)
a
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µ = mn = 0

µ2 = α (α+ 1)

γ1 = 0

γ2 =
(α+ 2) (α+ 3)

α (α+ 1)
− 3

md = NA

Implementation: scipy.stats.dgamma

Double Weibull Distribution

This is a signed form of the Weibull distribution. There is one shape parameter c > 0. Support is x ∈ R.

f (x; c) =
c

2
|x|c−1

exp (− |x|c)

F (x; c) =

{
1
2 exp (− |x|c) x ≤ 0

1− 1
2 exp (− |x|c) x > 0

G (q; c) =

 − log1/c
(

1
2q

)
q ≤ 1

2

log1/c
(

1
2q−1

)
q > 1

2

µ′
n = µn =

{
Γ
(
1 + n

c

)
n even

0 n odd

mn = µ = 0

µ2 = Γ

(
c+ 2

c

)
γ1 = 0

γ2 =
Γ
(
1 + 4

c

)
Γ2
(
1 + 2

c

)
md = NA bimodal

Implementation: scipy.stats.dweibull

Erlang Distribution

This is just the Gamma distribution with shape parameter α = n an integer.
Implementation: scipy.stats.erlang

Exponential Distribution

This is a special case of the Gamma (and Erlang) distributions with shape parameter (α = 1) and the same location and
scale parameters. The standard form is therefore ( x ≥ 0 )

f (x) = e−x

F (x) = γ (1, x) = 1− e−x

G (q) = − log (1− q)

µ′
n = n!
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M (t) =
1

1− t

µ = 1

µ2 = 1

γ1 = 2

γ2 = 6

md = 0

h [X] = 1.

Implementation: scipy.stats.expon

Exponentiated Weibull Distribution

Two positive shape parameters a, c > 0, and the support is x ∈ [0,∞).

f (x; a, c) = ac [1− exp (−xc)]a−1
exp (−xc)xc−1

F (x; a, c) = [1− exp (−xc)]a

G (q; a, c) =
[
− log

(
1− q1/a

)]1/c
Implementation: scipy.stats.exponweib

Exponential Power Distribution

One positive shape parameter b. The support is x ≥ 0.

f (x; b) = ebxb−1 exp
(
xb − ex

b
)

F (x; b) = 1− exp
(
1− ex

b
)

G (q; b) = log (1− log (1− q))
1/b

Implementation: scipy.stats.exponpow

Fatigue Life (Birnbaum-Saunders) Distribution

This distribution’s pdf is the average of the inverse-Gaussian (µ = 1) and reciprocal inverse-Gaussian pdf (µ = 1) . We
follow the notation of JKB here with β = S. There is one shape parameter c > 0, and the support is x ≥ 0.

f (x; c) =
x+ 1

2c
√
2πx3

exp

(
− (x− 1)

2

2xc2

)

F (x; c) = Φ

(
1

c

(√
x− 1√

x

))
G (q; c) =

1

4

[
cΦ−1 (q) +

√
c2 (Φ−1 (q))

2
+ 4

]2

M (t) = c
√
2π exp

(
1

c2

(
1−

√
1− 2c2t

))(
1 +

1√
1− 2c2t

)

358 Chapter 4. Tutorial



SciPy Reference Guide, Release 1.3.1

µ =
c2

2
+ 1

µ2 = c2
(
5

4
c2 + 1

)
γ1 =

4c
√
11c2 + 6

(5c2 + 4)
3/2

γ2 =
6c2
(
93c2 + 41

)
(5c2 + 4)

2

Implementation: scipy.stats.fatiguelife

Fisk (Log Logistic) Distribution

Special case of the Burr distribution with d = 1. There is are one shape parameter c > 0 and the support is x ∈ [0,∞).

Let k = Γ

(
1− 2

c

)
Γ

(
2

c
+ 1

)
− Γ2

(
1− 1

c

)
Γ2

(
1

c
+ 1

)
f (x; c, d) =

cxc−1

(1 + xc)
2

F (x; c, d) =
(
1 + x−c

)−1

G (q; c, d) =
(
q−1 − 1

)−1/c

µ = Γ

(
1− 1

c

)
Γ

(
1

c
+ 1

)
µ2 = k

γ1 =
1√
k3

[
2Γ3

(
1− 1

c

)
Γ3

(
1

c
+ 1

)
+ Γ

(
1− 3

c

)
Γ

(
3

c
+ 1

)
−3Γ

(
1− 2

c

)
Γ

(
1− 1

c

)
Γ

(
1

c
+ 1

)
Γ

(
2

c
+ 1

)]
γ2 = −3 +

1

k2

[
6Γ

(
1− 2

c

)
Γ2

(
1− 1

c

)
Γ2

(
1

c
+ 1

)
Γ

(
2

c
+ 1

)
−3Γ4

(
1− 1

c

)
Γ4

(
1

c
+ 1

)
+ Γ

(
1− 4

c

)
Γ

(
4

c
+ 1

)
−4Γ

(
1− 3

c

)
Γ

(
1− 1

c

)
Γ

(
1

c
+ 1

)
Γ

(
3

c
+ 1

)]
md =

(
c− 1

c+ 1

)1/c

if c > 1, otherwise 0

mn = 1

h [X] = 2− log c

Implementation: scipy.stats.fisk
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Folded Cauchy Distribution

This formula can be expressed in terms of the standard formulas for the Cauchy distribution (call the cdf C (x) and the
pdf d (x) ). If Y is cauchy then |Y | is folded cauchy. There is one shape parameter c and the support is x ≥ 0.

f (x; c) =
1

π
(
1 + (x− c)

2
) +

1

π
(
1 + (x+ c)

2
)

F (x; c) =
1

π
tan−1 (x− c) +

1

π
tan−1 (x+ c)

G (q; c) = F−1 (q; c)

No moments
Implementation: scipy.stats.foldcauchy

Folded Normal Distribution

If Z is Normal with mean L and σ = S , then |Z| is a folded normal with shape parameter c = |L| /S , location
parameter 0 and scale parameter S . This is a special case of the non-central chi distribution with one- degree of freedom
and non-centrality parameter c2. Note that c ≥ 0 . The standard form of the folded normal is

f (x; c) =

√
2

π
cosh (cx) exp

(
−x

2 + c2

2

)
F (x; c) = Φ (x− c)− Φ(−x− c) = Φ (x− c) + Φ (x+ c)− 1

G (q; c) = F−1 (q; c)

M (t) = exp

(
t

2
(t− 2c)

)(
1 + e2ct

)
k = erf

(
c√
2

)
p = exp

(
−c

2

2

)
µ =

√
2

π
p+ ck

µ2 = c2 + 1− µ2

γ1 =

√
2
πp

3
(
4− π

p2

(
2c2 + 1

))
+ 2ck

(
6p2 + 3cpk

√
2π + πc

(
k2 − 1

))
πµ

3/2
2

γ2 =
c4 + 6c2 + 3 + 6

(
c2 + 1

)
µ2 − 3µ4 − 4pµ

(√
2
π

(
c2 + 2

)
+ ck

p

(
c2 + 3

))
µ2
2

Implementation: scipy.stats.foldnorm
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Fratio (or F) Distribution

The distribution of (X1/X2) (ν2/ν1) if X1 is chi-squared with v1 degrees of freedom and X2 is chi-squared with v2
degrees of freedom. The suport is x ≥ 0.

f (x; ν1, ν2) =
ν
ν2/2
2 ν

ν1/2
1 xν1/2−1

(ν2 + ν1x)
(ν1+ν2)/2B

(
ν1

2 ,
ν2

2

)
F (x; v1, v2) = I

(
ν1x

ν2 + ν1x
;
ν1
2
,
ν2
2

)
G (q; ν1, ν2) =

(
ν2

I−1 (q; ν1/2, ν2/2)
− ν1
ν2

)−1

µ =
ν2

ν2 − 2
for ν2 > 2

µ2 =
2ν22 (ν1 + ν2 − 2)

ν1 (ν2 − 2)
2
(ν2 − 4)

for v2 > 4

γ1 =
2 (2ν1 + ν2 − 2)

ν2 − 6

√
2 (ν2 − 4)

ν1 (ν1 + ν2 − 2)
for ν2 > 6

γ2 =
3
(
8 + (ν2 − 6) γ21

)
2ν − 16

for ν2 > 8

where I (x; a, b) = Ix (a, b) is the regularized incomplete Beta function.
Implementation: scipy.stats.f

Gamma Distribution

The standard form for the gamma distribution is (α > 0) valid for x ≥ 0 .

f (x;α) =
1

Γ (α)
xα−1e−x

F (x;α) =
γ (α, x)

Γ(α)

G (q;α) = γ−1 (α, qΓ(α))

where γ is the lower incomplete gamma function, γ (s, x) =
∫ x

0
ts−1e−tdt.

M (t) =
1

(1− t)
α

µ = α

µ2 = α

γ1 =
2√
α

γ2 =
6

α
md = α− 1

h [X] = Ψ (a) [1− a] + a+ log Γ (a)

where

Ψ(a) =
Γ′ (a)

Γ (a)
.

Implementation: scipy.stats.gamma

4.1. SciPy Tutorial 361



SciPy Reference Guide, Release 1.3.1

Generalized Logistic Distribution

Has been used in the analysis of extreme values. There is one shape parameter c > 0. The support is x ≥ 0.

f (x; c) =
c exp (−x)

[1 + exp (−x)]c+1

F (x; c) =
1

[1 + exp (−x)]c

G (q; c) = − log
(
q−1/c − 1

)
M (t) =

c

1− t
2F1 (1 + c, 1− t ; 2− t ;−1)

µ = γ + ψ0 (c)

µ2 =
π2

6
+ ψ1 (c)

γ1 =
ψ2 (c) + 2ζ (3)

µ
3/2
2

γ2 =

(
π4

15 + ψ3 (c)
)

µ2
2

md = log c

mn = − log
(
21/c − 1

)
Note that the polygamma function is

ψn (z) =
dn+1

dzn+1
log Γ (z)

= (−1)
n+1

n!

∞∑
k=0

1

(z + k)
n+1

= (−1)
n+1

n!ζ (n+ 1, z)

where ζ (k, x) is a generalization of the Riemann zeta function called the Hurwitz zeta function. Note that ζ (n) ≡
ζ (n, 1).
Implementation: scipy.stats.genlogistic

Generalized Pareto Distribution

There is one shape parameter c ̸= 0. The support is x ≥ 0 if c > 0, and 0 ≤ x < 1
|c| if c is negative.

f (x; c) = (1 + cx)
−1− 1

c

F (x; c) = 1− 1

(1 + cx)
1/c

G (q; c) =
1

c

[(
1

1− q

)c

− 1

]

M (t) =


(
− t

c

) 1
c e−

t
c

[
Γ
(
1− 1

c

)
+
(
γ
(
− 1

c ,−
t
c

)
/Γ
(

1
−c

))
− π csc

(
π
c

)
/Γ
(
1
c

)]
c > 0(

|c|
t

)1/|c|
Γ
(

1
|c| ,

t
|c|

)
1

Γ( 1
|c| )

c < 0

362 Chapter 4. Tutorial



SciPy Reference Guide, Release 1.3.1

µ′
n =

(−1)
n

cn

n∑
k=0

(
n

k

)
(−1)

k

1− ck
if cn < 1

µ′
1 =

1

1− c
c < 1

µ′
2 =

2

(1− 2c) (1− c)
c <

1

2

µ′
3 =

6

(1− c) (1− 2c) (1− 3c)
c <

1

3

µ′
4 =

24

(1− c) (1− 2c) (1− 3c) (1− 4c)
c <

1

4

Thus,

µ = µ′
1

µ2 = µ′
2 − µ2

γ1 =
µ′
3 − 3µµ2 − µ3

µ
3/2
2

γ2 =
µ′
4 − 4µµ3 − 6µ2µ2 − µ4

µ2
2

− 3

h [X] = 1 + c c > 0

Implementation: scipy.stats.genpareto

Generalized Exponential Distribution

Three positive shape parameters a, b, c > 0 with support x ≥ 0.

f (x; a, b, c) =
(
a+ b

(
1− e−cx

))
exp

(
ax− bx+

b

c

(
1− e−cx

))
F (x; a, b, c) = 1− exp

(
ax− bx+

b

c

(
1− e−cx

))
G (q; a, b, c) = F−1

Implementation: scipy.stats.genexpon

Generalized Extreme Value Distribution

Extreme value distributions with one shape parameter c.
If c > 0, the support is −∞ < x ≤ 1/c. If c < 0, the support is 1

c ≤ x <∞.

f (x; c) = exp
(
− (1− cx)

1/c
)
(1− cx)

1/c−1

F (x; c) = exp
(
− (1− cx)

1/c
)

G (q; c) =
1

c
(1− (− log q)

c
)

µ′
n =

1

cn

n∑
k=0

(
n

k

)
(−1)

k
Γ (ck + 1) if cn > −1
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So,

µ′
1 =

1

c
(1− Γ (1 + c)) c > −1

µ′
2 =

1

c2
(1− 2Γ (1 + c) + Γ (1 + 2c)) c > −1

2

µ′
3 =

1

c3
(1− 3Γ (1 + c) + 3Γ (1 + 2c)− Γ (1 + 3c)) c > −1

3

µ′
4 =

1

c4
(1− 4Γ (1 + c) + 6Γ (1 + 2c)− 4Γ (1 + 3c) + Γ (1 + 4c)) c > −1

4

For c = 0 the distribution is the same as the (left-skewed) Gumbel distribution, and the support is R.

f (x; 0) = exp
(
−e−x

)
e−x

F (x; 0) = exp
(
−e−x

)
G (q; 0) = − log (− log q)

µ = γ = −ψ0 (1)

µ2 =
π2

6

γ1 =
12
√
6

π3
ζ (3)

γ2 =
12

5

Implementation: scipy.stats.genextreme

Generalized Gamma Distribution

A general probability form that reduces to many common distributions. There are two shape parameters a > 0 and c ̸= 0.
The support is x ≥ 0.

f (x; a, c) =
|c|xca−1

Γ (a)
exp (−xc)

F (x; a, c) =

{
γ(a,xc)
Γ(a) c > 0

1− γ(a,xc)
Γ(a) c < 0

G (q; a, c) =

{
γ−1 (a,Γ (a) q)

1/c
c > 0

γ−1 (a,Γ (a) (1− q))
1/c

c < 0

364 Chapter 4. Tutorial



SciPy Reference Guide, Release 1.3.1

where γ is the lower incomplete gamma function, γ (s, x) =
∫ x

0
ts−1e−tdt.

µ′
n =

Γ
(
a+ n

c

)
Γ (a)

µ =
Γ
(
a+ 1

c

)
Γ (a)

µ2 =
Γ
(
a+ 2

c

)
Γ (a)

− µ2

γ1 =
Γ
(
a+ 3

c

)
/Γ (a)− 3µµ2 − µ3

µ
3/2
2

γ2 =
Γ
(
a+ 4

c

)
/Γ (a)− 4µµ3 − 6µ2µ2 − µ4

µ2
2

− 3

md =

(
ac− 1

c

)1/c

Special cases are Weibull (a = 1), half-normal (a = 1/2, c = 2) and ordinary gamma distributions c = 1. If c = −1
then it is the inverted gamma distribution.

h [X] = a− aΨ(a) +
1

c
Ψ(a) + log Γ (a)− log |c| .

Implementation: scipy.stats.gengamma

Generalized Half-Logistic Distribution

One shape parameter c > 0 and support x ∈ [0, 1/c].

f (x; c) =
2 (1− cx)

1
c−1(

1 + (1− cx)
1/c
)2

F (x; c) =
1− (1− cx)

1/c

1 + (1− cx)
1/c

G (q; c) =
1

c

[
1−

(
1− q

1 + q

)c]

h [X] = 2− (2c+ 1) log 2.

Implementation: scipy.stats.genhalflogistic

Generalized Normal Distribution

This distribution is also known as the exponential power distribution. It has a single shape parameter β > 0. It reduces
to a number of common distributions.

Functions

f (x;β) =
β

2Γ(1/β)
e−|x|β
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F (x;β) =
1

2
+ sgn (x)

γ
(
1/β, xβ

)
2Γ (1/β)

γ is the lower incomplete gamma function. γ (s, x) =
∫ x

0
ts−1e−tdt.

h [X;β] =
1

β
− log

(
β

2Γ (1/β)

)

Moments

µ = 0

mn = 0

md = 0

µ2 =
Γ (3/β)

γ (1/β)

γ1 = 0

γ2 =
Γ (5/β) Γ (1/β)

Γ (3/β)
2 − 3

Special Cases

• Laplace distribution (β = 1)
• Normal distribution with µ2 = 1/2 (β = 2)
• Uniform distribution over the interval [−1, 1] (β → ∞)

Sources

• https://en.wikipedia.org/wiki/Generalized_normal_distribution#Version_1
• https://en.wikipedia.org/wiki/Incomplete_gamma_function#Lower_incomplete_Gamma_function

Implementation: scipy.stats.gennorm

Gilbrat Distribution

Special case of the log-normal with σ = 1 and S = 1.0, typically also L = 0.0.)

f (x;σ) =
1

x
√
2π

exp

(
−1

2
(log x)

2

)
F (x;σ) = Φ (log x) =

1

2

(
1 + erf

(
log x√

2

))
G (q;σ) = exp

(
Φ−1 (q)

)
µ =

√
e

µ2 = e [e− 1]

γ1 =
√
e− 1 (2 + e)

γ2 = e4 + 2e3 + 3e2 − 6
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h [X] = log
(√

2πe
)

≈ 1.4189385332046727418

Implementation: scipy.stats.gilbrat

Gompertz (Truncated Gumbel) Distribution

For x ≥ 0 and c > 0 . In JKB the two shape parameters b, a are reduced to the single shape-parameter c = b/a . As a
is just a scale parameter when a ̸= 0 . If a = 0, the distribution reduces to the exponential distribution scaled by 1/b.
Thus, the standard form is given as

f (x; c) = cex exp (−c (ex − 1))

F (x; c) = 1− exp (−c (ex − 1))

G (q; c) = log

(
1− 1

c
log (1− q)

)
h [X] = 1− log (c)− ecEi (1, c) ,

where

Ei (n, x) =

∫ ∞

1

t−n exp (−xt) dt

Implementation: scipy.stats.gompertz

Gumbel (LogWeibull, Fisher-Tippetts, Type I Extreme Value) Distribution

One of a class of extreme value distributions (right-skewed).

f (x) = exp
(
−
(
x+ e−x

))
F (x) = exp

(
−e−x

)
G (q) = − log (− log (q))

M (t) = Γ (1− t)

µ = γ = −ψ0 (1)

µ2 =
π2

6

γ1 =
12
√
6

π3
ζ (3)

γ2 =
12

5
md = 0

mn = − log (log 2)

h [X] ≈ 1.0608407169541684911

Implementation: scipy.stats.gumbel_r
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Gumbel Left-skewed (for minimum order statistic) Distribution

f (x) = exp (x− ex)

F (x) = 1− exp (−ex)
G (q) = log (− log (1− q))

M (t) = Γ (1 + t)

Note, that µ is negative the mean for the right-skewed distribution. Similar for median and mode. All other moments are
the same.

h [X] ≈ 1.0608407169541684911.

Implementation: scipy.stats.gumbel_l

HalfCauchy Distribution

If Z is Hyperbolic Secant distributed then eZ is Half-Cauchy distributed. Also, ifW is (standard) Cauchy distributed,
then |W | is Half-Cauchy distributed. Special case of the Folded Cauchy distribution with c = 0. The support is x ≥ 0.
The standard form is

f (x) =
2

π (1 + x2)

F (x) =
2

π
arctan (x)

G (q) = tan
(π
2
q
)

M (t) = cos t+
2

π
[Si (t) cos t− Ci (−t) sin t]

where Si(t) =
∫ t

0
sin x
x dx, Ci(t) = −

∫∞
t

cos x
x dx.

md = 0

mn = tan
(π
4

)
No moments, as the integrals diverge.

h [X] = log (2π)

≈ 1.8378770664093454836.

Implementation: scipy.stats.halfcauchy

HalfNormal Distribution

This is a special case of the chi distribution with L = a and S = b and ν = 1. This is also a special case of the folded
normal with shape parameter c = 0 and S = S. If Z is (standard) normally distributed then, |Z| is half-normal. The
standard form is

f (x) =

√
2

π
e−x2/2

F (x) = 2Φ (x)− 1

G (q) = Φ−1

(
1 + q

2

)
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M (t) =
√
2πet

2/2Φ(t)

µ =

√
2

π

µ2 = 1− 2

π

γ1 =

√
2 (4− π)

(π − 2)
3/2

γ2 =
8 (π − 3)

(π − 2)
2

md = 0

mn = Φ−1

(
3

4

)

h [X] = log

(√
πe

2

)
≈ 0.72579135264472743239.

Implementation: scipy.stats.halfnorm

Half-Logistic Distribution

In the limit as c→ ∞ for the generalized half-logistic we have the half-logistic defined over x ≥ 0. Also, the distribution
of |X| where X has logistic distribution.

f (x) =
2e−x

(1 + e−x)
2 =

1

2
sech2

(x
2

)
F (x) =

1− e−x

1 + e−x
= tanh

(x
2

)
G (q) = log

(
1 + q

1− q

)
= 2arctanh (q)

M (t) = 1− tψ0

(
1

2
− t

2

)
+ tψ0

(
1− t

2

)
where ψm is the polygamma function ψm(z) = dm+1

dzm+1 log(Γ(z)).

µ′
n = 2

(
1− 21−n

)
n!ζ (n) n ̸= 1

µ′
1 = 2 log (2)

µ′
2 = 2ζ (2) =

π2

3
µ′
3 = 9ζ (3)

µ′
4 = 42ζ (4) =

7π4

15

h [X] = 2− log (2)

≈ 1.3068528194400546906.

Implementation: scipy.stats.halflogistic
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Hyperbolic Secant Distribution

Related to the logistic distribution and used in lifetime analysis. Standard form is (defined over all x )

f (x) =
1

π
sech (x)

F (x) =
2

π
arctan (ex)

G (q) = log
(
tan

(π
2
q
))

M (t) = sec
(π
2
t
)

µ′
n =

1 + (−1)
n

2π22n
n!

[
ζ

(
n+ 1,

1

4

)
− ζ

(
n+ 1,

3

4

)]
=

{
0 n odd

Cn/2
πn

2n n even

where Cm is an integer given by

Cm =
(2m)!

[
ζ
(
2m+ 1, 14

)
− ζ

(
2m+ 1, 34

)]
π2m+122m

= 4 (−1)
m−1 16m

2m+ 1
B2m+1

(
1

4

)
where B2m+1

(
1
4

)
is the Bernoulli polynomial of order 2m+ 1 evaluated at 1/4. Thus

µ′
n =

{
0 n odd

4 (−1)
n/2−1 (2π)n

n+1 Bn+1

(
1
4

)
n even

md = mn = µ = 0

µ2 =
π2

4
γ1 = 0

γ2 = 2

h [X] = log (2π) .

Implementation: scipy.stats.hypsecant

Gauss Hypergeometric Distribution

The two shape parameters are α > 0, β > 0. The support is x ∈ [0, 1].

Let C =
1

B (α, β) 2F1 (γ, α;α+ β;−z)

f (x;α, β, γ, z) = Cxα−1 (1− x)
β−1

(1 + zx)
γ

µ′
n =

B (n+ α, β)

B (α, β)
2F1 (γ, α+ n;α+ β + n;−z)

2F1 (γ, α;α+ β;−z)

Implementation: scipy.stats.gausshyper
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Inverted Gamma Distribution

Special case of the generalized Gamma distribution with c = −1 and a > 0 and support x ≥ 0.

f (x; a) =
x−a−1

Γ (a)
exp

(
− 1

x

)
F (x; a) =

Γ
(
a, 1x

)
Γ (a)

G (q; a) =
{
Γ−1 (a,Γ (a) q)

}−1

µ′
n =

Γ (a− n)

Γ (a)
a > n

µ =
1

a− 1
a > 1

µ2 =
1

(a− 2) (a− 1)
− µ2 a > 2

γ1 =

1
(a−3)(a−2)(a−1) − 3µµ2 − µ3

µ
3/2
2

γ2 =

1
(a−4)(a−3)(a−2)(a−1) − 4µµ3 − 6µ2µ2 − µ4

µ2
2

− 3

md =
1

a+ 1

h [X] = a− (a+ 1)ψ (a) + log Γ (a) .

where Ψ is the digamma function ψ(z) = d
dz log(Γ(z)).

Implementation: scipy.stats.invgamma

Inverse Normal (Inverse Gaussian) Distribution

The standard form involves the shape parameter µ (in most definitions, L = 0.0 is used). (In terms of the regress
documentation µ = A/B ) and B = S and L is not a parameter in that distribution. A standard form is x > 0

f (x;µ) =
1√
2πx3

exp

(
− (x− µ)

2

2xµ2

)
.

F (x;µ) = Φ

(
1√
x

x− µ

µ

)
+ exp

(
2

µ

)
Φ

(
− 1√

x

x+ µ

µ

)
G (q;µ) = F−1 (q;µ)

µ = µ

µ2 = µ3

γ1 = 3
√
µ

γ2 = 15µ

md =
µ

2

(√
9µ2 + 4− 3µ

)
This is related to the canonical form or JKB “two-parameter” inverse Gaussian when written in it’s full form with scale
parameter S and location parameter L by taking L = 0 and S ≡ λ, then µS is equal to µ2 where µ2 is the parameter
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used by JKB. We prefer this form because of it’s consistent use of the scale parameter. Notice that in JKB the skew(√
β1
)
and the kurtosis ( β2 − 3 ) are both functions only of µ2/λ = µS/S = µ as shown here, while the variance and

mean of the standard form here are transformed appropriately.
Implementation: scipy.stats.invgauss

Inverted Weibull Distribution

There is one shape parameter c > 0 and the support is x ≥ 0 . Then

f (x; c) = cx−c−1 exp
(
−x−c

)
F (x; c) = exp

(
−x−c

)
G (q; c) = (− log q)

−1/c

h [X] = 1 + γ +
γ

c
− log (c)

where γ is Euler’s constant.
Implementation: scipy.stats.invweibull

Johnson SB Distribution

There are two shape parameters a ∈ R and b > 0, and the support is x ∈ [0, 1].

f (x; a, b) =
b

x (1− x)
ϕ

(
a+ b log

x

1− x

)
F (x; a, b) = Φ

(
a+ b log

x

1− x

)
G (q; a, b) =

1

1 + exp
(
− 1

b (Φ
−1 (q)− a)

)
Implementation: scipy.stats.johnsonsb

Johnson SU Distribution

There are two shape parameters a ∈ R and b > 0, and the support is x ∈ R.

f (x; a, b) =
b√

x2 + 1
ϕ
(
a+ b log

(
x+

√
x2 + 1

))
F (x; a, b) = Φ

(
a+ b log

(
x+

√
x2 + 1

))
G (q; a, b) = sinh

(
Φ−1 (q)− a

b

)
Implementation: scipy.stats.johnsonsu

KSone Distribution

This is the distribution of maximum positive differences between an empirical distribution function, computed from n
samples or observations, and a comparison (or target) cumulative distribution function.
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Writing D+
n = supt (Fempirical,n(t)− Ftarget(t)), ksone is the distribution of the D+

n values. (The distribution of
D−

n = supt (Ftarget(t)− Fempirical,n(t)) differences follows the same distribution, so ksone can be used for one-
sided tests on either side.)
There is one shape parameter n, a positive integer, and the support is x ∈ [0, 1].

F (n, x) = 1−
⌊n(1−x)⌋∑

j=0

(
n

j

)
x

(
x+

j

n

)j−1(
1− x− j

n

)n−j

= 1− scipy.special.smirnov(n, x)

lim
n→∞

F

(
n,

x√
n

)
= e−2x2

References

• “Kolmogorov-Smirnov test”, Wikipedia https://en.wikipedia.org/wiki/Kolmogorov-Smirnov_test
• Birnbaum, Z. W.; Tingey, Fred H. “One-Sided Confidence Contours for Probability Distribution Functions.” Ann.

Math. Statist. 22 (1951), no. 4, 592–596.
Implementation: scipy.stats.ksone

KStwo Distribution

This is the limiting distribution of the normalized maximum absolute differences between an empirical distribution func-
tion, computed from n samples or observations, and a comparison (or target) cumulative distribution function. (ksone
is the distribution of the unnormalized positive differences, D+

n .)
Writing Dn = supt |Fempirical,n(t)− Ftarget(t)−|, the normalization factor is √n, and kstwobign is the limiting
distribution of the√nDn values as n→ ∞.
Note that Dn = max(D+

n , D
−
n ), but D+

n and D−
n are not independent.

kstwobign can also be used with the differences between two empirical distribution functions, for sets of observa-
tions with m and n samples respectively, where m and n are “big”. Writing Dm,n = supt |F1,m(t)− F2,n(t)|, where
F1,m and F2,n are the two empirical distribution functions, then kstwobign is also the limiting distribution of the√(

mn
m+n

)
Dm,n values, asm,n→ ∞.

There are no shape parameters, and the support is x ∈ [0,∞).

F (x) = 1− 2

∞∑
k=1

(−1)k−1e−2k2x2

=

√
2π

x

∞∑
k=1

e−(2k−1)2π2/(8x2)

= 1− scipy.special.kolmogorov(n, x)

f (x) = 8x

∞∑
k=1

(−1)k−1k2e−2k2x2

References

• “Kolmogorov-Smirnov test”, Wikipedia https://en.wikipedia.org/wiki/Kolmogorov-Smirnov_test
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• Kolmogoroff, A. “Confidence Limits for an Unknown Distribution Function.”” Ann. Math. Statist. 12 (1941), no.
4, 461–463.

• Feller, W. “On the Kolmogorov-Smirnov Limit Theorems for Empirical Distributions.” Ann. Math. Statist. 19
(1948), no. 2, 177–189. and “Errata” Ann. Math. Statist. 21 (1950), no. 2, 301–302.

Implementation: scipy.stats.kstwobign

Laplace (Double Exponential, Bilateral Exponential) Distribution

f (x) =
1

2
e−|x|

F (x) =

{
1
2e

x x ≤ 0
1− 1

2e
−x x > 0

G (q) =

{
log (2q) q ≤ 1

2
− log (2− 2q) q > 1

2

md = mn = µ = 0

µ2 = 2

γ1 = 0

γ2 = 3

The ML estimator of the location parameter is

L̂ = median (Xi)

where Xi is a sequence of N mutually independent Laplace RV’s and the median is some number between the 1
2Nth

and the (N/2 + 1)th order statistic ( e.g. take the average of these two) when N is even. Also,

Ŝ =
1

N

N∑
j=1

∣∣∣Xj − L̂
∣∣∣ .

Replace L̂ with L if it is known. If L is known then this estimator is distributed as (2N)
−1
S · χ2

2N .
h [X] = log (2e)

≈ 1.6931471805599453094.

Implementation: scipy.stats.laplace

Left-skewed Lévy Distribution

Special case of Lévy-stable distribution with α = 1
2 and β = −1. The support is x ≤ 0 . In standard form

f (x) =
1

|x|
√
2π |x|

exp

(
− 1

2 |x|

)

F (x) = 2Φ

(
1√
|x|

)
− 1

G (q) = −
[
Φ−1

(
q + 1

2

)]−2

.

No moments.
Implementation: scipy.stats.levy_l
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Lévy Distribution

A special case of Lévy-stable distributions with α = 1
2 and β = 1 and support x ≥ 0. In standard form it is defined for

x > 0 as

f (x) =
1

x
√
2πx

exp

(
− 1

2x

)
F (x) = 2

[
1− Φ

(
1√
x

)]
G (q) =

[
Φ−1

(
1− q

2

)]−2

.

It has no finite moments.
Implementation: scipy.stats.levy

Logistic (Sech-squared) Distribution

A special case of the Generalized Logistic distribution with c = 1. Defined for x ≥ 0

f (x) =
exp (−x)

(1 + exp (−x))2

F (x) =
1

1 + exp (−x)
G (q) = − log (1/q − 1)

µ = γ + ψ0 (1) = 0

µ2 =
π2

6
+ ψ1 (1) =

π2

3

γ1 =
ψ2 (1) + 2ζ (3)

µ
3/2
2

= 0

γ2 =

(
π4

15 + ψ3 (1)
)

µ2
2

=
6

5

md = log 1 = 0

mn = − log (2− 1) = 0

where ψm is the polygamma function ψm(z) = dm+1

dzm+1 log(Γ(z)).

h [X] = 1.

Implementation: scipy.stats.logistic

Log Double Exponential (Log-Laplace) Distribution

One shape parameter c > 0. The support is x ≥ 0.

f (x; c) =

{
c
2x

c−1 0 < x < 1
c
2x

−c−1 x ≥ 1

F (x; c) =

{
1
2x

c 0 < x < 1
1− 1

2x
−c x ≥ 1

G (q; c) =

{
(2q)

1/c
0 ≤ q < 1

2

(2− 2q)
−1/c 1

2 ≤ q ≤ 1
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h [X] = log

(
2e

c

)
Implementation: scipy.stats.loglaplace

Log Gamma Distribution

A single shape parameter c > 0 . The support is x ∈ R.

f (x; c) =
exp (cx− ex)

Γ (c)

F (x; c) =
γ (c, ex)

Γ (c)

G (q; c) = log
(
γ−1 (c, qΓ (c))

)
where γ is the lower incomplete gamma function, γ (s, x) =

∫ x

0
ts−1e−tdt.

µ′
n =

∫ ∞

0

[log y]
n
yc−1 exp (−y) dy.

µ = µ′
1

µ2 = µ′
2 − µ2

γ1 =
µ′
3 − 3µµ2 − µ3

µ
3/2
2

γ2 =
µ′
4 − 4µµ3 − 6µ2µ2 − µ4

µ2
2

− 3

Implementation: scipy.stats.loggamma

Log Normal (Cobb-Douglass) Distribution

Has one shape parameter σ >0. (Notice that the “Regress” A = logS where S is the scale parameter and A is the mean
of the underlying normal distribution). The support is x ≥ 0.

f (x;σ) =
1

σx
√
2π

exp

(
−1

2

(
log x

σ

)2
)

F (x;σ) = Φ

(
log x

σ

)
G (q;σ) = exp

(
σΦ−1 (q)

)
µ = exp

(
σ2/2

)
µ2 = exp

(
σ2
) [

exp
(
σ2
)
− 1
]

γ1 =
√
p− 1 (2 + p)

γ2 = p4 + 2p3 + 3p2 − 6 p = eσ
2

Notice that using JKB notation we have θ = L, ζ = logS and we have given the so-called antilognormal form of the
distribution. This is more consistent with the location, scale parameter description of general probability distributions.

h [X] =
1

2
[1 + log (2π) + 2 log (σ)] .

Also, note that ifX is a log-normally distributed random-variable with L = 0 and S and shape parameter σ. Then, logX
is normally distributed with variance σ2 and mean logS.
Implementation: scipy.stats.lognorm
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Maxwell Distribution

This is a special case of the Chi distribution with L = 0 and S = 1√
a
and ν = 3. The support is x ≥ 0.

f (x) =

√
2

π
x2e−x2/2

F (x) =
γ
(

3
2 ,

x2

2

)
Γ( 32 )

G (q) =

√
2γ−1

(
3

2
, qΓ(

3

2
)

)

µ = 2

√
2

π

µ2 = 3− 8

π

γ1 =
√
2

32− 10π

(3π − 8)
3/2

γ2 =
−12π2 + 160π − 384

(3π − 8)
2

md =
√
2

mn =

√
2γ−1

(
3

2
,
1

2
Γ(

3

2
)

)

h [X] = log

(√
2π

e

)
+ γ.

Implementation: scipy.stats.maxwell

Mielke’s Beta-Kappa Distribution

A generalized F distribution. Two shape parameters κ and θ, with support x ≥ 0. The β in the DATAPLOT reference
is a scale parameter.

f (x;κ, θ) =
κxκ−1

(1 + xθ)
1+κ

θ

F (x;κ, θ) =
xκ

(1 + xθ)
κ/θ

G (q;κ, θ) =

(
qθ/κ

1− qθ/κ

)1/θ

Implementation: scipy.stats.mielke
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Nakagami Distribution

Generalization of the chi distribution. Shape parameter is ν > 0. The support is x ≥ 0.

f (x; ν) =
2νν

Γ (ν)
x2ν−1 exp

(
−νx2

)
F (x; ν) =

γ
(
ν, νx2

)
Γ (ν)

G (q; ν) =

√
1

ν
γ−1 (ν, qΓ (ν))

where γ is the lower incomplete gamma function, γ (ν, x) =
∫ x

0
tν−1e−tdt.

µ =
Γ
(
ν + 1

2

)
√
νΓ (ν)

µ2 =
[
1− µ2

]
γ1 =

µ (1− 4vµ2)

2νµ
3/2
2

γ2 =
−6µ4ν + (8ν − 2)µ2 − 2ν + 1

νµ2
2

Implementation: scipy.stats.nakagami

Noncentral chi-squared Distribution

The distribution of
∑ν

i=1 (Zi + δi)
2 where Zi are independent standard normal variables and δi are constants. λ =∑ν

i=1 δ
2
i > 0. (In communications it is called the Marcum-Q function). It can be thought of as a Generalized Rayleigh-

Rice distribution.
The two shape parameters are ν, a positive integer, and λ, a positive real number. The support is x ≥ 0.

f (x; ν, λ) = e−(λ+x)/2 1

2

(x
λ

)(ν−2)/4

I(ν−2)/2

(√
λx
)

F (x; ν, λ) =

∞∑
j=0

{
(λ/2)

j

j!
e−λ/2

}
Pr
[
χ2
ν+2j ≤ x

]
G (q; ν, λ) = F−1 (q; ν, λ)

µ = ν + λ

µ2 = 2 (ν + 2λ)

γ1 =

√
8 (ν + 3λ)

(ν + 2λ)
3/2

γ2 =
12 (ν + 4λ)

(ν + 2λ)
2

where Iν(y) is a modified Bessel function of the first kind.

References

• “Noncentral chi-squared distribution”, Wikipedia https://en.wikipedia.org/wiki/Noncentral_chi-squared_
distribution

Implementation: scipy.stats.ncx2
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Noncentral F Distribution

The distribution of (X1/X2) (ν2/ν1) ifX1 is non-central chi-squared with v1 degrees of freedom and parameter λ, and
X2 is chi-squared with v2 degrees of freedom.
There are 3 shape parameters: the degrees of freedom ν1 > 0 and ν2 > 0; and λ > 0.

f (x;λ, ν1, ν2) = exp

[
λ

2
+

(λν1x)

2 (ν1x+ ν2)

]
ν
ν1/2
1 ν

ν2/2
2 xν1/2−1

× (ν2 + ν1x)
−(ν1+ν2)/2

Γ
(
ν1

2

)
Γ
(
1 + ν2

2

)
L
ν1/2−1
ν2/2

(
− λν1x

2(ν1x+ν2)

)
B
(
ν1

2 ,
ν2

2

)
Γ
(
ν1+ν2

2

)
where Lν1/2−1

ν2/2
(x) is an associated Laguerre polynomial.

Implementation: scipy.stats.ncf

Noncentral t Distribution

The distribution of the ratio
U + λ

χν/
√
ν

where U and χν are independent and distributed as a standard normal and chi with ν degrees of freedom. Note λ > 0
and ν > 0 .

f (x;λ, ν) =
νν/2Γ (ν + 1)

2νeλ2/2 (ν + x2)
ν/2

Γ (ν/2)

×


√
2λx 1F1

(
ν
2 + 1; 3

2 ;
λ2x2

2(ν+x2)

)
(ν + x2) Γ

(
ν+1
2

)
−

1F1

(
ν+1
2 ; 1

2 ;
λ2x2

2(ν+x2)

)
√
ν + x2Γ

(
ν
2 + 1

)


=
Γ (ν + 1)

2(ν−1)/2
√
πνΓ (ν/2)

exp

[
− νλ2

ν + x2

]
×
(

ν

ν + x2

)(ν−1)/2

Hhν

(
− λx√

ν + x2

)
F (x;λ, ν) =

{
F̃ν,µ(x) x ≥ 0

1− F̃ν,−µ(x) x < 0

where

F̃ν,µ(x) = Φ(−µ) + 1

2

∞∑
j=0

[
pjIy

(
j +

1

2
,
ν

2

)
+ qjIy

(
j + 1,

ν

2

)]

y =
x2

x2 + ν

pj =
e

(
−µ2

2

)
j!

(
µ2

2

)j

qj =
µe

(
−µ2

2

)
√
2Γ(j + 3/2)

(
µ2

2

)j
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where Iy(a, b) is the regularized incomplete beta function and Airy’s Hh function isHhν(x) = 1
Γ(ν+1)

∫∞
0
tνe

−(t+x)2

2 dt.

Implementation: scipy.stats.nct

Normal Distribution

f (x) =
e−x2/2

√
2π

F (x) = Φ (x) =
1

2
+

1

2
erf

(
x√
2

)
G (q) = Φ−1 (q)

md = mn = µ = 0

µ2 = 1

γ1 = 0

γ2 = 0

h [X] = log
(√

2πe
)

≈ 1.4189385332046727418

Implementation: scipy.stats.norm

Normal Inverse Gaussian Distribution

The probability density function is given by:

f(x; a, b) =
a exp

(√
a2 − b2 + bx

)
π
√
1 + x2

K1

(
a ∗ sqrt1 + x2

)
,

where x is a real number, the parameter a is the tail heaviness and b is the asymmetry parameter satisfying a > 0 and
|b| ≤ a. K1 is the modified Bessel function of second kind (scipy.special.k1).
A normal inverse Gaussian random variable with parameters a and b can be expressed as X = bV +

√
(V )X where X

is norm(0,1) and V is invgauss(mu=1/sqrt(a**2 - b**2)). Hence, the normal inverse Gaussian distribution is a special
case of normal variance-mean mixtures.
Implementation: scipy.stats.norminvgauss

Pareto Distribution

One shape parameter b > 0 and support x ≥ 1. The standard form is

f (x; b) =
b

xb+1

F (x; b) = 1− 1

xb

G (q; b) = (1− q)
−1/b
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µ =
b

b− 1
b > 1

µ2 =
b

(b− 2) (b− 1)
2 b > 2

γ1 =
2 (b+ 1)

√
b− 2

(b− 3)
√
b

b > 3

γ2 =
6
(
b3 + b2 − 6b− 2

)
b (b2 − 7b+ 12)

b > 4

h (X) =
1

c
+ 1− log (c)

Implementation: scipy.stats.pareto

Pareto Second Kind (Lomax) Distribution

This is Pareto of the first kind with L = −1.0 . There is one shape parameter c > 0 and support x ≥ 0.

f (x; c) =
c

(1 + x)
c+1

F (x; c) = 1− 1

(1 + x)
c

G (q; c) = (1− q)
−1/c − 1

h [X] =
1

c
+ 1− log (c) .

Implementation: scipy.stats.lomax

Power Log Normal Distribution

A generalization of the log-normal distribution with shape parameters σ > 0, c > 0 and support x ≥ 0.

f (x;σ, c) =
c

xσ
ϕ

(
log x

σ

)(
Φ

(
− log x

σ

))c−1

F (x;σ, c) = 1−
(
Φ

(
− log x

σ

))c

G (q;σ, c) = exp
(
−σΦ−1

(
(1− q)

1/c
))

µ′
n =

∫ 1

0

exp
(
−nσΦ−1

(
y1/c

))
dy

µ = µ′
1

µ2 = µ′
2 − µ2

γ1 =
µ′
3 − 3µµ2 − µ3

µ
3/2
2

γ2 =
µ′
4 − 4µµ3 − 6µ2µ2 − µ4

µ2
2

− 3

This distribution reduces to the log-normal distribution when c = 1.

Implementation: scipy.stats.powerlognorm

4.1. SciPy Tutorial 381



SciPy Reference Guide, Release 1.3.1

Power Normal Distribution

A generalization of the normal distribution, with one shape parameter c > 0 and support x ≥ 0.

f (x; c) = cϕ (x) (Φ (−x))c−1

F (x; c) = 1− (Φ (−x))c

G (q; c) = −Φ−1
(
(1− q)

1/c
)

µ′
n = (−1)

n
∫ 1

0

[
Φ−1

(
y1/c

)]n
dy

µ = µ′
1

µ2 = µ′
2 − µ2

γ1 =
µ′
3 − 3µµ2 − µ3

µ
3/2
2

γ2 =
µ′
4 − 4µµ3 − 6µ2µ2 − µ4

µ2
2

− 3

For c = 1 this reduces to the normal distribution.
Implementation: scipy.stats.powernorm

Power-function Distribution

A special case of the beta distribution with b = 1. There is one shape parameter a > 0 and support x ∈ [0, 1].

f (x; a) = axa−1

F (x; a) = xa

G (q; a) = q1/a

µ =
a

a+ 1

µ2 =
a (a+ 2)

(a+ 1)
2

γ1 = 2 (1− a)

√
a+ 2

a (a+ 3)

γ2 =
6
(
a3 − a2 − 6a+ 2

)
a (a+ 3) (a+ 4)

md = 1

h [X] = 1− 1

a
− log (a)

Implementation: scipy.stats.powerlaw
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R-distribution Distribution

A general-purpose distribution with a variety of shapes controlled by one shape parameter c > 0. The support of the
standard distribution is x ∈ [−1, 1].

f (x; c) =

(
1− x2

)c/2−1

B
(
1
2 ,

c
2

)
F (x; c) =

1

2
+

x

B
(
1
2 ,

c
2

) 2F1

(
1

2
, 1− c

2
;
3

2
;x2
)

µ′
n =

(1 + (−1)
n
)

2
B

(
n+ 1

2
,
c

2

)
The R-distribution with parameter n is the distribution of the correlation coefficient of a random sample of size n drawn
from a bivariate normal distribution with ρ = 0. The mean of the standard distribution is always zero and as the sample
size grows, the distribution’s mass concentrates more closely about this mean.
Implementation: scipy.stats.rdist

Rayleigh Distribution

This is a special case of the Chi distribution with L = 0.0 and ν = 2 (no location parameter is generally used), the mode
of the distribution is S.

f (r) = re−r2/2

F (r) = 1− e−r2/2

G (q) =
√

−2 log (1− q)

µ =

√
π

2

µ2 =
4− π

2

γ1 =
2 (π − 3)

√
π

(4− π)
3/2

γ2 =
24π − 6π2 − 16

(4− π)
2

md = 1

mn =
√
2 log (2)

h [X] =
γ

2
+ log

(
e√
2

)
.

µ′
n =

√
2nΓ

(n
2
+ 1
)

Implementation: scipy.stats.rayleigh
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Rice Distribution

There is one shape parameter b ≥ 0 (the “distance from the origin”) and the support is x ≥ 0.

f (x; b) = x exp

(
−x

2 + b2

2

)
I0 (xb)

F (x; b) =

∫ x

0

α exp

(
−α

2 + b2

2

)
I0 (αb) dα

were I0(y) is the modified Bessel function of the first kind of order 0.

µ′
n =

√
2nΓ

(
1 +

n

2

)
1F1

(
−n
2
; 1;−b

2

2

)
Implementation: scipy.stats.rice

Reciprocal Distribution

There are two shape parameters a, b > 0 and the support is x ∈ [a, b].

f (x; a, b) =
1

x log (b/a)

F (x; a, b) =
log (x/a)

log (b/a)

G (q; a, b) = a exp (q log (b/a)) = a

(
b

a

)q

d = log (a/b)

µ =
a− b

d

µ2 = µ
a+ b

2
− µ2 =

(a− b) [a (d− 2) + b (d+ 2)]

2d2

γ1 =

√
2
[
12d (a− b)

2
+ d2

(
a2 (2d− 9) + 2abd+ b2 (2d+ 9)

)]
3d

√
a− b [a (d− 2) + b (d+ 2)]

3/2

γ2 =
−36 (a− b)

3
+ 36d (a− b)

2
(a+ b)− 16d2

(
a3 − b3

)
+ 3d3

(
a2 + b2

)
(a+ b)

3 (a− b) [a (d− 2) + b (d+ 2)]
2 − 3

md = a

mn =
√
ab

h [X] =
1

2
log (ab) + log

[
log

(
b

a

)]
.

Implementation: scipy.stats.reciprocal

Reciprocal Inverse Gaussian Distribution

The pdf is found from the inverse gaussian (IG), fRIG (x;µ) = 1
x2 fIG

(
1
x ;µ

)
defined for x ≥ 0 as

fIG (x;µ) =
1√
2πx3

exp

(
− (x− µ)

2

2xµ2

)
.

FIG (x;µ) = Φ

(
1√
x

x− µ

µ

)
+ exp

(
2

µ

)
Φ

(
− 1√

x

x+ µ

µ

)
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fRIG (x;µ) =
1√
2πx

exp

(
− (1− µx)

2

2xµ2

)

FRIG (x;µ) = 1− FIG

(
1

x
, µ

)
= 1− Φ

(
1√
x

1− µx

µ

)
− exp

(
2

µ

)
Φ

(
− 1√

x

1 + µx

µ

)
Implementation: scipy.stats.recipinvgauss

Semicircular Distribution

Defined on x ∈ [−1, 1]

f (x) =
2

π

√
1− x2

F (x) =
1

2
+

1

π

[
x
√

1− x2 + arcsinx
]

G (q) = F−1 (q)

md = mn = µ = 0

µ2 =
1

4
γ1 = 0

γ2 = −1

h [X] = 0.64472988584940017414.

Implementation: scipy.stats.semicircular

Student t Distribution

There is one shape parameter ν > 0 and the support is x ∈ R.

f (x; ν) =
Γ
(
ν+1
2

)
√
πνΓ

(
ν
2

) [
1 + x2

ν

] ν+1
2

F (x; ν) =


1
2I
(

ν
ν+x2 ;

ν
2 ,

1
2

)
x ≤ 0

1− 1
2I
(

ν
ν+x2 ;

ν
2 ,

1
2

)
x ≥ 0

G (q; ν) =

 −
√

ν

I−1(2q; ν2 ,
1
2 )

− ν q ≤ 1
2√

ν

I−1(2−2q; ν2 ,
1
2 )

− ν q ≥ 1
2

mn = md = µ = 0

µ2 =
ν

ν − 2
ν > 2

γ1 = 0 ν > 3

γ2 =
6

ν − 4
ν > 4
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where I (x; a, b) is the incomplete beta integral and I−1 (I (x; a, b) ; a, b) = x. As ν → ∞, this distribution approaches
the standard normal distribution.

h [X] =
1

4
log

(
πcΓ2

(
c
2

)
Γ2
(
c+1
2

))− (c+ 1)

4

[
Ψ
( c
2

)
− cZ (c) + π tan

(πc
2

)
+ γ + 2 log 2

]
where

Z (c) = 3F2

(
1, 1, 1 +

c

2
;
3

2
, 2; 1

)
=

∞∑
k=0

k!

k + 1

Γ
(
c
2 + 1 + k

)
Γ
(
c
2 + 1

) Γ
(
3
2

)
Γ
(
3
2 + k

)
Implementation: scipy.stats.t

Trapezoidal Distribution

Two shape parameters c ∈ [0, 1], d ∈ [0, 1] giving the distances to the first and second modes as a percentage of the total
extent of the non-zero portion. The location parameter is the start of the non- zero portion, and the scale-parameter is
the width of the non-zero portion. In standard form we have x ∈ [0, 1] .

u(c, d) =
2

d− c+ 1

f (x; c, d) =


ux
c x < c
u c ≤ x ≤ d

u 1−x
1−d x > d

F (x; c, d) =


ux2

2c x < c
uc
2 + u(x− c) c ≤ x ≤ d

1− u(1−x)2

2(1−d) x > d

G (q; c, d) =


√
qc(d− c+ 1) q < c

q
u + c

2 q ≤ d

1−
√

2(1−q)(1−d)
u q > d

Implementation: scipy.stats.trapz

Triangular Distribution

One shape parameter c ∈ [0, 1] giving the distance to the peak as a percentage of the total extent of the non-zero portion.
The location parameter is the start of the non- zero portion, and the scale-parameter is the width of the non-zero portion.
In standard form we have x ∈ [0, 1] .

f (x; c) =

{
2x
c x < c

2 1−x
1−c x ≥ c

F (x; c) =

{
x2

c x < c
x2−2x+c

c−1 x ≥ c

G (q; c) =

{ √
cq q < c

1−
√
(1− c) (1− q) q ≥ c
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µ =
c

3
+

1

3

µ2 =
1− c+ c2

18

γ1 =

√
2 (2c− 1) (c+ 1) (c− 2)

5 (1− c+ c2)
3/2

γ2 = −3

5

h (X) = log

(
1

2

√
e

)
≈ −0.19314718055994530942.

Implementation: scipy.stats.triang

Truncated Exponential Distribution

This is an exponential distribution defined only over a certain region 0 ≤ x ≤ B . In standard form this is

f (x;B) =
e−x

1− e−B

F (x;B) =
1− e−x

1− e−B

G (q;B) = − log
(
1− q + qe−B

)
µ′
n = Γ (1 + n)− Γ (1 + n,B)

h [X] = log
(
eB − 1

)
+

1 + eB (B − 1)

1− eB
.

Implementation: scipy.stats.truncexpon

Truncated Normal Distribution

A normal distribution restricted to lie within a certain range given by two parameters A and B . Notice that this A and
B correspond to the bounds on x in standard form. For x ∈ [A,B] we get

f (x;A,B) =
ϕ (x)

Φ (B)− Φ(A)

F (x;A,B) =
Φ (x)− Φ(A)

Φ (B)− Φ(A)

G (q;A,B) = Φ−1 (qΦ(B) + Φ (A) (1− q))

where

ϕ (x) =
1√
2π
e−x2/2

Φ(x) =

∫ x

−∞
ϕ (u) du.

µ =
ϕ (A)− ϕ (B)

Φ (B)− Φ(A)

µ2 = 1 +
Aϕ (A)−Bϕ (B)

Φ (B)− Φ(A)
−
(
ϕ (A)− ϕ (B)

Φ (B)− Φ(A)

)2

Implementation: scipy.stats.truncnorm
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Tukey-Lambda Distribution

There is one shape parameter λ. The support is x ∈ R.

f (x;λ) = F ′ (x;λ) =
1

G′ (F (x;λ) ;λ)
=

1

Fλ−1 (x;λ) + [1− F (x;λ)]
λ−1

F (x;λ) = G−1 (x;λ)

G (p;λ) =
pλ − (1− p)

λ

λ

µ = 0

µ2 =

∫ 1

0

G2 (p;λ) dp

=
2Γ
(
λ+ 3

2

)
− λ4−λ

√
πΓ (λ) (1− 2λ)

λ2 (1 + 2λ) Γ
(
λ+ 3

2

)
γ1 = 0

γ2 =
µ4

µ2
2

− 3

µ4 =
3Γ (λ) Γ

(
λ+ 1

2

)
2−2λ

λ3Γ
(
2λ+ 3

2

) +
2

λ4 (1 + 4λ)

−
2
√
3Γ (λ) 2−6λ33λΓ

(
λ+ 1

3

)
Γ
(
λ+ 2

3

)
λ3Γ

(
2λ+ 3

2

)
Γ
(
λ+ 1

2

) .

Notice that the limλ→0G (p;λ) = log (p/ (1− p))

h [X] =

∫ 1

0

log [G′ (p)] dp

=

∫ 1

0

log
[
pλ−1 + (1− p)

λ−1
]
dp.

Implementation: scipy.stats.tukeylambda

Uniform Distribution

Standard form x ∈ [0, 1] . In general form, the lower limit is L, the upper limit is S + L.

f (x) = 1

F (x) = x

G (q) = q

µ =
1

2

µ2 =
1

12
γ1 = 0

γ2 = −6

5

h [X] = 0

Implementation: scipy.stats.uniform
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Von Mises Distribution

There is one shape parameter κ > 0, with support x ∈ [−π, π]. For values of κ < 100 the PDF and CDF formulas
below are used. Otherwise, a normal approximation with variance 1/κ is used. [Note that the PDF and CDF functions
below are periodic with period 2π. If an input outside x ∈ [−π, π] is given, it is converted to the equivalent angle in this
range.]

f (x;κ) =
eκ cos x

2πI0 (κ)

F (x;κ) =
1

2
+

x

2π
+

∞∑
k=1

Ik (κ) sin (kx)

I0 (κ)πk

G (q;κ) = F−1 (x;κ)

where Ik(κ) is a modified Bessel function of the first kind.
µ = 0

µ2 =

∫ π

−π

x2f (x;κ) dx

γ1 = 0

γ2 =

∫ π

−π
x4f (x;κ) dx

µ2
2

− 3

This can be used for defining circular variance.
Implementation: scipy.stats.vonmises

Wald Distribution

Special case of the Inverse Normal with shape parameter set to 1.0. It has support x ≥ 0.

f (x) =
1√
2πx3

exp

(
− (x− 1)

2

2x

)
.

F (x) = Φ

(
x− 1√
x

)
+ exp (2)Φ

(
−x+ 1√

x

)
G (q;µ) = F−1 (q;µ)

µ = 1

µ2 = 1

γ1 = 3

γ2 = 15

md =
1

2

(√
13− 3

)
Implementation: scipy.stats.wald

Weibull Maximum Extreme Value Distribution

Defined for x < 0 and c > 0 .
f (x; c) = c (−x)c−1

exp (− (−x)c)
F (x; c) = exp (− (−x)c)
G (q; c) = − (− log q)

1/c
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The mean is the negative of the right-skewed Frechet distribution given above, and the other statistical parameters can be
computed from

µ′
n = (−1)

n
Γ
(
1 +

n

c

)
.

µ = −Γ

(
1 +

1

c

)
µ2 = Γ

(
1 +

2

c

)
− Γ2

(
1 +

1

c

)
γ1 = −

Γ
(
1 + 3

c

)
− 3Γ

(
1 + 2

c

)
Γ
(
1 + 1

c

)
+ 2Γ3

(
1 + 1

c

)
µ
3/2
2

γ2 =
Γ
(
1 + 4

c

)
− 4Γ

(
1 + 1

c

)
Γ
(
1 + 3

c

)
+ 6Γ2

(
1 + 1

c

)
Γ
(
1 + 2

c

)
− 3Γ4

(
1 + 1

c

)
µ2
2

− 3

md =

{
−
(
c−1
c

) 1
c if c > 1

0 if c <= 1

mn = − ln (2)
1
c

h [X] = −γ
c
− log (c) + γ + 1

where γ is Euler’s constant and equal to

γ ≈ 0.57721566490153286061.

Implementation: scipy.stats.weibull_max

Weibull Minimum Extreme Value Distribution

A type of extreme-value distribution with a lower bound. Defined for x > 0 and c > 0

f (x; c) = cxc−1 exp (−xc)
F (x; c) = 1− exp (−xc)
G (q; c) = [− log (1− q)]

1/c

µ′
n = Γ

(
1 +

n

c

)

µ = Γ

(
1 +

1

c

)
µ2 = Γ

(
1 +

2

c

)
− Γ2

(
1 +

1

c

)
γ1 =

Γ
(
1 + 3

c

)
− 3Γ

(
1 + 2

c

)
Γ
(
1 + 1

c

)
+ 2Γ3

(
1 + 1

c

)
µ
3/2
2

γ2 =
Γ
(
1 + 4

c

)
− 4Γ

(
1 + 1

c

)
Γ
(
1 + 3

c

)
+ 6Γ2

(
1 + 1

c

)
Γ
(
1 + 2

c

)
− 3Γ4

(
1 + 1

c

)
µ2
2

− 3

md =

{(
c−1
c

) 1
c if c > 1

0 if c <= 1

mn = ln (2)
1
c
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h [X] = −γ
c
− log (c) + γ + 1

where γ is Euler’s constant and equal to

γ ≈ 0.57721566490153286061.

Implementation: scipy.stats.weibull_min

Wrapped Cauchy Distribution

Thre is one shape parameter c ∈ (0, 1) with support x ∈ [0, 2π].

f (x; c) =
1− c2

2π (1 + c2 − 2c cosx)

gc (x) =
1

π
arctan

(
1 + c

1− c
tan

(x
2

))
rc (q) = 2 arctan

(
1− c

1 + c
tan (πq)

)
F (x; c) =

{
gc (x) 0 ≤ x < π

1− gc (2π − x) π ≤ x ≤ 2π

G (q; c) =

{
rc (q) 0 ≤ q < 1

2
2π − rc (1− q) 1

2 ≤ q ≤ 1

h [X] = log
(
2π
(
1− c2

))
.

Implementation: scipy.stats.wrapcauchy

Random Variables

There are two general distribution classes that have been implemented for encapsulating continuous random variables
and discrete random variables . Over 80 continuous random variables (RVs) and 10 discrete random variables have been
implemented using these classes. Besides this, new routines and distributions can easily added by the end user. (If you
create one, please contribute it).
All of the statistics functions are located in the sub-packagescipy.stats and a fairly complete listing of these functions
can be obtained using info(stats). The list of the random variables available can also be obtained from the docstring
for the stats sub-package.
In the discussion below we mostly focus on continuous RVs. Nearly all applies to discrete variables also, but we point out
some differences here: Specific Points for Discrete Distributions.
In the code samples below we assume that the scipy.stats package is imported as

>>> from scipy import stats

and in some cases we assume that individual objects are imported as

>>> from scipy.stats import norm

For consistency between Python 2 and Python 3, we’ll also ensure that print is a function:

>>> from __future__ import print_function
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Getting Help
First of all, all distributions are accompanied with help functions. To obtain just some basic information we print the
relevant docstring: print(stats.norm.__doc__).
To find the support, i.e., upper and lower bound of the distribution, call:

>>> print('bounds of distribution lower: %s, upper: %s' % (norm.a, norm.b))
bounds of distribution lower: -inf, upper: inf

We can list all methods and properties of the distribution with dir(norm). As it turns out, some of the methods are
private methods although they are not named as such (their name does not start with a leading underscore), for example
veccdf, are only available for internal calculation (those methods will give warnings when one tries to use them, and
will be removed at some point).
To obtain the real main methods, we list the methods of the frozen distribution. (We explain the meaning of a frozen
distribution below).

>>> rv = norm()
>>> dir(rv) # reformatted
['__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__',
'__format__', '__ge__', '__getattribute__', '__gt__', '__hash__',
'__init__', '__le__', '__lt__', '__module__', '__ne__', '__new__',
'__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__',
'__str__', '__subclasshook__', '__weakref__', 'a', 'args', 'b', 'cdf',
'dist', 'entropy', 'expect', 'interval', 'isf', 'kwds', 'logcdf',
'logpdf', 'logpmf', 'logsf', 'mean', 'median', 'moment', 'pdf', 'pmf',
'ppf', 'random_state', 'rvs', 'sf', 'stats', 'std', 'var']

Finally, we can obtain the list of available distribution through introspection:

>>> dist_continu = [d for d in dir(stats) if
... isinstance(getattr(stats, d), stats.rv_continuous)]
>>> dist_discrete = [d for d in dir(stats) if
... isinstance(getattr(stats, d), stats.rv_discrete)]
>>> print('number of continuous distributions: %d' % len(dist_continu))
number of continuous distributions: 98
>>> print('number of discrete distributions: %d' % len(dist_discrete))
number of discrete distributions: 14

Common Methods
The main public methods for continuous RVs are:

• rvs: Random Variates
• pdf: Probability Density Function
• cdf: Cumulative Distribution Function
• sf: Survival Function (1-CDF)
• ppf: Percent Point Function (Inverse of CDF)
• isf: Inverse Survival Function (Inverse of SF)
• stats: Return mean, variance, (Fisher’s) skew, or (Fisher’s) kurtosis
• moment: non-central moments of the distribution

Let’s take a normal RV as an example.
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>>> norm.cdf(0)
0.5

To compute the cdf at a number of points, we can pass a list or a numpy array.

>>> norm.cdf([-1., 0, 1])
array([ 0.15865525, 0.5, 0.84134475])
>>> import numpy as np
>>> norm.cdf(np.array([-1., 0, 1]))
array([ 0.15865525, 0.5, 0.84134475])

Thus, the basic methods such as pdf, cdf, and so on are vectorized.
Other generally useful methods are supported too:

>>> norm.mean(), norm.std(), norm.var()
(0.0, 1.0, 1.0)
>>> norm.stats(moments="mv")
(array(0.0), array(1.0))

To find the median of a distribution we can use the percent point function ppf, which is the inverse of the cdf:

>>> norm.ppf(0.5)
0.0

To generate a sequence of random variates, use the size keyword argument:

>>> norm.rvs(size=3)
array([-0.35687759, 1.34347647, -0.11710531]) # random

Note that drawing random numbers relies on generators from numpy.random package. In the example above, the specific
stream of random numbers is not reproducible across runs. To achieve reproducibility, you can explicitly seed a global
variable

>>> np.random.seed(1234)

Relying on a global state is not recommended though. A better way is to use the random_state parameter which accepts
an instance of numpy.random.mtrand.RandomState class, or an integer which is then used to seed an internal
RandomState object:

>>> norm.rvs(size=5, random_state=1234)
array([ 0.47143516, -1.19097569, 1.43270697, -0.3126519 , -0.72058873])

Don’t think that norm.rvs(5) generates 5 variates:

>>> norm.rvs(5)
5.471435163732493

Here, 5 with no keyword is being interpreted as the first possible keyword argument, loc, which is the first of a pair of
keyword arguments taken by all continuous distributions. This brings us to the topic of the next subsection.

Shifting and Scaling
All continuous distributions take loc and scale as keyword parameters to adjust the location and scale of the distri-
bution, e.g. for the standard normal distribution the location is the mean and the scale is the standard deviation.
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>>> norm.stats(loc=3, scale=4, moments="mv")
(array(3.0), array(16.0))

In many cases the standardized distribution for a random variable X is obtained through the transformation (X - loc)
/ scale. The default values are loc = 0 and scale = 1.
Smart use of loc and scale can help modify the standard distributions in many ways. To illustrate the scaling further,
the cdf of an exponentially distributed RV with mean 1/λ is given by

F (x) = 1− exp(−λx)

By applying the scaling rule above, it can be seen that by taking scale = 1./lambda we get the proper scale.

>>> from scipy.stats import expon
>>> expon.mean(scale=3.)
3.0

Note: Distributions that take shape parameters may require more than simple application of loc and/or scale to
achieve the desired form. For example, the distribution of 2-D vector lengths given a constant vector of lengthR perturbed
by independent N(0, σ2) deviations in each component is rice(R/σ, scale= σ). The first argument is a shape parameter
that needs to be scaled along with x.

The uniform distribution is also interesting:

>>> from scipy.stats import uniform
>>> uniform.cdf([0, 1, 2, 3, 4, 5], loc=1, scale=4)
array([ 0. , 0. , 0.25, 0.5 , 0.75, 1. ])

Finally, recall from the previous paragraph that we are left with the problem of the meaning of norm.rvs(5). As it
turns out, calling a distribution like this, the first argument, i.e., the 5, gets passed to set the loc parameter. Let’s see:

>>> np.mean(norm.rvs(5, size=500))
5.0098355106969992

Thus, to explain the output of the example of the last section: norm.rvs(5) generates a single normally distributed
random variate with mean loc=5, because of the default size=1.
We recommend that you set loc and scale parameters explicitly, by passing the values as keywords rather than as
arguments. Repetition can be minimized when calling more than one method of a given RV by using the technique of
Freezing a Distribution, as explained below.

Shape Parameters
While a general continuous random variable can be shifted and scaled with the loc and scale parameters, some
distributions require additional shape parameters. For instance, the gamma distribution, with density

γ(x, a) =
λ(λx)a−1

Γ(a)
e−λx ,

requires the shape parameter a. Observe that setting λ can be obtained by setting the scale keyword to 1/λ.
Let’s check the number and name of the shape parameters of the gamma distribution. (We know from the above that this
should be 1.)
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>>> from scipy.stats import gamma
>>> gamma.numargs
1
>>> gamma.shapes
'a'

Now we set the value of the shape variable to 1 to obtain the exponential distribution, so that we compare easily whether
we get the results we expect.

>>> gamma(1, scale=2.).stats(moments="mv")
(array(2.0), array(4.0))

Notice that we can also specify shape parameters as keywords:

>>> gamma(a=1, scale=2.).stats(moments="mv")
(array(2.0), array(4.0))

Freezing a Distribution
Passing the loc and scale keywords time and again can become quite bothersome. The concept of freezing a RV is
used to solve such problems.

>>> rv = gamma(1, scale=2.)

By using rv we no longer have to include the scale or the shape parameters anymore. Thus, distributions can be used in
one of two ways, either by passing all distribution parameters to each method call (such as we did earlier) or by freezing
the parameters for the instance of the distribution. Let us check this:

>>> rv.mean(), rv.std()
(2.0, 2.0)

This is indeed what we should get.

Broadcasting
The basic methods pdf and so on satisfy the usual numpy broadcasting rules. For example, we can calculate the critical
values for the upper tail of the t distribution for different probabilities and degrees of freedom.

>>> stats.t.isf([0.1, 0.05, 0.01], [[10], [11]])
array([[ 1.37218364, 1.81246112, 2.76376946],

[ 1.36343032, 1.79588482, 2.71807918]])

Here, the first row are the critical values for 10 degrees of freedom and the second row for 11 degrees of freedom (d.o.f.).
Thus, the broadcasting rules give the same result of calling isf twice:

>>> stats.t.isf([0.1, 0.05, 0.01], 10)
array([ 1.37218364, 1.81246112, 2.76376946])
>>> stats.t.isf([0.1, 0.05, 0.01], 11)
array([ 1.36343032, 1.79588482, 2.71807918])

If the array with probabilities, i.e., [0.1, 0.05, 0.01] and the array of degrees of freedom i.e., [10, 11, 12],
have the same array shape, then element wise matching is used. As an example, we can obtain the 10% tail for 10 d.o.f.,
the 5% tail for 11 d.o.f. and the 1% tail for 12 d.o.f. by calling
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>>> stats.t.isf([0.1, 0.05, 0.01], [10, 11, 12])
array([ 1.37218364, 1.79588482, 2.68099799])

Specific Points for Discrete Distributions
Discrete distribution have mostly the same basic methods as the continuous distributions. However pdf is replaced the
probability mass function pmf, no estimation methods, such as fit, are available, and scale is not a valid keyword
parameter. The location parameter, keyword loc can still be used to shift the distribution.
The computation of the cdf requires some extra attention. In the case of continuous distribution the cumulative distribution
function is in most standard cases strictly monotonic increasing in the bounds (a,b) and has therefore a unique inverse. The
cdf of a discrete distribution, however, is a step function, hence the inverse cdf, i.e., the percent point function, requires
a different definition:

ppf(q) = min{x : cdf(x) >= q, x integer}

For further info, see the docs here.
We can look at the hypergeometric distribution as an example

>>> from scipy.stats import hypergeom
>>> [M, n, N] = [20, 7, 12]

If we use the cdf at some integer points and then evaluate the ppf at those cdf values, we get the initial integers back, for
example

>>> x = np.arange(4)*2
>>> x
array([0, 2, 4, 6])
>>> prb = hypergeom.cdf(x, M, n, N)
>>> prb
array([ 1.03199174e-04, 5.21155831e-02, 6.08359133e-01,

9.89783282e-01])
>>> hypergeom.ppf(prb, M, n, N)
array([ 0., 2., 4., 6.])

If we use values that are not at the kinks of the cdf step function, we get the next higher integer back:

>>> hypergeom.ppf(prb + 1e-8, M, n, N)
array([ 1., 3., 5., 7.])
>>> hypergeom.ppf(prb - 1e-8, M, n, N)
array([ 0., 2., 4., 6.])

Fitting Distributions
The main additional methods of the not frozen distribution are related to the estimation of distribution parameters:

• fit: maximum likelihood estimation of distribution parameters, including location

and scale
• fit_loc_scale: estimation of location and scale when shape parameters are given
• nnlf: negative log likelihood function
• expect: Calculate the expectation of a function against the pdf or pmf
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Performance Issues and Cautionary Remarks
The performance of the individual methods, in terms of speed, varies widely by distribution and method. The results of
a method are obtained in one of two ways: either by explicit calculation, or by a generic algorithm that is independent of
the specific distribution.
Explicit calculation, on the one hand, requires that the method is directly specified for the given distribution, either through
analytic formulas or through special functions in scipy.special or numpy.random for rvs. These are usually
relatively fast calculations.
The generic methods, on the other hand, are used if the distribution does not specify any explicit calculation. To define
a distribution, only one of pdf or cdf is necessary; all other methods can be derived using numeric integration and root
finding. However, these indirect methods can be very slow. As an example, rgh = stats.gausshyper.rvs(0.
5, 2, 2, 2, size=100) creates random variables in a very indirect way and takes about 19 seconds for 100
random variables on my computer, while one million random variables from the standard normal or from the t distribution
take just above one second.

Remaining Issues
The distributions in scipy.stats have recently been corrected and improved and gained a considerable test suite,
however a few issues remain:

• the distributions have been tested over some range of parameters, however in some corner ranges, a few incorrect
results may remain.

• the maximum likelihood estimation in fit does not work with default starting parameters for all distributions and the
user needs to supply good starting parameters. Also, for some distribution using a maximum likelihood estimator
might inherently not be the best choice.

Building Specific Distributions

The next examples shows how to build your own distributions. Further examples show the usage of the distributions and
some statistical tests.

Making a Continuous Distribution, i.e., Subclassing rv_continuous
Making continuous distributions is fairly simple.

>>> from scipy import stats
>>> class deterministic_gen(stats.rv_continuous):
... def _cdf(self, x):
... return np.where(x < 0, 0., 1.)
... def _stats(self):
... return 0., 0., 0., 0.

>>> deterministic = deterministic_gen(name="deterministic")
>>> deterministic.cdf(np.arange(-3, 3, 0.5))
array([ 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1.])

Interestingly, the pdf is now computed automatically:

>>> deterministic.pdf(np.arange(-3, 3, 0.5))
array([ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,

0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
5.83333333e+04, 4.16333634e-12, 4.16333634e-12,
4.16333634e-12, 4.16333634e-12, 4.16333634e-12])
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Be aware of the performance issues mentions in Performance Issues and Cautionary Remarks. The computation of un-
specified common methods can become very slow, since only general methods are called which, by their very nature,
cannot use any specific information about the distribution. Thus, as a cautionary example:

>>> from scipy.integrate import quad
>>> quad(deterministic.pdf, -1e-1, 1e-1)
(4.163336342344337e-13, 0.0)

But this is not correct: the integral over this pdf should be 1. Let’s make the integration interval smaller:

>>> quad(deterministic.pdf, -1e-3, 1e-3) # warning removed
(1.000076872229173, 0.0010625571718182458)

This looks better. However, the problem originated from the fact that the pdf is not specified in the class definition of the
deterministic distribution.

Subclassing rv_discrete
In the following we use stats.rv_discrete to generate a discrete distribution that has the probabilities of the
truncated normal for the intervals centered around the integers.
General Info
From the docstring of rv_discrete, help(stats.rv_discrete),

“You can construct an arbitrary discrete rv where P{X=xk} = pk by passing to the rv_discrete initialization method
(through the values= keyword) a tuple of sequences (xk, pk) which describes only those values of X (xk) that occur
with nonzero probability (pk).”

Next to this, there are some further requirements for this approach to work:
• The keyword name is required.
• The support points of the distribution xk have to be integers.
• The number of significant digits (decimals) needs to be specified.

In fact, if the last two requirements are not satisfied an exception may be raised or the resulting numbers may be incorrect.
An Example
Let’s do the work. First

>>> npoints = 20 # number of integer support points of the distribution␣
↪→minus 1
>>> npointsh = npoints // 2
>>> npointsf = float(npoints)
>>> nbound = 4 # bounds for the truncated normal
>>> normbound = (1+1/npointsf) * nbound # actual bounds of truncated normal
>>> grid = np.arange(-npointsh, npointsh+2, 1) # integer grid
>>> gridlimitsnorm = (grid-0.5) / npointsh * nbound # bin limits for the␣
↪→truncnorm
>>> gridlimits = grid - 0.5 # used later in the analysis
>>> grid = grid[:-1]
>>> probs = np.diff(stats.truncnorm.cdf(gridlimitsnorm, -normbound,␣
↪→normbound))
>>> gridint = grid

And finally we can subclass rv_discrete:

398 Chapter 4. Tutorial



SciPy Reference Guide, Release 1.3.1

>>> normdiscrete = stats.rv_discrete(values=(gridint,
... np.round(probs, decimals=7)), name='normdiscrete')

Now that we have defined the distribution, we have access to all common methods of discrete distributions.

>>> print('mean = %6.4f, variance = %6.4f, skew = %6.4f, kurtosis = %6.4f' %
... normdiscrete.stats(moments='mvsk'))
mean = -0.0000, variance = 6.3302, skew = 0.0000, kurtosis = -0.0076

>>> nd_std = np.sqrt(normdiscrete.stats(moments='v'))

Testing the Implementation
Let’s generate a random sample and compare observed frequencies with the probabilities.

>>> n_sample = 500
>>> np.random.seed(87655678) # fix the seed for replicability
>>> rvs = normdiscrete.rvs(size=n_sample)
>>> f, l = np.histogram(rvs, bins=gridlimits)
>>> sfreq = np.vstack([gridint, f, probs*n_sample]).T
>>> print(sfreq)
[[-1.00000000e+01 0.00000000e+00 2.95019349e-02]
[-9.00000000e+00 0.00000000e+00 1.32294142e-01]
[-8.00000000e+00 0.00000000e+00 5.06497902e-01]
[-7.00000000e+00 2.00000000e+00 1.65568919e+00]
[-6.00000000e+00 1.00000000e+00 4.62125309e+00]
[-5.00000000e+00 9.00000000e+00 1.10137298e+01]
[-4.00000000e+00 2.60000000e+01 2.24137683e+01]
[-3.00000000e+00 3.70000000e+01 3.89503370e+01]
[-2.00000000e+00 5.10000000e+01 5.78004747e+01]
[-1.00000000e+00 7.10000000e+01 7.32455414e+01]
[ 0.00000000e+00 7.40000000e+01 7.92618251e+01]
[ 1.00000000e+00 8.90000000e+01 7.32455414e+01]
[ 2.00000000e+00 5.50000000e+01 5.78004747e+01]
[ 3.00000000e+00 5.00000000e+01 3.89503370e+01]
[ 4.00000000e+00 1.70000000e+01 2.24137683e+01]
[ 5.00000000e+00 1.10000000e+01 1.10137298e+01]
[ 6.00000000e+00 4.00000000e+00 4.62125309e+00]
[ 7.00000000e+00 3.00000000e+00 1.65568919e+00]
[ 8.00000000e+00 0.00000000e+00 5.06497902e-01]
[ 9.00000000e+00 0.00000000e+00 1.32294142e-01]
[ 1.00000000e+01 0.00000000e+00 2.95019349e-02]]

Next, we can test, whether our sample was generated by our normdiscrete distribution. This also verifies whether the
random numbers are generated correctly.
The chisquare test requires that there are a minimum number of observations in each bin. We combine the tail bins into
larger bins so that they contain enough observations.

>>> f2 = np.hstack([f[:5].sum(), f[5:-5], f[-5:].sum()])
>>> p2 = np.hstack([probs[:5].sum(), probs[5:-5], probs[-5:].sum()])
>>> ch2, pval = stats.chisquare(f2, p2*n_sample)
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>>> print('chisquare for normdiscrete: chi2 = %6.3f pvalue = %6.4f' % (ch2,␣
↪→pval))
chisquare for normdiscrete: chi2 = 12.466 pvalue = 0.4090

The pvalue in this case is high, so we can be quite confident that our random sample was actually generated by the
distribution.

Analysing One Sample

First, we create some random variables. We set a seed so that in each run we get identical results to look at. As an example
we take a sample from the Student t distribution:

>>> np.random.seed(282629734)
>>> x = stats.t.rvs(10, size=1000)

Here, we set the required shape parameter of the t distribution, which in statistics corresponds to the degrees of freedom,
to 10. Using size=1000 means that our sample consists of 1000 independently drawn (pseudo) random numbers. Since
we did not specify the keyword arguments loc and scale, those are set to their default values zero and one.

Descriptive Statistics
x is a numpy array, and we have direct access to all array methods, e.g.

>>> print(x.min()) # equivalent to np.min(x)
-3.78975572422
>>> print(x.max()) # equivalent to np.max(x)
5.26327732981
>>> print(x.mean()) # equivalent to np.mean(x)
0.0140610663985
>>> print(x.var()) # equivalent to np.var(x))
1.28899386208

How do the some sample properties compare to their theoretical counterparts?

>>> m, v, s, k = stats.t.stats(10, moments='mvsk')
>>> n, (smin, smax), sm, sv, ss, sk = stats.describe(x)

>>> sstr = '%-14s mean = %6.4f, variance = %6.4f, skew = %6.4f, kurtosis =
↪→%6.4f'
>>> print(sstr % ('distribution:', m, v, s ,k))
distribution: mean = 0.0000, variance = 1.2500, skew = 0.0000, kurtosis = 1.
↪→0000
>>> print(sstr % ('sample:', sm, sv, ss, sk))
sample: mean = 0.0141, variance = 1.2903, skew = 0.2165, kurtosis = 1.
↪→0556

Note: stats.describe uses the unbiased estimator for the variance, while np.var is the biased estimator.
For our sample the sample statistics differ a by a small amount from their theoretical counterparts.

T-test and KS-test
We can use the t-test to test whether the mean of our sample differs in a statistically significant way from the theoretical
expectation.
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>>> print('t-statistic = %6.3f pvalue = %6.4f' % stats.ttest_1samp(x, m))
t-statistic = 0.391 pvalue = 0.6955

The pvalue is 0.7, this means that with an alpha error of, for example, 10%, we cannot reject the hypothesis that the
sample mean is equal to zero, the expectation of the standard t-distribution.
As an exercise, we can calculate our ttest also directly without using the provided function, which should give us the same
answer, and so it does:

>>> tt = (sm-m)/np.sqrt(sv/float(n)) # t-statistic for mean
>>> pval = stats.t.sf(np.abs(tt), n-1)*2 # two-sided pvalue = Prob(abs(t)>tt)
>>> print('t-statistic = %6.3f pvalue = %6.4f' % (tt, pval))
t-statistic = 0.391 pvalue = 0.6955

The Kolmogorov-Smirnov test can be used to test the hypothesis that the sample comes from the standard t-distribution

>>> print('KS-statistic D = %6.3f pvalue = %6.4f' % stats.kstest(x, 't', (10,
↪→)))
KS-statistic D = 0.016 pvalue = 0.9606

Again the p-value is high enough that we cannot reject the hypothesis that the random sample really is distributed ac-
cording to the t-distribution. In real applications, we don’t know what the underlying distribution is. If we perform the
Kolmogorov-Smirnov test of our sample against the standard normal distribution, then we also cannot reject the hypoth-
esis that our sample was generated by the normal distribution given that in this example the p-value is almost 40%.

>>> print('KS-statistic D = %6.3f pvalue = %6.4f' % stats.kstest(x, 'norm'))
KS-statistic D = 0.028 pvalue = 0.3949

However, the standard normal distribution has a variance of 1, while our sample has a variance of 1.29. If we standardize
our sample and test it against the normal distribution, then the p-value is again large enough that we cannot reject the
hypothesis that the sample came form the normal distribution.

>>> d, pval = stats.kstest((x-x.mean())/x.std(), 'norm')
>>> print('KS-statistic D = %6.3f pvalue = %6.4f' % (d, pval))
KS-statistic D = 0.032 pvalue = 0.2402

Note: The Kolmogorov-Smirnov test assumes that we test against a distribution with given parameters, since in the last
case we estimated mean and variance, this assumption is violated, and the distribution of the test statistic on which the
p-value is based, is not correct.

Tails of the distribution
Finally, we can check the upper tail of the distribution. We can use the percent point function ppf, which is the inverse
of the cdf function, to obtain the critical values, or, more directly, we can use the inverse of the survival function

>>> crit01, crit05, crit10 = stats.t.ppf([1-0.01, 1-0.05, 1-0.10], 10)
>>> print('critical values from ppf at 1%%, 5%% and 10%% %8.4f %8.4f %8.4f'
↪→% (crit01, crit05, crit10))
critical values from ppf at 1%, 5% and 10% 2.7638 1.8125 1.3722
>>> print('critical values from isf at 1%%, 5%% and 10%% %8.4f %8.4f %8.4f'
↪→% tuple(stats.t.isf([0.01,0.05,0.10],10)))
critical values from isf at 1%, 5% and 10% 2.7638 1.8125 1.3722
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>>> freq01 = np.sum(x>crit01) / float(n) * 100
>>> freq05 = np.sum(x>crit05) / float(n) * 100
>>> freq10 = np.sum(x>crit10) / float(n) * 100
>>> print('sample %%-frequency at 1%%, 5%% and 10%% tail %8.4f %8.4f %8.4f'
↪→% (freq01, freq05, freq10))
sample %-frequency at 1%, 5% and 10% tail 1.4000 5.8000 10.5000

In all three cases, our sample has more weight in the top tail than the underlying distribution. We can briefly check a larger
sample to see if we get a closer match. In this case the empirical frequency is quite close to the theoretical probability,
but if we repeat this several times the fluctuations are still pretty large.

>>> freq05l = np.sum(stats.t.rvs(10, size=10000) > crit05) / 10000.0 * 100
>>> print('larger sample %%-frequency at 5%% tail %8.4f' % freq05l)
larger sample %-frequency at 5% tail 4.8000

We can also compare it with the tail of the normal distribution, which has less weight in the tails:

>>> print('tail prob. of normal at 1%%, 5%% and 10%% %8.4f %8.4f %8.4f' %
... tuple(stats.norm.sf([crit01, crit05, crit10])*100))
tail prob. of normal at 1%, 5% and 10% 0.2857 3.4957 8.5003

The chisquare test can be used to test, whether for a finite number of bins, the observed frequencies differ significantly
from the probabilities of the hypothesized distribution.

>>> quantiles = [0.0, 0.01, 0.05, 0.1, 1-0.10, 1-0.05, 1-0.01, 1.0]
>>> crit = stats.t.ppf(quantiles, 10)
>>> crit
array([ -inf, -2.76376946, -1.81246112, -1.37218364, 1.37218364,

1.81246112, 2.76376946, inf])
>>> n_sample = x.size
>>> freqcount = np.histogram(x, bins=crit)[0]
>>> tprob = np.diff(quantiles)
>>> nprob = np.diff(stats.norm.cdf(crit))
>>> tch, tpval = stats.chisquare(freqcount, tprob*n_sample)
>>> nch, npval = stats.chisquare(freqcount, nprob*n_sample)
>>> print('chisquare for t: chi2 = %6.2f pvalue = %6.4f' % (tch, tpval))
chisquare for t: chi2 = 2.30 pvalue = 0.8901
>>> print('chisquare for normal: chi2 = %6.2f pvalue = %6.4f' % (nch, npval))
chisquare for normal: chi2 = 64.60 pvalue = 0.0000

We see that the standard normal distribution is clearly rejected while the standard t-distribution cannot be rejected. Since
the variance of our sample differs from both standard distribution, we can again redo the test taking the estimate for scale
and location into account.
The fit method of the distributions can be used to estimate the parameters of the distribution, and the test is repeated
using probabilities of the estimated distribution.

>>> tdof, tloc, tscale = stats.t.fit(x)
>>> nloc, nscale = stats.norm.fit(x)
>>> tprob = np.diff(stats.t.cdf(crit, tdof, loc=tloc, scale=tscale))
>>> nprob = np.diff(stats.norm.cdf(crit, loc=nloc, scale=nscale))
>>> tch, tpval = stats.chisquare(freqcount, tprob*n_sample)
>>> nch, npval = stats.chisquare(freqcount, nprob*n_sample)
>>> print('chisquare for t: chi2 = %6.2f pvalue = %6.4f' % (tch, tpval))

(continues on next page)
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chisquare for t: chi2 = 1.58 pvalue = 0.9542
>>> print('chisquare for normal: chi2 = %6.2f pvalue = %6.4f' % (nch, npval))
chisquare for normal: chi2 = 11.08 pvalue = 0.0858

Taking account of the estimated parameters, we can still reject the hypothesis that our sample came from a normal
distribution (at the 5% level), but again, with a p-value of 0.95, we cannot reject the t distribution.

Special tests for normal distributions
Since the normal distribution is the most common distribution in statistics, there are several additional functions available
to test whether a sample could have been drawn from a normal distribution
First we can test if skew and kurtosis of our sample differ significantly from those of a normal distribution:

>>> print('normal skewtest teststat = %6.3f pvalue = %6.4f' % stats.
↪→skewtest(x))
normal skewtest teststat = 2.785 pvalue = 0.0054
>>> print('normal kurtosistest teststat = %6.3f pvalue = %6.4f' % stats.
↪→kurtosistest(x))
normal kurtosistest teststat = 4.757 pvalue = 0.0000

These two tests are combined in the normality test

>>> print('normaltest teststat = %6.3f pvalue = %6.4f' % stats.normaltest(x))
normaltest teststat = 30.379 pvalue = 0.0000

In all three tests the p-values are very low and we can reject the hypothesis that the our sample has skew and kurtosis of
the normal distribution.
Since skew and kurtosis of our sample are based on central moments, we get exactly the same results if we test the
standardized sample:

>>> print('normaltest teststat = %6.3f pvalue = %6.4f' %
... stats.normaltest((x-x.mean())/x.std()))
normaltest teststat = 30.379 pvalue = 0.0000

Because normality is rejected so strongly, we can check whether the normaltest gives reasonable results for other cases:

>>> print('normaltest teststat = %6.3f pvalue = %6.4f' %
... stats.normaltest(stats.t.rvs(10, size=100)))
normaltest teststat = 4.698 pvalue = 0.0955
>>> print('normaltest teststat = %6.3f pvalue = %6.4f' %
... stats.normaltest(stats.norm.rvs(size=1000)))
normaltest teststat = 0.613 pvalue = 0.7361

When testing for normality of a small sample of t-distributed observations and a large sample of normal distributed
observation, then in neither case can we reject the null hypothesis that the sample comes from a normal distribution. In
the first case this is because the test is not powerful enough to distinguish a t and a normally distributed random variable
in a small sample.

Comparing two samples

In the following, we are given two samples, which can come either from the same or from different distribution, and we
want to test whether these samples have the same statistical properties.
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Comparing means
Test with sample with identical means:

>>> rvs1 = stats.norm.rvs(loc=5, scale=10, size=500)
>>> rvs2 = stats.norm.rvs(loc=5, scale=10, size=500)
>>> stats.ttest_ind(rvs1, rvs2)
Ttest_indResult(statistic=-0.5489036175088705, pvalue=0.5831943748663959)

Test with sample with different means:

>>> rvs3 = stats.norm.rvs(loc=8, scale=10, size=500)
>>> stats.ttest_ind(rvs1, rvs3)
Ttest_indResult(statistic=-4.533414290175026, pvalue=6.507128186389019e-06)

Kolmogorov-Smirnov test for two samples ks_2samp
For the example where both samples are drawn from the same distribution, we cannot reject the null hypothesis since the
pvalue is high

>>> stats.ks_2samp(rvs1, rvs2)
Ks_2sampResult(statistic=0.026, pvalue=0.9959527565364388)

In the second example, with different location, i.e. means, we can reject the null hypothesis since the pvalue is below 1%

>>> stats.ks_2samp(rvs1, rvs3)
Ks_2sampResult(statistic=0.114, pvalue=0.00299005061044668)

Kernel Density Estimation

A common task in statistics is to estimate the probability density function (PDF) of a random variable from a set of data
samples. This task is called density estimation. The most well-known tool to do this is the histogram. A histogram is a
useful tool for visualization (mainly because everyone understands it), but doesn’t use the available data very efficiently.
Kernel density estimation (KDE) is a more efficient tool for the same task. The gaussian_kde estimator can be used
to estimate the PDF of univariate as well as multivariate data. It works best if the data is unimodal.

Univariate estimation
We start with a minimal amount of data in order to see how gaussian_kde works, and what the different options for
bandwidth selection do. The data sampled from the PDF is show as blue dashes at the bottom of the figure (this is called
a rug plot):

>>> from scipy import stats
>>> import matplotlib.pyplot as plt

>>> x1 = np.array([-7, -5, 1, 4, 5], dtype=np.float)
>>> kde1 = stats.gaussian_kde(x1)
>>> kde2 = stats.gaussian_kde(x1, bw_method='silverman')

>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
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>>> ax.plot(x1, np.zeros(x1.shape), 'b+', ms=20) # rug plot
>>> x_eval = np.linspace(-10, 10, num=200)
>>> ax.plot(x_eval, kde1(x_eval), 'k-', label="Scott's Rule")
>>> ax.plot(x_eval, kde2(x_eval), 'r-', label="Silverman's Rule")

>>> plt.show()
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We see that there is very little difference between Scott’s Rule and Silverman’s Rule, and that the bandwidth selection with
a limited amount of data is probably a bit too wide. We can define our own bandwidth function to get a less smoothed
out result.

>>> def my_kde_bandwidth(obj, fac=1./5):
... """We use Scott's Rule, multiplied by a constant factor."""
... return np.power(obj.n, -1./(obj.d+4)) * fac

>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)

>>> ax.plot(x1, np.zeros(x1.shape), 'b+', ms=20) # rug plot
>>> kde3 = stats.gaussian_kde(x1, bw_method=my_kde_bandwidth)
>>> ax.plot(x_eval, kde3(x_eval), 'g-', label="With smaller BW")

>>> plt.show()

We see that if we set bandwidth to be very narrow, the obtained estimate for the probability density function (PDF) is
simply the sum of Gaussians around each data point.
We now take a more realistic example, and look at the difference between the two available bandwidth selection rules.
Those rules are known to work well for (close to) normal distributions, but even for unimodal distributions that are quite
strongly non-normal they work reasonably well. As a non-normal distribution we take a Student’s T distribution with 5
degrees of freedom.
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import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

np.random.seed(12456)
x1 = np.random.normal(size=200) # random data, normal distribution
xs = np.linspace(x1.min()-1, x1.max()+1, 200)

kde1 = stats.gaussian_kde(x1)
kde2 = stats.gaussian_kde(x1, bw_method='silverman')

fig = plt.figure(figsize=(8, 6))

ax1 = fig.add_subplot(211)
ax1.plot(x1, np.zeros(x1.shape), 'b+', ms=12) # rug plot
ax1.plot(xs, kde1(xs), 'k-', label="Scott's Rule")
ax1.plot(xs, kde2(xs), 'b-', label="Silverman's Rule")
ax1.plot(xs, stats.norm.pdf(xs), 'r--', label="True PDF")

ax1.set_xlabel('x')
ax1.set_ylabel('Density')
ax1.set_title("Normal (top) and Student's T$_{df=5}$ (bottom) distributions")
ax1.legend(loc=1)

x2 = stats.t.rvs(5, size=200) # random data, T distribution
xs = np.linspace(x2.min() - 1, x2.max() + 1, 200)

kde3 = stats.gaussian_kde(x2)
kde4 = stats.gaussian_kde(x2, bw_method='silverman')

ax2 = fig.add_subplot(212)
ax2.plot(x2, np.zeros(x2.shape), 'b+', ms=12) # rug plot

(continues on next page)
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ax2.plot(xs, kde3(xs), 'k-', label="Scott's Rule")
ax2.plot(xs, kde4(xs), 'b-', label="Silverman's Rule")
ax2.plot(xs, stats.t.pdf(xs, 5), 'r--', label="True PDF")

ax2.set_xlabel('x')
ax2.set_ylabel('Density')

plt.show()

4 3 2 1 0 1 2 3
x

0.0

0.1

0.2

0.3

0.4

De
ns

ity

Normal (top) and Student's Tdf = 5 (bottom) distributions

Scott's Rule
Silverman's Rule
True PDF

4 2 0 2 4
x

0.0

0.1

0.2

0.3

0.4

De
ns

ity

We now take a look at a bimodal distribution with one wider and one narrower Gaussian feature. We expect that this will
be a more difficult density to approximate, due to the different bandwidths required to accurately resolve each feature.

>>> from functools import partial

>>> loc1, scale1, size1 = (-2, 1, 175)
>>> loc2, scale2, size2 = (2, 0.2, 50)
>>> x2 = np.concatenate([np.random.normal(loc=loc1, scale=scale1, size=size1),
... np.random.normal(loc=loc2, scale=scale2,␣
↪→size=size2)])
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>>> x_eval = np.linspace(x2.min() - 1, x2.max() + 1, 500)

>>> kde = stats.gaussian_kde(x2)
>>> kde2 = stats.gaussian_kde(x2, bw_method='silverman')
>>> kde3 = stats.gaussian_kde(x2, bw_method=partial(my_kde_bandwidth, fac=0.
↪→2))
>>> kde4 = stats.gaussian_kde(x2, bw_method=partial(my_kde_bandwidth, fac=0.
↪→5))

>>> pdf = stats.norm.pdf
>>> bimodal_pdf = pdf(x_eval, loc=loc1, scale=scale1) * float(size1) / x2.
↪→size + \
... pdf(x_eval, loc=loc2, scale=scale2) * float(size2) / x2.size

>>> fig = plt.figure(figsize=(8, 6))
>>> ax = fig.add_subplot(111)

>>> ax.plot(x2, np.zeros(x2.shape), 'b+', ms=12)
>>> ax.plot(x_eval, kde(x_eval), 'k-', label="Scott's Rule")
>>> ax.plot(x_eval, kde2(x_eval), 'b-', label="Silverman's Rule")
>>> ax.plot(x_eval, kde3(x_eval), 'g-', label="Scott * 0.2")
>>> ax.plot(x_eval, kde4(x_eval), 'c-', label="Scott * 0.5")
>>> ax.plot(x_eval, bimodal_pdf, 'r--', label="Actual PDF")

>>> ax.set_xlim([x_eval.min(), x_eval.max()])
>>> ax.legend(loc=2)
>>> ax.set_xlabel('x')
>>> ax.set_ylabel('Density')
>>> plt.show()

As expected, the KDE is not as close to the true PDF as we would like due to the different characteristic size of the two
features of the bimodal distribution. By halving the default bandwidth (Scott * 0.5) we can do somewhat better,
while using a factor 5 smaller bandwidth than the default doesn’t smooth enough. What we really need though in this case
is a non-uniform (adaptive) bandwidth.

Multivariate estimation
With gaussian_kde we can perform multivariate as well as univariate estimation. We demonstrate the bivariate case.
First we generate some random data with a model in which the two variates are correlated.

>>> def measure(n):
... """Measurement model, return two coupled measurements."""
... m1 = np.random.normal(size=n)
... m2 = np.random.normal(scale=0.5, size=n)
... return m1+m2, m1-m2

>>> m1, m2 = measure(2000)
>>> xmin = m1.min()
>>> xmax = m1.max()
>>> ymin = m2.min()
>>> ymax = m2.max()

Then we apply the KDE to the data:
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>>> X, Y = np.mgrid[xmin:xmax:100j, ymin:ymax:100j]
>>> positions = np.vstack([X.ravel(), Y.ravel()])
>>> values = np.vstack([m1, m2])
>>> kernel = stats.gaussian_kde(values)
>>> Z = np.reshape(kernel.evaluate(positions).T, X.shape)

Finally we plot the estimated bivariate distribution as a colormap, and plot the individual data points on top.

>>> fig = plt.figure(figsize=(8, 6))
>>> ax = fig.add_subplot(111)

>>> ax.imshow(np.rot90(Z), cmap=plt.cm.gist_earth_r,
... extent=[xmin, xmax, ymin, ymax])
>>> ax.plot(m1, m2, 'k.', markersize=2)

>>> ax.set_xlim([xmin, xmax])
>>> ax.set_ylim([ymin, ymax])

>>> plt.show()
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4.1.14 Multidimensional image processing (scipy.ndimage)

Introduction

Image processing and analysis are generally seen as operations on two-dimensional arrays of values. There are however a
number of fields where images of higher dimensionality must be analyzed. Good examples of these are medical imaging
and biological imaging. numpy is suited very well for this type of applications due its inherent multidimensional nature.
The scipy.ndimage packages provides a number of general image processing and analysis functions that are designed
to operate with arrays of arbitrary dimensionality. The packages currently includes functions for linear and non-linear
filtering, binary morphology, B-spline interpolation, and object measurements.

Properties shared by all functions

All functions share some common properties. Notably, all functions allow the specification of an output array with the
output argument. With this argument you can specify an array that will be changed in-place with the result with the
operation. In this case the result is not returned. Usually, using the output argument is more efficient, since an existing
array is used to store the result.
The type of arrays returned is dependent on the type of operation, but it is in most cases equal to the type of the input.
If, however, the output argument is used, the type of the result is equal to the type of the specified output argument. If
no output argument is given, it is still possible to specify what the result of the output should be. This is done by simply
assigning the desired numpy type object to the output argument. For example:

>>> from scipy.ndimage import correlate
>>> correlate(np.arange(10), [1, 2.5])
array([ 0, 2, 6, 9, 13, 16, 20, 23, 27, 30])
>>> correlate(np.arange(10), [1, 2.5], output=np.float64)
array([ 0. , 2.5, 6. , 9.5, 13. , 16.5, 20. , 23.5, 27. , 30.5])

Filter functions

The functions described in this section all perform some type of spatial filtering of the input array: the elements in
the output are some function of the values in the neighborhood of the corresponding input element. We refer to this
neighborhood of elements as the filter kernel, which is often rectangular in shape but may also have an arbitrary footprint.
Many of the functions described below allow you to define the footprint of the kernel, by passing a mask through the
footprint parameter. For example a cross shaped kernel can be defined as follows:

>>> footprint = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])
>>> footprint
array([[0, 1, 0],

[1, 1, 1],
[0, 1, 0]])

Usually the origin of the kernel is at the center calculated by dividing the dimensions of the kernel shape by two. For
instance, the origin of a one-dimensional kernel of length three is at the second element. Take for example the correlation
of a one-dimensional array with a filter of length 3 consisting of ones:

>>> from scipy.ndimage import correlate1d
>>> a = [0, 0, 0, 1, 0, 0, 0]
>>> correlate1d(a, [1, 1, 1])
array([0, 0, 1, 1, 1, 0, 0])
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Sometimes it is convenient to choose a different origin for the kernel. For this reason most functions support the origin
parameter which gives the origin of the filter relative to its center. For example:

>>> a = [0, 0, 0, 1, 0, 0, 0]
>>> correlate1d(a, [1, 1, 1], origin = -1)
array([0, 1, 1, 1, 0, 0, 0])

The effect is a shift of the result towards the left. This feature will not be needed very often, but it may be useful especially
for filters that have an even size. A good example is the calculation of backward and forward differences:

>>> a = [0, 0, 1, 1, 1, 0, 0]
>>> correlate1d(a, [-1, 1]) # backward difference
array([ 0, 0, 1, 0, 0, -1, 0])
>>> correlate1d(a, [-1, 1], origin = -1) # forward difference
array([ 0, 1, 0, 0, -1, 0, 0])

We could also have calculated the forward difference as follows:

>>> correlate1d(a, [0, -1, 1])
array([ 0, 1, 0, 0, -1, 0, 0])

However, using the origin parameter instead of a larger kernel is more efficient. For multidimensional kernels origin can
be a number, in which case the origin is assumed to be equal along all axes, or a sequence giving the origin along each
axis.
Since the output elements are a function of elements in the neighborhood of the input elements, the borders of the array
need to be dealt with appropriately by providing the values outside the borders. This is done by assuming that the arrays are
extended beyond their boundaries according certain boundary conditions. In the functions described below, the boundary
conditions can be selected using the mode parameter which must be a string with the name of the boundary condition.
The following boundary conditions are currently supported:

“nearest” Use the value at the boundary [1 2 3]->[1 1 2 3 3]
“wrap” Periodically replicate the array [1 2 3]->[3 1 2 3 1]
“reflect” Reflect the array at the boundary [1 2 3]->[1 1 2 3 3]
“constant” Use a constant value, default is 0.0 [1 2 3]->[0 1 2 3 0]

The “constant” mode is special since it needs an additional parameter to specify the constant value that should be used.

Note: The easiest way to implement such boundary conditions would be to copy the data to a larger array and extend
the data at the borders according to the boundary conditions. For large arrays and large filter kernels, this would be very
memory consuming, and the functions described below therefore use a different approach that does not require allocating
large temporary buffers.

Correlation and convolution
• The correlate1d function calculates a one-dimensional correlation along the given axis. The lines of the array
along the given axis are correlated with the given weights. The weights parameter must be a one-dimensional
sequences of numbers.

• The function correlate implements multidimensional correlation of the input array with a given kernel.
• The convolve1d function calculates a one-dimensional convolution along the given axis. The lines of the array
along the given axis are convoluted with the given weights. The weights parameter must be a one-dimensional
sequences of numbers.
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Note: A convolution is essentially a correlation after mirroring the kernel. As a result, the origin parameter behaves
differently than in the case of a correlation: the result is shifted in the opposite directions.

• The function convolve implements multidimensional convolution of the input array with a given kernel.

Note: A convolution is essentially a correlation after mirroring the kernel. As a result, the origin parameter behaves
differently than in the case of a correlation: the results is shifted in the opposite direction.

Smoothing filters
• The gaussian_filter1d function implements a one-dimensional Gaussian filter. The standard-deviation of
the Gaussian filter is passed through the parameter sigma. Setting order = 0 corresponds to convolution with a
Gaussian kernel. An order of 1, 2, or 3 corresponds to convolution with the first, second or third derivatives of a
Gaussian. Higher order derivatives are not implemented.

• The gaussian_filter function implements a multidimensional Gaussian filter. The standard-deviations of
the Gaussian filter along each axis are passed through the parameter sigma as a sequence or numbers. If sigma is
not a sequence but a single number, the standard deviation of the filter is equal along all directions. The order of
the filter can be specified separately for each axis. An order of 0 corresponds to convolution with a Gaussian kernel.
An order of 1, 2, or 3 corresponds to convolution with the first, second or third derivatives of a Gaussian. Higher
order derivatives are not implemented. The order parameter must be a number, to specify the same order for all
axes, or a sequence of numbers to specify a different order for each axis.

Note: The multidimensional filter is implemented as a sequence of one-dimensional Gaussian filters. The inter-
mediate arrays are stored in the same data type as the output. Therefore, for output types with a lower precision,
the results may be imprecise because intermediate results may be stored with insufficient precision. This can be
prevented by specifying a more precise output type.

• The uniform_filter1d function calculates a one-dimensional uniform filter of the given size along the given
axis.

• The uniform_filter implements a multidimensional uniform filter. The sizes of the uniform filter are given
for each axis as a sequence of integers by the size parameter. If size is not a sequence, but a single number, the sizes
along all axis are assumed to be equal.

Note: The multidimensional filter is implemented as a sequence of one-dimensional uniform filters. The inter-
mediate arrays are stored in the same data type as the output. Therefore, for output types with a lower precision,
the results may be imprecise because intermediate results may be stored with insufficient precision. This can be
prevented by specifying a more precise output type.

Filters based on order statistics
• The minimum_filter1d function calculates a one-dimensional minimum filter of given size along the given
axis.

• The maximum_filter1d function calculates a one-dimensional maximum filter of given size along the given
axis.

• The minimum_filter function calculates a multidimensional minimum filter. Either the sizes of a rectangular
kernel or the footprint of the kernel must be provided. The size parameter, if provided, must be a sequence of
sizes or a single number in which case the size of the filter is assumed to be equal along each axis. The footprint,
if provided, must be an array that defines the shape of the kernel by its non-zero elements.
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• The maximum_filter function calculates a multidimensional maximum filter. Either the sizes of a rectangular
kernel or the footprint of the kernel must be provided. The size parameter, if provided, must be a sequence of
sizes or a single number in which case the size of the filter is assumed to be equal along each axis. The footprint,
if provided, must be an array that defines the shape of the kernel by its non-zero elements.

• The rank_filter function calculates a multidimensional rank filter. The rank may be less then zero, i.e., rank
= -1 indicates the largest element. Either the sizes of a rectangular kernel or the footprint of the kernel must be
provided. The size parameter, if provided, must be a sequence of sizes or a single number in which case the size of
the filter is assumed to be equal along each axis. The footprint, if provided, must be an array that defines the shape
of the kernel by its non-zero elements.

• The percentile_filter function calculates a multidimensional percentile filter. The percentile may be less
then zero, i.e., percentile = -20 equals percentile = 80. Either the sizes of a rectangular kernel or the footprint of the
kernel must be provided. The size parameter, if provided, must be a sequence of sizes or a single number in which
case the size of the filter is assumed to be equal along each axis. The footprint, if provided, must be an array that
defines the shape of the kernel by its non-zero elements.

• The median_filter function calculates a multidimensional median filter. Either the sizes of a rectangular
kernel or the footprint of the kernel must be provided. The size parameter, if provided, must be a sequence of
sizes or a single number in which case the size of the filter is assumed to be equal along each axis. The footprint if
provided, must be an array that defines the shape of the kernel by its non-zero elements.

Derivatives
Derivative filters can be constructed in several ways. The function gaussian_filter1d described in Smoothing
filters can be used to calculate derivatives along a given axis using the order parameter. Other derivative filters are the
Prewitt and Sobel filters:

• The prewitt function calculates a derivative along the given axis.
• The sobel function calculates a derivative along the given axis.

The Laplace filter is calculated by the sum of the second derivatives along all axes. Thus, different Laplace filters can
be constructed using different second derivative functions. Therefore we provide a general function that takes a function
argument to calculate the second derivative along a given direction.

• The function generic_laplace calculates a laplace filter using the function passed through derivative2
to calculate second derivatives. The function derivative2 should have the following signature

derivative2(input, axis, output, mode, cval, *extra_arguments, **extra_
↪→keywords)

It should calculate the second derivative along the dimension axis. If output is not None it should use that for the
output and return None, otherwise it should return the result. mode, cval have the usual meaning.
The extra_arguments and extra_keywords arguments can be used to pass a tuple of extra arguments and a dictionary
of named arguments that are passed to derivative2 at each call.
For example

>>> def d2(input, axis, output, mode, cval):
... return correlate1d(input, [1, -2, 1], axis, output, mode, cval, 0)
...
>>> a = np.zeros((5, 5))
>>> a[2, 2] = 1
>>> from scipy.ndimage import generic_laplace
>>> generic_laplace(a, d2)
array([[ 0., 0., 0., 0., 0.],

[ 0., 0., 1., 0., 0.],
(continues on next page)
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[ 0., 1., -4., 1., 0.],
[ 0., 0., 1., 0., 0.],
[ 0., 0., 0., 0., 0.]])

To demonstrate the use of the extra_arguments argument we could do

>>> def d2(input, axis, output, mode, cval, weights):
... return correlate1d(input, weights, axis, output, mode, cval, 0,)
...
>>> a = np.zeros((5, 5))
>>> a[2, 2] = 1
>>> generic_laplace(a, d2, extra_arguments = ([1, -2, 1],))
array([[ 0., 0., 0., 0., 0.],

[ 0., 0., 1., 0., 0.],
[ 0., 1., -4., 1., 0.],
[ 0., 0., 1., 0., 0.],
[ 0., 0., 0., 0., 0.]])

or

>>> generic_laplace(a, d2, extra_keywords = {'weights': [1, -2, 1]})
array([[ 0., 0., 0., 0., 0.],

[ 0., 0., 1., 0., 0.],
[ 0., 1., -4., 1., 0.],
[ 0., 0., 1., 0., 0.],
[ 0., 0., 0., 0., 0.]])

The following two functions are implemented using generic_laplace by providing appropriate functions for the
second derivative function:

• The function laplace calculates the Laplace using discrete differentiation for the second derivative (i.e. convo-
lution with [1, -2, 1]).

• The function gaussian_laplace calculates the Laplace filter using gaussian_filter to calculate the
second derivatives. The standard-deviations of the Gaussian filter along each axis are passed through the parameter
sigma as a sequence or numbers. If sigma is not a sequence but a single number, the standard deviation of the filter
is equal along all directions.

The gradient magnitude is defined as the square root of the sum of the squares of the gradients in all directions. Similar
to the generic Laplace function there is a generic_gradient_magnitude function that calculats the gradient
magnitude of an array.

• The function generic_gradient_magnitude calculates a gradient magnitude using the function passed
through derivative to calculate first derivatives. The function derivative should have the following sig-
nature

derivative(input, axis, output, mode, cval, *extra_arguments, **extra_
↪→keywords)

It should calculate the derivative along the dimension axis. If output is not None it should use that for the output
and return None, otherwise it should return the result. mode, cval have the usual meaning.
The extra_arguments and extra_keywords arguments can be used to pass a tuple of extra arguments and a dictionary
of named arguments that are passed to derivative at each call.
For example, the sobel function fits the required signature
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>>> a = np.zeros((5, 5))
>>> a[2, 2] = 1
>>> from scipy.ndimage import sobel, generic_gradient_magnitude
>>> generic_gradient_magnitude(a, sobel)
array([[ 0. , 0. , 0. , 0. , 0. ],

[ 0. , 1.41421356, 2. , 1.41421356, 0. ],
[ 0. , 2. , 0. , 2. , 0. ],
[ 0. , 1.41421356, 2. , 1.41421356, 0. ],
[ 0. , 0. , 0. , 0. , 0. ]])

See the documentation of generic_laplace for examples of using the extra_arguments and extra_keywords
arguments.

The sobel and prewitt functions fit the required signature and can therefore directly be used with
generic_gradient_magnitude.

• The function gaussian_gradient_magnitude calculates the gradient magnitude using
gaussian_filter to calculate the first derivatives. The standard-deviations of the Gaussian filter along each
axis are passed through the parameter sigma as a sequence or numbers. If sigma is not a sequence but a single
number, the standard deviation of the filter is equal along all directions.

Generic filter functions
To implement filter functions, generic functions can be used that accept a callable object that implements the filtering
operation. The iteration over the input and output arrays is handled by these generic functions, along with such details
as the implementation of the boundary conditions. Only a callable object implementing a callback function that does the
actual filtering work must be provided. The callback function can also be written in C and passed using a PyCapsule
(see Extending scipy.ndimage in C for more information).

• The generic_filter1d function implements a generic one-dimensional filter function, where the actual fil-
tering operation must be supplied as a python function (or other callable object). The generic_filter1d
function iterates over the lines of an array and calls function at each line. The arguments that are passed to
function are one-dimensional arrays of the numpy.float64 type. The first contains the values of the current
line. It is extended at the beginning end the end, according to the filter_size and origin arguments. The second array
should be modified in-place to provide the output values of the line. For example consider a correlation along one
dimension:

>>> a = np.arange(12).reshape(3,4)
>>> correlate1d(a, [1, 2, 3])
array([[ 3, 8, 14, 17],

[27, 32, 38, 41],
[51, 56, 62, 65]])

The same operation can be implemented using generic_filter1d as follows:

>>> def fnc(iline, oline):
... oline[...] = iline[:-2] + 2 * iline[1:-1] + 3 * iline[2:]
...
>>> from scipy.ndimage import generic_filter1d
>>> generic_filter1d(a, fnc, 3)
array([[ 3, 8, 14, 17],

[27, 32, 38, 41],
[51, 56, 62, 65]])

Here the origin of the kernel was (by default) assumed to be in the middle of the filter of length 3. Therefore, each
input line was extended by one value at the beginning and at the end, before the function was called.
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Optionally extra arguments can be defined and passed to the filter function. The extra_arguments and ex-
tra_keywords arguments can be used to pass a tuple of extra arguments and/or a dictionary of named arguments
that are passed to derivative at each call. For example, we can pass the parameters of our filter as an argument

>>> def fnc(iline, oline, a, b):
... oline[...] = iline[:-2] + a * iline[1:-1] + b * iline[2:]
...
>>> generic_filter1d(a, fnc, 3, extra_arguments = (2, 3))
array([[ 3, 8, 14, 17],

[27, 32, 38, 41],
[51, 56, 62, 65]])

or

>>> generic_filter1d(a, fnc, 3, extra_keywords = {'a':2, 'b':3})
array([[ 3, 8, 14, 17],

[27, 32, 38, 41],
[51, 56, 62, 65]])

• The generic_filter function implements a generic filter function, where the actual filtering operation must be
supplied as a python function (or other callable object). The generic_filter function iterates over the array
and calls function at each element. The argument of function is a one-dimensional array of the numpy.
float64 type, that contains the values around the current element that are within the footprint of the filter. The
function should return a single value that can be converted to a double precision number. For example consider a
correlation:

>>> a = np.arange(12).reshape(3,4)
>>> correlate(a, [[1, 0], [0, 3]])
array([[ 0, 3, 7, 11],

[12, 15, 19, 23],
[28, 31, 35, 39]])

The same operation can be implemented using generic_filter as follows:

>>> def fnc(buffer):
... return (buffer * np.array([1, 3])).sum()
...
>>> from scipy.ndimage import generic_filter
>>> generic_filter(a, fnc, footprint = [[1, 0], [0, 1]])
array([[ 0, 3, 7, 11],

[12, 15, 19, 23],
[28, 31, 35, 39]])

Here a kernel footprint was specified that contains only two elements. Therefore the filter function receives a buffer
of length equal to two, which was multiplied with the proper weights and the result summed.
When calling generic_filter, either the sizes of a rectangular kernel or the footprint of the kernel must be
provided. The size parameter, if provided, must be a sequence of sizes or a single number in which case the size of
the filter is assumed to be equal along each axis. The footprint, if provided, must be an array that defines the shape
of the kernel by its non-zero elements.
Optionally extra arguments can be defined and passed to the filter function. The extra_arguments and ex-
tra_keywords arguments can be used to pass a tuple of extra arguments and/or a dictionary of named arguments
that are passed to derivative at each call. For example, we can pass the parameters of our filter as an argument
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>>> def fnc(buffer, weights):
... weights = np.asarray(weights)
... return (buffer * weights).sum()
...
>>> generic_filter(a, fnc, footprint = [[1, 0], [0, 1]], extra_arguments␣
↪→= ([1, 3],))
array([[ 0, 3, 7, 11],

[12, 15, 19, 23],
[28, 31, 35, 39]])

or

>>> generic_filter(a, fnc, footprint = [[1, 0], [0, 1]], extra_keywords= {
↪→'weights': [1, 3]})
array([[ 0, 3, 7, 11],

[12, 15, 19, 23],
[28, 31, 35, 39]])

These functions iterate over the lines or elements starting at the last axis, i.e. the last index changes the fastest. This order
of iteration is guaranteed for the case that it is important to adapt the filter depending on spatial location. Here is an
example of using a class that implements the filter and keeps track of the current coordinates while iterating. It performs
the same filter operation as described above for generic_filter, but additionally prints the current coordinates:

>>> a = np.arange(12).reshape(3,4)
>>>
>>> class fnc_class:
... def __init__(self, shape):
... # store the shape:
... self.shape = shape
... # initialize the coordinates:
... self.coordinates = [0] * len(shape)
...
... def filter(self, buffer):
... result = (buffer * np.array([1, 3])).sum()
... print(self.coordinates)
... # calculate the next coordinates:
... axes = list(range(len(self.shape)))
... axes.reverse()
... for jj in axes:
... if self.coordinates[jj] < self.shape[jj] - 1:
... self.coordinates[jj] += 1
... break
... else:
... self.coordinates[jj] = 0
... return result
...
>>> fnc = fnc_class(shape = (3,4))
>>> generic_filter(a, fnc.filter, footprint = [[1, 0], [0, 1]])
[0, 0]
[0, 1]
[0, 2]
[0, 3]
[1, 0]

(continues on next page)
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[1, 1]
[1, 2]
[1, 3]
[2, 0]
[2, 1]
[2, 2]
[2, 3]
array([[ 0, 3, 7, 11],

[12, 15, 19, 23],
[28, 31, 35, 39]])

For the generic_filter1d function the same approach works, except that this function does not iterate over the
axis that is being filtered. The example for generic_filter1d then becomes this:

>>> a = np.arange(12).reshape(3,4)
>>>
>>> class fnc1d_class:
... def __init__(self, shape, axis = -1):
... # store the filter axis:
... self.axis = axis
... # store the shape:
... self.shape = shape
... # initialize the coordinates:
... self.coordinates = [0] * len(shape)
...
... def filter(self, iline, oline):
... oline[...] = iline[:-2] + 2 * iline[1:-1] + 3 * iline[2:]
... print(self.coordinates)
... # calculate the next coordinates:
... axes = list(range(len(self.shape)))
... # skip the filter axis:
... del axes[self.axis]
... axes.reverse()
... for jj in axes:
... if self.coordinates[jj] < self.shape[jj] - 1:
... self.coordinates[jj] += 1
... break
... else:
... self.coordinates[jj] = 0
...
>>> fnc = fnc1d_class(shape = (3,4))
>>> generic_filter1d(a, fnc.filter, 3)
[0, 0]
[1, 0]
[2, 0]
array([[ 3, 8, 14, 17],

[27, 32, 38, 41],
[51, 56, 62, 65]])

Fourier domain filters
The functions described in this section perform filtering operations in the Fourier domain. Thus, the input array of such
a function should be compatible with an inverse Fourier transform function, such as the functions from the numpy.fft
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module. We therefore have to deal with arrays that may be the result of a real or a complex Fourier transform. In the
case of a real Fourier transform only half of the of the symmetric complex transform is stored. Additionally, it needs to
be known what the length of the axis was that was transformed by the real fft. The functions described here provide a
parameter n that in the case of a real transformmust be equal to the length of the real transform axis before transformation.
If this parameter is less than zero, it is assumed that the input array was the result of a complex Fourier transform. The
parameter axis can be used to indicate along which axis the real transform was executed.

• The fourier_shift function multiplies the input array with the multidimensional Fourier transform of a shift
operation for the given shift. The shift parameter is a sequences of shifts for each dimension, or a single value for
all dimensions.

• The fourier_gaussian function multiplies the input array with the multidimensional Fourier transform of
a Gaussian filter with given standard-deviations sigma. The sigma parameter is a sequences of values for each
dimension, or a single value for all dimensions.

• The fourier_uniform function multiplies the input array with the multidimensional Fourier transform of a
uniform filter with given sizes size. The size parameter is a sequences of values for each dimension, or a single value
for all dimensions.

• The fourier_ellipsoid function multiplies the input array with the multidimensional Fourier transform of
a elliptically shaped filter with given sizes size. The size parameter is a sequences of values for each dimension, or
a single value for all dimensions. This function is only implemented for dimensions 1, 2, and 3.

Interpolation functions

This section describes various interpolation functions that are based on B-spline theory. A good introduction to B-splines
can be found in1.

Spline pre-filters
Interpolation using splines of an order larger than 1 requires a pre-filtering step. The interpolation functions described
in section Interpolation functions apply pre-filtering by calling spline_filter, but they can be instructed not to do
this by setting the prefilter keyword equal to False. This is useful if more than one interpolation operation is done on the
same array. In this case it is more efficient to do the pre-filtering only once and use a prefiltered array as the input of the
interpolation functions. The following two functions implement the pre-filtering:

• The spline_filter1d function calculates a one-dimensional spline filter along the given axis. An output array
can optionally be provided. The order of the spline must be larger then 1 and less than 6.

• The spline_filter function calculates a multidimensional spline filter.

Note: Themultidimensional filter is implemented as a sequence of one-dimensional spline filters. The intermediate
arrays are stored in the same data type as the output. Therefore, if an output with a limited precision is requested,
the results may be imprecise because intermediate results may be stored with insufficient precision. This can be
prevented by specifying a output type of high precision.

Interpolation functions
Following functions all employ spline interpolation to effect some type of geometric transformation of the input array.
This requires a mapping of the output coordinates to the input coordinates, and therefore the possibility arises that input
values outside the boundaries are needed. This problem is solved in the same way as described in Filter functions for
the multidimensional filter functions. Therefore these functions all support a mode parameter that determines how the
boundaries are handled, and a cval parameter that gives a constant value in case that the ‘constant’ mode is used.

1 M. Unser, “Splines: A Perfect Fit for Signal and Image Processing,” IEEE Signal Processing Magazine, vol. 16, no. 6, pp. 22-38, November
1999.
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• Thegeometric_transform function applies an arbitrary geometric transform to the input. The givenmapping
function is called at each point in the output to find the corresponding coordinates in the input. mapping must be
a callable object that accepts a tuple of length equal to the output array rank and returns the corresponding input
coordinates as a tuple of length equal to the input array rank. The output shape and output type can optionally be
provided. If not given they are equal to the input shape and type.
For example:

>>> a = np.arange(12).reshape(4,3).astype(np.float64)
>>> def shift_func(output_coordinates):
... return (output_coordinates[0] - 0.5, output_coordinates[1] - 0.5)
...
>>> from scipy.ndimage import geometric_transform
>>> geometric_transform(a, shift_func)
array([[ 0. , 0. , 0. ],

[ 0. , 1.3625, 2.7375],
[ 0. , 4.8125, 6.1875],
[ 0. , 8.2625, 9.6375]])

Optionally extra arguments can be defined and passed to the filter function. The extra_arguments and ex-
tra_keywords arguments can be used to pass a tuple of extra arguments and/or a dictionary of named arguments
that are passed to derivative at each call. For example, we can pass the shifts in our example as arguments

>>> def shift_func(output_coordinates, s0, s1):
... return (output_coordinates[0] - s0, output_coordinates[1] - s1)
...
>>> geometric_transform(a, shift_func, extra_arguments = (0.5, 0.5))
array([[ 0. , 0. , 0. ],

[ 0. , 1.3625, 2.7375],
[ 0. , 4.8125, 6.1875],
[ 0. , 8.2625, 9.6375]])

or

>>> geometric_transform(a, shift_func, extra_keywords = {'s0': 0.5, 's1':␣
↪→0.5})
array([[ 0. , 0. , 0. ],

[ 0. , 1.3625, 2.7375],
[ 0. , 4.8125, 6.1875],
[ 0. , 8.2625, 9.6375]])

Note: The mapping function can also be written in C and passed using a scipy.LowLevelCallable. See
Extending scipy.ndimage in C for more information.

• The function map_coordinates applies an arbitrary coordinate transformation using the given array of co-
ordinates. The shape of the output is derived from that of the coordinate array by dropping the first axis. The
parameter coordinates is used to find for each point in the output the corresponding coordinates in the input. The
values of coordinates along the first axis are the coordinates in the input array at which the output value is found.
(See also the numarray coordinates function.) Since the coordinates may be non- integer coordinates, the value of
the input at these coordinates is determined by spline interpolation of the requested order.
Here is an example that interpolates a 2D array at (0.5, 0.5) and (1, 2):
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>>> a = np.arange(12).reshape(4,3).astype(np.float64)
>>> a
array([[ 0., 1., 2.],

[ 3., 4., 5.],
[ 6., 7., 8.],
[ 9., 10., 11.]])

>>> from scipy.ndimage import map_coordinates
>>> map_coordinates(a, [[0.5, 2], [0.5, 1]])
array([ 1.3625, 7.])

• The affine_transform function applies an affine transformation to the input array. The given transformation
matrix and offset are used to find for each point in the output the corresponding coordinates in the input. The
value of the input at the calculated coordinates is determined by spline interpolation of the requested order. The
transformationmatrixmust be two-dimensional or can also be given as a one-dimensional sequence or array. In the
latter case, it is assumed that the matrix is diagonal. A more efficient interpolation algorithm is then applied that
exploits the separability of the problem. The output shape and output type can optionally be provided. If not given
they are equal to the input shape and type.

• The shift function returns a shifted version of the input, using spline interpolation of the requested order.
• The zoom function returns a rescaled version of the input, using spline interpolation of the requested order.
• The rotate function returns the input array rotated in the plane defined by the two axes given by the parameter

axes, using spline interpolation of the requested order. The angle must be given in degrees. If reshape is true, then
the size of the output array is adapted to contain the rotated input.

Morphology

Binary morphology
• The generate_binary_structure functions generates a binary structuring element for use in binary mor-
phology operations. The rank of the structure must be provided. The size of the structure that is returned is equal
to three in each direction. The value of each element is equal to one if the square of the Euclidean distance from the
element to the center is less or equal to connectivity. For instance, two dimensional 4-connected and 8-connected
structures are generated as follows:

>>> from scipy.ndimage import generate_binary_structure
>>> generate_binary_structure(2, 1)
array([[False, True, False],

[ True, True, True],
[False, True, False]], dtype=bool)

>>> generate_binary_structure(2, 2)
array([[ True, True, True],

[ True, True, True],
[ True, True, True]], dtype=bool)

Most binary morphology functions can be expressed in terms of the basic operations erosion and dilation.
• The binary_erosion function implements binary erosion of arrays of arbitrary rank with the given struc-
turing element. The origin parameter controls the placement of the structuring element as described in Filter
functions. If no structuring element is provided, an element with connectivity equal to one is generated using
generate_binary_structure. The border_value parameter gives the value of the array outside bound-
aries. The erosion is repeated iterations times. If iterations is less than one, the erosion is repeated until the result
does not change anymore. If amask array is given, only those elements with a true value at the corresponding mask
element are modified at each iteration.
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• The binary_dilation function implements binary dilation of arrays of arbitrary rank with the given struc-
turing element. The origin parameter controls the placement of the structuring element as described in Filter
functions. If no structuring element is provided, an element with connectivity equal to one is generated using
generate_binary_structure. The border_value parameter gives the value of the array outside bound-
aries. The dilation is repeated iterations times. If iterations is less than one, the dilation is repeated until the result
does not change anymore. If amask array is given, only those elements with a true value at the corresponding mask
element are modified at each iteration.

Here is an example of using binary_dilation to find all elements that touch the border, by repeatedly dilating an
empty array from the border using the data array as the mask:

>>> struct = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])
>>> a = np.array([[1,0,0,0,0], [1,1,0,1,0], [0,0,1,1,0], [0,0,0,0,0]])
>>> a
array([[1, 0, 0, 0, 0],

[1, 1, 0, 1, 0],
[0, 0, 1, 1, 0],
[0, 0, 0, 0, 0]])

>>> from scipy.ndimage import binary_dilation
>>> binary_dilation(np.zeros(a.shape), struct, -1, a, border_value=1)
array([[ True, False, False, False, False],

[ True, True, False, False, False],
[False, False, False, False, False],
[False, False, False, False, False]], dtype=bool)

Thebinary_erosion andbinary_dilation functions both have an iterations parameter which allows the erosion
or dilation to be repeated a number of times. Repeating an erosion or a dilation with a given structure n times is equivalent
to an erosion or a dilation with a structure that is n-1 times dilated with itself. A function is provided that allows the
calculation of a structure that is dilated a number of times with itself:

• The iterate_structure function returns a structure by dilation of the input structure iteration - 1 times with
itself.
For instance:

>>> struct = generate_binary_structure(2, 1)
>>> struct
array([[False, True, False],

[ True, True, True],
[False, True, False]], dtype=bool)

>>> from scipy.ndimage import iterate_structure
>>> iterate_structure(struct, 2)
array([[False, False, True, False, False],

[False, True, True, True, False],
[ True, True, True, True, True],
[False, True, True, True, False],
[False, False, True, False, False]], dtype=bool)

If the origin of the original structure is equal to 0, then it is
also equal to 0 for the iterated structure. If not, the origin
must also be adapted if the equivalent of the *iterations*
erosions or dilations must be achieved with the iterated
structure. The adapted origin is simply obtained by multiplying
with the number of iterations. For convenience the
:func:`iterate_structure` also returns the adapted origin if the

(continues on next page)
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*origin* parameter is not ``None``:

.. code:: python

>>> iterate_structure(struct, 2, -1)
(array([[False, False, True, False, False],

[False, True, True, True, False],
[ True, True, True, True, True],
[False, True, True, True, False],
[False, False, True, False, False]], dtype=bool), [-2, -2])

Other morphology operations can be defined in terms of erosion and d dilation. The following functions provide a few of
these operations for convenience:

• The binary_opening function implements binary opening of arrays of arbitrary rank with the given struc-
turing element. Binary opening is equivalent to a binary erosion followed by a binary dilation with the same
structuring element. The origin parameter controls the placement of the structuring element as described in Fil-
ter functions. If no structuring element is provided, an element with connectivity equal to one is generated using
generate_binary_structure. The iterations parameter gives the number of erosions that is performed
followed by the same number of dilations.

• The binary_closing function implements binary closing of arrays of arbitrary rank with the given structur-
ing element. Binary closing is equivalent to a binary dilation followed by a binary erosion with the same struc-
turing element. The origin parameter controls the placement of the structuring element as described in Filter
functions. If no structuring element is provided, an element with connectivity equal to one is generated using
generate_binary_structure. The iterations parameter gives the number of dilations that is performed
followed by the same number of erosions.

• The binary_fill_holes function is used to close holes in objects in a binary image, where the structure
defines the connectivity of the holes. The origin parameter controls the placement of the structuring element as
described in Filter functions. If no structuring element is provided, an element with connectivity equal to one is
generated using generate_binary_structure.

• The binary_hit_or_miss function implements a binary hit-or-miss transform of arrays of arbitrary rank
with the given structuring elements. The hit-or-miss transform is calculated by erosion of the input with the first
structure, erosion of the logical not of the input with the second structure, followed by the logical and of these two
erosions. The origin parameters control the placement of the structuring elements as described in Filter functions.
If origin2 equals None it is set equal to the origin1 parameter. If the first structuring element is not provided,
a structuring element with connectivity equal to one is generated using generate_binary_structure, if
structure2 is not provided, it is set equal to the logical not of structure1.

Grey-scale morphology
Grey-scale morphology operations are the equivalents of binary morphology operations that operate on arrays with arbi-
trary values. Below we describe the grey-scale equivalents of erosion, dilation, opening and closing. These operations are
implemented in a similar fashion as the filters described in Filter functions, and we refer to this section for the description
of filter kernels and footprints, and the handling of array borders. The grey-scale morphology operations optionally take a
structure parameter that gives the values of the structuring element. If this parameter is not given the structuring element
is assumed to be flat with a value equal to zero. The shape of the structure can optionally be defined by the footprint
parameter. If this parameter is not given, the structure is assumed to be rectangular, with sizes equal to the dimensions of
the structure array, or by the size parameter if structure is not given. The size parameter is only used if both structure and
footprint are not given, in which case the structuring element is assumed to be rectangular and flat with the dimensions
given by size. The size parameter, if provided, must be a sequence of sizes or a single number in which case the size of
the filter is assumed to be equal along each axis. The footprint parameter, if provided, must be an array that defines the
shape of the kernel by its non-zero elements.
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Similar to binary erosion and dilation there are operations for grey-scale erosion and dilation:
• The grey_erosion function calculates a multidimensional grey- scale erosion.
• The grey_dilation function calculates a multidimensional grey-scale dilation.

Grey-scale opening and closing operations can be defined similar to their binary counterparts:
• The grey_opening function implements grey-scale opening of arrays of arbitrary rank. Grey-scale opening is
equivalent to a grey-scale erosion followed by a grey-scale dilation.

• The grey_closing function implements grey-scale closing of arrays of arbitrary rank. Grey-scale opening is
equivalent to a grey-scale dilation followed by a grey-scale erosion.

• The morphological_gradient function implements a grey-scale morphological gradient of arrays of arbi-
trary rank. The grey-scale morphological gradient is equal to the difference of a grey-scale dilation and a grey-scale
erosion.

• The morphological_laplace function implements a grey-scale morphological laplace of arrays of arbitrary
rank. The grey-scale morphological laplace is equal to the sum of a grey-scale dilation and a grey-scale erosion
minus twice the input.

• The white_tophat function implements a white top-hat filter of arrays of arbitrary rank. The white top-hat is
equal to the difference of the input and a grey-scale opening.

• The black_tophat function implements a black top-hat filter of arrays of arbitrary rank. The black top-hat is
equal to the difference of a grey-scale closing and the input.

Distance transforms

Distance transforms are used to calculate the minimum distance from each element of an object to the background.
The following functions implement distance transforms for three different distance metrics: Euclidean, City Block, and
Chessboard distances.

• The function distance_transform_cdt uses a chamfer type algorithm to calculate the distance trans-
form of the input, by replacing each object element (defined by values larger than zero) with the shortest dis-
tance to the background (all non-object elements). The structure determines the type of chamfering that is
done. If the structure is equal to ‘cityblock’ a structure is generated using generate_binary_structure
with a squared distance equal to 1. If the structure is equal to ‘chessboard’, a structure is generated using
generate_binary_structure with a squared distance equal to the rank of the array. These choices cor-
respond to the common interpretations of the cityblock and the chessboard distance metrics in two dimensions.
In addition to the distance transform, the feature transform can be calculated. In this case the index of the closest
background element is returned along the first axis of the result. The return_distances, and return_indices flags can
be used to indicate if the distance transform, the feature transform, or both must be returned.
The distances and indices arguments can be used to give optional output arrays that must be of the correct size and
type (both numpy.int32). The basics of the algorithm used to implement this function is described in2.

• The function distance_transform_edt calculates the exact euclidean distance transform of the input, by
replacing each object element (defined by values larger than zero) with the shortest euclidean distance to the back-
ground (all non-object elements).
In addition to the distance transform, the feature transform can be calculated. In this case the index of the closest
background element is returned along the first axis of the result. The return_distances, and return_indices flags can
be used to indicate if the distance transform, the feature transform, or both must be returned.
Optionally the sampling along each axis can be given by the sampling parameter which should be a sequence of
length equal to the input rank, or a single number in which the sampling is assumed to be equal along all axes.

2 G. Borgefors, “Distance transformations in arbitrary dimensions.”, Computer Vision, Graphics, and Image Processing, 27:321-345, 1984.
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The distances and indices arguments can be used to give optional output arrays that must be of the correct size and
type (numpy.float64 and numpy.int32).The algorithm used to implement this function is described in3.

• The function distance_transform_bf uses a brute-force algorithm to calculate the distance transform of
the input, by replacing each object element (defined by values larger than zero) with the shortest distance to the
background (all non-object elements). The metric must be one of “euclidean”, “cityblock”, or “chessboard”.
In addition to the distance transform, the feature transform can be calculated. In this case the index of the closest
background element is returned along the first axis of the result. The return_distances, and return_indices flags can
be used to indicate if the distance transform, the feature transform, or both must be returned.
Optionally the sampling along each axis can be given by the sampling parameter which should be a sequence of
length equal to the input rank, or a single number in which the sampling is assumed to be equal along all axes. This
parameter is only used in the case of the euclidean distance transform.
The distances and indices arguments can be used to give optional output arrays that must be of the correct size and
type (numpy.float64 and numpy.int32).

Note: This function uses a slow brute-force algorithm, the function distance_transform_cdt
can be used to more efficiently calculate cityblock and chessboard distance transforms. The function
distance_transform_edt can be used to more efficiently calculate the exact euclidean distance transform.

Segmentation and labeling

Segmentation is the process of separating objects of interest from the background. The most simple approach is probably
intensity thresholding, which is easily done with numpy functions:

>>> a = np.array([[1,2,2,1,1,0],
... [0,2,3,1,2,0],
... [1,1,1,3,3,2],
... [1,1,1,1,2,1]])
>>> np.where(a > 1, 1, 0)
array([[0, 1, 1, 0, 0, 0],

[0, 1, 1, 0, 1, 0],
[0, 0, 0, 1, 1, 1],
[0, 0, 0, 0, 1, 0]])

The result is a binary image, in which the individual objects still need to be identified and labeled. The function label
generates an array where each object is assigned a unique number:

• The label function generates an array where the objects in the input are labeled with an integer index. It returns a
tuple consisting of the array of object labels and the number of objects found, unless the output parameter is given,
in which case only the number of objects is returned. The connectivity of the objects is defined by a structuring
element. For instance, in two dimensions using a four-connected structuring element gives:

>>> a = np.array([[0,1,1,0,0,0],[0,1,1,0,1,0],[0,0,0,1,1,1],[0,0,0,0,1,
↪→0]])
>>> s = [[0, 1, 0], [1,1,1], [0,1,0]]
>>> from scipy.ndimage import label
>>> label(a, s)
(array([[0, 1, 1, 0, 0, 0],

(continues on next page)
3 C. R.Maurer, Jr., R. Qi, and V. Raghavan, “A linear time algorithm for computing exact euclidean distance transforms of binary images in arbitrary

dimensions. IEEE Trans. PAMI 25, 265-270, 2003.
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[0, 1, 1, 0, 2, 0],
[0, 0, 0, 2, 2, 2],
[0, 0, 0, 0, 2, 0]]), 2)

These two objects are not connected because there is no way in which we can place the structuring element such
that it overlaps with both objects. However, an 8-connected structuring element results in only a single object:

>>> a = np.array([[0,1,1,0,0,0],[0,1,1,0,1,0],[0,0,0,1,1,1],[0,0,0,0,1,
↪→0]])
>>> s = [[1,1,1], [1,1,1], [1,1,1]]
>>> label(a, s)[0]
array([[0, 1, 1, 0, 0, 0],

[0, 1, 1, 0, 1, 0],
[0, 0, 0, 1, 1, 1],
[0, 0, 0, 0, 1, 0]])

If no structuring element is provided, one is generated by calling generate_binary_structure (see Binary
morphology) using a connectivity of one (which in 2D is the 4-connected structure of the first example). The input
can be of any type, any value not equal to zero is taken to be part of an object. This is useful if you need to ‘re-label’
an array of object indices, for instance after removing unwanted objects. Just apply the label function again to the
index array. For instance:

>>> l, n = label([1, 0, 1, 0, 1])
>>> l
array([1, 0, 2, 0, 3])
>>> l = np.where(l != 2, l, 0)
>>> l
array([1, 0, 0, 0, 3])
>>> label(l)[0]
array([1, 0, 0, 0, 2])

Note: The structuring element used by label is assumed to be symmetric.

There is a large number of other approaches for segmentation, for instance from an estimation of the borders of the objects
that can be obtained for instance by derivative filters. One such an approach is watershed segmentation. The function
watershed_ift generates an array where each object is assigned a unique label, from an array that localizes the object
borders, generated for instance by a gradient magnitude filter. It uses an array containing initial markers for the objects:

• The watershed_ift function applies a watershed frommarkers algorithm, using an Iterative Forest Transform,
as described in4.

• The inputs of this function are the array to which the transform is applied, and an array of markers that designate
the objects by a unique label, where any non-zero value is a marker. For instance:

>>> input = np.array([[0, 0, 0, 0, 0, 0, 0],
... [0, 1, 1, 1, 1, 1, 0],
... [0, 1, 0, 0, 0, 1, 0],
... [0, 1, 0, 0, 0, 1, 0],
... [0, 1, 0, 0, 0, 1, 0],
... [0, 1, 1, 1, 1, 1, 0],

(continues on next page)
4 P. Felkel, R. Wegenkittl, and M. Bruckschwaiger, “Implementation and Complexity of the Watershed-from-Markers Algorithm Computed as a

Minimal Cost Forest.”, Eurographics 2001, pp. C:26-35.
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... [0, 0, 0, 0, 0, 0, 0]], np.uint8)
>>> markers = np.array([[1, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 2, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 0]], np.int8)
>>> from scipy.ndimage import watershed_ift
>>> watershed_ift(input, markers)
array([[1, 1, 1, 1, 1, 1, 1],

[1, 1, 2, 2, 2, 1, 1],
[1, 2, 2, 2, 2, 2, 1],
[1, 2, 2, 2, 2, 2, 1],
[1, 2, 2, 2, 2, 2, 1],
[1, 1, 2, 2, 2, 1, 1],
[1, 1, 1, 1, 1, 1, 1]], dtype=int8)

Here two markers were used to designate an object (marker = 2) and the background (marker = 1). The order in
which these are processed is arbitrary: moving the marker for the background to the lower right corner of the array
yields a different result:

>>> markers = np.array([[0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 2, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 1]], np.int8)
>>> watershed_ift(input, markers)
array([[1, 1, 1, 1, 1, 1, 1],

[1, 1, 1, 1, 1, 1, 1],
[1, 1, 2, 2, 2, 1, 1],
[1, 1, 2, 2, 2, 1, 1],
[1, 1, 2, 2, 2, 1, 1],
[1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1]], dtype=int8)

The result is that the object (marker = 2) is smaller because the second marker was processed earlier. This
may not be the desired effect if the first marker was supposed to designate a background object. Therefore
watershed_ift treats markers with a negative value explicitly as background markers and processes them
after the normal markers. For instance, replacing the first marker by a negative marker gives a result similar to the
first example:

>>> markers = np.array([[0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 2, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, -1]], np.int8)
>>> watershed_ift(input, markers)

(continues on next page)
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array([[-1, -1, -1, -1, -1, -1, -1],

[-1, -1, 2, 2, 2, -1, -1],
[-1, 2, 2, 2, 2, 2, -1],
[-1, 2, 2, 2, 2, 2, -1],
[-1, 2, 2, 2, 2, 2, -1],
[-1, -1, 2, 2, 2, -1, -1],
[-1, -1, -1, -1, -1, -1, -1]], dtype=int8)

The connectivity of the objects is defined by a structuring element. If no structuring element is provided, one is
generated by calling generate_binary_structure (see Binary morphology) using a connectivity of one
(which in 2D is a 4-connected structure.) For example, using an 8-connected structure with the last example yields
a different object:

>>> watershed_ift(input, markers,
... structure = [[1,1,1], [1,1,1], [1,1,1]])
array([[-1, -1, -1, -1, -1, -1, -1],

[-1, 2, 2, 2, 2, 2, -1],
[-1, 2, 2, 2, 2, 2, -1],
[-1, 2, 2, 2, 2, 2, -1],
[-1, 2, 2, 2, 2, 2, -1],
[-1, 2, 2, 2, 2, 2, -1],
[-1, -1, -1, -1, -1, -1, -1]], dtype=int8)

Note: The implementation of watershed_ift limits the data types of the input to numpy.uint8 and
numpy.uint16.

Object measurements

Given an array of labeled objects, the properties of the individual objects can be measured. The find_objects
function can be used to generate a list of slices that for each object, give the smallest sub-array that fully contains the
object:

• The find_objects function finds all objects in a labeled array and returns a list of slices that correspond to the
smallest regions in the array that contains the object.
For instance:

>>> a = np.array([[0,1,1,0,0,0],[0,1,1,0,1,0],[0,0,0,1,1,1],[0,0,0,0,1,
↪→0]])
>>> l, n = label(a)
>>> from scipy.ndimage import find_objects
>>> f = find_objects(l)
>>> a[f[0]]
array([[1, 1],

[1, 1]])
>>> a[f[1]]
array([[0, 1, 0],

[1, 1, 1],
[0, 1, 0]])

The function find_objects returns slices for all objects, unless the max_label parameter is larger then zero, in
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which case only the first max_label objects are returned. If an index is missing in the label array, None is return
instead of a slice. For example:

>>> from scipy.ndimage import find_objects
>>> find_objects([1, 0, 3, 4], max_label = 3)
[(slice(0, 1, None),), None, (slice(2, 3, None),)]

The list of slices generated by find_objects is useful to find the position and dimensions of the objects in the array,
but can also be used to perform measurements on the individual objects. Say we want to find the sum of the intensities of
an object in image:

>>> image = np.arange(4 * 6).reshape(4, 6)
>>> mask = np.array([[0,1,1,0,0,0],[0,1,1,0,1,0],[0,0,0,1,1,1],[0,0,0,0,1,0]])
>>> labels = label(mask)[0]
>>> slices = find_objects(labels)

Then we can calculate the sum of the elements in the second object:

>>> np.where(labels[slices[1]] == 2, image[slices[1]], 0).sum()
80

That is however not particularly efficient, and may also be more complicated for other types of measurements. Therefore
a few measurements functions are defined that accept the array of object labels and the index of the object to be measured.
For instance calculating the sum of the intensities can be done by:

>>> from scipy.ndimage import sum as ndi_sum
>>> ndi_sum(image, labels, 2)
80

For large arrays and small objects it is more efficient to call the measurement functions after slicing the array:

>>> ndi_sum(image[slices[1]], labels[slices[1]], 2)
80

Alternatively, we can do the measurements for a number of labels with a single function call, returning a list of results.
For instance, to measure the sum of the values of the background and the second object in our example we give a list of
labels:

>>> ndi_sum(image, labels, [0, 2])
array([178.0, 80.0])

The measurement functions described below all support the index parameter to indicate which object(s) should be mea-
sured. The default value of index is None. This indicates that all elements where the label is larger than zero should be
treated as a single object and measured. Thus, in this case the labels array is treated as a mask defined by the elements that
are larger than zero. If index is a number or a sequence of numbers it gives the labels of the objects that are measured.
If index is a sequence, a list of the results is returned. Functions that return more than one result, return their result as a
tuple if index is a single number, or as a tuple of lists, if index is a sequence.

• The sum function calculates the sum of the elements of the object with label(s) given by index, using the labels
array for the object labels. If index is None, all elements with a non-zero label value are treated as a single object.
If label is None, all elements of input are used in the calculation.

• The mean function calculates the mean of the elements of the object with label(s) given by index, using the labels
array for the object labels. If index is None, all elements with a non-zero label value are treated as a single object.
If label is None, all elements of input are used in the calculation.
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• The variance function calculates the variance of the elements of the object with label(s) given by index, using
the labels array for the object labels. If index is None, all elements with a non-zero label value are treated as a
single object. If label is None, all elements of input are used in the calculation.

• Thestandard_deviation function calculates the standard deviation of the elements of the object with label(s)
given by index, using the labels array for the object labels. If index is None, all elements with a non-zero label
value are treated as a single object. If label is None, all elements of input are used in the calculation.

• The minimum function calculates the minimum of the elements of the object with label(s) given by index, using
the labels array for the object labels. If index is None, all elements with a non-zero label value are treated as a
single object. If label is None, all elements of input are used in the calculation.

• The maximum function calculates the maximum of the elements of the object with label(s) given by index, using
the labels array for the object labels. If index is None, all elements with a non-zero label value are treated as a
single object. If label is None, all elements of input are used in the calculation.

• The minimum_position function calculates the position of the minimum of the elements of the object with
label(s) given by index, using the labels array for the object labels. If index is None, all elements with a non-zero
label value are treated as a single object. If label is None, all elements of input are used in the calculation.

• The maximum_position function calculates the position of the maximum of the elements of the object with
label(s) given by index, using the labels array for the object labels. If index is None, all elements with a non-zero
label value are treated as a single object. If label is None, all elements of input are used in the calculation.

• The extrema function calculates the minimum, the maximum, and their positions, of the elements of the object
with label(s) given by index, using the labels array for the object labels. If index is None, all elements with a non-
zero label value are treated as a single object. If label is None, all elements of input are used in the calculation. The
result is a tuple giving the minimum, the maximum, the position of the minimum and the position of the maximum.
The result is the same as a tuple formed by the results of the functions minimum, maximum, minimum_position,
and maximum_position that are described above.

• The center_of_mass function calculates the center of mass of the of the object with label(s) given by index,
using the labels array for the object labels. If index is None, all elements with a non-zero label value are treated as
a single object. If label is None, all elements of input are used in the calculation.

• The histogram function calculates a histogram of the of the object with label(s) given by index, using the labels
array for the object labels. If index is None, all elements with a non-zero label value are treated as a single object.
If label is None, all elements of input are used in the calculation. Histograms are defined by their minimum (min),
maximum (max) and the number of bins (bins). They are returned as one-dimensional arrays of type numpy.
int32.

Extending scipy.ndimage in C

A few functions in scipy.ndimage take a callback argument. This can be either a python function or a scipy.
LowLevelCallable containing a pointer to a C function. Using a C function will generally be more efficient since
it avoids the overhead of calling a python function on many elements of an array. To use a C function you must write
a C extension that contains the callback function and a Python function that returns a scipy.LowLevelCallable
containing a pointer to the callback.
An example of a function that supports callbacks is geometric_transform, which accepts a callback function that
defines a mapping from all output coordinates to corresponding coordinates in the input array. Consider the following
python example which uses geometric_transform to implement a shift function.

from scipy import ndimage

def transform(output_coordinates, shift):
input_coordinates = output_coordinates[0] - shift, output_coordinates[1] -

↪→ shift (continues on next page)
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return input_coordinates

im = np.arange(12).reshape(4, 3).astype(np.float64)
shift = 0.5
print(ndimage.geometric_transform(im, transform, extra_arguments=(shift,)))

We can also implement the callback function with the following C code.

/* example.c */

#include <Python.h>
#include <numpy/npy_common.h>

static int
_transform(npy_intp *output_coordinates, double *input_coordinates,

int output_rank, int input_rank, void *user_data)
{

npy_intp i;
double shift = *(double *)user_data;

for (i = 0; i < input_rank; i++) {
input_coordinates[i] = output_coordinates[i] - shift;

}
return 1;

}

static char *transform_signature = "int (npy_intp *, double *, int, int, void␣
↪→*)";

static PyObject *
py_get_transform(PyObject *obj, PyObject *args)
{

if (!PyArg_ParseTuple(args, "")) return NULL;
return PyCapsule_New(_transform, transform_signature, NULL);

}

static PyMethodDef ExampleMethods[] = {
{"get_transform", (PyCFunction)py_get_transform, METH_VARARGS, ""},
{NULL, NULL, 0, NULL}

};

/* Initialize the module */
#if PY_VERSION_HEX >= 0x03000000
static struct PyModuleDef example = {

PyModuleDef_HEAD_INIT,
"example",
NULL,
-1,
ExampleMethods,
NULL,
NULL,
NULL,

(continues on next page)
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NULL

};

PyMODINIT_FUNC
PyInit_example(void)
{

return PyModule_Create(&example);
}
#else
PyMODINIT_FUNC
initexample(void)
{

Py_InitModule("example", ExampleMethods);
}
#endif

More information on writing Python extension modules can be found here. If the C code is in the file example.c, then
it can be compiled with the following setup.py,

from distutils.core import setup, Extension
import numpy

shift = Extension('example',
['example.c'],
include_dirs=[numpy.get_include()]

)

setup(name='example',
ext_modules=[shift]

)

and now running the script

import ctypes
import numpy as np
from scipy import ndimage, LowLevelCallable

from example import get_transform

shift = 0.5

user_data = ctypes.c_double(shift)
ptr = ctypes.cast(ctypes.pointer(user_data), ctypes.c_void_p)
callback = LowLevelCallable(get_transform(), ptr)
im = np.arange(12).reshape(4, 3).astype(np.float64)
print(ndimage.geometric_transform(im, callback))

produces the same result as the original python script.
In the C version _transform is the callback function and the parameters output_coordinates and
input_coordinates play the same role as they do in the python version while output_rank and input_rank
provide the equivalents of len(output_coordinates) and len(input_coordinates). The variable
shift is passed through user_data instead of extra_arguments. Finally, the C callback function returns an
integer status which is one upon success and zero otherwise.
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The function py_transform wraps the callback function in a PyCapsule. The main steps are:
• Initialize a PyCapsule. The first argument is a pointer to the callback function.
• The second argument is the function signature which must match exactly the one expected by ndimage.
• Above, we used scipy.LowLevelCallable to specify user_data that we generated with ctypes.
A different approach would be to supply the data in the capsule context, that can be set by PyCapsule_SetContext and
omit specifying user_data in scipy.LowLevelCallable. However, in this approach we would need to
deal with allocation/freeing of the data — freeing the data after the capsule is destroyed can be done by specifying
a non-NULL callback function in the third argument of PyCapsule_New.

C callback functions for ndimage all follow this scheme. The next section lists the ndimage functions that accept a C
callback function and gives the prototype of the function.
See also:
The functions that support low-level callback arguments are:
generic_filter, generic_filter1d, geometric_transform
Below, we show alternative ways to write the code, using Numba, Cython, ctypes, or cffi instead of writing wrapper code
in C.

Numba

Numba provides a way to write low-level functions easily in Python. We can write the above using Numba as:

# example.py
import numpy as np
import ctypes
from scipy import ndimage, LowLevelCallable
from numba import cfunc, types, carray

@cfunc(types.intc(types.CPointer(types.intp),
types.CPointer(types.double),
types.intc,
types.intc,
types.voidptr))

def transform(output_coordinates_ptr, input_coordinates_ptr,
output_rank, input_rank, user_data):

input_coordinates = carray(input_coordinates_ptr, (input_rank,))
output_coordinates = carray(output_coordinates_ptr, (output_rank,))
shift = carray(user_data, (1,), types.double)[0]

for i in range(input_rank):
input_coordinates[i] = output_coordinates[i] - shift

return 1

shift = 0.5

# Then call the function
user_data = ctypes.c_double(shift)
ptr = ctypes.cast(ctypes.pointer(user_data), ctypes.c_void_p)
callback = LowLevelCallable(transform.ctypes, ptr)

(continues on next page)
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(continued from previous page)

im = np.arange(12).reshape(4, 3).astype(np.float64)
print(ndimage.geometric_transform(im, callback))

Cython

Functionally the same code as above can be written in Cython with somewhat less boilerplate as follows.

# example.pyx

from numpy cimport npy_intp as intp

cdef api int transform(intp *output_coordinates, double *input_coordinates,
int output_rank, int input_rank, void *user_data):

cdef intp i
cdef double shift = (<double *>user_data)[0]

for i in range(input_rank):
input_coordinates[i] = output_coordinates[i] - shift

return 1

# script.py

import ctypes
import numpy as np
from scipy import ndimage, LowLevelCallable

import example

shift = 0.5

user_data = ctypes.c_double(shift)
ptr = ctypes.cast(ctypes.pointer(user_data), ctypes.c_void_p)
callback = LowLevelCallable.from_cython(example, "transform", ptr)
im = np.arange(12).reshape(4, 3).astype(np.float64)
print(ndimage.geometric_transform(im, callback))

cffi

With cffi, you can interface with a C function residing in a shared library (DLL). First, we need to write the shared library,
which we do in C — this example is for Linux/OSX:

/*
example.c
Needs to be compiled with "gcc -std=c99 -shared -fPIC -o example.so example.

↪→c"
or similar
*/

(continues on next page)
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(continued from previous page)
#include <stdint.h>

int
_transform(intptr_t *output_coordinates, double *input_coordinates,

int output_rank, int input_rank, void *user_data)
{

int i;
double shift = *(double *)user_data;

for (i = 0; i < input_rank; i++) {
input_coordinates[i] = output_coordinates[i] - shift;

}
return 1;

}

The Python code calling the library is:

import os
import numpy as np
from scipy import ndimage, LowLevelCallable
import cffi

# Construct the FFI object, and copypaste the function declaration
ffi = cffi.FFI()
ffi.cdef("""
int _transform(intptr_t *output_coordinates, double *input_coordinates,

int output_rank, int input_rank, void *user_data);
""")

# Open library
lib = ffi.dlopen(os.path.abspath("example.so"))

# Do the function call
user_data = ffi.new('double *', 0.5)
callback = LowLevelCallable(lib._transform, user_data)
im = np.arange(12).reshape(4, 3).astype(np.float64)
print(ndimage.geometric_transform(im, callback))

You can find more information in the cffi documentation.

ctypes

With ctypes, the C code and the compilation of the so/DLL is as for cffi above. The Python code is different:

# script.py

import os
import ctypes
import numpy as np
from scipy import ndimage, LowLevelCallable

lib = ctypes.CDLL(os.path.abspath('example.so'))
(continues on next page)
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(continued from previous page)

shift = 0.5

user_data = ctypes.c_double(shift)
ptr = ctypes.cast(ctypes.pointer(user_data), ctypes.c_void_p)

# Ctypes has no built-in intptr type, so override the signature
# instead of trying to get it via ctypes
callback = LowLevelCallable(lib._transform, ptr,

"int _transform(intptr_t *, double *, int, int, void *)")

# Perform the call
im = np.arange(12).reshape(4, 3).astype(np.float64)
print(ndimage.geometric_transform(im, callback))

You can find more information in the ctypes documentation.

References

4.1.15 File IO (scipy.io)

See also:
NumPy IO routines

MATLAB files

loadmat(file_name[, mdict, appendmat]) Load MATLAB file.
savemat(file_name, mdict[, appendmat, …]) Save a dictionary of names and arrays into a MATLAB-

style .mat file.
whosmat(file_name[, appendmat]) List variables inside a MATLAB file.

The basic functions
We’ll start by importing scipy.io and calling it sio for convenience:

>>> import scipy.io as sio

If you are using IPython, try tab completing on sio. Among the many options, you will find:

sio.loadmat
sio.savemat
sio.whosmat

These are the high-level functions you will most likely use when working with MATLAB files. You’ll also find:

sio.matlab

This is the package from which loadmat, savemat and whosmat are imported. Within sio.matlab, you will
find the mio module This module contains the machinery that loadmat and savemat use. From time to time you
may find yourself re-using this machinery.
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How do I start?
You may have a .mat file that you want to read into SciPy. Or, you want to pass some variables from SciPy / NumPy
into MATLAB.
To save us using a MATLAB license, let’s start in Octave. Octave has MATLAB-compatible save and load functions.
Start Octave (octave at the command line for me):

octave:1> a = 1:12
a =

1 2 3 4 5 6 7 8 9 10 11 12

octave:2> a = reshape(a, [1 3 4])
a =

ans(:,:,1) =

1 2 3

ans(:,:,2) =

4 5 6

ans(:,:,3) =

7 8 9

ans(:,:,4) =

10 11 12

octave:3> save -6 octave_a.mat a % MATLAB 6 compatible
octave:4> ls octave_a.mat
octave_a.mat

Now, to Python:

>>> mat_contents = sio.loadmat('octave_a.mat')
>>> mat_contents
{'a': array([[[ 1., 4., 7., 10.],

[ 2., 5., 8., 11.],
[ 3., 6., 9., 12.]]]),

'__version__': '1.0',
'__header__': 'MATLAB 5.0 MAT-file, written by
Octave 3.6.3, 2013-02-17 21:02:11 UTC',
'__globals__': []}

>>> oct_a = mat_contents['a']
>>> oct_a
array([[[ 1., 4., 7., 10.],

[ 2., 5., 8., 11.],
[ 3., 6., 9., 12.]]])

>>> oct_a.shape
(1, 3, 4)
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Now let’s try the other way round:

>>> import numpy as np
>>> vect = np.arange(10)
>>> vect.shape
(10,)
>>> sio.savemat('np_vector.mat', {'vect':vect})

Then back to Octave:

octave:8> load np_vector.mat
octave:9> vect
vect =

0 1 2 3 4 5 6 7 8 9

octave:10> size(vect)
ans =

1 10

If you want to inspect the contents of aMATLAB file without reading the data into memory, use the whosmat command:

>>> sio.whosmat('octave_a.mat')
[('a', (1, 3, 4), 'double')]

whosmat returns a list of tuples, one for each array (or other object) in the file. Each tuple contains the name, shape and
data type of the array.

MATLAB structs
MATLAB structs are a little bit like Python dicts, except the field names must be strings. Any MATLAB object can be
a value of a field. As for all objects in MATLAB, structs are in fact arrays of structs, where a single struct is an array of
shape (1, 1).

octave:11> my_struct = struct('field1', 1, 'field2', 2)
my_struct =
{

field1 = 1
field2 = 2

}

octave:12> save -6 octave_struct.mat my_struct

We can load this in Python:

>>> mat_contents = sio.loadmat('octave_struct.mat')
>>> mat_contents
{'my_struct': array([[([[1.0]], [[2.0]])]],

dtype=[('field1', 'O'), ('field2', 'O')]), '__version__': '1.0', '__
↪→header__': 'MATLAB 5.0 MAT-file, written by Octave 3.6.3, 2013-02-17␣
↪→21:23:14 UTC', '__globals__': []}
>>> oct_struct = mat_contents['my_struct']
>>> oct_struct.shape
(1, 1)

(continues on next page)
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(continued from previous page)
>>> val = oct_struct[0,0]
>>> val
([[1.0]], [[2.0]])
>>> val['field1']
array([[ 1.]])
>>> val['field2']
array([[ 2.]])
>>> val.dtype
dtype([('field1', 'O'), ('field2', 'O')])

In versions of SciPy from 0.12.0, MATLAB structs come back as numpy structured arrays, with fields named for the
struct fields. You can see the field names in the dtype output above. Note also:

>>> val = oct_struct[0,0]

and:

octave:13> size(my_struct)
ans =

1 1

So, in MATLAB, the struct array must be at least 2D, and we replicate that when we read into SciPy. If you want all
length 1 dimensions squeezed out, try this:

>>> mat_contents = sio.loadmat('octave_struct.mat', squeeze_me=True)
>>> oct_struct = mat_contents['my_struct']
>>> oct_struct.shape
()

Sometimes, it’s more convenient to load the MATLAB structs as python objects rather than numpy structured ar-
rays - it can make the access syntax in python a bit more similar to that in MATLAB. In order to do this, use the
struct_as_record=False parameter setting to loadmat.

>>> mat_contents = sio.loadmat('octave_struct.mat', struct_as_record=False)
>>> oct_struct = mat_contents['my_struct']
>>> oct_struct[0,0].field1
array([[ 1.]])

struct_as_record=False works nicely with squeeze_me:

>>> mat_contents = sio.loadmat('octave_struct.mat', struct_as_record=False,␣
↪→squeeze_me=True)
>>> oct_struct = mat_contents['my_struct']
>>> oct_struct.shape # but no - it's a scalar
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
AttributeError: 'mat_struct' object has no attribute 'shape'
>>> type(oct_struct)
<class 'scipy.io.matlab.mio5_params.mat_struct'>
>>> oct_struct.field1
1.0

Saving struct arrays can be done in various ways. One simple method is to use dicts:
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>>> a_dict = {'field1': 0.5, 'field2': 'a string'}
>>> sio.savemat('saved_struct.mat', {'a_dict': a_dict})

loaded as:

octave:21> load saved_struct
octave:22> a_dict
a_dict =

scalar structure containing the fields:

field2 = a string
field1 = 0.50000

You can also save structs back again to MATLAB (or Octave in our case) like this:

>>> dt = [('f1', 'f8'), ('f2', 'S10')]
>>> arr = np.zeros((2,), dtype=dt)
>>> arr
array([(0.0, ''), (0.0, '')],

dtype=[('f1', '<f8'), ('f2', 'S10')])
>>> arr[0]['f1'] = 0.5
>>> arr[0]['f2'] = 'python'
>>> arr[1]['f1'] = 99
>>> arr[1]['f2'] = 'not perl'
>>> sio.savemat('np_struct_arr.mat', {'arr': arr})

MATLAB cell arrays
Cell arrays in MATLAB are rather like python lists, in the sense that the elements in the arrays can contain any type of
MATLAB object. In fact they are most similar to numpy object arrays, and that is how we load them into numpy.

octave:14> my_cells = {1, [2, 3]}
my_cells =
{

[1,1] = 1
[1,2] =

2 3

}

octave:15> save -6 octave_cells.mat my_cells

Back to Python:

>>> mat_contents = sio.loadmat('octave_cells.mat')
>>> oct_cells = mat_contents['my_cells']
>>> print(oct_cells.dtype)
object
>>> val = oct_cells[0,0]
>>> val
array([[ 1.]])

(continues on next page)
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(continued from previous page)
>>> print(val.dtype)
float64

Saving to a MATLAB cell array just involves making a numpy object array:

>>> obj_arr = np.zeros((2,), dtype=np.object)
>>> obj_arr[0] = 1
>>> obj_arr[1] = 'a string'
>>> obj_arr
array([1, 'a string'], dtype=object)
>>> sio.savemat('np_cells.mat', {'obj_arr':obj_arr})

octave:16> load np_cells.mat
octave:17> obj_arr
obj_arr =
{

[1,1] = 1
[2,1] = a string

}

IDL files

readsav(file_name[, idict, python_dict, …]) Read an IDL .sav file.

Matrix Market files

mminfo(source) Return size and storage parameters from Matrix Market
file-like ‘source’.

mmread(source) Reads the contents of a Matrix Market file-like ‘source’
into a matrix.

mmwrite(target, a[, comment, field, …]) Writes the sparse or dense array a to Matrix Market file-
like target.

Wav sound files (scipy.io.wavfile)

read(filename[, mmap]) Open a WAV file
write(filename, rate, data) Write a numpy array as a WAV file.

Arff files (scipy.io.arff)

loadarff(f) Read an arff file.

Netcdf
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netcdf_file(filename[, mode, mmap, version, …]) A file object for NetCDF data.

Allows reading of NetCDF files (version of pupynere package)
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CHAPTER

FIVE

DEVELOPER’S GUIDE

Explanations of how to start contributing to SciPy, and descriptions of maintenance activities and policies.

5.1 SciPy Code of Conduct

5.1.1 Introduction

This code of conduct applies to all spaces managed by the SciPy project, including all public and private mailing lists,
issue trackers, wikis, blogs, Twitter, and any other communication channel used by our community. The SciPy project
does not organise in-person events, however events related to our community should have a code of conduct similar in
spirit to this one.
This code of conduct should be honored by everyone who participates in the SciPy community formally or informally,
or claims any affiliation with the project, in any project-related activities and especially when representing the project, in
any role.
This code is not exhaustive or complete. It serves to distill our common understanding of a collaborative, shared environ-
ment and goals. Please try to follow this code in spirit as much as in letter, to create a friendly and productive environment
that enriches the surrounding community.

5.1.2 Specific Guidelines

We strive to:
1. Be open. We invite anyone to participate in our community. We prefer to use public methods of communication

for project-related messages, unless discussing something sensitive. This applies to messages for help or project-
related support, too; not only is a public support request much more likely to result in an answer to a question, it
also ensures that any inadvertent mistakes in answering are more easily detected and corrected.

2. Be empathetic, welcoming, friendly, and patient. We work together to resolve conflict, and assume good intentions.
We may all experience some frustration from time to time, but we do not allow frustration to turn into a personal
attack. A community where people feel uncomfortable or threatened is not a productive one.

3. Be collaborative. Our work will be used by other people, and in turn we will depend on the work of others. When
we make something for the benefit of the project, we are willing to explain to others how it works, so that they can
build on the work to make it even better. Any decision we make will affect users and colleagues, and we take those
consequences seriously when making decisions.

4. Be inquisitive. Nobody knows everything! Asking questions early avoids many problems later, so we encourage
questions, although we may direct them to the appropriate forum. We will try hard to be responsive and helpful.
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5. Be careful in the words that we choose. We are careful and respectful in our communication and we take respon-
sibility for our own speech. Be kind to others. Do not insult or put down other participants. We will not accept
harassment or other exclusionary behaviour, such as:

• Violent threats or language directed against another person.
• Sexist, racist, or otherwise discriminatory jokes and language.
• Posting sexually explicit or violent material.
• Posting (or threatening to post) other people’s personally identifying information (“doxing”).
• Sharing private content, such as emails sent privately or non-publicly, or unlogged forums such as IRC channel
history, without the sender’s consent.

• Personal insults, especially those using racist or sexist terms.
• Unwelcome sexual attention.
• Excessive profanity. Please avoid swearwords; people differ greatly in their sensitivity to swearing.
• Repeated harassment of others. In general, if someone asks you to stop, then stop.
• Advocating for, or encouraging, any of the above behaviour.

5.1.3 Diversity Statement

The SciPy project welcomes and encourages participation by everyone. We are committed to being a community that
everyone enjoys being part of. Although we may not always be able to accommodate each individual’s preferences, we
try our best to treat everyone kindly.
No matter how you identify yourself or how others perceive you: we welcome you. Though no list can hope to be
comprehensive, we explicitly honour diversity in: age, culture, ethnicity, genotype, gender identity or expression, language,
national origin, neurotype, phenotype, political beliefs, profession, race, religion, sexual orientation, socioeconomic status,
subculture and technical ability, to the extent that these do not conflict with this code of conduct.
Though we welcome people fluent in all languages, SciPy development is conducted in English.
Standards for behaviour in the SciPy community are detailed in the Code of Conduct above. Participants in our community
should uphold these standards in all their interactions and help others to do so as well (see next section).

5.1.4 Reporting Guidelines

We know that it is painfully common for internet communication to start at or devolve into obvious and flagrant abuse.
We also recognize that sometimes people may have a bad day, or be unaware of some of the guidelines in this Code of
Conduct. Please keep this in mind when deciding on how to respond to a breach of this Code.
For clearly intentional breaches, report those to the Code of Conduct committee (see below). For possibly unintentional
breaches, you may reply to the person and point out this code of conduct (either in public or in private, whatever is most
appropriate). If you would prefer not to do that, please feel free to report to the Code of Conduct Committee directly, or
ask the Committee for advice, in confidence.
You can report issues to the SciPy Code of Conduct committee, at scipy-conduct@googlegroups.com. Currently, the
committee consists of:

• Stefan van der Walt
• Nathaniel J. Smith
• Ralf Gommers
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If your report involves any members of the committee, or if they feel they have a conflict of interest in handling it, then
they will recuse themselves from considering your report. Alternatively, if for any reason you feel uncomfortable making
a report to the committee, then you can also contact:

• Chair of the SciPy Steering Committee: Ralf Gommers, or
• Senior NumFOCUS staff: conduct@numfocus.org

5.1.5 Incident reporting resolution & Code of Conduct enforcement

This section summarizes the most important points, more details can be found in CoC_reporting_manual.
We will investigate and respond to all complaints. The SciPy Code of Conduct Committee and the SciPy Steering
Committee (if involved) will protect the identity of the reporter, and treat the content of complaints as confidential
(unless the reporter agrees otherwise).
In case of severe and obvious breaches, e.g. personal threat or violent, sexist or racist language, we will immediately
disconnect the originator from SciPy communication channels; please see the manual for details.
In cases not involving clear severe and obvious breaches of this code of conduct, the process for acting on any received
code of conduct violation report will be:

1. acknowledge report is received
2. reasonable discussion/feedback
3. mediation (if feedback didn’t help, and only if both reporter and reportee agree to this)
4. enforcement via transparent decision (see CoC_resolutions) by the Code of Conduct Committee

The committee will respond to any report as soon as possible, and at most within 72 hours.

5.1.6 Endnotes

We are thankful to the groups behind the following documents, from which we drew content and inspiration:
• The Apache Foundation Code of Conduct
• The Contributor Covenant
• Jupyter Code of Conduct
• Open Source Guides - Code of Conduct

5.2 Contributing to SciPy

This document aims to give an overview of how to contribute to SciPy. It tries to answer commonly asked questions,
and provide some insight into how the community process works in practice. Readers who are familiar with the SciPy
community and are experienced Python coders may want to jump straight to the git workflow documentation.
There are a lot of ways you can contribute:

• Contributing new code
• Fixing bugs and other maintenance work
• Improving the documentation
• Reviewing open pull requests
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• Triaging issues
• Working on the scipy.org website
• Answering questions and participating on the scipy-dev and scipy-user mailing lists.

5.2.1 Contributing new code

If you have been working with the scientific Python toolstack for a while, you probably have some code lying around of
which you think “this could be useful for others too”. Perhaps it’s a good idea then to contribute it to SciPy or another open
source project. The first question to ask is then, where does this code belong? That question is hard to answer here, so we
start with a more specific one: what code is suitable for putting into SciPy? Almost all of the new code added to scipy has
in common that it’s potentially useful in multiple scientific domains and it fits in the scope of existing scipy submodules. In
principle new submodules can be added too, but this is far less common. For code that is specific to a single application,
there may be an existing project that can use the code. Some scikits (scikit-learn, scikit-image, statsmodels, etc.) are
good examples here; they have a narrower focus and because of that more domain-specific code than SciPy.
Now if you have code that you would like to see included in SciPy, how do you go about it? After checking that your code
can be distributed in SciPy under a compatible license (see FAQ for details), the first step is to discuss on the scipy-dev
mailing list. All new features, as well as changes to existing code, are discussed and decided on there. You can, and
probably should, already start this discussion before your code is finished.
Assuming the outcome of the discussion on the mailing list is positive and you have a function or piece of code that does
what you need it to do, what next? Before code is added to SciPy, it at least has to have good documentation, unit tests
and correct code style.

1. Unit tests
In principle you should aim to create unit tests that exercise all the code that you are adding. This gives some
degree of confidence that your code runs correctly, also on Python versions and hardware or OSes that you
don’t have available yourself. An extensive description of how to write unit tests is given in the NumPy testing
guidelines.

2. Documentation
Clear and complete documentation is essential in order for users to be able to find and understand the code.
Documentation for individual functions and classes – which includes at least a basic description, type and
meaning of all parameters and returns values, and usage examples in doctest format – is put in docstrings.
Those docstrings can be read within the interpreter, and are compiled into a reference guide in html and pdf
format. Higher-level documentation for key (areas of) functionality is provided in tutorial format and/or in
module docstrings. A guide on how to write documentation is given in how to document.

3. Code style
Uniformity of style in which code is written is important to others trying to understand the code. SciPy follows
the standard Python guidelines for code style, PEP8. In order to check that your code conforms to PEP8, you
can use the pep8 package style checker. Most IDEs and text editors have settings that can help you follow
PEP8, for example by translating tabs by four spaces. Using pyflakes to check your code is also a good idea.

At the end of this document a checklist is given that may help to check if your code fulfills all requirements for inclusion
in SciPy.
Another question you may have is: where exactly do I put my code? To answer this, it is useful to understand how the SciPy
public API (application programming interface) is defined. For most modules the API is two levels deep, which means
your new function should appear as scipy.submodule.my_new_func. my_new_func can be put in an existing
or new file under /scipy/<submodule>/, its name is added to the __all__ list in that file (which lists all public
functions in the file), and those public functions are then imported in /scipy/<submodule>/__init__.py. Any
private functions/classes should have a leading underscore (_) in their name. A more detailed description of what the
public API of SciPy is, is given in SciPy API.
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Once you think your code is ready for inclusion in SciPy, you can send a pull request (PR) on Github. We won’t go into the
details of how to work with git here, this is described well in the git workflow section of the NumPy documentation and
on the Github help pages. When you send the PR for a new feature, be sure to also mention this on the scipy-dev mailing
list. This can prompt interested people to help review your PR. Assuming that you already got positive feedback before
on the general idea of your code/feature, the purpose of the code review is to ensure that the code is correct, efficient and
meets the requirements outlined above. In many cases the code review happens relatively quickly, but it’s possible that it
stalls. If you have addressed all feedback already given, it’s perfectly fine to ask on the mailing list again for review (after
a reasonable amount of time, say a couple of weeks, has passed). Once the review is completed, the PR is merged into
the “master” branch of SciPy.
The above describes the requirements and process for adding code to SciPy. It doesn’t yet answer the question though
how decisions are made exactly. The basic answer is: decisions are made by consensus, by everyone who chooses to
participate in the discussion on the mailing list. This includes developers, other users and yourself. Aiming for consensus
in the discussion is important – SciPy is a project by and for the scientific Python community. In those rare cases that
agreement cannot be reached, the maintainers of the module in question can decide the issue.

5.2.2 Contributing by helping maintain existing code

The previous section talked specifically about adding new functionality to SciPy. A large part of that discussion also
applies to maintenance of existing code. Maintenance means fixing bugs, improving code quality, documenting existing
functionality better, adding missing unit tests, keeping build scripts up-to-date, etc. The SciPy issue list contains all
reported bugs, build/documentation issues, etc. Fixing issues helps improve the overall quality of SciPy, and is also a
good way of getting familiar with the project. You may also want to fix a bug because you ran into it and need the
function in question to work correctly.
The discussion on code style and unit testing above applies equally to bug fixes. It is usually best to start by writing a unit
test that shows the problem, i.e. it should pass but doesn’t. Once you have that, you can fix the code so that the test does
pass. That should be enough to send a PR for this issue. Unlike when adding new code, discussing this on the mailing
list may not be necessary - if the old behavior of the code is clearly incorrect, no one will object to having it fixed. It may
be necessary to add some warning or deprecation message for the changed behavior. This should be part of the review
process.

Note: Pull requests that only change code style, e.g. fixing some PEP8 issues in a file, are discouraged. Such PRs are
often not worth cluttering the git annotate history, and take reviewer time that may be better spent in other ways. Code
style cleanups of code that is touched as part of a functional change are fine however.

5.2.3 Reviewing pull requests

Reviewing open pull requests (PRs) is very welcome, and a valuable way to help increase the speed at which the project
moves forward. If you have specific knowledge/experience in a particular area (say “optimization algorithms” or “special
functions”) then reviewing PRs in that area is especially valuable - sometimes PRs with technical code have to wait for a
long time to get merged due to a shortage of appropriate reviewers.
We encourage everyone to get involved in the review process; it’s also a great way to get familiar with the code base.
Reviewers should ask themselves some or all of the following questions:

• Was this change adequately discussed (relevant for new features and changes in existing behavior)?
• Is the feature scientifically sound? Algorithms may be known to work based on literature; otherwise, closer look at
correctness is valuable.

• Is the intended behavior clear under all conditions (e.g. unexpected inputs like empty arrays or nan/inf values)?
• Does the code meet the quality, test and documentation expectation outline under Contributing new code?
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If we do not know you yet, consider introducing yourself.

5.2.4 Other ways to contribute

There are many ways to contribute other than contributing code.
Triaging issues (investigating bug reports for validity and possible actions to take) is also a useful activity. SciPy has
many hundreds of open issues; closing invalid ones and correctly labeling valid ones (ideally with some first thoughts in a
comment) allows prioritizing maintenance work and finding related issues easily when working on an existing function or
submodule.
Participating in discussions on the scipy-user and scipy-dev mailing lists is a contribution in itself. Everyone who writes
to those lists with a problem or an idea would like to get responses, and writing such responses makes the project and
community function better and appear more welcoming.
The scipy.org website contains a lot of information on both SciPy the project and SciPy the community, and it can always
use a new pair of hands. The sources for the website live in their own separate repo: https://github.com/scipy/scipy.org

5.2.5 Recommended development setup

Since Scipy contains parts written in C, C++, and Fortran that need to be compiled before use, make sure you have the
necessary compilers and Python development headers installed. Having compiled code also means that importing Scipy
from the development sources needs some additional steps, which are explained below.
First fork a copy of the main Scipy repository in Github onto your own account and then create your local repository via:

$ git clone git@github.com:YOURUSERNAME/scipy.git scipy
$ cd scipy
$ git remote add upstream git://github.com/scipy/scipy.git

Second to code review pull requests it is helpful to have a local copy of the code changes in the pull request. The preferred
method to bring a PR from the github repository to your local repo in a new branch:

$ git fetch upstream pull/PULL_REQUEST_ID/head:NEW_BRANCH_NAME

The value of PULL_REQUEST_ID will be the PR number and theNEW_BRANCH_NAME will be the name of the branch
in your local repository where the diffs will reside.
Now you have a branch in your local development area to code review in python.
To build the development version of Scipy and run tests, spawn interactive shells with the Python import paths properly
set up etc., do one of:

$ python runtests.py -v
$ python runtests.py -v -s optimize
$ python runtests.py -v -t scipy.special.tests.test_basic::test_xlogy
$ python runtests.py --ipython
$ python runtests.py --python somescript.py
$ python runtests.py --bench

This builds Scipy first, so the first time it may take some time. If you specify -n, the tests are run against the version of
Scipy (if any) found on current PYTHONPATH. Note: if you run into a build issue, more detailed build documentation
can be found in :doc:‘building/index‘ and at https://github.com/scipy/scipy/tree/master/doc/source/building

Using runtests.py is the recommended approach to running tests. There are also a number of alternatives to it, for
example in-place build or installing to a virtualenv. See the FAQ below for details.
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Some of the tests in Scipy are very slow and need to be separately enabled. See the FAQ below for details.

5.2.6 SciPy structure

All SciPy modules should follow the following conventions. In the following, a SciPy module is defined as a Python
package, say yyy, that is located in the scipy/ directory.

• Ideally, each SciPy module should be as self-contained as possible. That is, it should have minimal dependencies
on other packages or modules. Even dependencies on other SciPy modules should be kept to a minimum. A
dependency on NumPy is of course assumed.

• Directory yyy/ contains:
– A file setup.py that defines configuration(parent_package='',top_path=None) func-
tion for numpy.distutils.

– A directory tests/ that contains files test_<name>.py corresponding to modules yyy/<name>{.
py,.so,/}.

• Private modules should be prefixed with an underscore _, for instance yyy/_somemodule.py.
• User-visible functions should have good documentation following the NumPy documentation style, see how to
document

• The __init__.py of the module should contain the main reference documentation in its docstring. This is
connected to the Sphinx documentation under doc/ via Sphinx’s automodule directive.
The reference documentation should first give a categorized list of the contents of the module using
autosummary:: directives, and after that explain points essential for understanding the use of the module.
Tutorial-style documentation with extensive examples should be separate, and put under doc/source/
tutorial/

See the existing Scipy submodules for guidance.
For further details on NumPy distutils, see:

https://github.com/numpy/numpy/blob/master/doc/DISTUTILS.rst.txt

5.2.7 Useful links, FAQ, checklist

Checklist before submitting a PR

• Are there unit tests with good code coverage?
• Do all public function have docstrings including examples?
• Is the code style correct (PEP8, pyflakes)
• Is the commit message formatted correctly?
• Is the new functionality tagged with .. versionadded:: X.Y.Z (with X.Y.Z the version number of the
next release - can be found in setup.py)?

• Is the new functionality mentioned in the release notes of the next release?
• Is the new functionality added to the reference guide?
• In case of larger additions, is there a tutorial or more extensive module-level description?
• In case compiled code is added, is it integrated correctly via setup.py
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• If you are a first-time contributor, did you add yourself to THANKS.txt? Please note that this is perfectly normal
and desirable - the aim is to give every single contributor credit, and if you don’t add yourself it’s simply extra work
for the reviewer (or worse, the reviewer may forget).

• Did you check that the code can be distributed under a BSD license?

Useful SciPy documents

• The how to document guidelines
• NumPy/SciPy testing guidelines
• SciPy API
• The SciPy Roadmap
• NumPy/SciPy git workflow
• How to submit a good bug report

FAQ

I based my code on existing Matlab/R/… code I found online, is this OK?

It depends. SciPy is distributed under a BSD license, so if the code that you based your code on is also BSD licensed or
has a BSD-compatible license (e.g. MIT, PSF) then it’s OK. Code which is GPL or Apache licensed, has no clear license,
requires citation or is free for academic use only can’t be included in SciPy. Therefore if you copied existing code with
such a license or made a direct translation to Python of it, your code can’t be included. If you’re unsure, please ask on the
scipy-dev mailing list.
Why is SciPy under the BSD license and not, say, the GPL?

Like Python, SciPy uses a “permissive” open source license, which allows proprietary re-use. While this allows companies
to use and modify the software without giving anything back, it is felt that the larger user base results in more contributions
overall, and companies often publish their modifications anyway, without being required to. See John Hunter’s BSD pitch.
How do I set up a development version of SciPy in parallel to a released version that I use to do my job/research?

One simple way to achieve this is to install the released version in site-packages, by using a binary installer or pip for
example, and set up the development version in a virtualenv. First install virtualenv (optionally use virtualenvwrapper),
then create your virtualenv (named scipy-dev here) with:

$ virtualenv scipy-dev

Now, whenever you want to switch to the virtual environment, you can use the command source scipy-dev/bin/
activate, and deactivate to exit from the virtual environment and back to your previous shell. With scipy-dev
activated, install first Scipy’s dependencies:

$ pip install NumPy pytest Cython

After that, you can install a development version of Scipy, for example via:

$ python setup.py install

The installation goes to the virtual environment.
How do I set up an in-place build for development

For development, you can set up an in-place build so that changes made to .py files have effect without rebuild. First,
run:
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$ python setup.py build_ext -i

Then you need to point your PYTHONPATH environment variable to this directory. Some IDEs (Spyder for example)
have utilities to manage PYTHONPATH. On Linux and OSX, you can run the command:

$ export PYTHONPATH=$PWD

and on Windows
$ set PYTHONPATH=/path/to/scipy

Now editing a Python source file in SciPy allows you to immediately test and use your changes (in .py files), by simply
restarting the interpreter.
Are there any video examples for installing from source, setting up a development environment, etc…?

Currently, there are two video demonstrations for Anaconda Python on macOS:
Anaconda SciPy Dev Part I (macOS) is a four-minute overview of installing Anaconda, building SciPy from source, and
testing changes made to SciPy from the Spyder IDE.
Anaconda SciPy Dev Part II (macOS) shows how to use a virtual environment to easily switch between the “pre-built
version” of SciPy installed with Anaconda and your “source-built version” of SciPy created according to Part I.
Are there any video examples of the basic development workflow?

SciPy Development Workflow is a five-minute example of fixing a bug and submitting a pull request. While it’s intended
as a followup to Anaconda SciPy Dev Part I (macOS) and Anaconda SciPy Dev Part II (macOS), the process is similar
for other development setups.
Can I use a programming language other than Python to speed up my code?

Yes. The languages used in SciPy are Python, Cython, C, C++ and Fortran. All of these have their pros and cons. If
Python really doesn’t offer enough performance, one of those languages can be used. Important concerns when using com-
piled languages are maintainability and portability. For maintainability, Cython is clearly preferred over C/C++/Fortran.
Cython and C are more portable than C++/Fortran. A lot of the existing C and Fortran code in SciPy is older, battle-tested
code that was only wrapped in (but not specifically written for) Python/SciPy. Therefore the basic advice is: use Cython.
If there’s specific reasons why C/C++/Fortran should be preferred, please discuss those reasons first.
How do I debug code written in C/C++/Fortran inside Scipy?

The easiest way to do this is to first write a Python script that invokes the C code whose execution you want to debug. For
instance mytest.py:

from scipy.special import hyp2f1
print(hyp2f1(5.0, 1.0, -1.8, 0.95))

Now, you can run:

gdb --args python runtests.py -g --python mytest.py

If you didn’t compile with debug symbols enabled before, remove the build directory first. While in the debugger:

(gdb) break cephes_hyp2f1
(gdb) run

The execution will now stop at the corresponding C function and you can step through it as usual. Instead of plain gdb
you can of course use your favourite alternative debugger; run it on the python binary with arguments runtests.py
-g --python mytest.py.
How do I enable additional tests in Scipy?
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Some of the tests in Scipy’s test suite are very slow and not enabled by default. You can run the full suite via:

$ python runtests.py -g -m full

This invokes the test suite import scipy; scipy.test("full"), enabling also slow tests.
There is an additional level of very slow tests (several minutes), which are disabled also in this case. They can be enabled
by setting the environment variable SCIPY_XSLOW=1 before running the test suite.

5.3 Building from sources

Note: If you are only trying to install SciPy, see Installing and upgrading.

Build instructions for different operating systems:

5.3.1 Building From Source on Linux

Generic instructions

To build NumPy/SciPy from source, get the source package, unpack it, and:

python setup.py install --user # installs to your home directory

or

python setup.py build
python setup.py install --prefix=$HOME/local

Before building, you will also need to install packages that NumPy and SciPy depend on
• BLAS and LAPACK libraries (optional but strongly recommended for NumPy, required for SciPy): typically
ATLAS + OpenBLAS, or MKL.

• C and Fortran compilers (typically gcc and gfortran).
• Python header files (typically a package named python-dev or python-devel)
• Unless you are building from released source packages, the Cython compiler is necessary (typically in a package
named cython). For building recent SciPy, it is possible that you need Cython in a newer version than is available
in your distribution.

Typically, you will want to install all of the above from packages supplied by your Linux distribution, as building them
yourself is complicated. If you need to use specific BLAS/LAPACK libraries, you can do

export BLAS=/path/to/libblas.so
export LAPACK=/path/to/liblapack.so
export ATLAS=/path/to/libatlas.so
python setup.py ............

If you don’t want to any LAPACK, just do “export LAPACK=”.
You will find below additional installation instructions and advice for many major Linux distributions.
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Specific instructions

• Debian / Ubuntu

• Fedora 26

• Intel C compiler and MKL

– Intel MKL 11.0 (updated Dec 2012)

Debian / Ubuntu
To build from source the following packages are needed:

sudo apt-get install gcc gfortran python-dev libopenblas-dev liblapack-dev␣
↪→cython

To customize which BLAS is used, you can setup a site.cfg file. See the site.cfg.example file in the numpy source for the
options you can set.
Note that Debian and Ubuntu package optimized BLAS libraries in a exchangeable way. You can install libraries such as
ATLAS or OpenBLAS and change the default one used via the alternatives mechanism:

$ sudo apt-get install libopenblas-base libatlas3-base
$ update-alternatives --list libblas.so.3
/usr/lib/atlas-base/atlas/libblas.so.3
/usr/lib/libblas/libblas.so.3
/usr/lib/openblas-base/libopenblas.so.0

$ sudo update-alternatives --set libblas.so.3 /usr/lib/openblas-base/
↪→libopenblas.so.0

See /usr/share/doc/libatlas3-base/README.Debian for instructions on how to build optimized ATLAS packages for your
specific CPU. The packaged OpenBLAS chooses the optimal code at runtime so it does not need recompiling unless the
packaged version does not yet support the used CPU.
You can also use a library you built yourself by preloading it. This does not require administrator rights.

LD_PRELOAD=/path/to/libatlas.so.3 ./my-application

Fedora 26
To install scipy build requirements, you can do:

sudo dnf install gcc-gfortran python3-devel python2-devel openblas-devel␣
↪→lapack-devel Cython

Intel C compiler and MKL
Intel MKL 11.0 (updated Dec 2012)

Add the following lines to site.cfg in your top level NumPy directory to use Intel® MKL for Intel® 64 (or earlier known
as em64t) architecture, considering the default installation path of Intel® MKL which is bundled with Intel® Composer
XE SP1 version on Linux:
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[mkl]
library_dirs = /opt/intel/composer_xe_2013/mkl/lib/intel64
include_dirs = /opt/intel/composer_xe_2013/mkl/include
mkl_libs = mkl_intel_lp64,mkl_intel_thread,mkl_core

If you are building NumPy for 32 bit, please add as the following

[mkl]
library_dirs = /opt/intel/composer_xe_2013/mkl/lib/ia32
include_dirs = /opt/intel/composer_xe_2013/mkl/include
mkl_libs = mkl_intel,mkl_intel_thread,mkl_core

Instead of the layered linking approach for the Intel® MKL as shown above, you may also use the dynamic interface lib
mkl_rt.lib. So, for both the ia32 and intel64 architecture make the change as below

mkl_libs = mkl_rt

Modify cc_exe in numpy/numpy/distutils/intelccompiler.py to be something like:

cc_exe = 'icc -O2 -g -openmp -avx'

Here we use, default optimizations (-O2), OpenMP threading (-openmp) and Intel® AVX optimizations for Intel® Xeon
E5 or E3 Series which are based on Intel® SandyBridge Architecture (-avx). Run icc –help for more information on
processor-specific options.
Compile and install NumPy with the Intel compiler (on 64-bit platforms replace “intel” with “intelem”):

python setup.py config --compiler=intel build_clib --compiler=intel build_ext␣
↪→--compiler=intel install

Compile and install SciPy with the Intel compilers (on 64-bit platforms replace “intel” with “intelem”):

python setup.py config --compiler=intel --fcompiler=intel build_clib --
↪→compiler=intel --fcompiler=intel build_ext --compiler=intel --
↪→fcompiler=intel install

You’ll have to set LD_LIBRARY_PATH to Intel®MKL libraries (exact values will depend on your architecture, compiler
and library versions) and OpenMP library for NumPy to work. If you build NumPy for Intel® 64 platforms:

$export LD_LIBRARY_PATH=/opt/intel/composer_xe_2013/mkl/lib/intel64: /opt/
↪→intel/composer_xe_2013/compiler/lib/intel64:$LD_LIBRARY_PATH

If you build NumPy for ia32 bit platforms:

$export LD_LIBRARY_PATH=/opt/intel/composer_xe_2013/mkl/lib/ia32: /opt/intel/
↪→composer_xe_2013/compiler/lib/ia32:$LD_LIBRARY_PATH

5.3.2 Building From Source on Windows

• Overview

• Building the Released SciPy
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– Building OpenBLAS

– Installing OpenBLAS

– Building SciPy

• Building Against an Older NumPy Version

• Additional Resources

Overview

Compared to OSX and Linux, building NumPy and SciPy on Windows is more difficult, largely due to the lack of
compatible, open-source libraries like LAPACK or ATLAS that are necessary to build both libraries and have them
perform relatively well. It is not possible to just call a one-liner on the command prompt as you would on other platforms
via sudo apt-get install machinery.
This document describes one option to build OpenBLAS and SciPy from source that was validated for scipy 1.0.0. How-
ever, in light of all the work currently being done, do not expect these instructions to be accurate in the long-run and be
sure to check up on any of the open source projects mentioned for the most up-to-date information. For more informa-
tion on all of these projects, the Mingwpy website is an excellent source of in-depth information than this document will
provide.

Building the Released SciPy

This section provides the step-by-step process to build the released scipy. If you want to build completely from source, you
should estimate at least three hours to build all libraries and compile SciPy. Feel free to stop and inspect any step at any
time, but for this section, we’ll just mention the steps without providing an in-depth explanation for the reasons behind
them. If you have further questions about what we’re doing, more in-depth documentation is provided in the sections
below. Also, please make sure to read this section before proceeding, as the presence or absence of error messages in
general is not a good indication of whether you’ve completed a step correctly. Each step creates particular files, and
what ultimately matters is whether you have built the required files rather than whether error messages appeared in your
terminal.

Building OpenBLAS
First, we need to install the software required to build OpenBLAS, which is the BLAS library that we’re going to use.
Because the software to build OpenBLAS is different than that required to build SciPy and because OpenBLAS takes a
long time to build, we’re going to start building OpenBLAS first and then explain what to do next while the OpenBLAS
build is running. Alternatively, if you’d rather download a pre-built OpenBLAS, download the one of the pre-built
zip files and skip to the Installing OpenBLAS section below.
Otherwise, install MSYS2 using these instructions including the pacman update instructions. Occasionally during the
updates the terminal might ask you to close the terminal but then might refuse to be closed and hang. If this happens you
can kill it via Task Manager and continue with the instructions. Make sure to install the correct architecture for the SciPy
that you want to build (eg. 32 or 64 bit). Now, you have three options for opening a terminal which are MSYS2, MINGW
(32 or 64 bit). After updating all the packages, now we are ready to install some more package bundles that we will need.
Open a MSYS2 terminal and type the following depending on the architecture of your choice; run the following for a
32-bit build

pacman -S --needed base-devel mingw-w64-i686-toolchain mingw-w64-i686-cmake␣
↪→git

and for 64-bit
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pacman -S --needed base-devel mingw-w64-x86_64-toolchain mingw-w64-x86_64-
↪→cmake git

It will prompt to whether install everything in these packages and you can simply accept all via hitting enter key at each
step.
We should be aware of the fact that these tools also install Python2, very similar to a virtual environment, which is only
usable within an MSYS2 terminal and we are not going to use it at any point. After updating, now we are going to use
the build toolchain that we have installed in the previous step. Depending on 32/64bit choice, we will switch to another
shell that MSYS2 created. In your start menu you should see three MSYS2 terminal shortcuts. Select the one with either
64 or 32bit indicator. The reason why we do this is that the toolchain and compilers are available to these shells and not
to the standard MSYS2 terminal.
If you already have a GitHub repository folder where you keep your own repos, it is better to use that location to keep
things nice and tidy since we are going to clone yet another repository to obtain the source code, hence

cd /c/<wherever the GitHub repo folder is>/GitHub

You don’t necessarily need to build in that particular location, but it should be somewhere convenient. To make sure that
we’re ready to build, type the following in the terminal:

make
gfortran
gcc

These commands should give errors as we have not provided any arguments to them. However an error also implies that
they are accessible on the path. Now clone the repository required to build OpenBLAS:

git clone https://github.com/matthew-brett/build-openblas.git
cd build-openblas
git submodule update --init --recursive

If any of these commands fail, you’re not ready to build. Go back and make sure that MSYS2 is installed correctly and has
the required packages enabled. Now, let’s set some environment variables. In the MSYS2 terminal, type the following.

export OPENBLAS_COMMIT=5f998ef
export OPENBLAS_ROOT="C:\\opt"
export BUILD_BITS=64

Please check these variables’ purpose for a moment. More specifically, make sure that you have read/write access to the
path that OPENBLAS_ROOT points to. The output of the OpenBLAS build will be collected in this folder. Make sure
that the OPENBLAS_COMMIT points to the correct OpenBLAS commit that you want to build in the cloned repo. In
the future, build_openblas repository might get updated and you might want to get those updates by changing the
commit. Make sure that the architecture is correctly set to either 32 or 64 bit. And after you’ve made sure of that, start
the OpenBLAS build with:

./build_openblas.sh

Building OpenBLAS is challenging. The build may fail with an error after a few hours but may also fail silently and
produce an incorrect binary. Please, if you have any issues, report them so that we can save the next person’s time.
While you’re waiting on OpenBLAS to finish building, go ahead and install build tools from Microsoft, since these take a
while to install and you’ll need them later.
After the build_openblas.sh script has completed (probably with an error), there should be an openblas.a file
somewhere on your system. If OPENBLAS_ROOTwas set to C:\\opt, then you might see a line like this in the MSYS2
terminal:
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Copying the static library to /c/opt/64/lib

Installing OpenBLAS
If you see that line, then you might have OpenBLAS correctly built, even if other failures might have occurred. Look
in that folder for openblas.a. If you find a file called something like libopenblas_5f998ef_gcc7_2_0.a,
just rename it to openblas.a and continue. If the file isn’t there, then poke around and try to find the file elsewhere in
OPENBLAS_ROOT. If you don’t have that file, you’ll probably need to find out what happened and then build OpenBLAS
again. But if you have that file, we’ll assume that you’ve completed this step correctly. Proceeding on that assumption,
let’s build SciPy.
Before continuing, make sure that you don’t have other copies of either openblas.lib or libopenblas.lib
on your computer elsewhere. Multiple copies could result in later build errors that will be difficult to debug. You
may verifiy that the openblas library was correctly picked up by looking for the following in your build log:

FOUND:
libraries = ['openblas']
library_dirs = ['C:\opt\64\lib']
language = c
define_macros = [('HAVE_CBLAS', None)]

Building SciPy
Once you have built OpenBLAS, it’s time to build SciPy. Before continuing make sure to install the following software
for building on the latest Python version. For building on other Python versions, see the WindowsCompilers page.

1) Install Microsoft Visual Studio 2015 or 2017 Community Edition (use the build tools from Microsoft)
2) Finally, install Python from https://python.org/ (make sure to check the box to install pip)

After you’ve installed the required software, open an MSYS2 terminal, change to a good location to build, and clone
SciPy.

cd C:\Users\MyUser\Downloads
git clone https://github.com/scipy/scipy.git
cd scipy

Now we need to copy the openblas.a file that we’ve built earlier to the correct location. If your Python is installed
somewhere like the following:

C:\Users\<user name>\AppData\Local\Programs\Python\Python36\python.exe

Then you’ll need to put the openblas.a file somewhere like the following:

C:\Users\<user name>\AppData\Local\Programs\Python\Python36\Lib

Adjust the location accordingly based on where python.exe is located. Now for a sanity check. Type the following
and press enter.

gfortran

If you see an error with the above command, gfortran is not correctly installed. Go back to the “Building OpenBLAS”
section and make sure that you have installed the correct tools.
Now install the dependencies that we need to build and test SciPy. It’s important that you specify the full path to
the native Python interpreter so that the built-in MSYS2 Python will not be used. Attempting to build with the
MSYS2 Python will not work correctly.
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/c/Users/<user name>/AppData/Local/Programs/Python/Python36/python.exe \
-m pip install numpy>=1.14.0 cython pytest pytest-xdist

Please note that this is a simpler procedure than what is used for the official binaries. Your binaries will only work
with the latest NumPy (v1.14.0dev and higher). For building against older NumPy versions, see Building Against an
Older NumPy Version. Make sure that you are in the same directory where setup.py is (you should be if you have not
changed directories):

ls setup.py

Assuming that you have set up everything correctly, you should be ready to build. Run the following commands:

/c/Users/<user name>/AppData/Local/Programs/Python/Python36/python.exe \
-m pip wheel -v -v -v .

/c/Users/<user name>/AppData/Local/Programs/Python/Python36/python.exe \
runtests.py --mode full

Congratulatations, you’ve built SciPy!

Building Against an Older NumPy Version

If you want to build SciPy to work with an older numpy version, then you will need to replace the NumPy “distutils” folder
with the folder from the latest numpy. The following powershell snippet can upgrade NumPy distutils while retaining an
older NumPy ABI.

$NumpyDir = $((python -c 'import os; import numpy; print(os.path.
↪→dirname(numpy.__file__))') | Out-String).Trim()
rm -r -Force "$NumpyDir\distutils"
$tmpdir = New-TemporaryFile | %{ rm $_; mkdir $_ }
git clone -q --depth=1 -b master https://github.com/numpy/numpy.git $tmpdir
mv $tmpdir\numpy\distutils $NumpyDir

Additional Resources

As discussed in the overview, this document is not meant to provide extremely detailed explanations on how to build
NumPy and SciPy on Windows. This is largely because currently, there is no single superior way to do so and because
the process for building these libraries on Windows is under development. It is likely that any information will go out of
date relatively soon. If you wish to receive more assistance, please reach out to the NumPy and SciPy mailing lists, which
can be found here. There are many developers out there, working on this issue right now, and they would certainly be
happy to help you out! Google is also a good resource, as there are many people out there who use NumPy and SciPy on
Windows, so it would not be surprising if your question or problem has already been addressed.

5.3.3 Building From Source on Mac OSX

These instructions describe how to build NumPy and SciPy libraries from source.
If you just want to use NumPy or SciPy, install pre-built binaries as described in Installing and upgrading.
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Python

Apple ships its own version of Python with OS X. However, we strongly recommend installing the official Python distri-
bution.
Alternatively, use Python from one of the OS X package managers (Homebrew, MacPorts, Fink).

Compilers (C/C++/FORTRAN/Cython)

Though virtually any commercial C/C++ compiler may be used with SciPy, OS X comes with GNU C compilers pre-
installed. The only thing missing is the GNU FORTRAN compiler.
We recommend gfortran; this is a free, open source, F95 compiler. We suggest you use the following binaries:

• gfortran installed via Homebrew, or,
• http://r.research.att.com/tools/gcc-42-5666.3-darwin11.pkg (for Xcode 4.2 or higher)

See this site for the most recent links.
Unless you are building from released source packages, the Cython compiler is also needed.

BLAS/LAPACK Installation

You will also need to install a library providing the BLAS and LAPACK interfaces. ATLAS, OpenBLAS, and MKL all
work. OpenBLAS can be installed via Homebrew.
As of SciPy version 1.2.0, we do not support compiling against the system Accelerate library for BLAS and LAPACK.
It does not support a sufficiently recent LAPACK interface.

Version-specific notes

This section notes only things specific to one version of OS X or Python. The build instructions in Obtaining and Building
NumPy and SciPy apply to all versions.

Obtaining and Building NumPy and SciPy

You may install NumPy and SciPy either by checking out the source files or downloading a source archive file from
GitHub. If you choose the latter, simply expand the archive (generally a gzipped tar file), otherwise check out the following
branches from the repository:

$ git clone https://github.com/numpy/numpy.git
$ git clone https://github.com/scipy/scipy.git

Both NumPy and SciPy are built as follows:

$ python setup.py build
$ python setup.py install

The above applies to the official Python distribution, which is 32-bit only for 2.6 while 32/64-bit bundles are available for
2.7 and 3.x. For alternative 64-bit Pythons (either from Apple or home-built) on Snow Leopard, you may need to extend
your build flags to specify the architecture by setting LDFLAGS and FFLAGS.
Note that with distutils (setup.py) given build flags like LDFLAGS do not extend but override the defaults, so you have
to specify all necessary flags. Only try this if you know what you’re doing!
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After a successful build, you may try running the built-in unit tests for SciPy:

$ python
>>> import numpy as np
>>> np.test('full')
>>> import scipy
>>> scipy.test()

Be sure not to import numpy or scipy while you’re in the numpy/scipy source tree. Change directory first.
If you have any problems installing SciPy on yourMac based on these instructions, please check the scipy-users and scipy-
dev mailing list archives for possible solutions. If you are still stuck, feel free to join scipy-users for further assistance.
Please have the following information ready:

• Your OS version
• The versions of gcc and gfortran and where you obtained gfortran

– $ gcc --version

– $ gfortran --version

• The versions of numpy and scipy that you are trying to install
• The full output of $ python setup.py build

5.4 SciPy Developer Guide

5.4.1 Decision making process

SciPy has a formal governance model, documented in SciPy project governance. The section below documents in an
informal way what happens in practice for decision making about code and commit rights. The formal governance model
is leading, the below is only provided for context.

Code

Any significant decisions on adding (or not adding) new features, breaking backwards compatibility or making other
significant changes to the codebase should be made on the scipy-dev mailing list after a discussion (preferably with full
consensus).
Any non-trivial change (where trivial means a typo, or a one-liner maintenance commit) has to go in through a pull request
(PR). It has to be reviewed by another developer. In case review doesn’t happen quickly enough and it is important that
the PR is merged quickly, the submitter of the PR should send a message to mailing list saying he/she intends to merge
that PR without review at time X for reason Y unless someone reviews it before then.
Changes and new additions should be tested. Untested code is broken code.

Commit rights

Who gets commit rights is decided by the SciPy Steering Council; changes in commit rights will then be announced on
the scipy-dev mailing list.
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5.4.2 Deciding on new features

The general decision rule to accept a proposed new feature has so far been conditional on:
1. The method is applicable in many fields and “generally agreed” to be useful,
2. Fits the topic of the submodule, and does not require extensive support frameworks to operate,
3. The implementation looks sound and unlikely to need much tweaking in the future (e.g., limited expected mainte-

nance burden), and
4. Someone wants to do it.

Although it’s difficult to give hard rules on what “generally useful and generally agreed to work” means, it may help to
weigh the following against each other:

• Is the method used/useful in different domains in practice? How much domain-specific background knowledge is
needed to use it properly?

• Consider the code already in the module. Is what you are adding an omission? Does it solve a problem that you’d
expect the module be able to solve? Does it supplement an existing feature in a significant way?

• Consider the equivalence class of similar methods / features usually expected. Among them, what would in principle
be the minimal set so that there’s not a glaring omission in the offered features remaining? How much stuff would
that be? Does including a representative one of them cover most use cases? Would it in principle sound reasonable
to include everything from the minimal set in the module?

• Is what you are adding something that is well understood in the literature? If not, how sure are you that it will turn
out well? Does the method perform well compared to other similar ones?

• Note that the twice-a-year release cycle and backward-compatibility policy makes correcting things later on more
difficult.

The scopes of the submodules also vary, so it’s probably best to consider each as if it’s a separate project - “numerical
evaluation of special functions” is relatively well-defined, but “commonly needed optimization algorithms” less so.

5.4.3 Development on GitHub

SciPy development largely takes place on GitHub; this section describes the expected way of working for issues, pull
requests and managing the main scipy repository.

Labels and Milestones

Each issue and pull request normally gets at least two labels: one for the topic or component (scipy.stats,
Documentation, etc.), and one for the nature of the issue or pull request (enhancement, maintenance,
defect, etc.). Other labels that may be added depending on the situation:

• easy-fix: for issues suitable to be tackled by new contributors.
• needs-work: for pull requests that have review comments that haven’t been addressed for a while.
• needs-decision: for issues or pull requests that need a decision.
• needs-champion: for pull requests that were not finished by the original author, but are worth resurrecting.
• backport-candidate: bugfixes that should be considered for backporting by the release manager.

A milestone is created for each version number for which a release is planned. Issues that need to be addressed and pull
requests that need to be merged for a particular release should be set to the corresponding milestone. After a pull request
is merged, its milestone (and that of the issue it closes) should be set to the next upcoming release - this makes it easy to
get an overview of changes and to add a complete list of those to the release notes.
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Dealing with pull requests

• When merging contributions, a committer is responsible for ensuring that those meet the requirements outlined in
Contributing to SciPy. Also check that new features and backwards compatibility breaks were discussed on the
scipy-dev mailing list.

• New code goes in via a pull request (PR).
• Merge new code with the green button. In case of merge conflicts, ask the PR submitter to rebase (this may require
providing some git instructions).

• Backports and trivial additions to finish a PR (really trivial, like a typo or PEP8 fix) can be pushed directly.
• For PRs that add new features or are in some way complex, wait at least a day or two before merging it. That way,
others get a chance to comment before the code goes in.

• Squashing commits or cleaning up commit messages of a PR that you consider too messy is OK. Make sure though
to retain the original author name when doing this.

• Make sure that the labels and milestone on a merged PR are set correctly.
• When you want to reject a PR: if it’s very obvious you can just close it and explain why, if not obvious then it’s a
good idea to first explain why you think the PR is not suitable for inclusion in SciPy and then let a second committer
comment or close.

Backporting

All pull requests (whether they contain enhancements, bug fixes or something else), should be made against master. Only
bug fixes are candidates for backporting to a maintenance branch. The backport strategy for SciPy is to (a) only backport
fixes that are important, and (b) to only backport when it’s reasonably sure that a new bugfix release on the relevant mainte-
nance branch will be made. Typically, the developer whomerges an important bugfix adds the backport-candidate
label and pings the release manager, who decides on whether and when the backport is done. After the backport is com-
pleted, the backport-candidate label has to be removed again.
A good strategy for a backport pull request is to combine several master branch pull requests, to reduce the burden on
continuous integration tests and to reduce the merge commit cluttering of maintenance branch history. It is generally best
to have a single commit for each of the master branch pull requests represented in the backport pull request. This way,
history is clear and can be reverted in a straightforward manner if needed.

Release notes

When a PR gets merged, consider if the changes need to be mentioned in the release notes. What needs mentioning:
new features, backwards incompatible changes, deprecations, and “other changes” (anything else noteworthy enough, see
older release notes for the kinds of things worth mentioning).
Release note entries are maintained on the wiki, (e.g. https://github.com/scipy/scipy/wiki/
Release-note-entries-for-SciPy-1.1.0). The release manager will gather content from there and integrate it into
the html docs. We use this mechanism to avoid merge conflicts that would happen if every PR touched the same file
under doc/release/ directly.
Changes can be monitored (Atom feed) and pulled (the wiki is a git repo: https://github.com/scipy/scipy.
wiki.git).
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Other

PR status page: When new commits get added to a pull request, GitHub doesn’t send out any notifications. The
needs-work label may not be justified anymore though. This page gives an overview of PRs that were updated,
need review, need a decision, etc.
Cross-referencing: Cross-referencing issues and pull requests on GitHub is often useful. GitHub allows doing that by using
gh-xxxx or #xxxx with xxxx the issue/PR number. The gh-xxxx format is strongly preferred, because it’s clear
that that is a GitHub link. Older issues contain #xxxx which is about Trac (what we used pre-GitHub) tickets.
PR naming convention: Pull requests, issues and commit messages usually start with a three-letter abbreviation like ENH:
or BUG:. This is useful to quickly see what the nature of the commit/PR/issue is. For the full list of abbreviations, see
writing the commit message.

5.4.4 Licensing

SciPy is distributed under the modified (3-clause) BSD license. All code, documentation and other files added to SciPy
by contributors is licensed under this license, unless another license is explicitly specified in the source code. Contributors
keep the copyright for code they wrote and submit for inclusion to SciPy.
Other licenses that are compatible with the modified BSD license that SciPy uses are 2-clause BSD, MIT and PSF.
Incompatible licenses are GPL, Apache and custom licenses that require attribution/citation or prohibit use for commercial
purposes.
It regularly happens that PRs are submitted with content copied or derived from unlicensed code. Such contributions
cannot be accepted for inclusion in SciPy. What is needed in such cases is to contact the original author and ask him to
relicense his code under the modified BSD (or a compatible) license. If the original author agrees to this, add a comment
saying so to the source files and forward the relevant email to the scipy-dev mailing list.
What also regularly happens is that code is translated or derived from code in R, Octave (both GPL-licensed) or a com-
mercial application. Such code also cannot be included in SciPy. Simply implementing functionality with the same API
as found in R/Octave/… is fine though, as long as the author doesn’t look at the original incompatibly-licensed source
code.

5.4.5 Version numbering

SciPy version numbering complies to PEP 440. Released final versions, which are the only versions appearing on PyPI,
are numbered MAJOR.MINOR.MICRO where:

• MAJOR is an integer indicating the major version. It changes very rarely; a change in MAJOR indicates large
(possibly backwards-incompatible) changes.

• MINOR is an integer indicating the minor version. Minor versions are typically released twice a year and can contain
new features, deprecations and bug-fixes.

• MICRO is an integer indicating a bug-fix version. Bug-fix versions are released when needed, typically one or two
per minor version. They cannot contain new features or deprecations.

Released alpha, beta and rc (release candidate) versions are numbered like final versions but with postfixes a#, b# and
rc# respectively, with # an integer. Development versions are postfixed with .dev0+<git-commit-hash>.
Examples of valid SciPy version strings are:

0.16.0
0.15.1
0.14.0a1

(continues on next page)
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(continued from previous page)
0.14.0b2
0.14.0rc1
0.17.0.dev0+ac53f09

An installed SciPy version contains these version identifiers:

scipy.__version__ # complete version string, including git commit␣
↪→hash for dev versions
scipy.version.short_version # string, only major.minor.micro
scipy.version.version # string, same as scipy.__version__
scipy.version.full_version # string, same as scipy.__version__
scipy.version.release # bool, development or (alpha/beta/rc/final)␣
↪→released version
scipy.version.git_revision # string, git commit hash from which scipy was␣
↪→built

5.4.6 Deprecations

There are various reasons for wanting to remove existing functionality: it’s buggy, the API isn’t understandable, it’s
superseded by functionality with better performance, it needs to be moved to another SciPy submodule, etc.
In general it’s not a good idea to remove something without warning users about that removal first. Therefore this is what
should be done before removing something from the public API:

1. Propose to deprecate the functionality on the scipy-dev mailing list and get agreement that that’s OK.
2. Add a DeprecationWarning for it, which states that the functionality was deprecated, and in which release.
3. Mention the deprecation in the release notes for that release.
4. Wait till at least 6 months after the release date of the release that introduced the DeprecationWarning before

removing the functionality.
5. Mention the removal of the functionality in the release notes.

The 6 months waiting period in practice usually means waiting two releases. When introducing the warning, also ensure
that those warnings are filtered out when running the test suite so they don’t pollute the output.
It’s possible that there is reason to want to ignore this deprecation policy for a particular deprecation; this can always be
discussed on the scipy-dev mailing list.

5.4.7 Distributing

Distributing Python packages is nontrivial - especially for a package with complex build requirements like SciPy - and
subject to change. For an up-to-date overview of recommended tools and techniques, see the Python Packaging User
Guide. This document discusses some of the main issues and considerations for SciPy.

Dependencies

Dependencies are things that a user has to install in order to use (or build/test) a package. They usually cause trouble,
especially if they’re not optional. SciPy tries to keep its dependencies to a minimum; currently they are:
Unconditional run-time dependencies:

• Numpy
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Conditional run-time dependencies:

• nose (to run the test suite)
• asv (to run the benchmarks)
• matplotlib (for some functions that can produce plots)
• Pillow (for image loading/saving)
• scikits.umfpack (optionally used in sparse.linalg)
• mpmath (for more extended tests in special)

Unconditional build-time dependencies:

• Numpy
• A BLAS and LAPACK implementation (reference BLAS/LAPACK, ATLAS, OpenBLAS, MKL, Accelerate are
all known to work)

• (for development versions) Cython
Conditional build-time dependencies:

• setuptools
• wheel (python setup.py bdist_wheel)
• Sphinx (docs)
• matplotlib (docs)
• LaTeX (pdf docs)
• Pillow (docs)

Furthermore of course one needs C, C++ and Fortran compilers to build SciPy, but those we don’t consider to be depen-
dencies and are therefore not discussed here. For details, see https://scipy.github.io/devdocs/building/.
When a package provides useful functionality and it’s proposed as a new dependency, consider also if it makes sense to
vendor (i.e. ship a copy of it with scipy) the package instead. For example, six and decorator are vendored in scipy.
_lib.
The only dependency that is reported to pip is Numpy, see install_requires in SciPy’s main setup.py. The
other dependencies aren’t needed for SciPy to function correctly, and the one unconditional build dependency that pip
knows how to install (Cython) we prefer to treat like a compiler rather than a Python package that pip is allowed to
upgrade.

Issues with dependency handling
There are some serious issues with how Python packaging tools handle dependencies reported by projects. Because SciPy
gets regular bug reports about this, we go in a bit of detail here.
SciPy only reports its dependency on NumPy via install_requires if NumPy isn’t installed at all on a system. This
will only change when there are either 32-bit and 64-bit Windows wheels for NumPy on PyPI or when pip upgrade
becomes available (with sane behavior, unlike pip install -U, see this PR). For more details, see this summary.
The situation with setup_requires is even worse; pip doesn’t handle that keyword at all, while setuptools has
issues (here’s a current one) and invokes easy_install which comes with its own set of problems (note that SciPy
doesn’t support easy_install at all anymore; issues specific to it will be closed as “wontfix”).
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Supported Python and NumPy versions

The Python versions that SciPy supports are listed in the list of PyPI classifiers in setup.py, and mentioned in the
release notes for each release. All newly released Python versions will be supported as soon as possible. The general
policy on dropping support for a Python version is that (a) usage of that version has to be quite low (say <5% of users)
and (b) the version isn’t included in an active long-term support release of one of the main Linux distributions anymore.
SciPy typically follows NumPy, which has a similar policy. The final decision on dropping support is always taken on the
scipy-dev mailing list.
The lowest supported Numpy version for a SciPy version is mentioned in the release notes and is encoded in scipy/
__init__.py and the install_requires field of setup.py. Typically the latest SciPy release supports 3 or 4
minor versions of NumPy. That may become more if the frequency of NumPy releases increases (it’s about 1x/year at the
time of writing). Support for a particular NumPy version is typically dropped if (a) that NumPy version is several years
old, and (b) the maintenance cost of keeping support is starting to outweigh the benefits. The final decision on dropping
support is always taken on the scipy-dev mailing list.
Supported versions of optional dependencies and compilers is less clearly documented, and also isn’t tested well or at
all by SciPy’s Continuous Integration setup. Issues regarding this are dealt with as they come up in the issue tracker or
mailing list.

Building binary installers

Note: This section is only about building SciPy binary installers to distribute. For info on building SciPy on the same
machine as where it will be used, see this scipy.org page.

There are a number of things to take into consideration when building binaries and distributing them on PyPI or elsewhere.
General

• A binary is specific for a single Python version (because different Python versions aren’t ABI-compatible, at least
up to Python 3.4).

• Build against the lowest NumPy version that you need to support, then it will work for all NumPy versions with the
same major version number (NumPy does maintain backwards ABI compatibility).

Windows
• The currently most easily available toolchain for building Python.org compatible binaries for SciPy is installing
MSVC (see https://wiki.python.org/moin/WindowsCompilers) and mingw64-gfortran. Support for this configu-
ration requires numpy.distutils from NumPy >= 1.14.dev and a gcc/gfortran-compiled static openblas.a. This
configuration is currently used in the Appveyor configuration for https://github.com/MacPython/scipy-wheels

• For 64-bit Windows installers built with a free toolchain, use the method documented at https://github.com/numpy/
numpy/wiki/Mingw-static-toolchain. That method will likely be used for SciPy itself once it’s clear that the main-
tenance of that toolchain is sustainable long-term. See the MingwPy project and this thread for details.

• The other way to produce 64-bit Windows installers is with icc, ifort plus MKL (or MSVC instead of icc). For
Intel toolchain instructions see this article and for (partial) MSVC instructions see this wiki page.

• Older SciPy releases contained a .exe “superpack” installer. Those contain 3 complete builds (no SSE, SSE2,
SSE3), and were built with https://github.com/numpy/numpy-vendor. That build setup is known to not work well
anymore and is no longer supported. It used g77 instead of gfortran, due to complex DLL distribution issues (see
gh-2829). Because the toolchain is no longer supported, g77 support isn’t needed anymore and SciPy can now
include Fortran 90/95 code.

OS X
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• To produce OS X wheels that work with various Python versions (from python.org, Homebrew, MacPython), use
the build method provided by https://github.com/MacPython/scipy-wheels.

• DMG installers for the Python from python.org on OS X can still be produced by tools/
scipy-macosx-installer/. SciPy doesn’t distribute those installers anymore though, now that there are
binary wheels on PyPi.

Linux
• PyPi-compatible Linux wheels can be produced via the manylinux project. The corresponding build setup for
TravisCI for SciPy is set up in https://github.com/MacPython/scipy-wheels.

Other Linux build-setups result to PyPi incompatible wheels, which would need to be distributed via custom channels,
e.g. in a Wheelhouse, see at the wheel and Wheelhouse docs.

5.4.8 Making a SciPy release

At the highest level, this is what the release manager does to release a new SciPy version:
1. Propose a release schedule on the scipy-dev mailing list.
2. Create the maintenance branch for the release.
3. Tag the release.
4. Build all release artifacts (sources, installers, docs).
5. Upload the release artifacts.
6. Announce the release.
7. Port relevant changes to release notes and build scripts to master.

In this guide we attempt to describe in detail how to perform each of the above steps. In addition to those steps, which
have to be performed by the release manager, here are descriptions of release-related activities and conventions of interest:

• Backporting

• Labels and Milestones

• Version numbering

• Supported Python and NumPy versions

• Deprecations

Proposing a release schedule

A typical release cycle looks like:
• Create the maintenance branch
• Release a beta version
• Release a “release candidate” (RC)
• If needed, release one or more new RCs
• Release the final version once there are no issues with the last release candidate

There’s usually at least one week between each of the above steps. Experience shows that a cycle takes between 4 and 8
weeks for a new minor version. Bug-fix versions don’t need a beta or RC, and can be done much quicker.
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Ideally the final release is identical to the last RC, however there may be minor difference - it’s up to the release manager
to judge the risk of that. Typically, if compiled code or complex pure Python code changes then a new RC is needed,
while a simple bug-fix that’s backported from master doesn’t require a new RC.
To propose a schedule, send a list with estimated dates for branching and beta/rc/final releases to scipy-dev. In the
same email, ask everyone to check if there are important issues/PRs that need to be included and aren’t tagged with the
Milestone for the release or the “backport-candidate” label.

Creating the maintenance branch

Before branching, ensure that the release notes are updated as far as possible. Include the output of tools/gh_lists.
py and tools/authors.py in the release notes.
Maintenance branches are named maintenance/<major>.<minor>.x (e.g. 0.19.x). To create one, simply push
a branch with the correct name to the scipy repo. Immediately after, push a commit where you increment the version
number on the master branch and add release notes for that new version. Send an email to scipy-dev to let people know
that you’ve done this.

Tagging a release

First ensure that you have set up GPG correctly. See https://github.com/scipy/scipy/issues/4919 for a discussion of
signing release tags, and https://keyring.debian.org/creating-key.html for instructions on creating a GPG key if you do
not have one.
To make your key more readily identifiable as you, consider sending your key to public keyservers, with a command such
as:

gpg --send-keys <yourkeyid>

Check that all relevant commits are in the branch. In particular, check issues and PRs under the Milestone for the release
(https://github.com/scipy/scipy/milestones), PRs labeled “backport-candidate”, and that the release notes are up-to-date
and included in the html docs.
Then edit setup.py to get the correct version number (set ISRELEASED = True) and commit it with a message
like REL: set version to <version-number>. Don’t push this commit to the SciPy repo yet.
Finally tag the release locally with git tag -s <v1.x.y> (the -s ensures the tag is signed). Continue with building
release artifacts (next section). Only push the release commit to the scipy repo once you have built the sdists and docs
successfully. Then continue with building wheels. Only push the release tag to the repo once all wheels have been built
successfully on TravisCI and Appveyor (if it fails, you have to move the tag otherwise - which is bad practice). Finally,
after pushing the tag, also push a second commit which increments the version number and sets ISRELEASED to False
again. This also applies with new release candidates, and for removing the rc affix when switching from release candidate
to release proper.

Building release artifacts

Here is a complete list of artifacts created for a release:
• source archives (.tar.gz, .zip and .tar.xz for GitHub Releases, only .tar.gz is uploaded to PyPI)
• Binary wheels for Windows, Linx and OS X
• Documentation (html, pdf)
• A README file
• A Changelog file
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Source archives, Changelog and README are built by running paver release in the repo root, and end up in
REPO_ROOT/release/. Do this after you’ve created the signed tag locally. paver release will be sensitive to
the version of Cython available in your build environment, so make sure your version matches the minimum requirements
for the release. If this completes without issues, push the release commit (not the tag, see section above) to the scipy
repo. If pavement.py is causing issues, it is also possible to simply use python setup.py sdist and perform
the release notes task from pavement.py by hand.
To build wheels, push a commit to a branch used for the current release at https://github.com/MacPython/scipy-wheels .
This triggers builds for all needed Python versions on TravisCI. Update and check the .travis.yml and appveyor.
yml config files what commit to build, and what Python and NumPy are used for the builds (it needs to be the lowest
supported NumPy version for each Python version). See the README file in the scipy-wheels repo for more details.
Note that because several months may pass between SciPy releases, it is sometimes necessary to update the versions of
the gfortran-install and multibuild submodules used for wheel builds. If the wheels builds reveal issues that
need to be fixed with backports on the maintenance branch, you may remove the local tags (for example git tag -d
v1.2.0rc1) and restart with tagging above on the new candidate commit.
The TravisCI and Appveyor builds run the tests from the built wheels and if they pass, upload the wheels to a container
pointed to at https://github.com/MacPython/scipy-wheels Once there are successful wheel builds, it is recommended
to create a versioned branch in the scipy-wheels repo, which will for example be adjusted to point to different
maintenance branch commits if there are multiple release candidates.
From there you can download them for uploading to PyPI. This can be done in an automated fashion with terryfy (note
the -n switch which makes it only download the wheels and skip the upload to PyPI step - we want to be able to check the
wheels and put their checksums into README first):

$ python wheel-uploader -n -v -c -u https://3f23b170c54c2533c070-
↪→1c8a9b3114517dc5fe17b7c3f8c63a43.ssl.cf2.rackcdn.com -w REPO_ROOT/release/
↪→installers -t win scipy 0.19.0
$ python wheel-uploader -n -v -c -u https://3f23b170c54c2533c070-
↪→1c8a9b3114517dc5fe17b7c3f8c63a43.ssl.cf2.rackcdn.com -w REPO_ROOT/release/
↪→installers -t macosx scipy 0.19.0
$ python wheel-uploader -n -v -c -u https://3f23b170c54c2533c070-
↪→1c8a9b3114517dc5fe17b7c3f8c63a43.ssl.cf2.rackcdn.com -w REPO_ROOT/release/
↪→installers -t manylinux1 scipy 0.19.0

The correct URL to use is shown in https://github.com/MacPython/scipy-wheels and should agree with the above one.
After this, we want to regenerate the README file, in order to have the MD5 and SHA256 checksums of the just
downloaded wheels in it. Run:

$ paver write_release_and_log

Uploading release artifacts

For a release there are currently five places on the web to upload things to:
• PyPI (tarballs, wheels)
• Github releases (tarballs, release notes, Changelog)
• scipy.org (an announcement of the release)
• docs.scipy.org (html/pdf docs)

PyPI:
Upload first the wheels and then the sdist:
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twine upload -s REPO_ROOT/release/installers/*.whl
twine upload -s REPO_ROOT/release/installers/scipy-1.x.y.tar.gz

Github Releases:
Use GUI on https://github.com/scipy/scipy/releases to create release and upload all release artifacts. At this stage, it is
appropriate to push the tag and associate the new release (candidate) with this tag in the GUI. For example, git push
upstream v1.2.0rc1, where upstream represents scipy/scipy. It is useful to check a previous release to
determine exactly which artifacts should be included in the GUI upload process. Also, note that the release notes are not
automatically populated into the release description on GitHub, and some manual reformatting to markdown can be quite
helpful to match the formatting of previous releases on the site. We generally do not include Issue and Pull Request lists
in these GUI descriptions.
scipy.org:
Sources for the site are in https://github.com/scipy/scipy.org. Update the News section in www/index.rst and then
do make upload USERNAME=yourusername. This is only for proper releases, not release candidates.
docs.scipy.org:
First build the scipy docs, by running make dist in scipy/doc/. Verify that they look OK, then upload them to
the doc server with make upload USERNAME=rgommers RELEASE=0.19.0. Note that SSH access to the doc
server is needed; ask @pv (server admin) or @rgommers (can upload) if you don’t have that.
The sources for the website itself are maintained in https://github.com/scipy/docs.scipy.org/. Add the new SciPy version
in the table of releases in index.rst. Push that commit, then do make upload USERNAME=yourusername.
This is only for proper releases, not release candidates.

Wrapping up

Send an email announcing the release to the following mailing lists:
• scipy-dev
• numpy-discussion
• python-announce (not for beta/rc releases)

For beta and rc versions, ask people in the email to test (run the scipy tests and test against their own code) and report
issues on Github or scipy-dev.
After the final release is done, port relevant changes to release notes, build scripts, author name mapping in tools/
authors.py and any other changes that were only made on the maintenance branch to master.

5.4.9 Module-Specific Instructions

Some SciPy modules have specific development workflows that it is useful to be aware of while contributing.

scipy.special

Many of the functions in special are vectorized versions of scalar functions. The scalar functions are written by hand
and the necessary loops for vectorization are generated automatically. This section discusses the steps necessary to add a
new vectorized special function.
The first step in adding a new vectorized function is writing the corresponding scalar function. This can be done in Cython,
C, C++, or Fortran. If starting from scratch then Cython should be preferred because the code is easier to maintain for
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developers only familiar with Python. If the primary code is in Fortran then it is necessary to write a C wrapper around
the code; for examples of such wrappers see specfun_wrappers.c.
After implementing the scalar function, register the new function by adding a line to the FUNC string in
generate_ufuncs.py. The docstring for that file explains the format. Also add documentation for the new function
by adding an entry to add_newdocs.py; look in the file for examples.

5.5 SciPy project governance

The purpose of this document is to formalize the governance process used by the SciPy project in both ordinary and
extraordinary situations, and to clarify how decisions are made and how the various elements of our community interact,
including the relationship between open source collaborative development and work that may be funded by for-profit or
non-profit entities.

5.5.1 The Project

The SciPy Project (The Project) is an open source software project. The goal of The Project is to develop open source
software for scientific computing in Python, and in particular the scipy package. The Software developed by The Project
is released under the BSD (or similar) open source license, developed openly and hosted on public GitHub repositories
under the scipy GitHub organization.
The Project is developed by a team of distributed developers, called Contributors. Contributors are individuals who have
contributed code, documentation, designs or other work to the Project. Anyone can be a Contributor. Contributors can
be affiliated with any legal entity or none. Contributors participate in the project by submitting, reviewing and discussing
GitHub Pull Requests and Issues and participating in open and public Project discussions on GitHub, mailing lists, and
other channels. The foundation of Project participation is openness and transparency.
The Project Community consists of all Contributors and Users of the Project. Contributors work on behalf of and are
responsible to the larger Project Community and we strive to keep the barrier between Contributors and Users as low as
possible.
The Project is not a legal entity, nor does it currently have any formal relationships with legal entities.

5.5.2 Governance

This section describes the governance and leadership model of The Project.
The foundations of Project governance are:

• Openness & Transparency
• Active Contribution
• Institutional Neutrality

Traditionally, Project leadership was provided by a subset of Contributors, called Core Developers, whose active and
consistent contributions have been recognized by their receiving “commit rights” to the Project GitHub repositories. In
general all Project decisions are made through consensus among the Core Developers with input from the Community.
While this approach has served us well, as the Project grows we see a need for a more formal governance model. The
SciPy Core Developers expressed a preference for a leadership model which includes a BDFL (Benevolent Dictator for
Life). Therefore, moving forward The Project leadership will consist of a BDFL and Steering Council.
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BDFL

The Project will have a BDFL (Benevolent Dictator for Life), who is currently Pauli Virtanen. As Dictator, the BDFL
has the authority to make all final decisions for The Project. As Benevolent, the BDFL, in practice chooses to defer that
authority to the consensus of the community discussion channels and the Steering Council (see below). It is expected, and
in the past has been the case, that the BDFL will only rarely assert his/her final authority. Because rarely used, we refer
to BDFL’s final authority as a “special” or “overriding” vote. When it does occur, the BDFL override typically happens in
situations where there is a deadlock in the Steering Council or if the Steering Council asks the BDFL to make a decision
on a specific matter. To ensure the benevolence of the BDFL, The Project encourages others to fork the project if they
disagree with the overall direction the BDFL is taking. The BDFL may delegate his/her authority on a particular decision
or set of decisions to any other Council member at his/her discretion.
The BDFL can appoint his/her successor, but it is expected that the Steering Council would be consulted on this decision.
If the BDFL is unable to appoint a successor, the Steering Council will make this decision - preferably by consensus, but
if needed by a majority vote.
Note that the BDFL can step down at any time, and acting in good faith, will also listen to serious calls to do so. Also
note that the BDFL is more a role for fallback decision making rather than that of a director/CEO.

Steering Council

The Project will have a Steering Council that consists of Project Contributors who have produced contributions that are
substantial in quality and quantity, and sustained over at least one year. The overall role of the Council is to ensure,
through working with the BDFL and taking input from the Community, the long-term well-being of the project, both
technically and as a community.
The Council will have a Chair, who is tasked with keeping the organisational aspects of the functioning of the Council
and the Project on track. The Council will also appoint a Release Manager for the Project, who has final responsibility
for one or more releases.
During the everyday project activities, council members participate in all discussions, code review and other project
activities as peers with all other Contributors and the Community. In these everyday activities, Council Members do not
have any special power or privilege through their membership on the Council. However, it is expected that because of the
quality and quantity of their contributions and their expert knowledge of the Project Software and Services that Council
Members will provide useful guidance, both technical and in terms of project direction, to potentially less experienced
contributors.
The Steering Council and its Members play a special role in certain situations. In particular, the Council may:

• Make decisions about the overall scope, vision and direction of the project.
• Make decisions about strategic collaborations with other organizations or individuals.
• Make decisions about specific technical issues, features, bugs and pull requests. They are the primary mechanism
of guiding the code review process and merging pull requests.

• Make decisions about the Services that are run by The Project and manage those Services for the benefit of the
Project and Community.

• Make decisions when regular community discussion does not produce consensus on an issue in a reasonable time
frame.

• Update policy documents such as this one.

Council membership
To become eligible for being a Steering Council Member an individual must be a Project Contributor who has produced
contributions that are substantial in quality and quantity, and sustained over at least one year. Potential Council Members
are nominated by existing Council members and voted upon by the existing Council after asking if the potential Member
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is interested and willing to serve in that capacity. The Council will be initially formed from the set of existing Core
Developers who, as of January 2017, have been significantly active over the last two years.
When considering potential Members, the Council will look at candidates with a comprehensive view of their contribu-
tions. This will include but is not limited to code, code review, infrastructure work, mailing list and chat participation,
community help/building, education and outreach, design work, etc. We are deliberately not setting arbitrary quantitative
metrics (like “100 commits in this repo”) to avoid encouraging behavior that plays to the metrics rather than the project’s
overall well-being. We want to encourage a diverse array of backgrounds, viewpoints and talents in our team, which is
why we explicitly do not define code as the sole metric on which council membership will be evaluated.
If a Council member becomes inactive in the project for a period of one year, they will be considered for removal from
the Council. Before removal, inactive Member will be approached to see if they plan on returning to active participation.
If not they will be removed immediately upon a Council vote. If they plan on returning to active participation soon, they
will be given a grace period of one year. If they don’t return to active participation within that time period they will
be removed by vote of the Council without further grace period. All former Council members can be considered for
membership again at any time in the future, like any other Project Contributor. Retired Council members will be listed
on the project website, acknowledging the period during which they were active in the Council.
The Council reserves the right to eject current Members, other than the BDFL, if they are deemed to be actively harmful
to the project’s well-being, and attempts at communication and conflict resolution have failed.
A list of current Steering Council Members is maintained at the page governance-people.

Council Chair
The Chair will be appointed by the Steering Council. The Chair can stay on as long as he/she wants, but may step down
at any time and will listen to serious calls to do so (similar to the BDFL role). The Chair will be responsible for:

• Starting a review of the technical direction of the project (as captured by the SciPy Roadmap) bi-yearly, around
mid-April and mid-October.

• At the same times of the year, summarizing any relevant organisational updates and issues in the preceding period,
and asking for feedback/suggestions on the mailing list.

• Ensuring the composition of the Steering Council stays current.
• Ensuring matters discussed in private by the Steering Council get summarized on the mailing list to keep the
Community informed.

• Ensuring other important organisational documents (e.g. Code of Conduct, Fiscal Sponsorship Agreement) stay
current after they are added.

Release Manager
The Release Manager has final responsibility for making a release. This includes:

• Proposing of and deciding on the timing of a release.
• Determining the content of a release in case there is no consensus on a particular change or feature.
• Creating the release and announcing it on the relevant public channels.

For more details on what those responsibilities look like in practice, see Making a SciPy release.

Conflict of interest
It is expected that the BDFL and Council Members will be employed at a wide range of companies, universities and non-
profit organizations. Because of this, it is possible that Members will have conflict of interests. Such conflict of interests
include, but are not limited to:

• Financial interests, such as investments, employment or contracting work, outside of The Project that may influence
their work on The Project.
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• Access to proprietary information of their employer that could potentially leak into their work with the Project.
All members of the Council, BDFL included, shall disclose to the rest of the Council any conflict of interest they may
have. Members with a conflict of interest in a particular issue may participate in Council discussions on that issue, but
must recuse themselves from voting on the issue. If the BDFL has recused his/herself for a particular decision, the Council
will appoint a substitute BDFL for that decision.

Private communications of the Council
Unless specifically required, all Council discussions and activities will be public and done in collaboration and discussion
with the Project Contributors and Community. The Council will have a private mailing list that will be used sparingly
and only when a specific matter requires privacy. When private communications and decisions are needed, the Council
will do its best to summarize those to the Community after removing personal/private/sensitive information that should
not be posted to the public internet.

Council decision making
If it becomes necessary for the Steering Council to produce a formal decision, then they will use a form of the Apache
Foundation voting process. This is a formalized version of consensus, in which +1 votes indicate agreement, -1 votes are
vetoes (and must be accompanied with a rationale, as above), and one can also vote fractionally (e.g. -0.5, +0.5) if one
wishes to express an opinion without registering a full veto. These numeric votes are also often used informally as a way
of getting a general sense of people’s feelings on some issue, and should not normally be taken as formal votes. A formal
vote only occurs if explicitly declared, and if this does occur then the vote should be held open for long enough to give all
interested Council Members a chance to respond – at least one week.
In practice, we anticipate that for most Steering Council decisions (e.g., voting in new members) a more informal process
will suffice.

5.5.3 Institutional Partners and Funding

The Steering Council is the primary leadership for the project. No outside institution, individual or legal entity has
the ability to own, control, usurp or influence the project other than by participating in the Project as Contributors and
Council Members. However, because institutions can be an important funding mechanism for the project, it is important
to formally acknowledge institutional participation in the project. These are Institutional Partners.
An Institutional Contributor is any individual Project Contributor who contributes to the project as part of their official
duties at an Institutional Partner. Likewise, an Institutional Council Member is any Project Steering Council Member
who contributes to the project as part of their official duties at an Institutional Partner.
With these definitions, an Institutional Partner is any recognized legal entity in any country that employs at least 1 Insti-
tutional Contributor or Institutional Council Member. Institutional Partners can be for-profit or non-profit entities.
Institutions become eligible to become an Institutional Partner by employing individuals who actively contribute to The
Project as part of their official duties. To state this another way, the only way for a Partner to influence the project is
by actively contributing to the open development of the project, in equal terms to any other member of the community
of Contributors and Council Members. Merely using Project Software in institutional context does not allow an entity
to become an Institutional Partner. Financial gifts do not enable an entity to become an Institutional Partner. Once an
institution becomes eligible for Institutional Partnership, the Steering Council must nominate and approve the Partnership.
If at some point an existing Institutional Partner stops having any contributing employees, then a one year grace period
commences. If at the end of this one year period they continue not to have any contributing employees, then their
Institutional Partnership will lapse, and resuming it will require going through the normal process for new Partnerships.
An Institutional Partner is free to pursue funding for their work on The Project through any legal means. This could involve
a non-profit organization raising money from private foundations and donors or a for-profit company building proprietary
products and services that leverage Project Software and Services. Funding acquired by Institutional Partners to work on
The Project is called Institutional Funding. However, no funding obtained by an Institutional Partner can override the
Steering Council. If a Partner has funding to do SciPy work and the Council decides to not pursue that work as a project,
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the Partner is free to pursue it on their own. However in this situation, that part of the Partner’s work will not be under
the SciPy umbrella and cannot use the Project trademarks in a way that suggests a formal relationship.
Institutional Partner benefits are:

• Acknowledgement on the SciPy website and in talks.
• Ability to acknowledge their own funding sources on the SciPy website and in talks.
• Ability to influence the project through the participation of their Council Member.
• Council Members invited to SciPy Developer Meetings.

A list of current Institutional Partners is maintained at the page governance-people.

5.5.4 Document history

https://github.com/scipy/scipy/commits/master/doc/source/dev/governance/governance.rst

5.5.5 Acknowledgements

Substantial portions of this document were adapted from the Jupyter/IPython project’s governance document andNumPy’s
governance document.

5.5.6 License

To the extent possible under law, the authors have waived all copyright and related or neighboring rights to the SciPy
project governance document, as per the CC-0 public domain dedication / license.
To get an overview of where help or new features are desired or planned, see the roadmap:

5.6 SciPy Roadmap

This roadmap page contains only the most important ideas and needs for SciPy going forward. For a more detailed
roadmap, including per-submodule status, many more ideas, API stability and more, see Detailed SciPy Roadmap.

5.6.1 Evolve BLAS and LAPACK support

The Python and Cython interfaces to BLAS and LAPACK in scipy.linalg are one of the most important things
that SciPy provides. In general scipy.linalg is in good shape, however we can make a number of improvements:
1. Library support. Our released wheels now ship with OpenBLAS, which is currently the only feasible performant option
(ATLAS is too slow, MKL cannot be the default due to licensing issues, Accelerate support is dropped because Apple
doesn’t update Accelerate anymore). OpenBLAS isn’t very stable though, sometimes its releases break things and it has
issues with threading (currently the only issue for using SciPy with PyPy3). We need at the very least better support for
debugging OpenBLAS issues, and better documentation on how to build SciPy with it. An option is to use BLIS for a
BLAS interface (see numpy gh-7372).
2. Support for newer LAPACK features. In SciPy 1.2.0 we increased the minimum supported version of LAPACK to
3.4.0. Now that we dropped Python 2.7, we can increase that version further (MKL + Python 2.7 was the blocker for
>3.4.0 previously) and start adding support for new features in LAPACK.
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5.6.2 Implement sparse arrays in addition to sparse matrices

The sparse matrix formats are mostly feature-complete, however the main issue is that they act like numpy.matrix
(which will be deprecated in NumPy at some point). What we want is sparse arrays that act like numpy.ndarray.
This is being worked on in https://github.com/pydata/sparse, which is quite far along. The tentative plan is:

• Start depending on pydata/sparse once it’s feature-complete enough (it still needs a CSC/CSR equivalent)
and okay performance-wise.

• Add support for pydata/sparse to scipy.sparse.linalg (and perhaps to scipy.sparse.
csgraph after that).

• Indicate in the documentation that for new code users should prefer pydata/sparse over sparse matrices.
• When NumPy deprecates numpy.matrix, vendor that or maintain it as a stand-alone package.

5.6.3 Fourier transform enhancements

We want to integrate PocketFFT into scipy.fftpack for significant performance improvements (see this NumPy PR
for details), add a backend system to support PyFFTW and mkl-fft, and align the function signatures of numpy.fft
and scipy.fftpack.

5.6.4 Support for distributed arrays and GPU arrays

NumPy is splitting its API from its execution engine with __array_function__ and __array_ufunc__. This
will enable parts of SciPy to accept distributed arrays (e.g. dask.array.Array) and GPU arrays (e.g. cupy.
ndarray) that implement the ndarray interface. At the moment it is not yet clear which algorithms will work out
of the box, and if there are significant performance gains when they do. We want to create a map of which parts of the
SciPy API work, and improve support over time.
In addition to making use of NumPy protocols like __array_function__, we can make use of these protocols in
SciPy as well. That will make it possible to (re)implement SciPy functions like, e.g., those in scipy.signal for Dask
or GPU arrays (see NEP 18 - use outside of NumPy).

5.6.5 Improve source builds on Windows

SciPy critically relies on Fortran code. This is still problematic on Windows. There are currently only two options: using
Intel Fortran, or using MSVC + gfortran. The former is expensive, while the latter works (it’s what we use for releases)
but is quite hard to do correctly. For allowing contributors and end users to reliably build SciPy on Windows, using the
Flang compiler looks like the best way forward long-term. Until Flang support materializes, we need to streamline and
better document the MSVC + gfortran build.

5.6.6 Improve benchmark system for optimize

scipy.optimize has an extensive set of benchmarks for accuracy and speed of the global optimizers. That has
allowed adding new optimizers (shgo and dual_annealing) with significantly better performance than the existing
ones. The optimize benchmark system itself is slow and hard to use however; we need to make it faster and make it
easier to compare performance of optimizers via plotting performance profiles.
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5.6.7 Linear programming enhancements

Recently all known issues with optimize.linprog have been solved. Now we have many ideas for additional func-
tionality (e.g. integer constraints, sparse matrix support, performance improvements), see gh-9269.

5.7 Detailed SciPy Roadmap

Most of this roadmap is intended to provide a high-level view on what is most needed per SciPy submodule in terms of
new functionality, bug fixes, etc. Besides important “business as usual” changes, it contains ideas for major new features
- those are marked as such, and are expected to take significant dedicated effort. Things not mentioned in this roadmap
are not necessarily unimportant or out of scope, however we (the SciPy developers) want to provide to our users and
contributors a clear picture of where SciPy is going and where help is needed most.

Note: This is the detailed roadmap. A very high-level overview with only the most important ideas is SciPy Roadmap.

5.7.1 General

This roadmap will be evolving together with SciPy. Updates can be submitted as pull requests. For large or disruptive
changes you may want to discuss those first on the scipy-dev mailing list.

API changes

In general, we want to evolve the API to remove known warts as much as possible, however as much as possible without
breaking backwards compatibility.
Also, it should be made (even) more clear what is public and what is private in SciPy. Everything private should be named
starting with an underscore as much as possible.

Test coverage

Test coverage of code added in the last few years is quite good, and we aim for a high coverage for all new code that is
added. However, there is still a significant amount of old code for which coverage is poor. Bringing that up to the current
standard is probably not realistic, but we should plug the biggest holes.
Besides coverage there is also the issue of correctness - older code may have a few tests that provide decent statement
coverage, but that doesn’t necessarily say much about whether the code does what it says on the box. Therefore code
review of some parts of the code (stats, signal and ndimage in particular) is necessary.

Documentation

The documentation is in good shape. Expanding of current docstrings and putting them in the standard NumPy format
should continue, so the number of reST errors and glitches in the html docs decreases. Most modules also have a tutorial
in the reference guide that is a good introduction, however there are a few missing or incomplete tutorials - this should be
fixed.
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Benchmarks

The asv-based benchmark system is in reasonable shape. It is quite easy to add new benchmarks, however running the
benchmarks is not very intuitive. Making this easier is a priority. In addition, we should run them in our CI (gh-8779 is
an ongoing attempt at this).

Other

Regarding Cython code:
• It’s not clear how much functionality can be Cythonized without making the .so files too large. This needs measur-
ing.

• Cython’s old syntax for using NumPy arrays should be removed and replaced with Cython memoryviews.
Regarding build environments:

• SciPy builds from source on Windows now with a MSVC +MinGW-w64 gfortran toolchain, which we’re using for
official releases. MSVC + Intel Fortran + MKL works as well, and is easier for users (as long as they have access
to ifort and MKL of course). This mainly needs better documentation at the moment.

• We’re aiming to gradually increase theminimum version of LAPACK that is required, so we can use newer features.
Support for Accelerate on macOS has been dropped. We do rely quite heavily on OpenBLAS, and its stability is
a worry (often only one of the recent releases works without test failures) - improvements in testing and build
documentation at least are needed.

Continuous integration is in good shape, it covers Windows, macOS and Linux, as well as a range of versions of our
dependencies and building release quality wheels.

5.7.2 Modules

cluster

This module is in good shape.

constants

This module is basically done, low-maintenance and without open issues.

fftpack

We aim to follow NumPy in adopting pocketfft (see this NumPy PR). That will address a number of maintenance
issues, and increase performance (both accuracy and speed). Of particular interest regarding performance is the Bluestein
algorithm (or chirp Z-transform), which we have been wanting to add to fftpack for a long time.
We probably want to deprecate fftpack.convolve as public function (it was not meant to be public).
There’s a large overlap with numpy.fft. This duplication has to change (both are too widely used to deprecate one); in
the documentation we should make clear that scipy.fftpack is preferred over numpy.fft. If there are differences
in signature or functionality, the best version should be picked case by case (example: numpy’s rfft is preferred, see
gh-2487).
Ideas for new features:
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• Add a backend/plugin system. At the moment pyFFTW is monkeypatching SciPy, and mkl_fft provides
fftpack-compatible functions as well. We should provide a method to support such packages.

integrate

Needed for ODE solvers:
• Documentation is pretty bad, needs fixing
• A new ODE solver interface (solve_ivp) was added in SciPy 1.0.0. In the future we can consider (soft-
)deprecating the older API.

The numerical integration functions are in good shape. Support for integrating complex-valued functions and integrating
multiple intervals (see gh-3325) could be added.

interpolate

Ideas for new features:
• Spline fitting routines with better user control.
• Transparent tensor-product splines.
• NURBS support.
• Mesh refinement and coarsening of B-splines and corresponding tensor products.

io

wavfile;
• PCM float will be supported, for anything else use audiolab or other specialized libraries.
• Raise errors instead of warnings if data not understood.

Other sub-modules (matlab, netcdf, idl, harwell-boeing, arff, matrix market) are in good shape.

linalg

scipy.linalg is in good shape. We have started requiring more recent LAPACK versions (minimum version in-
creases from 3.1.0 to 3.4.0 in SciPy 1.2.0); we want to add support for newer features in LAPACK.
Needed:

• Reduce duplication of functions with numpy.linalg, make APIs consistent.
• get_lapack_funcs should always use flapack
• Wrap more LAPACK functions
• One too many funcs for LU decomposition, remove one

Ideas for new features:
• Add type-generic wrappers in the Cython BLAS and LAPACK
• Make many of the linear algebra routines into gufuncs
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misc

scipy.misc will be removed as a public module. Most functions in it have been moved to another submodule or
deprecated. The few that are left:

• info, who : these are NumPy functions
• derivative, central_diff_weight : remove, possibly replacing them with more extensive functionality
for numerical differentiation.

ndimage

Underlying ndimage is a powerful interpolation engine. Users come with an expectation of one of two models: a pixel
model with (1, 1) elements having centers (0.5, 0.5), or a data point model, where values are defined at points
on a grid. Over time, we’ve become convinced that the data point model is better defined and easier to implement, but
this should be clearly communicated in the documentation.
More importantly, still, SciPy implements one variant of this data point model, where datapoints at any two extremes of
an axis share a spatial location under periodic wrapping mode. E.g., in a 1D array, you would have x[0] and x[-1]
co-located. A very common use-case, however, is for signals to be periodic, with equal spacing between the first and
last element along an axis (instead of zero spacing). Wrapping modes for this use-case were added in gh-8537, next
the interpolation routines should be updated to use those modes. This should address several issues, including gh-1323,
gh-1903, gh-2045 and gh-2640.
The morphology interface needs to be standardized:

• binary dilation/erosion/opening/closing take a “structure” argument, whereas their grey equivalent take size (has to
be a tuple, not a scalar), footprint, or structure.

• a scalar should be acceptable for size, equivalent to providing that same value for each axis.
• for binary dilation/erosion/opening/closing, the structuring element is optional, whereas it’s mandatory for grey.
Grey morphology operations should get the same default.

• other filters should also take that default value where possible.

odr

This module is in reasonable shape, although it could use a bit more maintenance. No major plans or wishes here.

optimize

Overall this module is in good shape. Two good global optimizers were added in 1.2.0; large-scale optimizers is still a
gap that could be filled. Other things that are needed:

• Many ideas for additional functionality (e.g. integer constraints, sparse matrix support, performance improvements)
in linprog, see gh-9269.

• Add functionality to the benchmark suite to compare results more easily (e.g. with summary plots).
• deprecate the fmin_* functions in the documentation, minimize is preferred.
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signal

Convolution and correlation: (Relevant functions are convolve, correlate, fftconvolve, convolve2d, correlate2d, and sep-
fir2d.) Eliminate the overlap with ndimage (and elsewhere). From numpy, scipy.signal and scipy.ndimage
(and anywhere else we find them), pick the “best of class” for 1-D, 2-D and n-d convolution and correlation, put the
implementation somewhere, and use that consistently throughout SciPy.
B-splines: (Relevant functions are bspline, cubic, quadratic, gauss_spline, cspline1d, qspline1d, cspline2d, qspline2d,
cspline1d_eval, and spline_filter.) Move the good stuff to interpolate (with appropriate API changes to match how things
are done in interpolate), and eliminate any duplication.
Filter design: merge firwin and firwin2 so firwin2 can be removed.
Continuous-Time Linear Systems: remove lsim2, impulse2, step2. The lsim, impulse and step functions now “just work”
for any input system. Further improve the performance of ltisys (fewer internal transformations between different
representations). Fill gaps in lti system conversion functions.
Second Order Sections: Make SOS filtering equally capable as existing methods. This includes ltisys objects, an lfiltic
equivalent, and numerically stable conversions to and from other filter representations. SOS filters could be considered as
the default filtering method for ltisys objects, for their numerical stability.
Wavelets: what’s there now doesn’t make much sense. Continuous wavelets only at the moment - decide whether to
completely rewrite or remove them. Discrete wavelet transforms are out of scope (PyWavelets does a good job for those).

sparse

The sparse matrix formats are mostly feature-complete, however the main issue is that they act like numpy.matrix
(which will be deprecated in NumPy at some point). What we want is sparse arrays, that act like numpy.ndarray.
This is being worked on in https://github.com/pydata/sparse, which is quite far along. The tentative plan is:

• Start depending on pydata/sparse once it’s feature-complete enough (it still needs a CSC/CSR equivalent)
and okay performance-wise.

• Add support for pydata/sparse to scipy.sparse.linalg (and perhaps to scipy.sparse.
csgraph after that).

• Indicate in the documentation that for new code users should prefer pydata/sparse over sparse matrices.
• When NumPy deprecates numpy.matrix, vendor that or maintain it as a stand-alone package.

Regarding the different sparse matrix formats: there are a lot of them. These should be kept, but improve-
ments/optimizations should go into CSR/CSC, which are the preferred formats. LIL may be the exception, it’s inherently
inefficient. It could be dropped if DOK is extended to support all the operations LIL currently provides.

sparse.csgraph

This module is in good shape.

sparse.linalg

Arpack is in good shape.
isolve:

• callback keyword is inconsistent
• tol keyword is broken, should be relative tol
• Fortran code not re-entrant (but we don’t solve, maybe re-use from PyKrilov)
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dsolve:
• add sparse Cholesky or incomplete Cholesky
• look at CHOLMOD

Ideas for new features:
• Wrappers for PROPACK for faster sparse SVD computation.

spatial

QHull wrappers are in good shape, as is cKDTree.
Needed:

• KDTree will be removed, and cKDTree will be renamed to KDTree in a backwards-compatible way.
• distance_wrap.c needs to be cleaned up (maybe rewrite in Cython).

special

Though there are still a lot of functions that need improvements in precision, probably the only show-stoppers are hyper-
geometric functions, parabolic cylinder functions, and spheroidal wave functions. Three possible ways to handle this:

1. Get good double-precision implementations. This is doable for parabolic cylinder functions (in progress). I think
it’s possible for hypergeometric functions, though maybe not in time. For spheroidal wavefunctions this is not
possible with current theory.

2. Port Boost’s arbitrary precision library and use it under the hood to get double precision accuracy. This might
be necessary as a stopgap measure for hypergeometric functions; the idea of using arbitrary precision has been
suggested before by @nmayorov and in gh-5349. Likely necessary for spheroidal wave functions, this could be
reused: https://github.com/radelman/scattering.

3. Add clear warnings to the documentation about the limits of the existing implementations.

stats

This module is in good shape overall. New functionality that’s similar to what’s already present can continue to be added;
more advanced statistical routines may fit better in statsmodels. Some ideas for new contributions are:

• Implementing (well-known) distributions to the stats.distributions framework is always welcome.
• Continuing work on making the function signatures of stats and stats.mstatsmore consistent, and adding
tests to ensure that that remains the case.

• Return Bunch objects from functions that now return many values, and for functions for which extra return values
are desired (see gh-3665).

• Improve statistical tests (p-value calculation, alternative hypothesis), for example implement an exact two-sided KS
test (see gh-8341) or a one-sided Wilcoxon test (see gh-9046).

• There are a number of issues regarding stats.mannwhitneyu, and a stalled PR in gh-4933 could be picked
up.
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5.8 Toolchain Roadmap

The use of the SciPy library requires (or optionally depends upon) several other libraries in order to operate, the main
dependency being Python and NumPy. It requires a larger collection of libraries and tools in order to build the library,
or to build the documentation.
Of course, the tooling and libraries are themselves not static. This document aims to provide a guide as to how SciPy’s
use of these dynamic dependencies will proceed over time.
SciPy aims to be compatible with a number of releases of its dependent libraries and tools. Forcing the user base to other
components for upgrade for every release would greatly diminish the value of SciPy. However, maintaining backwards
compatibility with very old tooling/libraries imposes limitations on which newer functionalities and capabilities can be
incorporated. SciPy takes a somewhat conservative approach, maintaining compatibility with several major releases of
Python and NumPy on the major platforms. (That may in of itself impose further restrictions. See the C Compilers
section for an example.)

• First and foremost, SciPy is a Python project hence it requires a Python environment.
• BLAS and LAPACK numerical libraries need to be installed.
• Compilers for C, C++, Cython and Fortran code are needed.
• The Python environment needs the NumPy package to be installed.
• Testing requires the pytest Python package.
• Building the documentation requires the matplotlib, Sphinx packages, as well as a LaTeX installation.

The tooling used to build CPython has some implications for the tooling used in building SciPy. It also has implications
for the examples used in the documentation (e.g. docstrings for functions), as these examples can only use functionality
present in all supported configurations.

5.8.1 Building SciPy

Python Versions

SciPy is compatible with several versions of Python, and some specific decisions are still under consideration, especially
with regard to future changes. Python 2.7 support was dropped for SciPy releases numbered 1.3 and above but is still
available in Release 1.2.x, which is a long-term support release.1,2.

Date Pythons supported
2018 Py2.7, Py3.4+ (SciPy 1.2.x is the last release to support Python 2.7)
2019 Py3.5+ (but Py2.7-specific code not removed)
2020 Py3.6+ (removal of Py2.7-specific code permitted)

NumPy

SciPy depends on NumPy but releases of SciPy are not tied to releases of NumPy. SciPy attempts to be compatible with
at least the 4 previous releases of NumPy. In particular, SciPy can not rely on features of just the latest NumPy, but needs
to be written using what is common in all of those 4 releases.1,3.
The table shows the NumPy versions suitable for each major Python version (for SciPy 1.3.x unless otherwise stated.)

1 https://docs.scipy.org/doc/scipy/reference/release.1.2.0.html
2 https://python3statement.org
3 https://docs.scipy.org/doc/numpy/release.html
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Python Minimum NumPy version Maximum NumPy version
2.7 (SciPy 1.2) 1.8.2 1.16.x
3.5 1.13.3 >= 1.16.x
3.6 1.13.3 >= 1.16.x
3.7 1.14.5 >= 1.16.x

C Compilers

SciPy is compatible with most modern C compilers (in particular clang). However CPython on Windows is built with
specific versions of the Microsoft Visual C++ compiler7,8,9, as is the corresponding build of SciPy. This has implications
for the C language standards that can be supported6.

CPython MS Visual C++ C Standard
2.7, 3.0, 3.1, 3.2 9.0 C90
3.3, 3.4 10.0 C90 & some of C99
3.5, 3.6 14.0 C90 & most of C99
3.7 15.7 C90 & most of C99

C and C++ Language Standards

C and C++ language standards for SciPy are generally guidelines rather than official decisions. This is particularly true
of attempting to predict adoption timelines for newer standards.

Date C Standard
<= 2018 C90
2019 C90 for old code, may consider C99 for new
2020 C99
? C11
? C17, C18

The use of MSVisual Studio 9.0 (which doesn’t have support C99) to build Python2.7, has meant that C code in SciPy
has had to conform to the earlier C90 standard for the language and standard library. With the dropping of Python2.7 for
SciPy 1.3.x, the C90 restriction is no longer imposed by compilers. Even though C99 has been a standard for 20 years,
experience has shown that not all features are supported equally well across all platforms. The expectation is that C99
code will be become acceptable in 2020.
C18 is a bug fix for C11, so C11 may be skipped entirely.
In practice the C++ feature set that can be used is limited by the availability in the MS VisualStudio versions that SciPy
needs to support. C++11 can be used, C++14/17 is going to be impossible for a very long time because of ecosystem
support restrictions. See4.

Note: Developer Note: Some C99 features would be useful for scientific programming, in particular better support of
IEEE 7545. SciPy has a small include file scipy/_lib/_c99compat.h which provides access to a few functions.
Use in conjunction with <numpy/npy_math.h>.

7 https://pythondev.readthedocs.io/windows.html#python-and-visual-studio-version-matrix
8 https://en.wikipedia.org/wiki/Microsoft_Visual_C%2B%2B#Internal_version_numbering
9 https://wiki.python.org/moin/WindowsCompilers
6 https://blogs.msdn.microsoft.com/vcblog/2013/07/19/c99-library-support-in-visual-studio-2013/
4 https://en.cppreference.com/w/cpp/compiler_support
5 https://en.wikipedia.org/wiki/IEEE_754-1985
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Feature Workaround
isnan(), isinf(), isfinite() Use sc_isnan(), sc_isinf(), sc_isfinite()
NAN Use NPY_NAN (it is almost equivalent)
inline functions Make static functions and place in an include .h file
mid-block variable declarations Declare variables at the top of the block

Fortran Compilers

Generally, any well-maintained compiler is likely suitable and can be used to build SciPy.

Tool Version
gfortran >= 4.8.0
ifort A recent version
flang A recent version

Cython Compiler

SciPy always requires a recent Cython compiler.

Tool Tool Version SciPy version
Cython >= 0.29.2 1.2.1

Other Libraries

Any library conforming to the BLAS/LAPACK interface may be used. OpenBLAS, ATLAS, MKL, BLIS and reference
Netlib libraries are known to work.

Library Minimum version
LAPACK 3.4.1
BLAS A recent version of OpenBLAS, MKL or ATLAS. The Accelerate BLAS is no longer supported.

There are some additional optional dependencies.

Library Version URL
mpmath Recent http://mpmath.org/
scikit-umfpack Recent https://pypi.org/project/scikit-umfpack/

5.8.2 Testing and Benchmarking

Testing and benchmarking require recent versions of:

Tool Version URL
pytest Recent https://docs.pytest.org/en/latest/
asv (airspeed velocity) Recent https://asv.readthedocs.io/
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5.8.3 Building the Documentation

Tool Version
Sphinx Whatever recent versions work. >= 2.0.
numpydoc Whatever recent versions work. >= 0.8.0.
matplotlib Generally suggest >= 2.0
LaTeX A recent distribution, such as TeX Live 2016

[The numpydoc package is also used, but that is currently packaged in doc/sphinxext.]

Note: Developer Note: The versions of numpy and matplotlib required has implications for the examples in Python
docstrings. Examples must be able to be executed both in the environment used to build the documentation, as well as
with any supported versions of numpy/matplotlib that a user may use with this release of SciPy.

5.8.4 Packaging

A Recent version of:

Tool Version URL
setuptools Recent
wheel Recent https://pythonwheels.com
multibuild Recent https://github.com/matthew-brett/multibuild

Making a SciPy release and Distributing contain information on making and distributing a SciPy release.

5.8.5 References
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CHAPTER

SIX

API REFERENCE

The exact API of all functions and classes, as given by the docstrings. The API documents expected types and allowed
features for all functions, and all parameters available for the algorithms.

6.1 Clustering package (scipy.cluster)

scipy.cluster.vq

Clustering algorithms are useful in information theory, target detection, communications, compression, and other areas.
The vq module only supports vector quantization and the k-means algorithms.
scipy.cluster.hierarchy

The hierarchymodule provides functions for hierarchical and agglomerative clustering. Its features include generating
hierarchical clusters from distance matrices, calculating statistics on clusters, cutting linkages to generate flat clusters, and
visualizing clusters with dendrograms.

6.2 K-means clustering and vector quantization (scipy.cluster.
vq)

Provides routines for k-means clustering, generating code books from k-means models, and quantizing vectors by com-
paring them with centroids in a code book.

whiten(obs[, check_finite]) Normalize a group of observations on a per feature basis.
vq(obs, code_book[, check_finite]) Assign codes from a code book to observations.
kmeans(obs, k_or_guess[, iter, thresh, …]) Performs k-means on a set of observation vectors forming

k clusters.
kmeans2(data, k[, iter, thresh, minit, …]) Classify a set of observations into k clusters using the k-

means algorithm.

6.2.1 scipy.cluster.vq.whiten

scipy.cluster.vq.whiten(obs, check_finite=True)
Normalize a group of observations on a per feature basis.
Before running k-means, it is beneficial to rescale each feature dimension of the observation set with whitening.
Each feature is divided by its standard deviation across all observations to give it unit variance.

Parameters

489



SciPy Reference Guide, Release 1.3.1

obs [ndarray] Each row of the array is an observation. The columns are the features seen during
each observation.

>>> # f0 f1 f2
>>> obs = [[ 1., 1., 1.], #o0
... [ 2., 2., 2.], #o1
... [ 3., 3., 3.], #o2
... [ 4., 4., 4.]] #o3

check_finite
[bool, optional] Whether to check that the input matrices contain only finite numbers. Dis-
abling may give a performance gain, but may result in problems (crashes, non-termination)
if the inputs do contain infinities or NaNs. Default: True

Returns

result [ndarray] Contains the values in obs scaled by the standard deviation of each column.

Examples

>>> from scipy.cluster.vq import whiten
>>> features = np.array([[1.9, 2.3, 1.7],
... [1.5, 2.5, 2.2],
... [0.8, 0.6, 1.7,]])
>>> whiten(features)
array([[ 4.17944278, 2.69811351, 7.21248917],

[ 3.29956009, 2.93273208, 9.33380951],
[ 1.75976538, 0.7038557 , 7.21248917]])

6.2.2 scipy.cluster.vq.vq

scipy.cluster.vq.vq(obs, code_book, check_finite=True)
Assign codes from a code book to observations.
Assigns a code from a code book to each observation. Each observation vector in the ‘M’ by ‘N’ obs array is
compared with the centroids in the code book and assigned the code of the closest centroid.
The features in obs should have unit variance, which can be achieved by passing them through the whiten function.
The code book can be created with the k-means algorithm or a different encoding algorithm.

Parameters

obs [ndarray] Each row of the ‘M’ x ‘N’ array is an observation. The columns are the “features”
seen during each observation. The features must be whitened first using the whiten function
or something equivalent.

code_book
[ndarray] The code book is usually generated using the k-means algorithm. Each row of the
array holds a different code, and the columns are the features of the code.

>>> # f0 f1 f2 f3
>>> code_book = [
... [ 1., 2., 3., 4.], #c0
... [ 1., 2., 3., 4.], #c1
... [ 1., 2., 3., 4.]] #c2
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check_finite
[bool, optional] Whether to check that the input matrices contain only finite numbers. Dis-
abling may give a performance gain, but may result in problems (crashes, non-termination)
if the inputs do contain infinities or NaNs. Default: True

Returns

code [ndarray] A length M array holding the code book index for each observation.
dist [ndarray] The distortion (distance) between the observation and its nearest code.

Examples

>>> from numpy import array
>>> from scipy.cluster.vq import vq
>>> code_book = array([[1.,1.,1.],
... [2.,2.,2.]])
>>> features = array([[ 1.9,2.3,1.7],
... [ 1.5,2.5,2.2],
... [ 0.8,0.6,1.7]])
>>> vq(features,code_book)
(array([1, 1, 0],'i'), array([ 0.43588989, 0.73484692, 0.83066239]))

6.2.3 scipy.cluster.vq.kmeans

scipy.cluster.vq.kmeans(obs, k_or_guess, iter=20, thresh=1e-05, check_finite=True)
Performs k-means on a set of observation vectors forming k clusters.
The k-means algorithm adjusts the classification of the observations into clusters and updates the cluster centroids
until the position of the centroids is stable over successive iterations. In this implementation of the algorithm, the
stability of the centroids is determined by comparing the absolute value of the change in the average Euclidean
distance between the observations and their corresponding centroids against a threshold. This yields a code book
mapping centroids to codes and vice versa.

Parameters

obs [ndarray] Each row of the M by N array is an observation vector. The columns are the
features seen during each observation. The features must be whitened first with the whiten
function.

k_or_guess
[int or ndarray] The number of centroids to generate. A code is assigned to each centroid,
which is also the row index of the centroid in the code_book matrix generated.
The initial k centroids are chosen by randomly selecting observations from the observation
matrix. Alternatively, passing a k by N array specifies the initial k centroids.

iter [int, optional] The number of times to run k-means, returning the codebook with the lowest
distortion. This argument is ignored if initial centroids are specified with an array for the
k_or_guess parameter. This parameter does not represent the number of iterations of
the k-means algorithm.

thresh [float, optional] Terminates the k-means algorithm if the change in distortion since the last
k-means iteration is less than or equal to thresh.

check_finite
[bool, optional] Whether to check that the input matrices contain only finite numbers. Dis-
abling may give a performance gain, but may result in problems (crashes, non-termination)
if the inputs do contain infinities or NaNs. Default: True
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Returns

codebook [ndarray] A k by N array of k centroids. The i’th centroid codebook[i] is represented with the
code i. The centroids and codes generated represent the lowest distortion seen, not necessarily
the globally minimal distortion.

distortion [float] The mean (non-squared) Euclidean distance between the observations passed and the
centroids generated. Note the difference to the standard definition of distortion in the context
of the K-means algorithm, which is the sum of the squared distances.

See also:

kmeans2

a different implementation of k-means clustering with more methods for generating initial centroids but without
using a distortion change threshold as a stopping criterion.

whiten

must be called prior to passing an observation matrix to kmeans.

Examples

>>> from numpy import array
>>> from scipy.cluster.vq import vq, kmeans, whiten
>>> import matplotlib.pyplot as plt
>>> features = array([[ 1.9,2.3],
... [ 1.5,2.5],
... [ 0.8,0.6],
... [ 0.4,1.8],
... [ 0.1,0.1],
... [ 0.2,1.8],
... [ 2.0,0.5],
... [ 0.3,1.5],
... [ 1.0,1.0]])
>>> whitened = whiten(features)
>>> book = np.array((whitened[0],whitened[2]))
>>> kmeans(whitened,book)
(array([[ 2.3110306 , 2.86287398], # random

[ 0.93218041, 1.24398691]]), 0.85684700941625547)

>>> from numpy import random
>>> random.seed((1000,2000))
>>> codes = 3
>>> kmeans(whitened,codes)
(array([[ 2.3110306 , 2.86287398], # random

[ 1.32544402, 0.65607529],
[ 0.40782893, 2.02786907]]), 0.5196582527686241)

>>> # Create 50 datapoints in two clusters a and b
>>> pts = 50
>>> a = np.random.multivariate_normal([0, 0], [[4, 1], [1, 4]], size=pts)
>>> b = np.random.multivariate_normal([30, 10],
... [[10, 2], [2, 1]],
... size=pts)

(continues on next page)
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(continued from previous page)
>>> features = np.concatenate((a, b))
>>> # Whiten data
>>> whitened = whiten(features)
>>> # Find 2 clusters in the data
>>> codebook, distortion = kmeans(whitened, 2)
>>> # Plot whitened data and cluster centers in red
>>> plt.scatter(whitened[:, 0], whitened[:, 1])
>>> plt.scatter(codebook[:, 0], codebook[:, 1], c='r')
>>> plt.show()
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6.2.4 scipy.cluster.vq.kmeans2

scipy.cluster.vq.kmeans2(data, k, iter=10, thresh=1e-05, minit=’random’, missing=’warn’,
check_finite=True)

Classify a set of observations into k clusters using the k-means algorithm.
The algorithm attempts to minimize the Euclidian distance between observations and centroids. Several initializa-
tion methods are included.

Parameters

data [ndarray] A ‘M’ by ‘N’ array of ‘M’ observations in ‘N’ dimensions or a length ‘M’ array of
‘M’ one-dimensional observations.

k [int or ndarray] The number of clusters to form as well as the number of centroids to generate.
Ifminit initialization string is ‘matrix’, or if a ndarray is given instead, it is interpreted as initial
cluster to use instead.

iter [int, optional] Number of iterations of the k-means algorithm to run. Note that this differs
in meaning from the iters parameter to the kmeans function.

thresh [float, optional] (not used yet)
minit [str, optional] Method for initialization. Available methods are ‘random’, ‘points’, ‘++’ and

‘matrix’:
‘random’: generate k centroids from a Gaussian with mean and variance estimated from the
data.
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‘points’: choose k observations (rows) at random from data for the initial centroids.
‘++’: choose k observations accordingly to the kmeans++ method (careful seeding)
‘matrix’: interpret the k parameter as a k by M (or length k array for one-dimensional data)
array of initial centroids.

missing [str, optional] Method to deal with empty clusters. Available methods are ‘warn’ and ‘raise’:
‘warn’: give a warning and continue.
‘raise’: raise an ClusterError and terminate the algorithm.

check_finite
[bool, optional] Whether to check that the input matrices contain only finite numbers. Dis-
abling may give a performance gain, but may result in problems (crashes, non-termination)
if the inputs do contain infinities or NaNs. Default: True

Returns

centroid [ndarray] A ‘k’ by ‘N’ array of centroids found at the last iteration of k-means.
label [ndarray] label[i] is the code or index of the centroid the i’th observation is closest to.

References

[1]

6.2.5 Background information

The k-means algorithm takes as input the number of clusters to generate, k, and a set of observation vectors to cluster.
It returns a set of centroids, one for each of the k clusters. An observation vector is classified with the cluster number or
centroid index of the centroid closest to it.
A vector v belongs to cluster i if it is closer to centroid i than any other centroids. If v belongs to i, we say centroid
i is the dominating centroid of v. The k-means algorithm tries to minimize distortion, which is defined as the sum of
the squared distances between each observation vector and its dominating centroid. The minimization is achieved by
iteratively reclassifying the observations into clusters and recalculating the centroids until a configuration is reached in
which the centroids are stable. One can also define a maximum number of iterations.
Since vector quantization is a natural application for k-means, information theory terminology is often used. The centroid
index or cluster index is also referred to as a “code” and the table mapping codes to centroids and vice versa is often
referred as a “code book”. The result of k-means, a set of centroids, can be used to quantize vectors. Quantization aims
to find an encoding of vectors that reduces the expected distortion.
All routines expect obs to be a M by N array where the rows are the observation vectors. The codebook is a k by N array
where the i’th row is the centroid of code word i. The observation vectors and centroids have the same feature dimension.
As an example, suppose we wish to compress a 24-bit color image (each pixel is represented by one byte for red, one for
blue, and one for green) before sending it over the web. By using a smaller 8-bit encoding, we can reduce the amount of
data by two thirds. Ideally, the colors for each of the 256 possible 8-bit encoding values should be chosen to minimize
distortion of the color. Running k-means with k=256 generates a code book of 256 codes, which fills up all possible 8-bit
sequences. Instead of sending a 3-byte value for each pixel, the 8-bit centroid index (or code word) of the dominating
centroid is transmitted. The code book is also sent over the wire so each 8-bit code can be translated back to a 24-bit
pixel value representation. If the image of interest was of an ocean, we would expect many 24-bit blues to be represented
by 8-bit codes. If it was an image of a human face, more flesh tone colors would be represented in the code book.

6.3 Hierarchical clustering (scipy.cluster.hierarchy)

These functions cut hierarchical clusterings into flat clusterings or find the roots of the forest formed by a cut by providing
the flat cluster ids of each observation.
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fcluster(Z, t[, criterion, depth, R, monocrit]) Form flat clusters from the hierarchical clustering defined
by the given linkage matrix.

fclusterdata(X, t[, criterion, metric, …]) Cluster observation data using a given metric.
leaders(Z, T) Return the root nodes in a hierarchical clustering.

6.3.1 scipy.cluster.hierarchy.fcluster

scipy.cluster.hierarchy.fcluster(Z, t, criterion=’inconsistent’, depth=2, R=None, mon-
ocrit=None)

Form flat clusters from the hierarchical clustering defined by the given linkage matrix.
Parameters

Z [ndarray] The hierarchical clustering encoded with the matrix returned by the linkage
function.

t [scalar]
For criteria ‘inconsistent’, ‘distance’ or ‘monocrit’,

this is the threshold to apply when forming flat clusters.
For ‘maxclust’ or ‘maxclust_monocrit’ criteria,

this would be max number of clusters requested.
criterion [str, optional] The criterion to use in forming flat clusters. This can be any of the following

values:
inconsistent :

If a cluster node and all its descendants have an inconsistent value less than or
equal to t then all its leaf descendants belong to the same flat cluster. When
no non-singleton cluster meets this criterion, every node is assigned to its own
cluster. (Default)

distance :
Forms flat clusters so that the original observations in each flat cluster have
no greater a cophenetic distance than t.

maxclust :
Finds a minimum threshold r so that the cophenetic distance between any
two original observations in the same flat cluster is no more than r and no
more than t flat clusters are formed.

monocrit :
Forms a flat cluster from a cluster node c with index i when monocrit[j]
<= t.
For example, to threshold on the maximum mean distance as computed in
the inconsistency matrix R with a threshold of 0.8 do:

MR = maxRstat(Z, R, 3)
cluster(Z, t=0.8, criterion='monocrit',␣
↪→monocrit=MR)

maxclust_monocrit :
Forms a flat cluster from a non-singleton cluster node c when
monocrit[i] <= r for all cluster indices i below and including
c. r is minimized such that no more than t flat clusters are formed.
monocrit must be monotonic. For example, to minimize the threshold t
on maximum inconsistency values so that no more than 3 flat clusters are
formed, do:
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MI = maxinconsts(Z, R)
cluster(Z, t=3, criterion='maxclust_monocrit',␣
↪→monocrit=MI)

depth [int, optional] The maximum depth to perform the inconsistency calculation. It has no mean-
ing for the other criteria. Default is 2.

R [ndarray, optional] The inconsistency matrix to use for the ‘inconsistent’ criterion. This ma-
trix is computed if not provided.

monocrit [ndarray, optional] An array of length n-1. monocrit[i] is the statistics upon which non-
singleton i is thresholded. The monocrit vector must be monotonic, i.e. given a node c
with index i, for all node indices j corresponding to nodes below c, monocrit[i] >=
monocrit[j].

Returns

fcluster [ndarray] An array of length n. T[i] is the flat cluster number to which original observation
i belongs.

See also:

linkage

for information about hierarchical clustering methods work.

Examples

>>> from scipy.cluster.hierarchy import ward, fcluster
>>> from scipy.spatial.distance import pdist

All cluster linkage methods - e.g. scipy.cluster.hierarchy.ward generate a linkage matrix Z as their
output:

>>> X = [[0, 0], [0, 1], [1, 0],
... [0, 4], [0, 3], [1, 4],
... [4, 0], [3, 0], [4, 1],
... [4, 4], [3, 4], [4, 3]]

>>> Z = ward(pdist(X))

>>> Z
array([[ 0. , 1. , 1. , 2. ],

[ 3. , 4. , 1. , 2. ],
[ 6. , 7. , 1. , 2. ],
[ 9. , 10. , 1. , 2. ],
[ 2. , 12. , 1.29099445, 3. ],
[ 5. , 13. , 1.29099445, 3. ],
[ 8. , 14. , 1.29099445, 3. ],
[11. , 15. , 1.29099445, 3. ],
[16. , 17. , 5.77350269, 6. ],
[18. , 19. , 5.77350269, 6. ],
[20. , 21. , 8.16496581, 12. ]])

This matrix represents a dendrogram, where the first and second elements are the two clusters merged at each step,
the third element is the distance between these clusters, and the fourth element is the size of the new cluster - the
number of original data points included.
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scipy.cluster.hierarchy.fcluster can be used to flatten the dendrogram, obtaining as a result an
assignation of the original data points to single clusters.
This assignation mostly depends on a distance threshold t - the maximum inter-cluster distance allowed:

>>> fcluster(Z, t=0.9, criterion='distance')
array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], dtype=int32)

>>> fcluster(Z, t=1.1, criterion='distance')
array([1, 1, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8], dtype=int32)

>>> fcluster(Z, t=3, criterion='distance')
array([1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4], dtype=int32)

>>> fcluster(Z, t=9, criterion='distance')
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=int32)

In the first case, the threshold t is too small to allow any two samples in the data to form a cluster, so 12 different
clusters are returned.
In the second case, the threshold is large enough to allow the first 4 points to be merged with their nearest neighbors.
So here only 8 clusters are returned.
The third case, with a much higher threshold, allows for up to 8 data points to be connected - so 4 clusters are
returned here.
Lastly, the threshold of the fourth case is large enough to allow for all data points to be merged together - so a single
cluster is returned.

6.3.2 scipy.cluster.hierarchy.fclusterdata

scipy.cluster.hierarchy.fclusterdata(X, t, criterion=’inconsistent’, metric=’euclidean’, depth=2,
method=’single’, R=None)

Cluster observation data using a given metric.
Clusters the original observations in the n-by-m data matrix X (n observations in m dimensions), using the euclidean
distance metric to calculate distances between original observations, performs hierarchical clustering using the
single linkage algorithm, and forms flat clusters using the inconsistency method with t as the cut-off threshold.
A one-dimensional array T of length n is returned. T[i] is the index of the flat cluster to which the original
observation i belongs.

Parameters

X [(N, M) ndarray] N by M data matrix with N observations in M dimensions.
t [scalar]

For criteria ‘inconsistent’, ‘distance’ or ‘monocrit’,
this is the threshold to apply when forming flat clusters.

For ‘maxclust’ or ‘maxclust_monocrit’ criteria,
this would be max number of clusters requested.

criterion [str, optional] Specifies the criterion for forming flat clusters. Valid values are ‘inconsistent’
(default), ‘distance’, or ‘maxclust’ cluster formation algorithms. See fcluster for descrip-
tions.

metric [str, optional] The distance metric for calculating pairwise distances. See distance.
pdist for descriptions and linkage to verify compatibility with the linkage method.

depth [int, optional] The maximum depth for the inconsistency calculation. See inconsistent
for more information.
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method [str, optional] The linkage method to use (single, complete, average, weighted, median cen-
troid, ward). See linkage for more information. Default is “single”.

R [ndarray, optional] The inconsistency matrix. It will be computed if necessary if it is not
passed.

Returns

fclusterdata
[ndarray] A vector of length n. T[i] is the flat cluster number to which original observation i
belongs.

See also:

scipy.spatial.distance.pdist

pairwise distance metrics

Notes

This function is similar to the MATLAB function clusterdata.

Examples

>>> from scipy.cluster.hierarchy import fclusterdata

This is a convenience method that abstracts all the steps to perform in a typical SciPy’s hierarchical clustering
workflow.

• Transform the input data into a condensed matrix with scipy.spatial.distance.pdist.
• Apply a clustering method.
• Obtain flat clusters at a user defined distance threshold t using scipy.cluster.hierarchy.
fcluster.

>>> X = [[0, 0], [0, 1], [1, 0],
... [0, 4], [0, 3], [1, 4],
... [4, 0], [3, 0], [4, 1],
... [4, 4], [3, 4], [4, 3]]

>>> fclusterdata(X, t=1)
array([3, 3, 3, 4, 4, 4, 2, 2, 2, 1, 1, 1], dtype=int32)

The output here (for the dataset X, distance threshold t, and the default settings) is four clusters with three data
points each.

6.3.3 scipy.cluster.hierarchy.leaders

scipy.cluster.hierarchy.leaders(Z, T)
Return the root nodes in a hierarchical clustering.
Returns the root nodes in a hierarchical clustering corresponding to a cut defined by a flat cluster assignment vector
T. See the fcluster function for more information on the format of T.
For each flat cluster j of the k flat clusters represented in the n-sized flat cluster assignment vector T, this function
finds the lowest cluster node i in the linkage tree Z such that:
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• leaf descendants belong only to flat cluster j (i.e. T[p]==j for all p in S(i) where S(i) is the set of leaf ids
of descendant leaf nodes with cluster node i)

• there does not exist a leaf that is not a descendant with i that also belongs to cluster j (i.e. T[q]!=j for all
q not in S(i)). If this condition is violated, T is not a valid cluster assignment vector, and an exception will
be thrown.

Parameters

Z [ndarray] The hierarchical clustering encoded as a matrix. See linkage for more infor-
mation.

T [ndarray] The flat cluster assignment vector.
Returns

L [ndarray] The leader linkage node id’s stored as a k-element 1-D array where k is the number
of flat clusters found in T.
L[j]=i is the linkage cluster node id that is the leader of flat cluster with id M[j]. If i
< n, i corresponds to an original observation, otherwise it corresponds to a non-singleton
cluster.

M [ndarray] The leader linkage node id’s stored as a k-element 1-D array where k is the number
of flat clusters found in T. This allows the set of flat cluster ids to be any arbitrary set of k
integers.
For example: if L[3]=2 and M[3]=8, the flat cluster with id 8’s leader is linkage node 2.

See also:

fcluster

for the creation of flat cluster assignments.

Examples

>>> from scipy.cluster.hierarchy import ward, fcluster, leaders
>>> from scipy.spatial.distance import pdist

Given a linkage matrix Z - obtained after apply a clustering method to a dataset X - and a flat cluster assignment
array T:

>>> X = [[0, 0], [0, 1], [1, 0],
... [0, 4], [0, 3], [1, 4],
... [4, 0], [3, 0], [4, 1],
... [4, 4], [3, 4], [4, 3]]

>>> Z = ward(pdist(X))
>>> Z
array([[ 0. , 1. , 1. , 2. ],

[ 3. , 4. , 1. , 2. ],
[ 6. , 7. , 1. , 2. ],
[ 9. , 10. , 1. , 2. ],
[ 2. , 12. , 1.29099445, 3. ],
[ 5. , 13. , 1.29099445, 3. ],
[ 8. , 14. , 1.29099445, 3. ],
[11. , 15. , 1.29099445, 3. ],

(continues on next page)

6.3. Hierarchical clustering (scipy.cluster.hierarchy) 499



SciPy Reference Guide, Release 1.3.1

(continued from previous page)
[16. , 17. , 5.77350269, 6. ],
[18. , 19. , 5.77350269, 6. ],
[20. , 21. , 8.16496581, 12. ]])

>>> T = fcluster(Z, 3, criterion='distance')
>>> T
array([1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4], dtype=int32)

scipy.cluster.hierarchy.leaders returns the indexes of the nodes in the dendrogram that are the
leaders of each flat cluster:

>>> L, M = leaders(Z, T)
>>> L
array([16, 17, 18, 19], dtype=int32)

(remember that indexes 0-11 point to the 12 data points in X whereas indexes 12-22 point to the 11 rows of Z)
scipy.cluster.hierarchy.leaders also returns the indexes of the flat clusters in T:

>>> M
array([1, 2, 3, 4], dtype=int32)

These are routines for agglomerative clustering.

linkage(y[, method, metric, optimal_ordering]) Perform hierarchical/agglomerative clustering.
single(y) Perform single/min/nearest linkage on the condensed dis-

tance matrix y.
complete(y) Perform complete/max/farthest point linkage on a con-

densed distance matrix.
average(y) Perform average/UPGMA linkage on a condensed dis-

tance matrix.
weighted(y) Perform weighted/WPGMA linkage on the condensed

distance matrix.
centroid(y) Perform centroid/UPGMC linkage.
median(y) Perform median/WPGMC linkage.
ward(y) Perform Ward’s linkage on a condensed distance matrix.

6.3.4 scipy.cluster.hierarchy.linkage

scipy.cluster.hierarchy.linkage(y, method=’single’, metric=’euclidean’, optimal_ordering=False)
Perform hierarchical/agglomerative clustering.
The input y may be either a 1d condensed distance matrix or a 2d array of observation vectors.
If y is a 1d condensed distance matrix, then y must be a

(
n
2

)
sized vector where n is the number of original

observations paired in the distance matrix. The behavior of this function is very similar to the MATLAB linkage
function.
A (n − 1) by 4 matrix Z is returned. At the i-th iteration, clusters with indices Z[i, 0] and Z[i, 1] are
combined to form cluster n+i. A cluster with an index less than n corresponds to one of the n original observations.
The distance between clusters Z[i, 0] and Z[i, 1] is given by Z[i, 2]. The fourth value Z[i, 3]
represents the number of original observations in the newly formed cluster.
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The following linkage methods are used to compute the distance d(s, t) between two clusters s and t. The algorithm
begins with a forest of clusters that have yet to be used in the hierarchy being formed. When two clusters s and
t from this forest are combined into a single cluster u, s and t are removed from the forest, and u is added to the
forest. When only one cluster remains in the forest, the algorithm stops, and this cluster becomes the root.
A distance matrix is maintained at each iteration. The d[i,j] entry corresponds to the distance between cluster
i and j in the original forest.
At each iteration, the algorithm must update the distance matrix to reflect the distance of the newly formed cluster
u with the remaining clusters in the forest.
Suppose there are |u| original observations u[0], . . . , u[|u|−1] in cluster u and |v| original objects v[0], . . . , v[|v|−
1] in cluster v. Recall s and t are combined to form cluster u. Let v be any remaining cluster in the forest that is
not u.
The following are methods for calculating the distance between the newly formed cluster u and each v.

• method=’single’ assigns

d(u, v) = min(dist(u[i], v[j]))

for all points i in cluster u and j in cluster v. This is also known as the Nearest Point Algorithm.
• method=’complete’ assigns

d(u, v) = max(dist(u[i], v[j]))

for all points i in cluster u and j in cluster v. This is also known by the Farthest Point Algorithm or Voor
Hees Algorithm.

• method=’average’ assigns

d(u, v) =
∑
ij

d(u[i], v[j])

(|u| ∗ |v|)

for all points i and j where |u| and |v| are the cardinalities of clusters u and v, respectively. This is also called
the UPGMA algorithm.

• method=’weighted’ assigns

d(u, v) = (dist(s, v) + dist(t, v))/2

where cluster u was formedwith cluster s and t and v is a remaining cluster in the forest. (also calledWPGMA)
• method=’centroid’ assigns

dist(s, t) = ||cs − ct||2

where cs and ct are the centroids of clusters s and t, respectively. When two clusters s and t are combined
into a new cluster u, the new centroid is computed over all the original objects in clusters s and t. The distance
then becomes the Euclidean distance between the centroid of u and the centroid of a remaining cluster v in
the forest. This is also known as the UPGMC algorithm.

• method=’median’ assigns d(s, t) like the centroid method. When two clusters s and t are combined into
a new cluster u, the average of centroids s and t give the new centroid u. This is also known as the WPGMC
algorithm.

• method=’ward’ uses theWard varianceminimization algorithm. The new entry d(u, v) is computed as follows,

d(u, v) =

√
|v|+ |s|
T

d(v, s)2 +
|v|+ |t|
T

d(v, t)2 − |v|
T
d(s, t)2

where u is the newly joined cluster consisting of clusters s and t, v is an unused cluster in the forest, T =
|v|+ |s|+ |t|, and | ∗ | is the cardinality of its argument. This is also known as the incremental algorithm.
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Warning: When the minimum distance pair in the forest is chosen, there may be two or more pairs with the same
minimum distance. This implementation may choose a different minimum than the MATLAB version.

Parameters

y [ndarray] A condensed distance matrix. A condensed distance matrix is a flat array con-
taining the upper triangular of the distance matrix. This is the form that pdist returns.
Alternatively, a collection ofm observation vectors in n dimensions may be passed as anm
by n array. All elements of the condensed distance matrix must be finite, i.e. no NaNs or
infs.

method [str, optional] The linkage algorithm to use. See the Linkage Methods section below
for full descriptions.

metric [str or function, optional] The distance metric to use in the case that y is a collection of
observation vectors; ignored otherwise. See the pdist function for a list of valid distance
metrics. A custom distance function can also be used.

optimal_ordering
[bool, optional] If True, the linkage matrix will be reordered so that the distance between
successive leaves is minimal. This results in a more intuitive tree structure when the data
are visualized. defaults to False, because this algorithm can be slow, particularly on large
datasets [2]. See also the optimal_leaf_ordering function.
New in version 1.0.0.

Returns

Z [ndarray] The hierarchical clustering encoded as a linkage matrix.
See also:

scipy.spatial.distance.pdist

pairwise distance metrics

Notes

1. For method ‘single’ an optimized algorithm based on minimum spanning tree is implemented. It has time
complexity O(n2). For methods ‘complete’, ‘average’, ‘weighted’ and ‘ward’ an algorithm called nearest-
neighbors chain is implemented. It also has time complexity O(n2). For other methods a naive algorithm is
implemented with O(n3) time complexity. All algorithms use O(n2)memory. Refer to [1] for details about
the algorithms.

2. Methods ‘centroid’, ‘median’ and ‘ward’ are correctly defined only if Euclidean pairwise metric is used. If y
is passed as precomputed pairwise distances, then it is a user responsibility to assure that these distances are
in fact Euclidean, otherwise the produced result will be incorrect.

References

[1], [2]

Examples

>>> from scipy.cluster.hierarchy import dendrogram, linkage
>>> from matplotlib import pyplot as plt
>>> X = [[i] for i in [2, 8, 0, 4, 1, 9, 9, 0]]
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>>> Z = linkage(X, 'ward')
>>> fig = plt.figure(figsize=(25, 10))
>>> dn = dendrogram(Z)

>>> Z = linkage(X, 'single')
>>> fig = plt.figure(figsize=(25, 10))
>>> dn = dendrogram(Z)
>>> plt.show()
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6.3.5 scipy.cluster.hierarchy.single

scipy.cluster.hierarchy.single(y)
Perform single/min/nearest linkage on the condensed distance matrix y.

Parameters

y [ndarray] The upper triangular of the distance matrix. The result of pdist is returned in
this form.
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Returns

Z [ndarray] The linkage matrix.
See also:

linkage

for advanced creation of hierarchical clusterings.
scipy.spatial.distance.pdist

pairwise distance metrics

Examples

>>> from scipy.cluster.hierarchy import single, fcluster
>>> from scipy.spatial.distance import pdist

First we need a toy dataset to play with:

x x x x
x x

x x
x x x x

>>> X = [[0, 0], [0, 1], [1, 0],
... [0, 4], [0, 3], [1, 4],
... [4, 0], [3, 0], [4, 1],
... [4, 4], [3, 4], [4, 3]]

Then we get a condensed distance matrix from this dataset:

>>> y = pdist(X)

Finally, we can perform the clustering:

>>> Z = single(y)
>>> Z
array([[ 0., 1., 1., 2.],

[ 2., 12., 1., 3.],
[ 3., 4., 1., 2.],
[ 5., 14., 1., 3.],
[ 6., 7., 1., 2.],
[ 8., 16., 1., 3.],
[ 9., 10., 1., 2.],
[11., 18., 1., 3.],
[13., 15., 2., 6.],
[17., 20., 2., 9.],
[19., 21., 2., 12.]])

The linkage matrix Z represents a dendrogram - see scipy.cluster.hierarchy.linkage for a detailed
explanation of its contents.
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We can use scipy.cluster.hierarchy.fcluster to see to which cluster each initial point would belong
given a distance threshold:

>>> fcluster(Z, 0.9, criterion='distance')
array([ 7, 8, 9, 10, 11, 12, 4, 5, 6, 1, 2, 3], dtype=int32)
>>> fcluster(Z, 1, criterion='distance')
array([3, 3, 3, 4, 4, 4, 2, 2, 2, 1, 1, 1], dtype=int32)
>>> fcluster(Z, 2, criterion='distance')
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=int32)

Also scipy.cluster.hierarchy.dendrogram can be used to generate a plot of the dendrogram.

6.3.6 scipy.cluster.hierarchy.complete

scipy.cluster.hierarchy.complete(y)
Perform complete/max/farthest point linkage on a condensed distance matrix.

Parameters

y [ndarray] The upper triangular of the distance matrix. The result of pdist is returned in
this form.

Returns

Z [ndarray] A linkage matrix containing the hierarchical clustering. See the linkage func-
tion documentation for more information on its structure.

See also:

linkage

for advanced creation of hierarchical clusterings.
scipy.spatial.distance.pdist

pairwise distance metrics

Examples

>>> from scipy.cluster.hierarchy import complete, fcluster
>>> from scipy.spatial.distance import pdist

First we need a toy dataset to play with:

x x x x
x x

x x
x x x x

>>> X = [[0, 0], [0, 1], [1, 0],
... [0, 4], [0, 3], [1, 4],
... [4, 0], [3, 0], [4, 1],
... [4, 4], [3, 4], [4, 3]]

Then we get a condensed distance matrix from this dataset:
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>>> y = pdist(X)

Finally, we can perform the clustering:

>>> Z = complete(y)
>>> Z
array([[ 0. , 1. , 1. , 2. ],

[ 3. , 4. , 1. , 2. ],
[ 6. , 7. , 1. , 2. ],
[ 9. , 10. , 1. , 2. ],
[ 2. , 12. , 1.41421356, 3. ],
[ 5. , 13. , 1.41421356, 3. ],
[ 8. , 14. , 1.41421356, 3. ],
[11. , 15. , 1.41421356, 3. ],
[16. , 17. , 4.12310563, 6. ],
[18. , 19. , 4.12310563, 6. ],
[20. , 21. , 5.65685425, 12. ]])

The linkage matrix Z represents a dendrogram - see scipy.cluster.hierarchy.linkage for a detailed
explanation of its contents.
We can use scipy.cluster.hierarchy.fcluster to see to which cluster each initial point would belong
given a distance threshold:

>>> fcluster(Z, 0.9, criterion='distance')
array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], dtype=int32)
>>> fcluster(Z, 1.5, criterion='distance')
array([1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4], dtype=int32)
>>> fcluster(Z, 4.5, criterion='distance')
array([1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2], dtype=int32)
>>> fcluster(Z, 6, criterion='distance')
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=int32)

Also scipy.cluster.hierarchy.dendrogram can be used to generate a plot of the dendrogram.

6.3.7 scipy.cluster.hierarchy.average

scipy.cluster.hierarchy.average(y)
Perform average/UPGMA linkage on a condensed distance matrix.

Parameters

y [ndarray] The upper triangular of the distance matrix. The result of pdist is returned in
this form.

Returns

Z [ndarray] A linkage matrix containing the hierarchical clustering. See linkage for more
information on its structure.

See also:

linkage

for advanced creation of hierarchical clusterings.
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scipy.spatial.distance.pdist

pairwise distance metrics

Examples

>>> from scipy.cluster.hierarchy import average, fcluster
>>> from scipy.spatial.distance import pdist

First we need a toy dataset to play with:

x x x x
x x

x x
x x x x

>>> X = [[0, 0], [0, 1], [1, 0],
... [0, 4], [0, 3], [1, 4],
... [4, 0], [3, 0], [4, 1],
... [4, 4], [3, 4], [4, 3]]

Then we get a condensed distance matrix from this dataset:

>>> y = pdist(X)

Finally, we can perform the clustering:

>>> Z = average(y)
>>> Z
array([[ 0. , 1. , 1. , 2. ],

[ 3. , 4. , 1. , 2. ],
[ 6. , 7. , 1. , 2. ],
[ 9. , 10. , 1. , 2. ],
[ 2. , 12. , 1.20710678, 3. ],
[ 5. , 13. , 1.20710678, 3. ],
[ 8. , 14. , 1.20710678, 3. ],
[11. , 15. , 1.20710678, 3. ],
[16. , 17. , 3.39675184, 6. ],
[18. , 19. , 3.39675184, 6. ],
[20. , 21. , 4.09206523, 12. ]])

The linkage matrix Z represents a dendrogram - see scipy.cluster.hierarchy.linkage for a detailed
explanation of its contents.
We can use scipy.cluster.hierarchy.fcluster to see to which cluster each initial point would belong
given a distance threshold:

>>> fcluster(Z, 0.9, criterion='distance')
array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], dtype=int32)
>>> fcluster(Z, 1.5, criterion='distance')
array([1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4], dtype=int32)
>>> fcluster(Z, 4, criterion='distance')
array([1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2], dtype=int32)

(continues on next page)
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(continued from previous page)
>>> fcluster(Z, 6, criterion='distance')
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=int32)

Also scipy.cluster.hierarchy.dendrogram can be used to generate a plot of the dendrogram.

6.3.8 scipy.cluster.hierarchy.weighted

scipy.cluster.hierarchy.weighted(y)
Perform weighted/WPGMA linkage on the condensed distance matrix.
See linkage for more information on the return structure and algorithm.

Parameters

y [ndarray] The upper triangular of the distance matrix. The result of pdist is returned in
this form.

Returns

Z [ndarray] A linkage matrix containing the hierarchical clustering. See linkage for more
information on its structure.

See also:

linkage

for advanced creation of hierarchical clusterings.
scipy.spatial.distance.pdist

pairwise distance metrics

Examples

>>> from scipy.cluster.hierarchy import weighted, fcluster
>>> from scipy.spatial.distance import pdist

First we need a toy dataset to play with:

x x x x
x x

x x
x x x x

>>> X = [[0, 0], [0, 1], [1, 0],
... [0, 4], [0, 3], [1, 4],
... [4, 0], [3, 0], [4, 1],
... [4, 4], [3, 4], [4, 3]]

Then we get a condensed distance matrix from this dataset:

>>> y = pdist(X)

Finally, we can perform the clustering:
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>>> Z = weighted(y)
>>> Z
array([[ 0. , 1. , 1. , 2. ],

[ 6. , 7. , 1. , 2. ],
[ 3. , 4. , 1. , 2. ],
[ 9. , 11. , 1. , 2. ],
[ 2. , 12. , 1.20710678, 3. ],
[ 8. , 13. , 1.20710678, 3. ],
[ 5. , 14. , 1.20710678, 3. ],
[10. , 15. , 1.20710678, 3. ],
[18. , 19. , 3.05595762, 6. ],
[16. , 17. , 3.32379407, 6. ],
[20. , 21. , 4.06357713, 12. ]])

The linkage matrix Z represents a dendrogram - see scipy.cluster.hierarchy.linkage for a detailed
explanation of its contents.
We can use scipy.cluster.hierarchy.fcluster to see to which cluster each initial point would belong
given a distance threshold:

>>> fcluster(Z, 0.9, criterion='distance')
array([ 7, 8, 9, 1, 2, 3, 10, 11, 12, 4, 6, 5], dtype=int32)
>>> fcluster(Z, 1.5, criterion='distance')
array([3, 3, 3, 1, 1, 1, 4, 4, 4, 2, 2, 2], dtype=int32)
>>> fcluster(Z, 4, criterion='distance')
array([2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1], dtype=int32)
>>> fcluster(Z, 6, criterion='distance')
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=int32)

Also scipy.cluster.hierarchy.dendrogram can be used to generate a plot of the dendrogram.

6.3.9 scipy.cluster.hierarchy.centroid

scipy.cluster.hierarchy.centroid(y)
Perform centroid/UPGMC linkage.
See linkage for more information on the input matrix, return structure, and algorithm.
The following are common calling conventions:
1. Z = centroid(y)

Performs centroid/UPGMC linkage on the condensed distance matrix y.
2. Z = centroid(X)

Performs centroid/UPGMC linkage on the observation matrix X using Euclidean distance as the distance
metric.

Parameters

y [ndarray] A condensed distance matrix. A condensed distance matrix is a flat array con-
taining the upper triangular of the distance matrix. This is the form that pdist returns.
Alternatively, a collection of m observation vectors in n dimensions may be passed as a m
by n array.

Returns
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Z [ndarray] A linkage matrix containing the hierarchical clustering. See the linkage func-
tion documentation for more information on its structure.

See also:

linkage

for advanced creation of hierarchical clusterings.
scipy.spatial.distance.pdist

pairwise distance metrics

Examples

>>> from scipy.cluster.hierarchy import centroid, fcluster
>>> from scipy.spatial.distance import pdist

First we need a toy dataset to play with:

x x x x
x x

x x
x x x x

>>> X = [[0, 0], [0, 1], [1, 0],
... [0, 4], [0, 3], [1, 4],
... [4, 0], [3, 0], [4, 1],
... [4, 4], [3, 4], [4, 3]]

Then we get a condensed distance matrix from this dataset:

>>> y = pdist(X)

Finally, we can perform the clustering:

>>> Z = centroid(y)
>>> Z
array([[ 0. , 1. , 1. , 2. ],

[ 3. , 4. , 1. , 2. ],
[ 9. , 10. , 1. , 2. ],
[ 6. , 7. , 1. , 2. ],
[ 2. , 12. , 1.11803399, 3. ],
[ 5. , 13. , 1.11803399, 3. ],
[ 8. , 15. , 1.11803399, 3. ],
[11. , 14. , 1.11803399, 3. ],
[18. , 19. , 3.33333333, 6. ],
[16. , 17. , 3.33333333, 6. ],
[20. , 21. , 3.33333333, 12. ]])

The linkage matrix Z represents a dendrogram - see scipy.cluster.hierarchy.linkage for a detailed
explanation of its contents.
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We can use scipy.cluster.hierarchy.fcluster to see to which cluster each initial point would belong
given a distance threshold:

>>> fcluster(Z, 0.9, criterion='distance')
array([ 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6], dtype=int32)
>>> fcluster(Z, 1.1, criterion='distance')
array([5, 5, 6, 7, 7, 8, 1, 1, 2, 3, 3, 4], dtype=int32)
>>> fcluster(Z, 2, criterion='distance')
array([3, 3, 3, 4, 4, 4, 1, 1, 1, 2, 2, 2], dtype=int32)
>>> fcluster(Z, 4, criterion='distance')
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=int32)

Also scipy.cluster.hierarchy.dendrogram can be used to generate a plot of the dendrogram.

6.3.10 scipy.cluster.hierarchy.median

scipy.cluster.hierarchy.median(y)
Perform median/WPGMC linkage.
See linkage for more information on the return structure and algorithm.

The following are common calling conventions:
1. Z = median(y)

Performs median/WPGMC linkage on the condensed distance matrix y. See linkage for more infor-
mation on the return structure and algorithm.

2. Z = median(X)
Performs median/WPGMC linkage on the observation matrix X using Euclidean distance as the distance
metric. See linkage for more information on the return structure and algorithm.

Parameters

y [ndarray] A condensed distance matrix. A condensed distance matrix is a flat array con-
taining the upper triangular of the distance matrix. This is the form that pdist returns.
Alternatively, a collection of m observation vectors in n dimensions may be passed as a m
by n array.

Returns

Z [ndarray] The hierarchical clustering encoded as a linkage matrix.

See also:

linkage

for advanced creation of hierarchical clusterings.
scipy.spatial.distance.pdist

pairwise distance metrics

Examples

>>> from scipy.cluster.hierarchy import median, fcluster
>>> from scipy.spatial.distance import pdist

First we need a toy dataset to play with:
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x x x x
x x

x x
x x x x

>>> X = [[0, 0], [0, 1], [1, 0],
... [0, 4], [0, 3], [1, 4],
... [4, 0], [3, 0], [4, 1],
... [4, 4], [3, 4], [4, 3]]

Then we get a condensed distance matrix from this dataset:

>>> y = pdist(X)

Finally, we can perform the clustering:

>>> Z = median(y)
>>> Z
array([[ 0. , 1. , 1. , 2. ],

[ 3. , 4. , 1. , 2. ],
[ 9. , 10. , 1. , 2. ],
[ 6. , 7. , 1. , 2. ],
[ 2. , 12. , 1.11803399, 3. ],
[ 5. , 13. , 1.11803399, 3. ],
[ 8. , 15. , 1.11803399, 3. ],
[11. , 14. , 1.11803399, 3. ],
[18. , 19. , 3. , 6. ],
[16. , 17. , 3.5 , 6. ],
[20. , 21. , 3.25 , 12. ]])

The linkage matrix Z represents a dendrogram - see scipy.cluster.hierarchy.linkage for a detailed
explanation of its contents.
We can use scipy.cluster.hierarchy.fcluster to see to which cluster each initial point would belong
given a distance threshold:

>>> fcluster(Z, 0.9, criterion='distance')
array([ 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6], dtype=int32)
>>> fcluster(Z, 1.1, criterion='distance')
array([5, 5, 6, 7, 7, 8, 1, 1, 2, 3, 3, 4], dtype=int32)
>>> fcluster(Z, 2, criterion='distance')
array([3, 3, 3, 4, 4, 4, 1, 1, 1, 2, 2, 2], dtype=int32)
>>> fcluster(Z, 4, criterion='distance')
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=int32)

Also scipy.cluster.hierarchy.dendrogram can be used to generate a plot of the dendrogram.

6.3.11 scipy.cluster.hierarchy.ward

scipy.cluster.hierarchy.ward(y)
Perform Ward’s linkage on a condensed distance matrix.
See linkage for more information on the return structure and algorithm.
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The following are common calling conventions:
1. Z = ward(y) Performs Ward’s linkage on the condensed distance matrix y.
2. Z = ward(X) Performs Ward’s linkage on the observation matrix X using Euclidean distance as the dis-

tance metric.

Parameters

y [ndarray] A condensed distance matrix. A condensed distance matrix is a flat array con-
taining the upper triangular of the distance matrix. This is the form that pdist returns.
Alternatively, a collection of m observation vectors in n dimensions may be passed as a m
by n array.

Returns

Z [ndarray] The hierarchical clustering encoded as a linkage matrix. See linkage for more
information on the return structure and algorithm.

See also:

linkage

for advanced creation of hierarchical clusterings.
scipy.spatial.distance.pdist

pairwise distance metrics

Examples

>>> from scipy.cluster.hierarchy import ward, fcluster
>>> from scipy.spatial.distance import pdist

First we need a toy dataset to play with:

x x x x
x x

x x
x x x x

>>> X = [[0, 0], [0, 1], [1, 0],
... [0, 4], [0, 3], [1, 4],
... [4, 0], [3, 0], [4, 1],
... [4, 4], [3, 4], [4, 3]]

Then we get a condensed distance matrix from this dataset:

>>> y = pdist(X)

Finally, we can perform the clustering:

>>> Z = ward(y)
>>> Z
array([[ 0. , 1. , 1. , 2. ],

(continues on next page)
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(continued from previous page)
[ 3. , 4. , 1. , 2. ],
[ 6. , 7. , 1. , 2. ],
[ 9. , 10. , 1. , 2. ],
[ 2. , 12. , 1.29099445, 3. ],
[ 5. , 13. , 1.29099445, 3. ],
[ 8. , 14. , 1.29099445, 3. ],
[11. , 15. , 1.29099445, 3. ],
[16. , 17. , 5.77350269, 6. ],
[18. , 19. , 5.77350269, 6. ],
[20. , 21. , 8.16496581, 12. ]])

The linkage matrix Z represents a dendrogram - see scipy.cluster.hierarchy.linkage for a detailed
explanation of its contents.
We can use scipy.cluster.hierarchy.fcluster to see to which cluster each initial point would belong
given a distance threshold:

>>> fcluster(Z, 0.9, criterion='distance')
array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], dtype=int32)
>>> fcluster(Z, 1.1, criterion='distance')
array([1, 1, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8], dtype=int32)
>>> fcluster(Z, 3, criterion='distance')
array([1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4], dtype=int32)
>>> fcluster(Z, 9, criterion='distance')
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=int32)

Also scipy.cluster.hierarchy.dendrogram can be used to generate a plot of the dendrogram.
These routines compute statistics on hierarchies.

cophenet(Z[, Y]) Calculate the cophenetic distances between each observa-
tion in the hierarchical clustering defined by the linkage
Z.

from_mlab_linkage(Z) Convert a linkage matrix generated by MATLAB(TM) to
a new linkage matrix compatible with this module.

inconsistent(Z[, d]) Calculate inconsistency statistics on a linkage matrix.
maxinconsts(Z, R) Return the maximum inconsistency coefficient for each

non-singleton cluster and its children.
maxdists(Z) Return the maximum distance between any non-singleton

cluster.
maxRstat(Z, R, i) Return themaximum statistic for each non-singleton clus-

ter and its children.
to_mlab_linkage(Z) Convert a linkage matrix to a MATLAB(TM) compatible

one.

6.3.12 scipy.cluster.hierarchy.cophenet

scipy.cluster.hierarchy.cophenet(Z, Y=None)
Calculate the cophenetic distances between each observation in the hierarchical clustering defined by the linkage
Z.
Suppose p and q are original observations in disjoint clusters s and t, respectively and s and t are joined by
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a direct parent cluster u. The cophenetic distance between observations i and j is simply the distance between
clusters s and t.

Parameters

Z [ndarray] The hierarchical clustering encoded as an array (see linkage function).
Y [ndarray (optional)] Calculates the cophenetic correlation coefficient c of a hierarchical clus-

tering defined by the linkage matrix Z of a set of n observations in m dimensions. Y is the
condensed distance matrix from which Z was generated.

Returns

c [ndarray] The cophentic correlation distance (if Y is passed).
d [ndarray] The cophenetic distance matrix in condensed form. The ij th entry is the cophe-

netic distance between original observations i and j.
See also:

linkage

for a description of what a linkage matrix is.
scipy.spatial.distance.squareform

transforming condensed matrices into square ones.

Examples

>>> from scipy.cluster.hierarchy import single, cophenet
>>> from scipy.spatial.distance import pdist, squareform

Given a dataset X and a linkage matrix Z, the cophenetic distance between two points of X is the distance between
the largest two distinct clusters that each of the points:

>>> X = [[0, 0], [0, 1], [1, 0],
... [0, 4], [0, 3], [1, 4],
... [4, 0], [3, 0], [4, 1],
... [4, 4], [3, 4], [4, 3]]

X corresponds to this dataset

x x x x
x x

x x
x x x x

>>> Z = single(pdist(X))
>>> Z
array([[ 0., 1., 1., 2.],

[ 2., 12., 1., 3.],
[ 3., 4., 1., 2.],
[ 5., 14., 1., 3.],
[ 6., 7., 1., 2.],
[ 8., 16., 1., 3.],
[ 9., 10., 1., 2.],

(continues on next page)
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[11., 18., 1., 3.],
[13., 15., 2., 6.],
[17., 20., 2., 9.],
[19., 21., 2., 12.]])

>>> cophenet(Z)
array([1., 1., 2., 2., 2., 2., 2., 2., 2., 2., 2., 1., 2., 2., 2., 2., 2.,

2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 1., 1., 2., 2.,
2., 2., 2., 2., 1., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2.,
1., 1., 2., 2., 2., 1., 2., 2., 2., 2., 2., 2., 1., 1., 1.])

The output of the scipy.cluster.hierarchy.cophenetmethod is represented in condensed form. We
can use scipy.spatial.distance.squareform to see the output as a regular matrix (where each ele-
ment ij denotes the cophenetic distance between each i, j pair of points in X):

>>> squareform(cophenet(Z))
array([[0., 1., 1., 2., 2., 2., 2., 2., 2., 2., 2., 2.],

[1., 0., 1., 2., 2., 2., 2., 2., 2., 2., 2., 2.],
[1., 1., 0., 2., 2., 2., 2., 2., 2., 2., 2., 2.],
[2., 2., 2., 0., 1., 1., 2., 2., 2., 2., 2., 2.],
[2., 2., 2., 1., 0., 1., 2., 2., 2., 2., 2., 2.],
[2., 2., 2., 1., 1., 0., 2., 2., 2., 2., 2., 2.],
[2., 2., 2., 2., 2., 2., 0., 1., 1., 2., 2., 2.],
[2., 2., 2., 2., 2., 2., 1., 0., 1., 2., 2., 2.],
[2., 2., 2., 2., 2., 2., 1., 1., 0., 2., 2., 2.],
[2., 2., 2., 2., 2., 2., 2., 2., 2., 0., 1., 1.],
[2., 2., 2., 2., 2., 2., 2., 2., 2., 1., 0., 1.],
[2., 2., 2., 2., 2., 2., 2., 2., 2., 1., 1., 0.]])

In this example, the cophenetic distance between points on X that are very close (i.e. in the same corner) is 1.
For other pairs of points is 2, because the points will be located in clusters at different corners - thus the distance
between these clusters will be larger.

6.3.13 scipy.cluster.hierarchy.from_mlab_linkage

scipy.cluster.hierarchy.from_mlab_linkage(Z)
Convert a linkage matrix generated by MATLAB(TM) to a new linkage matrix compatible with this module.
The conversion does two things:

• the indices are converted from 1..N to 0..(N-1) form, and
• a fourth column Z[:,3] is added where Z[i,3] represents the number of original observations (leaves)
in the non-singleton cluster i.

This function is useful when loading in linkages from legacy data files generated by MATLAB.
Parameters

Z [ndarray] A linkage matrix generated by MATLAB(TM).
Returns

ZS [ndarray] A linkage matrix compatible with scipy.cluster.hierarchy.
See also:
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linkage

for a description of what a linkage matrix is.
to_mlab_linkage

transform from SciPy to MATLAB format.

Examples

>>> import numpy as np
>>> from scipy.cluster.hierarchy import ward, from_mlab_linkage

Given a linkage matrix in MATLAB format mZ, we can use scipy.cluster.hierarchy.
from_mlab_linkage to import it into SciPy format:

>>> mZ = np.array([[1, 2, 1], [4, 5, 1], [7, 8, 1],
... [10, 11, 1], [3, 13, 1.29099445],
... [6, 14, 1.29099445],
... [9, 15, 1.29099445],
... [12, 16, 1.29099445],
... [17, 18, 5.77350269],
... [19, 20, 5.77350269],
... [21, 22, 8.16496581]])

>>> Z = from_mlab_linkage(mZ)
>>> Z
array([[ 0. , 1. , 1. , 2. ],

[ 3. , 4. , 1. , 2. ],
[ 6. , 7. , 1. , 2. ],
[ 9. , 10. , 1. , 2. ],
[ 2. , 12. , 1.29099445, 3. ],
[ 5. , 13. , 1.29099445, 3. ],
[ 8. , 14. , 1.29099445, 3. ],
[ 11. , 15. , 1.29099445, 3. ],
[ 16. , 17. , 5.77350269, 6. ],
[ 18. , 19. , 5.77350269, 6. ],
[ 20. , 21. , 8.16496581, 12. ]])

As expected, the linkage matrix Z returned includes an additional column counting the number of original samples
in each cluster. Also, all cluster indexes are reduced by 1 (MATLAB format uses 1-indexing, whereas SciPy uses
0-indexing).

6.3.14 scipy.cluster.hierarchy.inconsistent

scipy.cluster.hierarchy.inconsistent(Z, d=2)
Calculate inconsistency statistics on a linkage matrix.

Parameters

Z [ndarray] The (n − 1) by 4 matrix encoding the linkage (hierarchical clustering). See
linkage documentation for more information on its form.

d [int, optional] The number of links up to d levels below each non-singleton cluster.
Returns
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R [ndarray] A (n − 1) by 4 matrix where the i’th row contains the link statistics for the non-
singleton cluster i. The link statistics are computed over the link heights for links d levels
below the cluster i. R[i,0] and R[i,1] are the mean and standard deviation of the
link heights, respectively; R[i,2] is the number of links included in the calculation; and
R[i,3] is the inconsistency coefficient,

Z[i, 2]− R[i, 0]

R[i, 1]

Notes

This function behaves similarly to the MATLAB(TM) inconsistent function.

Examples

>>> from scipy.cluster.hierarchy import inconsistent, linkage
>>> from matplotlib import pyplot as plt
>>> X = [[i] for i in [2, 8, 0, 4, 1, 9, 9, 0]]
>>> Z = linkage(X, 'ward')
>>> print(Z)
[[ 5. 6. 0. 2. ]
[ 2. 7. 0. 2. ]
[ 0. 4. 1. 2. ]
[ 1. 8. 1.15470054 3. ]
[ 9. 10. 2.12132034 4. ]
[ 3. 12. 4.11096096 5. ]
[11. 13. 14.07183949 8. ]]
>>> inconsistent(Z)
array([[ 0. , 0. , 1. , 0. ],

[ 0. , 0. , 1. , 0. ],
[ 1. , 0. , 1. , 0. ],
[ 0.57735027, 0.81649658, 2. , 0.70710678],
[ 1.04044011, 1.06123822, 3. , 1.01850858],
[ 3.11614065, 1.40688837, 2. , 0.70710678],
[ 6.44583366, 6.76770586, 3. , 1.12682288]])

6.3.15 scipy.cluster.hierarchy.maxinconsts

scipy.cluster.hierarchy.maxinconsts(Z, R)
Return the maximum inconsistency coefficient for each non-singleton cluster and its children.

Parameters

Z [ndarray] The hierarchical clustering encoded as a matrix. See linkage for more infor-
mation.

R [ndarray] The inconsistency matrix.
Returns

MI [ndarray] A monotonic (n-1)-sized numpy array of doubles.
See also:
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linkage

for a description of what a linkage matrix is.
inconsistent

for the creation of a inconsistency matrix.

Examples

>>> from scipy.cluster.hierarchy import median, inconsistent, maxinconsts
>>> from scipy.spatial.distance import pdist

Given a data set X, we can apply a clustering method to obtain a linkage matrix Z. scipy.cluster.
hierarchy.inconsistent can be also used to obtain the inconsistency matrix R associated to this clustering
process:

>>> X = [[0, 0], [0, 1], [1, 0],
... [0, 4], [0, 3], [1, 4],
... [4, 0], [3, 0], [4, 1],
... [4, 4], [3, 4], [4, 3]]

>>> Z = median(pdist(X))
>>> R = inconsistent(Z)
>>> Z
array([[ 0. , 1. , 1. , 2. ],

[ 3. , 4. , 1. , 2. ],
[ 9. , 10. , 1. , 2. ],
[ 6. , 7. , 1. , 2. ],
[ 2. , 12. , 1.11803399, 3. ],
[ 5. , 13. , 1.11803399, 3. ],
[ 8. , 15. , 1.11803399, 3. ],
[11. , 14. , 1.11803399, 3. ],
[18. , 19. , 3. , 6. ],
[16. , 17. , 3.5 , 6. ],
[20. , 21. , 3.25 , 12. ]])

>>> R
array([[1. , 0. , 1. , 0. ],

[1. , 0. , 1. , 0. ],
[1. , 0. , 1. , 0. ],
[1. , 0. , 1. , 0. ],
[1.05901699, 0.08346263, 2. , 0.70710678],
[1.05901699, 0.08346263, 2. , 0.70710678],
[1.05901699, 0.08346263, 2. , 0.70710678],
[1.05901699, 0.08346263, 2. , 0.70710678],
[1.74535599, 1.08655358, 3. , 1.15470054],
[1.91202266, 1.37522872, 3. , 1.15470054],
[3.25 , 0.25 , 3. , 0. ]])

Here scipy.cluster.hierarchy.maxinconsts can be used to compute the maximum value of the
inconsistency statistic (the last column of R) for each non-singleton cluster and its children:

>>> maxinconsts(Z, R)
array([0. , 0. , 0. , 0. , 0.70710678,

(continues on next page)
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0.70710678, 0.70710678, 0.70710678, 1.15470054, 1.15470054,
1.15470054])

6.3.16 scipy.cluster.hierarchy.maxdists

scipy.cluster.hierarchy.maxdists(Z)
Return the maximum distance between any non-singleton cluster.

Parameters

Z [ndarray] The hierarchical clustering encoded as a matrix. See linkage for more infor-
mation.

Returns

maxdists [ndarray] A (n-1) sized numpy array of doubles; MD[i] represents the maximum dis-
tance between any cluster (including singletons) below and including the node with index
i. More specifically, MD[i] = Z[Q(i)-n, 2].max() where Q(i) is the set of all
node indices below and including node i.

See also:

linkage

for a description of what a linkage matrix is.
is_monotonic

for testing for monotonicity of a linkage matrix.

Examples

>>> from scipy.cluster.hierarchy import median, maxdists
>>> from scipy.spatial.distance import pdist

Given a linkage matrix Z, scipy.cluster.hierarchy.maxdists computes for each new cluster gener-
ated (i.e. for each row of the linkage matrix) what is the maximum distance between any two child clusters.
Due to the nature of hierarchical clustering, in many cases this is going to be just the distance between the two
child clusters that were merged to form the current one - that is, Z[:,2].
However, for non-monotonic cluster assignments such as scipy.cluster.hierarchy.median clustering
this is not always the case: There may be cluster formations were the distance between the two clusters merged is
smaller than the distance between their children.
We can see this in an example:

>>> X = [[0, 0], [0, 1], [1, 0],
... [0, 4], [0, 3], [1, 4],
... [4, 0], [3, 0], [4, 1],
... [4, 4], [3, 4], [4, 3]]
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>>> Z = median(pdist(X))
>>> Z
array([[ 0. , 1. , 1. , 2. ],

[ 3. , 4. , 1. , 2. ],
[ 9. , 10. , 1. , 2. ],
[ 6. , 7. , 1. , 2. ],
[ 2. , 12. , 1.11803399, 3. ],
[ 5. , 13. , 1.11803399, 3. ],
[ 8. , 15. , 1.11803399, 3. ],
[11. , 14. , 1.11803399, 3. ],
[18. , 19. , 3. , 6. ],
[16. , 17. , 3.5 , 6. ],
[20. , 21. , 3.25 , 12. ]])

>>> maxdists(Z)
array([1. , 1. , 1. , 1. , 1.11803399,

1.11803399, 1.11803399, 1.11803399, 3. , 3.5 ,
3.5 ])

Note that while the distance between the two clusters merged when creating the last cluster is 3.25, there are two
children (clusters 16 and 17) whose distance is larger (3.5). Thus, scipy.cluster.hierarchy.maxdists
returns 3.5 in this case.

6.3.17 scipy.cluster.hierarchy.maxRstat

scipy.cluster.hierarchy.maxRstat(Z, R, i)
Return the maximum statistic for each non-singleton cluster and its children.

Parameters

Z [array_like] The hierarchical clustering encoded as a matrix. See linkage for more infor-
mation.

R [array_like] The inconsistency matrix.
i [int] The column of R to use as the statistic.

Returns

MR [ndarray] Calculates the maximum statistic for the i’th column of the inconsistency matrix R
for each non-singleton cluster node. MR[j] is the maximum over R[Q(j)-n, i] where
Q(j) the set of all node ids corresponding to nodes below and including j.

See also:

linkage

for a description of what a linkage matrix is.
inconsistent

for the creation of a inconsistency matrix.

Examples

>>> from scipy.cluster.hierarchy import median, inconsistent, maxRstat
>>> from scipy.spatial.distance import pdist
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Given a data set X, we can apply a clustering method to obtain a linkage matrix Z. scipy.cluster.
hierarchy.inconsistent can be also used to obtain the inconsistency matrix R associated to this clustering
process:

>>> X = [[0, 0], [0, 1], [1, 0],
... [0, 4], [0, 3], [1, 4],
... [4, 0], [3, 0], [4, 1],
... [4, 4], [3, 4], [4, 3]]

>>> Z = median(pdist(X))
>>> R = inconsistent(Z)
>>> R
array([[1. , 0. , 1. , 0. ],

[1. , 0. , 1. , 0. ],
[1. , 0. , 1. , 0. ],
[1. , 0. , 1. , 0. ],
[1.05901699, 0.08346263, 2. , 0.70710678],
[1.05901699, 0.08346263, 2. , 0.70710678],
[1.05901699, 0.08346263, 2. , 0.70710678],
[1.05901699, 0.08346263, 2. , 0.70710678],
[1.74535599, 1.08655358, 3. , 1.15470054],
[1.91202266, 1.37522872, 3. , 1.15470054],
[3.25 , 0.25 , 3. , 0. ]])

scipy.cluster.hierarchy.maxRstat can be used to compute the maximum value of each column of
R, for each non-singleton cluster and its children:

>>> maxRstat(Z, R, 0)
array([1. , 1. , 1. , 1. , 1.05901699,

1.05901699, 1.05901699, 1.05901699, 1.74535599, 1.91202266,
3.25 ])

>>> maxRstat(Z, R, 1)
array([0. , 0. , 0. , 0. , 0.08346263,

0.08346263, 0.08346263, 0.08346263, 1.08655358, 1.37522872,
1.37522872])

>>> maxRstat(Z, R, 3)
array([0. , 0. , 0. , 0. , 0.70710678,

0.70710678, 0.70710678, 0.70710678, 1.15470054, 1.15470054,
1.15470054])

6.3.18 scipy.cluster.hierarchy.to_mlab_linkage

scipy.cluster.hierarchy.to_mlab_linkage(Z)
Convert a linkage matrix to a MATLAB(TM) compatible one.
Converts a linkage matrix Z generated by the linkage function of this module to a MATLAB(TM) compatible one.
The return linkage matrix has the last column removed and the cluster indices are converted to 1..N indexing.

Parameters

Z [ndarray] A linkage matrix generated by scipy.cluster.hierarchy.
Returns

to_mlab_linkage
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[ndarray] A linkage matrix compatible with MATLAB(TM)’s hierarchical clustering func-
tions.
The return linkage matrix has the last column removed and the cluster indices are converted
to 1..N indexing.

See also:

linkage

for a description of what a linkage matrix is.
from_mlab_linkage

transform from Matlab to SciPy format.

Examples

>>> from scipy.cluster.hierarchy import ward, to_mlab_linkage
>>> from scipy.spatial.distance import pdist

>>> X = [[0, 0], [0, 1], [1, 0],
... [0, 4], [0, 3], [1, 4],
... [4, 0], [3, 0], [4, 1],
... [4, 4], [3, 4], [4, 3]]

>>> Z = ward(pdist(X))
>>> Z
array([[ 0. , 1. , 1. , 2. ],

[ 3. , 4. , 1. , 2. ],
[ 6. , 7. , 1. , 2. ],
[ 9. , 10. , 1. , 2. ],
[ 2. , 12. , 1.29099445, 3. ],
[ 5. , 13. , 1.29099445, 3. ],
[ 8. , 14. , 1.29099445, 3. ],
[11. , 15. , 1.29099445, 3. ],
[16. , 17. , 5.77350269, 6. ],
[18. , 19. , 5.77350269, 6. ],
[20. , 21. , 8.16496581, 12. ]])

After a linkage matrix Z has been created, we can use scipy.cluster.hierarchy.to_mlab_linkage
to convert it into MATLAB format:

>>> mZ = to_mlab_linkage(Z)
>>> mZ
array([[ 1. , 2. , 1. ],

[ 4. , 5. , 1. ],
[ 7. , 8. , 1. ],
[ 10. , 11. , 1. ],
[ 3. , 13. , 1.29099445],
[ 6. , 14. , 1.29099445],
[ 9. , 15. , 1.29099445],
[ 12. , 16. , 1.29099445],
[ 17. , 18. , 5.77350269],

(continues on next page)
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[ 19. , 20. , 5.77350269],
[ 21. , 22. , 8.16496581]])

The new linkage matrix mZ uses 1-indexing for all the clusters (instead of 0-indexing). Also, the last column of the
original linkage matrix has been dropped.

Routines for visualizing flat clusters.

dendrogram(Z[, p, truncate_mode, …]) Plot the hierarchical clustering as a dendrogram.

6.3.19 scipy.cluster.hierarchy.dendrogram

scipy.cluster.hierarchy.dendrogram(Z, p=30, truncate_mode=None, color_threshold=None,
get_leaves=True, orientation=’top’, la-
bels=None, count_sort=False, distance_sort=False,
show_leaf_counts=True, no_plot=False,
no_labels=False, leaf_font_size=None,
leaf_rotation=None, leaf_label_func=None,
show_contracted=False, link_color_func=None, ax=None,
above_threshold_color=’b’)

Plot the hierarchical clustering as a dendrogram.
The dendrogram illustrates how each cluster is composed by drawing a U-shaped link between a non-singleton
cluster and its children. The top of the U-link indicates a cluster merge. The two legs of the U-link indicate which
clusters were merged. The length of the two legs of the U-link represents the distance between the child clusters.
It is also the cophenetic distance between original observations in the two children clusters.

Parameters

Z [ndarray] The linkage matrix encoding the hierarchical clustering to render as a dendrogram.
See the linkage function for more information on the format of Z.

p [int, optional] The p parameter for truncate_mode.
truncate_mode

[str, optional] The dendrogram can be hard to read when the original observation matrix
from which the linkage is derived is large. Truncation is used to condense the dendrogram.
There are several modes:
None No truncation is performed (default). Note: 'none' is an alias for None that’s

kept for backward compatibility.
'lastp' The last p non-singleton clusters formed in the linkage are the only non-leaf

nodes in the linkage; they correspond to rows Z[n-p-2:end] in Z. All other
non-singleton clusters are contracted into leaf nodes.

'level' No more than p levels of the dendrogram tree are displayed. A “level” includes
all nodes with p merges from the last merge.
Note: 'mtica' is an alias for 'level' that’s kept for backward compatibil-
ity.

color_threshold
[double, optional] For brevity, let t be the color_threshold. Colors all the descendent
links below a cluster node k the same color if k is the first node below the cut threshold t.
All links connecting nodes with distances greater than or equal to the threshold are colored
blue. If t is less than or equal to zero, all nodes are colored blue. If color_threshold
is None or ‘default’, corresponding with MATLAB(TM) behavior, the threshold is set to
0.7*max(Z[:,2]).
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get_leaves [bool, optional] Includes a list R['leaves']=H in the result dictionary. For each i, H[i]
== j, cluster node j appears in position i in the left-to-right traversal of the leaves, where
j < 2n− 1 and i < n.

orientation
[str, optional] The direction to plot the dendrogram, which can be any of the following strings:
'top' Plots the root at the top, and plot descendent links going downwards. (default).
'bottom'

Plots the root at the bottom, and plot descendent links going upwards.
'left' Plots the root at the left, and plot descendent links going right.
'right' Plots the root at the right, and plot descendent links going left.

labels [ndarray, optional] By default labels is None so the index of the original observation is
used to label the leaf nodes. Otherwise, this is an n -sized list (or tuple). The labels[i]
value is the text to put under the i th leaf node only if it corresponds to an original observation
and not a non-singleton cluster.

count_sort
[str or bool, optional] For each node n, the order (visually, from left-to-right) n’s two descen-
dent links are plotted is determined by this parameter, which can be any of the following
values:
False Nothing is done.
'ascending' or True

The child with the minimum number of original objects in its cluster is plotted
first.

'descending'
The child with the maximum number of original objects in its cluster is plotted
first.

Note distance_sort and count_sort cannot both be True.
distance_sort

[str or bool, optional] For each node n, the order (visually, from left-to-right) n’s two descen-
dent links are plotted is determined by this parameter, which can be any of the following
values:
False Nothing is done.
'ascending' or True

The child with the minimum distance between its direct descendents is plotted
first.

'descending'
The child with the maximum distance between its direct descendents is plotted
first.

Note distance_sort and count_sort cannot both be True.
show_leaf_counts

[bool, optional] When True, leaf nodes representing k > 1 original observation are labeled
with the number of observations they contain in parentheses.

no_plot [bool, optional] When True, the final rendering is not performed. This is useful if only the
data structures computed for the rendering are needed or if matplotlib is not available.

no_labels [bool, optional] When True, no labels appear next to the leaf nodes in the rendering of the
dendrogram.

leaf_rotation
[double, optional] Specifies the angle (in degrees) to rotate the leaf labels. When unspecified,
the rotation is based on the number of nodes in the dendrogram (default is 0).

leaf_font_size
[int, optional] Specifies the font size (in points) of the leaf labels. When unspecified, the size
based on the number of nodes in the dendrogram.

leaf_label_func
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[lambda or function, optional] When leaf_label_func is a callable function, for each leaf with
cluster index k < 2n − 1. The function is expected to return a string with the label for the
leaf.
Indices k < n correspond to original observations while indices k ≥ n correspond to non-
singleton clusters.
For example, to label singletons with their node id and non-singletons with their id, count,
and inconsistency coefficient, simply do:

# First define the leaf label function.
def llf(id):

if id < n:
return str(id)

else:
return '[%d %d %1.2f]' % (id, count, R[n-id,3])

# The text for the leaf nodes is going to be big so force
# a rotation of 90 degrees.
dendrogram(Z, leaf_label_func=llf, leaf_rotation=90)

show_contracted
[bool, optional] When True the heights of non-singleton nodes contracted into a leaf node
are plotted as crosses along the link connecting that leaf node. This really is only useful when
truncation is used (see truncate_mode parameter).

link_color_func
[callable, optional] If given, link_color_function is called with each non-singleton id corre-
sponding to each U-shaped link it will paint. The function is expected to return the color to
paint the link, encoded as a matplotlib color string code. For example:

dendrogram(Z, link_color_func=lambda k: colors[k])

colors the direct links below each untruncated non-singleton node k using colors[k].
ax [matplotlib Axes instance, optional] If None and no_plot is not True, the dendrogram will be

plotted on the current axes. Otherwise if no_plot is not True the dendrogram will be plotted
on the given Axes instance. This can be useful if the dendrogram is part of a more complex
figure.

above_threshold_color
[str, optional] This matplotlib color string sets the color of the links above the
color_threshold. The default is ‘b’.

Returns

R [dict] A dictionary of data structures computed to render the dendrogram. Its has the fol-
lowing keys:
'color_list'

A list of color names. The k’th element represents the color of the k’th link.
'icoord' and 'dcoord'

Each of them is a list of lists. Let icoord = [I1, I2, ..., Ip]
where Ik = [xk1, xk2, xk3, xk4] and dcoord = [D1, D2, .
.., Dp] where Dk = [yk1, yk2, yk3, yk4], then the k’th link
painted is (xk1, yk1) - (xk2, yk2) - (xk3, yk3) - (xk4, yk4).

'ivl' A list of labels corresponding to the leaf nodes.
'leaves'

For each i, H[i] == j, cluster nodej appears in positioni in the left-to-right
traversal of the leaves, where j < 2n−1 and i < n. If j is less than n, the i-th
leaf node corresponds to an original observation. Otherwise, it corresponds to
a non-singleton cluster.

526 Chapter 6. API Reference



SciPy Reference Guide, Release 1.3.1

See also:
linkage, set_link_color_palette

Notes

It is expected that the distances in Z[:,2] be monotonic, otherwise crossings appear in the dendrogram.

Examples

>>> from scipy.cluster import hierarchy
>>> import matplotlib.pyplot as plt

A very basic example:

>>> ytdist = np.array([662., 877., 255., 412., 996., 295., 468., 268.,
... 400., 754., 564., 138., 219., 869., 669.])
>>> Z = hierarchy.linkage(ytdist, 'single')
>>> plt.figure()
>>> dn = hierarchy.dendrogram(Z)

Now plot in given axes, improve the color scheme and use both vertical and horizontal orientations:

>>> hierarchy.set_link_color_palette(['m', 'c', 'y', 'k'])
>>> fig, axes = plt.subplots(1, 2, figsize=(8, 3))
>>> dn1 = hierarchy.dendrogram(Z, ax=axes[0], above_threshold_color='y',
... orientation='top')
>>> dn2 = hierarchy.dendrogram(Z, ax=axes[1],
... above_threshold_color='#bcbddc',
... orientation='right')
>>> hierarchy.set_link_color_palette(None) # reset to default after use
>>> plt.show()

2 5 1 0 3 4
0

50

100

150

200

250

300

6.3. Hierarchical clustering (scipy.cluster.hierarchy) 527



SciPy Reference Guide, Release 1.3.1

2 5 1 0 3 4
0

50

100

150

200

250

300

0 100 200 300

2
5
1
0
3
4

These are data structures and routines for representing hierarchies as tree objects.

ClusterNode(id[, left, right, dist, count]) A tree node class for representing a cluster.
leaves_list(Z) Return a list of leaf node ids.
to_tree(Z[, rd]) Convert a linkage matrix into an easy-to-use tree object.
cut_tree(Z[, n_clusters, height]) Given a linkage matrix Z, return the cut tree.
optimal_leaf_ordering(Z, y[, metric]) Given a linkage matrix Z and distance, reorder the cut

tree.

6.3.20 scipy.cluster.hierarchy.ClusterNode

class scipy.cluster.hierarchy.ClusterNode(id, left=None, right=None, dist=0, count=1)
A tree node class for representing a cluster.
Leaf nodes correspond to original observations, while non-leaf nodes correspond to non-singleton clusters.
The to_tree function converts a matrix returned by the linkage function into an easy-to-use tree representation.
All parameter names are also attributes.

Parameters

id [int] The node id.
left [ClusterNode instance, optional] The left child tree node.
right [ClusterNode instance, optional] The right child tree node.
dist [float, optional] Distance for this cluster in the linkage matrix.
count [int, optional] The number of samples in this cluster.

See also:

to_tree

for converting a linkage matrix Z into a tree object.

Methods

get_count() The number of leaf nodes (original observations) be-
longing to the cluster node nd.

get_id() The identifier of the target node.
get_left() Return a reference to the left child tree object.
get_right() Return a reference to the right child tree object.
is_leaf() Return True if the target node is a leaf.
pre_order([func]) Perform pre-order traversal without recursive function

calls.

scipy.cluster.hierarchy.ClusterNode.get_count

ClusterNode.get_count()
The number of leaf nodes (original observations) belonging to the cluster node nd. If the target node is a leaf,
1 is returned.

Returns

get_count [int] The number of leaf nodes below the target node.
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scipy.cluster.hierarchy.ClusterNode.get_id

ClusterNode.get_id()
The identifier of the target node.
For 0 <= i < n, i corresponds to original observation i. For n <= i < 2n-1, i corresponds to non-
singleton cluster formed at iteration i-n.

Returns

id [int] The identifier of the target node.

scipy.cluster.hierarchy.ClusterNode.get_left

ClusterNode.get_left()
Return a reference to the left child tree object.

Returns

left [ClusterNode] The left child of the target node. If the node is a leaf, None is returned.

scipy.cluster.hierarchy.ClusterNode.get_right

ClusterNode.get_right()
Return a reference to the right child tree object.

Returns

right [ClusterNode] The left child of the target node. If the node is a leaf, None is returned.

scipy.cluster.hierarchy.ClusterNode.is_leaf

ClusterNode.is_leaf()
Return True if the target node is a leaf.

Returns

leafness [bool] True if the target node is a leaf node.

scipy.cluster.hierarchy.ClusterNode.pre_order

ClusterNode.pre_order(func=<function ClusterNode.<lambda>>)
Perform pre-order traversal without recursive function calls.
When a leaf node is first encountered, func is called with the leaf node as its argument, and its result is
appended to the list.
For example, the statement:

ids = root.pre_order(lambda x: x.id)

returns a list of the node ids corresponding to the leaf nodes of the tree as they appear from left to right.
Parameters
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func [function] Applied to each leaf ClusterNode object in the pre-order traversal. Given the
i-th leaf node in the pre-order traversal n[i], the result of func(n[i]) is stored in
L[i]. If not provided, the index of the original observation to which the node corre-
sponds is used.

Returns

L [list] The pre-order traversal.

6.3.21 scipy.cluster.hierarchy.leaves_list

scipy.cluster.hierarchy.leaves_list(Z)
Return a list of leaf node ids.
The return corresponds to the observation vector index as it appears in the tree from left to right. Z is a linkage
matrix.

Parameters

Z [ndarray] The hierarchical clustering encoded as a matrix. Z is a linkage matrix. See
linkage for more information.

Returns

leaves_list [ndarray] The list of leaf node ids.
See also:

dendrogram

for information about dendrogram structure.

Examples

>>> from scipy.cluster.hierarchy import ward, dendrogram, leaves_list
>>> from scipy.spatial.distance import pdist
>>> from matplotlib import pyplot as plt

>>> X = [[0, 0], [0, 1], [1, 0],
... [0, 4], [0, 3], [1, 4],
... [4, 0], [3, 0], [4, 1],
... [4, 4], [3, 4], [4, 3]]

>>> Z = ward(pdist(X))

The linkage matrix Z represents a dendrogram, that is, a tree that encodes the structure of the clustering performed.
scipy.cluster.hierarchy.leaves_list shows the mapping between indexes in the X dataset and
leaves in the dendrogram:

>>> leaves_list(Z)
array([ 2, 0, 1, 5, 3, 4, 8, 6, 7, 11, 9, 10], dtype=int32)

>>> fig = plt.figure(figsize=(25, 10))
>>> dn = dendrogram(Z)
>>> plt.show()
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6.3.22 scipy.cluster.hierarchy.to_tree

scipy.cluster.hierarchy.to_tree(Z, rd=False)
Convert a linkage matrix into an easy-to-use tree object.
The reference to the root ClusterNode object is returned (by default).
Each ClusterNode object has a left, right, dist, id, and count attribute. The left and right attributes
point to ClusterNode objects that were combined to generate the cluster. If both are None then the ClusterNode
object is a leaf node, its count must be 1, and its distance is meaningless but set to 0.
Note: This function is provided for the convenience of the library user. ClusterNodes are not used as input to any of
the functions in this library.

Parameters

Z [ndarray] The linkage matrix in proper form (see the linkage function documentation).
rd [bool, optional] When False (default), a reference to the root ClusterNode object is re-

turned. Otherwise, a tuple (r, d) is returned. r is a reference to the root node while d
is a list of ClusterNode objects - one per original entry in the linkage matrix plus en-
tries for all clustering steps. If a cluster id is less than the number of samples n in the data
that the linkage matrix describes, then it corresponds to a singleton cluster (leaf node). See
linkage for more information on the assignment of cluster ids to clusters.

Returns

tree [ClusterNode or tuple (ClusterNode, list of ClusterNode)] If rd is False, a ClusterNode.
If rd is True, a list of length 2*n - 1, with n the number of samples. See the description
of rd above for more details.

See also:
linkage, is_valid_linkage, ClusterNode

Examples

>>> from scipy.cluster import hierarchy
>>> x = np.random.rand(10).reshape(5, 2)
>>> Z = hierarchy.linkage(x)

(continues on next page)
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(continued from previous page)
>>> hierarchy.to_tree(Z)
<scipy.cluster.hierarchy.ClusterNode object at ...
>>> rootnode, nodelist = hierarchy.to_tree(Z, rd=True)
>>> rootnode
<scipy.cluster.hierarchy.ClusterNode object at ...
>>> len(nodelist)
9

6.3.23 scipy.cluster.hierarchy.cut_tree

scipy.cluster.hierarchy.cut_tree(Z, n_clusters=None, height=None)
Given a linkage matrix Z, return the cut tree.

Parameters

Z [scipy.cluster.linkage array] The linkage matrix.
n_clusters [array_like, optional] Number of clusters in the tree at the cut point.
height [array_like, optional] The height at which to cut the tree. Only possible for ultrametric trees.

Returns

cutree [array] An array indicating group membership at each agglomeration step. I.e., for a full cut
tree, in the first column each data point is in its own cluster. At the next step, two nodes are
merged. Finally all singleton and non-singleton clusters are in one group. If n_clusters or
height is given, the columns correspond to the columns of n_clusters or height.

Examples

>>> from scipy import cluster
>>> np.random.seed(23)
>>> X = np.random.randn(50, 4)
>>> Z = cluster.hierarchy.ward(X)
>>> cutree = cluster.hierarchy.cut_tree(Z, n_clusters=[5, 10])
>>> cutree[:10]
array([[0, 0],

[1, 1],
[2, 2],
[3, 3],
[3, 4],
[2, 2],
[0, 0],
[1, 5],
[3, 6],
[4, 7]])

6.3.24 scipy.cluster.hierarchy.optimal_leaf_ordering

scipy.cluster.hierarchy.optimal_leaf_ordering(Z, y, metric=’euclidean’)
Given a linkage matrix Z and distance, reorder the cut tree.

Parameters
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Z [ndarray] The hierarchical clustering encoded as a linkage matrix. See linkage for more
information on the return structure and algorithm.

y [ndarray] The condensed distance matrix from which Z was generated. Alternatively, a col-
lection of m observation vectors in n dimensions may be passed as a m by n array.

metric [str or function, optional] The distance metric to use in the case that y is a collection of
observation vectors; ignored otherwise. See the pdist function for a list of valid distance
metrics. A custom distance function can also be used.

Returns

Z_ordered [ndarray] A copy of the linkage matrix Z, reordered to minimize the distance between adja-
cent leaves.

Examples

>>> from scipy.cluster import hierarchy
>>> np.random.seed(23)
>>> X = np.random.randn(10,10)
>>> Z = hierarchy.ward(X)
>>> hierarchy.leaves_list(Z)
array([0, 5, 3, 9, 6, 8, 1, 4, 2, 7], dtype=int32)
>>> hierarchy.leaves_list(hierarchy.optimal_leaf_ordering(Z, X))
array([3, 9, 0, 5, 8, 2, 7, 4, 1, 6], dtype=int32)

These are predicates for checking the validity of linkage and inconsistency matrices as well as for checking isomorphism
of two flat cluster assignments.

is_valid_im(R[, warning, throw, name]) Return True if the inconsistency matrix passed is valid.
is_valid_linkage(Z[, warning, throw, name]) Check the validity of a linkage matrix.
is_isomorphic(T1, T2) Determine if two different cluster assignments are equiv-

alent.
is_monotonic(Z) Return True if the linkage passed is monotonic.
correspond(Z, Y) Check for correspondence between linkage and con-

densed distance matrices.
num_obs_linkage(Z) Return the number of original observations of the linkage

matrix passed.

6.3.25 scipy.cluster.hierarchy.is_valid_im

scipy.cluster.hierarchy.is_valid_im(R, warning=False, throw=False, name=None)
Return True if the inconsistency matrix passed is valid.
It must be a n by 4 array of doubles. The standard deviations R[:,1] must be nonnegative. The link counts
R[:,2] must be positive and no greater than n− 1.

Parameters

R [ndarray] The inconsistency matrix to check for validity.
warning [bool, optional] When True, issues a Python warning if the linkage matrix passed is invalid.
throw [bool, optional]When True, throws a Python exception if the linkagematrix passed is invalid.
name [str, optional] This string refers to the variable name of the invalid linkage matrix.

Returns
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b [bool] True if the inconsistency matrix is valid.
See also:

linkage

for a description of what a linkage matrix is.
inconsistent

for the creation of a inconsistency matrix.

Examples

>>> from scipy.cluster.hierarchy import ward, inconsistent, is_valid_im
>>> from scipy.spatial.distance import pdist

Given a data set X, we can apply a clustering method to obtain a linkage matrix Z. scipy.cluster.
hierarchy.inconsistent can be also used to obtain the inconsistency matrix R associated to this clustering
process:

>>> X = [[0, 0], [0, 1], [1, 0],
... [0, 4], [0, 3], [1, 4],
... [4, 0], [3, 0], [4, 1],
... [4, 4], [3, 4], [4, 3]]

>>> Z = ward(pdist(X))
>>> R = inconsistent(Z)
>>> Z
array([[ 0. , 1. , 1. , 2. ],

[ 3. , 4. , 1. , 2. ],
[ 6. , 7. , 1. , 2. ],
[ 9. , 10. , 1. , 2. ],
[ 2. , 12. , 1.29099445, 3. ],
[ 5. , 13. , 1.29099445, 3. ],
[ 8. , 14. , 1.29099445, 3. ],
[11. , 15. , 1.29099445, 3. ],
[16. , 17. , 5.77350269, 6. ],
[18. , 19. , 5.77350269, 6. ],
[20. , 21. , 8.16496581, 12. ]])

>>> R
array([[1. , 0. , 1. , 0. ],

[1. , 0. , 1. , 0. ],
[1. , 0. , 1. , 0. ],
[1. , 0. , 1. , 0. ],
[1.14549722, 0.20576415, 2. , 0.70710678],
[1.14549722, 0.20576415, 2. , 0.70710678],
[1.14549722, 0.20576415, 2. , 0.70710678],
[1.14549722, 0.20576415, 2. , 0.70710678],
[2.78516386, 2.58797734, 3. , 1.15470054],
[2.78516386, 2.58797734, 3. , 1.15470054],
[6.57065706, 1.38071187, 3. , 1.15470054]])

Now we can use scipy.cluster.hierarchy.is_valid_im to verify that R is correct:
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>>> is_valid_im(R)
True

However, if R is wrongly constructed (e.g one of the standard deviations is set to a negative value) then the check
will fail:

>>> R[-1,1] = R[-1,1] * -1
>>> is_valid_im(R)
False

6.3.26 scipy.cluster.hierarchy.is_valid_linkage

scipy.cluster.hierarchy.is_valid_linkage(Z, warning=False, throw=False, name=None)
Check the validity of a linkage matrix.
A linkage matrix is valid if it is a two dimensional array (type double) with n rows and 4 columns. The first two
columns must contain indices between 0 and 2n−1. For a given row i, the following two expressions have to hold:

0 ≤ Z[i, 0] ≤ i+ n− 10 ≤ Z[i, 1] ≤ i+ n− 1

I.e. a cluster cannot join another cluster unless the cluster being joined has been generated.
Parameters

Z [array_like] Linkage matrix.
warning [bool, optional] When True, issues a Python warning if the linkage matrix passed is invalid.
throw [bool, optional]When True, throws a Python exception if the linkagematrix passed is invalid.
name [str, optional] This string refers to the variable name of the invalid linkage matrix.

Returns

b [bool] True if the inconsistency matrix is valid.
See also:

linkage

for a description of what a linkage matrix is.

Examples

>>> from scipy.cluster.hierarchy import ward, is_valid_linkage
>>> from scipy.spatial.distance import pdist

All linkage matrices generated by the clustering methods in this module will be valid (i.e. they will have the
appropriate dimensions and the two required expressions will hold for all the rows).
We can check this using scipy.cluster.hierarchy.is_valid_linkage:

>>> X = [[0, 0], [0, 1], [1, 0],
... [0, 4], [0, 3], [1, 4],
... [4, 0], [3, 0], [4, 1],
... [4, 4], [3, 4], [4, 3]]
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>>> Z = ward(pdist(X))
>>> Z
array([[ 0. , 1. , 1. , 2. ],

[ 3. , 4. , 1. , 2. ],
[ 6. , 7. , 1. , 2. ],
[ 9. , 10. , 1. , 2. ],
[ 2. , 12. , 1.29099445, 3. ],
[ 5. , 13. , 1.29099445, 3. ],
[ 8. , 14. , 1.29099445, 3. ],
[11. , 15. , 1.29099445, 3. ],
[16. , 17. , 5.77350269, 6. ],
[18. , 19. , 5.77350269, 6. ],
[20. , 21. , 8.16496581, 12. ]])

>>> is_valid_linkage(Z)
True

However, is we create a linkage matrix in a wrong way - or if we modify a valid one in a way that any of the required
expressions don’t hold anymore, then the check will fail:

>>> Z[3][1] = 20 # the cluster number 20 is not defined at this point
>>> is_valid_linkage(Z)
False

6.3.27 scipy.cluster.hierarchy.is_isomorphic

scipy.cluster.hierarchy.is_isomorphic(T1, T2)
Determine if two different cluster assignments are equivalent.

Parameters

T1 [array_like] An assignment of singleton cluster ids to flat cluster ids.
T2 [array_like] An assignment of singleton cluster ids to flat cluster ids.

Returns

b [bool] Whether the flat cluster assignments T1 and T2 are equivalent.
See also:

linkage

for a description of what a linkage matrix is.
fcluster

for the creation of flat cluster assignments.

Examples

>>> from scipy.cluster.hierarchy import fcluster, is_isomorphic
>>> from scipy.cluster.hierarchy import single, complete
>>> from scipy.spatial.distance import pdist
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Two flat cluster assignments can be isomorphic if they represent the same cluster assignment, with different labels.
For example, we can use the scipy.cluster.hierarchy.single: method and flatten the output to four
clusters:

>>> X = [[0, 0], [0, 1], [1, 0],
... [0, 4], [0, 3], [1, 4],
... [4, 0], [3, 0], [4, 1],
... [4, 4], [3, 4], [4, 3]]

>>> Z = single(pdist(X))
>>> T = fcluster(Z, 1, criterion='distance')
>>> T
array([3, 3, 3, 4, 4, 4, 2, 2, 2, 1, 1, 1], dtype=int32)

We can then do the same using the scipy.cluster.hierarchy.complete: method:

>>> Z = complete(pdist(X))
>>> T_ = fcluster(Z, 1.5, criterion='distance')
>>> T_
array([1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4], dtype=int32)

As we can see, in both cases we obtain four clusters and all the data points are distributed in the same way - the
only thing that changes are the flat cluster labels (3 => 1, 4 =>2, 2 =>3 and 4 =>1), so both cluster assignments are
isomorphic:

>>> is_isomorphic(T, T_)
True

6.3.28 scipy.cluster.hierarchy.is_monotonic

scipy.cluster.hierarchy.is_monotonic(Z)
Return True if the linkage passed is monotonic.
The linkage is monotonic if for every cluster s and t joined, the distance between them is no less than the distance
between any previously joined clusters.

Parameters

Z [ndarray] The linkage matrix to check for monotonicity.
Returns

b [bool] A boolean indicating whether the linkage is monotonic.
See also:

linkage

for a description of what a linkage matrix is.

Examples

>>> from scipy.cluster.hierarchy import median, ward, is_monotonic
>>> from scipy.spatial.distance import pdist
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By definition, some hierarchical clustering algorithms - such as scipy.cluster.hierarchy.ward - pro-
duce monotonic assignments of samples to clusters; however, this is not always true for other hierarchical methods
- e.g. scipy.cluster.hierarchy.median.
Given a linkage matrix Z (as the result of a hierarchical clustering method) we can test programmatically whether
if is has the monotonicity property or not, using scipy.cluster.hierarchy.is_monotonic:

>>> X = [[0, 0], [0, 1], [1, 0],
... [0, 4], [0, 3], [1, 4],
... [4, 0], [3, 0], [4, 1],
... [4, 4], [3, 4], [4, 3]]

>>> Z = ward(pdist(X))
>>> Z
array([[ 0. , 1. , 1. , 2. ],

[ 3. , 4. , 1. , 2. ],
[ 6. , 7. , 1. , 2. ],
[ 9. , 10. , 1. , 2. ],
[ 2. , 12. , 1.29099445, 3. ],
[ 5. , 13. , 1.29099445, 3. ],
[ 8. , 14. , 1.29099445, 3. ],
[11. , 15. , 1.29099445, 3. ],
[16. , 17. , 5.77350269, 6. ],
[18. , 19. , 5.77350269, 6. ],
[20. , 21. , 8.16496581, 12. ]])

>>> is_monotonic(Z)
True

>>> Z = median(pdist(X))
>>> Z
array([[ 0. , 1. , 1. , 2. ],

[ 3. , 4. , 1. , 2. ],
[ 9. , 10. , 1. , 2. ],
[ 6. , 7. , 1. , 2. ],
[ 2. , 12. , 1.11803399, 3. ],
[ 5. , 13. , 1.11803399, 3. ],
[ 8. , 15. , 1.11803399, 3. ],
[11. , 14. , 1.11803399, 3. ],
[18. , 19. , 3. , 6. ],
[16. , 17. , 3.5 , 6. ],
[20. , 21. , 3.25 , 12. ]])

>>> is_monotonic(Z)
False

Note that this method is equivalent to just verifying that the distances in the third column of the linkage matrix
appear in a monotonically increasing order.

6.3.29 scipy.cluster.hierarchy.correspond

scipy.cluster.hierarchy.correspond(Z, Y)
Check for correspondence between linkage and condensed distance matrices.
They must have the same number of original observations for the check to succeed.
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This function is useful as a sanity check in algorithms that make extensive use of linkage and distance matrices that
must correspond to the same set of original observations.

Parameters

Z [array_like] The linkage matrix to check for correspondence.
Y [array_like] The condensed distance matrix to check for correspondence.

Returns

b [bool] A boolean indicating whether the linkage matrix and distance matrix could possibly
correspond to one another.

See also:

linkage

for a description of what a linkage matrix is.

Examples

>>> from scipy.cluster.hierarchy import ward, correspond
>>> from scipy.spatial.distance import pdist

This method can be used to check if a given linkage matrix Z has been obtained from the application of a cluster
method over a dataset X:

>>> X = [[0, 0], [0, 1], [1, 0],
... [0, 4], [0, 3], [1, 4],
... [4, 0], [3, 0], [4, 1],
... [4, 4], [3, 4], [4, 3]]
>>> X_condensed = pdist(X)
>>> Z = ward(X_condensed)

Here we can compare Z and X (in condensed form):

>>> correspond(Z, X_condensed)
True

6.3.30 scipy.cluster.hierarchy.num_obs_linkage

scipy.cluster.hierarchy.num_obs_linkage(Z)
Return the number of original observations of the linkage matrix passed.

Parameters

Z [ndarray] The linkage matrix on which to perform the operation.
Returns

n [int] The number of original observations in the linkage.
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Examples

>>> from scipy.cluster.hierarchy import ward, num_obs_linkage
>>> from scipy.spatial.distance import pdist

>>> X = [[0, 0], [0, 1], [1, 0],
... [0, 4], [0, 3], [1, 4],
... [4, 0], [3, 0], [4, 1],
... [4, 4], [3, 4], [4, 3]]

>>> Z = ward(pdist(X))

Z is a linkage matrix obtained after using the Ward clustering method with X, a dataset with 12 data points.

>>> num_obs_linkage(Z)
12

Utility routines for plotting:

set_link_color_palette(palette) Set list of matplotlib color codes for use by dendrogram.

6.3.31 scipy.cluster.hierarchy.set_link_color_palette

scipy.cluster.hierarchy.set_link_color_palette(palette)
Set list of matplotlib color codes for use by dendrogram.
Note that this palette is global (i.e. setting it once changes the colors for all subsequent calls to dendrogram)
and that it affects only the the colors below color_threshold.
Note that dendrogram also accepts a custom coloring function through its link_color_func keyword,
which is more flexible and non-global.

Parameters

palette [list of str or None] A list of matplotlib color codes. The order of the color codes is the order
in which the colors are cycled through when color thresholding in the dendrogram.
If None, resets the palette to its default (which is ['g', 'r', 'c', 'm', 'y',
'k']).

Returns

None
See also:
dendrogram

Notes

Ability to reset the palette with None added in SciPy 0.17.0.
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Examples

>>> from scipy.cluster import hierarchy
>>> ytdist = np.array([662., 877., 255., 412., 996., 295., 468., 268.,
... 400., 754., 564., 138., 219., 869., 669.])
>>> Z = hierarchy.linkage(ytdist, 'single')
>>> dn = hierarchy.dendrogram(Z, no_plot=True)
>>> dn['color_list']
['g', 'b', 'b', 'b', 'b']
>>> hierarchy.set_link_color_palette(['c', 'm', 'y', 'k'])
>>> dn = hierarchy.dendrogram(Z, no_plot=True)
>>> dn['color_list']
['c', 'b', 'b', 'b', 'b']
>>> dn = hierarchy.dendrogram(Z, no_plot=True, color_threshold=267,
... above_threshold_color='k')
>>> dn['color_list']
['c', 'm', 'm', 'k', 'k']

Now reset the color palette to its default:

>>> hierarchy.set_link_color_palette(None)

6.4 Constants (scipy.constants)

Physical and mathematical constants and units.

6.4.1 Mathematical constants

pi Pi
golden Golden ratio
golden_ratio Golden ratio
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6.4.2 Physical constants

c speed of light in vacuum
speed_of_light speed of light in vacuum
mu_0 the magnetic constant µ0

epsilon_0 the electric constant (vacuum permittivity), ϵ0
h the Planck constant h
Planck the Planck constant h
hbar ℏ = h/(2π)
G Newtonian constant of gravitation
gravitational_constant Newtonian constant of gravitation
g standard acceleration of gravity
e elementary charge
elementary_charge elementary charge
R molar gas constant
gas_constant molar gas constant
alpha fine-structure constant
fine_structure fine-structure constant
N_A Avogadro constant
Avogadro Avogadro constant
k Boltzmann constant
Boltzmann Boltzmann constant
sigma Stefan-Boltzmann constant σ
Stefan_Boltzmann Stefan-Boltzmann constant σ
Wien Wien displacement law constant
Rydberg Rydberg constant
m_e electron mass
electron_mass electron mass
m_p proton mass
proton_mass proton mass
m_n neutron mass
neutron_mass neutron mass

Constants database

In addition to the above variables, scipy.constants also contains the 2014 CODATA recommended values
[Rc437f0a4090e-CODATA2014] database containing more physical constants.

value(key) Value in physical_constants indexed by key
unit(key) Unit in physical_constants indexed by key
precision(key) Relative precision in physical_constants indexed by key
find([sub, disp]) Return list of physical_constant keys containing a given

string.
ConstantWarning Accessing a constant no longer in current CODATA data

set

scipy.constants.value
scipy.constants.value(key)

Value in physical_constants indexed by key
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Parameters

key [Python string or unicode] Key in dictionary physical_constants
Returns

value [float] Value in physical_constants corresponding to key

Examples

>>> from scipy import constants
>>> constants.value(u'elementary charge')

1.6021766208e-19

scipy.constants.unit
scipy.constants.unit(key)

Unit in physical_constants indexed by key
Parameters

key [Python string or unicode] Key in dictionary physical_constants
Returns

unit [Python string] Unit in physical_constants corresponding to key

Examples

>>> from scipy import constants
>>> constants.unit(u'proton mass')
'kg'

scipy.constants.precision
scipy.constants.precision(key)

Relative precision in physical_constants indexed by key
Parameters

key [Python string or unicode] Key in dictionary physical_constants
Returns

prec [float] Relative precision in physical_constants corresponding to key

Examples

>>> from scipy import constants
>>> constants.precision(u'proton mass')
1.2555138746605121e-08
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scipy.constants.find
scipy.constants.find(sub=None, disp=False)

Return list of physical_constant keys containing a given string.
Parameters

sub [str, unicode] Sub-string to search keys for. By default, return all keys.
disp [bool] If True, print the keys that are found, and return None. Otherwise, return the list of

keys without printing anything.
Returns

keys [list or None] If disp is False, the list of keys is returned. Otherwise, None is returned.

Examples

>>> from scipy.constants import find, physical_constants

Which keys in the physical_constants dictionary contain ‘boltzmann’?

>>> find('boltzmann')
['Boltzmann constant',
'Boltzmann constant in Hz/K',
'Boltzmann constant in eV/K',
'Boltzmann constant in inverse meters per kelvin',
'Stefan-Boltzmann constant']

Get the constant called ‘Boltzmann constant in Hz/K’:

>>> physical_constants['Boltzmann constant in Hz/K']
(20836612000.0, 'Hz K^-1', 12000.0)

Find constants with ‘radius’ in the key:

>>> find('radius')
['Bohr radius',
'classical electron radius',
'deuteron rms charge radius',
'proton rms charge radius']
>>> physical_constants['classical electron radius']
(2.8179403227e-15, 'm', 1.9e-24)

scipy.constants.ConstantWarning
exception scipy.constants.ConstantWarning

Accessing a constant no longer in current CODATA data set
with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.
scipy.constants.physical_constants

Dictionary of physical constants, of the format physical_constants[name] = (value, unit,
uncertainty).

Available constants:
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alpha particle mass 6.64465723e-27 kg
alpha particle mass energy equivalent 5.971920097e-10 J
alpha particle mass energy equivalent in MeV 3727.379378 MeV
alpha particle mass in u 4.001506179127 u
alpha particle molar mass 0.004001506179127 kg mol^-1
alpha particle-electron mass ratio 7294.29954136
alpha particle-proton mass ratio 3.97259968907
Angstrom star 1.00001495e-10 m
atomic mass constant 1.66053904e-27 kg
atomic mass constant energy equivalent 1.492418062e-10 J
atomic mass constant energy equivalent in MeV 931.4940954 MeV
atomic mass unit-electron volt relationship 931494095.4 eV
atomic mass unit-hartree relationship 34231776.902 E_h
atomic mass unit-hertz relationship 2.2523427206e+23 Hz
atomic mass unit-inverse meter relationship 751300661660000.0 m^-1
atomic mass unit-joule relationship 1.492418062e-10 J
atomic mass unit-kelvin relationship 10809543800000.0 K
atomic mass unit-kilogram relationship 1.66053904e-27 kg
atomic unit of 1st hyperpolarizability 3.206361329e-53 C^3 m^3 J^-2
atomic unit of 2nd hyperpolarizability 6.235380085e-65 C^4 m^4 J^-3
atomic unit of action 1.0545718e-34 J s
atomic unit of charge 1.6021766208e-19 C
atomic unit of charge density 1081202377000.0 C m^-3
atomic unit of current 0.006623618183 A
atomic unit of electric dipole mom. 8.478353552e-30 C m
atomic unit of electric field 514220670700.0 V m^-1
atomic unit of electric field gradient 9.717362356e+21 V m^-2
atomic unit of electric polarizability 1.6487772731e-41 C^2 m^2 J^-1
atomic unit of electric potential 27.21138602 V
atomic unit of electric quadrupole mom. 4.486551484e-40 C m^2
atomic unit of energy 4.35974465e-18 J
atomic unit of force 8.23872336e-08 N
atomic unit of length 5.2917721067e-11 m
atomic unit of mag. dipole mom. 1.854801999e-23 J T^-1
atomic unit of mag. flux density 235051.755 T
atomic unit of magnetizability 7.8910365886e-29 J T^-2
atomic unit of mass 9.10938356e-31 kg
atomic unit of mom.um 1.992851882e-24 kg m s^-1
atomic unit of permittivity 1.1126500560536183e-10 F m^-1
atomic unit of time 2.418884326509e-17 s
atomic unit of velocity 2187691.26277 m s^-1
Avogadro constant 6.022140857e+23 mol^-1
Bohr magneton 9.274009994e-24 J T^-1
Bohr magneton in eV/T 5.7883818012e-05 eV T^-1
Bohr magneton in Hz/T 13996245042.0 Hz T^-1
Bohr magneton in inverse meters per tesla 46.68644814 m^-1 T^-1
Bohr magneton in K/T 0.67171405 K T^-1
Bohr radius 5.2917721067e-11 m
Boltzmann constant 1.38064852e-23 J K^-1
Boltzmann constant in eV/K 8.6173303e-05 eV K^-1

Continued on next page
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Table 11 – continued from previous page
Boltzmann constant in Hz/K 20836612000.0 Hz K^-1
Boltzmann constant in inverse meters per kelvin 69.503457 m^-1 K^-1
characteristic impedance of vacuum 376.73031346177066 ohm
classical electron radius 2.8179403227e-15 m
Compton wavelength 2.4263102367e-12 m
Compton wavelength over 2 pi 3.8615926764e-13 m
conductance quantum 7.748091731e-05 S
conventional value of Josephson constant 483597900000000.0 Hz V^-1
conventional value of von Klitzing constant 25812.807 ohm
Cu x unit 1.00207697e-13 m
deuteron g factor 0.8574382311
deuteron mag. mom. 4.33073504e-27 J T^-1
deuteron mag. mom. to Bohr magneton ratio 0.0004669754554
deuteron mag. mom. to nuclear magneton ratio 0.8574382311
deuteron mass 3.343583719e-27 kg
deuteron mass energy equivalent 3.005063183e-10 J
deuteron mass energy equivalent in MeV 1875.612928 MeV
deuteron mass in u 2.013553212745 u
deuteron molar mass 0.002013553212745 kg mol^-1
deuteron rms charge radius 2.1413e-15 m
deuteron-electron mag. mom. ratio -0.0004664345535
deuteron-electron mass ratio 3670.48296785
deuteron-neutron mag. mom. ratio -0.44820652
deuteron-proton mag. mom. ratio 0.3070122077
deuteron-proton mass ratio 1.99900750087
electric constant 8.854187817620389e-12 F m^-1
electron charge to mass quotient -175882002400.0 C kg^-1
electron g factor -2.00231930436182
electron gyromag. ratio 176085964400.0 s^-1 T^-1
electron gyromag. ratio over 2 pi 28024.95164 MHz T^-1
electron mag. mom. -9.28476462e-24 J T^-1
electron mag. mom. anomaly 0.00115965218091
electron mag. mom. to Bohr magneton ratio -1.00115965218091
electron mag. mom. to nuclear magneton ratio -1838.28197234
electron mass 9.10938356e-31 kg
electron mass energy equivalent 8.18710565e-14 J
electron mass energy equivalent in MeV 0.5109989461 MeV
electron mass in u 0.00054857990907 u
electron molar mass 5.4857990907e-07 kg mol^-1
electron to alpha particle mass ratio 0.0001370933554798
electron to shielded helion mag. mom. ratio 864.058257
electron to shielded proton mag. mom. ratio -658.2275971
electron volt 1.6021766208e-19 J
electron volt-atomic mass unit relationship 1.0735441105e-09 u
electron volt-hartree relationship 0.03674932248 E_h
electron volt-hertz relationship 241798926200000.0 Hz
electron volt-inverse meter relationship 806554.4005 m^-1
electron volt-joule relationship 1.6021766208e-19 J
electron volt-kelvin relationship 11604.5221 K
electron volt-kilogram relationship 1.782661907e-36 kg

Continued on next page
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Table 11 – continued from previous page
electron-deuteron mag. mom. ratio -2143.923499
electron-deuteron mass ratio 0.0002724437107484
electron-helion mass ratio 0.0001819543074854
electron-muon mag. mom. ratio 206.766988
electron-muon mass ratio 0.0048363317
electron-neutron mag. mom. ratio 960.9205
electron-neutron mass ratio 0.00054386734428
electron-proton mag. mom. ratio -658.2106866
electron-proton mass ratio 0.000544617021352
electron-tau mass ratio 0.000287592
electron-triton mass ratio 0.0001819200062203
elementary charge 1.6021766208e-19 C
elementary charge over h 241798926200000.0 A J^-1
Faraday constant 96485.33289 C mol^-1
Faraday constant for conventional electric current 96485.3251 C_90 mol^-1
Fermi coupling constant 1.1663787e-05 GeV^-2
fine-structure constant 0.0072973525664
first radiation constant 3.74177179e-16 W m^2
first radiation constant for spectral radiance 1.191042953e-16 W m^2 sr^-1
Hartree energy 4.35974465e-18 J
Hartree energy in eV 27.21138602 eV
hartree-atomic mass unit relationship 2.9212623197e-08 u
hartree-electron volt relationship 27.21138602 eV
hartree-hertz relationship 6579683920711000.0 Hz
hartree-inverse meter relationship 21947463.13702 m^-1
hartree-joule relationship 4.35974465e-18 J
hartree-kelvin relationship 315775.13 K
hartree-kilogram relationship 4.850870129e-35 kg
helion g factor -4.255250616
helion mag. mom. -1.074617522e-26 J T^-1
helion mag. mom. to Bohr magneton ratio -0.001158740958
helion mag. mom. to nuclear magneton ratio -2.127625308
helion mass 5.0064127e-27 kg
helion mass energy equivalent 4.499539341e-10 J
helion mass energy equivalent in MeV 2808.391586 MeV
helion mass in u 3.01493224673 u
helion molar mass 0.00301493224673 kg mol^-1
helion-electron mass ratio 5495.88527922
helion-proton mass ratio 2.99315267046
hertz-atomic mass unit relationship 4.4398216616e-24 u
hertz-electron volt relationship 4.135667662e-15 eV
hertz-hartree relationship 1.5198298460088e-16 E_h
hertz-inverse meter relationship 3.3356409519815204e-09 m^-1
hertz-joule relationship 6.62607004e-34 J
hertz-kelvin relationship 4.7992447e-11 K
hertz-kilogram relationship 7.372497201e-51 kg
inverse fine-structure constant 137.035999139
inverse meter-atomic mass unit relationship 1.331025049e-15 u
inverse meter-electron volt relationship 1.2398419739e-06 eV
inverse meter-hartree relationship 4.556335252767e-08 E_h

Continued on next page
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Table 11 – continued from previous page
inverse meter-hertz relationship 299792458.0 Hz
inverse meter-joule relationship 1.986445824e-25 J
inverse meter-kelvin relationship 0.0143877736 K
inverse meter-kilogram relationship 2.210219057e-42 kg
inverse of conductance quantum 12906.4037278 ohm
Josephson constant 483597852500000.0 Hz V^-1
joule-atomic mass unit relationship 6700535363.0 u
joule-electron volt relationship 6.241509126e+18 eV
joule-hartree relationship 2.293712317e+17 E_h
joule-hertz relationship 1.509190205e+33 Hz
joule-inverse meter relationship 5.034116651e+24 m^-1
joule-kelvin relationship 7.2429731e+22 K
joule-kilogram relationship 1.1126500560536185e-17 kg
kelvin-atomic mass unit relationship 9.2510842e-14 u
kelvin-electron volt relationship 8.6173303e-05 eV
kelvin-hartree relationship 3.1668105e-06 E_h
kelvin-hertz relationship 20836612000.0 Hz
kelvin-inverse meter relationship 69.503457 m^-1
kelvin-joule relationship 1.38064852e-23 J
kelvin-kilogram relationship 1.53617865e-40 kg
kilogram-atomic mass unit relationship 6.022140857e+26 u
kilogram-electron volt relationship 5.60958865e+35 eV
kilogram-hartree relationship 2.061485823e+34 E_h
kilogram-hertz relationship 1.356392512e+50 Hz
kilogram-inverse meter relationship 4.524438411e+41 m^-1
kilogram-joule relationship 8.987551787368176e+16 J
kilogram-kelvin relationship 6.5096595e+39 K
lattice parameter of silicon 5.431020504e-10 m
Loschmidt constant (273.15 K, 100 kPa) 2.6516467e+25 m^-3
Loschmidt constant (273.15 K, 101.325 kPa) 2.6867811e+25 m^-3
mag. constant 1.2566370614359173e-06 N A^-2
mag. flux quantum 2.067833831e-15 Wb
Mo x unit 1.00209952e-13 m
molar gas constant 8.3144598 J mol^-1 K^-1
molar mass constant 0.001 kg mol^-1
molar mass of carbon-12 0.012 kg mol^-1
molar Planck constant 3.990312711e-10 J s mol^-1
molar Planck constant times c 0.119626565582 J m mol^-1
molar volume of ideal gas (273.15 K, 100 kPa) 0.022710947 m^3 mol^-1
molar volume of ideal gas (273.15 K, 101.325 kPa) 0.022413962 m^3 mol^-1
molar volume of silicon 1.205883214e-05 m^3 mol^-1
muon Compton wavelength 1.173444111e-14 m
muon Compton wavelength over 2 pi 1.867594308e-15 m
muon g factor -2.0023318418
muon mag. mom. -4.49044826e-26 J T^-1
muon mag. mom. anomaly 0.00116592089
muon mag. mom. to Bohr magneton ratio -0.00484197048
muon mag. mom. to nuclear magneton ratio -8.89059705
muon mass 1.883531594e-28 kg
muon mass energy equivalent 1.692833774e-11 J

Continued on next page
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Table 11 – continued from previous page
muon mass energy equivalent in MeV 105.6583745 MeV
muon mass in u 0.1134289257 u
muon molar mass 0.0001134289257 kg mol^-1
muon-electron mass ratio 206.7682826
muon-neutron mass ratio 0.1124545167
muon-proton mag. mom. ratio -3.183345142
muon-proton mass ratio 0.1126095262
muon-tau mass ratio 0.0594649
natural unit of action 1.0545718e-34 J s
natural unit of action in eV s 6.582119514e-16 eV s
natural unit of energy 8.18710565e-14 J
natural unit of energy in MeV 0.5109989461 MeV
natural unit of length 3.8615926764e-13 m
natural unit of mass 9.10938356e-31 kg
natural unit of mom.um 2.730924488e-22 kg m s^-1
natural unit of mom.um in MeV/c 0.5109989461 MeV/c
natural unit of time 1.28808866712e-21 s
natural unit of velocity 299792458.0 m s^-1
neutron Compton wavelength 1.31959090481e-15 m
neutron Compton wavelength over 2 pi 2.1001941536e-16 m
neutron g factor -3.82608545
neutron gyromag. ratio 183247172.0 s^-1 T^-1
neutron gyromag. ratio over 2 pi 29.1646933 MHz T^-1
neutron mag. mom. -9.662365e-27 J T^-1
neutron mag. mom. to Bohr magneton ratio -0.00104187563
neutron mag. mom. to nuclear magneton ratio -1.91304273
neutron mass 1.674927471e-27 kg
neutron mass energy equivalent 1.505349739e-10 J
neutron mass energy equivalent in MeV 939.5654133 MeV
neutron mass in u 1.00866491588 u
neutron molar mass 0.00100866491588 kg mol^-1
neutron to shielded proton mag. mom. ratio -0.68499694
neutron-electron mag. mom. ratio 0.00104066882
neutron-electron mass ratio 1838.68366158
neutron-muon mass ratio 8.89248408
neutron-proton mag. mom. ratio -0.68497934
neutron-proton mass difference 2.30557377e-30
neutron-proton mass difference energy equivalent 2.07214637e-13
neutron-proton mass difference energy equivalent in MeV 1.29333205
neutron-proton mass difference in u 0.001388449
neutron-proton mass ratio 1.00137841898
neutron-tau mass ratio 0.52879
Newtonian constant of gravitation 6.67408e-11 m^3 kg^-1 s^-2
Newtonian constant of gravitation over h-bar c 6.70861e-39 (GeV/c^2)^-2
nuclear magneton 5.050783699e-27 J T^-1
nuclear magneton in eV/T 3.152451255e-08 eV T^-1
nuclear magneton in inverse meters per tesla 0.02542623432 m^-1 T^-1
nuclear magneton in K/T 0.0003658269 K T^-1
nuclear magneton in MHz/T 7.622593285 MHz T^-1
Planck constant 6.62607004e-34 J s

Continued on next page
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Table 11 – continued from previous page
Planck constant in eV s 4.135667662e-15 eV s
Planck constant over 2 pi 1.0545718e-34 J s
Planck constant over 2 pi in eV s 6.582119514e-16 eV s
Planck constant over 2 pi times c in MeV fm 197.3269788 MeV fm
Planck length 1.616229e-35 m
Planck mass 2.17647e-08 kg
Planck mass energy equivalent in GeV 1.22091e+19 GeV
Planck temperature 1.416808e+32 K
Planck time 5.39116e-44 s
proton charge to mass quotient 95788332.26 C kg^-1
proton Compton wavelength 1.32140985396e-15 m
proton Compton wavelength over 2 pi 2.10308910109e-16 m
proton g factor 5.585694702
proton gyromag. ratio 267522190.0 s^-1 T^-1
proton gyromag. ratio over 2 pi 42.57747892 MHz T^-1
proton mag. mom. 1.4106067873e-26 J T^-1
proton mag. mom. to Bohr magneton ratio 0.0015210322053
proton mag. mom. to nuclear magneton ratio 2.7928473508
proton mag. shielding correction 2.5691e-05
proton mass 1.672621898e-27 kg
proton mass energy equivalent 1.503277593e-10 J
proton mass energy equivalent in MeV 938.2720813 MeV
proton mass in u 1.007276466879 u
proton molar mass 0.001007276466879 kg mol^-1
proton rms charge radius 8.751e-16 m
proton-electron mass ratio 1836.15267389
proton-muon mass ratio 8.88024338
proton-neutron mag. mom. ratio -1.45989805
proton-neutron mass ratio 0.99862347844
proton-tau mass ratio 0.528063
quantum of circulation 0.00036369475486 m^2 s^-1
quantum of circulation times 2 0.00072738950972 m^2 s^-1
Rydberg constant 10973731.568508 m^-1
Rydberg constant times c in Hz 3289841960355000.0 Hz
Rydberg constant times hc in eV 13.605693009 eV
Rydberg constant times hc in J 2.179872325e-18 J
Sackur-Tetrode constant (1 K, 100 kPa) -1.1517084
Sackur-Tetrode constant (1 K, 101.325 kPa) -1.1648714
second radiation constant 0.0143877736 m K
shielded helion gyromag. ratio 203789458.5 s^-1 T^-1
shielded helion gyromag. ratio over 2 pi 32.43409966 MHz T^-1
shielded helion mag. mom. -1.07455308e-26 J T^-1
shielded helion mag. mom. to Bohr magneton ratio -0.001158671471
shielded helion mag. mom. to nuclear magneton ratio -2.12749772
shielded helion to proton mag. mom. ratio -0.7617665603
shielded helion to shielded proton mag. mom. ratio -0.7617861313
shielded proton gyromag. ratio 267515317.1 s^-1 T^-1
shielded proton gyromag. ratio over 2 pi 42.57638507 MHz T^-1
shielded proton mag. mom. 1.410570547e-26 J T^-1
shielded proton mag. mom. to Bohr magneton ratio 0.001520993128

Continued on next page

550 Chapter 6. API Reference



SciPy Reference Guide, Release 1.3.1

Table 11 – continued from previous page
shielded proton mag. mom. to nuclear magneton ratio 2.7927756
speed of light in vacuum 299792458.0 m s^-1
standard acceleration of gravity 9.80665 m s^-2
standard atmosphere 101325.0 Pa
standard-state pressure 100000.0 Pa
Stefan-Boltzmann constant 5.670367e-08 W m^-2 K^-4
tau Compton wavelength 6.97787e-16 m
tau Compton wavelength over 2 pi 1.11056e-16 m
tau mass 3.16747e-27 kg
tau mass energy equivalent 2.84678e-10 J
tau mass energy equivalent in MeV 1776.82 MeV
tau mass in u 1.90749 u
tau molar mass 0.00190749 kg mol^-1
tau-electron mass ratio 3477.15
tau-muon mass ratio 16.8167
tau-neutron mass ratio 1.89111
tau-proton mass ratio 1.89372
Thomson cross section 6.6524587158e-29 m^2
triton g factor 5.95792492
triton mag. mom. 1.504609503e-26 J T^-1
triton mag. mom. to Bohr magneton ratio 0.0016223936616
triton mag. mom. to nuclear magneton ratio 2.97896246
triton mass 5.007356665e-27 kg
triton mass energy equivalent 4.500387735e-10 J
triton mass energy equivalent in MeV 2808.921112 MeV
triton mass in u 3.01550071632 u
triton molar mass 0.00301550071632 kg mol^-1
triton-electron mass ratio 5496.92153588
triton-proton mass ratio 2.99371703348
unified atomic mass unit 1.66053904e-27 kg
von Klitzing constant 25812.8074555 ohm
weak mixing angle 0.2223
Wien frequency displacement law constant 58789238000.0 Hz K^-1
Wien wavelength displacement law constant 0.0028977729 m K
{220} lattice spacing of silicon 1.920155714e-10 m

6.4.3 Units
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SI prefixes

yotta 1024

zetta 1021

exa 1018

peta 1015

tera 1012

giga 109

mega 106

kilo 103

hecto 102

deka 101

deci 10−1

centi 10−2

milli 10−3

micro 10−6

nano 10−9

pico 10−12

femto 10−15

atto 10−18

zepto 10−21

Binary prefixes

kibi 210

mebi 220

gibi 230

tebi 240

pebi 250

exbi 260

zebi 270

yobi 280

552 Chapter 6. API Reference



SciPy Reference Guide, Release 1.3.1

Mass

gram 10−3 kg
metric_ton 103 kg
grain one grain in kg
lb one pound (avoirdupous) in kg
pound one pound (avoirdupous) in kg
blob one inch version of a slug in kg (added in 1.0.0)
slinch one inch version of a slug in kg (added in 1.0.0)
slug one slug in kg (added in 1.0.0)
oz one ounce in kg
ounce one ounce in kg
stone one stone in kg
grain one grain in kg
long_ton one long ton in kg
short_ton one short ton in kg
troy_ounce one Troy ounce in kg
troy_pound one Troy pound in kg
carat one carat in kg
m_u atomic mass constant (in kg)
u atomic mass constant (in kg)
atomic_mass atomic mass constant (in kg)

Angle

degree degree in radians
arcmin arc minute in radians
arcminute arc minute in radians
arcsec arc second in radians
arcsecond arc second in radians

Time

minute one minute in seconds
hour one hour in seconds
day one day in seconds
week one week in seconds
year one year (365 days) in seconds
Julian_year one Julian year (365.25 days) in seconds
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Length

inch one inch in meters
foot one foot in meters
yard one yard in meters
mile one mile in meters
mil one mil in meters
pt one point in meters
point one point in meters
survey_foot one survey foot in meters
survey_mile one survey mile in meters
nautical_mile one nautical mile in meters
fermi one Fermi in meters
angstrom one Angstrom in meters
micron one micron in meters
au one astronomical unit in meters
astronomical_unit one astronomical unit in meters
light_year one light year in meters
parsec one parsec in meters

Pressure

atm standard atmosphere in pascals
atmosphere standard atmosphere in pascals
bar one bar in pascals
torr one torr (mmHg) in pascals
mmHg one torr (mmHg) in pascals
psi one psi in pascals

Area

hectare one hectare in square meters
acre one acre in square meters

Volume

liter one liter in cubic meters
litre one liter in cubic meters
gallon one gallon (US) in cubic meters
gallon_US one gallon (US) in cubic meters
gallon_imp one gallon (UK) in cubic meters
fluid_ounce one fluid ounce (US) in cubic meters
fluid_ounce_US one fluid ounce (US) in cubic meters
fluid_ounce_imp one fluid ounce (UK) in cubic meters
bbl one barrel in cubic meters
barrel one barrel in cubic meters
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Speed

kmh kilometers per hour in meters per second
mph miles per hour in meters per second
mach one Mach (approx., at 15 C, 1 atm) in meters per second
speed_of_sound one Mach (approx., at 15 C, 1 atm) in meters per second
knot one knot in meters per second

Temperature

zero_Celsius zero of Celsius scale in Kelvin
degree_Fahrenheit one Fahrenheit (only differences) in Kelvins

convert_temperature(val, old_scale, new_scale) Convert from a temperature scale to another one among
Celsius, Kelvin, Fahrenheit and Rankine scales.

scipy.constants.convert_temperature
scipy.constants.convert_temperature(val, old_scale, new_scale)

Convert from a temperature scale to another one among Celsius, Kelvin, Fahrenheit and Rankine scales.
Parameters

val [array_like] Value(s) of the temperature(s) to be converted expressed in the original scale.
old_scale: str

Specifies as a string the original scale from which the temperature value(s) will be converted.
Supported scales are Celsius (‘Celsius’, ‘celsius’, ‘C’ or ‘c’), Kelvin (‘Kelvin’, ‘kelvin’, ‘K’, ‘k’),
Fahrenheit (‘Fahrenheit’, ‘fahrenheit’, ‘F’ or ‘f’) and Rankine (‘Rankine’, ‘rankine’, ‘R’, ‘r’).

new_scale: str
Specifies as a string the new scale to which the temperature value(s) will be converted. Sup-
ported scales are Celsius (‘Celsius’, ‘celsius’, ‘C’ or ‘c’), Kelvin (‘Kelvin’, ‘kelvin’, ‘K’, ‘k’),
Fahrenheit (‘Fahrenheit’, ‘fahrenheit’, ‘F’ or ‘f’) and Rankine (‘Rankine’, ‘rankine’, ‘R’, ‘r’).

Returns

res [float or array of floats] Value(s) of the converted temperature(s) expressed in the new scale.

Notes

New in version 0.18.0.

Examples

>>> from scipy.constants import convert_temperature
>>> convert_temperature(np.array([-40, 40.0]), 'Celsius', 'Kelvin')
array([ 233.15, 313.15])
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Energy

eV one electron volt in Joules
electron_volt one electron volt in Joules
calorie one calorie (thermochemical) in Joules
calorie_th one calorie (thermochemical) in Joules
calorie_IT one calorie (International Steam Table calorie, 1956) in Joules
erg one erg in Joules
Btu one British thermal unit (International Steam Table) in Joules
Btu_IT one British thermal unit (International Steam Table) in Joules
Btu_th one British thermal unit (thermochemical) in Joules
ton_TNT one ton of TNT in Joules

Power

hp one horsepower in watts
horsepower one horsepower in watts

Force

dyn one dyne in newtons
dyne one dyne in newtons
lbf one pound force in newtons
pound_force one pound force in newtons
kgf one kilogram force in newtons
kilogram_force one kilogram force in newtons

Optics

lambda2nu(lambda_) Convert wavelength to optical frequency
nu2lambda(nu) Convert optical frequency to wavelength.

scipy.constants.lambda2nu
scipy.constants.lambda2nu(lambda_)

Convert wavelength to optical frequency
Parameters

lambda_ [array_like] Wavelength(s) to be converted.
Returns

nu [float or array of floats] Equivalent optical frequency.

Notes

Computes nu = c / lambda where c = 299792458.0, i.e., the (vacuum) speed of light in meters/second.
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Examples

>>> from scipy.constants import lambda2nu, speed_of_light
>>> lambda2nu(np.array((1, speed_of_light)))
array([ 2.99792458e+08, 1.00000000e+00])

scipy.constants.nu2lambda
scipy.constants.nu2lambda(nu)

Convert optical frequency to wavelength.
Parameters

nu [array_like] Optical frequency to be converted.
Returns

lambda [float or array of floats] Equivalent wavelength(s).

Notes

Computes lambda = c / nu where c = 299792458.0, i.e., the (vacuum) speed of light in meters/second.

Examples

>>> from scipy.constants import nu2lambda, speed_of_light
>>> nu2lambda(np.array((1, speed_of_light)))
array([ 2.99792458e+08, 1.00000000e+00])

6.4.4 References

6.5 Discrete Fourier transforms (scipy.fftpack)

6.5.1 Fast Fourier Transforms (FFTs)

fft(x[, n, axis, overwrite_x]) Return discrete Fourier transform of real or complex se-
quence.

ifft(x[, n, axis, overwrite_x]) Return discrete inverse Fourier transform of real or com-
plex sequence.

fft2(x[, shape, axes, overwrite_x]) 2-D discrete Fourier transform.
ifft2(x[, shape, axes, overwrite_x]) 2-D discrete inverse Fourier transform of real or complex

sequence.
fftn(x[, shape, axes, overwrite_x]) Return multidimensional discrete Fourier transform.
ifftn(x[, shape, axes, overwrite_x]) Return inverse multi-dimensional discrete Fourier trans-

form.
rfft(x[, n, axis, overwrite_x]) Discrete Fourier transform of a real sequence.
irfft(x[, n, axis, overwrite_x]) Return inverse discrete Fourier transform of real se-

quence x.
Continued on next page
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Table 14 – continued from previous page
dct(x[, type, n, axis, norm, overwrite_x]) Return the Discrete Cosine Transform of arbitrary type

sequence x.
idct(x[, type, n, axis, norm, overwrite_x]) Return the Inverse Discrete Cosine Transform of an ar-

bitrary type sequence.
dctn(x[, type, shape, axes, norm, overwrite_x]) Return multidimensional Discrete Cosine Transform

along the specified axes.
idctn(x[, type, shape, axes, norm, overwrite_x]) Return multidimensional Discrete Cosine Transform

along the specified axes.
dst(x[, type, n, axis, norm, overwrite_x]) Return the Discrete Sine Transform of arbitrary type se-

quence x.
idst(x[, type, n, axis, norm, overwrite_x]) Return the Inverse Discrete Sine Transform of an arbi-

trary type sequence.
dstn(x[, type, shape, axes, norm, overwrite_x]) Return multidimensional Discrete Sine Transform along

the specified axes.
idstn(x[, type, shape, axes, norm, overwrite_x]) Return multidimensional Discrete Sine Transform along

the specified axes.

scipy.fftpack.fft

scipy.fftpack.fft(x, n=None, axis=-1, overwrite_x=False)
Return discrete Fourier transform of real or complex sequence.
The returned complex array contains y(0), y(1),..., y(n-1) where
y(j) = (x * exp(-2*pi*sqrt(-1)*j*np.arange(n)/n)).sum().

Parameters

x [array_like] Array to Fourier transform.
n [int, optional] Length of the Fourier transform. If n < x.shape[axis], x is trun-

cated. If n > x.shape[axis], x is zero-padded. The default results in n = x.
shape[axis].

axis [int, optional] Axis along which the fft’s are computed; the default is over the last axis (i.e.,
axis=-1).

overwrite_x
[bool, optional] If True, the contents of x can be destroyed; the default is False.

Returns

z [complex ndarray] with the elements:

[y(0),y(1),..,y(n/2),y(1-n/2),...,y(-1)] if n is␣
↪→even
[y(0),y(1),..,y((n-1)/2),y(-(n-1)/2),...,y(-1)] if n is␣
↪→odd

where:

y(j) = sum[k=0..n-1] x[k] * exp(-sqrt(-1)*j*k* 2*pi/n), j␣
↪→= 0..n-1

See also:

ifft

Inverse FFT
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rfft

FFT of a real sequence

Notes

The packing of the result is “standard”: If A = fft(a, n), then A[0] contains the zero-frequency term,
A[1:n/2] contains the positive-frequency terms, and A[n/2:] contains the negative-frequency terms, in order
of decreasingly negative frequency. So for an 8-point transform, the frequencies of the result are [0, 1, 2, 3, -4, -3,
-2, -1]. To rearrange the fft output so that the zero-frequency component is centered, like [-4, -3, -2, -1, 0, 1, 2, 3],
use fftshift.
Both single and double precision routines are implemented. Half precision inputs will be converted to single pre-
cision. Non floating-point inputs will be converted to double precision. Long-double precision inputs are not
supported.
This function is most efficient when n is a power of two, and least efficient when n is prime.
Note that if x is real-valued then A[j] == A[n-j].conjugate(). If x is real-valued and n is even then
A[n/2] is real.
If the data type of x is real, a “real FFT” algorithm is automatically used, which roughly halves the computation
time. To increase efficiency a little further, use rfft, which does the same calculation, but only outputs half of
the symmetrical spectrum. If the data is both real and symmetrical, the dct can again double the efficiency, by
generating half of the spectrum from half of the signal.

Examples

>>> from scipy.fftpack import fft, ifft
>>> x = np.arange(5)
>>> np.allclose(fft(ifft(x)), x, atol=1e-15) # within numerical accuracy.
True

scipy.fftpack.ifft

scipy.fftpack.ifft(x, n=None, axis=-1, overwrite_x=False)
Return discrete inverse Fourier transform of real or complex sequence.
The returned complex array contains y(0), y(1),..., y(n-1) where
y(j) = (x * exp(2*pi*sqrt(-1)*j*np.arange(n)/n)).mean().

Parameters

x [array_like] Transformed data to invert.
n [int, optional] Length of the inverse Fourier transform. If n < x.shape[axis], x is

truncated. If n > x.shape[axis], x is zero-padded. The default results in n = x.
shape[axis].

axis [int, optional] Axis along which the ifft’s are computed; the default is over the last axis (i.e.,
axis=-1).

overwrite_x
[bool, optional] If True, the contents of x can be destroyed; the default is False.

Returns

ifft [ndarray of floats] The inverse discrete Fourier transform.
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See also:

fft

Forward FFT

Notes

Both single and double precision routines are implemented. Half precision inputs will be converted to single pre-
cision. Non floating-point inputs will be converted to double precision. Long-double precision inputs are not
supported.
This function is most efficient when n is a power of two, and least efficient when n is prime.
If the data type of x is real, a “real IFFT” algorithm is automatically used, which roughly halves the computation
time.

Examples

>>> from scipy.fftpack import fft, ifft
>>> import numpy as np
>>> x = np.arange(5)
>>> np.allclose(ifft(fft(x)), x, atol=1e-15) # within numerical accuracy.
True

scipy.fftpack.fft2

scipy.fftpack.fft2(x, shape=None, axes=(-2, -1), overwrite_x=False)
2-D discrete Fourier transform.
Return the two-dimensional discrete Fourier transform of the 2-D argument x.
See also:

fftn

for detailed information.

scipy.fftpack.ifft2

scipy.fftpack.ifft2(x, shape=None, axes=(-2, -1), overwrite_x=False)
2-D discrete inverse Fourier transform of real or complex sequence.
Return inverse two-dimensional discrete Fourier transform of arbitrary type sequence x.
See ifft for more information.
See also:
fft2, ifft
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scipy.fftpack.fftn

scipy.fftpack.fftn(x, shape=None, axes=None, overwrite_x=False)
Return multidimensional discrete Fourier transform.
The returned array contains:

y[j_1,..,j_d] = sum[k_1=0..n_1-1, ..., k_d=0..n_d-1]
x[k_1,..,k_d] * prod[i=1..d] exp(-sqrt(-1)*2*pi/n_i * j_i * k_i)

where d = len(x.shape) and n = x.shape.
Parameters

x [array_like] The (n-dimensional) array to transform.
shape [int or array_like of ints or None, optional] The shape of the result. If both shape and axes

(see below) are None, shape isx.shape; if shape is None but axes is not None, then shape is
scipy.take(x.shape, axes, axis=0). If shape[i] > x.shape[i], the
i-th dimension is padded with zeros. If shape[i] < x.shape[i], the i-th dimension
is truncated to lengthshape[i]. If any element of shape is -1, the size of the corresponding
dimension of x is used.

axes [int or array_like of ints or None, optional] The axes of x (y if shape is not None) along
which the transform is applied. The default is over all axes.

overwrite_x
[bool, optional] If True, the contents of x can be destroyed. Default is False.

Returns

y [complex-valued n-dimensional numpy array] The (n-dimensional) DFT of the input array.
See also:
ifftn

Notes

If x is real-valued, then y[..., j_i, ...] == y[..., n_i-j_i, ...].conjugate().
Both single and double precision routines are implemented. Half precision inputs will be converted to single pre-
cision. Non floating-point inputs will be converted to double precision. Long-double precision inputs are not
supported.

Examples

>>> from scipy.fftpack import fftn, ifftn
>>> y = (-np.arange(16), 8 - np.arange(16), np.arange(16))
>>> np.allclose(y, fftn(ifftn(y)))
True

scipy.fftpack.ifftn

scipy.fftpack.ifftn(x, shape=None, axes=None, overwrite_x=False)
Return inverse multi-dimensional discrete Fourier transform.
The sequence can be of an arbitrary type.
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The returned array contains:

y[j_1,..,j_d] = 1/p * sum[k_1=0..n_1-1, ..., k_d=0..n_d-1]
x[k_1,..,k_d] * prod[i=1..d] exp(sqrt(-1)*2*pi/n_i * j_i * k_i)

where d = len(x.shape), n = x.shape, and p = prod[i=1..d] n_i.
For description of parameters see fftn.
See also:

fftn

for detailed information.

Examples

>>> from scipy.fftpack import fftn, ifftn
>>> import numpy as np
>>> y = (-np.arange(16), 8 - np.arange(16), np.arange(16))
>>> np.allclose(y, ifftn(fftn(y)))
True

scipy.fftpack.rfft

scipy.fftpack.rfft(x, n=None, axis=-1, overwrite_x=False)
Discrete Fourier transform of a real sequence.

Parameters

x [array_like, real-valued] The data to transform.
n [int, optional] Defines the length of the Fourier transform. If n is not specified (the default)

then n = x.shape[axis]. If n < x.shape[axis], x is truncated, if n > x.
shape[axis], x is zero-padded.

axis [int, optional] The axis along which the transform is applied. The default is the last axis.
overwrite_x

[bool, optional] If set to true, the contents of x can be overwritten. Default is False.
Returns

z [real ndarray] The returned real array contains:

[y(0),Re(y(1)),Im(y(1)),...,Re(y(n/2))] if n␣
↪→is even
[y(0),Re(y(1)),Im(y(1)),...,Re(y(n/2)),Im(y(n/2))] if n␣
↪→is odd

where:

y(j) = sum[k=0..n-1] x[k] * exp(-sqrt(-1)*j*k*2*pi/n)
j = 0..n-1

See also:
fft, irfft, numpy.fft.rfft
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Notes

Within numerical accuracy, y == rfft(irfft(y)).
Both single and double precision routines are implemented. Half precision inputs will be converted to single pre-
cision. Non floating-point inputs will be converted to double precision. Long-double precision inputs are not
supported.
To get an output with a complex datatype, consider using the related function numpy.fft.rfft.

Examples

>>> from scipy.fftpack import fft, rfft
>>> a = [9, -9, 1, 3]
>>> fft(a)
array([ 4. +0.j, 8.+12.j, 16. +0.j, 8.-12.j])
>>> rfft(a)
array([ 4., 8., 12., 16.])

scipy.fftpack.irfft

scipy.fftpack.irfft(x, n=None, axis=-1, overwrite_x=False)
Return inverse discrete Fourier transform of real sequence x.
The contents of x are interpreted as the output of the rfft function.

Parameters

x [array_like] Transformed data to invert.
n [int, optional] Length of the inverse Fourier transform. If n < x.shape[axis], x is truncated.

If n > x.shape[axis], x is zero-padded. The default results in n = x.shape[axis].
axis [int, optional] Axis along which the ifft’s are computed; the default is over the last axis (i.e.,

axis=-1).
overwrite_x

[bool, optional] If True, the contents of x can be destroyed; the default is False.
Returns

irfft [ndarray of floats] The inverse discrete Fourier transform.
See also:
rfft, ifft, numpy.fft.irfft

Notes

The returned real array contains:

[y(0),y(1),...,y(n-1)]

where for n is even:

y(j) = 1/n (sum[k=1..n/2-1] (x[2*k-1]+sqrt(-1)*x[2*k])
* exp(sqrt(-1)*j*k* 2*pi/n)

+ c.c. + x[0] + (-1)**(j) x[n-1])
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and for n is odd:

y(j) = 1/n (sum[k=1..(n-1)/2] (x[2*k-1]+sqrt(-1)*x[2*k])
* exp(sqrt(-1)*j*k* 2*pi/n)

+ c.c. + x[0])

c.c. denotes complex conjugate of preceding expression.
For details on input parameters, see rfft.
To process (conjugate-symmetric) frequency-domain data with a complex datatype, consider using the related func-
tion numpy.fft.irfft.

Examples

>>> from scipy.fftpack import rfft, irfft
>>> a = [1.0, 2.0, 3.0, 4.0, 5.0]
>>> irfft(a)
array([ 2.6 , -3.16405192, 1.24398433, -1.14955713, 1.46962473])
>>> irfft(rfft(a))
array([1., 2., 3., 4., 5.])

scipy.fftpack.dct

scipy.fftpack.dct(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False)
Return the Discrete Cosine Transform of arbitrary type sequence x.

Parameters

x [array_like] The input array.
type [{1, 2, 3, 4}, optional] Type of the DCT (see Notes). Default type is 2.
n [int, optional] Length of the transform. If n < x.shape[axis], x is truncated. If n >

x.shape[axis], x is zero-padded. The default results in n = x.shape[axis].
axis [int, optional] Axis along which the dct is computed; the default is over the last axis (i.e.,

axis=-1).
norm [{None, ‘ortho’}, optional] Normalization mode (see Notes). Default is None.
overwrite_x

[bool, optional] If True, the contents of x can be destroyed; the default is False.
Returns

y [ndarray of real] The transformed input array.
See also:

idct

Inverse DCT

Notes

For a single dimension array x, dct(x, norm='ortho') is equal to MATLAB dct(x).
There are theoretically 8 types of the DCT, only the first 4 types are implemented in scipy. ‘The’ DCT generally
refers to DCT type 2, and ‘the’ Inverse DCT generally refers to DCT type 3.
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Type I
There are several definitions of the DCT-I; we use the following (for norm=None):

N-2
y[k] = x[0] + (-1)**k x[N-1] + 2 * sum x[n]*cos(pi*k*n/(N-1))

n=1

If norm='ortho', x[0] and x[N-1] are multiplied by a scaling factor of sqrt(2), and y[k] is multiplied
by a scaling factor f:

f = 0.5*sqrt(1/(N-1)) if k = 0 or N-1,
f = 0.5*sqrt(2/(N-1)) otherwise.

New in version 1.2.0: Orthonormalization in DCT-I.

Note: The DCT-I is only supported for input size > 1.

Type II
There are several definitions of the DCT-II; we use the following (for norm=None):

N-1
y[k] = 2* sum x[n]*cos(pi*k*(2n+1)/(2*N)), 0 <= k < N.

n=0

If norm='ortho', y[k] is multiplied by a scaling factor f:

f = sqrt(1/(4*N)) if k = 0,
f = sqrt(1/(2*N)) otherwise.

Which makes the corresponding matrix of coefficients orthonormal (OO' = Id).
Type III
There are several definitions, we use the following (for norm=None):

N-1
y[k] = x[0] + 2 * sum x[n]*cos(pi*(k+0.5)*n/N), 0 <= k < N.

n=1

or, for norm='ortho' and 0 <= k < N:

N-1
y[k] = x[0] / sqrt(N) + sqrt(2/N) * sum x[n]*cos(pi*(k+0.5)*n/N)

n=1

The (unnormalized) DCT-III is the inverse of the (unnormalized) DCT-II, up to a factor 2N. The orthonormalized
DCT-III is exactly the inverse of the orthonormalized DCT-II.
Type IV
There are several definitions of the DCT-IV; we use the following (for norm=None):

N-1
y[k] = 2* sum x[n]*cos(pi*(2k+1)*(2n+1)/(4*N)), 0 <= k < N.

n=0
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If norm='ortho', y[k] is multiplied by a scaling factor f:

f = 0.5*sqrt(2/N)

New in version 1.2.0: Support for DCT-IV.

References

[1], [2]

Examples

The Type 1 DCT is equivalent to the FFT (though faster) for real, even-symmetrical inputs. The output is also real
and even-symmetrical. Half of the FFT input is used to generate half of the FFT output:

>>> from scipy.fftpack import fft, dct
>>> fft(np.array([4., 3., 5., 10., 5., 3.])).real
array([ 30., -8., 6., -2., 6., -8.])
>>> dct(np.array([4., 3., 5., 10.]), 1)
array([ 30., -8., 6., -2.])

scipy.fftpack.idct

scipy.fftpack.idct(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False)
Return the Inverse Discrete Cosine Transform of an arbitrary type sequence.

Parameters

x [array_like] The input array.
type [{1, 2, 3, 4}, optional] Type of the DCT (see Notes). Default type is 2.
n [int, optional] Length of the transform. If n < x.shape[axis], x is truncated. If n >

x.shape[axis], x is zero-padded. The default results in n = x.shape[axis].
axis [int, optional] Axis along which the idct is computed; the default is over the last axis (i.e.,

axis=-1).
norm [{None, ‘ortho’}, optional] Normalization mode (see Notes). Default is None.
overwrite_x

[bool, optional] If True, the contents of x can be destroyed; the default is False.
Returns

idct [ndarray of real] The transformed input array.
See also:

dct

Forward DCT

Notes

For a single dimension array x, idct(x, norm='ortho') is equal to MATLAB idct(x).
‘The’ IDCT is the IDCT of type 2, which is the same as DCT of type 3.
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IDCT of type 1 is the DCT of type 1, IDCT of type 2 is the DCT of type 3, and IDCT of type 3 is the DCT of
type 2. IDCT of type 4 is the DCT of type 4. For the definition of these types, see dct.

Examples

The Type 1 DCT is equivalent to the DFT for real, even-symmetrical inputs. The output is also real and even-
symmetrical. Half of the IFFT input is used to generate half of the IFFT output:

>>> from scipy.fftpack import ifft, idct
>>> ifft(np.array([ 30., -8., 6., -2., 6., -8.])).real
array([ 4., 3., 5., 10., 5., 3.])
>>> idct(np.array([ 30., -8., 6., -2.]), 1) / 6
array([ 4., 3., 5., 10.])

scipy.fftpack.dctn

scipy.fftpack.dctn(x, type=2, shape=None, axes=None, norm=None, overwrite_x=False)
Return multidimensional Discrete Cosine Transform along the specified axes.

Parameters

x [array_like] The input array.
type [{1, 2, 3, 4}, optional] Type of the DCT (see Notes). Default type is 2.
shape [int or array_like of ints or None, optional] The shape of the result. If both shape and axes

(see below) are None, shape isx.shape; if shape is None but axes is not None, then shape is
scipy.take(x.shape, axes, axis=0). If shape[i] > x.shape[i], the
i-th dimension is padded with zeros. If shape[i] < x.shape[i], the i-th dimension
is truncated to lengthshape[i]. If any element of shape is -1, the size of the corresponding
dimension of x is used.

axes [int or array_like of ints or None, optional] Axes along which the DCT is computed. The
default is over all axes.

norm [{None, ‘ortho’}, optional] Normalization mode (see Notes). Default is None.
overwrite_x

[bool, optional] If True, the contents of x can be destroyed; the default is False.
Returns

y [ndarray of real] The transformed input array.
See also:

idctn

Inverse multidimensional DCT

Notes

For full details of the DCT types and normalization modes, as well as references, see dct.

Examples
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>>> from scipy.fftpack import dctn, idctn
>>> y = np.random.randn(16, 16)
>>> np.allclose(y, idctn(dctn(y, norm='ortho'), norm='ortho'))
True

scipy.fftpack.idctn

scipy.fftpack.idctn(x, type=2, shape=None, axes=None, norm=None, overwrite_x=False)
Return multidimensional Discrete Cosine Transform along the specified axes.

Parameters

x [array_like] The input array.
type [{1, 2, 3, 4}, optional] Type of the DCT (see Notes). Default type is 2.
shape [int or array_like of ints or None, optional] The shape of the result. If both shape and axes

(see below) are None, shape isx.shape; if shape is None but axes is not None, then shape is
scipy.take(x.shape, axes, axis=0). If shape[i] > x.shape[i], the
i-th dimension is padded with zeros. If shape[i] < x.shape[i], the i-th dimension
is truncated to lengthshape[i]. If any element of shape is -1, the size of the corresponding
dimension of x is used.

axes [int or array_like of ints or None, optional] Axes along which the IDCT is computed. The
default is over all axes.

norm [{None, ‘ortho’}, optional] Normalization mode (see Notes). Default is None.
overwrite_x

[bool, optional] If True, the contents of x can be destroyed; the default is False.
Returns

y [ndarray of real] The transformed input array.
See also:

dctn

multidimensional DCT

Notes

For full details of the IDCT types and normalization modes, as well as references, see idct.

Examples

>>> from scipy.fftpack import dctn, idctn
>>> y = np.random.randn(16, 16)
>>> np.allclose(y, idctn(dctn(y, norm='ortho'), norm='ortho'))
True

scipy.fftpack.dst

scipy.fftpack.dst(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False)
Return the Discrete Sine Transform of arbitrary type sequence x.
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Parameters

x [array_like] The input array.
type [{1, 2, 3, 4}, optional] Type of the DST (see Notes). Default type is 2.
n [int, optional] Length of the transform. If n < x.shape[axis], x is truncated. If n >

x.shape[axis], x is zero-padded. The default results in n = x.shape[axis].
axis [int, optional] Axis along which the dst is computed; the default is over the last axis (i.e.,

axis=-1).
norm [{None, ‘ortho’}, optional] Normalization mode (see Notes). Default is None.
overwrite_x

[bool, optional] If True, the contents of x can be destroyed; the default is False.
Returns

dst [ndarray of reals] The transformed input array.
See also:

idst

Inverse DST

Notes

For a single dimension array x.
There are theoretically 8 types of theDST for different combinations of even/odd boundary conditions and boundary
off sets [1], only the first 4 types are implemented in scipy.
Type I
There are several definitions of the DST-I; we use the following for norm=None. DST-I assumes the input is odd
around n=-1 and n=N.

N-1
y[k] = 2 * sum x[n]*sin(pi*(k+1)*(n+1)/(N+1))

n=0

Note that the DST-I is only supported for input size > 1 The (unnormalized) DST-I is its own inverse, up to a factor
2(N+1). The orthonormalized DST-I is exactly its own inverse.
Type II
There are several definitions of the DST-II; we use the following for norm=None. DST-II assumes the input is
odd around n=-1/2 and n=N-1/2; the output is odd around k=-1 and even around k=N-1

N-1
y[k] = 2* sum x[n]*sin(pi*(k+1)*(n+0.5)/N), 0 <= k < N.

n=0

if norm='ortho', y[k] is multiplied by a scaling factor f

f = sqrt(1/(4*N)) if k == 0
f = sqrt(1/(2*N)) otherwise.

Type III
There are several definitions of the DST-III, we use the following (for norm=None). DST-III assumes the input
is odd around n=-1 and even around n=N-1
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N-2
y[k] = x[N-1]*(-1)**k + 2* sum x[n]*sin(pi*(k+0.5)*(n+1)/N), 0 <= k < N.

n=0

The (unnormalized) DST-III is the inverse of the (unnormalized) DST-II, up to a factor 2N. The orthonormalized
DST-III is exactly the inverse of the orthonormalized DST-II.
New in version 0.11.0.
Type IV
There are several definitions of the DST-IV, we use the following (for norm=None). DST-IV assumes the input
is odd around n=-0.5 and even around n=N-0.5

N-1
y[k] = 2* sum x[n]*sin(pi*(k+0.5)*(n+0.5)/N), 0 <= k < N.

n=0

The (unnormalized) DST-IV is its own inverse, up to a factor 2N. The orthonormalized DST-IV is exactly its own
inverse.
New in version 1.2.0: Support for DST-IV.

References

[1]

scipy.fftpack.idst

scipy.fftpack.idst(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False)
Return the Inverse Discrete Sine Transform of an arbitrary type sequence.

Parameters

x [array_like] The input array.
type [{1, 2, 3, 4}, optional] Type of the DST (see Notes). Default type is 2.
n [int, optional] Length of the transform. If n < x.shape[axis], x is truncated. If n >

x.shape[axis], x is zero-padded. The default results in n = x.shape[axis].
axis [int, optional] Axis along which the idst is computed; the default is over the last axis (i.e.,

axis=-1).
norm [{None, ‘ortho’}, optional] Normalization mode (see Notes). Default is None.
overwrite_x

[bool, optional] If True, the contents of x can be destroyed; the default is False.
Returns

idst [ndarray of real] The transformed input array.
See also:

dst

Forward DST
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Notes

‘The’ IDST is the IDST of type 2, which is the same as DST of type 3.
IDST of type 1 is the DST of type 1, IDST of type 2 is the DST of type 3, and IDST of type 3 is the DST of type
2. For the definition of these types, see dst.
New in version 0.11.0.

scipy.fftpack.dstn

scipy.fftpack.dstn(x, type=2, shape=None, axes=None, norm=None, overwrite_x=False)
Return multidimensional Discrete Sine Transform along the specified axes.

Parameters

x [array_like] The input array.
type [{1, 2, 3, 4}, optional] Type of the DST (see Notes). Default type is 2.
shape [int or array_like of ints or None, optional] The shape of the result. If both shape and axes

(see below) are None, shape isx.shape; if shape is None but axes is not None, then shape is
scipy.take(x.shape, axes, axis=0). If shape[i] > x.shape[i], the
i-th dimension is padded with zeros. If shape[i] < x.shape[i], the i-th dimension
is truncated to lengthshape[i]. If any element of shape is -1, the size of the corresponding
dimension of x is used.

axes [int or array_like of ints or None, optional] Axes along which the DCT is computed. The
default is over all axes.

norm [{None, ‘ortho’}, optional] Normalization mode (see Notes). Default is None.
overwrite_x

[bool, optional] If True, the contents of x can be destroyed; the default is False.
Returns

y [ndarray of real] The transformed input array.
See also:

idstn

Inverse multidimensional DST

Notes

For full details of the DST types and normalization modes, as well as references, see dst.

Examples

>>> from scipy.fftpack import dstn, idstn
>>> y = np.random.randn(16, 16)
>>> np.allclose(y, idstn(dstn(y, norm='ortho'), norm='ortho'))
True
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scipy.fftpack.idstn

scipy.fftpack.idstn(x, type=2, shape=None, axes=None, norm=None, overwrite_x=False)
Return multidimensional Discrete Sine Transform along the specified axes.

Parameters

x [array_like] The input array.
type [{1, 2, 3, 4}, optional] Type of the DST (see Notes). Default type is 2.
shape [int or array_like of ints or None, optional] The shape of the result. If both shape and axes

(see below) are None, shape isx.shape; if shape is None but axes is not None, then shape is
scipy.take(x.shape, axes, axis=0). If shape[i] > x.shape[i], the
i-th dimension is padded with zeros. If shape[i] < x.shape[i], the i-th dimension
is truncated to lengthshape[i]. If any element of shape is -1, the size of the corresponding
dimension of x is used.

axes [int or array_like of ints or None, optional] Axes along which the IDST is computed. The
default is over all axes.

norm [{None, ‘ortho’}, optional] Normalization mode (see Notes). Default is None.
overwrite_x

[bool, optional] If True, the contents of x can be destroyed; the default is False.
Returns

y [ndarray of real] The transformed input array.
See also:

dstn

multidimensional DST

Notes

For full details of the IDST types and normalization modes, as well as references, see idst.

Examples

>>> from scipy.fftpack import dstn, idstn
>>> y = np.random.randn(16, 16)
>>> np.allclose(y, idstn(dstn(y, norm='ortho'), norm='ortho'))
True

6.5.2 Differential and pseudo-differential operators

diff(x[, order, period, _cache]) Return k-th derivative (or integral) of a periodic sequence
x.

tilbert(x, h[, period, _cache]) Return h-Tilbert transform of a periodic sequence x.
itilbert(x, h[, period, _cache]) Return inverse h-Tilbert transform of a periodic sequence

x.
hilbert(x[, _cache]) Return Hilbert transform of a periodic sequence x.
ihilbert(x) Return inverse Hilbert transform of a periodic sequence

x.
Continued on next page
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Table 15 – continued from previous page
cs_diff(x, a, b[, period, _cache]) Return (a,b)-cosh/sinh pseudo-derivative of a periodic se-

quence.
sc_diff(x, a, b[, period, _cache]) Return (a,b)-sinh/cosh pseudo-derivative of a periodic se-

quence x.
ss_diff(x, a, b[, period, _cache]) Return (a,b)-sinh/sinh pseudo-derivative of a periodic se-

quence x.
cc_diff(x, a, b[, period, _cache]) Return (a,b)-cosh/cosh pseudo-derivative of a periodic

sequence.
shift(x, a[, period, _cache]) Shift periodic sequence x by a: y(u) = x(u+a).

scipy.fftpack.diff

scipy.fftpack.diff(x, order=1, period=None, _cache={})
Return k-th derivative (or integral) of a periodic sequence x.
If x_j and y_j are Fourier coefficients of periodic functions x and y, respectively, then:

y_j = pow(sqrt(-1)*j*2*pi/period, order) * x_j
y_0 = 0 if order is not 0.

Parameters

x [array_like] Input array.
order [int, optional] The order of differentiation. Default order is 1. If order is negative, then

integration is carried out under the assumption that x_0 == 0.
period [float, optional] The assumed period of the sequence. Default is 2*pi.

Notes

If sum(x, axis=0) = 0 then diff(diff(x, k), -k) == x (within numerical accuracy).
For odd order and even len(x), the Nyquist mode is taken zero.

scipy.fftpack.tilbert

scipy.fftpack.tilbert(x, h, period=None, _cache={})
Return h-Tilbert transform of a periodic sequence x.
If x_j and y_j are Fourier coefficients of periodic functions x and y, respectively, then:

y_j = sqrt(-1)*coth(j*h*2*pi/period) * x_j
y_0 = 0

Parameters

x [array_like] The input array to transform.
h [float] Defines the parameter of the Tilbert transform.
period [float, optional] The assumed period of the sequence. Default period is 2*pi.

Returns

tilbert [ndarray] The result of the transform.
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Notes

If sum(x, axis=0) == 0 and n = len(x) is odd then tilbert(itilbert(x)) == x.
If 2 * pi * h / period is approximately 10 or larger, then numerically tilbert == hilbert (theo-
retically oo-Tilbert == Hilbert).
For even len(x), the Nyquist mode of x is taken zero.

scipy.fftpack.itilbert

scipy.fftpack.itilbert(x, h, period=None, _cache={})
Return inverse h-Tilbert transform of a periodic sequence x.
If x_j and y_j are Fourier coefficients of periodic functions x and y, respectively, then:

y_j = -sqrt(-1)*tanh(j*h*2*pi/period) * x_j
y_0 = 0

For more details, see tilbert.

scipy.fftpack.hilbert

scipy.fftpack.hilbert(x, _cache={})
Return Hilbert transform of a periodic sequence x.
If x_j and y_j are Fourier coefficients of periodic functions x and y, respectively, then:

y_j = sqrt(-1)*sign(j) * x_j
y_0 = 0

Parameters

x [array_like] The input array, should be periodic.
_cache [dict, optional] Dictionary that contains the kernel used to do a convolution with.

Returns

y [ndarray] The transformed input.

See also:

scipy.signal.hilbert

Compute the analytic signal, using the Hilbert transform.

Notes

If sum(x, axis=0) == 0 then hilbert(ihilbert(x)) == x.
For even len(x), the Nyquist mode of x is taken zero.
The sign of the returned transform does not have a factor -1 that is more often than not found in the definition of
the Hilbert transform. Note also that scipy.signal.hilbert does have an extra -1 factor compared to this
function.
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scipy.fftpack.ihilbert

scipy.fftpack.ihilbert(x)
Return inverse Hilbert transform of a periodic sequence x.
If x_j and y_j are Fourier coefficients of periodic functions x and y, respectively, then:

y_j = -sqrt(-1)*sign(j) * x_j
y_0 = 0

scipy.fftpack.cs_diff

scipy.fftpack.cs_diff(x, a, b, period=None, _cache={})
Return (a,b)-cosh/sinh pseudo-derivative of a periodic sequence.
If x_j and y_j are Fourier coefficients of periodic functions x and y, respectively, then:

y_j = -sqrt(-1)*cosh(j*a*2*pi/period)/sinh(j*b*2*pi/period) * x_j
y_0 = 0

Parameters

x [array_like] The array to take the pseudo-derivative from.
a, b [float] Defines the parameters of the cosh/sinh pseudo-differential operator.
period [float, optional] The period of the sequence. Default period is 2*pi.

Returns

cs_diff [ndarray] Pseudo-derivative of periodic sequence x.

Notes

For even len(x), the Nyquist mode of x is taken as zero.

scipy.fftpack.sc_diff

scipy.fftpack.sc_diff(x, a, b, period=None, _cache={})
Return (a,b)-sinh/cosh pseudo-derivative of a periodic sequence x.
If x_j and y_j are Fourier coefficients of periodic functions x and y, respectively, then:

y_j = sqrt(-1)*sinh(j*a*2*pi/period)/cosh(j*b*2*pi/period) * x_j
y_0 = 0

Parameters

x [array_like] Input array.
a,b [float] Defines the parameters of the sinh/cosh pseudo-differential operator.
period [float, optional] The period of the sequence x. Default is 2*pi.

Notes

sc_diff(cs_diff(x,a,b),b,a) == x For even len(x), the Nyquist mode of x is taken as zero.
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scipy.fftpack.ss_diff

scipy.fftpack.ss_diff(x, a, b, period=None, _cache={})
Return (a,b)-sinh/sinh pseudo-derivative of a periodic sequence x.
If x_j and y_j are Fourier coefficients of periodic functions x and y, respectively, then:

y_j = sinh(j*a*2*pi/period)/sinh(j*b*2*pi/period) * x_j
y_0 = a/b * x_0

Parameters

x [array_like] The array to take the pseudo-derivative from.
a,b Defines the parameters of the sinh/sinh pseudo-differential operator.
period [float, optional] The period of the sequence x. Default is 2*pi.

Notes

ss_diff(ss_diff(x,a,b),b,a) == x

scipy.fftpack.cc_diff

scipy.fftpack.cc_diff(x, a, b, period=None, _cache={})
Return (a,b)-cosh/cosh pseudo-derivative of a periodic sequence.
If x_j and y_j are Fourier coefficients of periodic functions x and y, respectively, then:

y_j = cosh(j*a*2*pi/period)/cosh(j*b*2*pi/period) * x_j

Parameters

x [array_like] The array to take the pseudo-derivative from.
a,b [float] Defines the parameters of the sinh/sinh pseudo-differential operator.
period [float, optional] The period of the sequence x. Default is 2*pi.

Returns

cc_diff [ndarray] Pseudo-derivative of periodic sequence x.

Notes

cc_diff(cc_diff(x,a,b),b,a) == x

scipy.fftpack.shift

scipy.fftpack.shift(x, a, period=None, _cache={})
Shift periodic sequence x by a: y(u) = x(u+a).
If x_j and y_j are Fourier coefficients of periodic functions x and y, respectively, then:

y_j = exp(j*a*2*pi/period*sqrt(-1)) * x_f

Parameters
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x [array_like] The array to take the pseudo-derivative from.
a [float] Defines the parameters of the sinh/sinh pseudo-differential
period [float, optional] The period of the sequences x and y. Default period is 2*pi.

6.5.3 Helper functions

fftshift(x[, axes]) Shift the zero-frequency component to the center of the
spectrum.

ifftshift(x[, axes]) The inverse of fftshift.
fftfreq(n[, d]) Return the Discrete Fourier Transform sample frequen-

cies.
rfftfreq(n[, d]) DFT sample frequencies (for usage with rfft, irfft).
next_fast_len(target) Find the next fast size of input data to fft, for zero-

padding, etc.

scipy.fftpack.fftshift

scipy.fftpack.fftshift(x, axes=None)
Shift the zero-frequency component to the center of the spectrum.
This function swaps half-spaces for all axes listed (defaults to all). Note that y[0] is the Nyquist component only
if len(x) is even.

Parameters

x [array_like] Input array.
axes [int or shape tuple, optional] Axes over which to shift. Default is None, which shifts all axes.

Returns

y [ndarray] The shifted array.
See also:

ifftshift

The inverse of fftshift.

Examples

>>> freqs = np.fft.fftfreq(10, 0.1)
>>> freqs
array([ 0., 1., 2., ..., -3., -2., -1.])
>>> np.fft.fftshift(freqs)
array([-5., -4., -3., -2., -1., 0., 1., 2., 3., 4.])

Shift the zero-frequency component only along the second axis:

>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
>>> freqs
array([[ 0., 1., 2.],

[ 3., 4., -4.],
[-3., -2., -1.]])

>>> np.fft.fftshift(freqs, axes=(1,))
(continues on next page)
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(continued from previous page)
array([[ 2., 0., 1.],

[-4., 3., 4.],
[-1., -3., -2.]])

scipy.fftpack.ifftshift

scipy.fftpack.ifftshift(x, axes=None)
The inverse of fftshift. Although identical for even-length x, the functions differ by one sample for odd-length
x.

Parameters

x [array_like] Input array.
axes [int or shape tuple, optional] Axes over which to calculate. Defaults to None, which shifts all

axes.
Returns

y [ndarray] The shifted array.
See also:

fftshift

Shift zero-frequency component to the center of the spectrum.

Examples

>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
>>> freqs
array([[ 0., 1., 2.],

[ 3., 4., -4.],
[-3., -2., -1.]])

>>> np.fft.ifftshift(np.fft.fftshift(freqs))
array([[ 0., 1., 2.],

[ 3., 4., -4.],
[-3., -2., -1.]])

scipy.fftpack.fftfreq

scipy.fftpack.fftfreq(n, d=1.0)
Return the Discrete Fourier Transform sample frequencies.
The returned float array f contains the frequency bin centers in cycles per unit of the sample spacing (with zero at
the start). For instance, if the sample spacing is in seconds, then the frequency unit is cycles/second.
Given a window length n and a sample spacing d:

f = [0, 1, ..., n/2-1, -n/2, ..., -1] / (d*n) if n is even
f = [0, 1, ..., (n-1)/2, -(n-1)/2, ..., -1] / (d*n) if n is odd

Parameters
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n [int] Window length.
d [scalar, optional] Sample spacing (inverse of the sampling rate). Defaults to 1.

Returns

f [ndarray] Array of length n containing the sample frequencies.

Examples

>>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5], dtype=float)
>>> fourier = np.fft.fft(signal)
>>> n = signal.size
>>> timestep = 0.1
>>> freq = np.fft.fftfreq(n, d=timestep)
>>> freq
array([ 0. , 1.25, 2.5 , ..., -3.75, -2.5 , -1.25])

scipy.fftpack.rfftfreq

scipy.fftpack.rfftfreq(n, d=1.0)
DFT sample frequencies (for usage with rfft, irfft).
The returned float array contains the frequency bins in cycles/unit (with zero at the start) given a window length n
and a sample spacing d:

f = [0,1,1,2,2,...,n/2-1,n/2-1,n/2]/(d*n) if n is even
f = [0,1,1,2,2,...,n/2-1,n/2-1,n/2,n/2]/(d*n) if n is odd

Parameters

n [int] Window length.
d [scalar, optional] Sample spacing. Default is 1.

Returns

out [ndarray] The array of length n, containing the sample frequencies.

Examples

>>> from scipy import fftpack
>>> sig = np.array([-2, 8, 6, 4, 1, 0, 3, 5], dtype=float)
>>> sig_fft = fftpack.rfft(sig)
>>> n = sig_fft.size
>>> timestep = 0.1
>>> freq = fftpack.rfftfreq(n, d=timestep)
>>> freq
array([ 0. , 1.25, 1.25, 2.5 , 2.5 , 3.75, 3.75, 5. ])
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scipy.fftpack.next_fast_len

scipy.fftpack.next_fast_len(target)
Find the next fast size of input data to fft, for zero-padding, etc.
SciPy’s FFTPACK has efficient functions for radix {2, 3, 4, 5}, so this returns the next composite of the prime
factors 2, 3, and 5 which is greater than or equal to target. (These are also known as 5-smooth numbers, regular
numbers, or Hamming numbers.)

Parameters

target [int] Length to start searching from. Must be a positive integer.
Returns

out [int] The first 5-smooth number greater than or equal to target.

Notes

New in version 0.18.0.

Examples

On a particular machine, an FFT of prime length takes 133 ms:

>>> from scipy import fftpack
>>> min_len = 10007 # prime length is worst case for speed
>>> a = np.random.randn(min_len)
>>> b = fftpack.fft(a)

Zero-padding to the next 5-smooth length reduces computation time to 211 us, a speedup of 630 times:

>>> fftpack.helper.next_fast_len(min_len)
10125
>>> b = fftpack.fft(a, 10125)

Rounding up to the next power of 2 is not optimal, taking 367 us to compute, 1.7 times as long as the 5-smooth
size:

>>> b = fftpack.fft(a, 16384)

Note that fftshift, ifftshift and fftfreq are numpy functions exposed by fftpack; importing them from
numpy should be preferred.

6.5.4 Convolutions (scipy.fftpack.convolve)

convolve(x,omega,[swap_real_imag,overwrite_x]) Wrapper for convolve.
convolve_z(x,omega_real,omega_imag,[overwrite_x]) Wrapper for convolve_z.
init_convolution_kernel(…) Wrapper for init_convolution_kernel.
destroy_convolve_cache() Wrapper for destroy_convolve_cache.

580 Chapter 6. API Reference



SciPy Reference Guide, Release 1.3.1

scipy.fftpack.convolve.convolve

scipy.fftpack.convolve.convolve(x, omega[, swap_real_imag, overwrite_x ]) = <fortran
object>

Wrapper for convolve.
Parameters

x [input rank-1 array(‘d’) with bounds (n)]
omega [input rank-1 array(‘d’) with bounds (n)]

Returns

y [rank-1 array(‘d’) with bounds (n) and x storage]
Other Parameters

overwrite_x
[input int, optional] Default: 0

swap_real_imag
[input int, optional] Default: 0

scipy.fftpack.convolve.convolve_z

scipy.fftpack.convolve.convolve_z(x, omega_real, omega_imag[, overwrite_x ]) = <fortran
object>

Wrapper for convolve_z.
Parameters

x [input rank-1 array(‘d’) with bounds (n)]
omega_real

[input rank-1 array(‘d’) with bounds (n)]
omega_imag

[input rank-1 array(‘d’) with bounds (n)]
Returns

y [rank-1 array(‘d’) with bounds (n) and x storage]
Other Parameters

overwrite_x
[input int, optional] Default: 0

scipy.fftpack.convolve.init_convolution_kernel

scipy.fftpack.convolve.init_convolution_kernel(n, kernel_func[, d, zero_nyquist, ker-
nel_func_extra_args ]) = <fortran
object>

Wrapper for init_convolution_kernel.
Parameters

n [input int]
kernel_func

[call-back function]
Returns
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omega [rank-1 array(‘d’) with bounds (n)]
Other Parameters

d [input int, optional] Default: 0
kernel_func_extra_args

[input tuple, optional] Default: ()
zero_nyquist

[input int, optional] Default: d%2

Notes

Call-back functions:

def kernel_func(k): return kernel_func
Required arguments:

k : input int
Return objects:

kernel_func : float

scipy.fftpack.convolve.destroy_convolve_cache

scipy.fftpack.convolve.destroy_convolve_cache = <fortran object>
Wrapper for destroy_convolve_cache.

6.6 Integration and ODEs (scipy.integrate)

6.6.1 Integrating functions, given function object

quad(func, a, b[, args, full_output, …]) Compute a definite integral.
dblquad(func, a, b, gfun, hfun[, args, …]) Compute a double integral.
tplquad(func, a, b, gfun, hfun, qfun, rfun) Compute a triple (definite) integral.
nquad(func, ranges[, args, opts, full_output]) Integration over multiple variables.
fixed_quad(func, a, b[, args, n]) Compute a definite integral using fixed-order Gaussian

quadrature.
quadrature(func, a, b[, args, tol, rtol, …]) Compute a definite integral using fixed-tolerance Gaus-

sian quadrature.
romberg(function, a, b[, args, tol, rtol, …]) Romberg integration of a callable function or method.
quad_explain([output]) Print extra information about integrate.quad() parameters

and returns.
newton_cotes(rn[, equal]) Return weights and error coefficient for Newton-Cotes in-

tegration.
IntegrationWarning Warning on issues during integration.

scipy.integrate.quad

scipy.integrate.quad(func, a, b, args=(), full_output=0, epsabs=1.49e-08, epsrel=1.49e-08, limit=50,
points=None, weight=None, wvar=None, wopts=None, maxp1=50, limlst=50)

Compute a definite integral.
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Integrate func from a to b (possibly infinite interval) using a technique from the Fortran library QUADPACK.
Parameters

func [{function, scipy.LowLevelCallable}] A Python function or method to integrate. If func
takes many arguments, it is integrated along the axis corresponding to the first argument.
If the user desires improved integration performance, then f may be a scipy.
LowLevelCallable with one of the signatures:

double func(double x)
double func(double x, void *user_data)
double func(int n, double *xx)
double func(int n, double *xx, void *user_data)

The user_data is the data contained in the scipy.LowLevelCallable. In the call
forms with xx, n is the length of the xx array which contains xx[0] == x and the rest
of the items are numbers contained in the args argument of quad.
In addition, certain ctypes call signatures are supported for backward compatibility, but those
should not be used in new code.

a [float] Lower limit of integration (use -numpy.inf for -infinity).
b [float] Upper limit of integration (use numpy.inf for +infinity).
args [tuple, optional] Extra arguments to pass to func.
full_output

[int, optional] Non-zero to return a dictionary of integration information. If non-zero, warn-
ing messages are also suppressed and the message is appended to the output tuple.

Returns

y [float] The integral of func from a to b.
abserr [float] An estimate of the absolute error in the result.
infodict [dict] A dictionary containing additional information. Run scipy.integrate.quad_explain()

for more information.
message A convergence message.
explain Appended only with ‘cos’ or ‘sin’ weighting and infinite integration limits, it contains an ex-

planation of the codes in infodict[‘ierlst’]
Other Parameters

epsabs [float or int, optional] Absolute error tolerance.
epsrel [float or int, optional] Relative error tolerance.
limit [float or int, optional] An upper bound on the number of subintervals used in the adaptive

algorithm.
points [(sequence of floats,ints), optional] A sequence of break points in the bounded integration in-

terval where local difficulties of the integrand may occur (e.g., singularities, discontinuities).
The sequence does not have to be sorted.

weight [float or int, optional] String indicating weighting function. Full explanation for this and the
remaining arguments can be found below.

wvar [optional] Variables for use with weighting functions.
wopts [optional] Optional input for reusing Chebyshev moments.
maxp1 [float or int, optional] An upper bound on the number of Chebyshev moments.
limlst [int, optional] Upper bound on the number of cycles (>=3) for use with a sinusoidal weighting

and an infinite end-point.
See also:

dblquad

double integral
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tplquad

triple integral
nquad

n-dimensional integrals (uses quad recursively)
fixed_quad

fixed-order Gaussian quadrature
quadrature

adaptive Gaussian quadrature
odeint

ODE integrator
ode

ODE integrator
simps

integrator for sampled data
romb

integrator for sampled data
scipy.special

for coefficients and roots of orthogonal polynomials

Notes

Extra information for quad() inputs and outputs
If full_output is non-zero, then the third output argument (infodict) is a dictionary with entries as tabulated be-
low. For infinite limits, the range is transformed to (0,1) and the optional outputs are given with respect to this
transformed range. Let M be the input argument limit and let K be infodict[‘last’]. The entries are:
‘neval’

The number of function evaluations.
‘last’

The number, K, of subintervals produced in the subdivision process.
‘alist’

A rank-1 array of length M, the first K elements of which are the left end points of the subintervals in the
partition of the integration range.

‘blist’

A rank-1 array of length M, the first K elements of which are the right end points of the subintervals.
‘rlist’

A rank-1 array of length M, the first K elements of which are the integral approximations on the subintervals.
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‘elist’

A rank-1 array of length M, the first K elements of which are the moduli of the absolute error estimates on the
subintervals.

‘iord’

A rank-1 integer array of length M, the first L elements of which are pointers to the error estimates over the
subintervals with L=K if K<=M/2+2 or L=M+1-K otherwise. Let I be the sequence infodict['iord']
and let E be the sequence infodict['elist']. Then E[I[1]], ..., E[I[L]] forms a decreasing
sequence.

If the input argument points is provided (i.e. it is not None), the following additional outputs are placed in the
output dictionary. Assume the points sequence is of length P.
‘pts’

A rank-1 array of length P+2 containing the integration limits and the break points of the intervals in ascending
order. This is an array giving the subintervals over which integration will occur.

‘level’

A rank-1 integer array of length M (=limit), containing the subdivision levels of the subintervals, i.e., if
(aa,bb) is a subinterval of (pts[1], pts[2]) where pts[0] and pts[2] are adjacent elements of
infodict['pts'], then (aa,bb) has level l if |bb-aa| = |pts[2]-pts[1]| * 2**(-l).

‘ndin’

A rank-1 integer array of length P+2. After the first integration over the intervals (pts[1], pts[2]), the error
estimates over some of the intervalsmay have been increased artificially in order to put their subdivision forward.
This array has ones in slots corresponding to the subintervals for which this happens.

Weighting the integrand
The input variables, weight and wvar, are used to weight the integrand by a select list of functions. Different
integration methods are used to compute the integral with these weighting functions. The possible values of weight
and the corresponding weighting functions are.

weight Weight function used wvar
‘cos’ cos(w*x) wvar = w
‘sin’ sin(w*x) wvar = w
‘alg’ g(x) = ((x-a)**alpha)*((b-x)**beta) wvar = (alpha, beta)
‘alg-loga’ g(x)*log(x-a) wvar = (alpha, beta)
‘alg-logb’ g(x)*log(b-x) wvar = (alpha, beta)
‘alg-log’ g(x)*log(x-a)*log(b-x) wvar = (alpha, beta)
‘cauchy’ 1/(x-c) wvar = c

wvar holds the parameter w, (alpha, beta), or c depending on the weight selected. In these expressions, a and b are
the integration limits.
For the ‘cos’ and ‘sin’ weighting, additional inputs and outputs are available.
For finite integration limits, the integration is performed using a Clenshaw-Curtis method which uses Chebyshev
moments. For repeated calculations, these moments are saved in the output dictionary:
‘momcom’

The maximum level of Chebyshev moments that have been computed, i.e., if M_c is
infodict['momcom'] then the moments have been computed for intervals of length |b-a| *
2**(-l), l=0,1,...,M_c.
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‘nnlog’

A rank-1 integer array of lengthM(=limit), containing the subdivision levels of the subintervals, i.e., an element
of this array is equal to l if the corresponding subinterval is |b-a|* 2**(-l).

‘chebmo’

A rank-2 array of shape (25, maxp1) containing the computed Chebyshev moments. These can be passed on
to an integration over the same interval by passing this array as the second element of the sequence wopts and
passing infodict[‘momcom’] as the first element.

If one of the integration limits is infinite, then a Fourier integral is computed (assuming w neq 0). If full_output
is 1 and a numerical error is encountered, besides the error message attached to the output tuple, a dictionary is
also appended to the output tuple which translates the error codes in the array info['ierlst'] to English
messages. The output information dictionary contains the following entries instead of ‘last’, ‘alist’, ‘blist’, ‘rlist’, and
‘elist’:
‘lst’

The number of subintervals needed for the integration (call it K_f).
‘rslst’

A rank-1 array of lengthM_f=limlst, whose firstK_f elements contain the integral contribution over the interval
(a+(k-1)c, a+kc) where c = (2*floor(|w|) + 1) * pi / |w| and k=1,2,...,K_f.

‘erlst’

A rank-1 array of length M_f containing the error estimate corresponding to the interval in the same position
in infodict['rslist'].

‘ierlst’

A rank-1 integer array of length M_f containing an error flag corresponding to the interval in the same position
in infodict['rslist']. See the explanation dictionary (last entry in the output tuple) for the meaning
of the codes.

Examples

Calculate
∫ 4

0
x2dx and compare with an analytic result

>>> from scipy import integrate
>>> x2 = lambda x: x**2
>>> integrate.quad(x2, 0, 4)
(21.333333333333332, 2.3684757858670003e-13)
>>> print(4**3 / 3.) # analytical result
21.3333333333

Calculate
∫∞
0
e−xdx

>>> invexp = lambda x: np.exp(-x)
>>> integrate.quad(invexp, 0, np.inf)
(1.0, 5.842605999138044e-11)

>>> f = lambda x,a : a*x
>>> y, err = integrate.quad(f, 0, 1, args=(1,))
>>> y
0.5

(continues on next page)
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(continued from previous page)
>>> y, err = integrate.quad(f, 0, 1, args=(3,))
>>> y
1.5

Calculate
∫ 1

0
x2 + y2dx with ctypes, holding y parameter as 1:

testlib.c =>
double func(int n, double args[n]){

return args[0]*args[0] + args[1]*args[1];}
compile to library testlib.*

from scipy import integrate
import ctypes
lib = ctypes.CDLL('/home/.../testlib.*') #use absolute path
lib.func.restype = ctypes.c_double
lib.func.argtypes = (ctypes.c_int,ctypes.c_double)
integrate.quad(lib.func,0,1,(1))
#(1.3333333333333333, 1.4802973661668752e-14)
print((1.0**3/3.0 + 1.0) - (0.0**3/3.0 + 0.0)) #Analytic result
# 1.3333333333333333

Be aware that pulse shapes and other sharp features as compared to the size of the integration interval may not be
integrated correctly using this method. A simplified example of this limitation is integrating a y-axis reflected step
function with many zero values within the integrals bounds.

>>> y = lambda x: 1 if x<=0 else 0
>>> integrate.quad(y, -1, 1)
(1.0, 1.1102230246251565e-14)
>>> integrate.quad(y, -1, 100)
(1.0000000002199108, 1.0189464580163188e-08)
>>> integrate.quad(y, -1, 10000)
(0.0, 0.0)

scipy.integrate.dblquad

scipy.integrate.dblquad(func, a, b, gfun, hfun, args=(), epsabs=1.49e-08, epsrel=1.49e-08)
Compute a double integral.
Return the double (definite) integral of func(y, x) from x = a..b and y = gfun(x)..hfun(x).

Parameters

func [callable] A Python function or method of at least two variables: y must be the first argument
and x the second argument.

a, b [float] The limits of integration in x: a < b
gfun [callable or float] The lower boundary curve in y which is a function taking a single float-

ing point argument (x) and returning a floating point result or a float indicating a constant
boundary curve.

hfun [callable or float] The upper boundary curve in y (same requirements as gfun).
args [sequence, optional] Extra arguments to pass to func.
epsabs [float, optional] Absolute tolerance passed directly to the inner 1-D quadrature integration.

Default is 1.49e-8.
epsrel [float, optional] Relative tolerance of the inner 1-D integrals. Default is 1.49e-8.
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Returns

y [float] The resultant integral.
abserr [float] An estimate of the error.

See also:

quad

single integral
tplquad

triple integral
nquad

N-dimensional integrals
fixed_quad

fixed-order Gaussian quadrature
quadrature

adaptive Gaussian quadrature
odeint

ODE integrator
ode

ODE integrator
simps

integrator for sampled data
romb

integrator for sampled data
scipy.special

for coefficients and roots of orthogonal polynomials

Examples

Compute the double integral of x * y**2 over the box x ranging from 0 to 2 and y ranging from 0 to 1.

>>> from scipy import integrate
>>> f = lambda y, x: x*y**2
>>> integrate.dblquad(f, 0, 2, lambda x: 0, lambda x: 1)

(0.6666666666666667, 7.401486830834377e-15)

scipy.integrate.tplquad

scipy.integrate.tplquad(func, a, b, gfun, hfun, qfun, rfun, args=(), epsabs=1.49e-08, epsrel=1.49e-
08)

Compute a triple (definite) integral.
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Return the triple integral of func(z, y, x) from x = a..b, y = gfun(x)..hfun(x), and z =
qfun(x,y)..rfun(x,y).

Parameters

func [function] A Python function or method of at least three variables in the order (z, y, x).
a, b [float] The limits of integration in x: a < b
gfun [function or float] The lower boundary curve in y which is a function taking a single float-

ing point argument (x) and returning a floating point result or a float indicating a constant
boundary curve.

hfun [function or float] The upper boundary curve in y (same requirements as gfun).
qfun [function or float] The lower boundary surface in z. It must be a function that takes two floats

in the order (x, y) and returns a float or a float indicating a constant boundary surface.
rfun [function or float] The upper boundary surface in z. (Same requirements as qfun.)
args [tuple, optional] Extra arguments to pass to func.
epsabs [float, optional] Absolute tolerance passed directly to the innermost 1-D quadrature integra-

tion. Default is 1.49e-8.
epsrel [float, optional] Relative tolerance of the innermost 1-D integrals. Default is 1.49e-8.

Returns

y [float] The resultant integral.
abserr [float] An estimate of the error.

See also:

quad

Adaptive quadrature using QUADPACK
quadrature

Adaptive Gaussian quadrature
fixed_quad

Fixed-order Gaussian quadrature
dblquad

Double integrals
nquad

N-dimensional integrals
romb

Integrators for sampled data
simps

Integrators for sampled data
ode

ODE integrators
odeint

ODE integrators
scipy.special

For coefficients and roots of orthogonal polynomials
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Examples

Compute the triple integral of x * y * z, over x ranging from 1 to 2, y ranging from 2 to 3, z ranging from 0
to 1.

>>> from scipy import integrate
>>> f = lambda z, y, x: x*y*z
>>> integrate.tplquad(f, 1, 2, lambda x: 2, lambda x: 3,
... lambda x, y: 0, lambda x, y: 1)
(1.8750000000000002, 3.324644794257407e-14)

scipy.integrate.nquad

scipy.integrate.nquad(func, ranges, args=None, opts=None, full_output=False)
Integration over multiple variables.
Wraps quad to enable integration over multiple variables. Various options allow improved integration of discon-
tinuous functions, as well as the use of weighted integration, and generally finer control of the integration process.

Parameters

func [{callable, scipy.LowLevelCallable}] The function to be integrated. Has arguments of x0,
... xn, t0, tm, where integration is carried out over x0, ... xn, which must be
floats. Function signature should be func(x0, x1, ..., xn, t0, t1, ...,
tm). Integration is carried out in order. That is, integration over x0 is the innermost inte-
gral, and xn is the outermost.
If the user desires improved integration performance, then f may be a scipy.
LowLevelCallable with one of the signatures:

double func(int n, double *xx)
double func(int n, double *xx, void *user_data)

where n is the number of extra parameters and args is an array of doubles of the additional
parameters, the xx array contains the coordinates. The user_data is the data contained
in the scipy.LowLevelCallable.

ranges [iterable object] Each element of ranges may be either a sequence of 2 numbers, or else a
callable that returns such a sequence. ranges[0] corresponds to integration over x0, and
so on. If an element of ranges is a callable, then it will be called with all of the integration
arguments available, as well as any parametric arguments. e.g. if func = f(x0, x1,
x2, t0, t1), then ranges[0] may be defined as either (a, b) or else as (a, b)
= range0(x1, x2, t0, t1).

args [iterable object, optional] Additional arguments t0, ..., tn, required by func, ranges,
and opts.

opts [iterable object or dict, optional] Options to be passed to quad. May be empty, a dict,
or a sequence of dicts or functions that return a dict. If empty, the default options from
scipy.integrate.quad are used. If a dict, the same options are used for all levels of integraion.
If a sequence, then each element of the sequence corresponds to a particular integration. e.g.
opts[0] corresponds to integration over x0, and so on. If a callable, the signature must be the
same as for ranges. The available options together with their default values are:
• epsabs = 1.49e-08
• epsrel = 1.49e-08
• limit = 50
• points = None
• weight = None
• wvar = None
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• wopts = None
For more information on these options, see quad and quad_explain.

full_output
[bool, optional] Partial implementation of full_output from scipy.integrate.quad.
The number of integrand function evaluations neval can be obtained by setting
full_output=True when calling nquad.

Returns

result [float] The result of the integration.
abserr [float] The maximum of the estimates of the absolute error in the various integration results.
out_dict [dict, optional] A dict containing additional information on the integration.

See also:

quad

1-dimensional numerical integration

dblquad, tplquad
fixed_quad

fixed-order Gaussian quadrature
quadrature

adaptive Gaussian quadrature

Examples

>>> from scipy import integrate
>>> func = lambda x0,x1,x2,x3 : x0**2 + x1*x2 - x3**3 + np.sin(x0) + (
... 1 if (x0-.2*x3-.5-.25*x1>0) else 0)
>>> points = [[lambda x1,x2,x3 : 0.2*x3 + 0.5 + 0.25*x1], [], [], []]
>>> def opts0(*args, **kwargs):
... return {'points':[0.2*args[2] + 0.5 + 0.25*args[0]]}
>>> integrate.nquad(func, [[0,1], [-1,1], [.13,.8], [-.15,1]],
... opts=[opts0,{},{},{}], full_output=True)
(1.5267454070738633, 2.9437360001402324e-14, {'neval': 388962})

>>> scale = .1
>>> def func2(x0, x1, x2, x3, t0, t1):
... return x0*x1*x3**2 + np.sin(x2) + 1 + (1 if x0+t1*x1-t0>0 else 0)
>>> def lim0(x1, x2, x3, t0, t1):
... return [scale * (x1**2 + x2 + np.cos(x3)*t0*t1 + 1) - 1,
... scale * (x1**2 + x2 + np.cos(x3)*t0*t1 + 1) + 1]
>>> def lim1(x2, x3, t0, t1):
... return [scale * (t0*x2 + t1*x3) - 1,
... scale * (t0*x2 + t1*x3) + 1]
>>> def lim2(x3, t0, t1):
... return [scale * (x3 + t0**2*t1**3) - 1,
... scale * (x3 + t0**2*t1**3) + 1]
>>> def lim3(t0, t1):
... return [scale * (t0+t1) - 1, scale * (t0+t1) + 1]
>>> def opts0(x1, x2, x3, t0, t1):

(continues on next page)
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(continued from previous page)
... return {'points' : [t0 - t1*x1]}
>>> def opts1(x2, x3, t0, t1):
... return {}
>>> def opts2(x3, t0, t1):
... return {}
>>> def opts3(t0, t1):
... return {}
>>> integrate.nquad(func2, [lim0, lim1, lim2, lim3], args=(0,0),
... opts=[opts0, opts1, opts2, opts3])
(25.066666666666666, 2.7829590483937256e-13)

scipy.integrate.fixed_quad

scipy.integrate.fixed_quad(func, a, b, args=(), n=5)
Compute a definite integral using fixed-order Gaussian quadrature.
Integrate func from a to b using Gaussian quadrature of order n.

Parameters

func [callable] A Python function ormethod to integrate (must accept vector inputs). If integrating
a vector-valued function, the returned array must have shape (..., len(x)).

a [float] Lower limit of integration.
b [float] Upper limit of integration.
args [tuple, optional] Extra arguments to pass to function, if any.
n [int, optional] Order of quadrature integration. Default is 5.

Returns

val [float] Gaussian quadrature approximation to the integral
none [None] Statically returned value of None

See also:

quad

adaptive quadrature using QUADPACK
dblquad

double integrals
tplquad

triple integrals
romberg

adaptive Romberg quadrature
quadrature

adaptive Gaussian quadrature
romb

integrators for sampled data
simps

integrators for sampled data
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cumtrapz

cumulative integration for sampled data
ode

ODE integrator
odeint

ODE integrator

Examples

>>> from scipy import integrate
>>> f = lambda x: x**8
>>> integrate.fixed_quad(f, 0.0, 1.0, n=4)
(0.1110884353741496, None)
>>> integrate.fixed_quad(f, 0.0, 1.0, n=5)
(0.11111111111111102, None)
>>> print(1/9.0) # analytical result
0.1111111111111111

>>> integrate.fixed_quad(np.cos, 0.0, np.pi/2, n=4)
(0.9999999771971152, None)
>>> integrate.fixed_quad(np.cos, 0.0, np.pi/2, n=5)
(1.000000000039565, None)
>>> np.sin(np.pi/2)-np.sin(0) # analytical result
1.0

scipy.integrate.quadrature

scipy.integrate.quadrature(func, a, b, args=(), tol=1.49e-08, rtol=1.49e-08, maxiter=50,
vec_func=True, miniter=1)

Compute a definite integral using fixed-tolerance Gaussian quadrature.
Integrate func from a to b using Gaussian quadrature with absolute tolerance tol.

Parameters

func [function] A Python function or method to integrate.
a [float] Lower limit of integration.
b [float] Upper limit of integration.
args [tuple, optional] Extra arguments to pass to function.
tol, rtol [float, optional] Iteration stops when error between last two iterates is less than tol OR the

relative change is less than rtol.
maxiter [int, optional] Maximum order of Gaussian quadrature.
vec_func [bool, optional] True or False if func handles arrays as arguments (is a “vector” function).

Default is True.
miniter [int, optional] Minimum order of Gaussian quadrature.

Returns

val [float] Gaussian quadrature approximation (within tolerance) to integral.
err [float] Difference between last two estimates of the integral.

See also:
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romberg

adaptive Romberg quadrature
fixed_quad

fixed-order Gaussian quadrature
quad

adaptive quadrature using QUADPACK
dblquad

double integrals
tplquad

triple integrals
romb

integrator for sampled data
simps

integrator for sampled data
cumtrapz

cumulative integration for sampled data
ode

ODE integrator
odeint

ODE integrator

Examples

>>> from scipy import integrate
>>> f = lambda x: x**8
>>> integrate.quadrature(f, 0.0, 1.0)
(0.11111111111111106, 4.163336342344337e-17)
>>> print(1/9.0) # analytical result
0.1111111111111111

>>> integrate.quadrature(np.cos, 0.0, np.pi/2)
(0.9999999999999536, 3.9611425250996035e-11)
>>> np.sin(np.pi/2)-np.sin(0) # analytical result
1.0

scipy.integrate.romberg

scipy.integrate.romberg(function, a, b, args=(), tol=1.48e-08, rtol=1.48e-08, show=False, div-
max=10, vec_func=False)

Romberg integration of a callable function or method.
Returns the integral of function (a function of one variable) over the interval (a, b).
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If show is 1, the triangular array of the intermediate results will be printed. If vec_func is True (default is False),
then function is assumed to support vector arguments.

Parameters

function [callable] Function to be integrated.
a [float] Lower limit of integration.
b [float] Upper limit of integration.

Returns

results [float] Result of the integration.
Other Parameters

args [tuple, optional] Extra arguments to pass to function. Each element of args will be passed as
a single argument to func. Default is to pass no extra arguments.

tol, rtol [float, optional] The desired absolute and relative tolerances. Defaults are 1.48e-8.
show [bool, optional] Whether to print the results. Default is False.
divmax [int, optional] Maximum order of extrapolation. Default is 10.
vec_func [bool, optional] Whether func handles arrays as arguments (i.e whether it is a “vector” func-

tion). Default is False.
See also:

fixed_quad

Fixed-order Gaussian quadrature.
quad

Adaptive quadrature using QUADPACK.
dblquad

Double integrals.
tplquad

Triple integrals.
romb

Integrators for sampled data.
simps

Integrators for sampled data.
cumtrapz

Cumulative integration for sampled data.
ode

ODE integrator.
odeint

ODE integrator.

References

[1]
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Examples

Integrate a gaussian from 0 to 1 and compare to the error function.

>>> from scipy import integrate
>>> from scipy.special import erf
>>> gaussian = lambda x: 1/np.sqrt(np.pi) * np.exp(-x**2)
>>> result = integrate.romberg(gaussian, 0, 1, show=True)
Romberg integration of <function vfunc at ...> from [0, 1]

Steps StepSize Results
1 1.000000 0.385872
2 0.500000 0.412631 0.421551
4 0.250000 0.419184 0.421368 0.421356
8 0.125000 0.420810 0.421352 0.421350 0.421350

16 0.062500 0.421215 0.421350 0.421350 0.421350 0.421350
32 0.031250 0.421317 0.421350 0.421350 0.421350 0.421350 0.

↪→421350

The final result is 0.421350396475 after 33 function evaluations.

>>> print("%g %g" % (2*result, erf(1)))
0.842701 0.842701

scipy.integrate.quad_explain

scipy.integrate.quad_explain(output=<_io.TextIOWrapper name=’<stdout>’ mode=’w’
encoding=’ANSI_X3.4-1968’>)

Print extra information about integrate.quad() parameters and returns.
Parameters

output [instance with “write” method, optional] Information about quad is passed to output.
write(). Default is sys.stdout.

Returns

None

scipy.integrate.newton_cotes

scipy.integrate.newton_cotes(rn, equal=0)
Return weights and error coefficient for Newton-Cotes integration.
Suppose we have (N+1) samples of f at the positions x_0, x_1, …, x_N. Then an N-point Newton-Cotes formula
for the integral between x_0 and x_N is:∫ xN

x0
f(x)dx = ∆x

∑N
i=0 aif(xi) +BN (∆x)N+2fN+1(ξ)

where ξ ∈ [x0, xN ] and ∆x = xN−x0

N is the average samples spacing.
If the samples are equally-spaced and N is even, then the error term is BN (∆x)N+3fN+2(ξ).

Parameters
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rn [int] The integer order for equally-spaced data or the relative positions of the samples with
the first sample at 0 and the last at N, where N+1 is the length of rn. N is the order of the
Newton-Cotes integration.

equal [int, optional] Set to 1 to enforce equally spaced data.
Returns

an [ndarray] 1-D array of weights to apply to the function at the provided sample positions.
B [float] Error coefficient.

Notes

Normally, the Newton-Cotes rules are used on smaller integration regions and a composite rule is used to return
the total integral.

Examples

Compute the integral of sin(x) in [0, π]:

>>> from scipy.integrate import newton_cotes
>>> def f(x):
... return np.sin(x)
>>> a = 0
>>> b = np.pi
>>> exact = 2
>>> for N in [2, 4, 6, 8, 10]:
... x = np.linspace(a, b, N + 1)
... an, B = newton_cotes(N, 1)
... dx = (b - a) / N
... quad = dx * np.sum(an * f(x))
... error = abs(quad - exact)
... print('{:2d} {:10.9f} {:.5e}'.format(N, quad, error))
...
2 2.094395102 9.43951e-02
4 1.998570732 1.42927e-03
6 2.000017814 1.78136e-05
8 1.999999835 1.64725e-07
10 2.000000001 1.14677e-09

scipy.integrate.IntegrationWarning

exception scipy.integrate.IntegrationWarning
Warning on issues during integration.
with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

6.6.2 Integrating functions, given fixed samples
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trapz(y[, x, dx, axis]) Integrate along the given axis using the composite trape-
zoidal rule.

cumtrapz(y[, x, dx, axis, initial]) Cumulatively integrate y(x) using the composite trape-
zoidal rule.

simps(y[, x, dx, axis, even]) Integrate y(x) using samples along the given axis and the
composite Simpson’s rule.

romb(y[, dx, axis, show]) Romberg integration using samples of a function.

scipy.integrate.trapz

scipy.integrate.trapz(y, x=None, dx=1.0, axis=-1)
Integrate along the given axis using the composite trapezoidal rule.
Integrate y (x) along given axis.

Parameters

y [array_like] Input array to integrate.
x [array_like, optional] The sample points corresponding to the y values. If x is None, the

sample points are assumed to be evenly spaced dx apart. The default is None.
dx [scalar, optional] The spacing between sample points when x is None. The default is 1.
axis [int, optional] The axis along which to integrate.

Returns

trapz [float] Definite integral as approximated by trapezoidal rule.
See also:

numpy.cumsum

Notes

Image [2] illustrates trapezoidal rule – y-axis locations of points will be taken from y array, by default x-axis
distances between points will be 1.0, alternatively they can be provided with x array or with dx scalar. Return value
will be equal to combined area under the red lines.

References

[1], [2]

Examples

>>> np.trapz([1,2,3])
4.0
>>> np.trapz([1,2,3], x=[4,6,8])
8.0
>>> np.trapz([1,2,3], dx=2)
8.0
>>> a = np.arange(6).reshape(2, 3)
>>> a
array([[0, 1, 2],

(continues on next page)
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(continued from previous page)
[3, 4, 5]])

>>> np.trapz(a, axis=0)
array([1.5, 2.5, 3.5])
>>> np.trapz(a, axis=1)
array([2., 8.])

scipy.integrate.cumtrapz

scipy.integrate.cumtrapz(y, x=None, dx=1.0, axis=-1, initial=None)
Cumulatively integrate y(x) using the composite trapezoidal rule.

Parameters

y [array_like] Values to integrate.
x [array_like, optional] The coordinate to integrate along. If None (default), use spacing dx

between consecutive elements in y.
dx [float, optional] Spacing between elements of y. Only used if x is None.
axis [int, optional] Specifies the axis to cumulate. Default is -1 (last axis).
initial [scalar, optional] If given, insert this value at the beginning of the returned result. Typically

this value should be 0. Default is None, which means no value at x[0] is returned and res
has one element less than y along the axis of integration.

Returns

res [ndarray] The result of cumulative integration of y along axis. If initial is None, the shape
is such that the axis of integration has one less value than y. If initial is given, the shape is
equal to that of y.

See also:
numpy.cumsum, numpy.cumprod
quad

adaptive quadrature using QUADPACK
romberg

adaptive Romberg quadrature
quadrature

adaptive Gaussian quadrature
fixed_quad

fixed-order Gaussian quadrature
dblquad

double integrals
tplquad

triple integrals
romb

integrators for sampled data
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ode

ODE integrators
odeint

ODE integrators

Examples

>>> from scipy import integrate
>>> import matplotlib.pyplot as plt

>>> x = np.linspace(-2, 2, num=20)
>>> y = x
>>> y_int = integrate.cumtrapz(y, x, initial=0)
>>> plt.plot(x, y_int, 'ro', x, y[0] + 0.5 * x**2, 'b-')
>>> plt.show()

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

scipy.integrate.simps

scipy.integrate.simps(y, x=None, dx=1, axis=-1, even=’avg’)
Integrate y(x) using samples along the given axis and the composite Simpson’s rule. If x is None, spacing of dx is
assumed.
If there are an even number of samples, N, then there are an odd number of intervals (N-1), but Simpson’s rule
requires an even number of intervals. The parameter ‘even’ controls how this is handled.

Parameters

y [array_like] Array to be integrated.
x [array_like, optional] If given, the points at which y is sampled.
dx [int, optional] Spacing of integration points along axis of y. Only used when x is None.

Default is 1.
axis [int, optional] Axis along which to integrate. Default is the last axis.
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even [str {‘avg’, ‘first’, ‘last’}, optional]
‘avg’ [Average two results:1) use the first N-2 intervals with] a trapezoidal rule on the

last interval and 2) use the last N-2 intervals with a trapezoidal rule on the first
interval.

‘first’ [Use Simpson’s rule for the first N-2 intervals with] a trapezoidal rule on the last
interval.

‘last’ [Use Simpson’s rule for the last N-2 intervals with a] trapezoidal rule on the first
interval.

See also:

quad

adaptive quadrature using QUADPACK
romberg

adaptive Romberg quadrature
quadrature

adaptive Gaussian quadrature
fixed_quad

fixed-order Gaussian quadrature
dblquad

double integrals
tplquad

triple integrals
romb

integrators for sampled data
cumtrapz

cumulative integration for sampled data
ode

ODE integrators
odeint

ODE integrators

Notes

For an odd number of samples that are equally spaced the result is exact if the function is a polynomial of order 3
or less. If the samples are not equally spaced, then the result is exact only if the function is a polynomial of order
2 or less.

Examples

>>> from scipy import integrate
>>> x = np.arange(0, 10)
>>> y = np.arange(0, 10)
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>>> integrate.simps(y, x)
40.5

>>> y = np.power(x, 3)
>>> integrate.simps(y, x)
1642.5
>>> integrate.quad(lambda x: x**3, 0, 9)[0]
1640.25

>>> integrate.simps(y, x, even='first')
1644.5

scipy.integrate.romb

scipy.integrate.romb(y, dx=1.0, axis=-1, show=False)
Romberg integration using samples of a function.

Parameters

y [array_like] A vector of 2**k + 1 equally-spaced samples of a function.
dx [float, optional] The sample spacing. Default is 1.
axis [int, optional] The axis along which to integrate. Default is -1 (last axis).
show [bool, optional] When y is a single 1-D array, then if this argument is True print the table

showing Richardson extrapolation from the samples. Default is False.
Returns

romb [ndarray] The integrated result for axis.
See also:

quad

adaptive quadrature using QUADPACK
romberg

adaptive Romberg quadrature
quadrature

adaptive Gaussian quadrature
fixed_quad

fixed-order Gaussian quadrature
dblquad

double integrals
tplquad

triple integrals
simps

integrators for sampled data
cumtrapz

cumulative integration for sampled data
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ode

ODE integrators
odeint

ODE integrators

Examples

>>> from scipy import integrate
>>> x = np.arange(10, 14.25, 0.25)
>>> y = np.arange(3, 12)

>>> integrate.romb(y)
56.0

>>> y = np.sin(np.power(x, 2.5))
>>> integrate.romb(y)
-0.742561336672229

>>> integrate.romb(y, show=True)
Richardson Extrapolation Table for Romberg Integration
====================================================================
-0.81576
4.63862 6.45674
-1.10581 -3.02062 -3.65245
-2.57379 -3.06311 -3.06595 -3.05664
-1.34093 -0.92997 -0.78776 -0.75160 -0.74256
====================================================================
-0.742561336672229

See also:
scipy.special for orthogonal polynomials (special) for Gaussian quadrature roots and weights for other weighting
factors and regions.

6.6.3 Solving initial value problems for ODE systems

The solvers are implemented as individual classes which can be used directly (low-level usage) or through a convenience
function.

solve_ivp(fun, t_span, y0[, method, t_eval, …]) Solve an initial value problem for a system of ODEs.
RK23(fun, t0, y0, t_bound[, max_step, rtol, …]) Explicit Runge-Kutta method of order 3(2).
RK45(fun, t0, y0, t_bound[, max_step, rtol, …]) Explicit Runge-Kutta method of order 5(4).
Radau(fun, t0, y0, t_bound[, max_step, …]) Implicit Runge-Kutta method of Radau IIA family of or-

der 5.
BDF(fun, t0, y0, t_bound[, max_step, rtol, …]) Implicit method based on backward-differentiation for-

mulas.
LSODA(fun, t0, y0, t_bound[, first_step, …]) Adams/BDF method with automatic stiffness detection

and switching.
OdeSolver(fun, t0, y0, t_bound, vectorized) Base class for ODE solvers.

Continued on next page
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Table 20 – continued from previous page
DenseOutput(t_old, t) Base class for local interpolant over step made by an ODE

solver.
OdeSolution(ts, interpolants) Continuous ODE solution.

scipy.integrate.solve_ivp

scipy.integrate.solve_ivp(fun, t_span, y0, method=’RK45’, t_eval=None, dense_output=False,
events=None, vectorized=False, **options)

Solve an initial value problem for a system of ODEs.
This function numerically integrates a system of ordinary differential equations given an initial value:

dy / dt = f(t, y)
y(t0) = y0

Here t is a one-dimensional independent variable (time), y(t) is an n-dimensional vector-valued function (state),
and an n-dimensional vector-valued function f(t, y) determines the differential equations. The goal is to find y(t)
approximately satisfying the differential equations, given an initial value y(t0)=y0.
Some of the solvers support integration in the complex domain, but note that for stiff ODE solvers, the right-hand
side must be complex-differentiable (satisfy Cauchy-Riemann equations [11]). To solve a problem in the complex
domain, pass y0 with a complex data type. Another option is always to rewrite your problem for real and imaginary
parts separately.

Parameters

fun [callable] Right-hand side of the system. The calling signature is fun(t, y). Here t is a
scalar, and there are two options for the ndarray y: It can either have shape (n,); then fun
must return array_like with shape (n,). Alternatively it can have shape (n, k); then fun must
return an array_like with shape (n, k), i.e. each column corresponds to a single column in y.
The choice between the two options is determined by vectorized argument (see below). The
vectorized implementation allows a faster approximation of the Jacobian by finite differences
(required for stiff solvers).

t_span [2-tuple of floats] Interval of integration (t0, tf). The solver starts with t=t0 and integrates
until it reaches t=tf.

y0 [array_like, shape (n,)] Initial state. For problems in the complex domain, pass y0 with a
complex data type (even if the initial guess is purely real).

method [string or OdeSolver, optional] Integration method to use:
• ‘RK45’ (default): Explicit Runge-Kutta method of order 5(4) [1]. The error is controlled
assuming accuracy of the fourth-order method, but steps are taken using the fifth-order
accurate formula (local extrapolation is done). A quartic interpolation polynomial is used
for the dense output [2]. Can be applied in the complex domain.

• ‘RK23’: Explicit Runge-Kutta method of order 3(2) [3]. The error is controlled assuming
accuracy of the second-order method, but steps are taken using the third-order accurate
formula (local extrapolation is done). A cubic Hermite polynomial is used for the dense
output. Can be applied in the complex domain.

• ‘Radau’: Implicit Runge-Kutta method of the Radau IIA family of order 5 [4]. The error
is controlled with a third-order accurate embedded formula. A cubic polynomial which
satisfies the collocation conditions is used for the dense output.

• ‘BDF’: Implicit multi-step variable-order (1 to 5) method based on a backward differen-
tiation formula for the derivative approximation [5]. The implementation follows the one
described in [6]. A quasi-constant step scheme is used and accuracy is enhanced using the
NDF modification. Can be applied in the complex domain.
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• ‘LSODA’: Adams/BDF method with automatic stiffness detection and switching [7], [8].
This is a wrapper of the Fortran solver from ODEPACK.

You should use the ‘RK45’ or ‘RK23’ method for non-stiff problems and ‘Radau’ or ‘BDF’
for stiff problems [9]. If not sure, first try to run ‘RK45’. If needs unusually many iterations,
diverges, or fails, your problem is likely to be stiff and you should use ‘Radau’ or ‘BDF’.
‘LSODA’ can also be a good universal choice, but it might be somewhat less convenient to
work with as it wraps old Fortran code.
You can also pass an arbitrary class derived from OdeSolver which implements the solver.

dense_output
[bool, optional] Whether to compute a continuous solution. Default is False.

t_eval [array_like or None, optional] Times at which to store the computed solution, must be sorted
and lie within t_span. If None (default), use points selected by the solver.

events [callable, or list of callables, optional] Events to track. If None (default), no events will be
tracked. Each event occurs at the zeros of a continuous function of time and state. Each
function must have the signature event(t, y) and return a float. The solver will find
an accurate value of t at which event(t, y(t)) = 0 using a root-finding algorithm.
By default, all zeros will be found. The solver looks for a sign change over each step, so if
multiple zero crossings occur within one step, events may be missed. Additionally each event
function might have the following attributes:
terminal: bool, optional

Whether to terminate integration if this event occurs. Implicitly False if not
assigned.

direction: float, optional
Direction of a zero crossing. If direction is positive, event will only trigger
when going from negative to positive, and vice versa if direction is negative.
If 0, then either direction will trigger event. Implicitly 0 if not assigned.

You can assign attributes like event.terminal = True to any function in Python.
vectorized [bool, optional] Whether fun is implemented in a vectorized fashion. Default is False.
options Options passed to a chosen solver. All options available for already implemented solvers are

listed below.
first_step [float or None, optional] Initial step size. Default is None which means that the algorithm

should choose.
max_step [float, optional] Maximum allowed step size. Default is np.inf, i.e. the step size is not

bounded and determined solely by the solver.
rtol, atol [float or array_like, optional] Relative and absolute tolerances. The solver keeps the local

error estimates less than atol + rtol * abs(y). Here rtol controls a relative accu-
racy (number of correct digits). But if a component of y is approximately below atol, the
error only needs to fall within the same atol threshold, and the number of correct digits is not
guaranteed. If components of y have different scales, it might be beneficial to set different
atol values for different components by passing array_like with shape (n,) for atol. Default
values are 1e-3 for rtol and 1e-6 for atol.

jac [array_like, sparse_matrix, callable or None, optional] Jacobian matrix of the right-hand side
of the system with respect to y, required by the ‘Radau’, ‘BDF’ and ‘LSODA’ method. The
Jacobian matrix has shape (n, n) and its element (i, j) is equal to d f_i / d y_j. There
are three ways to define the Jacobian:
• If array_like or sparse_matrix, the Jacobian is assumed to be constant. Not supported by
‘LSODA’.

• If callable, the Jacobian is assumed to depend on both t and y; it will be called as jac(t,
y) as necessary. For the ‘Radau’ and ‘BDF’ methods, the return value might be a sparse
matrix.

• If None (default), the Jacobian will be approximated by finite differences.
It is generally recommended to provide the Jacobian rather than relying on a finite-difference
approximation.
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jac_sparsity
[array_like, sparse matrix or None, optional] Defines a sparsity structure of the Jacobian
matrix for a finite-difference approximation. Its shape must be (n, n). This argument is
ignored if jac is not None. If the Jacobian has only few non-zero elements in each row,
providing the sparsity structure will greatly speed up the computations [10]. A zero entry
means that a corresponding element in the Jacobian is always zero. If None (default), the
Jacobian is assumed to be dense. Not supported by ‘LSODA’, see lband and uband instead.

lband, uband
[int or None, optional] Parameters defining the bandwidth of the Jacobian for the
‘LSODA’ method, i.e., jac[i, j] != 0 only for i - lband <= j <= i
+ uband. Default is None. Setting these requires your jac routine to return the Jaco-
bian in the packed format: the returned array must have n columns and uband + lband
+ 1 rows in which Jacobian diagonals are written. Specifically jac_packed[uband
+ i - j , j] = jac[i, j]. The same format is used in scipy.linalg.
solve_banded (check for an illustration). These parameters can be also used with
jac=None to reduce the number of Jacobian elements estimated by finite differences.

min_step [float, optional] The minimum allowed step size for ‘LSODA’ method. By default min_step
is zero.

Returns

Bunch object with the following fields defined:
t [ndarray, shape (n_points,)] Time points.
y [ndarray, shape (n, n_points)] Values of the solution at t.
sol [OdeSolution or None] Found solution as OdeSolution instance; None if

dense_output was set to False.
t_events [list of ndarray or None] Contains for each event type a list of arrays at which an event of

that type event was detected. None if events was None.
nfev [int] Number of evaluations of the right-hand side.
njev [int] Number of evaluations of the Jacobian.
nlu [int] Number of LU decompositions.
status [int] Reason for algorithm termination:

• -1: Integration step failed.
• 0: The solver successfully reached the end of tspan.
• 1: A termination event occurred.

message [string] Human-readable description of the termination reason.
success [bool] True if the solver reached the interval end or a termination event occurred (status

>= 0).

References

[1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]

Examples

Basic exponential decay showing automatically chosen time points.

>>> from scipy.integrate import solve_ivp
>>> def exponential_decay(t, y): return -0.5 * y
>>> sol = solve_ivp(exponential_decay, [0, 10], [2, 4, 8])
>>> print(sol.t)
[ 0. 0.11487653 1.26364188 3.06061781 4.85759374

6.65456967 8.4515456 10. ]
(continues on next page)
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(continued from previous page)
>>> print(sol.y)
[[2. 1.88836035 1.06327177 0.43319312 0.17648948 0.0719045

0.02929499 0.01350938]
[4. 3.7767207 2.12654355 0.86638624 0.35297895 0.143809
0.05858998 0.02701876]

[8. 7.5534414 4.25308709 1.73277247 0.7059579 0.287618
0.11717996 0.05403753]]

Specifying points where the solution is desired.

>>> sol = solve_ivp(exponential_decay, [0, 10], [2, 4, 8],
... t_eval=[0, 1, 2, 4, 10])
>>> print(sol.t)
[ 0 1 2 4 10]
>>> print(sol.y)
[[2. 1.21305369 0.73534021 0.27066736 0.01350938]
[4. 2.42610739 1.47068043 0.54133472 0.02701876]
[8. 4.85221478 2.94136085 1.08266944 0.05403753]]

Cannon fired upward with terminal event upon impact. The terminal and direction fields of an event are
applied by monkey patching a function. Here y[0] is position and y[1] is velocity. The projectile starts at
position 0 with velocity +10. Note that the integration never reaches t=100 because the event is terminal.

>>> def upward_cannon(t, y): return [y[1], -0.5]
>>> def hit_ground(t, y): return y[0]
>>> hit_ground.terminal = True
>>> hit_ground.direction = -1
>>> sol = solve_ivp(upward_cannon, [0, 100], [0, 10], events=hit_ground)
>>> print(sol.t_events)
[array([40.])]
>>> print(sol.t)
[0.00000000e+00 9.99900010e-05 1.09989001e-03 1.10988901e-02
1.11088891e-01 1.11098890e+00 1.11099890e+01 4.00000000e+01]

Use dense_output and events to find position, which is 100, at the apex of the cannonball’s trajectory. Apex is not
defined as terminal, so both apex and hit_ground are found. There is no information at t=20, so the sol attribute is
used to evaluate the solution. The sol attribute is returned by setting dense_output=True.

>>> def apex(t,y): return y[1]
>>> sol = solve_ivp(upward_cannon, [0, 100], [0, 10],
... events=(hit_ground, apex), dense_output=True)
>>> print(sol.t_events)
[array([40.]), array([20.])]
>>> print(sol.t)
[0.00000000e+00 9.99900010e-05 1.09989001e-03 1.10988901e-02
1.11088891e-01 1.11098890e+00 1.11099890e+01 4.00000000e+01]
>>> print(sol.sol(sol.t_events[1][0]))
[100. 0.]
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scipy.integrate.RK23

class scipy.integrate.RK23(fun, t0, y0, t_bound, max_step=inf, rtol=0.001, atol=1e-06, vector-
ized=False, first_step=None, **extraneous)

Explicit Runge-Kutta method of order 3(2).
This uses the Bogacki-Shampine pair of formulas [1]. The error is controlled assuming accuracy of the second-
order method, but steps are taken using the third-order accurate formula (local extrapolation is done). A cubic
Hermite polynomial is used for the dense output.
Can be applied in the complex domain.

Parameters

fun [callable] Right-hand side of the system. The calling signature is fun(t, y). Here t is a
scalar and there are two options for ndarray y. It can either have shape (n,), then fun must
return array_like with shape (n,). Or alternatively it can have shape (n, k), then fun must
return array_like with shape (n, k), i.e. each column corresponds to a single column in y.
The choice between the two options is determined by vectorized argument (see below).

t0 [float] Initial time.
y0 [array_like, shape (n,)] Initial state.
t_bound [float] Boundary time - the integration won’t continue beyond it. It also determines the di-

rection of the integration.
first_step [float or None, optional] Initial step size. Default is None which means that the algorithm

should choose.
max_step [float, optional] Maximum allowed step size. Default is np.inf, i.e. the step size is not

bounded and determined solely by the solver.
rtol, atol [float and array_like, optional] Relative and absolute tolerances. The solver keeps the local

error estimates less than atol + rtol * abs(y). Here rtol controls a relative accu-
racy (number of correct digits). But if a component of y is approximately below atol, the
error only needs to fall within the same atol threshold, and the number of correct digits is not
guaranteed. If components of y have different scales, it might be beneficial to set different
atol values for different components by passing array_like with shape (n,) for atol. Default
values are 1e-3 for rtol and 1e-6 for atol.

vectorized [bool, optional] Whether fun is implemented in a vectorized fashion. Default is False.

References

[1]
Attributes

n [int] Number of equations.
status [string] Current status of the solver: ‘running’, ‘finished’ or ‘failed’.
t_bound [float] Boundary time.
direction [float] Integration direction: +1 or -1.
t [float] Current time.
y [ndarray] Current state.
t_old [float] Previous time. None if no steps were made yet.
step_size [float] Size of the last successful step. None if no steps were made yet.
nfev [int] Number evaluations of the system’s right-hand side.
njev [int] Number of evaluations of the Jacobian. Is always 0 for this solver as it does not use the

Jacobian.
nlu [int] Number of LU decompositions. Is always 0 for this solver.
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Methods

dense_output() Compute a local interpolant over the last successful
step.

step() Perform one integration step.

scipy.integrate.RK23.dense_output
RK23.dense_output()

Compute a local interpolant over the last successful step.
Returns

sol [DenseOutput] Local interpolant over the last successful step.

scipy.integrate.RK23.step
RK23.step()

Perform one integration step.
Returns

message [string or None] Report from the solver. Typically a reason for a failure if self.status is
‘failed’ after the step was taken or None otherwise.

scipy.integrate.RK45

class scipy.integrate.RK45(fun, t0, y0, t_bound, max_step=inf, rtol=0.001, atol=1e-06, vector-
ized=False, first_step=None, **extraneous)

Explicit Runge-Kutta method of order 5(4).
This uses the Dormand-Prince pair of formulas [1]. The error is controlled assuming accuracy of the fourth-order
method accuracy, but steps are taken using the fifth-order accurate formula (local extrapolation is done). A quartic
interpolation polynomial is used for the dense output [2].
Can be applied in the complex domain.

Parameters

fun [callable] Right-hand side of the system. The calling signature is fun(t, y). Here t is a
scalar, and there are two options for the ndarray y: It can either have shape (n,); then fun
must return array_like with shape (n,). Alternatively it can have shape (n, k); then funmust
return an array_like with shape (n, k), i.e. each column corresponds to a single column in y.
The choice between the two options is determined by vectorized argument (see below).

t0 [float] Initial time.
y0 [array_like, shape (n,)] Initial state.
t_bound [float] Boundary time - the integration won’t continue beyond it. It also determines the di-

rection of the integration.
first_step [float or None, optional] Initial step size. Default is None which means that the algorithm

should choose.
max_step [float, optional] Maximum allowed step size. Default is np.inf, i.e. the step size is not

bounded and determined solely by the solver.
rtol, atol [float and array_like, optional] Relative and absolute tolerances. The solver keeps the local

error estimates less than atol + rtol * abs(y). Here rtol controls a relative accu-
racy (number of correct digits). But if a component of y is approximately below atol, the
error only needs to fall within the same atol threshold, and the number of correct digits is not
guaranteed. If components of y have different scales, it might be beneficial to set different
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atol values for different components by passing array_like with shape (n,) for atol. Default
values are 1e-3 for rtol and 1e-6 for atol.

vectorized [bool, optional] Whether fun is implemented in a vectorized fashion. Default is False.

References

[1], [2]
Attributes

n [int] Number of equations.
status [string] Current status of the solver: ‘running’, ‘finished’ or ‘failed’.
t_bound [float] Boundary time.
direction [float] Integration direction: +1 or -1.
t [float] Current time.
y [ndarray] Current state.
t_old [float] Previous time. None if no steps were made yet.
step_size [float] Size of the last successful step. None if no steps were made yet.
nfev [int] Number evaluations of the system’s right-hand side.
njev [int] Number of evaluations of the Jacobian. Is always 0 for this solver as it does not use the

Jacobian.
nlu [int] Number of LU decompositions. Is always 0 for this solver.

Methods

dense_output() Compute a local interpolant over the last successful
step.

step() Perform one integration step.

scipy.integrate.RK45.dense_output
RK45.dense_output()

Compute a local interpolant over the last successful step.
Returns

sol [DenseOutput] Local interpolant over the last successful step.

scipy.integrate.RK45.step
RK45.step()

Perform one integration step.
Returns

message [string or None] Report from the solver. Typically a reason for a failure if self.status is
‘failed’ after the step was taken or None otherwise.

scipy.integrate.Radau

class scipy.integrate.Radau(fun, t0, y0, t_bound, max_step=inf, rtol=0.001, atol=1e-06, jac=None,
jac_sparsity=None, vectorized=False, first_step=None, **extraneous)

Implicit Runge-Kutta method of Radau IIA family of order 5.

610 Chapter 6. API Reference



SciPy Reference Guide, Release 1.3.1

The implementation follows [1]. The error is controlled with a third-order accurate embedded formula. A cubic
polynomial which satisfies the collocation conditions is used for the dense output.

Parameters

fun [callable] Right-hand side of the system. The calling signature is fun(t, y). Here t is a
scalar, and there are two options for the ndarray y: It can either have shape (n,); then fun
must return array_like with shape (n,). Alternatively it can have shape (n, k); then funmust
return an array_like with shape (n, k), i.e. each column corresponds to a single column in y.
The choice between the two options is determined by vectorized argument (see below). The
vectorized implementation allows a faster approximation of the Jacobian by finite differences
(required for this solver).

t0 [float] Initial time.
y0 [array_like, shape (n,)] Initial state.
t_bound [float] Boundary time - the integration won’t continue beyond it. It also determines the di-

rection of the integration.
first_step [float or None, optional] Initial step size. Default is None which means that the algorithm

should choose.
max_step [float, optional] Maximum allowed step size. Default is np.inf, i.e. the step size is not

bounded and determined solely by the solver.
rtol, atol [float and array_like, optional] Relative and absolute tolerances. The solver keeps the local

error estimates less than atol + rtol * abs(y). Here rtol controls a relative accu-
racy (number of correct digits). But if a component of y is approximately below atol, the
error only needs to fall within the same atol threshold, and the number of correct digits is not
guaranteed. If components of y have different scales, it might be beneficial to set different
atol values for different components by passing array_like with shape (n,) for atol. Default
values are 1e-3 for rtol and 1e-6 for atol.

jac [{None, array_like, sparse_matrix, callable}, optional] Jacobian matrix of the right-hand
side of the system with respect to y, required by this method. The Jacobian matrix has shape
(n, n) and its element (i, j) is equal to d f_i / d y_j. There are three ways to define
the Jacobian:
• If array_like or sparse_matrix, the Jacobian is assumed to be constant.
• If callable, the Jacobian is assumed to depend on both t and y; it will be called as jac(t,
y) as necessary. For the ‘Radau’ and ‘BDF’ methods, the return value might be a sparse
matrix.

• If None (default), the Jacobian will be approximated by finite differences.
It is generally recommended to provide the Jacobian rather than relying on a finite-difference
approximation.

jac_sparsity
[{None, array_like, sparse matrix}, optional] Defines a sparsity structure of the Jacobian
matrix for a finite-difference approximation. Its shape must be (n, n). This argument is
ignored if jac is not None. If the Jacobian has only few non-zero elements in each row,
providing the sparsity structure will greatly speed up the computations [2]. A zero entry
means that a corresponding element in the Jacobian is always zero. If None (default), the
Jacobian is assumed to be dense.

vectorized [bool, optional] Whether fun is implemented in a vectorized fashion. Default is False.

References

[1], [2]
Attributes

n [int] Number of equations.
status [string] Current status of the solver: ‘running’, ‘finished’ or ‘failed’.
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t_bound [float] Boundary time.
direction [float] Integration direction: +1 or -1.
t [float] Current time.
y [ndarray] Current state.
t_old [float] Previous time. None if no steps were made yet.
step_size [float] Size of the last successful step. None if no steps were made yet.
nfev [int] Number of evaluations of the right-hand side.
njev [int] Number of evaluations of the Jacobian.
nlu [int] Number of LU decompositions.

Methods

dense_output() Compute a local interpolant over the last successful
step.

step() Perform one integration step.

scipy.integrate.Radau.dense_output
Radau.dense_output()

Compute a local interpolant over the last successful step.
Returns

sol [DenseOutput] Local interpolant over the last successful step.

scipy.integrate.Radau.step
Radau.step()

Perform one integration step.
Returns

message [string or None] Report from the solver. Typically a reason for a failure if self.status is
‘failed’ after the step was taken or None otherwise.

scipy.integrate.BDF

class scipy.integrate.BDF(fun, t0, y0, t_bound, max_step=inf, rtol=0.001, atol=1e-06, jac=None,
jac_sparsity=None, vectorized=False, first_step=None, **extraneous)

Implicit method based on backward-differentiation formulas.
This is a variable order method with the order varying automatically from 1 to 5. The general framework of the
BDF algorithm is described in [1]. This class implements a quasi-constant step size as explained in [2]. The error
estimation strategy for the constant-step BDF is derived in [3]. An accuracy enhancement using modified formulas
(NDF) [2] is also implemented.
Can be applied in the complex domain.

Parameters

fun [callable] Right-hand side of the system. The calling signature is fun(t, y). Here t is a
scalar, and there are two options for the ndarray y: It can either have shape (n,); then fun
must return array_like with shape (n,). Alternatively it can have shape (n, k); then funmust
return an array_like with shape (n, k), i.e. each column corresponds to a single column in y.
The choice between the two options is determined by vectorized argument (see below). The
vectorized implementation allows a faster approximation of the Jacobian by finite differences
(required for this solver).
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t0 [float] Initial time.
y0 [array_like, shape (n,)] Initial state.
t_bound [float] Boundary time - the integration won’t continue beyond it. It also determines the di-

rection of the integration.
first_step [float or None, optional] Initial step size. Default is None which means that the algorithm

should choose.
max_step [float, optional] Maximum allowed step size. Default is np.inf, i.e. the step size is not

bounded and determined solely by the solver.
rtol, atol [float and array_like, optional] Relative and absolute tolerances. The solver keeps the local

error estimates less than atol + rtol * abs(y). Here rtol controls a relative accu-
racy (number of correct digits). But if a component of y is approximately below atol, the
error only needs to fall within the same atol threshold, and the number of correct digits is not
guaranteed. If components of y have different scales, it might be beneficial to set different
atol values for different components by passing array_like with shape (n,) for atol. Default
values are 1e-3 for rtol and 1e-6 for atol.

jac [{None, array_like, sparse_matrix, callable}, optional] Jacobian matrix of the right-hand
side of the system with respect to y, required by this method. The Jacobian matrix has shape
(n, n) and its element (i, j) is equal to d f_i / d y_j. There are three ways to define
the Jacobian:
• If array_like or sparse_matrix, the Jacobian is assumed to be constant.
• If callable, the Jacobian is assumed to depend on both t and y; it will be called as jac(t,
y) as necessary. For the ‘Radau’ and ‘BDF’ methods, the return value might be a sparse
matrix.

• If None (default), the Jacobian will be approximated by finite differences.
It is generally recommended to provide the Jacobian rather than relying on a finite-difference
approximation.

jac_sparsity
[{None, array_like, sparse matrix}, optional] Defines a sparsity structure of the Jacobian
matrix for a finite-difference approximation. Its shape must be (n, n). This argument is
ignored if jac is not None. If the Jacobian has only few non-zero elements in each row,
providing the sparsity structure will greatly speed up the computations [4]. A zero entry
means that a corresponding element in the Jacobian is always zero. If None (default), the
Jacobian is assumed to be dense.

vectorized [bool, optional] Whether fun is implemented in a vectorized fashion. Default is False.

References

[1], [2], [3], [4]
Attributes

n [int] Number of equations.
status [string] Current status of the solver: ‘running’, ‘finished’ or ‘failed’.
t_bound [float] Boundary time.
direction [float] Integration direction: +1 or -1.
t [float] Current time.
y [ndarray] Current state.
t_old [float] Previous time. None if no steps were made yet.
step_size [float] Size of the last successful step. None if no steps were made yet.
nfev [int] Number of evaluations of the right-hand side.
njev [int] Number of evaluations of the Jacobian.
nlu [int] Number of LU decompositions.
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Methods

dense_output() Compute a local interpolant over the last successful
step.

step() Perform one integration step.

scipy.integrate.BDF.dense_output
BDF.dense_output()

Compute a local interpolant over the last successful step.
Returns

sol [DenseOutput] Local interpolant over the last successful step.

scipy.integrate.BDF.step
BDF.step()

Perform one integration step.
Returns

message [string or None] Report from the solver. Typically a reason for a failure if self.status is
‘failed’ after the step was taken or None otherwise.

scipy.integrate.LSODA

class scipy.integrate.LSODA(fun, t0, y0, t_bound, first_step=None, min_step=0.0, max_step=inf,
rtol=0.001, atol=1e-06, jac=None, lband=None, uband=None, vector-
ized=False, **extraneous)

Adams/BDF method with automatic stiffness detection and switching.
This is a wrapper to the Fortran solver from ODEPACK [1]. It switches automatically between the nonstiff Adams
method and the stiff BDF method. The method was originally detailed in [2].

Parameters

fun [callable] Right-hand side of the system. The calling signature is fun(t, y). Here t is a
scalar, and there are two options for the ndarray y: It can either have shape (n,); then fun
must return array_like with shape (n,). Alternatively it can have shape (n, k); then funmust
return an array_like with shape (n, k), i.e. each column corresponds to a single column in y.
The choice between the two options is determined by vectorized argument (see below). The
vectorized implementation allows a faster approximation of the Jacobian by finite differences
(required for this solver).

t0 [float] Initial time.
y0 [array_like, shape (n,)] Initial state.
t_bound [float] Boundary time - the integration won’t continue beyond it. It also determines the di-

rection of the integration.
first_step [float or None, optional] Initial step size. Default is None which means that the algorithm

should choose.
min_step [float, optional] Minimum allowed step size. Default is 0.0, i.e. the step size is not bounded

and determined solely by the solver.
max_step [float, optional] Maximum allowed step size. Default is np.inf, i.e. the step size is not

bounded and determined solely by the solver.
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rtol, atol [float and array_like, optional] Relative and absolute tolerances. The solver keeps the local
error estimates less than atol + rtol * abs(y). Here rtol controls a relative accu-
racy (number of correct digits). But if a component of y is approximately below atol, the
error only needs to fall within the same atol threshold, and the number of correct digits is not
guaranteed. If components of y have different scales, it might be beneficial to set different
atol values for different components by passing array_like with shape (n,) for atol. Default
values are 1e-3 for rtol and 1e-6 for atol.

jac [None or callable, optional] Jacobian matrix of the right-hand side of the system with respect
to y. The Jacobian matrix has shape (n, n) and its element (i, j) is equal to d f_i / d
y_j. The function will be called as jac(t, y). If None (default), the Jacobian will be
approximated by finite differences. It is generally recommended to provide the Jacobian
rather than relying on a finite-difference approximation.

lband, uband
[int or None] Parameters defining the bandwidth of the Jacobian, i.e., jac[i, j] !=
0 only for i - lband <= j <= i + uband. Setting these requires your jac
routine to return the Jacobian in the packed format: the returned array must have n columns
and uband + lband + 1 rows in which Jacobian diagonals are written. Specifically
jac_packed[uband + i - j , j] = jac[i, j]. The same format is used in
scipy.linalg.solve_banded (check for an illustration). These parameters can be
also used with jac=None to reduce the number of Jacobian elements estimated by finite
differences.

vectorized [bool, optional] Whether fun is implemented in a vectorized fashion. A vectorized imple-
mentation offers no advantages for this solver. Default is False.

References

[1], [2]
Attributes

n [int] Number of equations.
status [string] Current status of the solver: ‘running’, ‘finished’ or ‘failed’.
t_bound [float] Boundary time.
direction [float] Integration direction: +1 or -1.
t [float] Current time.
y [ndarray] Current state.
t_old [float] Previous time. None if no steps were made yet.
nfev [int] Number of evaluations of the right-hand side.
njev [int] Number of evaluations of the Jacobian.

Methods

dense_output() Compute a local interpolant over the last successful
step.

step() Perform one integration step.

scipy.integrate.LSODA.dense_output
LSODA.dense_output()

Compute a local interpolant over the last successful step.
Returns

sol [DenseOutput] Local interpolant over the last successful step.
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scipy.integrate.LSODA.step
LSODA.step()

Perform one integration step.
Returns

message [string or None] Report from the solver. Typically a reason for a failure if self.status is
‘failed’ after the step was taken or None otherwise.

scipy.integrate.OdeSolver

class scipy.integrate.OdeSolver(fun, t0, y0, t_bound, vectorized, support_complex=False)
Base class for ODE solvers.
In order to implement a new solver you need to follow the guidelines:
1. A constructor must accept parameters presented in the base class (listed below) along with any other param-

eters specific to a solver.
2. A constructor must accept arbitrary extraneous arguments **extraneous, but warn that these arguments

are irrelevant using common.warn_extraneous function. Do not pass these arguments to the base class.
3. A solver must implement a private method _step_impl(self) which propagates a solver one step further. It

must return tuple (success, message), where success is a boolean indicating whether a step was
successful, and message is a string containing description of a failure if a step failed or None otherwise.

4. A solver must implement a private method _dense_output_impl(self) which returns a DenseOutput object
covering the last successful step.

5. A solver must have attributes listed below in Attributes section. Note that t_old and step_size are
updated automatically.

6. Use fun(self, t, y) method for the system rhs evaluation, this way the number of function evaluations (nfev)
will be tracked automatically.

7. For convenience a base class provides fun_single(self, t, y) and fun_vectorized(self, t, y) for evaluating the
rhs in non-vectorized and vectorized fashions respectively (regardless of how fun from the constructor is
implemented). These calls don’t increment nfev.

8. If a solver uses a Jacobian matrix and LU decompositions, it should track the number of Jacobian evaluations
(njev) and the number of LU decompositions (nlu).

9. By convention the function evaluations used to compute a finite difference approximation of the Jacobian
should not be counted in nfev, thus use fun_single(self, t, y) or fun_vectorized(self, t, y) when computing a
finite difference approximation of the Jacobian.

Parameters

fun [callable] Right-hand side of the system. The calling signature is fun(t, y). Here t is a
scalar and there are two options for ndarray y. It can either have shape (n,), then fun must
return array_like with shape (n,). Or alternatively it can have shape (n, n_points), then fun
must return array_like with shape (n, n_points) (each column corresponds to a single column
in y). The choice between the two options is determined by vectorized argument (see below).

t0 [float] Initial time.
y0 [array_like, shape (n,)] Initial state.
t_bound [float] Boundary time — the integration won’t continue beyond it. It also determines the

direction of the integration.
vectorized [bool] Whether fun is implemented in a vectorized fashion.
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support_complex
[bool, optional] Whether integration in a complex domain should be supported. Generally
determined by a derived solver class capabilities. Default is False.

Attributes

n [int] Number of equations.
status [string] Current status of the solver: ‘running’, ‘finished’ or ‘failed’.
t_bound [float] Boundary time.
direction [float] Integration direction: +1 or -1.
t [float] Current time.
y [ndarray] Current state.
t_old [float] Previous time. None if no steps were made yet.
step_size [float] Size of the last successful step. None if no steps were made yet.
nfev [int] Number of the system’s rhs evaluations.
njev [int] Number of the Jacobian evaluations.
nlu [int] Number of LU decompositions.

Methods

dense_output() Compute a local interpolant over the last successful
step.

step() Perform one integration step.

scipy.integrate.OdeSolver.dense_output
OdeSolver.dense_output()

Compute a local interpolant over the last successful step.
Returns

sol [DenseOutput] Local interpolant over the last successful step.

scipy.integrate.OdeSolver.step
OdeSolver.step()

Perform one integration step.
Returns

message [string or None] Report from the solver. Typically a reason for a failure if self.status is
‘failed’ after the step was taken or None otherwise.

scipy.integrate.DenseOutput

class scipy.integrate.DenseOutput(t_old, t)
Base class for local interpolant over step made by an ODE solver.
It interpolates between t_min and t_max (see Attributes below). Evaluation outside this interval is not forbidden,
but the accuracy is not guaranteed.

Attributes

t_min, t_max
[float] Time range of the interpolation.
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Methods

__call__(t) Evaluate the interpolant.

scipy.integrate.DenseOutput.__call__
DenseOutput.__call__(t)

Evaluate the interpolant.
Parameters

t [float or array_like with shape (n_points,)] Points to evaluate the solution at.
Returns

y [ndarray, shape (n,) or (n, n_points)] Computed values. Shape depends on whether t
was a scalar or a 1-d array.

scipy.integrate.OdeSolution

class scipy.integrate.OdeSolution(ts, interpolants)
Continuous ODE solution.
It is organized as a collection ofDenseOutput objects which represent local interpolants. It provides an algorithm
to select a right interpolant for each given point.
The interpolants cover the range between t_min and t_max (see Attributes below). Evaluation outside this interval
is not forbidden, but the accuracy is not guaranteed.
When evaluating at a breakpoint (one of the values in ts) a segment with the lower index is selected.

Parameters

ts [array_like, shape (n_segments + 1,)] Time instants between which local interpolants are
defined. Must be strictly increasing or decreasing (zero segment with two points is also
allowed).

interpolants
[list of DenseOutput with n_segments elements] Local interpolants. An i-th interpolant is
assumed to be defined between ts[i] and ts[i + 1].

Attributes

t_min, t_max
[float] Time range of the interpolation.

Methods

__call__(t) Evaluate the solution.

scipy.integrate.OdeSolution.__call__
OdeSolution.__call__(t)

Evaluate the solution.
Parameters

t [float or array_like with shape (n_points,)] Points to evaluate at.
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Returns

y [ndarray, shape (n_states,) or (n_states, n_points)] Computed values. Shape depends
on whether t is a scalar or a 1-d array.

Old API

These are the routines developed earlier for scipy. They wrap older solvers implemented in Fortran (mostly ODEPACK).
While the interface to them is not particularly convenient and certain features are missing compared to the new API, the
solvers themselves are of good quality and work fast as compiled Fortran code. In some cases it might be worth using this
old API.

odeint(func, y0, t[, args, Dfun, col_deriv, …]) Integrate a system of ordinary differential equations.
ode(f[, jac]) A generic interface class to numeric integrators.
complex_ode(f[, jac]) A wrapper of ode for complex systems.

scipy.integrate.odeint
scipy.integrate.odeint(func, y0, t, args=(), Dfun=None, col_deriv=0, full_output=0, ml=None,

mu=None, rtol=None, atol=None, tcrit=None, h0=0.0, hmax=0.0, hmin=0.0,
ixpr=0, mxstep=0, mxhnil=0, mxordn=12, mxords=5, printmessg=0,
tfirst=False)

Integrate a system of ordinary differential equations.

Note: For new code, use scipy.integrate.solve_ivp to solve a differential equation.

Solve a system of ordinary differential equations using lsoda from the FORTRAN library odepack.
Solves the initial value problem for stiff or non-stiff systems of first order ode-s:

dy/dt = func(y, t, ...) [or func(t, y, ...)]

where y can be a vector.

Note: By default, the required order of the first two arguments of func are in the opposite order of the argu-
ments in the system definition function used by the scipy.integrate.ode class and the function scipy.
integrate.solve_ivp. To use a function with the signature func(t, y, ...), the argument tfirst must
be set to True.

Parameters

func [callable(y, t, …) or callable(t, y, …)] Computes the derivative of y at t. If the signature is
callable(t, y, ...), then the argument tfirst must be set True.

y0 [array] Initial condition on y (can be a vector).
t [array] A sequence of time points for which to solve for y. The initial value point should

be the first element of this sequence. This sequence must be monotonically increasing or
monotonically decreasing; repeated values are allowed.

args [tuple, optional] Extra arguments to pass to function.
Dfun [callable(y, t, …) or callable(t, y, …)] Gradient (Jacobian) of func. If the signature is

callable(t, y, ...), then the argument tfirst must be set True.
col_deriv [bool, optional] True if Dfun defines derivatives down columns (faster), otherwise Dfun

should define derivatives across rows.
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full_output
[bool, optional] True if to return a dictionary of optional outputs as the second output

printmessg
[bool, optional] Whether to print the convergence message

tfirst: bool, optional
If True, the first two arguments of func (andDfun, if given) must t, y instead of the default
y, t.
New in version 1.1.0.

Returns

y [array, shape (len(t), len(y0))] Array containing the value of y for each desired time in t, with
the initial value y0 in the first row.

infodict [dict, only returned if full_output == True] Dictionary containing additional output informa-
tion

key meaning
‘hu’ vector of step sizes successfully used for each time step.
‘tcur’ vector with the value of t reached for each time step. (will always be at least as

large as the input times).
‘tolsf’ vector of tolerance scale factors, greater than 1.0, computed when a request for

too much accuracy was detected.
‘tsw’ value of t at the time of the last method switch (given for each time step)
‘nst’ cumulative number of time steps
‘nfe’ cumulative number of function evaluations for each time step
‘nje’ cumulative number of jacobian evaluations for each time step
‘nqu’ a vector of method orders for each successful step.
‘imxer’ index of the component of largest magnitude in the weighted local error vector

(e / ewt) on an error return, -1 otherwise.
‘lenrw’ the length of the double work array required.
‘leniw’ the length of integer work array required.
‘mused’ a vector of method indicators for each successful time step: 1: adams (nonstiff),

2: bdf (stiff)

Other Parameters

ml, mu [int, optional] If either of these are not None or non-negative, then the Jacobian is assumed
to be banded. These give the number of lower and upper non-zero diagonals in this banded
matrix. For the banded case, Dfun should return a matrix whose rows contain the non-zero
bands (starting with the lowest diagonal). Thus, the return matrix jac from Dfun should
have shape (ml + mu + 1, len(y0)) when ml >=0 or mu >=0. The data in jac
must be stored such that jac[i - j + mu, j] holds the derivative of the i‘th equation
with respect to the ‘j‘th state variable. If ‘col_deriv is True, the transpose of this jac must be
returned.

rtol, atol [float, optional] The input parameters rtol and atol determine the error control performed
by the solver. The solver will control the vector, e, of estimated local errors in y, according
to an inequality of the form max-norm of (e / ewt) <= 1, where ewt is a vector
of positive error weights computed as ewt = rtol * abs(y) + atol. rtol and atol
can be either vectors the same length as y or scalars. Defaults to 1.49012e-8.

tcrit [ndarray, optional] Vector of critical points (e.g. singularities) where integration care should
be taken.

h0 [float, (0: solver-determined), optional] The step size to be attempted on the first step.
hmax [float, (0: solver-determined), optional] The maximum absolute step size allowed.
hmin [float, (0: solver-determined), optional] The minimum absolute step size allowed.
ixpr [bool, optional] Whether to generate extra printing at method switches.
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mxstep [int, (0: solver-determined), optional] Maximum number of (internally defined) steps al-
lowed for each integration point in t.

mxhnil [int, (0: solver-determined), optional] Maximum number of messages printed.
mxordn [int, (0: solver-determined), optional] Maximum order to be allowed for the non-stiff

(Adams) method.
mxords [int, (0: solver-determined), optional] Maximum order to be allowed for the stiff (BDF)

method.

See also:

solve_ivp

Solve an initial value problem for a system of ODEs.
ode

a more object-oriented integrator based on VODE.
quad

for finding the area under a curve.

Examples

The second order differential equation for the angle theta of a pendulum acted on by gravity with friction can be
written:

theta''(t) + b*theta'(t) + c*sin(theta(t)) = 0

where b and c are positive constants, and a prime (‘) denotes a derivative. To solve this equation with odeint,
we must first convert it to a system of first order equations. By defining the angular velocity omega(t) =
theta'(t), we obtain the system:

theta'(t) = omega(t)
omega'(t) = -b*omega(t) - c*sin(theta(t))

Let y be the vector [theta, omega]. We implement this system in python as:

>>> def pend(y, t, b, c):
... theta, omega = y
... dydt = [omega, -b*omega - c*np.sin(theta)]
... return dydt
...

We assume the constants are b = 0.25 and c = 5.0:

>>> b = 0.25
>>> c = 5.0

For initial conditions, we assume the pendulum is nearly vertical with theta(0) = pi - 0.1, and is initially at rest, so
omega(0) = 0. Then the vector of initial conditions is

>>> y0 = [np.pi - 0.1, 0.0]

We will generate a solution at 101 evenly spaced samples in the interval 0 <= t <= 10. So our array of times is:
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>>> t = np.linspace(0, 10, 101)

Call odeint to generate the solution. To pass the parameters b and c to pend, we give them to odeint using
the args argument.

>>> from scipy.integrate import odeint
>>> sol = odeint(pend, y0, t, args=(b, c))

The solution is an array with shape (101, 2). The first column is theta(t), and the second is omega(t). The following
code plots both components.

>>> import matplotlib.pyplot as plt
>>> plt.plot(t, sol[:, 0], 'b', label='theta(t)')
>>> plt.plot(t, sol[:, 1], 'g', label='omega(t)')
>>> plt.legend(loc='best')
>>> plt.xlabel('t')
>>> plt.grid()
>>> plt.show()

0 2 4 6 8 10
t

4

2

0

2

theta(t)
omega(t)

scipy.integrate.ode
class scipy.integrate.ode(f, jac=None)

A generic interface class to numeric integrators.
Solve an equation system y′(t) = f(t, y) with (optional) jac = df/dy.
Note: The first two arguments of f(t, y, ...) are in the opposite order of the arguments in the system
definition function used by scipy.integrate.odeint.

Parameters

f [callable f(t, y, *f_args)] Right-hand side of the differential equation. t is a scalar,
y.shape == (n,). f_args is set by calling set_f_params(*args). f should
return a scalar, array or list (not a tuple).

jac [callable jac(t, y, *jac_args), optional] Jacobian of the right-hand
side, jac[i,j] = d f[i] / d y[j]. jac_args is set by calling
set_jac_params(*args).
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See also:

odeint

an integrator with a simpler interface based on lsoda from ODEPACK
quad

for finding the area under a curve

Notes

Available integrators are listed below. They can be selected using the set_integrator method.
“vode”

Real-valued Variable-coefficient Ordinary Differential Equation solver, with fixed-leading-coefficient imple-
mentation. It provides implicit Adams method (for non-stiff problems) and a method based on backward
differentiation formulas (BDF) (for stiff problems).
Source: http://www.netlib.org/ode/vode.f

Warning: This integrator is not re-entrant. You cannot have two ode instances using the “vode” inte-
grator at the same time.

This integrator accepts the following parameters in set_integrator method of the ode class:
• atol : float or sequence absolute tolerance for solution
• rtol : float or sequence relative tolerance for solution
• lband : None or int
• uband : None or int Jacobian band width, jac[i,j] != 0 for i-lband <= j <= i+uband. Setting these
requires your jac routine to return the jacobian in packed format, jac_packed[i-j+uband, j] = jac[i,j].
The dimension of the matrix must be (lband+uband+1, len(y)).

• method: ‘adams’ or ‘bdf’ Which solver to use, Adams (non-stiff) or BDF (stiff)
• with_jacobian : bool This option is only considered when the user has not supplied a Jacobian function
and has not indicated (by setting either band) that the Jacobian is banded. In this case, with_jacobian
specifies whether the iteration method of the ODE solver’s correction step is chord iteration with an
internally generated full Jacobian or functional iteration with no Jacobian.

• nsteps : int Maximum number of (internally defined) steps allowed during one call to the solver.
• first_step : float
• min_step : float
• max_step : float Limits for the step sizes used by the integrator.
• order : int Maximum order used by the integrator, order <= 12 for Adams, <= 5 for BDF.

“zvode”
Complex-valued Variable-coefficient Ordinary Differential Equation solver, with fixed-leading-coefficient im-
plementation. It provides implicit Adams method (for non-stiff problems) and a method based on backward
differentiation formulas (BDF) (for stiff problems).
Source: http://www.netlib.org/ode/zvode.f

Warning: This integrator is not re-entrant. You cannot have two ode instances using the “zvode”
integrator at the same time.

This integrator accepts the same parameters in set_integrator as the “vode” solver.

Note: When using ZVODE for a stiff system, it should only be used for the case in which the function
f is analytic, that is, when each f(i) is an analytic function of each y(j). Analyticity means that the partial
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derivative df(i)/dy(j) is a unique complex number, and this fact is critical in the way ZVODE solves the dense
or banded linear systems that arise in the stiff case. For a complex stiff ODE system in which f is not analytic,
ZVODE is likely to have convergence failures, and for this problem one should instead use DVODE on the
equivalent real system (in the real and imaginary parts of y).

“lsoda”
Real-valued Variable-coefficient Ordinary Differential Equation solver, with fixed-leading-coefficient imple-
mentation. It provides automatic method switching between implicit Adams method (for non-stiff problems)
and a method based on backward differentiation formulas (BDF) (for stiff problems).
Source: http://www.netlib.org/odepack

Warning: This integrator is not re-entrant. You cannot have two ode instances using the “lsoda”
integrator at the same time.

This integrator accepts the following parameters in set_integrator method of the ode class:
• atol : float or sequence absolute tolerance for solution
• rtol : float or sequence relative tolerance for solution
• lband : None or int
• uband : None or int Jacobian band width, jac[i,j] != 0 for i-lband <= j <= i+uband. Setting these requires
your jac routine to return the jacobian in packed format, jac_packed[i-j+uband, j] = jac[i,j].

• with_jacobian : bool Not used.
• nsteps : int Maximum number of (internally defined) steps allowed during one call to the solver.
• first_step : float
• min_step : float
• max_step : float Limits for the step sizes used by the integrator.
• max_order_ns : int Maximum order used in the nonstiff case (default 12).
• max_order_s : int Maximum order used in the stiff case (default 5).
• max_hnil : int Maximum number of messages reporting too small step size (t + h = t) (default 0)
• ixpr : int Whether to generate extra printing at method switches (default False).

“dopri5”
This is an explicit runge-kutta method of order (4)5 due to Dormand & Prince (with stepsize control and
dense output).
Authors:

E. Hairer and G. Wanner Universite de Geneve, Dept. de Mathematiques CH-1211 Geneve 24, Switzer-
land e-mail: ernst.hairer@math.unige.ch, gerhard.wanner@math.unige.ch

This code is described in [HNW93].
This integrator accepts the following parameters in set_integrator() method of the ode class:
• atol : float or sequence absolute tolerance for solution
• rtol : float or sequence relative tolerance for solution
• nsteps : int Maximum number of (internally defined) steps allowed during one call to the solver.
• first_step : float
• max_step : float
• safety : float Safety factor on new step selection (default 0.9)
• ifactor : float
• dfactor : float Maximum factor to increase/decrease step size by in one step
• beta : float Beta parameter for stabilised step size control.
• verbosity : int Switch for printing messages (< 0 for no messages).

“dop853”
This is an explicit runge-kutta method of order 8(5,3) due to Dormand & Prince (with stepsize control and
dense output).
Options and references the same as “dopri5”.
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References

[HNW93]

Examples

A problem to integrate and the corresponding jacobian:

>>> from scipy.integrate import ode
>>>
>>> y0, t0 = [1.0j, 2.0], 0
>>>
>>> def f(t, y, arg1):
... return [1j*arg1*y[0] + y[1], -arg1*y[1]**2]
>>> def jac(t, y, arg1):
... return [[1j*arg1, 1], [0, -arg1*2*y[1]]]

The integration:

>>> r = ode(f, jac).set_integrator('zvode', method='bdf')
>>> r.set_initial_value(y0, t0).set_f_params(2.0).set_jac_params(2.0)
>>> t1 = 10
>>> dt = 1
>>> while r.successful() and r.t < t1:
... print(r.t+dt, r.integrate(r.t+dt))
1 [-0.71038232+0.23749653j 0.40000271+0.j ]
2.0 [0.19098503-0.52359246j 0.22222356+0.j ]
3.0 [0.47153208+0.52701229j 0.15384681+0.j ]
4.0 [-0.61905937+0.30726255j 0.11764744+0.j ]
5.0 [0.02340997-0.61418799j 0.09523835+0.j ]
6.0 [0.58643071+0.339819j 0.08000018+0.j ]
7.0 [-0.52070105+0.44525141j 0.06896565+0.j ]
8.0 [-0.15986733-0.61234476j 0.06060616+0.j ]
9.0 [0.64850462+0.15048982j 0.05405414+0.j ]
10.0 [-0.38404699+0.56382299j 0.04878055+0.j ]

Attributes

t [float] Current time.
y [ndarray] Current variable values.

Methods

get_return_code() Extracts the return code for the integration to enable
better control if the integration fails.

integrate(t[, step, relax]) Find y=y(t), set y as an initial condition, and return y.
set_f_params(*args) Set extra parameters for user-supplied function f.
set_initial_value(y[, t]) Set initial conditions y(t) = y.
set_integrator(name, **integrator_params) Set integrator by name.
set_jac_params(*args) Set extra parameters for user-supplied function jac.

Continued on next page
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Table 30 – continued from previous page
set_solout(solout) Set callable to be called at every successful integration

step.
successful() Check if integration was successful.

scipy.integrate.ode.get_return_code

ode.get_return_code()
Extracts the return code for the integration to enable better control if the integration fails.
In general, a return code > 0 implies success while a return code < 0 implies failure.

Notes

This section describes possible return codes and their meaning, for available integrators that can be selected
by set_integrator method.
“vode”

Return
Code

Message

2 Integration successful.
-1 Excess work done on this call. (Perhaps wrong MF.)
-2 Excess accuracy requested. (Tolerances too small.)
-3 Illegal input detected. (See printed message.)
-4 Repeated error test failures. (Check all input.)
-5 Repeated convergence failures. (Perhaps bad Jacobian supplied or wrong choice of MF or

tolerances.)
-6 Error weight became zero during problem. (Solution component i vanished, and ATOL

or ATOL(i) = 0.)

“zvode”

Return
Code

Message

2 Integration successful.
-1 Excess work done on this call. (Perhaps wrong MF.)
-2 Excess accuracy requested. (Tolerances too small.)
-3 Illegal input detected. (See printed message.)
-4 Repeated error test failures. (Check all input.)
-5 Repeated convergence failures. (Perhaps bad Jacobian supplied or wrong choice of MF or

tolerances.)
-6 Error weight became zero during problem. (Solution component i vanished, and ATOL

or ATOL(i) = 0.)

“dopri5”
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Return Code Message
1 Integration successful.
2 Integration successful (interrupted by solout).
-1 Input is not consistent.
-2 Larger nsteps is needed.
-3 Step size becomes too small.
-4 Problem is probably stiff (interrupted).

“dop853”

Return Code Message
1 Integration successful.
2 Integration successful (interrupted by solout).
-1 Input is not consistent.
-2 Larger nsteps is needed.
-3 Step size becomes too small.
-4 Problem is probably stiff (interrupted).

“lsoda”

Return Code Message
2 Integration successful.
-1 Excess work done on this call (perhaps wrong Dfun type).
-2 Excess accuracy requested (tolerances too small).
-3 Illegal input detected (internal error).
-4 Repeated error test failures (internal error).
-5 Repeated convergence failures (perhaps bad Jacobian or tolerances).
-6 Error weight became zero during problem.
-7 Internal workspace insufficient to finish (internal error).

scipy.integrate.ode.integrate

ode.integrate(t, step=False, relax=False)
Find y=y(t), set y as an initial condition, and return y.

Parameters

t [float] The endpoint of the integration step.
step [bool] If True, and if the integrator supports the step method, then perform a single

integration step and return. This parameter is provided in order to expose internals of
the implementation, and should not be changed from its default value in most cases.

relax [bool] If True and if the integrator supports the run_relax method, then integrate until
t_1 >= t and return. relax is not referenced if step=True. This parameter is
provided in order to expose internals of the implementation, and should not be changed
from its default value in most cases.

Returns

y [float] The integrated value at t
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scipy.integrate.ode.set_f_params

ode.set_f_params(*args)
Set extra parameters for user-supplied function f.

scipy.integrate.ode.set_initial_value

ode.set_initial_value(y, t=0.0)
Set initial conditions y(t) = y.

scipy.integrate.ode.set_integrator

ode.set_integrator(name, **integrator_params)
Set integrator by name.

Parameters

name [str] Name of the integrator.
integrator_params

Additional parameters for the integrator.

scipy.integrate.ode.set_jac_params

ode.set_jac_params(*args)
Set extra parameters for user-supplied function jac.

scipy.integrate.ode.set_solout

ode.set_solout(solout)
Set callable to be called at every successful integration step.

Parameters

solout [callable] solout(t, y) is called at each internal integrator step, t is a scalar provid-
ing the current independent position y is the current soloution y.shape == (n,)
solout should return -1 to stop integration otherwise it should return None or 0

scipy.integrate.ode.successful

ode.successful()
Check if integration was successful.

scipy.integrate.complex_ode
class scipy.integrate.complex_ode(f, jac=None)

A wrapper of ode for complex systems.
This functions similarly as ode, but re-maps a complex-valued equation system to a real-valued one before using
the integrators.

Parameters
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f [callable f(t, y, *f_args)] Rhs of the equation. t is a scalar, y.shape == (n,).
f_args is set by calling set_f_params(*args).

jac [callable jac(t, y, *jac_args)] Jacobian of the rhs, jac[i,j] = d f[i] /
d y[j]. jac_args is set by calling set_f_params(*args).

Examples

For usage examples, see ode.
Attributes

t [float] Current time.
y [ndarray] Current variable values.

Methods

get_return_code() Extracts the return code for the integration to enable
better control if the integration fails.

integrate(t[, step, relax]) Find y=y(t), set y as an initial condition, and return y.
set_f_params(*args) Set extra parameters for user-supplied function f.
set_initial_value(y[, t]) Set initial conditions y(t) = y.
set_integrator(name, **integrator_params) Set integrator by name.
set_jac_params(*args) Set extra parameters for user-supplied function jac.
set_solout(solout) Set callable to be called at every successful integration

step.
successful() Check if integration was successful.

scipy.integrate.complex_ode.get_return_code

complex_ode.get_return_code()
Extracts the return code for the integration to enable better control if the integration fails.
In general, a return code > 0 implies success while a return code < 0 implies failure.

Notes

This section describes possible return codes and their meaning, for available integrators that can be selected
by set_integrator method.
“vode”
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Return
Code

Message

2 Integration successful.
-1 Excess work done on this call. (Perhaps wrong MF.)
-2 Excess accuracy requested. (Tolerances too small.)
-3 Illegal input detected. (See printed message.)
-4 Repeated error test failures. (Check all input.)
-5 Repeated convergence failures. (Perhaps bad Jacobian supplied or wrong choice of MF or

tolerances.)
-6 Error weight became zero during problem. (Solution component i vanished, and ATOL

or ATOL(i) = 0.)

“zvode”

Return
Code

Message

2 Integration successful.
-1 Excess work done on this call. (Perhaps wrong MF.)
-2 Excess accuracy requested. (Tolerances too small.)
-3 Illegal input detected. (See printed message.)
-4 Repeated error test failures. (Check all input.)
-5 Repeated convergence failures. (Perhaps bad Jacobian supplied or wrong choice of MF or

tolerances.)
-6 Error weight became zero during problem. (Solution component i vanished, and ATOL

or ATOL(i) = 0.)

“dopri5”

Return Code Message
1 Integration successful.
2 Integration successful (interrupted by solout).
-1 Input is not consistent.
-2 Larger nsteps is needed.
-3 Step size becomes too small.
-4 Problem is probably stiff (interrupted).

“dop853”

Return Code Message
1 Integration successful.
2 Integration successful (interrupted by solout).
-1 Input is not consistent.
-2 Larger nsteps is needed.
-3 Step size becomes too small.
-4 Problem is probably stiff (interrupted).

“lsoda”
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Return Code Message
2 Integration successful.
-1 Excess work done on this call (perhaps wrong Dfun type).
-2 Excess accuracy requested (tolerances too small).
-3 Illegal input detected (internal error).
-4 Repeated error test failures (internal error).
-5 Repeated convergence failures (perhaps bad Jacobian or tolerances).
-6 Error weight became zero during problem.
-7 Internal workspace insufficient to finish (internal error).

scipy.integrate.complex_ode.integrate

complex_ode.integrate(t, step=False, relax=False)
Find y=y(t), set y as an initial condition, and return y.

Parameters

t [float] The endpoint of the integration step.
step [bool] If True, and if the integrator supports the step method, then perform a single

integration step and return. This parameter is provided in order to expose internals of
the implementation, and should not be changed from its default value in most cases.

relax [bool] If True and if the integrator supports the run_relax method, then integrate until
t_1 >= t and return. relax is not referenced if step=True. This parameter is
provided in order to expose internals of the implementation, and should not be changed
from its default value in most cases.

Returns

y [float] The integrated value at t

scipy.integrate.complex_ode.set_f_params

complex_ode.set_f_params(*args)
Set extra parameters for user-supplied function f.

scipy.integrate.complex_ode.set_initial_value

complex_ode.set_initial_value(y, t=0.0)
Set initial conditions y(t) = y.

scipy.integrate.complex_ode.set_integrator

complex_ode.set_integrator(name, **integrator_params)
Set integrator by name.

Parameters

name [str] Name of the integrator
integrator_params

Additional parameters for the integrator.
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scipy.integrate.complex_ode.set_jac_params

complex_ode.set_jac_params(*args)
Set extra parameters for user-supplied function jac.

scipy.integrate.complex_ode.set_solout

complex_ode.set_solout(solout)
Set callable to be called at every successful integration step.

Parameters

solout [callable] solout(t, y) is called at each internal integrator step, t is a scalar provid-
ing the current independent position y is the current soloution y.shape == (n,)
solout should return -1 to stop integration otherwise it should return None or 0

scipy.integrate.complex_ode.successful

complex_ode.successful()
Check if integration was successful.

6.6.4 Solving boundary value problems for ODE systems

solve_bvp(fun, bc, x, y[, p, S, fun_jac, …]) Solve a boundary-value problem for a system of ODEs.

scipy.integrate.solve_bvp

scipy.integrate.solve_bvp(fun, bc, x, y, p=None, S=None, fun_jac=None, bc_jac=None, tol=0.001,
max_nodes=1000, verbose=0, bc_tol=None)

Solve a boundary-value problem for a system of ODEs.
This function numerically solves a first order system of ODEs subject to two-point boundary conditions:

dy / dx = f(x, y, p) + S * y / (x - a), a <= x <= b
bc(y(a), y(b), p) = 0

Here x is a 1-dimensional independent variable, y(x) is a n-dimensional vector-valued function and p is a k-
dimensional vector of unknown parameters which is to be found along with y(x). For the problem to be determined
there must be n + k boundary conditions, i.e. bc must be (n + k)-dimensional function.
The last singular term in the right-hand side of the system is optional. It is defined by an n-by-n matrix S, such
that the solution must satisfy S y(a) = 0. This condition will be forced during iterations, so it must not contradict
boundary conditions. See [2] for the explanation how this term is handled when solving BVPs numerically.
Problems in a complex domain can be solved as well. In this case y and p are considered to be complex, and f and
bc are assumed to be complex-valued functions, but x stays real. Note that f and bc must be complex differentiable
(satisfy Cauchy-Riemann equations [4]), otherwise you should rewrite your problem for real and imaginary parts
separately. To solve a problem in a complex domain, pass an initial guess for y with a complex data type (see
below).

Parameters

fun [callable] Right-hand side of the system. The calling signature is fun(x, y), or fun(x,
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y, p) if parameters are present. All arguments are ndarray: x with shape (m,), y with
shape (n, m), meaning that y[:, i] corresponds to x[i], and p with shape (k,). The
return value must be an array with shape (n, m) and with the same layout as y.

bc [callable] Function evaluating residuals of the boundary conditions. The calling signature is
bc(ya, yb), orbc(ya, yb, p) if parameters are present. All arguments are ndarray:
ya and yb with shape (n,), and p with shape (k,). The return value must be an array with
shape (n + k,).

x [array_like, shape (m,)] Initial mesh. Must be a strictly increasing sequence of real numbers
with x[0]=a and x[-1]=b.

y [array_like, shape (n, m)] Initial guess for the function values at the mesh nodes, i-th column
corresponds to x[i]. For problems in a complex domain pass y with a complex data type
(even if the initial guess is purely real).

p [array_like with shape (k,) or None, optional] Initial guess for the unknown parameters. If
None (default), it is assumed that the problem doesn’t depend on any parameters.

S [array_like with shape (n, n) or None] Matrix defining the singular term. If None (default),
the problem is solved without the singular term.

fun_jac [callable or None, optional] Function computing derivatives of f with respect to y and p.
The calling signature is fun_jac(x, y), or fun_jac(x, y, p) if parameters are
present. The return must contain 1 or 2 elements in the following order:
• df_dy : array_like with shape (n, n, m) where an element (i, j, q) equals to d f_i(x_q, y_q,
p) / d (y_q)_j.

• df_dp : array_like with shape (n, k, m) where an element (i, j, q) equals to d f_i(x_q, y_q,
p) / d p_j.

Here q numbers nodes at which x and y are defined, whereas i and j number vector compo-
nents. If the problem is solved without unknown parameters df_dp should not be returned.
If fun_jac is None (default), the derivatives will be estimated by the forward finite differences.

bc_jac [callable or None, optional] Function computing derivatives of bc with respect to ya, yb and
p. The calling signature is bc_jac(ya, yb), or bc_jac(ya, yb, p) if parameters
are present. The return must contain 2 or 3 elements in the following order:
• dbc_dya : array_like with shape (n, n) where an element (i, j) equals to d bc_i(ya, yb, p)
/ d ya_j.

• dbc_dyb : array_like with shape (n, n) where an element (i, j) equals to d bc_i(ya, yb, p)
/ d yb_j.

• dbc_dp : array_like with shape (n, k) where an element (i, j) equals to d bc_i(ya, yb, p) /
d p_j.

If the problem is solved without unknown parameters dbc_dp should not be returned.
If bc_jac is None (default), the derivatives will be estimated by the forward finite differences.

tol [float, optional] Desired tolerance of the solution. If we define r = y' - f(x, y)
where y is the found solution, then the solver tries to achieve on each mesh interval norm(r
/ (1 + abs(f)) < tol, where norm is estimated in a root mean squared sense (us-
ing a numerical quadrature formula). Default is 1e-3.

max_nodes
[int, optional] Maximum allowed number of the mesh nodes. If exceeded, the algorithm
terminates. Default is 1000.

verbose [{0, 1, 2}, optional] Level of algorithm’s verbosity:
• 0 (default) : work silently.
• 1 : display a termination report.
• 2 : display progress during iterations.

bc_tol [float, optional] Desired absolute tolerance for the boundary condition residuals: bc value
should satisfy abs(bc) < bc_tol component-wise. Equals to tol by default. Up to 10
iterations are allowed to achieve this tolerance.

Returns

Bunch object with the following fields defined:
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sol [PPoly] Found solution for y as scipy.interpolate.PPoly instance, a C1 continu-
ous cubic spline.

p [ndarray or None, shape (k,)] Found parameters. None, if the parameters were not present
in the problem.

x [ndarray, shape (m,)] Nodes of the final mesh.
y [ndarray, shape (n, m)] Solution values at the mesh nodes.
yp [ndarray, shape (n, m)] Solution derivatives at the mesh nodes.
rms_residuals

[ndarray, shape (m - 1,)] RMS values of the relative residuals over each mesh interval (see
the description of tol parameter).

niter [int] Number of completed iterations.
status [int] Reason for algorithm termination:

• 0: The algorithm converged to the desired accuracy.
• 1: The maximum number of mesh nodes is exceeded.
• 2: A singular Jacobian encountered when solving the collocation system.

message [string] Verbal description of the termination reason.
success [bool] True if the algorithm converged to the desired accuracy (status=0).

Notes

This function implements a 4-th order collocation algorithm with the control of residuals similar to [1]. A col-
location system is solved by a damped Newton method with an affine-invariant criterion function as described in
[3].
Note that in [1] integral residuals are defined without normalization by interval lengths. So their definition is
different by a multiplier of h**0.5 (h is an interval length) from the definition used here.
New in version 0.18.0.

References

[1], [2], [3], [4]

Examples

In the first example we solve Bratu’s problem:

y'' + k * exp(y) = 0
y(0) = y(1) = 0

for k = 1.
We rewrite the equation as a first order system and implement its right-hand side evaluation:

y1' = y2
y2' = -exp(y1)

>>> def fun(x, y):
... return np.vstack((y[1], -np.exp(y[0])))

Implement evaluation of the boundary condition residuals:
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>>> def bc(ya, yb):
... return np.array([ya[0], yb[0]])

Define the initial mesh with 5 nodes:

>>> x = np.linspace(0, 1, 5)

This problem is known to have two solutions. To obtain both of them we use two different initial guesses for y. We
denote them by subscripts a and b.

>>> y_a = np.zeros((2, x.size))
>>> y_b = np.zeros((2, x.size))
>>> y_b[0] = 3

Now we are ready to run the solver.

>>> from scipy.integrate import solve_bvp
>>> res_a = solve_bvp(fun, bc, x, y_a)
>>> res_b = solve_bvp(fun, bc, x, y_b)

Let’s plot the two found solutions. We take an advantage of having the solution in a spline form to produce a smooth
plot.

>>> x_plot = np.linspace(0, 1, 100)
>>> y_plot_a = res_a.sol(x_plot)[0]
>>> y_plot_b = res_b.sol(x_plot)[0]
>>> import matplotlib.pyplot as plt
>>> plt.plot(x_plot, y_plot_a, label='y_a')
>>> plt.plot(x_plot, y_plot_b, label='y_b')
>>> plt.legend()
>>> plt.xlabel("x")
>>> plt.ylabel("y")
>>> plt.show()
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We see that the two solutions have similar shape, but differ in scale significantly.
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In the second example we solve a simple Sturm-Liouville problem:

y'' + k**2 * y = 0
y(0) = y(1) = 0

It is known that a non-trivial solution y = A * sin(k * x) is possible for k = pi * n, where n is an integer. To establish
the normalization constant A = 1 we add a boundary condition:

y'(0) = k

Again we rewrite our equation as a first order system and implement its right-hand side evaluation:

y1' = y2
y2' = -k**2 * y1

>>> def fun(x, y, p):
... k = p[0]
... return np.vstack((y[1], -k**2 * y[0]))

Note that parameters p are passed as a vector (with one element in our case).
Implement the boundary conditions:

>>> def bc(ya, yb, p):
... k = p[0]
... return np.array([ya[0], yb[0], ya[1] - k])

Setup the initial mesh and guess for y. We aim to find the solution for k = 2 * pi, to achieve that we set values of y
to approximately follow sin(2 * pi * x):

>>> x = np.linspace(0, 1, 5)
>>> y = np.zeros((2, x.size))
>>> y[0, 1] = 1
>>> y[0, 3] = -1

Run the solver with 6 as an initial guess for k.

>>> sol = solve_bvp(fun, bc, x, y, p=[6])

We see that the found k is approximately correct:

>>> sol.p[0]
6.28329460046

And finally plot the solution to see the anticipated sinusoid:

>>> x_plot = np.linspace(0, 1, 100)
>>> y_plot = sol.sol(x_plot)[0]
>>> plt.plot(x_plot, y_plot)
>>> plt.xlabel("x")
>>> plt.ylabel("y")
>>> plt.show()
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6.7 Interpolation (scipy.interpolate)

Sub-package for objects used in interpolation.
As listed below, this sub-package contains spline functions and classes, one-dimensional andmulti-dimensional (univariate
and multivariate) interpolation classes, Lagrange and Taylor polynomial interpolators, and wrappers for FITPACK and
DFITPACK functions.

6.7.1 Univariate interpolation

interp1d(x, y[, kind, axis, copy, …]) Interpolate a 1-D function.
BarycentricInterpolator(xi[, yi, axis]) The interpolating polynomial for a set of points
KroghInterpolator(xi, yi[, axis]) Interpolating polynomial for a set of points.
barycentric_interpolate(xi, yi, x[, axis]) Convenience function for polynomial interpolation.
krogh_interpolate(xi, yi, x[, der, axis]) Convenience function for polynomial interpolation.
pchip_interpolate(xi, yi, x[, der, axis]) Convenience function for pchip interpolation.
CubicHermiteSpline(x, y, dydx[, axis, …]) Piecewise-cubic interpolator matching values and first

derivatives.
PchipInterpolator(x, y[, axis, extrapolate]) PCHIP 1-d monotonic cubic interpolation.
Akima1DInterpolator(x, y[, axis]) Akima interpolator
CubicSpline(x, y[, axis, bc_type, extrapolate]) Cubic spline data interpolator.
PPoly(c, x[, extrapolate, axis]) Piecewise polynomial in terms of coefficients and break-

points
BPoly(c, x[, extrapolate, axis]) Piecewise polynomial in terms of coefficients and break-

points.

scipy.interpolate.interp1d

class scipy.interpolate.interp1d(x, y, kind=’linear’, axis=-1, copy=True, bounds_error=None,
fill_value=nan, assume_sorted=False)

Interpolate a 1-D function.
x and y are arrays of values used to approximate some function f: y = f(x). This class returns a function whose
call method uses interpolation to find the value of new points.
Note that calling interp1d with NaNs present in input values results in undefined behaviour.

Parameters

x [(N,) array_like] A 1-D array of real values.
y [(…,N,…) array_like] A N-D array of real values. The length of y along the interpolation

axis must be equal to the length of x.
kind [str or int, optional] Specifies the kind of interpolation as a string (‘linear’, ‘nearest’, ‘zero’,

‘slinear’, ‘quadratic’, ‘cubic’, ‘previous’, ‘next’, where ‘zero’, ‘slinear’, ‘quadratic’ and ‘cubic’
refer to a spline interpolation of zeroth, first, second or third order; ‘previous’ and ‘next’
simply return the previous or next value of the point) or as an integer specifying the order of
the spline interpolator to use. Default is ‘linear’.

axis [int, optional] Specifies the axis of y along which to interpolate. Interpolation defaults to the
last axis of y.

copy [bool, optional] If True, the class makes internal copies of x and y. If False, references to x
and y are used. The default is to copy.

bounds_error
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[bool, optional] If True, a ValueError is raised any time interpolation is attempted on
a value outside of the range of x (where extrapolation is necessary). If False, out
of bounds values are assigned fill_value. By default, an error is raised unless
fill_value="extrapolate".

fill_value [array-like or (array-like, array_like) or “extrapolate”, optional]
• if a ndarray (or float), this value will be used to fill in for requested points outside of
the data range. If not provided, then the default is NaN. The array-like must broadcast
properly to the dimensions of the non-interpolation axes.

• If a two-element tuple, then the first element is used as a fill value for x_new < x[0]
and the second element is used for x_new > x[-1]. Anything that is not a 2-element
tuple (e.g., list or ndarray, regardless of shape) is taken to be a single array-like ar-
gument meant to be used for both bounds as below, above = fill_value,
fill_value.
New in version 0.17.0.

• If “extrapolate”, then points outside the data range will be extrapolated.
New in version 0.17.0.

assume_sorted
[bool, optional] If False, values of x can be in any order and they are sorted first. If True, x
has to be an array of monotonically increasing values.

See also:
splrep, splev
UnivariateSpline

An object-oriented wrapper of the FITPACK routines.
interp2d

2-D interpolation

Examples

>>> import matplotlib.pyplot as plt
>>> from scipy import interpolate
>>> x = np.arange(0, 10)
>>> y = np.exp(-x/3.0)
>>> f = interpolate.interp1d(x, y)

>>> xnew = np.arange(0, 9, 0.1)
>>> ynew = f(xnew) # use interpolation function returned by `interp1d`
>>> plt.plot(x, y, 'o', xnew, ynew, '-')
>>> plt.show()

Attributes

fill_value
The fill value.

Methods

__call__(x) Evaluate the interpolant

638 Chapter 6. API Reference



SciPy Reference Guide, Release 1.3.1

0 2 4 6 8

0.2

0.4

0.6

0.8

1.0

scipy.interpolate.interp1d.__call__
interp1d.__call__(x)

Evaluate the interpolant
Parameters

x [array_like] Points to evaluate the interpolant at.
Returns

y [array_like] Interpolated values. Shape is determined by replacing the interpolation axis
in the original array with the shape of x.

scipy.interpolate.BarycentricInterpolator

class scipy.interpolate.BarycentricInterpolator(xi, yi=None, axis=0)
The interpolating polynomial for a set of points
Constructs a polynomial that passes through a given set of points. Allows evaluation of the polynomial, efficient
changing of the y values to be interpolated, and updating by adding more x values. For reasons of numerical
stability, this function does not compute the coefficients of the polynomial.
The values yi need to be provided before the function is evaluated, but none of the preprocessing depends on them,
so rapid updates are possible.

Parameters

xi [array_like] 1-d array of x coordinates of the points the polynomial should pass through
yi [array_like, optional] The y coordinates of the points the polynomial should pass through. If

None, the y values will be supplied later via the set_y method.
axis [int, optional] Axis in the yi array corresponding to the x-coordinate values.

Notes

This class uses a “barycentric interpolation” method that treats the problem as a special case of rational function
interpolation. This algorithm is quite stable, numerically, but even in a world of exact computation, unless the x co-
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ordinates are chosen very carefully - Chebyshev zeros (e.g. cos(i*pi/n)) are a good choice - polynomial interpolation
itself is a very ill-conditioned process due to the Runge phenomenon.
Based on Berrut and Trefethen 2004, “Barycentric Lagrange Interpolation”.

Attributes

dtype

Methods

__call__(x) Evaluate the interpolating polynomial at the points x
add_xi(xi[, yi]) Add more x values to the set to be interpolated
set_yi(yi[, axis]) Update the y values to be interpolated

scipy.interpolate.BarycentricInterpolator.__call__
BarycentricInterpolator.__call__(x)

Evaluate the interpolating polynomial at the points x
Parameters

x [array_like] Points to evaluate the interpolant at.
Returns

y [array_like] Interpolated values. Shape is determined by replacing the interpolation axis
in the original array with the shape of x.

Notes

Currently the code computes an outer product between x and the weights, that is, it constructs an intermediate
array of size N by len(x), where N is the degree of the polynomial.

scipy.interpolate.BarycentricInterpolator.add_xi
BarycentricInterpolator.add_xi(xi, yi=None)

Add more x values to the set to be interpolated
The barycentric interpolation algorithm allows easy updating by adding more points for the polynomial to
pass through.

Parameters

xi [array_like] The x coordinates of the points that the polynomial should pass through.
yi [array_like, optional] The y coordinates of the points the polynomial should pass

through. Should have shape (xi.size, R); if R > 1 then the polynomial is vector-
valued. If yi is not given, the y values will be supplied later. yi should be given if and
only if the interpolator has y values specified.

scipy.interpolate.BarycentricInterpolator.set_yi
BarycentricInterpolator.set_yi(yi, axis=None)

Update the y values to be interpolated
The barycentric interpolation algorithm requires the calculation of weights, but these depend only on the xi.
The yi can be changed at any time.

Parameters
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yi [array_like] The y coordinates of the points the polynomial should pass through. If
None, the y values will be supplied later.

axis [int, optional] Axis in the yi array corresponding to the x-coordinate values.

scipy.interpolate.KroghInterpolator

class scipy.interpolate.KroghInterpolator(xi, yi, axis=0)
Interpolating polynomial for a set of points.
The polynomial passes through all the pairs (xi,yi). One may additionally specify a number of derivatives at each
point xi; this is done by repeating the value xi and specifying the derivatives as successive yi values.
Allows evaluation of the polynomial and all its derivatives. For reasons of numerical stability, this function does
not compute the coefficients of the polynomial, although they can be obtained by evaluating all the derivatives.

Parameters

xi [array_like, length N] Known x-coordinates. Must be sorted in increasing order.
yi [array_like] Known y-coordinates. When an xi occurs two or more times in a row, the cor-

responding yi’s represent derivative values.
axis [int, optional] Axis in the yi array corresponding to the x-coordinate values.

Notes

Be aware that the algorithms implemented here are not necessarily the most numerically stable known. Moreover,
even in a world of exact computation, unless the x coordinates are chosen very carefully - Chebyshev zeros (e.g.
cos(i*pi/n)) are a good choice - polynomial interpolation itself is a very ill-conditioned process due to the Runge
phenomenon. In general, even with well-chosen x values, degrees higher than about thirty cause problems with
numerical instability in this code.
Based on [1].

References

[1]

Examples

To produce a polynomial that is zero at 0 and 1 and has derivative 2 at 0, call

>>> from scipy.interpolate import KroghInterpolator
>>> KroghInterpolator([0,0,1],[0,2,0])

This constructs the quadratic 2*X**2-2*X. The derivative condition is indicated by the repeated zero in the xi
array; the corresponding yi values are 0, the function value, and 2, the derivative value.
For another example, given xi, yi, and a derivative ypi for each point, appropriate arrays can be constructed as:

>>> xi = np.linspace(0, 1, 5)
>>> yi, ypi = np.random.rand(2, 5)
>>> xi_k, yi_k = np.repeat(xi, 2), np.ravel(np.dstack((yi,ypi)))
>>> KroghInterpolator(xi_k, yi_k)

To produce a vector-valued polynomial, supply a higher-dimensional array for yi:
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>>> KroghInterpolator([0,1],[[2,3],[4,5]])

This constructs a linear polynomial giving (2,3) at 0 and (4,5) at 1.
Attributes

dtype

Methods

__call__(x) Evaluate the interpolant
derivative(x[, der]) Evaluate one derivative of the polynomial at the point

x
derivatives(x[, der]) Evaluate many derivatives of the polynomial at the

point x

scipy.interpolate.KroghInterpolator.__call__
KroghInterpolator.__call__(x)

Evaluate the interpolant
Parameters

x [array_like] Points to evaluate the interpolant at.
Returns

y [array_like] Interpolated values. Shape is determined by replacing the interpolation axis
in the original array with the shape of x.

scipy.interpolate.KroghInterpolator.derivative
KroghInterpolator.derivative(x, der=1)

Evaluate one derivative of the polynomial at the point x
Parameters

x [array_like] Point or points at which to evaluate the derivatives
der [integer, optional] Which derivative to extract. This number includes the function value

as 0th derivative.
Returns

d [ndarray] Derivative interpolated at the x-points. Shape of d is determined by replacing
the interpolation axis in the original array with the shape of x.

Notes

This is computed by evaluating all derivatives up to the desired one (using self.derivatives()) and then dis-
carding the rest.

scipy.interpolate.KroghInterpolator.derivatives
KroghInterpolator.derivatives(x, der=None)

Evaluate many derivatives of the polynomial at the point x
Produce an array of all derivative values at the point x.
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Parameters

x [array_like] Point or points at which to evaluate the derivatives
der [int or None, optional] Howmany derivatives to extract; None for all potentially nonzero

derivatives (that is a number equal to the number of points). This number includes the
function value as 0th derivative.

Returns

d [ndarray] Array with derivatives; d[j] contains the j-th derivative. Shape of d[j] is de-
termined by replacing the interpolation axis in the original array with the shape of x.

Examples

>>> from scipy.interpolate import KroghInterpolator
>>> KroghInterpolator([0,0,0],[1,2,3]).derivatives(0)
array([1.0,2.0,3.0])
>>> KroghInterpolator([0,0,0],[1,2,3]).derivatives([0,0])
array([[1.0,1.0],

[2.0,2.0],
[3.0,3.0]])

scipy.interpolate.barycentric_interpolate

scipy.interpolate.barycentric_interpolate(xi, yi, x, axis=0)
Convenience function for polynomial interpolation.
Constructs a polynomial that passes through a given set of points, then evaluates the polynomial. For reasons of
numerical stability, this function does not compute the coefficients of the polynomial.
This function uses a “barycentric interpolation” method that treats the problem as a special case of rational func-
tion interpolation. This algorithm is quite stable, numerically, but even in a world of exact computation, unless
the x coordinates are chosen very carefully - Chebyshev zeros (e.g. cos(i*pi/n)) are a good choice - polynomial
interpolation itself is a very ill-conditioned process due to the Runge phenomenon.

Parameters

xi [array_like] 1-d array of x coordinates of the points the polynomial should pass through
yi [array_like] The y coordinates of the points the polynomial should pass through.
x [scalar or array_like] Points to evaluate the interpolator at.
axis [int, optional] Axis in the yi array corresponding to the x-coordinate values.

Returns

y [scalar or array_like] Interpolated values. Shape is determined by replacing the interpolation
axis in the original array with the shape of x.

See also:
BarycentricInterpolator

Notes

Construction of the interpolation weights is a relatively slow process. If you want to call this many times with the
same xi (but possibly varying yi or x) you should use the class BarycentricInterpolator. This is what
this function uses internally.
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scipy.interpolate.krogh_interpolate

scipy.interpolate.krogh_interpolate(xi, yi, x, der=0, axis=0)
Convenience function for polynomial interpolation.
See KroghInterpolator for more details.

Parameters

xi [array_like] Known x-coordinates.
yi [array_like] Known y-coordinates, of shape (xi.size, R). Interpreted as vectors of

length R, or scalars if R=1.
x [array_like] Point or points at which to evaluate the derivatives.
der [int or list, optional] Howmany derivatives to extract; None for all potentially nonzero deriva-

tives (that is a number equal to the number of points), or a list of derivatives to extract. This
number includes the function value as 0th derivative.

axis [int, optional] Axis in the yi array corresponding to the x-coordinate values.
Returns

d [ndarray] If the interpolator’s values are R-dimensional then the returned array will be the
number of derivatives by N by R. If x is a scalar, the middle dimension will be dropped; if
the yi are scalars then the last dimension will be dropped.

See also:
KroghInterpolator

Notes

Construction of the interpolating polynomial is a relatively expensive process. If you want to evaluate it repeatedly
consider using the class KroghInterpolator (which is what this function uses).

scipy.interpolate.pchip_interpolate

scipy.interpolate.pchip_interpolate(xi, yi, x, der=0, axis=0)
Convenience function for pchip interpolation.
xi and yi are arrays of values used to approximate some function f, with yi = f(xi). The interpolant uses
monotonic cubic splines to find the value of new points x and the derivatives there.
See scipy.interpolate.PchipInterpolator for details.

Parameters

xi [array_like] A sorted list of x-coordinates, of length N.
yi [array_like] A 1-D array of real values. yi’s length along the interpolation axis must be equal

to the length of xi. If N-D array, use axis parameter to select correct axis.
x [scalar or array_like] Of length M.
der [int or list, optional] Derivatives to extract. The 0-th derivative can be included to return the

function value.
axis [int, optional] Axis in the yi array corresponding to the x-coordinate values.

Returns

y [scalar or array_like] The result, of length R or length M or M by R,
See also:
PchipInterpolator
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scipy.interpolate.CubicHermiteSpline

class scipy.interpolate.CubicHermiteSpline(x, y, dydx, axis=0, extrapolate=None)
Piecewise-cubic interpolator matching values and first derivatives.
The result is represented as a PPoly instance.

Parameters

x [array_like, shape (n,)] 1-d array containing values of the independent variable. Values must
be real, finite and in strictly increasing order.

y [array_like] Array containing values of the dependent variable. It can have arbitrary number
of dimensions, but the length along axis (see below) must match the length of x. Values
must be finite.

dydx [array_like] Array containing derivatives of the dependent variable. It can have arbitrary
number of dimensions, but the length along axis (see below) must match the length of x.
Values must be finite.

axis [int, optional] Axis along which y is assumed to be varying. Meaning that for x[i] the
corresponding values are np.take(y, i, axis=axis). Default is 0.

extrapolate
[{bool, ‘periodic’, None}, optional] If bool, determines whether to extrapolate to out-of-
bounds points based on first and last intervals, or to return NaNs. If ‘periodic’, periodic
extrapolation is used. If None (default), it is set to True.

See also:
Akima1DInterpolator, PchipInterpolator, CubicSpline, PPoly

Notes

If youwant to create a higher-order splinematching higher-order derivatives, useBPoly.from_derivatives.

References

[1]
Attributes

x [ndarray, shape (n,)] Breakpoints. The same x which was passed to the constructor.
c [ndarray, shape (4, n-1, …)] Coefficients of the polynomials on each segment. The trailing

dimensions match the dimensions of y, excluding axis. For example, if y is 1-d, then c[k,
i] is a coefficient for (x-x[i])**(3-k) on the segment between x[i] and x[i+1].

axis [int] Interpolation axis. The same axis which was passed to the constructor.

Methods

__call__(x[, nu, extrapolate]) Evaluate the piecewise polynomial or its derivative.
derivative([nu]) Construct a new piecewise polynomial representing

the derivative.
antiderivative([nu]) Construct a new piecewise polynomial representing

the antiderivative.
integrate(a, b[, extrapolate]) Compute a definite integral over a piecewise polyno-

mial.
Continued on next page
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Table 37 – continued from previous page
roots([discontinuity, extrapolate]) Find real roots of the the piecewise polynomial.

scipy.interpolate.CubicHermiteSpline.__call__
CubicHermiteSpline.__call__(x, nu=0, extrapolate=None)

Evaluate the piecewise polynomial or its derivative.
Parameters

x [array_like] Points to evaluate the interpolant at.
nu [int, optional] Order of derivative to evaluate. Must be non-negative.
extrapolate

[{bool, ‘periodic’, None}, optional] If bool, determines whether to extrapolate to out-of-
bounds points based on first and last intervals, or to return NaNs. If ‘periodic’, periodic
extrapolation is used. If None (default), use self.extrapolate.

Returns

y [array_like] Interpolated values. Shape is determined by replacing the interpolation axis
in the original array with the shape of x.

Notes

Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differentiable
at the breakpoints. The polynomial intervals are considered half-open, [a, b), except for the last interval
which is closed [a, b].

scipy.interpolate.CubicHermiteSpline.derivative
CubicHermiteSpline.derivative(nu=1)

Construct a new piecewise polynomial representing the derivative.
Parameters

nu [int, optional] Order of derivative to evaluate. Default is 1, i.e. compute the first deriva-
tive. If negative, the antiderivative is returned.

Returns

pp [PPoly] Piecewise polynomial of order k2 = k - n representing the derivative of this
polynomial.

Notes

Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differentiable
at the breakpoints. The polynomial intervals are considered half-open, [a, b), except for the last interval
which is closed [a, b].

scipy.interpolate.CubicHermiteSpline.antiderivative
CubicHermiteSpline.antiderivative(nu=1)

Construct a new piecewise polynomial representing the antiderivative.
Antiderivative is also the indefinite integral of the function, and derivative is its inverse operation.

Parameters
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nu [int, optional] Order of antiderivative to evaluate. Default is 1, i.e. compute the first
integral. If negative, the derivative is returned.

Returns

pp [PPoly] Piecewise polynomial of order k2 = k + n representing the antiderivative of this
polynomial.

Notes

The antiderivative returned by this function is continuous and continuously differentiable to order n-1, up to
floating point rounding error.
If antiderivative is computed and self.extrapolate='periodic', it will be set to False for the
returned instance. This is done because the antiderivative is no longer periodic and its correct evaluation
outside of the initially given x interval is difficult.

scipy.interpolate.CubicHermiteSpline.integrate
CubicHermiteSpline.integrate(a, b, extrapolate=None)

Compute a definite integral over a piecewise polynomial.
Parameters

a [float] Lower integration bound
b [float] Upper integration bound
extrapolate

[{bool, ‘periodic’, None}, optional] If bool, determines whether to extrapolate to out-of-
bounds points based on first and last intervals, or to return NaNs. If ‘periodic’, periodic
extrapolation is used. If None (default), use self.extrapolate.

Returns

ig [array_like] Definite integral of the piecewise polynomial over [a, b]

scipy.interpolate.CubicHermiteSpline.roots
CubicHermiteSpline.roots(discontinuity=True, extrapolate=None)

Find real roots of the the piecewise polynomial.
Parameters

discontinuity
[bool, optional] Whether to report sign changes across discontinuities at breakpoints as
roots.

extrapolate
[{bool, ‘periodic’, None}, optional] If bool, determines whether to return roots from the
polynomial extrapolated based on first and last intervals, ‘periodic’ works the same as
False. If None (default), use self.extrapolate.

Returns

roots [ndarray] Roots of the polynomial(s).
If the PPoly object describes multiple polynomials, the return value is an object array
whose each element is an ndarray containing the roots.

See also:
PPoly.solve
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scipy.interpolate.PchipInterpolator

class scipy.interpolate.PchipInterpolator(x, y, axis=0, extrapolate=None)
PCHIP 1-d monotonic cubic interpolation.
x andy are arrays of values used to approximate some function f, withy = f(x). The interpolant usesmonotonic
cubic splines to find the value of new points. (PCHIP stands for Piecewise CubicHermite Interpolating Polynomial).

Parameters

x [ndarray] A 1-D array of monotonically increasing real values. x cannot include duplicate
values (otherwise f is overspecified)

y [ndarray] A 1-D array of real values. y’s length along the interpolation axis must be equal to
the length of x. If N-D array, use axis parameter to select correct axis.

axis [int, optional] Axis in the y array corresponding to the x-coordinate values.
extrapolate

[bool, optional] Whether to extrapolate to out-of-bounds points based on first and last inter-
vals, or to return NaNs.

See also:
CubicHermiteSpline, Akima1DInterpolator, CubicSpline, PPoly

Notes

The interpolator preserves monotonicity in the interpolation data and does not overshoot if the data is not smooth.
The first derivatives are guaranteed to be continuous, but the second derivatives may jump at xk.
Determines the derivatives at the points xk, f ′k, by using PCHIP algorithm [1].
Let hk = xk+1 − xk, and dk = (yk+1 − yk)/hk are the slopes at internal points xk. If the signs of dk and dk−1

are different or either of them equals zero, then f ′k = 0. Otherwise, it is given by the weighted harmonic mean

w1 + w2

f ′k
=

w1

dk−1
+
w2

dk

where w1 = 2hk + hk−1 and w2 = hk + 2hk−1.
The end slopes are set using a one-sided scheme [2].

References

[1], [2]
Attributes

axis
c
extrapolate
x

Methods

__call__(x[, nu, extrapolate]) Evaluate the piecewise polynomial or its derivative.
Continued on next page
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Table 38 – continued from previous page
derivative([nu]) Construct a new piecewise polynomial representing

the derivative.
antiderivative([nu]) Construct a new piecewise polynomial representing

the antiderivative.
roots([discontinuity, extrapolate]) Find real roots of the the piecewise polynomial.

scipy.interpolate.PchipInterpolator.__call__
PchipInterpolator.__call__(x, nu=0, extrapolate=None)

Evaluate the piecewise polynomial or its derivative.
Parameters

x [array_like] Points to evaluate the interpolant at.
nu [int, optional] Order of derivative to evaluate. Must be non-negative.
extrapolate

[{bool, ‘periodic’, None}, optional] If bool, determines whether to extrapolate to out-of-
bounds points based on first and last intervals, or to return NaNs. If ‘periodic’, periodic
extrapolation is used. If None (default), use self.extrapolate.

Returns

y [array_like] Interpolated values. Shape is determined by replacing the interpolation axis
in the original array with the shape of x.

Notes

Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differentiable
at the breakpoints. The polynomial intervals are considered half-open, [a, b), except for the last interval
which is closed [a, b].

scipy.interpolate.PchipInterpolator.derivative
PchipInterpolator.derivative(nu=1)

Construct a new piecewise polynomial representing the derivative.
Parameters

nu [int, optional] Order of derivative to evaluate. Default is 1, i.e. compute the first deriva-
tive. If negative, the antiderivative is returned.

Returns

pp [PPoly] Piecewise polynomial of order k2 = k - n representing the derivative of this
polynomial.

Notes

Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differentiable
at the breakpoints. The polynomial intervals are considered half-open, [a, b), except for the last interval
which is closed [a, b].
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scipy.interpolate.PchipInterpolator.antiderivative
PchipInterpolator.antiderivative(nu=1)

Construct a new piecewise polynomial representing the antiderivative.
Antiderivative is also the indefinite integral of the function, and derivative is its inverse operation.

Parameters

nu [int, optional] Order of antiderivative to evaluate. Default is 1, i.e. compute the first
integral. If negative, the derivative is returned.

Returns

pp [PPoly] Piecewise polynomial of order k2 = k + n representing the antiderivative of this
polynomial.

Notes

The antiderivative returned by this function is continuous and continuously differentiable to order n-1, up to
floating point rounding error.
If antiderivative is computed and self.extrapolate='periodic', it will be set to False for the
returned instance. This is done because the antiderivative is no longer periodic and its correct evaluation
outside of the initially given x interval is difficult.

scipy.interpolate.PchipInterpolator.roots
PchipInterpolator.roots(discontinuity=True, extrapolate=None)

Find real roots of the the piecewise polynomial.
Parameters

discontinuity
[bool, optional] Whether to report sign changes across discontinuities at breakpoints as
roots.

extrapolate
[{bool, ‘periodic’, None}, optional] If bool, determines whether to return roots from the
polynomial extrapolated based on first and last intervals, ‘periodic’ works the same as
False. If None (default), use self.extrapolate.

Returns

roots [ndarray] Roots of the polynomial(s).
If the PPoly object describes multiple polynomials, the return value is an object array
whose each element is an ndarray containing the roots.

See also:
PPoly.solve

scipy.interpolate.Akima1DInterpolator

class scipy.interpolate.Akima1DInterpolator(x, y, axis=0)
Akima interpolator
Fit piecewise cubic polynomials, given vectors x and y. The interpolation method by Akima uses a continuously
differentiable sub-spline built from piecewise cubic polynomials. The resultant curve passes through the given data
points and will appear smooth and natural.
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Parameters

x [ndarray, shape (m, )] 1-D array of monotonically increasing real values.
y [ndarray, shape (m, …)] N-D array of real values. The length of y along the first axis must

be equal to the length of x.
axis [int, optional] Specifies the axis of y along which to interpolate. Interpolation defaults to the

first axis of y.
See also:
PchipInterpolator, CubicSpline, PPoly

Notes

New in version 0.14.
Use only for precise data, as the fitted curve passes through the given points exactly. This routine is useful for
plotting a pleasingly smooth curve through a few given points for purposes of plotting.

References

[1] A new method of interpolation and smooth curve fitting based

on local procedures. Hiroshi Akima, J. ACM, October 1970, 17(4), 589-602.

Attributes

axis
c
extrapolate
x

Methods

__call__(x[, nu, extrapolate]) Evaluate the piecewise polynomial or its derivative.
derivative([nu]) Construct a new piecewise polynomial representing

the derivative.
antiderivative([nu]) Construct a new piecewise polynomial representing

the antiderivative.
roots([discontinuity, extrapolate]) Find real roots of the the piecewise polynomial.

scipy.interpolate.Akima1DInterpolator.__call__
Akima1DInterpolator.__call__(x, nu=0, extrapolate=None)

Evaluate the piecewise polynomial or its derivative.
Parameters

x [array_like] Points to evaluate the interpolant at.
nu [int, optional] Order of derivative to evaluate. Must be non-negative.
extrapolate

[{bool, ‘periodic’, None}, optional] If bool, determines whether to extrapolate to out-of-
bounds points based on first and last intervals, or to return NaNs. If ‘periodic’, periodic
extrapolation is used. If None (default), use self.extrapolate.
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Returns

y [array_like] Interpolated values. Shape is determined by replacing the interpolation axis
in the original array with the shape of x.

Notes

Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differentiable
at the breakpoints. The polynomial intervals are considered half-open, [a, b), except for the last interval
which is closed [a, b].

scipy.interpolate.Akima1DInterpolator.derivative
Akima1DInterpolator.derivative(nu=1)

Construct a new piecewise polynomial representing the derivative.
Parameters

nu [int, optional] Order of derivative to evaluate. Default is 1, i.e. compute the first deriva-
tive. If negative, the antiderivative is returned.

Returns

pp [PPoly] Piecewise polynomial of order k2 = k - n representing the derivative of this
polynomial.

Notes

Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differentiable
at the breakpoints. The polynomial intervals are considered half-open, [a, b), except for the last interval
which is closed [a, b].

scipy.interpolate.Akima1DInterpolator.antiderivative
Akima1DInterpolator.antiderivative(nu=1)

Construct a new piecewise polynomial representing the antiderivative.
Antiderivative is also the indefinite integral of the function, and derivative is its inverse operation.

Parameters

nu [int, optional] Order of antiderivative to evaluate. Default is 1, i.e. compute the first
integral. If negative, the derivative is returned.

Returns

pp [PPoly] Piecewise polynomial of order k2 = k + n representing the antiderivative of this
polynomial.

Notes

The antiderivative returned by this function is continuous and continuously differentiable to order n-1, up to
floating point rounding error.
If antiderivative is computed and self.extrapolate='periodic', it will be set to False for the
returned instance. This is done because the antiderivative is no longer periodic and its correct evaluation
outside of the initially given x interval is difficult.

652 Chapter 6. API Reference



SciPy Reference Guide, Release 1.3.1

scipy.interpolate.Akima1DInterpolator.roots
Akima1DInterpolator.roots(discontinuity=True, extrapolate=None)

Find real roots of the the piecewise polynomial.
Parameters

discontinuity
[bool, optional] Whether to report sign changes across discontinuities at breakpoints as
roots.

extrapolate
[{bool, ‘periodic’, None}, optional] If bool, determines whether to return roots from the
polynomial extrapolated based on first and last intervals, ‘periodic’ works the same as
False. If None (default), use self.extrapolate.

Returns

roots [ndarray] Roots of the polynomial(s).
If the PPoly object describes multiple polynomials, the return value is an object array
whose each element is an ndarray containing the roots.

See also:
PPoly.solve

scipy.interpolate.CubicSpline

class scipy.interpolate.CubicSpline(x, y, axis=0, bc_type=’not-a-knot’, extrapolate=None)
Cubic spline data interpolator.
Interpolate data with a piecewise cubic polynomial which is twice continuously differentiable [1]. The result is
represented as a PPoly instance with breakpoints matching the given data.

Parameters

x [array_like, shape (n,)] 1-d array containing values of the independent variable. Values must
be real, finite and in strictly increasing order.

y [array_like] Array containing values of the dependent variable. It can have arbitrary number
of dimensions, but the length along axis (see below) must match the length of x. Values
must be finite.

axis [int, optional] Axis along which y is assumed to be varying. Meaning that for x[i] the
corresponding values are np.take(y, i, axis=axis). Default is 0.

bc_type [string or 2-tuple, optional] Boundary condition type. Two additional equations, given by
the boundary conditions, are required to determine all coefficients of polynomials on each
segment [2].
If bc_type is a string, then the specified condition will be applied at both ends of a spline.
Available conditions are:
• ‘not-a-knot’ (default): The first and second segment at a curve end are the same polynomial.
It is a good default when there is no information on boundary conditions.

• ‘periodic’: The interpolated functions is assumed to be periodic of period x[-1] -
x[0]. The first and last value of ymust be identical: y[0] == y[-1]. This boundary
condition will result in y'[0] == y'[-1] and y''[0] == y''[-1].

• ‘clamped’: The first derivative at curves ends are zero. Assuming a 1D y,
bc_type=((1, 0.0), (1, 0.0)) is the same condition.

• ‘natural’: The second derivative at curve ends are zero. Assuming a 1D y,
bc_type=((2, 0.0), (2, 0.0)) is the same condition.
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If bc_type is a 2-tuple, the first and the second value will be applied at the curve start and
end respectively. The tuple values can be one of the previously mentioned strings (except
‘periodic’) or a tuple (order, deriv_values) allowing to specify arbitrary derivatives at curve
ends:
• order: the derivative order, 1 or 2.
• deriv_value: array_like containing derivative values, shape must be the same as y, exclud-
ing axis dimension. For example, if y is 1D, then deriv_value must be a scalar. If y
is 3D with the shape (n0, n1, n2) and axis=2, then deriv_value must be 2D and have the
shape (n0, n1).

extrapolate
[{bool, ‘periodic’, None}, optional] If bool, determines whether to extrapolate to out-
of-bounds points based on first and last intervals, or to return NaNs. If ‘periodic’, pe-
riodic extrapolation is used. If None (default), extrapolate is set to ‘periodic’ for
bc_type='periodic' and to True otherwise.

See also:
Akima1DInterpolator, PchipInterpolator, PPoly

Notes

Parameters bc_type and interpolatework independently, i.e. the former controls only construction of a spline,
and the latter only evaluation.
When a boundary condition is ‘not-a-knot’ and n = 2, it is replaced by a condition that the first derivative is equal
to the linear interpolant slope. When both boundary conditions are ‘not-a-knot’ and n = 3, the solution is sought as
a parabola passing through given points.
When ‘not-a-knot’ boundary conditions is applied to both ends, the resulting spline will be the same as returned by
splrep (with s=0) and InterpolatedUnivariateSpline, but these two methods use a representation
in B-spline basis.
New in version 0.18.0.

References

[1], [2]

Examples

In this example the cubic spline is used to interpolate a sampled sinusoid. You can see that the spline continuity
property holds for the first and second derivatives and violates only for the third derivative.

>>> from scipy.interpolate import CubicSpline
>>> import matplotlib.pyplot as plt
>>> x = np.arange(10)
>>> y = np.sin(x)
>>> cs = CubicSpline(x, y)
>>> xs = np.arange(-0.5, 9.6, 0.1)
>>> fig, ax = plt.subplots(figsize=(6.5, 4))
>>> ax.plot(x, y, 'o', label='data')
>>> ax.plot(xs, np.sin(xs), label='true')
>>> ax.plot(xs, cs(xs), label="S")

(continues on next page)
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(continued from previous page)
>>> ax.plot(xs, cs(xs, 1), label="S'")
>>> ax.plot(xs, cs(xs, 2), label="S''")
>>> ax.plot(xs, cs(xs, 3), label="S'''")
>>> ax.set_xlim(-0.5, 9.5)
>>> ax.legend(loc='lower left', ncol=2)
>>> plt.show()
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true
S

S'
S''
S'''

In the second example, the unit circle is interpolated with a spline. A periodic boundary condition is used. You can
see that the first derivative values, ds/dx=0, ds/dy=1 at the periodic point (1, 0) are correctly computed. Note that a
circle cannot be exactly represented by a cubic spline. To increase precision, more breakpoints would be required.

>>> theta = 2 * np.pi * np.linspace(0, 1, 5)
>>> y = np.c_[np.cos(theta), np.sin(theta)]
>>> cs = CubicSpline(theta, y, bc_type='periodic')
>>> print("ds/dx={:.1f} ds/dy={:.1f}".format(cs(0, 1)[0], cs(0, 1)[1]))
ds/dx=0.0 ds/dy=1.0
>>> xs = 2 * np.pi * np.linspace(0, 1, 100)
>>> fig, ax = plt.subplots(figsize=(6.5, 4))
>>> ax.plot(y[:, 0], y[:, 1], 'o', label='data')
>>> ax.plot(np.cos(xs), np.sin(xs), label='true')
>>> ax.plot(cs(xs)[:, 0], cs(xs)[:, 1], label='spline')
>>> ax.axes.set_aspect('equal')
>>> ax.legend(loc='center')
>>> plt.show()

The third example is the interpolation of a polynomial y = x**3 on the interval 0 <= x<= 1. A cubic spline can
represent this function exactly. To achieve that we need to specify values and first derivatives at endpoints of the
interval. Note that y’ = 3 * x**2 and thus y’(0) = 0 and y’(1) = 3.
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>>> cs = CubicSpline([0, 1], [0, 1], bc_type=((1, 0), (1, 3)))
>>> x = np.linspace(0, 1)
>>> np.allclose(x**3, cs(x))
True

Attributes

x [ndarray, shape (n,)] Breakpoints. The same x which was passed to the constructor.
c [ndarray, shape (4, n-1, …)] Coefficients of the polynomials on each segment. The trailing

dimensions match the dimensions of y, excluding axis. For example, if y is 1-d, then c[k,
i] is a coefficient for (x-x[i])**(3-k) on the segment between x[i] and x[i+1].

axis [int] Interpolation axis. The same axis which was passed to the constructor.

Methods

__call__(x[, nu, extrapolate]) Evaluate the piecewise polynomial or its derivative.
derivative([nu]) Construct a new piecewise polynomial representing

the derivative.
antiderivative([nu]) Construct a new piecewise polynomial representing

the antiderivative.
integrate(a, b[, extrapolate]) Compute a definite integral over a piecewise polyno-

mial.
roots([discontinuity, extrapolate]) Find real roots of the the piecewise polynomial.

scipy.interpolate.CubicSpline.__call__
CubicSpline.__call__(x, nu=0, extrapolate=None)

Evaluate the piecewise polynomial or its derivative.
Parameters

x [array_like] Points to evaluate the interpolant at.
nu [int, optional] Order of derivative to evaluate. Must be non-negative.
extrapolate

[{bool, ‘periodic’, None}, optional] If bool, determines whether to extrapolate to out-of-
bounds points based on first and last intervals, or to return NaNs. If ‘periodic’, periodic
extrapolation is used. If None (default), use self.extrapolate.

Returns

y [array_like] Interpolated values. Shape is determined by replacing the interpolation axis
in the original array with the shape of x.

Notes

Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differentiable
at the breakpoints. The polynomial intervals are considered half-open, [a, b), except for the last interval
which is closed [a, b].

scipy.interpolate.CubicSpline.derivative
CubicSpline.derivative(nu=1)

Construct a new piecewise polynomial representing the derivative.
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Parameters

nu [int, optional] Order of derivative to evaluate. Default is 1, i.e. compute the first deriva-
tive. If negative, the antiderivative is returned.

Returns

pp [PPoly] Piecewise polynomial of order k2 = k - n representing the derivative of this
polynomial.

Notes

Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differentiable
at the breakpoints. The polynomial intervals are considered half-open, [a, b), except for the last interval
which is closed [a, b].

scipy.interpolate.CubicSpline.antiderivative
CubicSpline.antiderivative(nu=1)

Construct a new piecewise polynomial representing the antiderivative.
Antiderivative is also the indefinite integral of the function, and derivative is its inverse operation.

Parameters

nu [int, optional] Order of antiderivative to evaluate. Default is 1, i.e. compute the first
integral. If negative, the derivative is returned.

Returns

pp [PPoly] Piecewise polynomial of order k2 = k + n representing the antiderivative of this
polynomial.

Notes

The antiderivative returned by this function is continuous and continuously differentiable to order n-1, up to
floating point rounding error.
If antiderivative is computed and self.extrapolate='periodic', it will be set to False for the
returned instance. This is done because the antiderivative is no longer periodic and its correct evaluation
outside of the initially given x interval is difficult.

scipy.interpolate.CubicSpline.integrate
CubicSpline.integrate(a, b, extrapolate=None)

Compute a definite integral over a piecewise polynomial.
Parameters

a [float] Lower integration bound
b [float] Upper integration bound
extrapolate

[{bool, ‘periodic’, None}, optional] If bool, determines whether to extrapolate to out-of-
bounds points based on first and last intervals, or to return NaNs. If ‘periodic’, periodic
extrapolation is used. If None (default), use self.extrapolate.

Returns

ig [array_like] Definite integral of the piecewise polynomial over [a, b]
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scipy.interpolate.CubicSpline.roots
CubicSpline.roots(discontinuity=True, extrapolate=None)

Find real roots of the the piecewise polynomial.
Parameters

discontinuity
[bool, optional] Whether to report sign changes across discontinuities at breakpoints as
roots.

extrapolate
[{bool, ‘periodic’, None}, optional] If bool, determines whether to return roots from the
polynomial extrapolated based on first and last intervals, ‘periodic’ works the same as
False. If None (default), use self.extrapolate.

Returns

roots [ndarray] Roots of the polynomial(s).
If the PPoly object describes multiple polynomials, the return value is an object array
whose each element is an ndarray containing the roots.

See also:
PPoly.solve

scipy.interpolate.PPoly

class scipy.interpolate.PPoly(c, x, extrapolate=None, axis=0)
Piecewise polynomial in terms of coefficients and breakpoints
The polynomial between x[i] and x[i + 1] is written in the local power basis:

S = sum(c[m, i] * (xp - x[i])**(k-m) for m in range(k+1))

where k is the degree of the polynomial.
Parameters

c [ndarray, shape (k, m, …)] Polynomial coefficients, order k and m intervals
x [ndarray, shape (m+1,)] Polynomial breakpoints. Must be sorted in either increasing or

decreasing order.
extrapolate

[bool or ‘periodic’, optional] If bool, determines whether to extrapolate to out-of-bounds
points based on first and last intervals, or to return NaNs. If ‘periodic’, periodic extrapolation
is used. Default is True.

axis [int, optional] Interpolation axis. Default is zero.
See also:

BPoly

piecewise polynomials in the Bernstein basis

Notes

High-order polynomials in the power basis can be numerically unstable. Precision problems can start to appear for
orders larger than 20-30.

Attributes
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x [ndarray] Breakpoints.
c [ndarray] Coefficients of the polynomials. They are reshaped to a 3-dimensional array with

the last dimension representing the trailing dimensions of the original coefficient array.
axis [int] Interpolation axis.

Methods

__call__(x[, nu, extrapolate]) Evaluate the piecewise polynomial or its derivative.
derivative([nu]) Construct a new piecewise polynomial representing

the derivative.
antiderivative([nu]) Construct a new piecewise polynomial representing

the antiderivative.
integrate(a, b[, extrapolate]) Compute a definite integral over a piecewise polyno-

mial.
solve([y, discontinuity, extrapolate]) Find real solutions of the the equation pp(x) == y.
roots([discontinuity, extrapolate]) Find real roots of the the piecewise polynomial.
extend(c, x[, right]) Add additional breakpoints and coefficients to the

polynomial.
from_spline(tck[, extrapolate]) Construct a piecewise polynomial from a spline
from_bernstein_basis(bp[, extrapolate]) Construct a piecewise polynomial in the power basis

from a polynomial in Bernstein basis.
construct_fast(c, x[, extrapolate, axis]) Construct the piecewise polynomial without making

checks.

scipy.interpolate.PPoly.__call__
PPoly.__call__(x, nu=0, extrapolate=None)

Evaluate the piecewise polynomial or its derivative.
Parameters

x [array_like] Points to evaluate the interpolant at.
nu [int, optional] Order of derivative to evaluate. Must be non-negative.
extrapolate

[{bool, ‘periodic’, None}, optional] If bool, determines whether to extrapolate to out-of-
bounds points based on first and last intervals, or to return NaNs. If ‘periodic’, periodic
extrapolation is used. If None (default), use self.extrapolate.

Returns

y [array_like] Interpolated values. Shape is determined by replacing the interpolation axis
in the original array with the shape of x.

Notes

Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differentiable
at the breakpoints. The polynomial intervals are considered half-open, [a, b), except for the last interval
which is closed [a, b].

scipy.interpolate.PPoly.derivative
PPoly.derivative(nu=1)

Construct a new piecewise polynomial representing the derivative.
Parameters
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nu [int, optional] Order of derivative to evaluate. Default is 1, i.e. compute the first deriva-
tive. If negative, the antiderivative is returned.

Returns

pp [PPoly] Piecewise polynomial of order k2 = k - n representing the derivative of this
polynomial.

Notes

Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differentiable
at the breakpoints. The polynomial intervals are considered half-open, [a, b), except for the last interval
which is closed [a, b].

scipy.interpolate.PPoly.antiderivative
PPoly.antiderivative(nu=1)

Construct a new piecewise polynomial representing the antiderivative.
Antiderivative is also the indefinite integral of the function, and derivative is its inverse operation.

Parameters

nu [int, optional] Order of antiderivative to evaluate. Default is 1, i.e. compute the first
integral. If negative, the derivative is returned.

Returns

pp [PPoly] Piecewise polynomial of order k2 = k + n representing the antiderivative of this
polynomial.

Notes

The antiderivative returned by this function is continuous and continuously differentiable to order n-1, up to
floating point rounding error.
If antiderivative is computed and self.extrapolate='periodic', it will be set to False for the
returned instance. This is done because the antiderivative is no longer periodic and its correct evaluation
outside of the initially given x interval is difficult.

scipy.interpolate.PPoly.integrate
PPoly.integrate(a, b, extrapolate=None)

Compute a definite integral over a piecewise polynomial.
Parameters

a [float] Lower integration bound
b [float] Upper integration bound
extrapolate

[{bool, ‘periodic’, None}, optional] If bool, determines whether to extrapolate to out-of-
bounds points based on first and last intervals, or to return NaNs. If ‘periodic’, periodic
extrapolation is used. If None (default), use self.extrapolate.

Returns

ig [array_like] Definite integral of the piecewise polynomial over [a, b]
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scipy.interpolate.PPoly.solve
PPoly.solve(y=0.0, discontinuity=True, extrapolate=None)

Find real solutions of the the equation pp(x) == y.
Parameters

y [float, optional] Right-hand side. Default is zero.
discontinuity

[bool, optional] Whether to report sign changes across discontinuities at breakpoints as
roots.

extrapolate
[{bool, ‘periodic’, None}, optional] If bool, determines whether to return roots from the
polynomial extrapolated based on first and last intervals, ‘periodic’ works the same as
False. If None (default), use self.extrapolate.

Returns

roots [ndarray] Roots of the polynomial(s).
If the PPoly object describes multiple polynomials, the return value is an object array
whose each element is an ndarray containing the roots.

Notes

This routine works only on real-valued polynomials.
If the piecewise polynomial contains sections that are identically zero, the root list will contain the start point
of the corresponding interval, followed by a nan value.
If the polynomial is discontinuous across a breakpoint, and there is a sign change across the breakpoint, this
is reported if the discont parameter is True.

Examples

Finding roots of [x**2 - 1, (x - 1)**2] defined on intervals [-2, 1], [1, 2]:

>>> from scipy.interpolate import PPoly
>>> pp = PPoly(np.array([[1, -4, 3], [1, 0, 0]]).T, [-2, 1, 2])
>>> pp.roots()
array([-1., 1.])

scipy.interpolate.PPoly.roots
PPoly.roots(discontinuity=True, extrapolate=None)

Find real roots of the the piecewise polynomial.
Parameters

discontinuity
[bool, optional] Whether to report sign changes across discontinuities at breakpoints as
roots.

extrapolate
[{bool, ‘periodic’, None}, optional] If bool, determines whether to return roots from the
polynomial extrapolated based on first and last intervals, ‘periodic’ works the same as
False. If None (default), use self.extrapolate.

Returns
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roots [ndarray] Roots of the polynomial(s).
If the PPoly object describes multiple polynomials, the return value is an object array
whose each element is an ndarray containing the roots.

See also:
PPoly.solve

scipy.interpolate.PPoly.extend
PPoly.extend(c, x, right=None)

Add additional breakpoints and coefficients to the polynomial.
Parameters

c [ndarray, size (k, m, …)] Additional coefficients for polynomials in intervals. Note that
the first additional interval will be formed using one of the self.x end points.

x [ndarray, size (m,)] Additional breakpoints. Must be sorted in the same order as self.
x and either to the right or to the left of the current breakpoints.

right Deprecated argument. Has no effect.
Deprecated since version 0.19.

scipy.interpolate.PPoly.from_spline
classmethod PPoly.from_spline(tck, extrapolate=None)

Construct a piecewise polynomial from a spline
Parameters

tck A spline, as returned by splrep or a BSpline object.
extrapolate

[bool or ‘periodic’, optional] If bool, determines whether to extrapolate to out-of-bounds
points based on first and last intervals, or to return NaNs. If ‘periodic’, periodic extrap-
olation is used. Default is True.

scipy.interpolate.PPoly.from_bernstein_basis
classmethod PPoly.from_bernstein_basis(bp, extrapolate=None)

Construct a piecewise polynomial in the power basis from a polynomial in Bernstein basis.
Parameters

bp [BPoly] A Bernstein basis polynomial, as created by BPoly
extrapolate

[bool or ‘periodic’, optional] If bool, determines whether to extrapolate to out-of-bounds
points based on first and last intervals, or to return NaNs. If ‘periodic’, periodic extrap-
olation is used. Default is True.

scipy.interpolate.PPoly.construct_fast
classmethod PPoly.construct_fast(c, x, extrapolate=None, axis=0)

Construct the piecewise polynomial without making checks.
Takes the same parameters as the constructor. Input arguments c and x must be arrays of the correct shape
and type. The c array can only be of dtypes float and complex, and x array must have dtype float.
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scipy.interpolate.BPoly

class scipy.interpolate.BPoly(c, x, extrapolate=None, axis=0)
Piecewise polynomial in terms of coefficients and breakpoints.
The polynomial between x[i] and x[i + 1] is written in the Bernstein polynomial basis:

S = sum(c[a, i] * b(a, k; x) for a in range(k+1)),

where k is the degree of the polynomial, and:

b(a, k; x) = binom(k, a) * t**a * (1 - t)**(k - a),

with t = (x - x[i]) / (x[i+1] - x[i]) and binom is the binomial coefficient.
Parameters

c [ndarray, shape (k, m, …)] Polynomial coefficients, order k and m intervals
x [ndarray, shape (m+1,)] Polynomial breakpoints. Must be sorted in either increasing or

decreasing order.
extrapolate

[bool, optional] If bool, determines whether to extrapolate to out-of-bounds points based on
first and last intervals, or to return NaNs. If ‘periodic’, periodic extrapolation is used. Default
is True.

axis [int, optional] Interpolation axis. Default is zero.
See also:

PPoly

piecewise polynomials in the power basis

Notes

Properties of Bernstein polynomials are well documented in the literature, see for example [1] [2] [3].

References

[1], [2], [3]

Examples

>>> from scipy.interpolate import BPoly
>>> x = [0, 1]
>>> c = [[1], [2], [3]]
>>> bp = BPoly(c, x)

This creates a 2nd order polynomial

B(x) = 1× b0,2(x) + 2× b1,2(x) + 3× b2,2(x)

= 1× (1− x)2 + 2× 2x(1− x) + 3× x2

Attributes

x [ndarray] Breakpoints.
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c [ndarray] Coefficients of the polynomials. They are reshaped to a 3-dimensional array with
the last dimension representing the trailing dimensions of the original coefficient array.

axis [int] Interpolation axis.

Methods

__call__(x[, nu, extrapolate]) Evaluate the piecewise polynomial or its derivative.
extend(c, x[, right]) Add additional breakpoints and coefficients to the

polynomial.
derivative([nu]) Construct a new piecewise polynomial representing

the derivative.
antiderivative([nu]) Construct a new piecewise polynomial representing

the antiderivative.
integrate(a, b[, extrapolate]) Compute a definite integral over a piecewise polyno-

mial.
construct_fast(c, x[, extrapolate, axis]) Construct the piecewise polynomial without making

checks.
from_power_basis(pp[, extrapolate]) Construct a piecewise polynomial in Bernstein basis

from a power basis polynomial.
from_derivatives(xi, yi[, orders, extrapolate]) Construct a piecewise polynomial in the Bernstein ba-

sis, compatible with the specified values and deriva-
tives at breakpoints.

scipy.interpolate.BPoly.__call__
BPoly.__call__(x, nu=0, extrapolate=None)

Evaluate the piecewise polynomial or its derivative.
Parameters

x [array_like] Points to evaluate the interpolant at.
nu [int, optional] Order of derivative to evaluate. Must be non-negative.
extrapolate

[{bool, ‘periodic’, None}, optional] If bool, determines whether to extrapolate to out-of-
bounds points based on first and last intervals, or to return NaNs. If ‘periodic’, periodic
extrapolation is used. If None (default), use self.extrapolate.

Returns

y [array_like] Interpolated values. Shape is determined by replacing the interpolation axis
in the original array with the shape of x.

Notes

Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differentiable
at the breakpoints. The polynomial intervals are considered half-open, [a, b), except for the last interval
which is closed [a, b].

scipy.interpolate.BPoly.extend
BPoly.extend(c, x, right=None)

Add additional breakpoints and coefficients to the polynomial.
Parameters
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c [ndarray, size (k, m, …)] Additional coefficients for polynomials in intervals. Note that
the first additional interval will be formed using one of the self.x end points.

x [ndarray, size (m,)] Additional breakpoints. Must be sorted in the same order as self.
x and either to the right or to the left of the current breakpoints.

right Deprecated argument. Has no effect.
Deprecated since version 0.19.

scipy.interpolate.BPoly.derivative
BPoly.derivative(nu=1)

Construct a new piecewise polynomial representing the derivative.
Parameters

nu [int, optional] Order of derivative to evaluate. Default is 1, i.e. compute the first deriva-
tive. If negative, the antiderivative is returned.

Returns

bp [BPoly] Piecewise polynomial of order k - nu representing the derivative of this poly-
nomial.

scipy.interpolate.BPoly.antiderivative
BPoly.antiderivative(nu=1)

Construct a new piecewise polynomial representing the antiderivative.
Parameters

nu [int, optional] Order of antiderivative to evaluate. Default is 1, i.e. compute the first
integral. If negative, the derivative is returned.

Returns

bp [BPoly] Piecewise polynomial of order k + nu representing the antiderivative of this
polynomial.

Notes

If antiderivative is computed and self.extrapolate='periodic', it will be set to False for the
returned instance. This is done because the antiderivative is no longer periodic and its correct evaluation
outside of the initially given x interval is difficult.

scipy.interpolate.BPoly.integrate
BPoly.integrate(a, b, extrapolate=None)

Compute a definite integral over a piecewise polynomial.
Parameters

a [float] Lower integration bound
b [float] Upper integration bound
extrapolate

[{bool, ‘periodic’, None}, optional] Whether to extrapolate to out-of-bounds points
based on first and last intervals, or to return NaNs. If ‘periodic’, periodic extrapola-
tion is used. If None (default), use self.extrapolate.

Returns

array_like Definite integral of the piecewise polynomial over [a, b]
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scipy.interpolate.BPoly.construct_fast
classmethod BPoly.construct_fast(c, x, extrapolate=None, axis=0)

Construct the piecewise polynomial without making checks.
Takes the same parameters as the constructor. Input arguments c and x must be arrays of the correct shape
and type. The c array can only be of dtypes float and complex, and x array must have dtype float.

scipy.interpolate.BPoly.from_power_basis
classmethod BPoly.from_power_basis(pp, extrapolate=None)

Construct a piecewise polynomial in Bernstein basis from a power basis polynomial.
Parameters

pp [PPoly] A piecewise polynomial in the power basis
extrapolate

[bool or ‘periodic’, optional] If bool, determines whether to extrapolate to out-of-bounds
points based on first and last intervals, or to return NaNs. If ‘periodic’, periodic extrap-
olation is used. Default is True.

scipy.interpolate.BPoly.from_derivatives
classmethod BPoly.from_derivatives(xi, yi, orders=None, extrapolate=None)

Construct a piecewise polynomial in the Bernstein basis, compatible with the specified values and derivatives
at breakpoints.

Parameters

xi [array_like] sorted 1D array of x-coordinates
yi [array_like or list of array_likes] yi[i][j] is the j-th derivative known at xi[i]
orders [None or int or array_like of ints. Default: None.] Specifies the degree of local poly-

nomials. If not None, some derivatives are ignored.
extrapolate

[bool or ‘periodic’, optional] If bool, determines whether to extrapolate to out-of-bounds
points based on first and last intervals, or to return NaNs. If ‘periodic’, periodic extrap-
olation is used. Default is True.

Notes

If k derivatives are specified at a breakpoint x, the constructed polynomial is exactly k times continuously dif-
ferentiable at x, unless the order is provided explicitly. In the latter case, the smoothness of the polynomial
at the breakpoint is controlled by the order.
Deduces the number of derivatives to match at each end from order and the number of derivatives available.
If possible it uses the same number of derivatives from each end; if the number is odd it tries to take the extra
one from y2. In any case if not enough derivatives are available at one end or another it draws enough to make
up the total from the other end.
If the order is too high and not enough derivatives are available, an exception is raised.

Examples

>>> from scipy.interpolate import BPoly
>>> BPoly.from_derivatives([0, 1], [[1, 2], [3, 4]])
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Creates a polynomial f(x) of degree 3, defined on [0, 1] such that f(0) = 1, df/dx(0) = 2, f(1) = 3, df/dx(1)
= 4

>>> BPoly.from_derivatives([0, 1, 2], [[0, 1], [0], [2]])

Creates a piecewise polynomial f(x), such that f(0) = f(1) = 0, f(2) = 2, and df/dx(0) = 1. Based on the
number of derivatives provided, the order of the local polynomials is 2 on [0, 1] and 1 on [1, 2]. Notice that
no restriction is imposed on the derivatives at x = 1 and x = 2.
Indeed, the explicit form of the polynomial is:

f(x) = | x * (1 - x), 0 <= x < 1
| 2 * (x - 1), 1 <= x <= 2

So that f’(1-0) = -1 and f’(1+0) = 2

6.7.2 Multivariate interpolation

Unstructured data:

griddata(points, values, xi[, method, …]) Interpolate unstructured D-dimensional data.
LinearNDInterpolator(points, values[, …]) Piecewise linear interpolant in N dimensions.
NearestNDInterpolator(x, y) Nearest-neighbour interpolation in N dimensions.
CloughTocher2DInterpolator(points, values[,
tol])

Piecewise cubic, C1 smooth, curvature-minimizing inter-
polant in 2D.

Rbf(*args) A class for radial basis function approxima-
tion/interpolation of n-dimensional scattered data.

interp2d(x, y, z[, kind, copy, …]) Interpolate over a 2-D grid.

scipy.interpolate.griddata

scipy.interpolate.griddata(points, values, xi, method=’linear’, fill_value=nan, rescale=False)
Interpolate unstructured D-dimensional data.

Parameters

points [ndarray of floats, shape (n, D)] Data point coordinates. Can either be an array of shape (n,
D), or a tuple of ndim arrays.

values [ndarray of float or complex, shape (n,)] Data values.
xi [2-D ndarray of float or tuple of 1-D array, shape (M, D)] Points at which to interpolate data.
method [{‘linear’, ‘nearest’, ‘cubic’}, optional] Method of interpolation. One of

nearest return the value at the data point closest to the point of interpolation. See
NearestNDInterpolator for more details.

linear tessellate the input point set to n-dimensional simplices, and interpolate linearly
on each simplex. See LinearNDInterpolator for more details.

cubic (1-D)
return the value determined from a cubic spline.

cubic (2-D)
return the value determined from a piecewise cubic, continuously differen-
tiable (C1), and approximately curvature-minimizing polynomial surface. See
CloughTocher2DInterpolator for more details.
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fill_value [float, optional] Value used to fill in for requested points outside of the convex hull of the
input points. If not provided, then the default is nan. This option has no effect for the
‘nearest’ method.

rescale [bool, optional] Rescale points to unit cube before performing interpolation. This is useful
if some of the input dimensions have incommensurable units and differ by many orders of
magnitude.
New in version 0.14.0.

Returns

ndarray Array of interpolated values.

Notes

New in version 0.9.

Examples

Suppose we want to interpolate the 2-D function

>>> def func(x, y):
... return x*(1-x)*np.cos(4*np.pi*x) * np.sin(4*np.pi*y**2)**2

on a grid in [0, 1]x[0, 1]

>>> grid_x, grid_y = np.mgrid[0:1:100j, 0:1:200j]

but we only know its values at 1000 data points:

>>> points = np.random.rand(1000, 2)
>>> values = func(points[:,0], points[:,1])

This can be done with griddata – below we try out all of the interpolation methods:

>>> from scipy.interpolate import griddata
>>> grid_z0 = griddata(points, values, (grid_x, grid_y), method='nearest')
>>> grid_z1 = griddata(points, values, (grid_x, grid_y), method='linear')
>>> grid_z2 = griddata(points, values, (grid_x, grid_y), method='cubic')

One can see that the exact result is reproduced by all of the methods to some degree, but for this smooth function
the piecewise cubic interpolant gives the best results:

>>> import matplotlib.pyplot as plt
>>> plt.subplot(221)
>>> plt.imshow(func(grid_x, grid_y).T, extent=(0,1,0,1), origin='lower')
>>> plt.plot(points[:,0], points[:,1], 'k.', ms=1)
>>> plt.title('Original')
>>> plt.subplot(222)
>>> plt.imshow(grid_z0.T, extent=(0,1,0,1), origin='lower')
>>> plt.title('Nearest')
>>> plt.subplot(223)
>>> plt.imshow(grid_z1.T, extent=(0,1,0,1), origin='lower')
>>> plt.title('Linear')
>>> plt.subplot(224)

(continues on next page)
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(continued from previous page)
>>> plt.imshow(grid_z2.T, extent=(0,1,0,1), origin='lower')
>>> plt.title('Cubic')
>>> plt.gcf().set_size_inches(6, 6)
>>> plt.show()
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scipy.interpolate.LinearNDInterpolator

class scipy.interpolate.LinearNDInterpolator(points, values, fill_value=np.nan,
rescale=False)

Piecewise linear interpolant in N dimensions.
New in version 0.9.

Parameters
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points [ndarray of floats, shape (npoints, ndims); or Delaunay] Data point coordinates, or a pre-
computed Delaunay triangulation.

values [ndarray of float or complex, shape (npoints, …)] Data values.
fill_value [float, optional] Value used to fill in for requested points outside of the convex hull of the

input points. If not provided, then the default is nan.
rescale [bool, optional] Rescale points to unit cube before performing interpolation. This is useful

if some of the input dimensions have incommensurable units and differ by many orders of
magnitude.

Notes

The interpolant is constructed by triangulating the input data with Qhull [1], and on each triangle performing linear
barycentric interpolation.

References

[1]

Methods

__call__(xi) Evaluate interpolator at given points.

scipy.interpolate.LinearNDInterpolator.__call__
LinearNDInterpolator.__call__(xi)

Evaluate interpolator at given points.
Parameters

xi [ndarray of float, shape (…, ndim)] Points where to interpolate data at.

scipy.interpolate.NearestNDInterpolator

class scipy.interpolate.NearestNDInterpolator(x, y)
Nearest-neighbour interpolation in N dimensions.
New in version 0.9.

Parameters

x [(Npoints, Ndims) ndarray of floats] Data point coordinates.
y [(Npoints,) ndarray of float or complex] Data values.
rescale [boolean, optional] Rescale points to unit cube before performing interpolation. This is useful

if some of the input dimensions have incommensurable units and differ by many orders of
magnitude.
New in version 0.14.0.

tree_options
[dict, optional] Options passed to the underlying cKDTree.
New in version 0.17.0.
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Notes

Uses scipy.spatial.cKDTree

Methods

__call__(*args) Evaluate interpolator at given points.

scipy.interpolate.NearestNDInterpolator.__call__
NearestNDInterpolator.__call__(*args)

Evaluate interpolator at given points.
Parameters

xi [ndarray of float, shape (…, ndim)] Points where to interpolate data at.

scipy.interpolate.CloughTocher2DInterpolator

class scipy.interpolate.CloughTocher2DInterpolator(points, values, tol=1e-6)
Piecewise cubic, C1 smooth, curvature-minimizing interpolant in 2D.
New in version 0.9.

Parameters

points [ndarray of floats, shape (npoints, ndims); or Delaunay] Data point coordinates, or a pre-
computed Delaunay triangulation.

values [ndarray of float or complex, shape (npoints, …)] Data values.
fill_value [float, optional] Value used to fill in for requested points outside of the convex hull of the

input points. If not provided, then the default is nan.
tol [float, optional] Absolute/relative tolerance for gradient estimation.
maxiter [int, optional] Maximum number of iterations in gradient estimation.
rescale [bool, optional] Rescale points to unit cube before performing interpolation. This is useful

if some of the input dimensions have incommensurable units and differ by many orders of
magnitude.

Notes

The interpolant is constructed by triangulating the input data with Qhull [1], and constructing a piecewise cubic in-
terpolating Bezier polynomial on each triangle, using a Clough-Tocher scheme [CT]. The interpolant is guaranteed
to be continuously differentiable.
The gradients of the interpolant are chosen so that the curvature of the interpolating surface is approxima-
tively minimized. The gradients necessary for this are estimated using the global algorithm described in [Niel-
son83,Renka84]_.

References

[1], [CT], [Nielson83], [Renka84]
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Methods

__call__(xi) Evaluate interpolator at given points.

scipy.interpolate.CloughTocher2DInterpolator.__call__
CloughTocher2DInterpolator.__call__(xi)

Evaluate interpolator at given points.
Parameters

xi [ndarray of float, shape (…, ndim)] Points where to interpolate data at.

scipy.interpolate.Rbf

class scipy.interpolate.Rbf(*args)
A class for radial basis function approximation/interpolation of n-dimensional scattered data.

Parameters

*args [arrays] x, y, z, …, d, where x, y, z, … are the coordinates of the nodes and d is the array of
values at the nodes

function [str or callable, optional] The radial basis function, based on the radius, r, given by the norm
(default is Euclidean distance); the default is ‘multiquadric’:

'multiquadric': sqrt((r/self.epsilon)**2 + 1)
'inverse': 1.0/sqrt((r/self.epsilon)**2 + 1)
'gaussian': exp(-(r/self.epsilon)**2)
'linear': r
'cubic': r**3
'quintic': r**5
'thin_plate': r**2 * log(r)

If callable, then it must take 2 arguments (self, r). The epsilon parameter will be available
as self.epsilon. Other keyword arguments passed in will be available as well.

epsilon [float, optional] Adjustable constant for gaussian or multiquadrics functions - defaults to ap-
proximate average distance between nodes (which is a good start).

smooth [float, optional] Values greater than zero increase the smoothness of the approximation. 0 is
for interpolation (default), the function will always go through the nodal points in this case.

norm [str, callable, optional] A function that returns the ‘distance’ between two points, with inputs
as arrays of positions (x, y, z, …), and an output as an array of distance. E.g., the default:
‘euclidean’, such that the result is a matrix of the distances from each point in x1 to each
point in x2. For more options, see documentation of scipy.spatial.distances.cdist.

Examples

>>> from scipy.interpolate import Rbf
>>> x, y, z, d = np.random.rand(4, 50)
>>> rbfi = Rbf(x, y, z, d) # radial basis function interpolator instance
>>> xi = yi = zi = np.linspace(0, 1, 20)
>>> di = rbfi(xi, yi, zi) # interpolated values
>>> di.shape
(20,)
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Attributes

N [int] The number of data points (as determined by the input arrays).
di [ndarray] The 1-D array of data values at each of the data coordinates xi.
xi [ndarray] The 2-D array of data coordinates.
function [str or callable] The radial basis function. See description under Parameters.
epsilon [float] Parameter used by gaussian or multiquadrics functions. See Parameters.
smooth [float] Smoothing parameter. See description under Parameters.
norm [str or callable] The distance function. See description under Parameters.
nodes [ndarray] A 1-D array of node values for the interpolation.
A [internal property, do not use]

Methods

__call__(*args) Call self as a function.

scipy.interpolate.Rbf.__call__
Rbf.__call__(*args)

Call self as a function.

scipy.interpolate.interp2d

class scipy.interpolate.interp2d(x, y, z, kind=’linear’, copy=True, bounds_error=False,
fill_value=None)

Interpolate over a 2-D grid.
x, y and z are arrays of values used to approximate some function f: z = f(x, y). This class returns a function
whose call method uses spline interpolation to find the value of new points.
If x and y represent a regular grid, consider using RectBivariateSpline.
Note that calling interp2d with NaNs present in input values results in undefined behaviour.

Parameters

x, y [array_like] Arrays defining the data point coordinates.
If the points lie on a regular grid, x can specify the column coordinates and y the row coor-
dinates, for example:

>>> x = [0,1,2]; y = [0,3]; z = [[1,2,3], [4,5,6]]

Otherwise, x and y must specify the full coordinates for each point, for example:

>>> x = [0,1,2,0,1,2]; y = [0,0,0,3,3,3]; z = [1,2,3,4,5,
↪→6]

If x and y are multi-dimensional, they are flattened before use.
z [array_like] The values of the function to interpolate at the data points. If z is a multi-

dimensional array, it is flattened before use. The length of a flattened z array is either
len(x)*len(y) if x and y specify the column and row coordinates or len(z) == len(x)
== len(y) if x and y specify coordinates for each point.

kind [{‘linear’, ‘cubic’, ‘quintic’}, optional] The kind of spline interpolation to use. Default is
‘linear’.

copy [bool, optional] If True, the class makes internal copies of x, y and z. If False, references
may be used. The default is to copy.
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bounds_error
[bool, optional] If True, when interpolated values are requested outside of the domain of the
input data (x,y), a ValueError is raised. If False, then fill_value is used.

fill_value [number, optional] If provided, the value to use for points outside of the interpolation domain.
If omitted (None), values outside the domain are extrapolated.

See also:

RectBivariateSpline

Much faster 2D interpolation if your input data is on a grid

bisplrep, bisplev
BivariateSpline

a more recent wrapper of the FITPACK routines
interp1d

one dimension version of this function

Notes

The minimum number of data points required along the interpolation axis is (k+1)**2, with k=1 for linear, k=3
for cubic and k=5 for quintic interpolation.
The interpolator is constructed by bisplrep, with a smoothing factor of 0. If more control over smoothing is
needed, bisplrep should be used directly.

Examples

Construct a 2-D grid and interpolate on it:

>>> from scipy import interpolate
>>> x = np.arange(-5.01, 5.01, 0.25)
>>> y = np.arange(-5.01, 5.01, 0.25)
>>> xx, yy = np.meshgrid(x, y)
>>> z = np.sin(xx**2+yy**2)
>>> f = interpolate.interp2d(x, y, z, kind='cubic')

Now use the obtained interpolation function and plot the result:

>>> import matplotlib.pyplot as plt
>>> xnew = np.arange(-5.01, 5.01, 1e-2)
>>> ynew = np.arange(-5.01, 5.01, 1e-2)
>>> znew = f(xnew, ynew)
>>> plt.plot(x, z[0, :], 'ro-', xnew, znew[0, :], 'b-')
>>> plt.show()

Methods

__call__(x, y[, dx, dy, assume_sorted]) Interpolate the function.
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scipy.interpolate.interp2d.__call__
interp2d.__call__(x, y, dx=0, dy=0, assume_sorted=False)

Interpolate the function.
Parameters

x [1D array] x-coordinates of the mesh on which to interpolate.
y [1D array] y-coordinates of the mesh on which to interpolate.
dx [int >= 0, < kx] Order of partial derivatives in x.
dy [int >= 0, < ky] Order of partial derivatives in y.
assume_sorted

[bool, optional] If False, values of x and y can be in any order and they are sorted first.
If True, x and y have to be arrays of monotonically increasing values.

Returns

z [2D array with shape (len(y), len(x))] The interpolated values.
For data on a grid:

interpn(points, values, xi[, method, …]) Multidimensional interpolation on regular grids.
RegularGridInterpolator(points, values[, …]) Interpolation on a regular grid in arbitrary dimensions
RectBivariateSpline(x, y, z[, bbox, kx, ky, s]) Bivariate spline approximation over a rectangular mesh.

scipy.interpolate.interpn

scipy.interpolate.interpn(points, values, xi, method=’linear’, bounds_error=True, fill_value=nan)
Multidimensional interpolation on regular grids.

Parameters

points [tuple of ndarray of float, with shapes (m1, ), …, (mn, )] The points defining the regular grid
in n dimensions.

values [array_like, shape (m1, …, mn, …)] The data on the regular grid in n dimensions.
xi [ndarray of shape (…, ndim)] The coordinates to sample the gridded data at
method [str, optional] The method of interpolation to perform. Supported are “linear” and “nearest”,

and “splinef2d”. “splinef2d” is only supported for 2-dimensional data.
bounds_error

[bool, optional] If True, when interpolated values are requested outside of the domain of the
input data, a ValueError is raised. If False, then fill_value is used.

fill_value [number, optional] If provided, the value to use for points outside of the interpolation do-
main. If None, values outside the domain are extrapolated. Extrapolation is not supported
by method “splinef2d”.

Returns

values_x [ndarray, shape xi.shape[:-1] + values.shape[ndim:]] Interpolated values at input coordinates.
See also:

NearestNDInterpolator

Nearest neighbour interpolation on unstructured data in N dimensions
LinearNDInterpolator

Piecewise linear interpolant on unstructured data in N dimensions
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RegularGridInterpolator

Linear and nearest-neighbor Interpolation on a regular grid in arbitrary dimensions
RectBivariateSpline

Bivariate spline approximation over a rectangular mesh

Notes

New in version 0.14.

scipy.interpolate.RegularGridInterpolator

class scipy.interpolate.RegularGridInterpolator(points, values, method=’linear’,
bounds_error=True, fill_value=nan)

Interpolation on a regular grid in arbitrary dimensions
The data must be defined on a regular grid; the grid spacing however may be uneven. Linear and nearest-neighbour
interpolation are supported. After setting up the interpolator object, the interpolation method (linear or nearest)
may be chosen at each evaluation.

Parameters

points [tuple of ndarray of float, with shapes (m1, ), …, (mn, )] The points defining the regular grid
in n dimensions.

values [array_like, shape (m1, …, mn, …)] The data on the regular grid in n dimensions.
method [str, optional] The method of interpolation to perform. Supported are “linear” and “nearest”.

This parameter will become the default for the object’s __call__ method. Default is
“linear”.

bounds_error
[bool, optional] If True, when interpolated values are requested outside of the domain of the
input data, a ValueError is raised. If False, then fill_value is used.

fill_value [number, optional] If provided, the value to use for points outside of the interpolation domain.
If None, values outside the domain are extrapolated.

See also:

NearestNDInterpolator

Nearest neighbour interpolation on unstructured data in N dimensions
LinearNDInterpolator

Piecewise linear interpolant on unstructured data in N dimensions

Notes

Contrary to LinearNDInterpolator and NearestNDInterpolator, this class avoids expensive triangulation of the input
data by taking advantage of the regular grid structure.
If any of points have a dimension of size 1, linear interpolation will return an array of nan values. Nearest-neighbor
interpolation will work as usual in this case.
New in version 0.14.
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References

[1], [2], [3]

Examples

Evaluate a simple example function on the points of a 3D grid:

>>> from scipy.interpolate import RegularGridInterpolator
>>> def f(x, y, z):
... return 2 * x**3 + 3 * y**2 - z
>>> x = np.linspace(1, 4, 11)
>>> y = np.linspace(4, 7, 22)
>>> z = np.linspace(7, 9, 33)
>>> data = f(*np.meshgrid(x, y, z, indexing='ij', sparse=True))

data is now a 3D array with data[i,j,k] = f(x[i], y[j], z[k]). Next, define an interpolating
function from this data:

>>> my_interpolating_function = RegularGridInterpolator((x, y, z), data)

Evaluate the interpolating function at the two points (x,y,z) = (2.1, 6.2, 8.3) and (3.3, 5.2,
7.1):

>>> pts = np.array([[2.1, 6.2, 8.3], [3.3, 5.2, 7.1]])
>>> my_interpolating_function(pts)
array([ 125.80469388, 146.30069388])

which is indeed a close approximation to [f(2.1, 6.2, 8.3), f(3.3, 5.2, 7.1)].

Methods

__call__(xi[, method]) Interpolation at coordinates

scipy.interpolate.RegularGridInterpolator.__call__
RegularGridInterpolator.__call__(xi, method=None)

Interpolation at coordinates
Parameters

xi [ndarray of shape (…, ndim)] The coordinates to sample the gridded data at
method [str] The method of interpolation to perform. Supported are “linear” and “nearest”.

scipy.interpolate.RectBivariateSpline

class scipy.interpolate.RectBivariateSpline(x, y, z, bbox=[None, None, None, None], kx=3,
ky=3, s=0)

Bivariate spline approximation over a rectangular mesh.
Can be used for both smoothing and interpolating data.

Parameters
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x,y [array_like] 1-D arrays of coordinates in strictly ascending order.
z [array_like] 2-D array of data with shape (x.size,y.size).
bbox [array_like, optional] Sequence of length 4 specifying the boundary of the rectangular ap-

proximation domain. By default, bbox=[min(x,tx),max(x,tx), min(y,ty),
max(y,ty)].

kx, ky [ints, optional] Degrees of the bivariate spline. Default is 3.
s [float, optional] Positive smoothing factor defined for estimation condition:

sum((w[i]*(z[i]-s(x[i], y[i])))**2, axis=0) <= s Default is
s=0, which is for interpolation.

See also:

SmoothBivariateSpline

a smoothing bivariate spline for scattered data
bisplrep

an older wrapping of FITPACK
bisplev

an older wrapping of FITPACK
UnivariateSpline

a similar class for univariate spline interpolation

Methods

__call__(x, y[, dx, dy, grid]) Evaluate the spline or its derivatives at given positions.
ev(xi, yi[, dx, dy]) Evaluate the spline at points
get_coeffs() Return spline coefficients.
get_knots() Return a tuple (tx,ty) where tx,ty contain knots posi-

tions of the spline with respect to x-, y-variable, re-
spectively.

get_residual() Return weighted sum of squared residuals of
the spline approximation: sum ((w[i]*(z[i]-
s(x[i],y[i])))**2,axis=0)

integral(xa, xb, ya, yb) Evaluate the integral of the spline over area [xa,xb] x
[ya,yb].

scipy.interpolate.RectBivariateSpline.__call__
RectBivariateSpline.__call__(x, y, dx=0, dy=0, grid=True)

Evaluate the spline or its derivatives at given positions.
Parameters

x, y [array_like] Input coordinates.
If grid is False, evaluate the spline at points (x[i], y[i]), i=0, ...,
len(x)-1. Standard Numpy broadcasting is obeyed.
If grid is True: evaluate spline at the grid points defined by the coordinate arrays x, y.
The arrays must be sorted to increasing order.
Note that the axis ordering is inverted relative to the output of meshgrid.

dx [int] Order of x-derivative
New in version 0.14.0.
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dy [int] Order of y-derivative
New in version 0.14.0.

grid [bool] Whether to evaluate the results on a grid spanned by the input arrays, or at points
specified by the input arrays.
New in version 0.14.0.

scipy.interpolate.RectBivariateSpline.ev
RectBivariateSpline.ev(xi, yi, dx=0, dy=0)

Evaluate the spline at points
Returns the interpolated value at (xi[i], yi[i]), i=0,...,len(xi)-1.

Parameters

xi, yi [array_like] Input coordinates. Standard Numpy broadcasting is obeyed.
dx [int, optional] Order of x-derivative

New in version 0.14.0.
dy [int, optional] Order of y-derivative

New in version 0.14.0.

scipy.interpolate.RectBivariateSpline.get_coeffs
RectBivariateSpline.get_coeffs()

Return spline coefficients.

scipy.interpolate.RectBivariateSpline.get_knots
RectBivariateSpline.get_knots()

Return a tuple (tx,ty) where tx,ty contain knots positions of the spline with respect to x-, y-variable, re-
spectively. The position of interior and additional knots are given as t[k+1:-k-1] and t[:k+1]=b, t[-k-1:]=e,
respectively.

scipy.interpolate.RectBivariateSpline.get_residual
RectBivariateSpline.get_residual()

Return weighted sum of squared residuals of the spline approximation: sum ((w[i]*(z[i]-
s(x[i],y[i])))**2,axis=0)

scipy.interpolate.RectBivariateSpline.integral
RectBivariateSpline.integral(xa, xb, ya, yb)

Evaluate the integral of the spline over area [xa,xb] x [ya,yb].
Parameters

xa, xb [float] The end-points of the x integration interval.
ya, yb [float] The end-points of the y integration interval.

Returns

integ [float] The value of the resulting integral.
See also:
scipy.ndimage.map_coordinates

Tensor product polynomials:

NdPPoly(c, x[, extrapolate]) Piecewise tensor product polynomial
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scipy.interpolate.NdPPoly

class scipy.interpolate.NdPPoly(c, x, extrapolate=None)
Piecewise tensor product polynomial
The value at point xp = (x', y', z', ...) is evaluated by first computing the interval indices i such that:

x[0][i[0]] <= x' < x[0][i[0]+1]
x[1][i[1]] <= y' < x[1][i[1]+1]
...

and then computing:

S = sum(c[k0-m0-1,...,kn-mn-1,i[0],...,i[n]]
* (xp[0] - x[0][i[0]])**m0
* ...
* (xp[n] - x[n][i[n]])**mn
for m0 in range(k[0]+1)
...
for mn in range(k[n]+1))

where k[j] is the degree of the polynomial in dimension j. This representation is the piecewise multivariate power
basis.

Parameters

c [ndarray, shape (k0, …, kn, m0, …, mn, …)] Polynomial coefficients, with polynomial order
kj and mj+1 intervals for each dimension j.

x [ndim-tuple of ndarrays, shapes (mj+1,)] Polynomial breakpoints for each dimension. These
must be sorted in increasing order.

extrapolate
[bool, optional] Whether to extrapolate to out-of-bounds points based on first and last inter-
vals, or to return NaNs. Default: True.

See also:

PPoly

piecewise polynomials in 1D

Notes

High-order polynomials in the power basis can be numerically unstable.
Attributes

x [tuple of ndarrays] Breakpoints.
c [ndarray] Coefficients of the polynomials.

Methods

__call__(x[, nu, extrapolate]) Evaluate the piecewise polynomial or its derivative
construct_fast(c, x[, extrapolate]) Construct the piecewise polynomial without making

checks.
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scipy.interpolate.NdPPoly.__call__
NdPPoly.__call__(x, nu=None, extrapolate=None)

Evaluate the piecewise polynomial or its derivative
Parameters

x [array-like] Points to evaluate the interpolant at.
nu [tuple, optional] Orders of derivatives to evaluate. Each must be non-negative.
extrapolate

[bool, optional] Whether to extrapolate to out-of-bounds points based on first and last
intervals, or to return NaNs.

Returns

y [array-like] Interpolated values. Shape is determined by replacing the interpolation axis
in the original array with the shape of x.

Notes

Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differentiable
at the breakpoints. The polynomial intervals are considered half-open, [a, b), except for the last interval
which is closed [a, b].

scipy.interpolate.NdPPoly.construct_fast
classmethod NdPPoly.construct_fast(c, x, extrapolate=None)

Construct the piecewise polynomial without making checks.
Takes the same parameters as the constructor. Input arguments c and x must be arrays of the correct shape
and type. The c array can only be of dtypes float and complex, and x array must have dtype float.

6.7.3 1-D Splines

BSpline(t, c, k[, extrapolate, axis]) Univariate spline in the B-spline basis.
make_interp_spline(x, y[, k, t, bc_type, …]) Compute the (coefficients of) interpolating B-spline.
make_lsq_spline(x, y, t[, k, w, axis, …]) Compute the (coefficients of) an LSQ B-spline.

scipy.interpolate.BSpline

class scipy.interpolate.BSpline(t, c, k, extrapolate=True, axis=0)
Univariate spline in the B-spline basis.

S(x) =

n−1∑
j=0

cjBj,k;t(x)

where Bj,k;t are B-spline basis functions of degree k and knots t.
Parameters

t [ndarray, shape (n+k+1,)] knots
c [ndarray, shape (>=n, …)] spline coefficients
k [int] B-spline order
extrapolate

[bool or ‘periodic’, optional] whether to extrapolate beyond the base interval, t[k] ..
t[n], or to return nans. If True, extrapolates the first and last polynomial pieces of b-spline
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functions active on the base interval. If ‘periodic’, periodic extrapolation is used. Default is
True.

axis [int, optional] Interpolation axis. Default is zero.

Notes

B-spline basis elements are defined via

Bi,0(x) = 1, if ti ≤ x < ti+1, otherwise 0,

Bi,k(x) =
x− ti
ti+k − ti

Bi,k−1(x) +
ti+k+1 − x

ti+k+1 − ti+1
Bi+1,k−1(x)

Implementation details
• At least k+1 coefficients are required for a spline of degree k, so that n >= k+1. Additional coefficients,
c[j] with j > n, are ignored.

• B-spline basis elements of degree k form a partition of unity on the base interval, t[k] <= x <= t[n].

References

[1], [2]

Examples

Translating the recursive definition of B-splines into Python code, we have:

>>> def B(x, k, i, t):
... if k == 0:
... return 1.0 if t[i] <= x < t[i+1] else 0.0
... if t[i+k] == t[i]:
... c1 = 0.0
... else:
... c1 = (x - t[i])/(t[i+k] - t[i]) * B(x, k-1, i, t)
... if t[i+k+1] == t[i+1]:
... c2 = 0.0
... else:
... c2 = (t[i+k+1] - x)/(t[i+k+1] - t[i+1]) * B(x, k-1, i+1, t)
... return c1 + c2

>>> def bspline(x, t, c, k):
... n = len(t) - k - 1
... assert (n >= k+1) and (len(c) >= n)
... return sum(c[i] * B(x, k, i, t) for i in range(n))

Note that this is an inefficient (if straightforward) way to evaluate B-splines — this spline class does it in an equiv-
alent, but much more efficient way.
Here we construct a quadratic spline function on the base interval 2 <= x <= 4 and compare with the naive
way of evaluating the spline:
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>>> from scipy.interpolate import BSpline
>>> k = 2
>>> t = [0, 1, 2, 3, 4, 5, 6]
>>> c = [-1, 2, 0, -1]
>>> spl = BSpline(t, c, k)
>>> spl(2.5)
array(1.375)
>>> bspline(2.5, t, c, k)
1.375

Note that outside of the base interval results differ. This is because BSpline extrapolates the first and last poly-
nomial pieces of b-spline functions active on the base interval.

>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots()
>>> xx = np.linspace(1.5, 4.5, 50)
>>> ax.plot(xx, [bspline(x, t, c ,k) for x in xx], 'r-', lw=3, label=
↪→'naive')
>>> ax.plot(xx, spl(xx), 'b-', lw=4, alpha=0.7, label='BSpline')
>>> ax.grid(True)
>>> ax.legend(loc='best')
>>> plt.show()

1.5 2.0 2.5 3.0 3.5 4.0 4.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5
naive
BSpline

Attributes

t [ndarray] knot vector
c [ndarray] spline coefficients
k [int] spline degree
extrapolate

[bool] If True, extrapolates the first and last polynomial pieces of b-spline functions active
on the base interval.

axis [int] Interpolation axis.
tck [tuple] Equivalent to (self.t, self.c, self.k) (read-only).
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Methods

__call__(x[, nu, extrapolate]) Evaluate a spline function.
basis_element(t[, extrapolate]) Return a B-spline basis element B(x | t[0], ..

., t[k+1]).
derivative([nu]) Return a b-spline representing the derivative.
antiderivative([nu]) Return a b-spline representing the antiderivative.
integrate(a, b[, extrapolate]) Compute a definite integral of the spline.
construct_fast(t, c, k[, extrapolate, axis]) Construct a spline without making checks.

scipy.interpolate.BSpline.__call__
BSpline.__call__(x, nu=0, extrapolate=None)

Evaluate a spline function.
Parameters

x [array_like] points to evaluate the spline at.
nu: int, optional

derivative to evaluate (default is 0).
extrapolate

[bool or ‘periodic’, optional] whether to extrapolate based on the first and last intervals
or return nans. If ‘periodic’, periodic extrapolation is used. Default is self.extrapolate.

Returns

y [array_like] Shape is determined by replacing the interpolation axis in the coefficient
array with the shape of x.

scipy.interpolate.BSpline.basis_element
classmethod BSpline.basis_element(t, extrapolate=True)

Return a B-spline basis element B(x | t[0], ..., t[k+1]).
Parameters

t [ndarray, shape (k+1,)] internal knots
extrapolate

[bool or ‘periodic’, optional] whether to extrapolate beyond the base interval, t[0] ..
t[k+1], or to return nans. If ‘periodic’, periodic extrapolation is used. Default is True.

Returns

basis_element
[callable] A callable representing a B-spline basis element for the knot vector t.

Notes

The order of the b-spline, k, is inferred from the length of t as len(t)-2. The knot vector is constructed
by appending and prepending k+1 elements to internal knots t.

Examples

Construct a cubic b-spline:
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>>> from scipy.interpolate import BSpline
>>> b = BSpline.basis_element([0, 1, 2, 3, 4])
>>> k = b.k
>>> b.t[k:-k]
array([ 0., 1., 2., 3., 4.])
>>> k
3

Construct a second order b-spline on [0, 1, 1, 2], and compare to its explicit form:

>>> t = [-1, 0, 1, 1, 2]
>>> b = BSpline.basis_element(t[1:])
>>> def f(x):
... return np.where(x < 1, x*x, (2. - x)**2)

>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots()
>>> x = np.linspace(0, 2, 51)
>>> ax.plot(x, b(x), 'g', lw=3)
>>> ax.plot(x, f(x), 'r', lw=8, alpha=0.4)
>>> ax.grid(True)
>>> plt.show()

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

scipy.interpolate.BSpline.derivative
BSpline.derivative(nu=1)

Return a b-spline representing the derivative.
Parameters

nu [int, optional] Derivative order. Default is 1.
Returns

b [BSpline object] A new instance representing the derivative.
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See also:
splder, splantider

scipy.interpolate.BSpline.antiderivative
BSpline.antiderivative(nu=1)

Return a b-spline representing the antiderivative.
Parameters

nu [int, optional] Antiderivative order. Default is 1.
Returns

b [BSpline object] A new instance representing the antiderivative.
See also:
splder, splantider

Notes

If antiderivative is computed and self.extrapolate='periodic', it will be set to False for the
returned instance. This is done because the antiderivative is no longer periodic and its correct evaluation
outside of the initially given x interval is difficult.

scipy.interpolate.BSpline.integrate
BSpline.integrate(a, b, extrapolate=None)

Compute a definite integral of the spline.
Parameters

a [float] Lower limit of integration.
b [float] Upper limit of integration.
extrapolate

[bool or ‘periodic’, optional] whether to extrapolate beyond the base interval, t[k] .
. t[-k-1], or take the spline to be zero outside of the base interval. If ‘periodic’,
periodic extrapolation is used. If None (default), use self.extrapolate.

Returns

I [array_like] Definite integral of the spline over the interval [a, b].

Examples

Construct the linear spline x if x < 1 else 2 - x on the base interval [0, 2], and integrate it

>>> from scipy.interpolate import BSpline
>>> b = BSpline.basis_element([0, 1, 2])
>>> b.integrate(0, 1)
array(0.5)

If the integration limits are outside of the base interval, the result is controlled by the extrapolate parameter
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>>> b.integrate(-1, 1)
array(0.0)
>>> b.integrate(-1, 1, extrapolate=False)
array(0.5)

>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots()
>>> ax.grid(True)
>>> ax.axvline(0, c='r', lw=5, alpha=0.5) # base interval
>>> ax.axvline(2, c='r', lw=5, alpha=0.5)
>>> xx = [-1, 1, 2]
>>> ax.plot(xx, b(xx))
>>> plt.show()
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scipy.interpolate.BSpline.construct_fast
classmethod BSpline.construct_fast(t, c, k, extrapolate=True, axis=0)

Construct a spline without making checks.
Accepts same parameters as the regular constructor. Input arrays t and c must of correct shape and dtype.

scipy.interpolate.make_interp_spline

scipy.interpolate.make_interp_spline(x, y, k=3, t=None, bc_type=None, axis=0,
check_finite=True)

Compute the (coefficients of) interpolating B-spline.
Parameters

x [array_like, shape (n,)] Abscissas.
y [array_like, shape (n, …)] Ordinates.
k [int, optional] B-spline degree. Default is cubic, k=3.
t [array_like, shape (nt + k + 1,), optional.] Knots. The number of knots needs to agree with

the number of datapoints and the number of derivatives at the edges. Specifically, nt - n
must equal len(deriv_l) + len(deriv_r).

6.7. Interpolation (scipy.interpolate) 687



SciPy Reference Guide, Release 1.3.1

bc_type [2-tuple orNone] Boundary conditions. Default is None, whichmeans choosing the boundary
conditions automatically. Otherwise, it must be a length-two tuple where the first element
sets the boundary conditions at x[0] and the second element sets the boundary conditions
at x[-1]. Each of these must be an iterable of pairs (order, value) which gives
the values of derivatives of specified orders at the given edge of the interpolation interval.
Alternatively, the following string aliases are recognized:
• "clamped": The first derivatives at the ends are zero. This is

equivalent to bc_type=([(1, 0.0)], [(1, 0.0)]).
• "natural": The second derivatives at ends are zero. This is equivalent to
bc_type=([(2, 0.0)], [(2, 0.0)]).

• "not-a-knot" (default): The first and second segments are the same polynomial. This
is equivalent to having bc_type=None.

axis [int, optional] Interpolation axis. Default is 0.
check_finite

[bool, optional]Whether to check that the input arrays contain only finite numbers. Disabling
may give a performance gain, but may result in problems (crashes, non-termination) if the
inputs do contain infinities or NaNs. Default is True.

Returns

b [a BSpline object of the degree k and with knots t.]
See also:

BSpline

base class representing the B-spline objects
CubicSpline

a cubic spline in the polynomial basis
make_lsq_spline

a similar factory function for spline fitting
UnivariateSpline

a wrapper over FITPACK spline fitting routines
splrep

a wrapper over FITPACK spline fitting routines

Examples

Use cubic interpolation on Chebyshev nodes:

>>> def cheb_nodes(N):
... jj = 2.*np.arange(N) + 1
... x = np.cos(np.pi * jj / 2 / N)[::-1]
... return x

>>> x = cheb_nodes(20)
>>> y = np.sqrt(1 - x**2)
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>>> from scipy.interpolate import BSpline, make_interp_spline
>>> b = make_interp_spline(x, y)
>>> np.allclose(b(x), y)
True

Note that the default is a cubic spline with a not-a-knot boundary condition

>>> b.k
3

Here we use a ‘natural’ spline, with zero 2nd derivatives at edges:

>>> l, r = [(2, 0.0)], [(2, 0.0)]
>>> b_n = make_interp_spline(x, y, bc_type=(l, r)) # or, bc_type="natural
↪→"
>>> np.allclose(b_n(x), y)
True
>>> x0, x1 = x[0], x[-1]
>>> np.allclose([b_n(x0, 2), b_n(x1, 2)], [0, 0])
True

Interpolation of parametric curves is also supported. As an example, we compute a discretization of a snail curve
in polar coordinates

>>> phi = np.linspace(0, 2.*np.pi, 40)
>>> r = 0.3 + np.cos(phi)
>>> x, y = r*np.cos(phi), r*np.sin(phi) # convert to Cartesian␣
↪→coordinates

Build an interpolating curve, parameterizing it by the angle

>>> from scipy.interpolate import make_interp_spline
>>> spl = make_interp_spline(phi, np.c_[x, y])

Evaluate the interpolant on a finer grid (note that we transpose the result to unpack it into a pair of x- and y-arrays)

>>> phi_new = np.linspace(0, 2.*np.pi, 100)
>>> x_new, y_new = spl(phi_new).T

Plot the result

>>> import matplotlib.pyplot as plt
>>> plt.plot(x, y, 'o')
>>> plt.plot(x_new, y_new, '-')
>>> plt.show()

scipy.interpolate.make_lsq_spline

scipy.interpolate.make_lsq_spline(x, y, t, k=3, w=None, axis=0, check_finite=True)
Compute the (coefficients of) an LSQ B-spline.
The result is a linear combination

S(x) =
∑
j

cjBj(x; t)
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of the B-spline basis elements, Bj(x; t), which minimizes∑
j

(wj × (S(xj)− yj))
2

Parameters

x [array_like, shape (m,)] Abscissas.
y [array_like, shape (m, …)] Ordinates.
t [array_like, shape (n + k + 1,).] Knots. Knots and data points must satisfy Schoenberg-

Whitney conditions.
k [int, optional] B-spline degree. Default is cubic, k=3.
w [array_like, shape (n,), optional] Weights for spline fitting. Must be positive. If None, then

weights are all equal. Default is None.
axis [int, optional] Interpolation axis. Default is zero.
check_finite

[bool, optional]Whether to check that the input arrays contain only finite numbers. Disabling
may give a performance gain, but may result in problems (crashes, non-termination) if the
inputs do contain infinities or NaNs. Default is True.

Returns

b [a BSpline object of the degree k with knots t.]
See also:

BSpline

base class representing the B-spline objects
make_interp_spline

a similar factory function for interpolating splines
LSQUnivariateSpline

a FITPACK-based spline fitting routine
splrep

a FITPACK-based fitting routine
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Notes

The number of data points must be larger than the spline degree k.
Knots t must satisfy the Schoenberg-Whitney conditions, i.e., there must be a subset of data points x[j] such that
t[j] < x[j] < t[j+k+1], for j=0, 1,...,n-k-2.

Examples

Generate some noisy data:

>>> x = np.linspace(-3, 3, 50)
>>> y = np.exp(-x**2) + 0.1 * np.random.randn(50)

Now fit a smoothing cubic spline with a pre-defined internal knots. Here we make the knot vector (k+1)-regular
by adding boundary knots:

>>> from scipy.interpolate import make_lsq_spline, BSpline
>>> t = [-1, 0, 1]
>>> k = 3
>>> t = np.r_[(x[0],)*(k+1),
... t,
... (x[-1],)*(k+1)]
>>> spl = make_lsq_spline(x, y, t, k)

For comparison, we also construct an interpolating spline for the same set of data:

>>> from scipy.interpolate import make_interp_spline
>>> spl_i = make_interp_spline(x, y)

Plot both:

>>> import matplotlib.pyplot as plt
>>> xs = np.linspace(-3, 3, 100)
>>> plt.plot(x, y, 'ro', ms=5)
>>> plt.plot(xs, spl(xs), 'g-', lw=3, label='LSQ spline')
>>> plt.plot(xs, spl_i(xs), 'b-', lw=3, alpha=0.7, label='interp spline')
>>> plt.legend(loc='best')
>>> plt.show()

NaN handling: If the input arrays contain nan values, the result is not useful since the underlying spline fitting
routines cannot deal with nan. A workaround is to use zero weights for not-a-number data points:

>>> y[8] = np.nan
>>> w = np.isnan(y)
>>> y[w] = 0.
>>> tck = make_lsq_spline(x, y, t, w=~w)

Notice the need to replace a nan by a numerical value (precise value does not matter as long as the corresponding
weight is zero.)

Functional interface to FITPACK routines:
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splrep(x, y[, w, xb, xe, k, task, s, t, …]) Find the B-spline representation of 1-D curve.
splprep(x[, w, u, ub, ue, k, task, s, t, …]) Find the B-spline representation of an N-dimensional

curve.
splev(x, tck[, der, ext]) Evaluate a B-spline or its derivatives.
splint(a, b, tck[, full_output]) Evaluate the definite integral of a B-spline between two

given points.
sproot(tck[, mest]) Find the roots of a cubic B-spline.
spalde(x, tck) Evaluate all derivatives of a B-spline.
splder(tck[, n]) Compute the spline representation of the derivative of a

given spline
splantider(tck[, n]) Compute the spline for the antiderivative (integral) of a

given spline.
insert(x, tck[, m, per]) Insert knots into a B-spline.

scipy.interpolate.splrep

scipy.interpolate.splrep(x, y, w=None, xb=None, xe=None, k=3, task=0, s=None, t=None,
full_output=0, per=0, quiet=1)

Find the B-spline representation of 1-D curve.
Given the set of data points (x[i], y[i]) determine a smooth spline approximation of degree k on the interval
xb <= x <= xe.

Parameters

x, y [array_like] The data points defining a curve y = f(x).
w [array_like, optional] Strictly positive rank-1 array of weights the same length as x and y.

The weights are used in computing the weighted least-squares spline fit. If the errors in the
y values have standard-deviation given by the vector d, then w should be 1/d. Default is
ones(len(x)).

xb, xe [float, optional] The interval to fit. If None, these default to x[0] and x[-1] respectively.
k [int, optional] The degree of the spline fit. It is recommended to use cubic splines. Even

values of k should be avoided especially with small s values. 1 <= k <= 5
task [{1, 0, -1}, optional] If task==0 find t and c for a given smoothing factor, s.

If task==1 find t and c for another value of the smoothing factor, s. There must have been a
previous call with task=0 or task=1 for the same set of data (t will be stored an used internally)
If task=-1 find the weighted least square spline for a given set of knots, t. These should be
interior knots as knots on the ends will be added automatically.

s [float, optional] A smoothing condition. The amount of smoothness is determined by satis-
fying the conditions: sum((w * (y - g))**2,axis=0) <= s where g(x) is the smoothed inter-
polation of (x,y). The user can use s to control the tradeoff between closeness and smooth-
ness of fit. Larger s means more smoothing while smaller values of s indicate less smooth-
ing. Recommended values of s depend on the weights, w. If the weights represent the
inverse of the standard-deviation of y, then a good s value should be found in the range
(m-sqrt(2*m),m+sqrt(2*m)) where m is the number of datapoints in x, y, and w. default :
s=m-sqrt(2*m) if weights are supplied. s = 0.0 (interpolating) if no weights are supplied.

t [array_like, optional] The knots needed for task=-1. If given then task is automatically set
to -1.

full_output
[bool, optional] If non-zero, then return optional outputs.

per [bool, optional] If non-zero, data points are considered periodic with period x[m-1] - x[0]
and a smooth periodic spline approximation is returned. Values of y[m-1] and w[m-1] are
not used.
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quiet [bool, optional] Non-zero to suppress messages. This parameter is deprecated; use standard
Python warning filters instead.

Returns

tck [tuple] A tuple (t,c,k) containing the vector of knots, the B-spline coefficients, and the degree
of the spline.

fp [array, optional] The weighted sum of squared residuals of the spline approximation.
ier [int, optional] An integer flag about splrep success. Success is indicated if ier<=0. If ier in

[1,2,3] an error occurred but was not raised. Otherwise an error is raised.
msg [str, optional] A message corresponding to the integer flag, ier.

See also:
UnivariateSpline, BivariateSpline, splprep, splev, sproot, spalde, splint,
bisplrep, bisplev, BSpline, make_interp_spline

Notes

See splev for evaluation of the spline and its derivatives. Uses the FORTRAN routine curfit from FITPACK.
The user is responsible for assuring that the values of x are unique. Otherwise, splrep will not return sensible
results.
If provided, knots t must satisfy the Schoenberg-Whitney conditions, i.e., there must be a subset of data points
x[j] such that t[j] < x[j] < t[j+k+1], for j=0, 1,...,n-k-2.
This routine zero-pads the coefficients array c to have the same length as the array of knots t (the trailing k +
1 coefficients are ignored by the evaluation routines, splev and BSpline.) This is in contrast with splprep,
which does not zero-pad the coefficients.

References

Based on algorithms described in [1], [2], [3], and [4]:
[1], [2], [3], [4]

Examples

>>> import matplotlib.pyplot as plt
>>> from scipy.interpolate import splev, splrep
>>> x = np.linspace(0, 10, 10)
>>> y = np.sin(x)
>>> spl = splrep(x, y)
>>> x2 = np.linspace(0, 10, 200)
>>> y2 = splev(x2, spl)
>>> plt.plot(x, y, 'o', x2, y2)
>>> plt.show()

scipy.interpolate.splprep

scipy.interpolate.splprep(x, w=None, u=None, ub=None, ue=None, k=3, task=0, s=None, t=None,
full_output=0, nest=None, per=0, quiet=1)

Find the B-spline representation of an N-dimensional curve.
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Given a list of N rank-1 arrays, x, which represent a curve in N-dimensional space parametrized by u, find a smooth
approximating spline curve g(u). Uses the FORTRAN routine parcur from FITPACK.

Parameters

x [array_like] A list of sample vector arrays representing the curve.
w [array_like, optional] Strictly positive rank-1 array of weights the same length as x[0]. The

weights are used in computing the weighted least-squares spline fit. If the errors in the
x values have standard-deviation given by the vector d, then w should be 1/d. Default is
ones(len(x[0])).

u [array_like, optional] An array of parameter values. If not given, these values are calculated
automatically as M = len(x[0]), where
v[0] = 0
v[i] = v[i-1] + distance(x[i], x[i-1])
u[i] = v[i] / v[M-1]

ub, ue [int, optional] The end-points of the parameters interval. Defaults to u[0] and u[-1].
k [int, optional] Degree of the spline. Cubic splines are recommended. Even values of k should

be avoided especially with a small s-value. 1 <= k <= 5, default is 3.
task [int, optional] If task==0 (default), find t and c for a given smoothing factor, s. If task==1,

find t and c for another value of the smoothing factor, s. There must have been a previous
call with task=0 or task=1 for the same set of data. If task=-1 find the weighted least square
spline for a given set of knots, t.

s [float, optional] A smoothing condition. The amount of smoothness is determined by sat-
isfying the conditions: sum((w * (y - g))**2,axis=0) <= s, where g(x) is the
smoothed interpolation of (x,y). The user can use s to control the trade-off between closeness
and smoothness of fit. Larger smeans more smoothing while smaller values of s indicate less
smoothing. Recommended values of s depend on the weights, w. If the weights represent
the inverse of the standard-deviation of y, then a good s value should be found in the range
(m-sqrt(2*m),m+sqrt(2*m)), where m is the number of data points in x, y, and w.

t [int, optional] The knots needed for task=-1.
full_output

[int, optional] If non-zero, then return optional outputs.
nest [int, optional] An over-estimate of the total number of knots of the spline to help in deter-

mining the storage space. By default nest=m/2. Always large enough is nest=m+k+1.
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per [int, optional] If non-zero, data points are considered periodic with period x[m-1] -
x[0] and a smooth periodic spline approximation is returned. Values of y[m-1] and
w[m-1] are not used.

quiet [int, optional] Non-zero to suppress messages. This parameter is deprecated; use standard
Python warning filters instead.

Returns

tck [tuple] (t,c,k) a tuple containing the vector of knots, the B-spline coefficients, and the degree
of the spline.

u [array] An array of the values of the parameter.
fp [float] The weighted sum of squared residuals of the spline approximation.
ier [int] An integer flag about splrep success. Success is indicated if ier<=0. If ier in [1,2,3] an

error occurred but was not raised. Otherwise an error is raised.
msg [str] A message corresponding to the integer flag, ier.

See also:
splrep, splev, sproot, spalde, splint, bisplrep, bisplev, UnivariateSpline,
BivariateSpline, BSpline, make_interp_spline

Notes

See splev for evaluation of the spline and its derivatives. The number of dimensions N must be smaller than 11.
The number of coefficients in the c array is k+1 less then the number of knots, len(t). This is in contrast with
splrep, which zero-pads the array of coefficients to have the same length as the array of knots. These additional
coefficients are ignored by evaluation routines, splev and BSpline.

References

[1], [2], [3]

Examples

Generate a discretization of a limacon curve in the polar coordinates:

>>> phi = np.linspace(0, 2.*np.pi, 40)
>>> r = 0.5 + np.cos(phi) # polar coords
>>> x, y = r * np.cos(phi), r * np.sin(phi) # convert to cartesian

And interpolate:

>>> from scipy.interpolate import splprep, splev
>>> tck, u = splprep([x, y], s=0)
>>> new_points = splev(u, tck)

Notice that (i) we force interpolation by using s=0, (ii) the parameterization, u, is generated automatically. Now
plot the result:

>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots()
>>> ax.plot(x, y, 'ro')

(continues on next page)
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(continued from previous page)
>>> ax.plot(new_points[0], new_points[1], 'r-')
>>> plt.show()
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scipy.interpolate.splev

scipy.interpolate.splev(x, tck, der=0, ext=0)
Evaluate a B-spline or its derivatives.
Given the knots and coefficients of a B-spline representation, evaluate the value of the smoothing polynomial and
its derivatives. This is a wrapper around the FORTRAN routines splev and splder of FITPACK.

Parameters

x [array_like] An array of points at which to return the value of the smoothed spline or its
derivatives. If tck was returned from splprep, then the parameter values, u should be
given.

tck [3-tuple or a BSpline object] If a tuple, then it should be a sequence of length 3 returned by
splrep or splprep containing the knots, coefficients, and degree of the spline. (Also
see Notes.)

der [int, optional] The order of derivative of the spline to compute (must be less than or equal to
k, the degree of the spline).

ext [int, optional] Controls the value returned for elements of x not in the interval defined by the
knot sequence.
• if ext=0, return the extrapolated value.
• if ext=1, return 0
• if ext=2, raise a ValueError
• if ext=3, return the boundary value.
The default value is 0.

Returns

y [ndarray or list of ndarrays] An array of values representing the spline function evaluated at
the points in x. If tck was returned from splprep, then this is a list of arrays representing
the curve in N-dimensional space.
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See also:
splprep, splrep, sproot, spalde, splint, bisplrep, bisplev, BSpline

Notes

Manipulating the tck-tuples directly is not recommended. In new code, prefer using BSpline objects.

References

[1], [2], [3]

scipy.interpolate.splint

scipy.interpolate.splint(a, b, tck, full_output=0)
Evaluate the definite integral of a B-spline between two given points.

Parameters

a, b [float] The end-points of the integration interval.
tck [tuple or a BSpline instance] If a tuple, then it should be a sequence of length 3, containing

the vector of knots, the B-spline coefficients, and the degree of the spline (see splev).
full_output

[int, optional] Non-zero to return optional output.
Returns

integral [float] The resulting integral.
wrk [ndarray] An array containing the integrals of the normalized B-splines defined on the set of

knots. (Only returned if full_output is non-zero)
See also:
splprep, splrep, sproot, spalde, splev, bisplrep, bisplev, BSpline

Notes

splint silently assumes that the spline function is zero outside the data interval (a, b).
Manipulating the tck-tuples directly is not recommended. In new code, prefer using the BSpline objects.

References

[1], [2]

scipy.interpolate.sproot

scipy.interpolate.sproot(tck, mest=10)
Find the roots of a cubic B-spline.
Given the knots (>=8) and coefficients of a cubic B-spline return the roots of the spline.

Parameters
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tck [tuple or a BSpline object] If a tuple, then it should be a sequence of length 3, containing
the vector of knots, the B-spline coefficients, and the degree of the spline. The number of
knots must be >= 8, and the degree must be 3. The knots must be a montonically increasing
sequence.

mest [int, optional] An estimate of the number of zeros (Default is 10).
Returns

zeros [ndarray] An array giving the roots of the spline.
See also:
splprep, splrep, splint, spalde, splev, bisplrep, bisplev, BSpline

Notes

Manipulating the tck-tuples directly is not recommended. In new code, prefer using the BSpline objects.

References

[1], [2], [3]

scipy.interpolate.spalde

scipy.interpolate.spalde(x, tck)
Evaluate all derivatives of a B-spline.
Given the knots and coefficients of a cubic B-spline compute all derivatives up to order k at a point (or set of points).

Parameters

x [array_like] A point or a set of points at which to evaluate the derivatives. Note that t(k)
<= x <= t(n-k+1) must hold for each x.

tck [tuple] A tuple (t, c, k), containing the vector of knots, the B-spline coefficients, and
the degree of the spline (see splev).

Returns

results [{ndarray, list of ndarrays}] An array (or a list of arrays) containing all derivatives up to
order k inclusive for each point x.

See also:
splprep, splrep, splint, sproot, splev, bisplrep, bisplev, BSpline

References

[1], [2], [3]

scipy.interpolate.splder

scipy.interpolate.splder(tck, n=1)
Compute the spline representation of the derivative of a given spline

Parameters

tck [BSpline instance or a tuple of (t, c, k)] Spline whose derivative to compute
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n [int, optional] Order of derivative to evaluate. Default: 1
Returns

‘BSpline‘ instance or tuple
Spline of order k2=k-n representing the derivative of the input spline. A tuple is returned iff
the input argument tck is a tuple, otherwise a BSpline object is constructed and returned.

See also:
splantider, splev, spalde, BSpline

Notes

New in version 0.13.0.

Examples

This can be used for finding maxima of a curve:

>>> from scipy.interpolate import splrep, splder, sproot
>>> x = np.linspace(0, 10, 70)
>>> y = np.sin(x)
>>> spl = splrep(x, y, k=4)

Now, differentiate the spline and find the zeros of the derivative. (NB: sproot only works for order 3 splines, so
we fit an order 4 spline):

>>> dspl = splder(spl)
>>> sproot(dspl) / np.pi
array([ 0.50000001, 1.5 , 2.49999998])

This agrees well with roots π/2 + nπ of cos(x) = sin′(x).

scipy.interpolate.splantider

scipy.interpolate.splantider(tck, n=1)
Compute the spline for the antiderivative (integral) of a given spline.

Parameters

tck [BSpline instance or a tuple of (t, c, k)] Spline whose antiderivative to compute
n [int, optional] Order of antiderivative to evaluate. Default: 1

Returns

BSpline instance or a tuple of (t2, c2, k2)
Spline of order k2=k+n representing the antiderivative of the input spline. A tuple is returned
iff the input argument tck is a tuple, otherwise a BSpline object is constructed and returned.

See also:
splder, splev, spalde, BSpline
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Notes

The splder function is the inverse operation of this function. Namely, splder(splantider(tck)) is
identical to tck, modulo rounding error.
New in version 0.13.0.

Examples

>>> from scipy.interpolate import splrep, splder, splantider, splev
>>> x = np.linspace(0, np.pi/2, 70)
>>> y = 1 / np.sqrt(1 - 0.8*np.sin(x)**2)
>>> spl = splrep(x, y)

The derivative is the inverse operation of the antiderivative, although some floating point error accumulates:

>>> splev(1.7, spl), splev(1.7, splder(splantider(spl)))
(array(2.1565429877197317), array(2.1565429877201865))

Antiderivative can be used to evaluate definite integrals:

>>> ispl = splantider(spl)
>>> splev(np.pi/2, ispl) - splev(0, ispl)
2.2572053588768486

This is indeed an approximation to the complete elliptic integralK(m) =
∫ π/2

0
[1−m sin2 x]−1/2dx:

>>> from scipy.special import ellipk
>>> ellipk(0.8)
2.2572053268208538

scipy.interpolate.insert

scipy.interpolate.insert(x, tck, m=1, per=0)
Insert knots into a B-spline.
Given the knots and coefficients of a B-spline representation, create a new B-spline with a knot inserted m times at
point x. This is a wrapper around the FORTRAN routine insert of FITPACK.

Parameters

x (u) [array_like] A 1-D point at which to insert a new knot(s). If tckwas returned fromsplprep,
then the parameter values, u should be given.

tck [a BSpline instance or a tuple] If tuple, then it is expected to be a tuple (t,c,k) containing
the vector of knots, the B-spline coefficients, and the degree of the spline.

m [int, optional] The number of times to insert the given knot (its multiplicity). Default is 1.
per [int, optional] If non-zero, the input spline is considered periodic.

Returns

BSpline instance or a tuple
A new B-spline with knots t, coefficients c, and degree k. t(k+1) <= x <= t(n-k),
where k is the degree of the spline. In case of a periodic spline (per != 0) there must be
either at least k interior knots t(j) satisfying t(k+1)<t(j)<=x or at least k interior knots
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t(j) satisfying x<=t(j)<t(n-k). A tuple is returned iff the input argument tck is a tuple,
otherwise a BSpline object is constructed and returned.

Notes

Based on algorithms from [1] and [2].
Manipulating the tck-tuples directly is not recommended. In new code, prefer using the BSpline objects.

References

[1], [2]
Object-oriented FITPACK interface:

UnivariateSpline(x, y[, w, bbox, k, s, ext, …]) One-dimensional smoothing spline fit to a given set of
data points.

InterpolatedUnivariateSpline(x, y[, w, …]) One-dimensional interpolating spline for a given set of
data points.

LSQUnivariateSpline(x, y, t[, w, bbox, k, …]) One-dimensional spline with explicit internal knots.

scipy.interpolate.UnivariateSpline

class scipy.interpolate.UnivariateSpline(x, y, w=None, bbox=[None, None], k=3, s=None,
ext=0, check_finite=False)

One-dimensional smoothing spline fit to a given set of data points.
Fits a spline y = spl(x) of degree k to the provided x, y data. s specifies the number of knots by specifying a
smoothing condition.

Parameters

x [(N,) array_like] 1-D array of independent input data. Must be increasing.
y [(N,) array_like] 1-D array of dependent input data, of the same length as x.
w [(N,) array_like, optional] Weights for spline fitting. Must be positive. If None (default),

weights are all equal.
bbox [(2,) array_like, optional] 2-sequence specifying the boundary of the approximation interval.

If None (default), bbox=[x[0], x[-1]].
k [int, optional] Degree of the smoothing spline. Must be <= 5. Default is k=3, a cubic spline.
s [float or None, optional] Positive smoothing factor used to choose the number of knots.

Number of knots will be increased until the smoothing condition is satisfied:

sum((w[i] * (y[i]-spl(x[i])))**2, axis=0) <= s

If None (default), s = len(w) which should be a good value if 1/w[i] is an estimate
of the standard deviation of y[i]. If 0, spline will interpolate through all data points.

ext [int or str, optional] Controls the extrapolation mode for elements not in the interval defined
by the knot sequence.
• if ext=0 or ‘extrapolate’, return the extrapolated value.
• if ext=1 or ‘zeros’, return 0
• if ext=2 or ‘raise’, raise a ValueError
• if ext=3 of ‘const’, return the boundary value.
The default value is 0.
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check_finite
[bool, optional]Whether to check that the input arrays contain only finite numbers. Disabling
may give a performance gain, but may result in problems (crashes, non-termination or non-
sensical results) if the inputs do contain infinities or NaNs. Default is False.

See also:

InterpolatedUnivariateSpline

Subclass with smoothing forced to 0
LSQUnivariateSpline

Subclass in which knots are user-selected instead of being set by smoothing condition
splrep

An older, non object-oriented wrapping of FITPACK

splev, sproot, splint, spalde
BivariateSpline

A similar class for two-dimensional spline interpolation

Notes

The number of data points must be larger than the spline degree k.
NaN handling: If the input arrays contain nan values, the result is not useful, since the underlying spline fitting
routines cannot deal with nan . A workaround is to use zero weights for not-a-number data points:

>>> from scipy.interpolate import UnivariateSpline
>>> x, y = np.array([1, 2, 3, 4]), np.array([1, np.nan, 3, 4])
>>> w = np.isnan(y)
>>> y[w] = 0.
>>> spl = UnivariateSpline(x, y, w=~w)

Notice the need to replace a nan by a numerical value (precise value does not matter as long as the corresponding
weight is zero.)

Examples

>>> import matplotlib.pyplot as plt
>>> from scipy.interpolate import UnivariateSpline
>>> x = np.linspace(-3, 3, 50)
>>> y = np.exp(-x**2) + 0.1 * np.random.randn(50)
>>> plt.plot(x, y, 'ro', ms=5)

Use the default value for the smoothing parameter:

>>> spl = UnivariateSpline(x, y)
>>> xs = np.linspace(-3, 3, 1000)
>>> plt.plot(xs, spl(xs), 'g', lw=3)

Manually change the amount of smoothing:
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>>> spl.set_smoothing_factor(0.5)
>>> plt.plot(xs, spl(xs), 'b', lw=3)
>>> plt.show()

3 2 1 0 1 2 3

0.25

0.00

0.25

0.50

0.75

1.00

Methods

__call__(x[, nu, ext]) Evaluate spline (or its nu-th derivative) at positions x.
antiderivative([n]) Construct a new spline representing the antiderivative

of this spline.
derivative([n]) Construct a new spline representing the derivative of

this spline.
derivatives(x) Return all derivatives of the spline at the point x.
get_coeffs() Return spline coefficients.
get_knots() Return positions of interior knots of the spline.
get_residual() Return weighted sum of squared residuals of the spline

approximation.
integral(a, b) Return definite integral of the spline between two

given points.
roots() Return the zeros of the spline.
set_smoothing_factor(s) Continue spline computation with the given smoothing

factor s and with the knots found at the last call.

scipy.interpolate.UnivariateSpline.__call__
UnivariateSpline.__call__(x, nu=0, ext=None)

Evaluate spline (or its nu-th derivative) at positions x.
Parameters

x [array_like] A 1-D array of points at which to return the value of the smoothed spline
or its derivatives. Note: x can be unordered but the evaluation is more efficient if x is
(partially) ordered.

nu [int] The order of derivative of the spline to compute.
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ext [int] Controls the value returned for elements of x not in the interval defined by the knot
sequence.
• if ext=0 or ‘extrapolate’, return the extrapolated value.
• if ext=1 or ‘zeros’, return 0
• if ext=2 or ‘raise’, raise a ValueError
• if ext=3 or ‘const’, return the boundary value.
The default value is 0, passed from the initialization of UnivariateSpline.

scipy.interpolate.UnivariateSpline.antiderivative
UnivariateSpline.antiderivative(n=1)

Construct a new spline representing the antiderivative of this spline.
Parameters

n [int, optional] Order of antiderivative to evaluate. Default: 1
Returns

spline [UnivariateSpline] Spline of order k2=k+n representing the antiderivative of this spline.
See also:
splantider, derivative

Notes

New in version 0.13.0.

Examples

>>> from scipy.interpolate import UnivariateSpline
>>> x = np.linspace(0, np.pi/2, 70)
>>> y = 1 / np.sqrt(1 - 0.8*np.sin(x)**2)
>>> spl = UnivariateSpline(x, y, s=0)

The derivative is the inverse operation of the antiderivative, although some floating point error accumulates:

>>> spl(1.7), spl.antiderivative().derivative()(1.7)
(array(2.1565429877197317), array(2.1565429877201865))

Antiderivative can be used to evaluate definite integrals:

>>> ispl = spl.antiderivative()
>>> ispl(np.pi/2) - ispl(0)
2.2572053588768486

This is indeed an approximation to the complete elliptic integralK(m) =
∫ π/2

0
[1−m sin2 x]−1/2dx:

>>> from scipy.special import ellipk
>>> ellipk(0.8)
2.2572053268208538
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scipy.interpolate.UnivariateSpline.derivative
UnivariateSpline.derivative(n=1)

Construct a new spline representing the derivative of this spline.
Parameters

n [int, optional] Order of derivative to evaluate. Default: 1
Returns

spline [UnivariateSpline] Spline of order k2=k-n representing the derivative of this spline.
See also:
splder, antiderivative

Notes

New in version 0.13.0.

Examples

This can be used for finding maxima of a curve:

>>> from scipy.interpolate import UnivariateSpline
>>> x = np.linspace(0, 10, 70)
>>> y = np.sin(x)
>>> spl = UnivariateSpline(x, y, k=4, s=0)

Now, differentiate the spline and find the zeros of the derivative. (NB: sproot only works for order 3 splines,
so we fit an order 4 spline):

>>> spl.derivative().roots() / np.pi
array([ 0.50000001, 1.5 , 2.49999998])

This agrees well with roots π/2 + nπ of cos(x) = sin′(x).

scipy.interpolate.UnivariateSpline.derivatives
UnivariateSpline.derivatives(x)

Return all derivatives of the spline at the point x.
Parameters

x [float] The point to evaluate the derivatives at.
Returns

der [ndarray, shape(k+1,)] Derivatives of the orders 0 to k.

Examples

>>> from scipy.interpolate import UnivariateSpline
>>> x = np.linspace(0, 3, 11)
>>> y = x**2
>>> spl = UnivariateSpline(x, y)

(continues on next page)
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(continued from previous page)
>>> spl.derivatives(1.5)
array([2.25, 3.0, 2.0, 0])

scipy.interpolate.UnivariateSpline.get_coeffs
UnivariateSpline.get_coeffs()

Return spline coefficients.

scipy.interpolate.UnivariateSpline.get_knots
UnivariateSpline.get_knots()

Return positions of interior knots of the spline.
Internally, the knot vector contains 2*k additional boundary knots.

scipy.interpolate.UnivariateSpline.get_residual
UnivariateSpline.get_residual()

Return weighted sum of squared residuals of the spline approximation.
This is equivalent to:

sum((w[i] * (y[i]-spl(x[i])))**2, axis=0)

scipy.interpolate.UnivariateSpline.integral
UnivariateSpline.integral(a, b)

Return definite integral of the spline between two given points.
Parameters

a [float] Lower limit of integration.
b [float] Upper limit of integration.

Returns

integral [float] The value of the definite integral of the spline between limits.

Examples

>>> from scipy.interpolate import UnivariateSpline
>>> x = np.linspace(0, 3, 11)
>>> y = x**2
>>> spl = UnivariateSpline(x, y)
>>> spl.integral(0, 3)
9.0

which agrees with
∫
x2dx = x3/3 between the limits of 0 and 3.

A caveat is that this routine assumes the spline to be zero outside of the data limits:

>>> spl.integral(-1, 4)
9.0
>>> spl.integral(-1, 0)
0.0
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scipy.interpolate.UnivariateSpline.roots
UnivariateSpline.roots()

Return the zeros of the spline.
Restriction: only cubic splines are supported by fitpack.

scipy.interpolate.UnivariateSpline.set_smoothing_factor
UnivariateSpline.set_smoothing_factor(s)

Continue spline computation with the given smoothing factor s and with the knots found at the last call.
This routine modifies the spline in place.

scipy.interpolate.InterpolatedUnivariateSpline

class scipy.interpolate.InterpolatedUnivariateSpline(x, y, w=None, bbox=[None,
None], k=3, ext=0,
check_finite=False)

One-dimensional interpolating spline for a given set of data points.
Fits a spline y = spl(x) of degree k to the provided x, y data. Spline function passes through all provided points.
Equivalent to UnivariateSpline with s=0.

Parameters

x [(N,) array_like] Input dimension of data points – must be increasing
y [(N,) array_like] input dimension of data points
w [(N,) array_like, optional] Weights for spline fitting. Must be positive. If None (default),

weights are all equal.
bbox [(2,) array_like, optional] 2-sequence specifying the boundary of the approximation interval.

If None (default), bbox=[x[0], x[-1]].
k [int, optional] Degree of the smoothing spline. Must be 1 <= k <= 5.
ext [int or str, optional] Controls the extrapolation mode for elements not in the interval defined

by the knot sequence.
• if ext=0 or ‘extrapolate’, return the extrapolated value.
• if ext=1 or ‘zeros’, return 0
• if ext=2 or ‘raise’, raise a ValueError
• if ext=3 of ‘const’, return the boundary value.
The default value is 0.

check_finite
[bool, optional]Whether to check that the input arrays contain only finite numbers. Disabling
may give a performance gain, but may result in problems (crashes, non-termination or non-
sensical results) if the inputs do contain infinities or NaNs. Default is False.

See also:

UnivariateSpline

Superclass – allows knots to be selected by a smoothing condition
LSQUnivariateSpline

spline for which knots are user-selected
splrep

An older, non object-oriented wrapping of FITPACK

splev, sproot, splint, spalde
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BivariateSpline

A similar class for two-dimensional spline interpolation

Notes

The number of data points must be larger than the spline degree k.

Examples

>>> import matplotlib.pyplot as plt
>>> from scipy.interpolate import InterpolatedUnivariateSpline
>>> x = np.linspace(-3, 3, 50)
>>> y = np.exp(-x**2) + 0.1 * np.random.randn(50)
>>> spl = InterpolatedUnivariateSpline(x, y)
>>> plt.plot(x, y, 'ro', ms=5)
>>> xs = np.linspace(-3, 3, 1000)
>>> plt.plot(xs, spl(xs), 'g', lw=3, alpha=0.7)
>>> plt.show()
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Notice that the spl(x) interpolates y:

>>> spl.get_residual()
0.0

Methods

__call__(x[, nu, ext]) Evaluate spline (or its nu-th derivative) at positions x.
antiderivative([n]) Construct a new spline representing the antiderivative

of this spline.
Continued on next page
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Table 59 – continued from previous page
derivative([n]) Construct a new spline representing the derivative of

this spline.
derivatives(x) Return all derivatives of the spline at the point x.
get_coeffs() Return spline coefficients.
get_knots() Return positions of interior knots of the spline.
get_residual() Return weighted sum of squared residuals of the spline

approximation.
integral(a, b) Return definite integral of the spline between two

given points.
roots() Return the zeros of the spline.
set_smoothing_factor(s) Continue spline computation with the given smoothing

factor s and with the knots found at the last call.

scipy.interpolate.InterpolatedUnivariateSpline.__call__
InterpolatedUnivariateSpline.__call__(x, nu=0, ext=None)

Evaluate spline (or its nu-th derivative) at positions x.
Parameters

x [array_like] A 1-D array of points at which to return the value of the smoothed spline
or its derivatives. Note: x can be unordered but the evaluation is more efficient if x is
(partially) ordered.

nu [int] The order of derivative of the spline to compute.
ext [int] Controls the value returned for elements of x not in the interval defined by the knot

sequence.
• if ext=0 or ‘extrapolate’, return the extrapolated value.
• if ext=1 or ‘zeros’, return 0
• if ext=2 or ‘raise’, raise a ValueError
• if ext=3 or ‘const’, return the boundary value.
The default value is 0, passed from the initialization of UnivariateSpline.

scipy.interpolate.InterpolatedUnivariateSpline.antiderivative
InterpolatedUnivariateSpline.antiderivative(n=1)

Construct a new spline representing the antiderivative of this spline.
Parameters

n [int, optional] Order of antiderivative to evaluate. Default: 1
Returns

spline [UnivariateSpline] Spline of order k2=k+n representing the antiderivative of this spline.
See also:
splantider, derivative

Notes

New in version 0.13.0.
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Examples

>>> from scipy.interpolate import UnivariateSpline
>>> x = np.linspace(0, np.pi/2, 70)
>>> y = 1 / np.sqrt(1 - 0.8*np.sin(x)**2)
>>> spl = UnivariateSpline(x, y, s=0)

The derivative is the inverse operation of the antiderivative, although some floating point error accumulates:

>>> spl(1.7), spl.antiderivative().derivative()(1.7)
(array(2.1565429877197317), array(2.1565429877201865))

Antiderivative can be used to evaluate definite integrals:

>>> ispl = spl.antiderivative()
>>> ispl(np.pi/2) - ispl(0)
2.2572053588768486

This is indeed an approximation to the complete elliptic integralK(m) =
∫ π/2

0
[1−m sin2 x]−1/2dx:

>>> from scipy.special import ellipk
>>> ellipk(0.8)
2.2572053268208538

scipy.interpolate.InterpolatedUnivariateSpline.derivative
InterpolatedUnivariateSpline.derivative(n=1)

Construct a new spline representing the derivative of this spline.
Parameters

n [int, optional] Order of derivative to evaluate. Default: 1
Returns

spline [UnivariateSpline] Spline of order k2=k-n representing the derivative of this spline.
See also:
splder, antiderivative

Notes

New in version 0.13.0.

Examples

This can be used for finding maxima of a curve:

>>> from scipy.interpolate import UnivariateSpline
>>> x = np.linspace(0, 10, 70)
>>> y = np.sin(x)
>>> spl = UnivariateSpline(x, y, k=4, s=0)

Now, differentiate the spline and find the zeros of the derivative. (NB: sproot only works for order 3 splines,
so we fit an order 4 spline):
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>>> spl.derivative().roots() / np.pi
array([ 0.50000001, 1.5 , 2.49999998])

This agrees well with roots π/2 + nπ of cos(x) = sin′(x).

scipy.interpolate.InterpolatedUnivariateSpline.derivatives
InterpolatedUnivariateSpline.derivatives(x)

Return all derivatives of the spline at the point x.
Parameters

x [float] The point to evaluate the derivatives at.
Returns

der [ndarray, shape(k+1,)] Derivatives of the orders 0 to k.

Examples

>>> from scipy.interpolate import UnivariateSpline
>>> x = np.linspace(0, 3, 11)
>>> y = x**2
>>> spl = UnivariateSpline(x, y)
>>> spl.derivatives(1.5)
array([2.25, 3.0, 2.0, 0])

scipy.interpolate.InterpolatedUnivariateSpline.get_coeffs
InterpolatedUnivariateSpline.get_coeffs()

Return spline coefficients.

scipy.interpolate.InterpolatedUnivariateSpline.get_knots
InterpolatedUnivariateSpline.get_knots()

Return positions of interior knots of the spline.
Internally, the knot vector contains 2*k additional boundary knots.

scipy.interpolate.InterpolatedUnivariateSpline.get_residual
InterpolatedUnivariateSpline.get_residual()

Return weighted sum of squared residuals of the spline approximation.
This is equivalent to:

sum((w[i] * (y[i]-spl(x[i])))**2, axis=0)

scipy.interpolate.InterpolatedUnivariateSpline.integral
InterpolatedUnivariateSpline.integral(a, b)

Return definite integral of the spline between two given points.
Parameters

a [float] Lower limit of integration.
b [float] Upper limit of integration.

Returns
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integral [float] The value of the definite integral of the spline between limits.

Examples

>>> from scipy.interpolate import UnivariateSpline
>>> x = np.linspace(0, 3, 11)
>>> y = x**2
>>> spl = UnivariateSpline(x, y)
>>> spl.integral(0, 3)
9.0

which agrees with
∫
x2dx = x3/3 between the limits of 0 and 3.

A caveat is that this routine assumes the spline to be zero outside of the data limits:

>>> spl.integral(-1, 4)
9.0
>>> spl.integral(-1, 0)
0.0

scipy.interpolate.InterpolatedUnivariateSpline.roots
InterpolatedUnivariateSpline.roots()

Return the zeros of the spline.
Restriction: only cubic splines are supported by fitpack.

scipy.interpolate.InterpolatedUnivariateSpline.set_smoothing_factor
InterpolatedUnivariateSpline.set_smoothing_factor(s)

Continue spline computation with the given smoothing factor s and with the knots found at the last call.
This routine modifies the spline in place.

scipy.interpolate.LSQUnivariateSpline

class scipy.interpolate.LSQUnivariateSpline(x, y, t, w=None, bbox=[None, None], k=3,
ext=0, check_finite=False)

One-dimensional spline with explicit internal knots.
Fits a spline y = spl(x) of degree k to the provided x, y data. t specifies the internal knots of the spline

Parameters

x [(N,) array_like] Input dimension of data points – must be increasing
y [(N,) array_like] Input dimension of data points
t [(M,) array_like] interior knots of the spline. Must be in ascending order and:

bbox[0] < t[0] < ... < t[-1] < bbox[-1]

w [(N,) array_like, optional] weights for spline fitting. Must be positive. If None (default),
weights are all equal.

bbox [(2,) array_like, optional] 2-sequence specifying the boundary of the approximation interval.
If None (default), bbox = [x[0], x[-1]].

k [int, optional] Degree of the smoothing spline. Must be 1 <= k <= 5. Default is k=3, a cubic
spline.
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ext [int or str, optional] Controls the extrapolation mode for elements not in the interval defined
by the knot sequence.
• if ext=0 or ‘extrapolate’, return the extrapolated value.
• if ext=1 or ‘zeros’, return 0
• if ext=2 or ‘raise’, raise a ValueError
• if ext=3 of ‘const’, return the boundary value.
The default value is 0.

check_finite
[bool, optional]Whether to check that the input arrays contain only finite numbers. Disabling
may give a performance gain, but may result in problems (crashes, non-termination or non-
sensical results) if the inputs do contain infinities or NaNs. Default is False.

Raises

ValueError
If the interior knots do not satisfy the Schoenberg-Whitney conditions

See also:

UnivariateSpline

Superclass – knots are specified by setting a smoothing condition
InterpolatedUnivariateSpline

spline passing through all points
splrep

An older, non object-oriented wrapping of FITPACK

splev, sproot, splint, spalde
BivariateSpline

A similar class for two-dimensional spline interpolation

Notes

The number of data points must be larger than the spline degree k.
Knots t must satisfy the Schoenberg-Whitney conditions, i.e., there must be a subset of data points x[j] such that
t[j] < x[j] < t[j+k+1], for j=0, 1,...,n-k-2.

Examples

>>> from scipy.interpolate import LSQUnivariateSpline, UnivariateSpline
>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-3, 3, 50)
>>> y = np.exp(-x**2) + 0.1 * np.random.randn(50)

Fit a smoothing spline with a pre-defined internal knots:

>>> t = [-1, 0, 1]
>>> spl = LSQUnivariateSpline(x, y, t)
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>>> xs = np.linspace(-3, 3, 1000)
>>> plt.plot(x, y, 'ro', ms=5)
>>> plt.plot(xs, spl(xs), 'g-', lw=3)
>>> plt.show()
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Check the knot vector:

>>> spl.get_knots()
array([-3., -1., 0., 1., 3.])

Constructing lsq spline using the knots from another spline:

>>> x = np.arange(10)
>>> s = UnivariateSpline(x, x, s=0)
>>> s.get_knots()
array([ 0., 2., 3., 4., 5., 6., 7., 9.])
>>> knt = s.get_knots()
>>> s1 = LSQUnivariateSpline(x, x, knt[1:-1]) # Chop 1st and last knot
>>> s1.get_knots()
array([ 0., 2., 3., 4., 5., 6., 7., 9.])

Methods

__call__(x[, nu, ext]) Evaluate spline (or its nu-th derivative) at positions x.
antiderivative([n]) Construct a new spline representing the antiderivative

of this spline.
derivative([n]) Construct a new spline representing the derivative of

this spline.
derivatives(x) Return all derivatives of the spline at the point x.
get_coeffs() Return spline coefficients.
get_knots() Return positions of interior knots of the spline.

Continued on next page
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Table 60 – continued from previous page
get_residual() Return weighted sum of squared residuals of the spline

approximation.
integral(a, b) Return definite integral of the spline between two

given points.
roots() Return the zeros of the spline.
set_smoothing_factor(s) Continue spline computation with the given smoothing

factor s and with the knots found at the last call.

scipy.interpolate.LSQUnivariateSpline.__call__
LSQUnivariateSpline.__call__(x, nu=0, ext=None)

Evaluate spline (or its nu-th derivative) at positions x.
Parameters

x [array_like] A 1-D array of points at which to return the value of the smoothed spline
or its derivatives. Note: x can be unordered but the evaluation is more efficient if x is
(partially) ordered.

nu [int] The order of derivative of the spline to compute.
ext [int] Controls the value returned for elements of x not in the interval defined by the knot

sequence.
• if ext=0 or ‘extrapolate’, return the extrapolated value.
• if ext=1 or ‘zeros’, return 0
• if ext=2 or ‘raise’, raise a ValueError
• if ext=3 or ‘const’, return the boundary value.
The default value is 0, passed from the initialization of UnivariateSpline.

scipy.interpolate.LSQUnivariateSpline.antiderivative
LSQUnivariateSpline.antiderivative(n=1)

Construct a new spline representing the antiderivative of this spline.
Parameters

n [int, optional] Order of antiderivative to evaluate. Default: 1
Returns

spline [UnivariateSpline] Spline of order k2=k+n representing the antiderivative of this spline.
See also:
splantider, derivative

Notes

New in version 0.13.0.

Examples

>>> from scipy.interpolate import UnivariateSpline
>>> x = np.linspace(0, np.pi/2, 70)
>>> y = 1 / np.sqrt(1 - 0.8*np.sin(x)**2)
>>> spl = UnivariateSpline(x, y, s=0)

The derivative is the inverse operation of the antiderivative, although some floating point error accumulates:
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>>> spl(1.7), spl.antiderivative().derivative()(1.7)
(array(2.1565429877197317), array(2.1565429877201865))

Antiderivative can be used to evaluate definite integrals:

>>> ispl = spl.antiderivative()
>>> ispl(np.pi/2) - ispl(0)
2.2572053588768486

This is indeed an approximation to the complete elliptic integralK(m) =
∫ π/2

0
[1−m sin2 x]−1/2dx:

>>> from scipy.special import ellipk
>>> ellipk(0.8)
2.2572053268208538

scipy.interpolate.LSQUnivariateSpline.derivative
LSQUnivariateSpline.derivative(n=1)

Construct a new spline representing the derivative of this spline.
Parameters

n [int, optional] Order of derivative to evaluate. Default: 1
Returns

spline [UnivariateSpline] Spline of order k2=k-n representing the derivative of this spline.
See also:
splder, antiderivative

Notes

New in version 0.13.0.

Examples

This can be used for finding maxima of a curve:

>>> from scipy.interpolate import UnivariateSpline
>>> x = np.linspace(0, 10, 70)
>>> y = np.sin(x)
>>> spl = UnivariateSpline(x, y, k=4, s=0)

Now, differentiate the spline and find the zeros of the derivative. (NB: sproot only works for order 3 splines,
so we fit an order 4 spline):

>>> spl.derivative().roots() / np.pi
array([ 0.50000001, 1.5 , 2.49999998])

This agrees well with roots π/2 + nπ of cos(x) = sin′(x).
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scipy.interpolate.LSQUnivariateSpline.derivatives
LSQUnivariateSpline.derivatives(x)

Return all derivatives of the spline at the point x.
Parameters

x [float] The point to evaluate the derivatives at.
Returns

der [ndarray, shape(k+1,)] Derivatives of the orders 0 to k.

Examples

>>> from scipy.interpolate import UnivariateSpline
>>> x = np.linspace(0, 3, 11)
>>> y = x**2
>>> spl = UnivariateSpline(x, y)
>>> spl.derivatives(1.5)
array([2.25, 3.0, 2.0, 0])

scipy.interpolate.LSQUnivariateSpline.get_coeffs
LSQUnivariateSpline.get_coeffs()

Return spline coefficients.

scipy.interpolate.LSQUnivariateSpline.get_knots
LSQUnivariateSpline.get_knots()

Return positions of interior knots of the spline.
Internally, the knot vector contains 2*k additional boundary knots.

scipy.interpolate.LSQUnivariateSpline.get_residual
LSQUnivariateSpline.get_residual()

Return weighted sum of squared residuals of the spline approximation.
This is equivalent to:

sum((w[i] * (y[i]-spl(x[i])))**2, axis=0)

scipy.interpolate.LSQUnivariateSpline.integral
LSQUnivariateSpline.integral(a, b)

Return definite integral of the spline between two given points.
Parameters

a [float] Lower limit of integration.
b [float] Upper limit of integration.

Returns

integral [float] The value of the definite integral of the spline between limits.
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Examples

>>> from scipy.interpolate import UnivariateSpline
>>> x = np.linspace(0, 3, 11)
>>> y = x**2
>>> spl = UnivariateSpline(x, y)
>>> spl.integral(0, 3)
9.0

which agrees with
∫
x2dx = x3/3 between the limits of 0 and 3.

A caveat is that this routine assumes the spline to be zero outside of the data limits:

>>> spl.integral(-1, 4)
9.0
>>> spl.integral(-1, 0)
0.0

scipy.interpolate.LSQUnivariateSpline.roots
LSQUnivariateSpline.roots()

Return the zeros of the spline.
Restriction: only cubic splines are supported by fitpack.

scipy.interpolate.LSQUnivariateSpline.set_smoothing_factor
LSQUnivariateSpline.set_smoothing_factor(s)

Continue spline computation with the given smoothing factor s and with the knots found at the last call.
This routine modifies the spline in place.

6.7.4 2-D Splines

For data on a grid:

RectBivariateSpline(x, y, z[, bbox, kx, ky, s]) Bivariate spline approximation over a rectangular mesh.
RectSphereBivariateSpline(u, v, r[, s, …]) Bivariate spline approximation over a rectangular mesh

on a sphere.

scipy.interpolate.RectSphereBivariateSpline

class scipy.interpolate.RectSphereBivariateSpline(u, v, r, s=0.0, pole_continuity=False,
pole_values=None,
pole_exact=False, pole_flat=False)

Bivariate spline approximation over a rectangular mesh on a sphere.
Can be used for smoothing data.
New in version 0.11.0.

Parameters

u [array_like] 1-D array of latitude coordinates in strictly ascending order. Coordinates must
be given in radians and lie within the interval (0, pi).
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v [array_like] 1-D array of longitude coordinates in strictly ascending order. Coordinates must
be given in radians. First element (v[0]) must lie within the interval [-pi, pi). Last element
(v[-1]) must satisfy v[-1] <= v[0] + 2*pi.

r [array_like] 2-D array of data with shape (u.size, v.size).
s [float, optional] Positive smoothing factor defined for estimation condition (s=0 is for inter-

polation).
pole_continuity

[bool or (bool, bool), optional] Order of continuity at the poles u=0
(pole_continuity[0]) and u=pi (pole_continuity[1]). The order of
continuity at the pole will be 1 or 0 when this is True or False, respectively. Defaults to
False.

pole_values
[float or (float, float), optional] Data values at the poles u=0 and u=pi. Either the whole
parameter or each individual element can be None. Defaults to None.

pole_exact [bool or (bool, bool), optional] Data value exactness at the poles u=0 and u=pi. If True,
the value is considered to be the right function value, and it will be fitted exactly. If False,
the value will be considered to be a data value just like the other data values. Defaults to
False.

pole_flat [bool or (bool, bool), optional] For the poles at u=0 and u=pi, specify whether or not the
approximation has vanishing derivatives. Defaults to False.

See also:

RectBivariateSpline

bivariate spline approximation over a rectangular mesh

Notes

Currently, only the smoothing spline approximation (iopt[0] = 0 and iopt[0] = 1 in the FITPACK rou-
tine) is supported. The exact least-squares spline approximation is not implemented yet.
When actually performing the interpolation, the requested v values must lie within the same length 2pi interval that
the original v values were chosen from.
For more information, see the FITPACK site about this function.

Examples

Suppose we have global data on a coarse grid

>>> lats = np.linspace(10, 170, 9) * np.pi / 180.
>>> lons = np.linspace(0, 350, 18) * np.pi / 180.
>>> data = np.dot(np.atleast_2d(90. - np.linspace(-80., 80., 18)).T,
... np.atleast_2d(180. - np.abs(np.linspace(0., 350., 9)))).
↪→T

We want to interpolate it to a global one-degree grid

>>> new_lats = np.linspace(1, 180, 180) * np.pi / 180
>>> new_lons = np.linspace(1, 360, 360) * np.pi / 180
>>> new_lats, new_lons = np.meshgrid(new_lats, new_lons)

We need to set up the interpolator object
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>>> from scipy.interpolate import RectSphereBivariateSpline
>>> lut = RectSphereBivariateSpline(lats, lons, data)

Finally we interpolate the data. The RectSphereBivariateSpline object only takes 1-D arrays as input,
therefore we need to do some reshaping.

>>> data_interp = lut.ev(new_lats.ravel(),
... new_lons.ravel()).reshape((360, 180)).T

Looking at the original and the interpolated data, one can see that the interpolant reproduces the original data very
well:

>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> ax1 = fig.add_subplot(211)
>>> ax1.imshow(data, interpolation='nearest')
>>> ax2 = fig.add_subplot(212)
>>> ax2.imshow(data_interp, interpolation='nearest')
>>> plt.show()
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Choosing the optimal value of s can be a delicate task. Recommended values for s depend on the accuracy of the
data values. If the user has an idea of the statistical errors on the data, she can also find a proper estimate for s. By
assuming that, if she specifies the right s, the interpolator will use a spline f(u,v) which exactly reproduces the
function underlying the data, she can evaluate sum((r(i,j)-s(u(i),v(j)))**2) to find a good estimate
for this s. For example, if she knows that the statistical errors on her r(i,j)-values are not greater than 0.1, she
may expect that a good s should have a value not larger than u.size * v.size * (0.1)**2.
If nothing is known about the statistical error in r(i,j), s must be determined by trial and error. The best is
then to start with a very large value of s (to determine the least-squares polynomial and the corresponding upper
bound fp0 for s) and then to progressively decrease the value of s (say by a factor 10 in the beginning, i.e. s =
fp0 / 10, fp0 / 100, ... and more carefully as the approximation shows more detail) to obtain closer
fits.
The interpolation results for different values of s give some insight into this process:
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>>> fig2 = plt.figure()
>>> s = [3e9, 2e9, 1e9, 1e8]
>>> for ii in range(len(s)):
... lut = RectSphereBivariateSpline(lats, lons, data, s=s[ii])
... data_interp = lut.ev(new_lats.ravel(),
... new_lons.ravel()).reshape((360, 180)).T
... ax = fig2.add_subplot(2, 2, ii+1)
... ax.imshow(data_interp, interpolation='nearest')
... ax.set_title("s = %g" % s[ii])
>>> plt.show()
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Methods

__call__(theta, phi[, dtheta, dphi, grid]) Evaluate the spline or its derivatives at given positions.
ev(theta, phi[, dtheta, dphi]) Evaluate the spline at points
get_coeffs() Return spline coefficients.
get_knots() Return a tuple (tx,ty) where tx,ty contain knots posi-

tions of the spline with respect to x-, y-variable, re-
spectively.

get_residual() Return weighted sum of squared residuals of
the spline approximation: sum ((w[i]*(z[i]-
s(x[i],y[i])))**2,axis=0)

scipy.interpolate.RectSphereBivariateSpline.__call__
RectSphereBivariateSpline.__call__(theta, phi, dtheta=0, dphi=0, grid=True)

Evaluate the spline or its derivatives at given positions.
Parameters

theta, phi [array_like] Input coordinates.
If grid is False, evaluate the spline at points (theta[i], phi[i]), i=0, ...
, len(x)-1. Standard Numpy broadcasting is obeyed.
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If grid is True: evaluate spline at the grid points defined by the coordinate arrays theta,
phi. The arrays must be sorted to increasing order.

dtheta [int, optional] Order of theta-derivative
New in version 0.14.0.

dphi [int] Order of phi-derivative
New in version 0.14.0.

grid [bool] Whether to evaluate the results on a grid spanned by the input arrays, or at points
specified by the input arrays.
New in version 0.14.0.

scipy.interpolate.RectSphereBivariateSpline.ev
RectSphereBivariateSpline.ev(theta, phi, dtheta=0, dphi=0)

Evaluate the spline at points
Returns the interpolated value at (theta[i], phi[i]), i=0,...,len(theta)-1.

Parameters

theta, phi [array_like] Input coordinates. Standard Numpy broadcasting is obeyed.
dtheta [int, optional] Order of theta-derivative

New in version 0.14.0.
dphi [int, optional] Order of phi-derivative

New in version 0.14.0.

scipy.interpolate.RectSphereBivariateSpline.get_coeffs
RectSphereBivariateSpline.get_coeffs()

Return spline coefficients.

scipy.interpolate.RectSphereBivariateSpline.get_knots
RectSphereBivariateSpline.get_knots()

Return a tuple (tx,ty) where tx,ty contain knots positions of the spline with respect to x-, y-variable, re-
spectively. The position of interior and additional knots are given as t[k+1:-k-1] and t[:k+1]=b, t[-k-1:]=e,
respectively.

scipy.interpolate.RectSphereBivariateSpline.get_residual
RectSphereBivariateSpline.get_residual()

Return weighted sum of squared residuals of the spline approximation: sum ((w[i]*(z[i]-
s(x[i],y[i])))**2,axis=0)

For unstructured data:

BivariateSpline Base class for bivariate splines.
SmoothBivariateSpline(x, y, z[, w, bbox, …]) Smooth bivariate spline approximation.
SmoothSphereBivariateSpline(theta, phi, r[,
…])

Smooth bivariate spline approximation in spherical coor-
dinates.

LSQBivariateSpline(x, y, z, tx, ty[, w, …]) Weighted least-squares bivariate spline approximation.
LSQSphereBivariateSpline(theta, phi, r, tt, tp) Weighted least-squares bivariate spline approximation in

spherical coordinates.

scipy.interpolate.BivariateSpline

class scipy.interpolate.BivariateSpline
Base class for bivariate splines.
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This describes a spline s(x, y) of degrees kx and ky on the rectangle [xb, xe] * [yb, ye] calculated
from a given set of data points (x, y, z).
This class is meant to be subclassed, not instantiated directly. To construct these splines, call either
SmoothBivariateSpline or LSQBivariateSpline.
See also:

UnivariateSpline

a similar class for univariate spline interpolation
SmoothBivariateSpline

to create a BivariateSpline through the given points
LSQBivariateSpline

to create a BivariateSpline using weighted least-squares fitting

RectSphereBivariateSpline, SmoothSphereBivariateSpline,
LSQSphereBivariateSpline

bisplrep

older wrapping of FITPACK
bisplev

older wrapping of FITPACK

Methods

__call__(x, y[, dx, dy, grid]) Evaluate the spline or its derivatives at given positions.
ev(xi, yi[, dx, dy]) Evaluate the spline at points
get_coeffs() Return spline coefficients.
get_knots() Return a tuple (tx,ty) where tx,ty contain knots posi-

tions of the spline with respect to x-, y-variable, re-
spectively.

get_residual() Return weighted sum of squared residuals of
the spline approximation: sum ((w[i]*(z[i]-
s(x[i],y[i])))**2,axis=0)

integral(xa, xb, ya, yb) Evaluate the integral of the spline over area [xa,xb] x
[ya,yb].

scipy.interpolate.BivariateSpline.__call__
BivariateSpline.__call__(x, y, dx=0, dy=0, grid=True)

Evaluate the spline or its derivatives at given positions.
Parameters

x, y [array_like] Input coordinates.
If grid is False, evaluate the spline at points (x[i], y[i]), i=0, ...,
len(x)-1. Standard Numpy broadcasting is obeyed.
If grid is True: evaluate spline at the grid points defined by the coordinate arrays x, y.
The arrays must be sorted to increasing order.
Note that the axis ordering is inverted relative to the output of meshgrid.

dx [int] Order of x-derivative
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New in version 0.14.0.
dy [int] Order of y-derivative

New in version 0.14.0.
grid [bool] Whether to evaluate the results on a grid spanned by the input arrays, or at points

specified by the input arrays.
New in version 0.14.0.

scipy.interpolate.BivariateSpline.ev
BivariateSpline.ev(xi, yi, dx=0, dy=0)

Evaluate the spline at points
Returns the interpolated value at (xi[i], yi[i]), i=0,...,len(xi)-1.

Parameters

xi, yi [array_like] Input coordinates. Standard Numpy broadcasting is obeyed.
dx [int, optional] Order of x-derivative

New in version 0.14.0.
dy [int, optional] Order of y-derivative

New in version 0.14.0.

scipy.interpolate.BivariateSpline.get_coeffs
BivariateSpline.get_coeffs()

Return spline coefficients.

scipy.interpolate.BivariateSpline.get_knots
BivariateSpline.get_knots()

Return a tuple (tx,ty) where tx,ty contain knots positions of the spline with respect to x-, y-variable, re-
spectively. The position of interior and additional knots are given as t[k+1:-k-1] and t[:k+1]=b, t[-k-1:]=e,
respectively.

scipy.interpolate.BivariateSpline.get_residual
BivariateSpline.get_residual()

Return weighted sum of squared residuals of the spline approximation: sum ((w[i]*(z[i]-
s(x[i],y[i])))**2,axis=0)

scipy.interpolate.BivariateSpline.integral
BivariateSpline.integral(xa, xb, ya, yb)

Evaluate the integral of the spline over area [xa,xb] x [ya,yb].
Parameters

xa, xb [float] The end-points of the x integration interval.
ya, yb [float] The end-points of the y integration interval.

Returns

integ [float] The value of the resulting integral.

scipy.interpolate.SmoothBivariateSpline

class scipy.interpolate.SmoothBivariateSpline(x, y, z, w=None, bbox=[None, None, None,
None], kx=3, ky=3, s=None, eps=None)

Smooth bivariate spline approximation.
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Parameters

x, y, z [array_like] 1-D sequences of data points (order is not important).
w [array_like, optional] Positive 1-D sequence of weights, of same length as x, y and z.
bbox [array_like, optional] Sequence of length 4 specifying the boundary of the rectangular ap-

proximation domain. By default, bbox=[min(x,tx),max(x,tx), min(y,ty),
max(y,ty)].

kx, ky [ints, optional] Degrees of the bivariate spline. Default is 3.
s [float, optional] Positive smoothing factor defined for estimation condition:

sum((w[i]*(z[i]-s(x[i], y[i])))**2, axis=0) <= s Default
s=len(w) which should be a good value if 1/w[i] is an estimate of the standard
deviation of z[i].

eps [float, optional] A threshold for determining the effective rank of an over-determined linear
system of equations. eps should have a value between 0 and 1, the default is 1e-16.

See also:

bisplrep

an older wrapping of FITPACK
bisplev

an older wrapping of FITPACK
UnivariateSpline

a similar class for univariate spline interpolation
LSQUnivariateSpline

to create a BivariateSpline using weighted

Notes

The length of x, y and z should be at least (kx+1) * (ky+1).

Methods

__call__(x, y[, dx, dy, grid]) Evaluate the spline or its derivatives at given positions.
ev(xi, yi[, dx, dy]) Evaluate the spline at points
get_coeffs() Return spline coefficients.
get_knots() Return a tuple (tx,ty) where tx,ty contain knots posi-

tions of the spline with respect to x-, y-variable, re-
spectively.

get_residual() Return weighted sum of squared residuals of
the spline approximation: sum ((w[i]*(z[i]-
s(x[i],y[i])))**2,axis=0)

integral(xa, xb, ya, yb) Evaluate the integral of the spline over area [xa,xb] x
[ya,yb].

scipy.interpolate.SmoothBivariateSpline.__call__
SmoothBivariateSpline.__call__(x, y, dx=0, dy=0, grid=True)

Evaluate the spline or its derivatives at given positions.
Parameters
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x, y [array_like] Input coordinates.
If grid is False, evaluate the spline at points (x[i], y[i]), i=0, ...,
len(x)-1. Standard Numpy broadcasting is obeyed.
If grid is True: evaluate spline at the grid points defined by the coordinate arrays x, y.
The arrays must be sorted to increasing order.
Note that the axis ordering is inverted relative to the output of meshgrid.

dx [int] Order of x-derivative
New in version 0.14.0.

dy [int] Order of y-derivative
New in version 0.14.0.

grid [bool] Whether to evaluate the results on a grid spanned by the input arrays, or at points
specified by the input arrays.
New in version 0.14.0.

scipy.interpolate.SmoothBivariateSpline.ev
SmoothBivariateSpline.ev(xi, yi, dx=0, dy=0)

Evaluate the spline at points
Returns the interpolated value at (xi[i], yi[i]), i=0,...,len(xi)-1.

Parameters

xi, yi [array_like] Input coordinates. Standard Numpy broadcasting is obeyed.
dx [int, optional] Order of x-derivative

New in version 0.14.0.
dy [int, optional] Order of y-derivative

New in version 0.14.0.

scipy.interpolate.SmoothBivariateSpline.get_coeffs
SmoothBivariateSpline.get_coeffs()

Return spline coefficients.

scipy.interpolate.SmoothBivariateSpline.get_knots
SmoothBivariateSpline.get_knots()

Return a tuple (tx,ty) where tx,ty contain knots positions of the spline with respect to x-, y-variable, re-
spectively. The position of interior and additional knots are given as t[k+1:-k-1] and t[:k+1]=b, t[-k-1:]=e,
respectively.

scipy.interpolate.SmoothBivariateSpline.get_residual
SmoothBivariateSpline.get_residual()

Return weighted sum of squared residuals of the spline approximation: sum ((w[i]*(z[i]-
s(x[i],y[i])))**2,axis=0)

scipy.interpolate.SmoothBivariateSpline.integral
SmoothBivariateSpline.integral(xa, xb, ya, yb)

Evaluate the integral of the spline over area [xa,xb] x [ya,yb].
Parameters

xa, xb [float] The end-points of the x integration interval.
ya, yb [float] The end-points of the y integration interval.

Returns

integ [float] The value of the resulting integral.
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scipy.interpolate.SmoothSphereBivariateSpline

class scipy.interpolate.SmoothSphereBivariateSpline(theta, phi, r, w=None, s=0.0,
eps=1e-16)

Smooth bivariate spline approximation in spherical coordinates.
New in version 0.11.0.

Parameters

theta, phi, r
[array_like] 1-D sequences of data points (order is not important). Coordinatesmust be given
in radians. Theta must lie within the interval (0, pi), and phi must lie within the interval (0,
2pi).

w [array_like, optional] Positive 1-D sequence of weights.
s [float, optional] Positive smoothing factor defined for estimation condition:

sum((w(i)*(r(i) - s(theta(i), phi(i))))**2, axis=0) <= s
Default s=len(w) which should be a good value if 1/w[i] is an estimate of the standard
deviation of r[i].

eps [float, optional] A threshold for determining the effective rank of an over-determined linear
system of equations. eps should have a value between 0 and 1, the default is 1e-16.

Notes

For more information, see the FITPACK site about this function.

Examples

Suppose we have global data on a coarse grid (the input data does not have to be on a grid):

>>> theta = np.linspace(0., np.pi, 7)
>>> phi = np.linspace(0., 2*np.pi, 9)
>>> data = np.empty((theta.shape[0], phi.shape[0]))
>>> data[:,0], data[0,:], data[-1,:] = 0., 0., 0.
>>> data[1:-1,1], data[1:-1,-1] = 1., 1.
>>> data[1,1:-1], data[-2,1:-1] = 1., 1.
>>> data[2:-2,2], data[2:-2,-2] = 2., 2.
>>> data[2,2:-2], data[-3,2:-2] = 2., 2.
>>> data[3,3:-2] = 3.
>>> data = np.roll(data, 4, 1)

We need to set up the interpolator object

>>> lats, lons = np.meshgrid(theta, phi)
>>> from scipy.interpolate import SmoothSphereBivariateSpline
>>> lut = SmoothSphereBivariateSpline(lats.ravel(), lons.ravel(),
... data.T.ravel(), s=3.5)

As a first test, we’ll see what the algorithm returns when run on the input coordinates

>>> data_orig = lut(theta, phi)

Finally we interpolate the data to a finer grid
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>>> fine_lats = np.linspace(0., np.pi, 70)
>>> fine_lons = np.linspace(0., 2 * np.pi, 90)

>>> data_smth = lut(fine_lats, fine_lons)

>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> ax1 = fig.add_subplot(131)
>>> ax1.imshow(data, interpolation='nearest')
>>> ax2 = fig.add_subplot(132)
>>> ax2.imshow(data_orig, interpolation='nearest')
>>> ax3 = fig.add_subplot(133)
>>> ax3.imshow(data_smth, interpolation='nearest')
>>> plt.show()
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Methods

__call__(theta, phi[, dtheta, dphi, grid]) Evaluate the spline or its derivatives at given positions.
ev(theta, phi[, dtheta, dphi]) Evaluate the spline at points
get_coeffs() Return spline coefficients.
get_knots() Return a tuple (tx,ty) where tx,ty contain knots posi-

tions of the spline with respect to x-, y-variable, re-
spectively.

get_residual() Return weighted sum of squared residuals of
the spline approximation: sum ((w[i]*(z[i]-
s(x[i],y[i])))**2,axis=0)

scipy.interpolate.SmoothSphereBivariateSpline.__call__
SmoothSphereBivariateSpline.__call__(theta, phi, dtheta=0, dphi=0, grid=True)

Evaluate the spline or its derivatives at given positions.
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Parameters

theta, phi [array_like] Input coordinates.
If grid is False, evaluate the spline at points (theta[i], phi[i]), i=0, ...
, len(x)-1. Standard Numpy broadcasting is obeyed.
If grid is True: evaluate spline at the grid points defined by the coordinate arrays theta,
phi. The arrays must be sorted to increasing order.

dtheta [int, optional] Order of theta-derivative
New in version 0.14.0.

dphi [int] Order of phi-derivative
New in version 0.14.0.

grid [bool] Whether to evaluate the results on a grid spanned by the input arrays, or at points
specified by the input arrays.
New in version 0.14.0.

scipy.interpolate.SmoothSphereBivariateSpline.ev
SmoothSphereBivariateSpline.ev(theta, phi, dtheta=0, dphi=0)

Evaluate the spline at points
Returns the interpolated value at (theta[i], phi[i]), i=0,...,len(theta)-1.

Parameters

theta, phi [array_like] Input coordinates. Standard Numpy broadcasting is obeyed.
dtheta [int, optional] Order of theta-derivative

New in version 0.14.0.
dphi [int, optional] Order of phi-derivative

New in version 0.14.0.

scipy.interpolate.SmoothSphereBivariateSpline.get_coeffs
SmoothSphereBivariateSpline.get_coeffs()

Return spline coefficients.

scipy.interpolate.SmoothSphereBivariateSpline.get_knots
SmoothSphereBivariateSpline.get_knots()

Return a tuple (tx,ty) where tx,ty contain knots positions of the spline with respect to x-, y-variable, re-
spectively. The position of interior and additional knots are given as t[k+1:-k-1] and t[:k+1]=b, t[-k-1:]=e,
respectively.

scipy.interpolate.SmoothSphereBivariateSpline.get_residual
SmoothSphereBivariateSpline.get_residual()

Return weighted sum of squared residuals of the spline approximation: sum ((w[i]*(z[i]-
s(x[i],y[i])))**2,axis=0)

scipy.interpolate.LSQBivariateSpline

class scipy.interpolate.LSQBivariateSpline(x, y, z, tx, ty, w=None, bbox=[None, None,
None, None], kx=3, ky=3, eps=None)

Weighted least-squares bivariate spline approximation.
Parameters

x, y, z [array_like] 1-D sequences of data points (order is not important).
tx, ty [array_like] Strictly ordered 1-D sequences of knots coordinates.
w [array_like, optional] Positive 1-D array of weights, of the same length as x, y and z.
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bbox [(4,) array_like, optional] Sequence of length 4 specifying the boundary of the rectangu-
lar approximation domain. By default, bbox=[min(x,tx),max(x,tx), min(y,
ty),max(y,ty)].

kx, ky [ints, optional] Degrees of the bivariate spline. Default is 3.
eps [float, optional] A threshold for determining the effective rank of an over-determined linear

system of equations. eps should have a value between 0 and 1, the default is 1e-16.
See also:

bisplrep

an older wrapping of FITPACK
bisplev

an older wrapping of FITPACK
UnivariateSpline

a similar class for univariate spline interpolation
SmoothBivariateSpline

create a smoothing BivariateSpline

Notes

The length of x, y and z should be at least (kx+1) * (ky+1).

Methods

__call__(x, y[, dx, dy, grid]) Evaluate the spline or its derivatives at given positions.
ev(xi, yi[, dx, dy]) Evaluate the spline at points
get_coeffs() Return spline coefficients.
get_knots() Return a tuple (tx,ty) where tx,ty contain knots posi-

tions of the spline with respect to x-, y-variable, re-
spectively.

get_residual() Return weighted sum of squared residuals of
the spline approximation: sum ((w[i]*(z[i]-
s(x[i],y[i])))**2,axis=0)

integral(xa, xb, ya, yb) Evaluate the integral of the spline over area [xa,xb] x
[ya,yb].

scipy.interpolate.LSQBivariateSpline.__call__
LSQBivariateSpline.__call__(x, y, dx=0, dy=0, grid=True)

Evaluate the spline or its derivatives at given positions.
Parameters

x, y [array_like] Input coordinates.
If grid is False, evaluate the spline at points (x[i], y[i]), i=0, ...,
len(x)-1. Standard Numpy broadcasting is obeyed.
If grid is True: evaluate spline at the grid points defined by the coordinate arrays x, y.
The arrays must be sorted to increasing order.
Note that the axis ordering is inverted relative to the output of meshgrid.
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dx [int] Order of x-derivative
New in version 0.14.0.

dy [int] Order of y-derivative
New in version 0.14.0.

grid [bool] Whether to evaluate the results on a grid spanned by the input arrays, or at points
specified by the input arrays.
New in version 0.14.0.

scipy.interpolate.LSQBivariateSpline.ev
LSQBivariateSpline.ev(xi, yi, dx=0, dy=0)

Evaluate the spline at points
Returns the interpolated value at (xi[i], yi[i]), i=0,...,len(xi)-1.

Parameters

xi, yi [array_like] Input coordinates. Standard Numpy broadcasting is obeyed.
dx [int, optional] Order of x-derivative

New in version 0.14.0.
dy [int, optional] Order of y-derivative

New in version 0.14.0.

scipy.interpolate.LSQBivariateSpline.get_coeffs
LSQBivariateSpline.get_coeffs()

Return spline coefficients.

scipy.interpolate.LSQBivariateSpline.get_knots
LSQBivariateSpline.get_knots()

Return a tuple (tx,ty) where tx,ty contain knots positions of the spline with respect to x-, y-variable, re-
spectively. The position of interior and additional knots are given as t[k+1:-k-1] and t[:k+1]=b, t[-k-1:]=e,
respectively.

scipy.interpolate.LSQBivariateSpline.get_residual
LSQBivariateSpline.get_residual()

Return weighted sum of squared residuals of the spline approximation: sum ((w[i]*(z[i]-
s(x[i],y[i])))**2,axis=0)

scipy.interpolate.LSQBivariateSpline.integral
LSQBivariateSpline.integral(xa, xb, ya, yb)

Evaluate the integral of the spline over area [xa,xb] x [ya,yb].
Parameters

xa, xb [float] The end-points of the x integration interval.
ya, yb [float] The end-points of the y integration interval.

Returns

integ [float] The value of the resulting integral.

scipy.interpolate.LSQSphereBivariateSpline

class scipy.interpolate.LSQSphereBivariateSpline(theta, phi, r, tt, tp, w=None, eps=1e-
16)

Weighted least-squares bivariate spline approximation in spherical coordinates.
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Determines a smooth bicubic spline according to a given set of knots in the theta and phi directions.
New in version 0.11.0.

Parameters

theta, phi, r
[array_like] 1-D sequences of data points (order is not important). Coordinatesmust be given
in radians. Theta must lie within the interval (0, pi), and phi must lie within the interval (0,
2pi).

tt, tp [array_like] Strictly ordered 1-D sequences of knots coordinates. Coordinates must satisfy
0 < tt[i] < pi, 0 < tp[i] < 2*pi.

w [array_like, optional] Positive 1-D sequence of weights, of the same length as theta, phi and
r.

eps [float, optional] A threshold for determining the effective rank of an over-determined linear
system of equations. eps should have a value between 0 and 1, the default is 1e-16.

Notes

For more information, see the FITPACK site about this function.

Examples

Suppose we have global data on a coarse grid (the input data does not have to be on a grid):

>>> theta = np.linspace(0., np.pi, 7)
>>> phi = np.linspace(0., 2*np.pi, 9)
>>> data = np.empty((theta.shape[0], phi.shape[0]))
>>> data[:,0], data[0,:], data[-1,:] = 0., 0., 0.
>>> data[1:-1,1], data[1:-1,-1] = 1., 1.
>>> data[1,1:-1], data[-2,1:-1] = 1., 1.
>>> data[2:-2,2], data[2:-2,-2] = 2., 2.
>>> data[2,2:-2], data[-3,2:-2] = 2., 2.
>>> data[3,3:-2] = 3.
>>> data = np.roll(data, 4, 1)

We need to set up the interpolator object. Here, we must also specify the coordinates of the knots to use.

>>> lats, lons = np.meshgrid(theta, phi)
>>> knotst, knotsp = theta.copy(), phi.copy()
>>> knotst[0] += .0001
>>> knotst[-1] -= .0001
>>> knotsp[0] += .0001
>>> knotsp[-1] -= .0001
>>> from scipy.interpolate import LSQSphereBivariateSpline
>>> lut = LSQSphereBivariateSpline(lats.ravel(), lons.ravel(),
... data.T.ravel(), knotst, knotsp)

As a first test, we’ll see what the algorithm returns when run on the input coordinates

>>> data_orig = lut(theta, phi)

Finally we interpolate the data to a finer grid
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>>> fine_lats = np.linspace(0., np.pi, 70)
>>> fine_lons = np.linspace(0., 2*np.pi, 90)

>>> data_lsq = lut(fine_lats, fine_lons)

>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> ax1 = fig.add_subplot(131)
>>> ax1.imshow(data, interpolation='nearest')
>>> ax2 = fig.add_subplot(132)
>>> ax2.imshow(data_orig, interpolation='nearest')
>>> ax3 = fig.add_subplot(133)
>>> ax3.imshow(data_lsq, interpolation='nearest')
>>> plt.show()
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Methods

__call__(theta, phi[, dtheta, dphi, grid]) Evaluate the spline or its derivatives at given positions.
ev(theta, phi[, dtheta, dphi]) Evaluate the spline at points
get_coeffs() Return spline coefficients.
get_knots() Return a tuple (tx,ty) where tx,ty contain knots posi-

tions of the spline with respect to x-, y-variable, re-
spectively.

get_residual() Return weighted sum of squared residuals of
the spline approximation: sum ((w[i]*(z[i]-
s(x[i],y[i])))**2,axis=0)

scipy.interpolate.LSQSphereBivariateSpline.__call__
LSQSphereBivariateSpline.__call__(theta, phi, dtheta=0, dphi=0, grid=True)

Evaluate the spline or its derivatives at given positions.

6.7. Interpolation (scipy.interpolate) 733



SciPy Reference Guide, Release 1.3.1

Parameters

theta, phi [array_like] Input coordinates.
If grid is False, evaluate the spline at points (theta[i], phi[i]), i=0, ...
, len(x)-1. Standard Numpy broadcasting is obeyed.
If grid is True: evaluate spline at the grid points defined by the coordinate arrays theta,
phi. The arrays must be sorted to increasing order.

dtheta [int, optional] Order of theta-derivative
New in version 0.14.0.

dphi [int] Order of phi-derivative
New in version 0.14.0.

grid [bool] Whether to evaluate the results on a grid spanned by the input arrays, or at points
specified by the input arrays.
New in version 0.14.0.

scipy.interpolate.LSQSphereBivariateSpline.ev
LSQSphereBivariateSpline.ev(theta, phi, dtheta=0, dphi=0)

Evaluate the spline at points
Returns the interpolated value at (theta[i], phi[i]), i=0,...,len(theta)-1.

Parameters

theta, phi [array_like] Input coordinates. Standard Numpy broadcasting is obeyed.
dtheta [int, optional] Order of theta-derivative

New in version 0.14.0.
dphi [int, optional] Order of phi-derivative

New in version 0.14.0.

scipy.interpolate.LSQSphereBivariateSpline.get_coeffs
LSQSphereBivariateSpline.get_coeffs()

Return spline coefficients.

scipy.interpolate.LSQSphereBivariateSpline.get_knots
LSQSphereBivariateSpline.get_knots()

Return a tuple (tx,ty) where tx,ty contain knots positions of the spline with respect to x-, y-variable, re-
spectively. The position of interior and additional knots are given as t[k+1:-k-1] and t[:k+1]=b, t[-k-1:]=e,
respectively.

scipy.interpolate.LSQSphereBivariateSpline.get_residual
LSQSphereBivariateSpline.get_residual()

Return weighted sum of squared residuals of the spline approximation: sum ((w[i]*(z[i]-
s(x[i],y[i])))**2,axis=0)

Low-level interface to FITPACK functions:

bisplrep(x, y, z[, w, xb, xe, yb, ye, kx, …]) Find a bivariate B-spline representation of a surface.
bisplev(x, y, tck[, dx, dy]) Evaluate a bivariate B-spline and its derivatives.
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scipy.interpolate.bisplrep

scipy.interpolate.bisplrep(x, y, z, w=None, xb=None, xe=None, yb=None, ye=None, kx=3, ky=3,
task=0, s=None, eps=1e-16, tx=None, ty=None, full_output=0, nx-
est=None, nyest=None, quiet=1)

Find a bivariate B-spline representation of a surface.
Given a set of data points (x[i], y[i], z[i]) representing a surface z=f(x,y), compute a B-spline representation of the
surface. Based on the routine SURFIT from FITPACK.

Parameters

x, y, z [ndarray] Rank-1 arrays of data points.
w [ndarray, optional] Rank-1 array of weights. By default w=np.ones(len(x)).
xb, xe [float, optional] End points of approximation interval in x. By default xb = x.min(),

xe=x.max().
yb, ye [float, optional] End points of approximation interval in y. By default yb=y.min(), ye

= y.max().
kx, ky [int, optional] The degrees of the spline (1 <= kx, ky <= 5). Third order (kx=ky=3) is

recommended.
task [int, optional] If task=0, find knots in x and y and coefficients for a given smoothing factor,

s. If task=1, find knots and coefficients for another value of the smoothing factor, s. bisplrep
must have been previously called with task=0 or task=1. If task=-1, find coefficients for a
given set of knots tx, ty.

s [float, optional] A non-negative smoothing factor. If weights correspond to the inverse of
the standard-deviation of the errors in z, then a good s-value should be found in the range
(m-sqrt(2*m),m+sqrt(2*m)) where m=len(x).

eps [float, optional] A threshold for determining the effective rank of an over-determined linear
system of equations (0 < eps < 1). eps is not likely to need changing.

tx, ty [ndarray, optional] Rank-1 arrays of the knots of the spline for task=-1
full_output

[int, optional] Non-zero to return optional outputs.
nxest, nyest

[int, optional] Over-estimates of the total number of knots. If None then nxest =
max(kx+sqrt(m/2),2*kx+3), nyest = max(ky+sqrt(m/2),2*ky+3).

quiet [int, optional] Non-zero to suppress printing of messages. This parameter is deprecated; use
standard Python warning filters instead.

Returns

tck [array_like] A list [tx, ty, c, kx, ky] containing the knots (tx, ty) and coefficients (c) of the
bivariate B-spline representation of the surface along with the degree of the spline.

fp [ndarray] The weighted sum of squared residuals of the spline approximation.
ier [int] An integer flag about splrep success. Success is indicated if ier<=0. If ier in [1,2,3] an

error occurred but was not raised. Otherwise an error is raised.
msg [str] A message corresponding to the integer flag, ier.

See also:
splprep, splrep, splint, sproot, splev, UnivariateSpline, BivariateSpline

Notes

See bisplev to evaluate the value of the B-spline given its tck representation.
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References

[1], [2], [3]

scipy.interpolate.bisplev

scipy.interpolate.bisplev(x, y, tck, dx=0, dy=0)
Evaluate a bivariate B-spline and its derivatives.
Return a rank-2 array of spline function values (or spline derivative values) at points given by the cross-product of
the rank-1 arrays x and y. In special cases, return an array or just a float if either x or y or both are floats. Based
on BISPEV from FITPACK.

Parameters

x, y [ndarray] Rank-1 arrays specifying the domain over which to evaluate the spline or its deriva-
tive.

tck [tuple] A sequence of length 5 returned by bisplrep containing the knot locations, the
coefficients, and the degree of the spline: [tx, ty, c, kx, ky].

dx, dy [int, optional] The orders of the partial derivatives in x and y respectively.
Returns

vals [ndarray] The B-spline or its derivative evaluated over the set formed by the cross-product
of x and y.

See also:
splprep, splrep, splint, sproot, splev, UnivariateSpline, BivariateSpline

Notes

See bisplrep to generate the tck representation.

References

[1], [2], [3]

6.7.5 Additional tools

lagrange(x, w) Return a Lagrange interpolating polynomial.
approximate_taylor_polynomial(f, x,
degree, …)

Estimate the Taylor polynomial of f at x by polynomial
fitting.

pade(an, m[, n]) Return Pade approximation to a polynomial as the ratio
of two polynomials.

scipy.interpolate.lagrange

scipy.interpolate.lagrange(x, w)
Return a Lagrange interpolating polynomial.
Given two 1-D arrays x and w, returns the Lagrange interpolating polynomial through the points (x, w).
Warning: This implementation is numerically unstable. Do not expect to be able to use more than about 20 points
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even if they are chosen optimally.
Parameters

x [array_like] x represents the x-coordinates of a set of datapoints.
w [array_like] w represents the y-coordinates of a set of datapoints, i.e. f(x).

Returns

lagrange [numpy.poly1d instance] The Lagrange interpolating polynomial.

Examples

Interpolate f(x) = x3 by 3 points.

>>> from scipy.interpolate import lagrange
>>> x = np.array([0, 1, 2])
>>> y = x**3
>>> poly = lagrange(x, y)

Since there are only 3 points, Lagrange polynomial has degree 2. Explicitly, it is given by

L(x) = 1× x(x− 2)

−1
+ 8× x(x− 1)

2

= x(−2 + 3x)

>>> from numpy.polynomial.polynomial import Polynomial
>>> Polynomial(poly).coef
array([ 3., -2., 0.])

scipy.interpolate.approximate_taylor_polynomial

scipy.interpolate.approximate_taylor_polynomial(f, x, degree, scale, order=None)
Estimate the Taylor polynomial of f at x by polynomial fitting.

Parameters

f [callable] The function whose Taylor polynomial is sought. Should accept a vector of x
values.

x [scalar] The point at which the polynomial is to be evaluated.
degree [int] The degree of the Taylor polynomial
scale [scalar] The width of the interval to use to evaluate the Taylor polynomial. Function values

spread over a range this wide are used to fit the polynomial. Must be chosen carefully.
order [int or None, optional] The order of the polynomial to be used in the fitting; f will be evalu-

ated order+1 times. If None, use degree.
Returns

p [poly1d instance] The Taylor polynomial (translated to the origin, so that for example
p(0)=f(x)).

6.7. Interpolation (scipy.interpolate) 737

https://docs.scipy.org/doc/numpy/reference/generated/numpy.poly1d.html#numpy.poly1d


SciPy Reference Guide, Release 1.3.1

Notes

The appropriate choice of “scale” is a trade-off; too large and the function differs from its Taylor polynomial too
much to get a good answer, too small and round-off errors overwhelm the higher-order terms. The algorithm used
becomes numerically unstable around order 30 even under ideal circumstances.
Choosing order somewhat larger than degree may improve the higher-order terms.

scipy.interpolate.pade

scipy.interpolate.pade(an, m, n=None)
Return Pade approximation to a polynomial as the ratio of two polynomials.

Parameters

an [(N,) array_like] Taylor series coefficients.
m [int] The order of the returned approximating polynomial q.
n [int, optional] The order of the returned approximating polynomial p. By default, the order

is len(an)-m.
Returns

p, q [Polynomial class] The Pade approximation of the polynomial defined by an is p(x)/q(x).

Examples

>>> from scipy.interpolate import pade
>>> e_exp = [1.0, 1.0, 1.0/2.0, 1.0/6.0, 1.0/24.0, 1.0/120.0]
>>> p, q = pade(e_exp, 2)

>>> e_exp.reverse()
>>> e_poly = np.poly1d(e_exp)

Compare e_poly(x) and the Pade approximation p(x)/q(x)

>>> e_poly(1)
2.7166666666666668

>>> p(1)/q(1)
2.7179487179487181

See also:
scipy.ndimage.map_coordinates, scipy.ndimage.spline_filter, scipy.signal.
resample, scipy.signal.bspline, scipy.signal.gauss_spline, scipy.signal.qspline1d,
scipy.signal.cspline1d, scipy.signal.qspline1d_eval, scipy.signal.cspline1d_eval,
scipy.signal.qspline2d, scipy.signal.cspline2d.
pchip is an alias of PchipInterpolator for backward compatibility (should not be used in new code).

6.8 Input and output (scipy.io)

SciPy has many modules, classes, and functions available to read data from and write data to a variety of file formats.
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See also:
NumPy IO routines

6.8.1 MATLAB® files

loadmat(file_name[, mdict, appendmat]) Load MATLAB file.
savemat(file_name, mdict[, appendmat, …]) Save a dictionary of names and arrays into a MATLAB-

style .mat file.
whosmat(file_name[, appendmat]) List variables inside a MATLAB file.

scipy.io.loadmat

scipy.io.loadmat(file_name, mdict=None, appendmat=True, **kwargs)
Load MATLAB file.

Parameters

file_name [str] Name of the mat file (do not need .mat extension if appendmat==True). Can also pass
open file-like object.

mdict [dict, optional] Dictionary in which to insert matfile variables.
appendmat

[bool, optional] True to append the .mat extension to the end of the given filename, if not
already present.

byte_order
[str or None, optional] None by default, implying byte order guessed frommat file. Otherwise
can be one of (‘native’, ‘=’, ‘little’, ‘<’, ‘BIG’, ‘>’).

mat_dtype
[bool, optional] If True, return arrays in same dtype as would be loaded into MATLAB
(instead of the dtype with which they are saved).

squeeze_me
[bool, optional] Whether to squeeze unit matrix dimensions or not.

chars_as_strings
[bool, optional] Whether to convert char arrays to string arrays.

matlab_compatible
[bool, optional] Returns matrices as would be loaded by MATLAB (implies
squeeze_me=False, chars_as_strings=False, mat_dtype=True, struct_as_record=True).

struct_as_record
[bool, optional] Whether to load MATLAB structs as numpy record arrays, or as old-style
numpy arrays with dtype=object. Setting this flag to False replicates the behavior of scipy
version 0.7.x (returning numpy object arrays). The default setting is True, because it allows
easier round-trip load and save of MATLAB files.

verify_compressed_data_integrity
[bool, optional] Whether the length of compressed sequences in the MATLAB file should
be checked, to ensure that they are not longer than we expect. It is advisable to enable this
(the default) because overlong compressed sequences in MATLAB files generally indicate
that the files have experienced some sort of corruption.

variable_names
[None or sequence] If None (the default) - read all variables in file. Otherwise vari-
able_names should be a sequence of strings, giving names of the MATLAB variables to read
from the file. The reader will skip any variable with a name not in this sequence, possibly
saving some read processing.

Returns
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mat_dict [dict] dictionary with variable names as keys, and loaded matrices as values.

Notes

v4 (Level 1.0), v6 and v7 to 7.2 matfiles are supported.
You will need an HDF5 python library to read MATLAB 7.3 format mat files. Because scipy does not supply one,
we do not implement the HDF5 / 7.3 interface here.

Examples

>>> from os.path import dirname, join as pjoin
>>> import scipy.io as sio

Get the filename for an example .mat file from the tests/data directory.

>>> data_dir = pjoin(dirname(sio.__file__), 'matlab', 'tests', 'data')
>>> mat_fname = pjoin(data_dir, 'testdouble_7.4_GLNX86.mat')

Load the .mat file contents.

>>> mat_contents = sio.loadmat(mat_fname)

The result is a dictionary, one key/value pair for each variable:

>>> sorted(mat_contents.keys())
['__globals__', '__header__', '__version__', 'testdouble']
>>> mat_contents['testdouble']
array([[0. , 0.78539816, 1.57079633, 2.35619449, 3.14159265,

3.92699082, 4.71238898, 5.49778714, 6.28318531]])

By default SciPy reads MATLAB structs as structured NumPy arrays where the dtype fields are of type object and
the names correspond to the MATLAB struct field names. This can be disabled by setting the optional argument
struct_as_record=False.
Get the filename for an example .mat file that contains a MATLAB struct called teststruct and load the contents.

>>> matstruct_fname = pjoin(data_dir, 'teststruct_7.4_GLNX86.mat')
>>> matstruct_contents = sio.loadmat(matstruct_fname)
>>> teststruct = matstruct_contents['teststruct']
>>> teststruct.dtype
dtype([('stringfield', 'O'), ('doublefield', 'O'), ('complexfield', 'O')])

The size of the structured array is the size of theMATLAB struct, not the number of elements in any particular field.
The shape defaults to 2-D unless the optional argument squeeze_me=True, in which case all length 1 dimensions
are removed.

>>> teststruct.size
1
>>> teststruct.shape
(1, 1)

Get the ‘stringfield’ of the first element in the MATLAB struct.
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>>> teststruct[0, 0]['stringfield']
array(['Rats live on no evil star.'],

dtype='<U26')

Get the first element of the ‘doublefield’.

>>> teststruct['doublefield'][0, 0]
array([[ 1.41421356, 2.71828183, 3.14159265]])

Load the MATLAB struct, squeezing out length 1 dimensions, and get the item from the ‘complexfield’.

>>> matstruct_squeezed = sio.loadmat(matstruct_fname, squeeze_me=True)
>>> matstruct_squeezed['teststruct'].shape
()
>>> matstruct_squeezed['teststruct']['complexfield'].shape
()
>>> matstruct_squeezed['teststruct']['complexfield'].item()
array([ 1.41421356+1.41421356j, 2.71828183+2.71828183j,

3.14159265+3.14159265j])

scipy.io.savemat

scipy.io.savemat(file_name, mdict, appendmat=True, format=’5’, long_field_names=False,
do_compression=False, oned_as=’row’)

Save a dictionary of names and arrays into a MATLAB-style .mat file.
This saves the array objects in the given dictionary to a MATLAB- style .mat file.

Parameters

file_name [str or file-like object] Name of the .mat file (.mat extension not needed if appendmat ==
True). Can also pass open file_like object.

mdict [dict] Dictionary from which to save matfile variables.
appendmat

[bool, optional] True (the default) to append the .mat extension to the end of the given file-
name, if not already present.

format [{‘5’, ‘4’}, string, optional] ‘5’ (the default) for MATLAB 5 and up (to 7.2), ‘4’ for MATLAB
4 .mat files.

long_field_names
[bool, optional] False (the default) - maximumfield name length in a structure is 31 characters
which is the documented maximum length. True - maximum field name length in a structure
is 63 characters which works for MATLAB 7.6+.

do_compression
[bool, optional] Whether or not to compress matrices on write. Default is False.

oned_as [{‘row’, ‘column’}, optional] If ‘column’, write 1-D numpy arrays as column vectors. If ‘row’,
write 1-D numpy arrays as row vectors.

scipy.io.whosmat

scipy.io.whosmat(file_name, appendmat=True, **kwargs)
List variables inside a MATLAB file.

Parameters
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file_name [str] Name of the mat file (do not need .mat extension if appendmat==True) Can also pass
open file-like object.

appendmat
[bool, optional] True to append the .mat extension to the end of the given filename, if not
already present.

byte_order
[str or None, optional] None by default, implying byte order guessed frommat file. Otherwise
can be one of (‘native’, ‘=’, ‘little’, ‘<’, ‘BIG’, ‘>’).

mat_dtype
[bool, optional] If True, return arrays in same dtype as would be loaded into MATLAB
(instead of the dtype with which they are saved).

squeeze_me
[bool, optional] Whether to squeeze unit matrix dimensions or not.

chars_as_strings
[bool, optional] Whether to convert char arrays to string arrays.

matlab_compatible
[bool, optional] Returns matrices as would be loaded by MATLAB (implies
squeeze_me=False, chars_as_strings=False, mat_dtype=True, struct_as_record=True).

struct_as_record
[bool, optional] Whether to load MATLAB structs as numpy record arrays, or as old-style
numpy arrays with dtype=object. Setting this flag to False replicates the behavior of scipy
version 0.7.x (returning numpy object arrays). The default setting is True, because it allows
easier round-trip load and save of MATLAB files.

Returns

variables [list of tuples] A list of tuples, where each tuple holds the matrix name (a string), its shape
(tuple of ints), and its data class (a string). Possible data classes are: int8, uint8, int16, uint16,
int32, uint32, int64, uint64, single, double, cell, struct, object, char, sparse, function, opaque,
logical, unknown.

Notes

v4 (Level 1.0), v6 and v7 to 7.2 matfiles are supported.
You will need an HDF5 python library to read matlab 7.3 format mat files. Because scipy does not supply one, we
do not implement the HDF5 / 7.3 interface here.
New in version 0.12.0.

6.8.2 IDL® files

readsav(file_name[, idict, python_dict, …]) Read an IDL .sav file.

scipy.io.readsav

scipy.io.readsav(file_name, idict=None, python_dict=False, uncompressed_file_name=None, ver-
bose=False)

Read an IDL .sav file.
Parameters

file_name [str] Name of the IDL save file.
idict [dict, optional] Dictionary in which to insert .sav file variables.
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python_dict
[bool, optional] By default, the object return is not a Python dictionary, but a case-insensitive
dictionary with item, attribute, and call access to variables. To get a standard Python dictio-
nary, set this option to True.

uncompressed_file_name
[str, optional] This option only has an effect for .sav files written with the /compress option.
If a file name is specified, compressed .sav files are uncompressed to this file. Otherwise,
readsav will use the tempfile module to determine a temporary filename automatically,
and will remove the temporary file upon successfully reading it in.

verbose [bool, optional] Whether to print out information about the save file, including the records
read, and available variables.

Returns

idl_dict [AttrDict or dict] If python_dict is set to False (default), this function returns a case-
insensitive dictionary with item, attribute, and call access to variables. If python_dict is
set to True, this function returns a Python dictionary with all variable names in lowercase.
If idict was specified, then variables are written to the dictionary specified, and the updated
dictionary is returned.

6.8.3 Matrix Market files

mminfo(source) Return size and storage parameters from Matrix Market
file-like ‘source’.

mmread(source) Reads the contents of a Matrix Market file-like ‘source’
into a matrix.

mmwrite(target, a[, comment, field, …]) Writes the sparse or dense array a to Matrix Market file-
like target.

scipy.io.mminfo

scipy.io.mminfo(source)
Return size and storage parameters from Matrix Market file-like ‘source’.

Parameters

source [str or file-like] Matrix Market filename (extension .mtx) or open file-like object
Returns

rows [int] Number of matrix rows.
cols [int] Number of matrix columns.
entries [int] Number of non-zero entries of a sparse matrix or rows*cols for a dense matrix.
format [str] Either ‘coordinate’ or ‘array’.
field [str] Either ‘real’, ‘complex’, ‘pattern’, or ‘integer’.
symmetry [str] Either ‘general’, ‘symmetric’, ‘skew-symmetric’, or ‘hermitian’.

scipy.io.mmread

scipy.io.mmread(source)
Reads the contents of a Matrix Market file-like ‘source’ into a matrix.

Parameters

source [str or file-like] Matrix Market filename (extensions .mtx, .mtz.gz) or open file-like object.
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Returns

a [ndarray or coo_matrix] Dense or sparsematrix depending on thematrix format in theMatrix
Market file.

scipy.io.mmwrite

scipy.io.mmwrite(target, a, comment=”, field=None, precision=None, symmetry=None)
Writes the sparse or dense array a to Matrix Market file-like target.

Parameters

target [str or file-like] Matrix Market filename (extension .mtx) or open file-like object.
a [array like] Sparse or dense 2D array.
comment [str, optional] Comments to be prepended to the Matrix Market file.
field [None or str, optional] Either ‘real’, ‘complex’, ‘pattern’, or ‘integer’.
precision [None or int, optional] Number of digits to display for real or complex values.
symmetry [None or str, optional] Either ‘general’, ‘symmetric’, ‘skew-symmetric’, or ‘hermitian’. If

symmetry is None the symmetry type of ‘a’ is determined by its values.

6.8.4 Unformatted Fortran files

FortranFile(filename[, mode, header_dtype]) A file object for unformatted sequential files from Fortran
code.

scipy.io.FortranFile

class scipy.io.FortranFile(filename, mode=’r’, header_dtype=<class ’numpy.uint32’>)
A file object for unformatted sequential files from Fortran code.

Parameters

filename [file or str] Open file object or filename.
mode [{‘r’, ‘w’}, optional] Read-write mode, default is ‘r’.
header_dtype

[dtype, optional] Data type of the header. Size and endiness must match the input/output
file.

Notes

These files are broken up into records of unspecified types. The size of each record is given at the start (although
the size of this header is not standard) and the data is written onto disk without any formatting. Fortran compilers
supporting the BACKSPACE statement will write a second copy of the size to facilitate backwards seeking.
This class only supports files written with both sizes for the record. It also does not support the subrecords used in
Intel and gfortran compilers for records which are greater than 2GB with a 4-byte header.
An example of an unformatted sequential file in Fortran would be written as:

OPEN(1, FILE=myfilename, FORM='unformatted')

WRITE(1) myvariable
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Since this is a non-standard file format, whose contents depend on the compiler and the endianness of the machine,
caution is advised. Files from gfortran 4.8.0 and gfortran 4.1.2 on x86_64 are known to work.
Consider using Fortran direct-access files or files from the newer Stream I/O, which can be easily read by numpy.
fromfile.

Examples

To create an unformatted sequential Fortran file:

>>> from scipy.io import FortranFile
>>> f = FortranFile('test.unf', 'w')
>>> f.write_record(np.array([1,2,3,4,5], dtype=np.int32))
>>> f.write_record(np.linspace(0,1,20).reshape((5,4)).T)
>>> f.close()

To read this file:

>>> f = FortranFile('test.unf', 'r')
>>> print(f.read_ints(np.int32))
[1 2 3 4 5]
>>> print(f.read_reals(float).reshape((5,4), order="F"))
[[0. 0.05263158 0.10526316 0.15789474]
[0.21052632 0.26315789 0.31578947 0.36842105]
[0.42105263 0.47368421 0.52631579 0.57894737]
[0.63157895 0.68421053 0.73684211 0.78947368]
[0.84210526 0.89473684 0.94736842 1. ]]
>>> f.close()

Or, in Fortran:

integer :: a(5), i
double precision :: b(5,4)
open(1, file='test.unf', form='unformatted')
read(1) a
read(1) b
close(1)
write(*,*) a
do i = 1, 5

write(*,*) b(i,:)
end do

Methods

close() Closes the file.
read_ints([dtype]) Reads a record of a given type from the file, defaulting

to an integer type (INTEGER*4 in Fortran).
read_reals([dtype]) Reads a record of a given type from the file, defaulting

to a floating point number (real*8 in Fortran).
read_record(*dtypes, **kwargs) Reads a record of a given type from the file.
write_record(*items) Write a record (including sizes) to the file.
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scipy.io.FortranFile.close
FortranFile.close()

Closes the file. It is unsupported to call any other methods off this object after closing it. Note that this class
supports the ‘with’ statement in modern versions of Python, to call this automatically

scipy.io.FortranFile.read_ints
FortranFile.read_ints(dtype=’i4’)

Reads a record of a given type from the file, defaulting to an integer type (INTEGER*4 in Fortran).
Parameters

dtype [dtype, optional] Data type specifying the size and endiness of the data.
Returns

data [ndarray] A one-dimensional array object.
See also:
read_reals, read_record

scipy.io.FortranFile.read_reals
FortranFile.read_reals(dtype=’f8’)

Reads a record of a given type from the file, defaulting to a floating point number (real*8 in Fortran).
Parameters

dtype [dtype, optional] Data type specifying the size and endiness of the data.
Returns

data [ndarray] A one-dimensional array object.
See also:
read_ints, read_record

scipy.io.FortranFile.read_record
FortranFile.read_record(*dtypes, **kwargs)

Reads a record of a given type from the file.
Parameters

*dtypes [dtypes, optional] Data type(s) specifying the size and endiness of the data.
Returns

data [ndarray] A one-dimensional array object.
See also:
read_reals, read_ints

Notes

If the record contains a multi-dimensional array, you can specify the size in the dtype. For example:

INTEGER var(5,4)

can be read with:
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read_record('(4,5)i4').T

Note that this function does not assume the file data is in Fortran column major order, so you need to (i) swap
the order of dimensions when reading and (ii) transpose the resulting array.
Alternatively, you can read the data as a 1D array and handle the ordering yourself. For example:

read_record('i4').reshape(5, 4, order='F')

For records that contain several variables or mixed types (as opposed to single scalar or array types), give
them as separate arguments:

double precision :: a
integer :: b
write(1) a, b

record = f.read_record('<f4', '<i4')
a = record[0] # first number
b = record[1] # second number

and if any of the variables are arrays, the shape can be specified as the third item in the relevant dtype:

double precision :: a
integer :: b(3,4)
write(1) a, b

record = f.read_record('<f4', np.dtype(('<i4', (4, 3))))
a = record[0]
b = record[1].T

Numpy also supports a short syntax for this kind of type:

record = f.read_record('<f4', '(3,3)<i4')

scipy.io.FortranFile.write_record
FortranFile.write_record(*items)

Write a record (including sizes) to the file.
Parameters

*items [array_like] The data arrays to write.

Notes

Writes data items to a file:

write_record(a.T, b.T, c.T, ...)

write(1) a, b, c, ...

Note that data in multidimensional arrays is written in row-major order — to make them read correctly by
Fortran programs, you need to transpose the arrays yourself when writing them.
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6.8.5 Netcdf

netcdf_file(filename[, mode, mmap, version, …]) A file object for NetCDF data.
netcdf_variable(data, typecode, size, shape, …) A data object for netcdf files.

scipy.io.netcdf_file

class scipy.io.netcdf_file(filename, mode=’r’, mmap=None, version=1, maskandscale=False)
A file object for NetCDF data.
Anetcdf_file object has two standard attributes: dimensions and variables. The values of both are dictionaries,
mapping dimension names to their associated lengths and variable names to variables, respectively. Application
programs should never modify these dictionaries.
All other attributes correspond to global attributes defined in the NetCDF file. Global file attributes are created by
assigning to an attribute of the netcdf_file object.

Parameters

filename [string or file-like] string -> filename
mode [{‘r’, ‘w’, ‘a’}, optional] read-write-append mode, default is ‘r’
mmap [None or bool, optional] Whether to mmap filename when reading. Default is True when

filename is a file name, False when filename is a file-like object. Note that when mmap is in
use, data arrays returned refer directly to the mmapped data on disk, and the file cannot be
closed as long as references to it exist.

version [{1, 2}, optional] version of netcdf to read / write, where 1 means Classic format and 2
means 64-bit offset format. Default is 1. See here for more info.

maskandscale
[bool, optional]Whether to automatically scale and/or mask data based on attributes. Default
is False.

Notes

Themajor advantage of this module over other modules is that it doesn’t require the code to be linked to the NetCDF
libraries. This module is derived from pupynere.
NetCDF files are a self-describing binary data format. The file contains metadata that describes the dimensions
and variables in the file. More details about NetCDF files can be found here. There are three main sections to a
NetCDF data structure:
1. Dimensions
2. Variables
3. Attributes

The dimensions section records the name and length of each dimension used by the variables. The variables would
then indicate which dimensions it uses and any attributes such as data units, along with containing the data values
for the variable. It is good practice to include a variable that is the same name as a dimension to provide the values
for that axes. Lastly, the attributes section would contain additional information such as the name of the file creator
or the instrument used to collect the data.
When writing data to a NetCDF file, there is often the need to indicate the ‘record dimension’. A record dimension
is the unbounded dimension for a variable. For example, a temperature variable may have dimensions of latitude,
longitude and time. If one wants to add more temperature data to the NetCDF file as time progresses, then the
temperature variable should have the time dimension flagged as the record dimension.
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In addition, the NetCDF file header contains the position of the data in the file, so access can be done in an efficient
manner without loading unnecessary data into memory. It uses the mmap module to create Numpy arrays mapped
to the data on disk, for the same purpose.
Note that when netcdf_file is used to open a file with mmap=True (default for read-only), arrays returned by
it refer to data directly on the disk. The file should not be closed, and cannot be cleanly closed when asked, if such
arrays are alive. You may want to copy data arrays obtained from mmapped Netcdf file if they are to be processed
after the file is closed, see the example below.

Examples

To create a NetCDF file:

>>> from scipy.io import netcdf
>>> f = netcdf.netcdf_file('simple.nc', 'w')
>>> f.history = 'Created for a test'
>>> f.createDimension('time', 10)
>>> time = f.createVariable('time', 'i', ('time',))
>>> time[:] = np.arange(10)
>>> time.units = 'days since 2008-01-01'
>>> f.close()

Note the assignment of arange(10) to time[:]. Exposing the slice of the time variable allows for the data to
be set in the object, rather than letting arange(10) overwrite the time variable.
To read the NetCDF file we just created:

>>> from scipy.io import netcdf
>>> f = netcdf.netcdf_file('simple.nc', 'r')
>>> print(f.history)
b'Created for a test'
>>> time = f.variables['time']
>>> print(time.units)
b'days since 2008-01-01'
>>> print(time.shape)
(10,)
>>> print(time[-1])
9

NetCDF files, when opened read-only, return arrays that refer directly to memory-mapped data on disk:

>>> data = time[:]
>>> data.base.base
<mmap.mmap object at 0x7fe753763180>

If the data is to be processed after the file is closed, it needs to be copied to main memory:

>>> data = time[:].copy()
>>> f.close()
>>> data.mean()
4.5

A NetCDF file can also be used as context manager:
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>>> from scipy.io import netcdf
>>> with netcdf.netcdf_file('simple.nc', 'r') as f:
... print(f.history)
b'Created for a test'

Methods

close() Closes the NetCDF file.
createDimension(name, length) Adds a dimension to the Dimension section of the

NetCDF data structure.
createVariable(name, type, dimensions) Create an empty variable for the netcdf_file ob-

ject, specifying its data type and the dimensions it
uses.

flush() Perform a sync-to-disk flush if the netcdf_file
object is in write mode.

sync() Perform a sync-to-disk flush if the netcdf_file
object is in write mode.

scipy.io.netcdf_file.close
netcdf_file.close()

Closes the NetCDF file.

scipy.io.netcdf_file.createDimension
netcdf_file.createDimension(name, length)

Adds a dimension to the Dimension section of the NetCDF data structure.
Note that this function merely adds a new dimension that the variables can reference. The values for the
dimension, if desired, should be added as a variable using createVariable, referring to this dimension.

Parameters

name [str] Name of the dimension (Eg, ‘lat’ or ‘time’).
length [int] Length of the dimension.

See also:
createVariable

scipy.io.netcdf_file.createVariable
netcdf_file.createVariable(name, type, dimensions)

Create an empty variable for the netcdf_file object, specifying its data type and the dimensions it uses.
Parameters

name [str] Name of the new variable.
type [dtype or str] Data type of the variable.
dimensions

[sequence of str] List of the dimension names used by the variable, in the desired order.
Returns

variable [netcdf_variable] The newly created netcdf_variable object. This object has also
been added to the netcdf_file object as well.

750 Chapter 6. API Reference



SciPy Reference Guide, Release 1.3.1

See also:
createDimension

Notes

Any dimensions to be used by the variable should already exist in the NetCDF data structure or should be
created by createDimension prior to creating the NetCDF variable.

scipy.io.netcdf_file.flush
netcdf_file.flush()

Perform a sync-to-disk flush if the netcdf_file object is in write mode.
See also:

sync

Identical function

scipy.io.netcdf_file.sync
netcdf_file.sync()

Perform a sync-to-disk flush if the netcdf_file object is in write mode.
See also:

sync

Identical function

scipy.io.netcdf_variable

class scipy.io.netcdf_variable(data, typecode, size, shape, dimensions, attributes=None, maskand-
scale=False)

A data object for netcdf files.
netcdf_variable objects are constructed by calling the method netcdf_file.createVariable on
the netcdf_file object. netcdf_variable objects behave much like array objects defined in numpy, ex-
cept that their data resides in a file. Data is read by indexing and written by assigning to an indexed subset; the entire
array can be accessed by the index [:] or (for scalars) by using the methods getValue and assignValue.
netcdf_variable objects also have attribute shapewith the samemeaning as for arrays, but the shape cannot
be modified. There is another read-only attribute dimensions, whose value is the tuple of dimension names.
All other attributes correspond to variable attributes defined in the NetCDF file. Variable attributes are created by
assigning to an attribute of the netcdf_variable object.

Parameters

data [array_like] The data array that holds the values for the variable. Typically, this is initialized
as empty, but with the proper shape.

typecode [dtype character code] Desired data-type for the data array.
size [int] Desired element size for the data array.
shape [sequence of ints] The shape of the array. This should match the lengths of the variable’s

dimensions.
dimensions

[sequence of strings] The names of the dimensions used by the variable. Must be in the same
order of the dimension lengths given by shape.
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attributes [dict, optional] Attribute values (any type) keyed by string names. These attributes become
attributes for the netcdf_variable object.

maskandscale
[bool, optional]Whether to automatically scale and/or mask data based on attributes. Default
is False.

See also:
isrec, shape

Attributes

dimensions
[list of str] List of names of dimensions used by the variable object.

isrec, shape
Properties

Methods

assignValue(value) Assign a scalar value to a netcdf_variable of
length one.

getValue() Retrieve a scalar value from a netcdf_variable
of length one.

itemsize() Return the itemsize of the variable.
typecode() Return the typecode of the variable.

scipy.io.netcdf_variable.assignValue
netcdf_variable.assignValue(value)

Assign a scalar value to a netcdf_variable of length one.
Parameters

value [scalar] Scalar value (of compatible type) to assign to a length-one netcdf variable. This
value will be written to file.

Raises

ValueError
If the input is not a scalar, or if the destination is not a length-one netcdf variable.

scipy.io.netcdf_variable.getValue
netcdf_variable.getValue()

Retrieve a scalar value from a netcdf_variable of length one.
Raises

ValueError
If the netcdf variable is an array of length greater than one, this exception will be raised.

scipy.io.netcdf_variable.itemsize
netcdf_variable.itemsize()

Return the itemsize of the variable.
Returns

itemsize [int] The element size of the variable (eg, 8 for float64).
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scipy.io.netcdf_variable.typecode
netcdf_variable.typecode()

Return the typecode of the variable.
Returns

typecode [char] The character typecode of the variable (eg, ‘i’ for int).

__getitem__

6.8.6 Harwell-Boeing files

hb_read(path_or_open_file) Read HB-format file.
hb_write(path_or_open_file, m[, hb_info]) Write HB-format file.

scipy.io.hb_read

scipy.io.hb_read(path_or_open_file)
Read HB-format file.

Parameters

path_or_open_file
[path-like or file-like] If a file-like object, it is used as-is. Otherwise it is opened before
reading.

Returns

data [scipy.sparse.csc_matrix instance] The data read from the HB file as a sparse matrix.

Notes

At the moment not the full Harwell-Boeing format is supported. Supported features are:
• assembled, non-symmetric, real matrices
• integer for pointer/indices
• exponential format for float values, and int format

scipy.io.hb_write

scipy.io.hb_write(path_or_open_file, m, hb_info=None)
Write HB-format file.

Parameters

path_or_open_file
[path-like or file-like] If a file-like object, it is used as-is. Otherwise it is opened before
writing.

m [sparse-matrix] the sparse matrix to write
hb_info [HBInfo] contains the meta-data for write

Returns

None
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Notes

At the moment not the full Harwell-Boeing format is supported. Supported features are:
• assembled, non-symmetric, real matrices
• integer for pointer/indices
• exponential format for float values, and int format

6.8.7 Wav sound files (scipy.io.wavfile)

read(filename[, mmap]) Open a WAV file
write(filename, rate, data) Write a numpy array as a WAV file.
WavFileWarning

scipy.io.wavfile.read

scipy.io.wavfile.read(filename, mmap=False)
Open a WAV file
Return the sample rate (in samples/sec) and data from a WAV file.

Parameters

filename [string or open file handle] Input wav file.
mmap [bool, optional] Whether to read data as memory-mapped. Only to be used on real files

(Default: False).
New in version 0.12.0.

Returns

rate [int] Sample rate of wav file.
data [numpy array] Data read from wav file. Data-type is determined from the file; see Notes.

Notes

This function cannot read wav files with 24-bit data.
Common data types: [1]

WAV format Min Max NumPy dtype
32-bit floating-point -1.0 +1.0 float32
32-bit PCM -2147483648 +2147483647 int32
16-bit PCM -32768 +32767 int16
8-bit PCM 0 255 uint8

Note that 8-bit PCM is unsigned.

References

[1]
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scipy.io.wavfile.write

scipy.io.wavfile.write(filename, rate, data)
Write a numpy array as a WAV file.

Parameters

filename [string or open file handle] Output wav file.
rate [int] The sample rate (in samples/sec).
data [ndarray] A 1-D or 2-D numpy array of either integer or float data-type.

Notes

• Writes a simple uncompressed WAV file.
• To write multiple-channels, use a 2-D array of shape (Nsamples, Nchannels).
• The bits-per-sample and PCM/float will be determined by the data-type.

Common data types: [1]

WAV format Min Max NumPy dtype
32-bit floating-point -1.0 +1.0 float32
32-bit PCM -2147483648 +2147483647 int32
16-bit PCM -32768 +32767 int16
8-bit PCM 0 255 uint8

Note that 8-bit PCM is unsigned.

References

[1]

scipy.io.wavfile.WavFileWarning

exception scipy.io.wavfile.WavFileWarning

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

6.8.8 Arff files (scipy.io.arff)

loadarff(f) Read an arff file.
MetaData(rel, attr) Small container to keep useful information on a ARFF

dataset.
ArffError
ParseArffError
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scipy.io.arff.loadarff

scipy.io.arff.loadarff(f)
Read an arff file.
The data is returned as a record array, which can be accessed much like a dictionary of numpy arrays. For example,
if one of the attributes is called ‘pressure’, then its first 10 data points can be accessed from the data record array
like so: data['pressure'][0:10]

Parameters

f [file-like or str] File-like object to read from, or filename to open.
Returns

data [record array] The data of the arff file, accessible by attribute names.
meta [MetaData] Contains information about the arff file such as name and type of attributes,

the relation (name of the dataset), etc…
Raises

ParseArffError
This is raised if the given file is not ARFF-formatted.

NotImplementedError
The ARFF file has an attribute which is not supported yet.

Notes

This function should be able to read most arff files. Not implemented functionality include:
• date type attributes
• string type attributes

It can read files with numeric and nominal attributes. It cannot read files with sparse data ({} in the file). However,
this function can read files with missing data (? in the file), representing the data points as NaNs.

Examples

>>> from scipy.io import arff
>>> from io import StringIO
>>> content = """
... @relation foo
... @attribute width numeric
... @attribute height numeric
... @attribute color {red,green,blue,yellow,black}
... @data
... 5.0,3.25,blue
... 4.5,3.75,green
... 3.0,4.00,red
... """
>>> f = StringIO(content)
>>> data, meta = arff.loadarff(f)
>>> data
array([(5.0, 3.25, 'blue'), (4.5, 3.75, 'green'), (3.0, 4.0, 'red')],

dtype=[('width', '<f8'), ('height', '<f8'), ('color', '|S6')])
(continues on next page)
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(continued from previous page)
>>> meta
Dataset: foo

width's type is numeric
height's type is numeric
color's type is nominal, range is ('red', 'green', 'blue', 'yellow',

↪→'black')

scipy.io.arff.MetaData

class scipy.io.arff.MetaData(rel, attr)
Small container to keep useful information on a ARFF dataset.
Knows about attributes names and types.

Notes

Also maintains the list of attributes in order, i.e. doing for i in meta, where meta is an instance of MetaData, will
return the different attribute names in the order they were defined.

Examples

data, meta = loadarff('iris.arff')
# This will print the attributes names of the iris.arff dataset
for i in meta:

print(i)
# This works too
meta.names()
# Getting attribute type
types = meta.types()

Methods

names() Return the list of attribute names.
types() Return the list of attribute types.

scipy.io.arff.MetaData.names
MetaData.names()

Return the list of attribute names.
Returns

attrnames [list of str] The attribute names.

scipy.io.arff.MetaData.types
MetaData.types()

Return the list of attribute types.
Returns
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attr_types [list of str] The attribute types.

scipy.io.arff.ArffError

exception scipy.io.arff.ArffError

errno
POSIX exception code

filename
exception filename

filename2
second exception filename

strerror
exception strerror

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

scipy.io.arff.ParseArffError

exception scipy.io.arff.ParseArffError

errno
POSIX exception code

filename
exception filename

filename2
second exception filename

strerror
exception strerror

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

6.9 Linear algebra (scipy.linalg)

Linear algebra functions.
See also:
numpy.linalg for more linear algebra functions. Note that although scipy.linalg imports most of them, identically
named functions from scipy.linalg may offer more or slightly differing functionality.

6.9.1 Basics
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inv(a[, overwrite_a, check_finite]) Compute the inverse of a matrix.
solve(a, b[, sym_pos, lower, overwrite_a, …]) Solves the linear equation set a * x = b for the un-

known x for square a matrix.
solve_banded(l_and_u, ab, b[, overwrite_ab, …]) Solve the equation a x = b for x, assuming a is banded

matrix.
solveh_banded(ab, b[, overwrite_ab, …]) Solve equation a x = b.
solve_circulant(c, b[, singular, tol, …]) Solve C x = b for x, where C is a circulant matrix.
solve_triangular(a, b[, trans, lower, …]) Solve the equation a x = b for x, assuming a is a triangular

matrix.
solve_toeplitz(c_or_cr, b[, check_finite]) Solve a Toeplitz system using Levinson Recursion
det(a[, overwrite_a, check_finite]) Compute the determinant of a matrix
norm(a[, ord, axis, keepdims]) Matrix or vector norm.
lstsq(a, b[, cond, overwrite_a, …]) Compute least-squares solution to equation Ax = b.
pinv(a[, cond, rcond, return_rank, check_finite]) Compute the (Moore-Penrose) pseudo-inverse of a ma-

trix.
pinv2(a[, cond, rcond, return_rank, …]) Compute the (Moore-Penrose) pseudo-inverse of a ma-

trix.
pinvh(a[, cond, rcond, lower, return_rank, …]) Compute the (Moore-Penrose) pseudo-inverse of a Her-

mitian matrix.
kron(a, b) Kronecker product.
tril(m[, k]) Make a copy of a matrix with elements above the k-th

diagonal zeroed.
triu(m[, k]) Make a copy of a matrix with elements below the k-th

diagonal zeroed.
orthogonal_procrustes(A, B[, check_finite]) Compute the matrix solution of the orthogonal Procrustes

problem.
matrix_balance(A[, permute, scale, …]) Compute a diagonal similarity transformation for

row/column balancing.
subspace_angles(A, B) Compute the subspace angles between two matrices.
LinAlgError Generic Python-exception-derived object raised by linalg

functions.
LinAlgWarning The warning emitted when a linear algebra related oper-

ation is close to fail conditions of the algorithm or loss of
accuracy is expected.

scipy.linalg.inv

scipy.linalg.inv(a, overwrite_a=False, check_finite=True)
Compute the inverse of a matrix.

Parameters

a [array_like] Square matrix to be inverted.
overwrite_a

[bool, optional] Discard data in a (may improve performance). Default is False.
check_finite

[bool, optional] Whether to check that the input matrix contains only finite numbers. Dis-
abling may give a performance gain, but may result in problems (crashes, non-termination)
if the inputs do contain infinities or NaNs.

Returns

ainv [ndarray] Inverse of the matrix a.
Raises
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LinAlgError
If a is singular.

ValueError
If a is not square, or not 2-dimensional.

Examples

>>> from scipy import linalg
>>> a = np.array([[1., 2.], [3., 4.]])
>>> linalg.inv(a)
array([[-2. , 1. ],

[ 1.5, -0.5]])
>>> np.dot(a, linalg.inv(a))
array([[ 1., 0.],

[ 0., 1.]])

scipy.linalg.solve

scipy.linalg.solve(a, b, sym_pos=False, lower=False, overwrite_a=False, overwrite_b=False, de-
bug=None, check_finite=True, assume_a=’gen’, transposed=False)

Solves the linear equation set a * x = b for the unknown x for square a matrix.
If the data matrix is known to be a particular type then supplying the corresponding string to assume_a key
chooses the dedicated solver. The available options are

generic matrix ‘gen’
symmetric ‘sym’
hermitian ‘her’
positive definite ‘pos’

If omitted, 'gen' is the default structure.
The datatype of the arrays define which solver is called regardless of the values. In other words, even when the
complex array entries have precisely zero imaginary parts, the complex solver will be called based on the data type
of the array.

Parameters

a [(N, N) array_like] Square input data
b [(N, NRHS) array_like] Input data for the right hand side.
sym_pos [bool, optional] Assume a is symmetric and positive definite. This key is deprecated and

assume_a = ‘pos’ keyword is recommended instead. The functionality is the same. It will be
removed in the future.

lower [bool, optional] If True, only the data contained in the lower triangle of a. Default is to use
upper triangle. (ignored for 'gen')

overwrite_a
[bool, optional] Allow overwriting data in a (may enhance performance). Default is False.

overwrite_b
[bool, optional] Allow overwriting data in b (may enhance performance). Default is False.

check_finite
[bool, optional] Whether to check that the input matrices contain only finite numbers. Dis-
abling may give a performance gain, but may result in problems (crashes, non-termination)
if the inputs do contain infinities or NaNs.
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assume_a [str, optional] Valid entries are explained above.
transposed: bool, optional

If True, a^T x = b for real matrices, raises NotImplementedError for complex matrices
(only for True).

Returns

x [(N, NRHS) ndarray] The solution array.
Raises

ValueError
If size mismatches detected or input a is not square.

LinAlgError
If the matrix is singular.

LinAlgWarning
If an ill-conditioned input a is detected.

NotImplementedError
If transposed is True and input a is a complex matrix.

Notes

If the input b matrix is a 1D array with N elements, when supplied together with an NxN input a, it is assumed as
a valid column vector despite the apparent size mismatch. This is compatible with the numpy.dot() behavior and
the returned result is still 1D array.
The generic, symmetric, hermitian and positive definite solutions are obtained via calling ?GESV, ?SYSV, ?HESV,
and ?POSV routines of LAPACK respectively.

Examples

Given a and b, solve for x:

>>> a = np.array([[3, 2, 0], [1, -1, 0], [0, 5, 1]])
>>> b = np.array([2, 4, -1])
>>> from scipy import linalg
>>> x = linalg.solve(a, b)
>>> x
array([ 2., -2., 9.])
>>> np.dot(a, x) == b
array([ True, True, True], dtype=bool)

scipy.linalg.solve_banded

scipy.linalg.solve_banded(l_and_u, ab, b, overwrite_ab=False, overwrite_b=False, debug=None,
check_finite=True)

Solve the equation a x = b for x, assuming a is banded matrix.
The matrix a is stored in ab using the matrix diagonal ordered form:

ab[u + i - j, j] == a[i,j]

Example of ab (shape of a is (6,6), u =1, l =2):
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* a01 a12 a23 a34 a45
a00 a11 a22 a33 a44 a55
a10 a21 a32 a43 a54 *
a20 a31 a42 a53 * *

Parameters

(l, u) [(integer, integer)] Number of non-zero lower and upper diagonals
ab [(l + u + 1, M) array_like] Banded matrix
b [(M,) or (M, K) array_like] Right-hand side
overwrite_ab

[bool, optional] Discard data in ab (may enhance performance)
overwrite_b

[bool, optional] Discard data in b (may enhance performance)
check_finite

[bool, optional] Whether to check that the input matrices contain only finite numbers. Dis-
abling may give a performance gain, but may result in problems (crashes, non-termination)
if the inputs do contain infinities or NaNs.

Returns

x [(M,) or (M, K) ndarray] The solution to the system a x = b. Returned shape depends on the
shape of b.

Examples

Solve the banded system a x = b, where:

[5 2 -1 0 0] [0]
[1 4 2 -1 0] [1]

a = [0 1 3 2 -1] b = [2]
[0 0 1 2 2] [2]
[0 0 0 1 1] [3]

There is one nonzero diagonal below the main diagonal (l = 1), and two above (u = 2). The diagonal banded form
of the matrix is:

[* * -1 -1 -1]
ab = [* 2 2 2 2]

[5 4 3 2 1]
[1 1 1 1 *]

>>> from scipy.linalg import solve_banded
>>> ab = np.array([[0, 0, -1, -1, -1],
... [0, 2, 2, 2, 2],
... [5, 4, 3, 2, 1],
... [1, 1, 1, 1, 0]])
>>> b = np.array([0, 1, 2, 2, 3])
>>> x = solve_banded((1, 2), ab, b)
>>> x
array([-2.37288136, 3.93220339, -4. , 4.3559322 , -1.3559322 ])
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scipy.linalg.solveh_banded

scipy.linalg.solveh_banded(ab, b, overwrite_ab=False, overwrite_b=False, lower=False,
check_finite=True)

Solve equation a x = b. a is Hermitian positive-definite banded matrix.
The matrix a is stored in ab either in lower diagonal or upper diagonal ordered form:

ab[u + i - j, j] == a[i,j] (if upper form; i <= j) ab[ i - j, j] == a[i,j] (if lower form; i >= j)
Example of ab (shape of a is (6, 6), u =2):

upper form:
* * a02 a13 a24 a35
* a01 a12 a23 a34 a45
a00 a11 a22 a33 a44 a55

lower form:
a00 a11 a22 a33 a44 a55
a10 a21 a32 a43 a54 *
a20 a31 a42 a53 * *

Cells marked with * are not used.
Parameters

ab [(u + 1, M) array_like] Banded matrix
b [(M,) or (M, K) array_like] Right-hand side
overwrite_ab

[bool, optional] Discard data in ab (may enhance performance)
overwrite_b

[bool, optional] Discard data in b (may enhance performance)
lower [bool, optional] Is the matrix in the lower form. (Default is upper form)
check_finite

[bool, optional] Whether to check that the input matrices contain only finite numbers. Dis-
abling may give a performance gain, but may result in problems (crashes, non-termination)
if the inputs do contain infinities or NaNs.

Returns

x [(M,) or (M, K) ndarray] The solution to the system a x = b. Shape of return matches shape
of b.

Examples

Solve the banded system A x = b, where:

[ 4 2 -1 0 0 0] [1]
[ 2 5 2 -1 0 0] [2]

A = [-1 2 6 2 -1 0] b = [2]
[ 0 -1 2 7 2 -1] [3]
[ 0 0 -1 2 8 2] [3]
[ 0 0 0 -1 2 9] [3]

>>> from scipy.linalg import solveh_banded

ab contains the main diagonal and the nonzero diagonals below the main diagonal. That is, we use the lower form:
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>>> ab = np.array([[ 4, 5, 6, 7, 8, 9],
... [ 2, 2, 2, 2, 2, 0],
... [-1, -1, -1, -1, 0, 0]])
>>> b = np.array([1, 2, 2, 3, 3, 3])
>>> x = solveh_banded(ab, b, lower=True)
>>> x
array([ 0.03431373, 0.45938375, 0.05602241, 0.47759104, 0.17577031,

0.34733894])

Solve the Hermitian banded system H x = b, where:

[ 8 2-1j 0 0 ] [ 1 ]
H = [2+1j 5 1j 0 ] b = [1+1j]

[ 0 -1j 9 -2-1j] [1-2j]
[ 0 0 -2+1j 6 ] [ 0 ]

In this example, we put the upper diagonals in the array hb:

>>> hb = np.array([[0, 2-1j, 1j, -2-1j],
... [8, 5, 9, 6 ]])
>>> b = np.array([1, 1+1j, 1-2j, 0])
>>> x = solveh_banded(hb, b)
>>> x
array([ 0.07318536-0.02939412j, 0.11877624+0.17696461j,

0.10077984-0.23035393j, -0.00479904-0.09358128j])

scipy.linalg.solve_circulant

scipy.linalg.solve_circulant(c, b, singular=’raise’, tol=None, caxis=-1, baxis=0, outaxis=0)
Solve C x = b for x, where C is a circulant matrix.
C is the circulant matrix associated with the vector c.
The system is solved by doing division in Fourier space. The calculation is:

x = ifft(fft(b) / fft(c))

where fft and ifft are the fast Fourier transform and its inverse, respectively. For a large vector c, this is much faster
than solving the system with the full circulant matrix.

Parameters

c [array_like] The coefficients of the circulant matrix.
b [array_like] Right-hand side matrix in a x = b.
singular [str, optional] This argument controls how a near singular circulant matrix is handled. If

singular is “raise” and the circulant matrix is near singular, a LinAlgError is raised. If
singular is “lstsq”, the least squares solution is returned. Default is “raise”.

tol [float, optional] If any eigenvalue of the circulant matrix has an absolute value that is less
than or equal to tol, the matrix is considered to be near singular. If not given, tol is set to:

tol = abs_eigs.max() * abs_eigs.size * np.finfo(np.
↪→float64).eps

where abs_eigs is the array of absolute values of the eigenvalues of the circulant matrix.
caxis [int] When c has dimension greater than 1, it is viewed as a collection of circulant vectors.

In this case, caxis is the axis of c that holds the vectors of circulant coefficients.
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baxis [int] When b has dimension greater than 1, it is viewed as a collection of vectors. In this
case, baxis is the axis of b that holds the right-hand side vectors.

outaxis [int] When c or b are multidimensional, the value returned by solve_circulant is mul-
tidimensional. In this case, outaxis is the axis of the result that holds the solution vectors.

Returns

x [ndarray] Solution to the system C x = b.
Raises

LinAlgError
If the circulant matrix associated with c is near singular.

See also:

circulant

circulant matrix

Notes

For a one-dimensional vector c with length m, and an array b with shape (m, ...),
solve_circulant(c, b)

returns the same result as
solve(circulant(c), b)

where solve and circulant are from scipy.linalg.
New in version 0.16.0.

Examples

>>> from scipy.linalg import solve_circulant, solve, circulant, lstsq

>>> c = np.array([2, 2, 4])
>>> b = np.array([1, 2, 3])
>>> solve_circulant(c, b)
array([ 0.75, -0.25, 0.25])

Compare that result to solving the system with scipy.linalg.solve:

>>> solve(circulant(c), b)
array([ 0.75, -0.25, 0.25])

A singular example:

>>> c = np.array([1, 1, 0, 0])
>>> b = np.array([1, 2, 3, 4])

Calling solve_circulant(c, b) will raise a LinAlgError. For the least square solution, use the option
singular='lstsq':

>>> solve_circulant(c, b, singular='lstsq')
array([ 0.25, 1.25, 2.25, 1.25])
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Compare to scipy.linalg.lstsq:

>>> x, resid, rnk, s = lstsq(circulant(c), b)
>>> x
array([ 0.25, 1.25, 2.25, 1.25])

A broadcasting example:
Suppose we have the vectors of two circulant matrices stored in an array with shape (2, 5), and three b vectors
stored in an array with shape (3, 5). For example,

>>> c = np.array([[1.5, 2, 3, 0, 0], [1, 1, 4, 3, 2]])
>>> b = np.arange(15).reshape(-1, 5)

We want to solve all combinations of circulant matrices and b vectors, with the result stored in an array with shape
(2, 3, 5). When we disregard the axes of c and b that hold the vectors of coefficients, the shapes of the collections
are (2,) and (3,), respectively, which are not compatible for broadcasting. To have a broadcast result with shape (2,
3), we add a trivial dimension to c: c[:, np.newaxis, :] has shape (2, 1, 5). The last dimension holds the
coefficients of the circulant matrices, so when we call solve_circulant, we can use the default caxis=-1.
The coefficients of the b vectors are in the last dimension of the array b, so we use baxis=-1. If we use the
default outaxis, the result will have shape (5, 2, 3), so we’ll use outaxis=-1 to put the solution vectors in the last
dimension.

>>> x = solve_circulant(c[:, np.newaxis, :], b, baxis=-1, outaxis=-1)
>>> x.shape
(2, 3, 5)
>>> np.set_printoptions(precision=3) # For compact output of numbers.
>>> x
array([[[-0.118, 0.22 , 1.277, -0.142, 0.302],

[ 0.651, 0.989, 2.046, 0.627, 1.072],
[ 1.42 , 1.758, 2.816, 1.396, 1.841]],
[[ 0.401, 0.304, 0.694, -0.867, 0.377],
[ 0.856, 0.758, 1.149, -0.412, 0.831],
[ 1.31 , 1.213, 1.603, 0.042, 1.286]]])

Check by solving one pair of c and b vectors (cf. x[1, 1, :]):

>>> solve_circulant(c[1], b[1, :])
array([ 0.856, 0.758, 1.149, -0.412, 0.831])

scipy.linalg.solve_triangular

scipy.linalg.solve_triangular(a, b, trans=0, lower=False, unit_diagonal=False, over-
write_b=False, debug=None, check_finite=True)

Solve the equation a x = b for x, assuming a is a triangular matrix.
Parameters

a [(M, M) array_like] A triangular matrix
b [(M,) or (M, N) array_like] Right-hand side matrix in a x = b
lower [bool, optional] Use only data contained in the lower triangle of a. Default is to use upper

triangle.
trans [{0, 1, 2, ‘N’, ‘T’, ‘C’}, optional] Type of system to solve:
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trans system
0 or ‘N’ a x = b
1 or ‘T’ a^T x = b
2 or ‘C’ a^H x = b

unit_diagonal
[bool, optional] If True, diagonal elements of a are assumed to be 1 and will not be refer-
enced.

overwrite_b
[bool, optional] Allow overwriting data in b (may enhance performance)

check_finite
[bool, optional] Whether to check that the input matrices contain only finite numbers. Dis-
abling may give a performance gain, but may result in problems (crashes, non-termination)
if the inputs do contain infinities or NaNs.

Returns

x [(M,) or (M, N) ndarray] Solution to the system a x = b. Shape of return matches b.
Raises

LinAlgError
If a is singular

Notes

New in version 0.9.0.

Examples

Solve the lower triangular system a x = b, where:

[3 0 0 0] [4]
a = [2 1 0 0] b = [2]

[1 0 1 0] [4]
[1 1 1 1] [2]

>>> from scipy.linalg import solve_triangular
>>> a = np.array([[3, 0, 0, 0], [2, 1, 0, 0], [1, 0, 1, 0], [1, 1, 1, 1]])
>>> b = np.array([4, 2, 4, 2])
>>> x = solve_triangular(a, b, lower=True)
>>> x
array([ 1.33333333, -0.66666667, 2.66666667, -1.33333333])
>>> a.dot(x) # Check the result
array([ 4., 2., 4., 2.])

scipy.linalg.solve_toeplitz

scipy.linalg.solve_toeplitz(c_or_cr, b, check_finite=True)
Solve a Toeplitz system using Levinson Recursion
The Toeplitz matrix has constant diagonals, with c as its first column and r as its first row. If r is not given, r ==
conjugate(c) is assumed.
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Parameters

c_or_cr [array_like or tuple of (array_like, array_like)] The vector c, or a tuple of arrays (c, r).
Whatever the actual shape of c, it will be converted to a 1-D array. If not supplied, r =
conjugate(c) is assumed; in this case, if c[0] is real, the Toeplitz matrix is Hermitian.
r[0] is ignored; the first row of the Toeplitz matrix is [c[0], r[1:]]. Whatever the
actual shape of r, it will be converted to a 1-D array.

b [(M,) or (M, K) array_like] Right-hand side in T x = b.
check_finite

[bool, optional] Whether to check that the input matrices contain only finite numbers. Dis-
abling may give a performance gain, but may result in problems (result entirely NaNs) if the
inputs do contain infinities or NaNs.

Returns

x [(M,) or (M, K) ndarray] The solution to the system T x = b. Shape of return matches
shape of b.

See also:

toeplitz

Toeplitz matrix

Notes

The solution is computed using Levinson-Durbin recursion, which is faster than generic least-squares methods, but
can be less numerically stable.

Examples

Solve the Toeplitz system T x = b, where:

[ 1 -1 -2 -3] [1]
T = [ 3 1 -1 -2] b = [2]

[ 6 3 1 -1] [2]
[10 6 3 1] [5]

To specify the Toeplitz matrix, only the first column and the first row are needed.

>>> c = np.array([1, 3, 6, 10]) # First column of T
>>> r = np.array([1, -1, -2, -3]) # First row of T
>>> b = np.array([1, 2, 2, 5])

>>> from scipy.linalg import solve_toeplitz, toeplitz
>>> x = solve_toeplitz((c, r), b)
>>> x
array([ 1.66666667, -1. , -2.66666667, 2.33333333])

Check the result by creating the full Toeplitz matrix and multiplying it by x. We should get b.

>>> T = toeplitz(c, r)
>>> T.dot(x)
array([ 1., 2., 2., 5.])
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scipy.linalg.det

scipy.linalg.det(a, overwrite_a=False, check_finite=True)
Compute the determinant of a matrix
The determinant of a square matrix is a value derived arithmetically from the coefficients of the matrix.
The determinant for a 3x3 matrix, for example, is computed as follows:

a b c
d e f = A
g h i

det(A) = a*e*i + b*f*g + c*d*h - c*e*g - b*d*i - a*f*h

Parameters

a [(M, M) array_like] A square matrix.
overwrite_a

[bool, optional] Allow overwriting data in a (may enhance performance).
check_finite

[bool, optional] Whether to check that the input matrix contains only finite numbers. Dis-
abling may give a performance gain, but may result in problems (crashes, non-termination)
if the inputs do contain infinities or NaNs.

Returns

det [float or complex] Determinant of a.

Notes

The determinant is computed via LU factorization, LAPACK routine z/dgetrf.

Examples

>>> from scipy import linalg
>>> a = np.array([[1,2,3], [4,5,6], [7,8,9]])
>>> linalg.det(a)
0.0
>>> a = np.array([[0,2,3], [4,5,6], [7,8,9]])
>>> linalg.det(a)
3.0

scipy.linalg.norm

scipy.linalg.norm(a, ord=None, axis=None, keepdims=False)
Matrix or vector norm.
This function is able to return one of seven different matrix norms, or one of an infinite number of vector norms
(described below), depending on the value of the ord parameter.

Parameters

a [(M,) or (M, N) array_like] Input array. If axis is None, a must be 1-D or 2-D.
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ord [{non-zero int, inf, -inf, ‘fro’}, optional] Order of the norm (see table under Notes). inf
means numpy’s inf object

axis [{int, 2-tuple of ints, None}, optional] If axis is an integer, it specifies the axis of a along
which to compute the vector norms. If axis is a 2-tuple, it specifies the axes that hold 2-D
matrices, and the matrix norms of these matrices are computed. If axis is None then either
a vector norm (when a is 1-D) or a matrix norm (when a is 2-D) is returned.

keepdims [bool, optional] If this is set to True, the axes which are normed over are left in the result
as dimensions with size one. With this option the result will broadcast correctly against the
original a.

Returns

n [float or ndarray] Norm of the matrix or vector(s).

Notes

For values of ord <= 0, the result is, strictly speaking, not a mathematical ‘norm’, but it may still be useful for
various numerical purposes.
The following norms can be calculated:

ord norm for matrices norm for vectors
None Frobenius norm 2-norm
‘fro’ Frobenius norm –
inf max(sum(abs(x), axis=1)) max(abs(x))
-inf min(sum(abs(x), axis=1)) min(abs(x))
0 – sum(x != 0)
1 max(sum(abs(x), axis=0)) as below
-1 min(sum(abs(x), axis=0)) as below
2 2-norm (largest sing. value) as below
-2 smallest singular value as below
other – sum(abs(x)**ord)**(1./ord)

The Frobenius norm is given by [1]:
||A||F = [

∑
i,j abs(ai,j)

2]1/2

The axis and keepdims arguments are passed directly to numpy.linalg.norm and are only usable if they
are supported by the version of numpy in use.

References

[1]

Examples

>>> from scipy.linalg import norm
>>> a = np.arange(9) - 4.0
>>> a
array([-4., -3., -2., -1., 0., 1., 2., 3., 4.])
>>> b = a.reshape((3, 3))
>>> b

(continues on next page)
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array([[-4., -3., -2.],

[-1., 0., 1.],
[ 2., 3., 4.]])

>>> norm(a)
7.745966692414834
>>> norm(b)
7.745966692414834
>>> norm(b, 'fro')
7.745966692414834
>>> norm(a, np.inf)
4
>>> norm(b, np.inf)
9
>>> norm(a, -np.inf)
0
>>> norm(b, -np.inf)
2

>>> norm(a, 1)
20
>>> norm(b, 1)
7
>>> norm(a, -1)
-4.6566128774142013e-010
>>> norm(b, -1)
6
>>> norm(a, 2)
7.745966692414834
>>> norm(b, 2)
7.3484692283495345

>>> norm(a, -2)
0
>>> norm(b, -2)
1.8570331885190563e-016
>>> norm(a, 3)
5.8480354764257312
>>> norm(a, -3)
0

scipy.linalg.lstsq

scipy.linalg.lstsq(a, b, cond=None, overwrite_a=False, overwrite_b=False, check_finite=True, la-
pack_driver=None)

Compute least-squares solution to equation Ax = b.
Compute a vector x such that the 2-norm |b - A x| is minimized.

Parameters

a [(M, N) array_like] Left hand side array
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b [(M,) or (M, K) array_like] Right hand side array
cond [float, optional] Cutoff for ‘small’ singular values; used to determine effective rank of a.

Singular values smaller than rcond * largest_singular_value are considered
zero.

overwrite_a
[bool, optional] Discard data in a (may enhance performance). Default is False.

overwrite_b
[bool, optional] Discard data in b (may enhance performance). Default is False.

check_finite
[bool, optional] Whether to check that the input matrices contain only finite numbers. Dis-
abling may give a performance gain, but may result in problems (crashes, non-termination)
if the inputs do contain infinities or NaNs.

lapack_driver
[str, optional] Which LAPACK driver is used to solve the least-squares problem. Options
are 'gelsd', 'gelsy', 'gelss'. Default ('gelsd') is a good choice. However,
'gelsy' can be slightly faster on many problems. 'gelss' was used historically. It is
generally slow but uses less memory.
New in version 0.17.0.

Returns

x [(N,) or (N, K) ndarray] Least-squares solution. Return shape matches shape of b.
residues [(K,) ndarray or float] Square of the 2-norm for each column in b - a x, if M > N and

ndim(A) == n (returns a scalar if b is 1-D). Otherwise a (0,)-shaped array is returned.
rank [int] Effective rank of a.
s [(min(M, N),) ndarray or None] Singular values of a. The condition number of a is

abs(s[0] / s[-1]).
Raises

LinAlgError
If computation does not converge.

ValueError
When parameters are not compatible.

See also:

scipy.optimize.nnls

linear least squares with non-negativity constraint

Notes

When 'gelsy' is used as a driver, residues is set to a (0,)-shaped array and s is always None.

Examples

>>> from scipy.linalg import lstsq
>>> import matplotlib.pyplot as plt

Suppose we have the following data:

>>> x = np.array([1, 2.5, 3.5, 4, 5, 7, 8.5])
>>> y = np.array([0.3, 1.1, 1.5, 2.0, 3.2, 6.6, 8.6])
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We want to fit a quadratic polynomial of the form y = a + b*x**2 to this data. We first form the “design
matrix” M, with a constant column of 1s and a column containing x**2:

>>> M = x[:, np.newaxis]**[0, 2]
>>> M
array([[ 1. , 1. ],

[ 1. , 6.25],
[ 1. , 12.25],
[ 1. , 16. ],
[ 1. , 25. ],
[ 1. , 49. ],
[ 1. , 72.25]])

We want to find the least-squares solution to M.dot(p) = y, where p is a vector with length 2 that holds the
parameters a and b.

>>> p, res, rnk, s = lstsq(M, y)
>>> p
array([ 0.20925829, 0.12013861])

Plot the data and the fitted curve.

>>> plt.plot(x, y, 'o', label='data')
>>> xx = np.linspace(0, 9, 101)
>>> yy = p[0] + p[1]*xx**2
>>> plt.plot(xx, yy, label='least squares fit, $y = a + bx^2$')
>>> plt.xlabel('x')
>>> plt.ylabel('y')
>>> plt.legend(framealpha=1, shadow=True)
>>> plt.grid(alpha=0.25)
>>> plt.show()
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least squares fit, y = a + bx2
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scipy.linalg.pinv

scipy.linalg.pinv(a, cond=None, rcond=None, return_rank=False, check_finite=True)
Compute the (Moore-Penrose) pseudo-inverse of a matrix.
Calculate a generalized inverse of a matrix using a least-squares solver.

Parameters

a [(M, N) array_like] Matrix to be pseudo-inverted.
cond, rcond

[float, optional] Cutoff factor for ‘small’ singular values. In lstsq, singular values less than
cond*largest_singular_valuewill be considered as zero. If both are omitted, the
default value max(M, N) * eps is passed to lstsq where eps is the corresponding
machine precision value of the datatype of a.
Changed in version 1.3.0: Previously the default cutoff value was just eps without the factor
max(M, N).

return_rank
[bool, optional] if True, return the effective rank of the matrix

check_finite
[bool, optional] Whether to check that the input matrix contains only finite numbers. Dis-
abling may give a performance gain, but may result in problems (crashes, non-termination)
if the inputs do contain infinities or NaNs.

Returns

B [(N, M) ndarray] The pseudo-inverse of matrix a.
rank [int] The effective rank of the matrix. Returned if return_rank == True

Raises

LinAlgError
If computation does not converge.

Examples

>>> from scipy import linalg
>>> a = np.random.randn(9, 6)
>>> B = linalg.pinv(a)
>>> np.allclose(a, np.dot(a, np.dot(B, a)))
True
>>> np.allclose(B, np.dot(B, np.dot(a, B)))
True

scipy.linalg.pinv2

scipy.linalg.pinv2(a, cond=None, rcond=None, return_rank=False, check_finite=True)
Compute the (Moore-Penrose) pseudo-inverse of a matrix.
Calculate a generalized inverse of a matrix using its singular-value decomposition and including all ‘large’ singular
values.

Parameters

a [(M, N) array_like] Matrix to be pseudo-inverted.
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cond, rcond
[float or None] Cutoff for ‘small’ singular values; singular values smaller than this
value are considered as zero. If both are omitted, the default value max(M,
N)*largest_singular_value*eps is used where eps is the machine precision
value of the datatype of a.
Changed in version 1.3.0: Previously the default cutoff value was just eps*f where f was
1e3 for single precision and 1e6 for double precision.

return_rank
[bool, optional] If True, return the effective rank of the matrix.

check_finite
[bool, optional] Whether to check that the input matrix contains only finite numbers. Dis-
abling may give a performance gain, but may result in problems (crashes, non-termination)
if the inputs do contain infinities or NaNs.

Returns

B [(N, M) ndarray] The pseudo-inverse of matrix a.
rank [int] The effective rank of the matrix. Returned if return_rank is True.

Raises

LinAlgError
If SVD computation does not converge.

Examples

>>> from scipy import linalg
>>> a = np.random.randn(9, 6)
>>> B = linalg.pinv2(a)
>>> np.allclose(a, np.dot(a, np.dot(B, a)))
True
>>> np.allclose(B, np.dot(B, np.dot(a, B)))
True

scipy.linalg.pinvh

scipy.linalg.pinvh(a, cond=None, rcond=None, lower=True, return_rank=False, check_finite=True)
Compute the (Moore-Penrose) pseudo-inverse of a Hermitian matrix.
Calculate a generalized inverse of a Hermitian or real symmetric matrix using its eigenvalue decomposition and
including all eigenvalues with ‘large’ absolute value.

Parameters

a [(N, N) array_like] Real symmetric or complex hermetian matrix to be pseudo-inverted
cond, rcond

[float or None] Cutoff for ‘small’ singular values; singular values smaller than
this value are considered as zero. If both are omitted, the default max(M,
N)*largest_eigenvalue*eps is used where eps is the machine precision value of
the datatype of a.
Changed in version 1.3.0: Previously the default cutoff value was just eps*f where f was
1e3 for single precision and 1e6 for double precision.

lower [bool, optional] Whether the pertinent array data is taken from the lower or upper triangle
of a. (Default: lower)
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return_rank
[bool, optional] If True, return the effective rank of the matrix.

check_finite
[bool, optional] Whether to check that the input matrix contains only finite numbers. Dis-
abling may give a performance gain, but may result in problems (crashes, non-termination)
if the inputs do contain infinities or NaNs.

Returns

B [(N, N) ndarray] The pseudo-inverse of matrix a.
rank [int] The effective rank of the matrix. Returned if return_rank is True.

Raises

LinAlgError
If eigenvalue does not converge

Examples

>>> from scipy.linalg import pinvh
>>> a = np.random.randn(9, 6)
>>> a = np.dot(a, a.T)
>>> B = pinvh(a)
>>> np.allclose(a, np.dot(a, np.dot(B, a)))
True
>>> np.allclose(B, np.dot(B, np.dot(a, B)))
True

scipy.linalg.kron

scipy.linalg.kron(a, b)
Kronecker product.
The result is the block matrix:

a[0,0]*b a[0,1]*b ... a[0,-1]*b
a[1,0]*b a[1,1]*b ... a[1,-1]*b
...
a[-1,0]*b a[-1,1]*b ... a[-1,-1]*b

Parameters

a [(M, N) ndarray] Input array
b [(P, Q) ndarray] Input array

Returns

A [(M*P, N*Q) ndarray] Kronecker product of a and b.

Examples
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>>> from numpy import array
>>> from scipy.linalg import kron
>>> kron(array([[1,2],[3,4]]), array([[1,1,1]]))
array([[1, 1, 1, 2, 2, 2],

[3, 3, 3, 4, 4, 4]])

scipy.linalg.tril

scipy.linalg.tril(m, k=0)
Make a copy of a matrix with elements above the k-th diagonal zeroed.

Parameters

m [array_like] Matrix whose elements to return
k [int, optional] Diagonal above which to zero elements. k == 0 is the main diagonal, k < 0

subdiagonal and k > 0 superdiagonal.
Returns

tril [ndarray] Return is the same shape and type as m.

Examples

>>> from scipy.linalg import tril
>>> tril([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1)
array([[ 0, 0, 0],

[ 4, 0, 0],
[ 7, 8, 0],
[10, 11, 12]])

scipy.linalg.triu

scipy.linalg.triu(m, k=0)
Make a copy of a matrix with elements below the k-th diagonal zeroed.

Parameters

m [array_like] Matrix whose elements to return
k [int, optional] Diagonal below which to zero elements. k == 0 is the main diagonal, k < 0

subdiagonal and k > 0 superdiagonal.
Returns

triu [ndarray] Return matrix with zeroed elements below the k-th diagonal and has same shape
and type as m.

Examples

>>> from scipy.linalg import triu
>>> triu([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1)
array([[ 1, 2, 3],

[ 4, 5, 6],
(continues on next page)
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[ 0, 8, 9],
[ 0, 0, 12]])

scipy.linalg.orthogonal_procrustes

scipy.linalg.orthogonal_procrustes(A, B, check_finite=True)
Compute the matrix solution of the orthogonal Procrustes problem.
Given matrices A and B of equal shape, find an orthogonal matrix R that most closely maps A to B using the
algorithm given in [1].

Parameters

A [(M, N) array_like] Matrix to be mapped.
B [(M, N) array_like] Target matrix.
check_finite

[bool, optional] Whether to check that the input matrices contain only finite numbers. Dis-
abling may give a performance gain, but may result in problems (crashes, non-termination)
if the inputs do contain infinities or NaNs.

Returns

R [(N, N) ndarray] The matrix solution of the orthogonal Procrustes problem. Minimizes the
Frobenius norm of (A @ R) - B, subject to R.T @ R = I.

scale [float] Sum of the singular values of A.T @ B.
Raises

ValueError
If the input array shapes don’t match or if check_finite is True and the arrays contain Inf or
NaN.

Notes

Note that unlike higher level Procrustes analyses of spatial data, this function only uses orthogonal transformations
like rotations and reflections, and it does not use scaling or translation.
New in version 0.15.0.

References

[1]

Examples

>>> from scipy.linalg import orthogonal_procrustes
>>> A = np.array([[ 2, 0, 1], [-2, 0, 0]])

Flip the order of columns and check for the anti-diagonal mapping
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>>> R, sca = orthogonal_procrustes(A, np.fliplr(A))
>>> R
array([[-5.34384992e-17, 0.00000000e+00, 1.00000000e+00],

[ 0.00000000e+00, 1.00000000e+00, 0.00000000e+00],
[ 1.00000000e+00, 0.00000000e+00, -7.85941422e-17]])

>>> sca
9.0

scipy.linalg.matrix_balance

scipy.linalg.matrix_balance(A, permute=True, scale=True, separate=False, overwrite_a=False)
Compute a diagonal similarity transformation for row/column balancing.
The balancing tries to equalize the row and column 1-norms by applying a similarity transformation such that the
magnitude variation of the matrix entries is reflected to the scaling matrices.
Moreover, if enabled, the matrix is first permuted to isolate the upper triangular parts of the matrix and, again if
scaling is also enabled, only the remaining subblocks are subjected to scaling.
The balanced matrix satisfies the following equality

B = T−1AT

The scaling coefficients are approximated to the nearest power of 2 to avoid round-off errors.
Parameters

A [(n, n) array_like] Square data matrix for the balancing.
permute [bool, optional] The selector to define whether permutation of A is also performed prior to

scaling.
scale [bool, optional] The selector to turn on and off the scaling. If False, the matrix will not be

scaled.
separate [bool, optional] This switches from returning a full matrix of the transformation to a tuple

of two separate 1D permutation and scaling arrays.
overwrite_a

[bool, optional] This is passed to xGEBAL directly. Essentially, overwrites the result to the
data. It might increase the space efficiency. See LAPACK manual for details. This is False
by default.

Returns

B [(n, n) ndarray] Balanced matrix
T [(n, n) ndarray] A possibly permuted diagonal matrix whose nonzero entries are integer pow-

ers of 2 to avoid numerical truncation errors.
scale, perm

[(n,) ndarray] If separate keyword is set to True then instead of the array T above, the
scaling and the permutation vectors are given separately as a tuple without allocating the full
array T.

Notes

This algorithm is particularly useful for eigenvalue and matrix decompositions and in many cases it is already called
by various LAPACK routines.
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The algorithm is based on the well-known technique of [1] and has been modified to account for special cases. See
[2] for details which have been implemented since LAPACK v3.5.0. Before this version there are corner cases
where balancing can actually worsen the conditioning. See [3] for such examples.
The code is a wrapper around LAPACK’s xGEBAL routine family for matrix balancing.
New in version 0.19.0.

References

[1], [2], [3]

Examples

>>> from scipy import linalg
>>> x = np.array([[1,2,0], [9,1,0.01], [1,2,10*np.pi]])

>>> y, permscale = linalg.matrix_balance(x)
>>> np.abs(x).sum(axis=0) / np.abs(x).sum(axis=1)
array([ 3.66666667, 0.4995005 , 0.91312162])

>>> np.abs(y).sum(axis=0) / np.abs(y).sum(axis=1)
array([ 1.2 , 1.27041742, 0.92658316]) # may vary

>>> permscale # only powers of 2 (0.5 == 2^(-1))
array([[ 0.5, 0. , 0. ], # may vary

[ 0. , 1. , 0. ],
[ 0. , 0. , 1. ]])

scipy.linalg.subspace_angles

scipy.linalg.subspace_angles(A, B)
Compute the subspace angles between two matrices.

Parameters

A [(M, N) array_like] The first input array.
B [(M, K) array_like] The second input array.

Returns

angles [ndarray, shape (min(N, K),)] The subspace angles between the column spaces of A and B
in descending order.

See also:
orth, svd

Notes

This computes the subspace angles according to the formula provided in [1]. For equivalence with MATLAB and
Octave behavior, use angles[0].
New in version 1.0.
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References

[1]

Examples

A Hadamard matrix, which has orthogonal columns, so we expect that the suspace angle to be π
2 :

>>> from scipy.linalg import hadamard, subspace_angles
>>> H = hadamard(4)
>>> print(H)
[[ 1 1 1 1]
[ 1 -1 1 -1]
[ 1 1 -1 -1]
[ 1 -1 -1 1]]
>>> np.rad2deg(subspace_angles(H[:, :2], H[:, 2:]))
array([ 90., 90.])

And the subspace angle of a matrix to itself should be zero:

>>> subspace_angles(H[:, :2], H[:, :2]) <= 2 * np.finfo(float).eps
array([ True, True], dtype=bool)

The angles between non-orthogonal subspaces are in between these extremes:

>>> x = np.random.RandomState(0).randn(4, 3)
>>> np.rad2deg(subspace_angles(x[:, :2], x[:, [2]]))
array([ 55.832])

scipy.linalg.LinAlgError

exception scipy.linalg.LinAlgError
Generic Python-exception-derived object raised by linalg functions.
General purpose exception class, derived from Python’s exception.Exception class, programmatically raised in
linalg functions when a Linear Algebra-related condition would prevent further correct execution of the function.

Parameters

None

Examples

>>> from numpy import linalg as LA
>>> LA.inv(np.zeros((2,2)))
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "...linalg.py", line 350,

in inv return wrap(solve(a, identity(a.shape[0], dtype=a.dtype)))
File "...linalg.py", line 249,

in solve
raise LinAlgError('Singular matrix')

numpy.linalg.LinAlgError: Singular matrix
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with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

scipy.linalg.LinAlgWarning

exception scipy.linalg.LinAlgWarning
The warning emitted when a linear algebra related operation is close to fail conditions of the algorithm or loss of
accuracy is expected.
with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

6.9.2 Eigenvalue Problems

eig(a[, b, left, right, overwrite_a, …]) Solve an ordinary or generalized eigenvalue problem of a
square matrix.

eigvals(a[, b, overwrite_a, check_finite, …]) Compute eigenvalues from an ordinary or generalized
eigenvalue problem.

eigh(a[, b, lower, eigvals_only, …]) Solve an ordinary or generalized eigenvalue problem for
a complex Hermitian or real symmetric matrix.

eigvalsh(a[, b, lower, overwrite_a, …]) Solve an ordinary or generalized eigenvalue problem for
a complex Hermitian or real symmetric matrix.

eig_banded(a_band[, lower, eigvals_only, …]) Solve real symmetric or complex hermitian band matrix
eigenvalue problem.

eigvals_banded(a_band[, lower, …]) Solve real symmetric or complex hermitian band matrix
eigenvalue problem.

eigh_tridiagonal(d, e[, eigvals_only, …]) Solve eigenvalue problem for a real symmetric tridiagonal
matrix.

eigvalsh_tridiagonal(d, e[, select, …]) Solve eigenvalue problem for a real symmetric tridiagonal
matrix.

scipy.linalg.eig

scipy.linalg.eig(a, b=None, left=False, right=True, overwrite_a=False, overwrite_b=False,
check_finite=True, homogeneous_eigvals=False)

Solve an ordinary or generalized eigenvalue problem of a square matrix.
Find eigenvalues w and right or left eigenvectors of a general matrix:

a vr[:,i] = w[i] b vr[:,i]
a.H vl[:,i] = w[i].conj() b.H vl[:,i]

where .H is the Hermitian conjugation.
Parameters

a [(M, M) array_like] A complex or real matrix whose eigenvalues and eigenvectors will be
computed.

b [(M, M) array_like, optional] Right-hand side matrix in a generalized eigenvalue problem.
Default is None, identity matrix is assumed.

left [bool, optional] Whether to calculate and return left eigenvectors. Default is False.
right [bool, optional] Whether to calculate and return right eigenvectors. Default is True.
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overwrite_a
[bool, optional] Whether to overwrite a; may improve performance. Default is False.

overwrite_b
[bool, optional] Whether to overwrite b; may improve performance. Default is False.

check_finite
[bool, optional] Whether to check that the input matrices contain only finite numbers. Dis-
abling may give a performance gain, but may result in problems (crashes, non-termination)
if the inputs do contain infinities or NaNs.

homogeneous_eigvals
[bool, optional] If True, return the eigenvalues in homogeneous coordinates. In this case w
is a (2, M) array so that:

w[1,i] a vr[:,i] = w[0,i] b vr[:,i]

Default is False.
Returns

w [(M,) or (2, M) double or complex ndarray] The eigenvalues, each repeated according to its
multiplicity. The shape is (M,) unless homogeneous_eigvals=True.

vl [(M, M) double or complex ndarray] The normalized left eigenvector corresponding to the
eigenvalue w[i] is the column vl[:,i]. Only returned if left=True.

vr [(M, M) double or complex ndarray] The normalized right eigenvector corresponding to the
eigenvalue w[i] is the column vr[:,i]. Only returned if right=True.

Raises

LinAlgError
If eigenvalue computation does not converge.

See also:

eigvals

eigenvalues of general arrays
eigh

Eigenvalues and right eigenvectors for symmetric/Hermitian arrays.
eig_banded

eigenvalues and right eigenvectors for symmetric/Hermitian band matrices
eigh_tridiagonal

eigenvalues and right eiegenvectors for symmetric/Hermitian tridiagonal matrices

Examples

>>> from scipy import linalg
>>> a = np.array([[0., -1.], [1., 0.]])
>>> linalg.eigvals(a)
array([0.+1.j, 0.-1.j])

>>> b = np.array([[0., 1.], [1., 1.]])
>>> linalg.eigvals(a, b)
array([ 1.+0.j, -1.+0.j])
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>>> a = np.array([[3., 0., 0.], [0., 8., 0.], [0., 0., 7.]])
>>> linalg.eigvals(a, homogeneous_eigvals=True)
array([[3.+0.j, 8.+0.j, 7.+0.j],

[1.+0.j, 1.+0.j, 1.+0.j]])

>>> a = np.array([[0., -1.], [1., 0.]])
>>> linalg.eigvals(a) == linalg.eig(a)[0]
array([ True, True])
>>> linalg.eig(a, left=True, right=False)[1] # normalized left eigenvector
array([[-0.70710678+0.j , -0.70710678-0.j ],

[-0. +0.70710678j, -0. -0.70710678j]])
>>> linalg.eig(a, left=False, right=True)[1] # normalized right␣
↪→eigenvector
array([[0.70710678+0.j , 0.70710678-0.j ],

[0. -0.70710678j, 0. +0.70710678j]])

scipy.linalg.eigvals

scipy.linalg.eigvals(a, b=None, overwrite_a=False, check_finite=True, homogeneous_eigvals=False)
Compute eigenvalues from an ordinary or generalized eigenvalue problem.
Find eigenvalues of a general matrix:

a vr[:,i] = w[i] b vr[:,i]

Parameters

a [(M, M) array_like] A complex or real matrix whose eigenvalues and eigenvectors will be
computed.

b [(M, M) array_like, optional] Right-hand side matrix in a generalized eigenvalue problem.
If omitted, identity matrix is assumed.

overwrite_a
[bool, optional] Whether to overwrite data in a (may improve performance)

check_finite
[bool, optional] Whether to check that the input matrices contain only finite numbers. Dis-
abling may give a performance gain, but may result in problems (crashes, non-termination)
if the inputs do contain infinities or NaNs.

homogeneous_eigvals
[bool, optional] If True, return the eigenvalues in homogeneous coordinates. In this case w
is a (2, M) array so that:

w[1,i] a vr[:,i] = w[0,i] b vr[:,i]

Default is False.
Returns

w [(M,) or (2, M) double or complex ndarray] The eigenvalues, each repeated ac-
cording to its multiplicity but not in any specific order. The shape is (M,) unless
homogeneous_eigvals=True.

Raises

LinAlgError
If eigenvalue computation does not converge
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See also:

eig

eigenvalues and right eigenvectors of general arrays.
eigvalsh

eigenvalues of symmetric or Hermitian arrays
eigvals_banded

eigenvalues for symmetric/Hermitian band matrices
eigvalsh_tridiagonal

eigenvalues of symmetric/Hermitian tridiagonal matrices

Examples

>>> from scipy import linalg
>>> a = np.array([[0., -1.], [1., 0.]])
>>> linalg.eigvals(a)
array([0.+1.j, 0.-1.j])

>>> b = np.array([[0., 1.], [1., 1.]])
>>> linalg.eigvals(a, b)
array([ 1.+0.j, -1.+0.j])

>>> a = np.array([[3., 0., 0.], [0., 8., 0.], [0., 0., 7.]])
>>> linalg.eigvals(a, homogeneous_eigvals=True)
array([[3.+0.j, 8.+0.j, 7.+0.j],

[1.+0.j, 1.+0.j, 1.+0.j]])

scipy.linalg.eigh

scipy.linalg.eigh(a, b=None, lower=True, eigvals_only=False, overwrite_a=False, overwrite_b=False,
turbo=True, eigvals=None, type=1, check_finite=True)

Solve an ordinary or generalized eigenvalue problem for a complex Hermitian or real symmetric matrix.
Find eigenvalues w and optionally eigenvectors v of matrix a, where b is positive definite:

a v[:,i] = w[i] b v[:,i]
v[i,:].conj() a v[:,i] = w[i]
v[i,:].conj() b v[:,i] = 1

Parameters

a [(M, M) array_like] A complex Hermitian or real symmetric matrix whose eigenvalues and
eigenvectors will be computed.

b [(M,M) array_like, optional] A complexHermitian or real symmetric definite positivematrix
in. If omitted, identity matrix is assumed.

lower [bool, optional] Whether the pertinent array data is taken from the lower or upper triangle
of a. (Default: lower)
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eigvals_only
[bool, optional] Whether to calculate only eigenvalues and no eigenvectors. (Default: both
are calculated)

turbo [bool, optional] Use divide and conquer algorithm (faster but expensive in memory, only for
generalized eigenvalue problem and if eigvals=None)

eigvals [tuple (lo, hi), optional] Indexes of the smallest and largest (in ascending order) eigenval-
ues and corresponding eigenvectors to be returned: 0 <= lo <= hi <= M-1. If omitted, all
eigenvalues and eigenvectors are returned.

type [int, optional] Specifies the problem type to be solved:
type = 1: a v[:,i] = w[i] b v[:,i]
type = 2: a b v[:,i] = w[i] v[:,i]
type = 3: b a v[:,i] = w[i] v[:,i]

overwrite_a
[bool, optional] Whether to overwrite data in a (may improve performance)

overwrite_b
[bool, optional] Whether to overwrite data in b (may improve performance)

check_finite
[bool, optional] Whether to check that the input matrices contain only finite numbers. Dis-
abling may give a performance gain, but may result in problems (crashes, non-termination)
if the inputs do contain infinities or NaNs.

Returns

w [(N,) float ndarray] The N (1<=N<=M) selected eigenvalues, in ascending order, each re-
peated according to its multiplicity.

v [(M, N) complex ndarray] (if eigvals_only == False)
The normalized selected eigenvector corresponding to the eigenvalue w[i] is the column v[:,i].
Normalization:
type 1 and 3: v.conj() a v = w
type 2: inv(v).conj() a inv(v) = w
type = 1 or 2: v.conj() b v = I
type = 3: v.conj() inv(b) v = I

Raises

LinAlgError
If eigenvalue computation does not converge, an error occurred, or b matrix is not definite
positive. Note that if input matrices are not symmetric or hermitian, no error is reported but
results will be wrong.

See also:

eigvalsh

eigenvalues of symmetric or Hermitian arrays
eig

eigenvalues and right eigenvectors for non-symmetric arrays
eigh

eigenvalues and right eigenvectors for symmetric/Hermitian arrays
eigh_tridiagonal

eigenvalues and right eiegenvectors for symmetric/Hermitian tridiagonal matrices
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Notes

This function does not check the input array for being hermitian/symmetric in order to allow for representing arrays
with only their upper/lower triangular parts.

Examples

>>> from scipy.linalg import eigh
>>> A = np.array([[6, 3, 1, 5], [3, 0, 5, 1], [1, 5, 6, 2], [5, 1, 2, 2]])
>>> w, v = eigh(A)
>>> np.allclose(A @ v - v @ np.diag(w), np.zeros((4, 4)))
True

scipy.linalg.eigvalsh

scipy.linalg.eigvalsh(a, b=None, lower=True, overwrite_a=False, overwrite_b=False, turbo=True,
eigvals=None, type=1, check_finite=True)

Solve an ordinary or generalized eigenvalue problem for a complex Hermitian or real symmetric matrix.
Find eigenvalues w of matrix a, where b is positive definite:

a v[:,i] = w[i] b v[:,i]
v[i,:].conj() a v[:,i] = w[i]
v[i,:].conj() b v[:,i] = 1

Parameters

a [(M, M) array_like] A complex Hermitian or real symmetric matrix whose eigenvalues and
eigenvectors will be computed.

b [(M,M) array_like, optional] A complexHermitian or real symmetric definite positivematrix
in. If omitted, identity matrix is assumed.

lower [bool, optional] Whether the pertinent array data is taken from the lower or upper triangle
of a. (Default: lower)

turbo [bool, optional] Use divide and conquer algorithm (faster but expensive in memory, only for
generalized eigenvalue problem and if eigvals=None)

eigvals [tuple (lo, hi), optional] Indexes of the smallest and largest (in ascending order) eigenval-
ues and corresponding eigenvectors to be returned: 0 <= lo < hi <= M-1. If omitted, all
eigenvalues and eigenvectors are returned.

type [int, optional] Specifies the problem type to be solved:
type = 1: a v[:,i] = w[i] b v[:,i]
type = 2: a b v[:,i] = w[i] v[:,i]
type = 3: b a v[:,i] = w[i] v[:,i]

overwrite_a
[bool, optional] Whether to overwrite data in a (may improve performance)

overwrite_b
[bool, optional] Whether to overwrite data in b (may improve performance)

check_finite
[bool, optional] Whether to check that the input matrices contain only finite numbers. Dis-
abling may give a performance gain, but may result in problems (crashes, non-termination)
if the inputs do contain infinities or NaNs.

Returns
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w [(N,) float ndarray] The N (1<=N<=M) selected eigenvalues, in ascending order, each re-
peated according to its multiplicity.

Raises

LinAlgError
If eigenvalue computation does not converge, an error occurred, or b matrix is not definite
positive. Note that if input matrices are not symmetric or hermitian, no error is reported but
results will be wrong.

See also:

eigh

eigenvalues and right eigenvectors for symmetric/Hermitian arrays
eigvals

eigenvalues of general arrays
eigvals_banded

eigenvalues for symmetric/Hermitian band matrices
eigvalsh_tridiagonal

eigenvalues of symmetric/Hermitian tridiagonal matrices

Notes

This function does not check the input array for being hermitian/symmetric in order to allow for representing arrays
with only their upper/lower triangular parts.

Examples

>>> from scipy.linalg import eigvalsh
>>> A = np.array([[6, 3, 1, 5], [3, 0, 5, 1], [1, 5, 6, 2], [5, 1, 2, 2]])
>>> w = eigvalsh(A)
>>> w
array([-3.74637491, -0.76263923, 6.08502336, 12.42399079])

scipy.linalg.eig_banded

scipy.linalg.eig_banded(a_band, lower=False, eigvals_only=False, overwrite_a_band=False, se-
lect=’a’, select_range=None, max_ev=0, check_finite=True)

Solve real symmetric or complex hermitian band matrix eigenvalue problem.
Find eigenvalues w and optionally right eigenvectors v of a:

a v[:,i] = w[i] v[:,i]
v.H v = identity

The matrix a is stored in a_band either in lower diagonal or upper diagonal ordered form:
a_band[u + i - j, j] == a[i,j] (if upper form; i <= j) a_band[ i - j, j] == a[i,j] (if lower form; i >= j)
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where u is the number of bands above the diagonal.
Example of a_band (shape of a is (6,6), u=2):

upper form:
* * a02 a13 a24 a35
* a01 a12 a23 a34 a45
a00 a11 a22 a33 a44 a55

lower form:
a00 a11 a22 a33 a44 a55
a10 a21 a32 a43 a54 *
a20 a31 a42 a53 * *

Cells marked with * are not used.
Parameters

a_band [(u+1, M) array_like] The bands of the M by M matrix a.
lower [bool, optional] Is the matrix in the lower form. (Default is upper form)
eigvals_only

[bool, optional] Compute only the eigenvalues and no eigenvectors. (Default: calculate also
eigenvectors)

overwrite_a_band
[bool, optional] Discard data in a_band (may enhance performance)

select [{‘a’, ‘v’, ‘i’}, optional] Which eigenvalues to calculate

select calculated
‘a’ All eigenvalues
‘v’ Eigenvalues in the interval (min, max]
‘i’ Eigenvalues with indices min <= i <= max

select_range
[(min, max), optional] Range of selected eigenvalues

max_ev [int, optional] For select==’v’, maximum number of eigenvalues expected. For other values
of select, has no meaning.
In doubt, leave this parameter untouched.

check_finite
[bool, optional] Whether to check that the input matrix contains only finite numbers. Dis-
abling may give a performance gain, but may result in problems (crashes, non-termination)
if the inputs do contain infinities or NaNs.

Returns

w [(M,) ndarray] The eigenvalues, in ascending order, each repeated according to its multiplic-
ity.

v [(M, M) float or complex ndarray] The normalized eigenvector corresponding to the eigen-
value w[i] is the column v[:,i].

Raises

LinAlgError
If eigenvalue computation does not converge.

See also:

eigvals_banded

eigenvalues for symmetric/Hermitian band matrices

6.9. Linear algebra (scipy.linalg) 789



SciPy Reference Guide, Release 1.3.1

eig

eigenvalues and right eigenvectors of general arrays.
eigh

eigenvalues and right eigenvectors for symmetric/Hermitian arrays
eigh_tridiagonal

eigenvalues and right eiegenvectors for symmetric/Hermitian tridiagonal matrices

Examples

>>> from scipy.linalg import eig_banded
>>> A = np.array([[1, 5, 2, 0], [5, 2, 5, 2], [2, 5, 3, 5], [0, 2, 5, 4]])
>>> Ab = np.array([[1, 2, 3, 4], [5, 5, 5, 0], [2, 2, 0, 0]])
>>> w, v = eig_banded(Ab, lower=True)
>>> np.allclose(A @ v - v @ np.diag(w), np.zeros((4, 4)))
True
>>> w = eig_banded(Ab, lower=True, eigvals_only=True)
>>> w
array([-4.26200532, -2.22987175, 3.95222349, 12.53965359])

Request only the eigenvalues between [-3, 4]

>>> w, v = eig_banded(Ab, lower=True, select='v', select_range=[-3, 4])
>>> w
array([-2.22987175, 3.95222349])

scipy.linalg.eigvals_banded

scipy.linalg.eigvals_banded(a_band, lower=False, overwrite_a_band=False, select=’a’, se-
lect_range=None, check_finite=True)

Solve real symmetric or complex hermitian band matrix eigenvalue problem.
Find eigenvalues w of a:

a v[:,i] = w[i] v[:,i]
v.H v = identity

The matrix a is stored in a_band either in lower diagonal or upper diagonal ordered form:
a_band[u + i - j, j] == a[i,j] (if upper form; i <= j) a_band[ i - j, j] == a[i,j] (if lower form; i >= j)

where u is the number of bands above the diagonal.
Example of a_band (shape of a is (6,6), u=2):

upper form:
* * a02 a13 a24 a35
* a01 a12 a23 a34 a45
a00 a11 a22 a33 a44 a55

lower form:
a00 a11 a22 a33 a44 a55

(continues on next page)
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(continued from previous page)
a10 a21 a32 a43 a54 *
a20 a31 a42 a53 * *

Cells marked with * are not used.
Parameters

a_band [(u+1, M) array_like] The bands of the M by M matrix a.
lower [bool, optional] Is the matrix in the lower form. (Default is upper form)
overwrite_a_band

[bool, optional] Discard data in a_band (may enhance performance)
select [{‘a’, ‘v’, ‘i’}, optional] Which eigenvalues to calculate

select calculated
‘a’ All eigenvalues
‘v’ Eigenvalues in the interval (min, max]
‘i’ Eigenvalues with indices min <= i <= max

select_range
[(min, max), optional] Range of selected eigenvalues

check_finite
[bool, optional] Whether to check that the input matrix contains only finite numbers. Dis-
abling may give a performance gain, but may result in problems (crashes, non-termination)
if the inputs do contain infinities or NaNs.

Returns

w [(M,) ndarray] The eigenvalues, in ascending order, each repeated according to its multiplic-
ity.

Raises

LinAlgError
If eigenvalue computation does not converge.

See also:

eig_banded

eigenvalues and right eigenvectors for symmetric/Hermitian band matrices
eigvalsh_tridiagonal

eigenvalues of symmetric/Hermitian tridiagonal matrices
eigvals

eigenvalues of general arrays
eigh

eigenvalues and right eigenvectors for symmetric/Hermitian arrays
eig

eigenvalues and right eigenvectors for non-symmetric arrays
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Examples

>>> from scipy.linalg import eigvals_banded
>>> A = np.array([[1, 5, 2, 0], [5, 2, 5, 2], [2, 5, 3, 5], [0, 2, 5, 4]])
>>> Ab = np.array([[1, 2, 3, 4], [5, 5, 5, 0], [2, 2, 0, 0]])
>>> w = eigvals_banded(Ab, lower=True)
>>> w
array([-4.26200532, -2.22987175, 3.95222349, 12.53965359])

scipy.linalg.eigh_tridiagonal

scipy.linalg.eigh_tridiagonal(d, e, eigvals_only=False, select=’a’, select_range=None,
check_finite=True, tol=0.0, lapack_driver=’auto’)

Solve eigenvalue problem for a real symmetric tridiagonal matrix.
Find eigenvalues w and optionally right eigenvectors v of a:

a v[:,i] = w[i] v[:,i]
v.H v = identity

For a real symmetric matrix a with diagonal elements d and off-diagonal elements e.
Parameters

d [ndarray, shape (ndim,)] The diagonal elements of the array.
e [ndarray, shape (ndim-1,)] The off-diagonal elements of the array.
select [{‘a’, ‘v’, ‘i’}, optional] Which eigenvalues to calculate

select calculated
‘a’ All eigenvalues
‘v’ Eigenvalues in the interval (min, max]
‘i’ Eigenvalues with indices min <= i <= max

select_range
[(min, max), optional] Range of selected eigenvalues

check_finite
[bool, optional] Whether to check that the input matrix contains only finite numbers. Dis-
abling may give a performance gain, but may result in problems (crashes, non-termination)
if the inputs do contain infinities or NaNs.

tol [float] The absolute tolerance to which each eigenvalue is required (only used when ‘stebz’
is the lapack_driver). An eigenvalue (or cluster) is considered to have converged if it lies in
an interval of this width. If <= 0. (default), the value eps*|a| is used where eps is the
machine precision, and |a| is the 1-norm of the matrix a.

lapack_driver
[str] LAPACK function to use, can be ‘auto’, ‘stemr’, ‘stebz’, ‘sterf’, or ‘stev’. When ‘auto’
(default), it will use ‘stemr’ if select='a' and ‘stebz’ otherwise. When ‘stebz’ is used
to find the eigenvalues and eigvals_only=False, then a second LAPACK call (to
?STEIN) is used to find the corresponding eigenvectors. ‘sterf’ can only be used when
eigvals_only=True and select='a'. ‘stev’ can only be used when select='a'.

Returns

w [(M,) ndarray] The eigenvalues, in ascending order, each repeated according to its multiplic-
ity.

v [(M, M) ndarray] The normalized eigenvector corresponding to the eigenvalue w[i] is the
column v[:,i].
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Raises

LinAlgError
If eigenvalue computation does not converge.

See also:

eigvalsh_tridiagonal

eigenvalues of symmetric/Hermitian tridiagonal matrices
eig

eigenvalues and right eigenvectors for non-symmetric arrays
eigh

eigenvalues and right eigenvectors for symmetric/Hermitian arrays
eig_banded

eigenvalues and right eigenvectors for symmetric/Hermitian band matrices

Notes

This function makes use of LAPACK S/DSTEMR routines.

Examples

>>> from scipy.linalg import eigh_tridiagonal
>>> d = 3*np.ones(4)
>>> e = -1*np.ones(3)
>>> w, v = eigh_tridiagonal(d, e)
>>> A = np.diag(d) + np.diag(e, k=1) + np.diag(e, k=-1)
>>> np.allclose(A @ v - v @ np.diag(w), np.zeros((4, 4)))
True

scipy.linalg.eigvalsh_tridiagonal

scipy.linalg.eigvalsh_tridiagonal(d, e, select=’a’, select_range=None, check_finite=True,
tol=0.0, lapack_driver=’auto’)

Solve eigenvalue problem for a real symmetric tridiagonal matrix.
Find eigenvalues w of a:

a v[:,i] = w[i] v[:,i]
v.H v = identity

For a real symmetric matrix a with diagonal elements d and off-diagonal elements e.
Parameters

d [ndarray, shape (ndim,)] The diagonal elements of the array.
e [ndarray, shape (ndim-1,)] The off-diagonal elements of the array.
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select [{‘a’, ‘v’, ‘i’}, optional] Which eigenvalues to calculate

select calculated
‘a’ All eigenvalues
‘v’ Eigenvalues in the interval (min, max]
‘i’ Eigenvalues with indices min <= i <= max

select_range
[(min, max), optional] Range of selected eigenvalues

check_finite
[bool, optional] Whether to check that the input matrix contains only finite numbers. Dis-
abling may give a performance gain, but may result in problems (crashes, non-termination)
if the inputs do contain infinities or NaNs.

tol [float] The absolute tolerance to which each eigenvalue is required (only used when
lapack_driver='stebz'). An eigenvalue (or cluster) is considered to have converged
if it lies in an interval of this width. If <= 0. (default), the value eps*|a| is used where
eps is the machine precision, and |a| is the 1-norm of the matrix a.

lapack_driver
[str] LAPACK function to use, can be ‘auto’, ‘stemr’, ‘stebz’, ‘sterf’, or ‘stev’. When ‘auto’
(default), it will use ‘stemr’ if select='a' and ‘stebz’ otherwise. ‘sterf’ and ‘stev’ can only
be used when select='a'.

Returns

w [(M,) ndarray] The eigenvalues, in ascending order, each repeated according to its multiplic-
ity.

Raises

LinAlgError
If eigenvalue computation does not converge.

See also:

eigh_tridiagonal

eigenvalues and right eiegenvectors for symmetric/Hermitian tridiagonal matrices

Examples

>>> from scipy.linalg import eigvalsh_tridiagonal, eigvalsh
>>> d = 3*np.ones(4)
>>> e = -1*np.ones(3)
>>> w = eigvalsh_tridiagonal(d, e)
>>> A = np.diag(d) + np.diag(e, k=1) + np.diag(e, k=-1)
>>> w2 = eigvalsh(A) # Verify with other eigenvalue routines
>>> np.allclose(w - w2, np.zeros(4))
True

6.9.3 Decompositions

lu(a[, permute_l, overwrite_a, check_finite]) Compute pivoted LU decomposition of a matrix.
lu_factor(a[, overwrite_a, check_finite]) Compute pivoted LU decomposition of a matrix.

Continued on next page
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Table 85 – continued from previous page
lu_solve(lu_and_piv, b[, trans, …]) Solve an equation system, a x = b, given the LU factoriza-

tion of a
svd(a[, full_matrices, compute_uv, …]) Singular Value Decomposition.
svdvals(a[, overwrite_a, check_finite]) Compute singular values of a matrix.
diagsvd(s, M, N) Construct the sigma matrix in SVD from singular values

and size M, N.
orth(A[, rcond]) Construct an orthonormal basis for the range of A using

SVD
null_space(A[, rcond]) Construct an orthonormal basis for the null space of A

using SVD
ldl(A[, lower, hermitian, overwrite_a, …]) Computes the LDLt or Bunch-Kaufman factorization of

a symmetric/ hermitian matrix.
cholesky(a[, lower, overwrite_a, check_finite]) Compute the Cholesky decomposition of a matrix.
cholesky_banded(ab[, overwrite_ab, lower, …]) Cholesky decompose a banded Hermitian positive-

definite matrix
cho_factor(a[, lower, overwrite_a, check_finite]) Compute the Cholesky decomposition of a matrix, to use

in cho_solve
cho_solve(c_and_lower, b[, overwrite_b, …]) Solve the linear equations A x = b, given the Cholesky

factorization of A.
cho_solve_banded(cb_and_lower, b[, …]) Solve the linear equations A x = b, given the Cholesky

factorization of the banded hermitian A.
polar(a[, side]) Compute the polar decomposition.
qr(a[, overwrite_a, lwork, mode, pivoting, …]) Compute QR decomposition of a matrix.
qr_multiply(a, c[, mode, pivoting, …]) Calculate the QR decomposition and multiply Q with a

matrix.
qr_update(Q, R, u, v[, overwrite_qruv, …]) Rank-k QR update
qr_delete(Q, R, k, int p=1[, which, …]) QR downdate on row or column deletions
qr_insert(Q, R, u, k[, which, rcond, …]) QR update on row or column insertions
rq(a[, overwrite_a, lwork, mode, check_finite]) Compute RQ decomposition of a matrix.
qz(A, B[, output, lwork, sort, overwrite_a, …]) QZ decomposition for generalized eigenvalues of a pair

of matrices.
ordqz(A, B[, sort, output, overwrite_a, …]) QZ decomposition for a pair of matrices with reordering.
schur(a[, output, lwork, overwrite_a, sort, …]) Compute Schur decomposition of a matrix.
rsf2csf(T, Z[, check_finite]) Convert real Schur form to complex Schur form.
hessenberg(a[, calc_q, overwrite_a, …]) Compute Hessenberg form of a matrix.
cdf2rdf(w, v) Converts complex eigenvalues w and eigenvectors v to

real eigenvalues in a block diagonal form wr and the as-
sociated real eigenvectors vr, such that.

scipy.linalg.lu

scipy.linalg.lu(a, permute_l=False, overwrite_a=False, check_finite=True)
Compute pivoted LU decomposition of a matrix.
The decomposition is:

A = P L U

where P is a permutation matrix, L lower triangular with unit diagonal elements, and U upper triangular.
Parameters

a [(M, N) array_like] Array to decompose
permute_l [bool, optional] Perform the multiplication P*L (Default: do not permute)
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overwrite_a
[bool, optional] Whether to overwrite data in a (may improve performance)

check_finite
[bool, optional] Whether to check that the input matrix contains only finite numbers. Dis-
abling may give a performance gain, but may result in problems (crashes, non-termination)
if the inputs do contain infinities or NaNs.

Returns

**(If permute_l == False)**
p [(M, M) ndarray] Permutation matrix
l [(M, K) ndarray] Lower triangular or trapezoidal matrix with unit diagonal. K = min(M, N)
u [(K, N) ndarray] Upper triangular or trapezoidal matrix
**(If permute_l == True)**
pl [(M, K) ndarray] Permuted L matrix. K = min(M, N)
u [(K, N) ndarray] Upper triangular or trapezoidal matrix

Notes

This is a LU factorization routine written for SciPy.

Examples

>>> from scipy.linalg import lu
>>> A = np.array([[2, 5, 8, 7], [5, 2, 2, 8], [7, 5, 6, 6], [5, 4, 4, 8]])
>>> p, l, u = lu(A)
>>> np.allclose(A - p @ l @ u, np.zeros((4, 4)))
True

scipy.linalg.lu_factor

scipy.linalg.lu_factor(a, overwrite_a=False, check_finite=True)
Compute pivoted LU decomposition of a matrix.
The decomposition is:

A = P L U

where P is a permutation matrix, L lower triangular with unit diagonal elements, and U upper triangular.
Parameters

a [(M, M) array_like] Matrix to decompose
overwrite_a

[bool, optional] Whether to overwrite data in A (may increase performance)
check_finite

[bool, optional] Whether to check that the input matrix contains only finite numbers. Dis-
abling may give a performance gain, but may result in problems (crashes, non-termination)
if the inputs do contain infinities or NaNs.

Returns

lu [(N, N) ndarray] Matrix containing U in its upper triangle, and L in its lower triangle. The
unit diagonal elements of L are not stored.
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piv [(N,) ndarray] Pivot indices representing the permutation matrix P: row i of matrix was
interchanged with row piv[i].

See also:

lu_solve

solve an equation system using the LU factorization of a matrix

Notes

This is a wrapper to the *GETRF routines from LAPACK.

Examples

>>> from scipy.linalg import lu_factor
>>> from numpy import tril, triu, allclose, zeros, eye
>>> A = np.array([[2, 5, 8, 7], [5, 2, 2, 8], [7, 5, 6, 6], [5, 4, 4, 8]])
>>> lu, piv = lu_factor(A)
>>> piv
array([2, 2, 3, 3], dtype=int32)

Convert LAPACK’s piv array to NumPy index and test the permutation

>>> piv_py = [2, 0, 3, 1]
>>> L, U = np.tril(lu, k=-1) + np.eye(4), np.triu(lu)
>>> np.allclose(A[piv_py] - L @ U, np.zeros((4, 4)))
True

scipy.linalg.lu_solve

scipy.linalg.lu_solve(lu_and_piv, b, trans=0, overwrite_b=False, check_finite=True)
Solve an equation system, a x = b, given the LU factorization of a

Parameters

(lu, piv) Factorization of the coefficient matrix a, as given by lu_factor
b [array] Right-hand side
trans [{0, 1, 2}, optional] Type of system to solve:

trans system
0 a x = b
1 a^T x = b
2 a^H x = b

overwrite_b
[bool, optional] Whether to overwrite data in b (may increase performance)

check_finite
[bool, optional] Whether to check that the input matrices contain only finite numbers. Dis-
abling may give a performance gain, but may result in problems (crashes, non-termination)
if the inputs do contain infinities or NaNs.

Returns
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x [array] Solution to the system
See also:

lu_factor

LU factorize a matrix

Examples

>>> from scipy.linalg import lu_factor, lu_solve
>>> A = np.array([[2, 5, 8, 7], [5, 2, 2, 8], [7, 5, 6, 6], [5, 4, 4, 8]])
>>> b = np.array([1, 1, 1, 1])
>>> lu, piv = lu_factor(A)
>>> x = lu_solve((lu, piv), b)
>>> np.allclose(A @ x - b, np.zeros((4,)))
True

scipy.linalg.svd

scipy.linalg.svd(a, full_matrices=True, compute_uv=True, overwrite_a=False, check_finite=True, la-
pack_driver=’gesdd’)

Singular Value Decomposition.
Factorizes the matrix a into two unitary matrices U and Vh, and a 1-D array s of singular values (real, non-negative)
such that a == U @ S @ Vh, where S is a suitably shaped matrix of zeros with main diagonal s.

Parameters

a [(M, N) array_like] Matrix to decompose.
full_matrices

[bool, optional] If True (default), U and Vh are of shape (M, M), (N, N). If False, the
shapes are (M, K) and (K, N), where K = min(M, N).

compute_uv
[bool, optional] Whether to compute also U and Vh in addition to s. Default is True.

overwrite_a
[bool, optional] Whether to overwrite a; may improve performance. Default is False.

check_finite
[bool, optional] Whether to check that the input matrix contains only finite numbers. Dis-
abling may give a performance gain, but may result in problems (crashes, non-termination)
if the inputs do contain infinities or NaNs.

lapack_driver
[{‘gesdd’, ‘gesvd’}, optional] Whether to use the more efficient divide-and-conquer approach
('gesdd') or general rectangular approach ('gesvd') to compute the SVD. MATLAB
and Octave use the 'gesvd' approach. Default is 'gesdd'.
New in version 0.18.

Returns

U [ndarray] Unitary matrix having left singular vectors as columns. Of shape (M, M) or (M,
K), depending on full_matrices.

s [ndarray] The singular values, sorted in non-increasing order. Of shape (K,), with K =
min(M, N).

Vh [ndarray] Unitary matrix having right singular vectors as rows. Of shape (N, N) or (K,
N) depending on full_matrices.
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For ‘‘compute_uv=False‘‘, only ‘‘s‘‘ is returned.
Raises

LinAlgError
If SVD computation does not converge.

See also:

svdvals

Compute singular values of a matrix.
diagsvd

Construct the Sigma matrix, given the vector s.

Examples

>>> from scipy import linalg
>>> m, n = 9, 6
>>> a = np.random.randn(m, n) + 1.j*np.random.randn(m, n)
>>> U, s, Vh = linalg.svd(a)
>>> U.shape, s.shape, Vh.shape
((9, 9), (6,), (6, 6))

Reconstruct the original matrix from the decomposition:

>>> sigma = np.zeros((m, n))
>>> for i in range(min(m, n)):
... sigma[i, i] = s[i]
>>> a1 = np.dot(U, np.dot(sigma, Vh))
>>> np.allclose(a, a1)
True

Alternatively, use full_matrices=False (notice that the shape of U is then (m, n) instead of (m, m)):

>>> U, s, Vh = linalg.svd(a, full_matrices=False)
>>> U.shape, s.shape, Vh.shape
((9, 6), (6,), (6, 6))
>>> S = np.diag(s)
>>> np.allclose(a, np.dot(U, np.dot(S, Vh)))
True

>>> s2 = linalg.svd(a, compute_uv=False)
>>> np.allclose(s, s2)
True

scipy.linalg.svdvals

scipy.linalg.svdvals(a, overwrite_a=False, check_finite=True)
Compute singular values of a matrix.

Parameters

a [(M, N) array_like] Matrix to decompose.
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overwrite_a
[bool, optional] Whether to overwrite a; may improve performance. Default is False.

check_finite
[bool, optional] Whether to check that the input matrix contains only finite numbers. Dis-
abling may give a performance gain, but may result in problems (crashes, non-termination)
if the inputs do contain infinities or NaNs.

Returns

s [(min(M, N),) ndarray] The singular values, sorted in decreasing order.
Raises

LinAlgError
If SVD computation does not converge.

See also:

svd

Compute the full singular value decomposition of a matrix.
diagsvd

Construct the Sigma matrix, given the vector s.

Notes

svdvals(a) only differs from svd(a, compute_uv=False) by its handling of the edge case of empty
a, where it returns an empty sequence:

>>> a = np.empty((0, 2))
>>> from scipy.linalg import svdvals
>>> svdvals(a)
array([], dtype=float64)

Examples

>>> from scipy.linalg import svdvals
>>> m = np.array([[1.0, 0.0],
... [2.0, 3.0],
... [1.0, 1.0],
... [0.0, 2.0],
... [1.0, 0.0]])
>>> svdvals(m)
array([ 4.28091555, 1.63516424])

We can verify the maximum singular value of m by computing the maximum length of m.dot(u) over all the unit
vectors u in the (x,y) plane. We approximate “all” the unit vectors with a large sample. Because of linearity, we
only need the unit vectors with angles in [0, pi].

>>> t = np.linspace(0, np.pi, 2000)
>>> u = np.array([np.cos(t), np.sin(t)])
>>> np.linalg.norm(m.dot(u), axis=0).max()
4.2809152422538475
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p is a projection matrix with rank 1. With exact arithmetic, its singular values would be [1, 0, 0, 0].

>>> v = np.array([0.1, 0.3, 0.9, 0.3])
>>> p = np.outer(v, v)
>>> svdvals(p)
array([ 1.00000000e+00, 2.02021698e-17, 1.56692500e-17,

8.15115104e-34])

The singular values of an orthogonal matrix are all 1. Here we create a random orthogonal matrix by using the rvs()
method of scipy.stats.ortho_group.

>>> from scipy.stats import ortho_group
>>> np.random.seed(123)
>>> orth = ortho_group.rvs(4)
>>> svdvals(orth)
array([ 1., 1., 1., 1.])

scipy.linalg.diagsvd

scipy.linalg.diagsvd(s, M, N)
Construct the sigma matrix in SVD from singular values and size M, N.

Parameters

s [(M,) or (N,) array_like] Singular values
M [int] Size of the matrix whose singular values are s.
N [int] Size of the matrix whose singular values are s.

Returns

S [(M, N) ndarray] The S-matrix in the singular value decomposition
See also:

svd

Singular value decomposition of a matrix
svdvals

Compute singular values of a matrix.

Examples

>>> from scipy.linalg import diagsvd
>>> vals = np.array([1, 2, 3]) # The array representing the computed svd
>>> diagsvd(vals, 3, 4)
array([[1, 0, 0, 0],

[0, 2, 0, 0],
[0, 0, 3, 0]])

>>> diagsvd(vals, 4, 3)
array([[1, 0, 0],

[0, 2, 0],
[0, 0, 3],
[0, 0, 0]])
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scipy.linalg.orth

scipy.linalg.orth(A, rcond=None)
Construct an orthonormal basis for the range of A using SVD

Parameters

A [(M, N) array_like] Input array
rcond [float, optional] Relative condition number. Singular values s smaller than rcond *

max(s) are considered zero. Default: floating point eps * max(M,N).
Returns

Q [(M,K) ndarray]Orthonormal basis for the range ofA.K= effective rank ofA, as determined
by rcond

See also:

svd

Singular value decomposition of a matrix
null_space

Matrix null space

Examples

>>> from scipy.linalg import orth
>>> A = np.array([[2, 0, 0], [0, 5, 0]]) # rank 2 array
>>> orth(A)
array([[0., 1.],

[1., 0.]])
>>> orth(A.T)
array([[0., 1.],

[1., 0.],
[0., 0.]])

scipy.linalg.null_space

scipy.linalg.null_space(A, rcond=None)
Construct an orthonormal basis for the null space of A using SVD

Parameters

A [(M, N) array_like] Input array
rcond [float, optional] Relative condition number. Singular values s smaller than rcond *

max(s) are considered zero. Default: floating point eps * max(M,N).
Returns

Z [(N, K) ndarray] Orthonormal basis for the null space of A. K = dimension of effective null
space, as determined by rcond

See also:

svd

Singular value decomposition of a matrix

802 Chapter 6. API Reference



SciPy Reference Guide, Release 1.3.1

orth

Matrix range

Examples

One-dimensional null space:

>>> from scipy.linalg import null_space
>>> A = np.array([[1, 1], [1, 1]])
>>> ns = null_space(A)
>>> ns * np.sign(ns[0,0]) # Remove the sign ambiguity of the vector
array([[ 0.70710678],

[-0.70710678]])

Two-dimensional null space:

>>> B = np.random.rand(3, 5)
>>> Z = null_space(B)
>>> Z.shape
(5, 2)
>>> np.allclose(B.dot(Z), 0)
True

The basis vectors are orthonormal (up to rounding error):

>>> Z.T.dot(Z)
array([[ 1.00000000e+00, 6.92087741e-17],

[ 6.92087741e-17, 1.00000000e+00]])

scipy.linalg.ldl

scipy.linalg.ldl(A, lower=True, hermitian=True, overwrite_a=False, check_finite=True)
Computes the LDLt or Bunch-Kaufman factorization of a symmetric/ hermitian matrix.
This function returns a block diagonal matrix D consisting blocks of size at most 2x2 and also a possibly permuted
unit lower triangular matrix L such that the factorization A = L D L^H or A = L D L^T holds. If lower is
False then (again possibly permuted) upper triangular matrices are returned as outer factors.
The permutation array can be used to triangularize the outer factors simply by a row shuffle, i.e., lu[perm, :] is
an upper/lower triangular matrix. This is also equivalent to multiplication with a permutation matrix P.dot(lu)
where P is a column-permuted identity matrix I[:, perm].
Depending on the value of the boolean lower, only upper or lower triangular part of the input array is referenced.
Hence a triangular matrix on entry would give the same result as if the full matrix is supplied.

Parameters

a [array_like] Square input array
lower [bool, optional] This switches between the lower and upper triangular outer factors of the

factorization. Lower triangular (lower=True) is the default.
hermitian [bool, optional] For complex-valued arrays, this defines whether a = a.conj().T or a

= a.T is assumed. For real-valued arrays, this switch has no effect.
overwrite_a

[bool, optional] Allow overwriting data in a (may enhance performance). The default is
False.
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check_finite
[bool, optional] Whether to check that the input matrices contain only finite numbers. Dis-
abling may give a performance gain, but may result in problems (crashes, non-termination)
if the inputs do contain infinities or NaNs.

Returns

lu [ndarray] The (possibly) permuted upper/lower triangular outer factor of the factorization.
d [ndarray] The block diagonal multiplier of the factorization.
perm [ndarray] The row-permutation index array that brings lu into triangular form.

Raises

ValueError
If input array is not square.

ComplexWarning
If a complex-valued array with nonzero imaginary parts on the diagonal is given and hermi-
tian is set to True.

See also:
cholesky, lu

Notes

This function uses ?SYTRF routines for symmetric matrices and ?HETRF routines for Hermitian matrices from
LAPACK. See [1] for the algorithm details.
Depending on the lower keyword value, only lower or upper triangular part of the input array is referenced.
Moreover, this keyword also defines the structure of the outer factors of the factorization.
New in version 1.1.0.

References

[1]

Examples

Given an upper triangular array a that represents the full symmetric array with its entries, obtain l, ‘d’ and the
permutation vector perm:

>>> import numpy as np
>>> from scipy.linalg import ldl
>>> a = np.array([[2, -1, 3], [0, 2, 0], [0, 0, 1]])
>>> lu, d, perm = ldl(a, lower=0) # Use the upper part
>>> lu
array([[ 0. , 0. , 1. ],

[ 0. , 1. , -0.5],
[ 1. , 1. , 1.5]])

>>> d
array([[-5. , 0. , 0. ],

[ 0. , 1.5, 0. ],
[ 0. , 0. , 2. ]])

>>> perm
(continues on next page)
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(continued from previous page)
array([2, 1, 0])
>>> lu[perm, :]
array([[ 1. , 1. , 1.5],

[ 0. , 1. , -0.5],
[ 0. , 0. , 1. ]])

>>> lu.dot(d).dot(lu.T)
array([[ 2., -1., 3.],

[-1., 2., 0.],
[ 3., 0., 1.]])

scipy.linalg.cholesky

scipy.linalg.cholesky(a, lower=False, overwrite_a=False, check_finite=True)
Compute the Cholesky decomposition of a matrix.
Returns the Cholesky decomposition, A = LL∗ or A = U∗U of a Hermitian positive-definite matrix A.

Parameters

a [(M, M) array_like] Matrix to be decomposed
lower [bool, optional] Whether to compute the upper or lower triangular Cholesky factorization.

Default is upper-triangular.
overwrite_a

[bool, optional] Whether to overwrite data in a (may improve performance).
check_finite

[bool, optional] Whether to check that the input matrix contains only finite numbers. Dis-
abling may give a performance gain, but may result in problems (crashes, non-termination)
if the inputs do contain infinities or NaNs.

Returns

c [(M, M) ndarray] Upper- or lower-triangular Cholesky factor of a.
Raises

LinAlgError
[if decomposition fails.]

Examples

>>> from scipy.linalg import cholesky
>>> a = np.array([[1,-2j],[2j,5]])
>>> L = cholesky(a, lower=True)
>>> L
array([[ 1.+0.j, 0.+0.j],

[ 0.+2.j, 1.+0.j]])
>>> L @ L.T.conj()
array([[ 1.+0.j, 0.-2.j],

[ 0.+2.j, 5.+0.j]])
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scipy.linalg.cholesky_banded

scipy.linalg.cholesky_banded(ab, overwrite_ab=False, lower=False, check_finite=True)
Cholesky decompose a banded Hermitian positive-definite matrix
The matrix a is stored in ab either in lower diagonal or upper diagonal ordered form:

ab[u + i - j, j] == a[i,j] (if upper form; i <= j)
ab[ i - j, j] == a[i,j] (if lower form; i >= j)

Example of ab (shape of a is (6,6), u=2):

upper form:
* * a02 a13 a24 a35
* a01 a12 a23 a34 a45
a00 a11 a22 a33 a44 a55

lower form:
a00 a11 a22 a33 a44 a55
a10 a21 a32 a43 a54 *
a20 a31 a42 a53 * *

Parameters

ab [(u + 1, M) array_like] Banded matrix
overwrite_ab

[bool, optional] Discard data in ab (may enhance performance)
lower [bool, optional] Is the matrix in the lower form. (Default is upper form)
check_finite

[bool, optional] Whether to check that the input matrix contains only finite numbers. Dis-
abling may give a performance gain, but may result in problems (crashes, non-termination)
if the inputs do contain infinities or NaNs.

Returns

c [(u + 1, M) ndarray] Cholesky factorization of a, in the same banded format as ab

See also:

cho_solve_banded

Solve a linear set equations, given the Cholesky factorization of a banded hermitian.

Examples

>>> from scipy.linalg import cholesky_banded
>>> from numpy import allclose, zeros, diag
>>> Ab = np.array([[0, 0, 1j, 2, 3j], [0, -1, -2, 3, 4], [9, 8, 7, 6, 9]])
>>> A = np.diag(Ab[0,2:], k=2) + np.diag(Ab[1,1:], k=1)
>>> A = A + A.conj().T + np.diag(Ab[2, :])
>>> c = cholesky_banded(Ab)
>>> C = np.diag(c[0, 2:], k=2) + np.diag(c[1, 1:], k=1) + np.diag(c[2, :])
>>> np.allclose(C.conj().T @ C - A, np.zeros((5, 5)))
True
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scipy.linalg.cho_factor

scipy.linalg.cho_factor(a, lower=False, overwrite_a=False, check_finite=True)
Compute the Cholesky decomposition of a matrix, to use in cho_solve
Returns a matrix containing the Cholesky decomposition, A = L L* or A = U* U of a Hermitian positive-
definite matrix a. The return value can be directly used as the first parameter to cho_solve.

Warning: The returned matrix also contains random data in the entries not used by the Cholesky decompo-
sition. If you need to zero these entries, use the function cholesky instead.

Parameters

a [(M, M) array_like] Matrix to be decomposed
lower [bool, optional] Whether to compute the upper or lower triangular Cholesky factorization

(Default: upper-triangular)
overwrite_a

[bool, optional] Whether to overwrite data in a (may improve performance)
check_finite

[bool, optional] Whether to check that the input matrix contains only finite numbers. Dis-
abling may give a performance gain, but may result in problems (crashes, non-termination)
if the inputs do contain infinities or NaNs.

Returns

c [(M, M) ndarray] Matrix whose upper or lower triangle contains the Cholesky factor of a.
Other parts of the matrix contain random data.

lower [bool] Flag indicating whether the factor is in the lower or upper triangle
Raises

LinAlgError
Raised if decomposition fails.

See also:

cho_solve

Solve a linear set equations using the Cholesky factorization of a matrix.

Examples

>>> from scipy.linalg import cho_factor
>>> A = np.array([[9, 3, 1, 5], [3, 7, 5, 1], [1, 5, 9, 2], [5, 1, 2, 6]])
>>> c, low = cho_factor(A)
>>> c
array([[3. , 1. , 0.33333333, 1.66666667],

[3. , 2.44948974, 1.90515869, -0.27216553],
[1. , 5. , 2.29330749, 0.8559528 ],
[5. , 1. , 2. , 1.55418563]])

>>> np.allclose(np.triu(c).T @ np. triu(c) - A, np.zeros((4, 4)))
True
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scipy.linalg.cho_solve

scipy.linalg.cho_solve(c_and_lower, b, overwrite_b=False, check_finite=True)
Solve the linear equations A x = b, given the Cholesky factorization of A.

Parameters

(c, lower) [tuple, (array, bool)] Cholesky factorization of a, as given by cho_factor
b [array] Right-hand side
overwrite_b

[bool, optional] Whether to overwrite data in b (may improve performance)
check_finite

[bool, optional] Whether to check that the input matrices contain only finite numbers. Dis-
abling may give a performance gain, but may result in problems (crashes, non-termination)
if the inputs do contain infinities or NaNs.

Returns

x [array] The solution to the system A x = b
See also:

cho_factor

Cholesky factorization of a matrix

Examples

>>> from scipy.linalg import cho_factor, cho_solve
>>> A = np.array([[9, 3, 1, 5], [3, 7, 5, 1], [1, 5, 9, 2], [5, 1, 2, 6]])
>>> c, low = cho_factor(A)
>>> x = cho_solve((c, low), [1, 1, 1, 1])
>>> np.allclose(A @ x - [1, 1, 1, 1], np.zeros(4))
True

scipy.linalg.cho_solve_banded

scipy.linalg.cho_solve_banded(cb_and_lower, b, overwrite_b=False, check_finite=True)
Solve the linear equations A x = b, given the Cholesky factorization of the banded hermitian A.

Parameters

(cb, lower) [tuple, (ndarray, bool)] cb is the Cholesky factorization of A, as given by cholesky_banded.
lower must be the same value that was given to cholesky_banded.

b [array_like] Right-hand side
overwrite_b

[bool, optional] If True, the function will overwrite the values in b.
check_finite

[bool, optional] Whether to check that the input matrices contain only finite numbers. Dis-
abling may give a performance gain, but may result in problems (crashes, non-termination)
if the inputs do contain infinities or NaNs.

Returns

x [array] The solution to the system A x = b
See also:
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cholesky_banded

Cholesky factorization of a banded matrix

Notes

New in version 0.8.0.

Examples

>>> from scipy.linalg import cholesky_banded, cho_solve_banded
>>> Ab = np.array([[0, 0, 1j, 2, 3j], [0, -1, -2, 3, 4], [9, 8, 7, 6, 9]])
>>> A = np.diag(Ab[0,2:], k=2) + np.diag(Ab[1,1:], k=1)
>>> A = A + A.conj().T + np.diag(Ab[2, :])
>>> c = cholesky_banded(Ab)
>>> x = cho_solve_banded((c, False), np.ones(5))
>>> np.allclose(A @ x - np.ones(5), np.zeros(5))
True

scipy.linalg.polar

scipy.linalg.polar(a, side=’right’)
Compute the polar decomposition.
Returns the factors of the polar decomposition [1] u and p such that a = up (if side is “right”) or a = pu (if
side is “left”), where p is positive semidefinite. Depending on the shape of a, either the rows or columns of u are
orthonormal. When a is a square array, u is a square unitary array. When a is not square, the “canonical polar
decomposition” [2] is computed.

Parameters

a [(m, n) array_like] The array to be factored.
side [{‘left’, ‘right’}, optional] Determines whether a right or left polar decomposition is com-

puted. If side is “right”, then a = up. If side is “left”, then a = pu. The default is
“right”.

Returns

u [(m, n) ndarray] If a is square, then u is unitary. If m > n, then the columns of a are or-
thonormal, and if m < n, then the rows of u are orthonormal.

p [ndarray] p is Hermitian positive semidefinite. If a is nonsingular, p is positive definite. The
shape of p is (n, n) or (m, m), depending on whether side is “right” or “left”, respectively.

References

[1], [2]

Examples
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>>> from scipy.linalg import polar
>>> a = np.array([[1, -1], [2, 4]])
>>> u, p = polar(a)
>>> u
array([[ 0.85749293, -0.51449576],

[ 0.51449576, 0.85749293]])
>>> p
array([[ 1.88648444, 1.2004901 ],

[ 1.2004901 , 3.94446746]])

A non-square example, with m < n:

>>> b = np.array([[0.5, 1, 2], [1.5, 3, 4]])
>>> u, p = polar(b)
>>> u
array([[-0.21196618, -0.42393237, 0.88054056],

[ 0.39378971, 0.78757942, 0.4739708 ]])
>>> p
array([[ 0.48470147, 0.96940295, 1.15122648],

[ 0.96940295, 1.9388059 , 2.30245295],
[ 1.15122648, 2.30245295, 3.65696431]])

>>> u.dot(p) # Verify the decomposition.
array([[ 0.5, 1. , 2. ],

[ 1.5, 3. , 4. ]])
>>> u.dot(u.T) # The rows of u are orthonormal.
array([[ 1.00000000e+00, -2.07353665e-17],

[ -2.07353665e-17, 1.00000000e+00]])

Another non-square example, with m > n:

>>> c = b.T
>>> u, p = polar(c)
>>> u
array([[-0.21196618, 0.39378971],

[-0.42393237, 0.78757942],
[ 0.88054056, 0.4739708 ]])

>>> p
array([[ 1.23116567, 1.93241587],

[ 1.93241587, 4.84930602]])
>>> u.dot(p) # Verify the decomposition.
array([[ 0.5, 1.5],

[ 1. , 3. ],
[ 2. , 4. ]])

>>> u.T.dot(u) # The columns of u are orthonormal.
array([[ 1.00000000e+00, -1.26363763e-16],

[ -1.26363763e-16, 1.00000000e+00]])

scipy.linalg.qr

scipy.linalg.qr(a, overwrite_a=False, lwork=None, mode=’full’, pivoting=False, check_finite=True)
Compute QR decomposition of a matrix.
Calculate the decomposition A = Q R where Q is unitary/orthogonal and R upper triangular.

810 Chapter 6. API Reference



SciPy Reference Guide, Release 1.3.1

Parameters

a [(M, N) array_like] Matrix to be decomposed
overwrite_a

[bool, optional] Whether data in a is overwritten (may improve performance)
lwork [int, optional] Work array size, lwork >= a.shape[1]. If None or -1, an optimal size is com-

puted.
mode [{‘full’, ‘r’, ‘economic’, ‘raw’}, optional] Determines what information is to be returned: either

both Q and R (‘full’, default), only R (‘r’) or both Q and R but computed in economy-size
(‘economic’, see Notes). The final option ‘raw’ (added in SciPy 0.11) makes the function
return two matrices (Q, TAU) in the internal format used by LAPACK.

pivoting [bool, optional] Whether or not factorization should include pivoting for rank-revealing qr
decomposition. If pivoting, compute the decomposition A P = Q R as above, but where
P is chosen such that the diagonal of R is non-increasing.

check_finite
[bool, optional] Whether to check that the input matrix contains only finite numbers. Dis-
abling may give a performance gain, but may result in problems (crashes, non-termination)
if the inputs do contain infinities or NaNs.

Returns

Q [float or complex ndarray] Of shape (M, M), or (M, K) for mode='economic'. Not
returned if mode='r'.

R [float or complex ndarray] Of shape (M, N), or (K, N) for mode='economic'. K =
min(M, N).

P [int ndarray] Of shape (N,) for pivoting=True. Not returned if pivoting=False.
Raises

LinAlgError
Raised if decomposition fails

Notes

This is an interface to the LAPACK routines dgeqrf, zgeqrf, dorgqr, zungqr, dgeqp3, and zgeqp3.
If mode=economic, the shapes of Q and R are (M, K) and (K, N) instead of (M,M) and (M,N), with K=min(M,
N).

Examples

>>> from scipy import random, linalg, dot, diag, all, allclose
>>> a = random.randn(9, 6)

>>> q, r = linalg.qr(a)
>>> allclose(a, np.dot(q, r))
True
>>> q.shape, r.shape
((9, 9), (9, 6))

>>> r2 = linalg.qr(a, mode='r')
>>> allclose(r, r2)
True
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>>> q3, r3 = linalg.qr(a, mode='economic')
>>> q3.shape, r3.shape
((9, 6), (6, 6))

>>> q4, r4, p4 = linalg.qr(a, pivoting=True)
>>> d = abs(diag(r4))
>>> all(d[1:] <= d[:-1])
True
>>> allclose(a[:, p4], dot(q4, r4))
True
>>> q4.shape, r4.shape, p4.shape
((9, 9), (9, 6), (6,))

>>> q5, r5, p5 = linalg.qr(a, mode='economic', pivoting=True)
>>> q5.shape, r5.shape, p5.shape
((9, 6), (6, 6), (6,))

scipy.linalg.qr_multiply

scipy.linalg.qr_multiply(a, c, mode=’right’, pivoting=False, conjugate=False, overwrite_a=False,
overwrite_c=False)

Calculate the QR decomposition and multiply Q with a matrix.
Calculate the decomposition A = Q R where Q is unitary/orthogonal and R upper triangular. Multiply Q with a
vector or a matrix c.

Parameters

a [(M, N), array_like] Input array
c [array_like] Input array to be multiplied by q.
mode [{‘left’, ‘right’}, optional] Q @ c is returned if mode is ‘left’, c @ Q is returned if mode

is ‘right’. The shape of c must be appropriate for the matrix multiplications, if mode is
‘left’, min(a.shape) == c.shape[0], if mode is ‘right’, a.shape[0] == c.
shape[1].

pivoting [bool, optional] Whether or not factorization should include pivoting for rank-revealing qr
decomposition, see the documentation of qr.

conjugate [bool, optional] Whether Q should be complex-conjugated. This might be faster than explicit
conjugation.

overwrite_a
[bool, optional] Whether data in a is overwritten (may improve performance)

overwrite_c
[bool, optional] Whether data in c is overwritten (may improve performance). If this is used,
c must be big enough to keep the result, i.e. c.shape[0] = a.shape[0] if mode is ‘left’.

Returns

CQ [ndarray] The product of Q and c.
R [(K, N), ndarray] R array of the resulting QR factorization where K = min(M, N).
P [(N,) ndarray] Integer pivot array. Only returned when pivoting=True.

Raises

LinAlgError
Raised if QR decomposition fails.
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Notes

This is an interface to the LAPACK routines ?GEQRF, ?ORMQR, ?UNMQR, and ?GEQP3.
New in version 0.11.0.

Examples

>>> from scipy.linalg import qr_multiply, qr
>>> A = np.array([[1, 3, 3], [2, 3, 2], [2, 3, 3], [1, 3, 2]])
>>> qc, r1, piv1 = qr_multiply(A, 2*np.eye(4), pivoting=1)
>>> qc
array([[-1., 1., -1.],

[-1., -1., 1.],
[-1., -1., -1.],
[-1., 1., 1.]])

>>> r1
array([[-6., -3., -5. ],

[ 0., -1., -1.11022302e-16],
[ 0., 0., -1. ]])

>>> piv1
array([1, 0, 2], dtype=int32)
>>> q2, r2, piv2 = qr(A, mode='economic', pivoting=1)
>>> np.allclose(2*q2 - qc, np.zeros((4, 3)))
True

scipy.linalg.qr_update

scipy.linalg.qr_update(Q, R, u, v, overwrite_qruv=False, check_finite=True)
Rank-k QR update
If A = Q R is the QR factorization of A, return the QR factorization of A + u v**T for real A or A + u
v**H for complex A.

Parameters

Q [(M, M) or (M, N) array_like] Unitary/orthogonal matrix from the qr decomposition of A.
R [(M, N) or (N, N) array_like] Upper triangular matrix from the qr decomposition of A.
u [(M,) or (M, k) array_like] Left update vector
v [(N,) or (N, k) array_like] Right update vector
overwrite_qruv

[bool, optional] If True, consume Q, R, u, and v, if possible, while performing the update,
otherwise make copies as necessary. Defaults to False.

check_finite
[bool, optional] Whether to check that the input matrix contains only finite numbers. Dis-
abling may give a performance gain, but may result in problems (crashes, non-termination)
if the inputs do contain infinities or NaNs. Default is True.

Returns

Q1 [ndarray] Updated unitary/orthogonal factor
R1 [ndarray] Updated upper triangular factor

See also:
qr, qr_multiply, qr_delete, qr_insert
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Notes

This routine does not guarantee that the diagonal entries of R1 are real or positive.
New in version 0.16.0.

References

[1], [2], [3]

Examples

>>> from scipy import linalg
>>> a = np.array([[ 3., -2., -2.],
... [ 6., -9., -3.],
... [ -3., 10., 1.],
... [ 6., -7., 4.],
... [ 7., 8., -6.]])
>>> q, r = linalg.qr(a)

Given this q, r decomposition, perform a rank 1 update.

>>> u = np.array([7., -2., 4., 3., 5.])
>>> v = np.array([1., 3., -5.])
>>> q_up, r_up = linalg.qr_update(q, r, u, v, False)
>>> q_up
array([[ 0.54073807, 0.18645997, 0.81707661, -0.02136616, 0.06902409],␣
↪→ # may vary (signs)

[ 0.21629523, -0.63257324, 0.06567893, 0.34125904, -0.65749222],
[ 0.05407381, 0.64757787, -0.12781284, -0.20031219, -0.72198188],
[ 0.48666426, -0.30466718, -0.27487277, -0.77079214, 0.0256951 ],
[ 0.64888568, 0.23001 , -0.4859845 , 0.49883891, 0.20253783]])

>>> r_up
array([[ 18.49324201, 24.11691794, -44.98940746], # may vary (signs)

[ 0. , 31.95894662, -27.40998201],
[ 0. , 0. , -9.25451794],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ]])

The update is equivalent, but faster than the following.

>>> a_up = a + np.outer(u, v)
>>> q_direct, r_direct = linalg.qr(a_up)

Check that we have equivalent results:

>>> np.allclose(np.dot(q_up, r_up), a_up)
True

And the updated Q is still unitary:

>>> np.allclose(np.dot(q_up.T, q_up), np.eye(5))
True
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Updating economic (reduced, thin) decompositions is also possible:

>>> qe, re = linalg.qr(a, mode='economic')
>>> qe_up, re_up = linalg.qr_update(qe, re, u, v, False)
>>> qe_up
array([[ 0.54073807, 0.18645997, 0.81707661], # may vary (signs)

[ 0.21629523, -0.63257324, 0.06567893],
[ 0.05407381, 0.64757787, -0.12781284],
[ 0.48666426, -0.30466718, -0.27487277],
[ 0.64888568, 0.23001 , -0.4859845 ]])

>>> re_up
array([[ 18.49324201, 24.11691794, -44.98940746], # may vary (signs)

[ 0. , 31.95894662, -27.40998201],
[ 0. , 0. , -9.25451794]])

>>> np.allclose(np.dot(qe_up, re_up), a_up)
True
>>> np.allclose(np.dot(qe_up.T, qe_up), np.eye(3))
True

Similarly to the above, perform a rank 2 update.

>>> u2 = np.array([[ 7., -1,],
... [-2., 4.],
... [ 4., 2.],
... [ 3., -6.],
... [ 5., 3.]])
>>> v2 = np.array([[ 1., 2.],
... [ 3., 4.],
... [-5., 2]])
>>> q_up2, r_up2 = linalg.qr_update(q, r, u2, v2, False)
>>> q_up2
array([[-0.33626508, -0.03477253, 0.61956287, -0.64352987, -0.29618884],␣
↪→ # may vary (signs)

[-0.50439762, 0.58319694, -0.43010077, -0.33395279, 0.33008064],
[-0.21016568, -0.63123106, 0.0582249 , -0.13675572, 0.73163206],
[ 0.12609941, 0.49694436, 0.64590024, 0.31191919, 0.47187344],
[-0.75659643, -0.11517748, 0.10284903, 0.5986227 , -0.21299983]])

>>> r_up2
array([[-23.79075451, -41.1084062 , 24.71548348], # may vary (signs)

[ 0. , -33.83931057, 11.02226551],
[ 0. , 0. , 48.91476811],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ]])

This update is also a valid qr decomposition of A + U V**T.

>>> a_up2 = a + np.dot(u2, v2.T)
>>> np.allclose(a_up2, np.dot(q_up2, r_up2))
True
>>> np.allclose(np.dot(q_up2.T, q_up2), np.eye(5))
True
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scipy.linalg.qr_delete

scipy.linalg.qr_delete(Q, R, k, int p=1, which=u’row’, overwrite_qr=False, check_finite=True)
QR downdate on row or column deletions
If A = Q R is the QR factorization of A, return the QR factorization of A where p rows or columns have been
removed starting at row or column k.

Parameters

Q [(M, M) or (M, N) array_like] Unitary/orthogonal matrix from QR decomposition.
R [(M, N) or (N, N) array_like] Upper triangular matrix from QR decomposition.
k [int] Index of the first row or column to delete.
p [int, optional] Number of rows or columns to delete, defaults to 1.
which: {‘row’, ‘col’}, optional

Determines if rows or columns will be deleted, defaults to ‘row’
overwrite_qr

[bool, optional] If True, consume Q and R, overwriting their contents with their downdated
versions, and returning approriately sized views. Defaults to False.

check_finite
[bool, optional] Whether to check that the input matrix contains only finite numbers. Dis-
abling may give a performance gain, but may result in problems (crashes, non-termination)
if the inputs do contain infinities or NaNs. Default is True.

Returns

Q1 [ndarray] Updated unitary/orthogonal factor
R1 [ndarray] Updated upper triangular factor

See also:
qr, qr_multiply, qr_insert, qr_update

Notes

This routine does not guarantee that the diagonal entries of R1 are positive.
New in version 0.16.0.

References

[1], [2], [3]

Examples

>>> from scipy import linalg
>>> a = np.array([[ 3., -2., -2.],
... [ 6., -9., -3.],
... [ -3., 10., 1.],
... [ 6., -7., 4.],
... [ 7., 8., -6.]])
>>> q, r = linalg.qr(a)

Given this QR decomposition, update q and r when 2 rows are removed.
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>>> q1, r1 = linalg.qr_delete(q, r, 2, 2, 'row', False)
>>> q1
array([[ 0.30942637, 0.15347579, 0.93845645], # may vary (signs)

[ 0.61885275, 0.71680171, -0.32127338],
[ 0.72199487, -0.68017681, -0.12681844]])

>>> r1
array([[ 9.69535971, -0.4125685 , -6.80738023], # may vary (signs)

[ 0. , -12.19958144, 1.62370412],
[ 0. , 0. , -0.15218213]])

The update is equivalent, but faster than the following.

>>> a1 = np.delete(a, slice(2,4), 0)
>>> a1
array([[ 3., -2., -2.],

[ 6., -9., -3.],
[ 7., 8., -6.]])

>>> q_direct, r_direct = linalg.qr(a1)

Check that we have equivalent results:

>>> np.dot(q1, r1)
array([[ 3., -2., -2.],

[ 6., -9., -3.],
[ 7., 8., -6.]])

>>> np.allclose(np.dot(q1, r1), a1)
True

And the updated Q is still unitary:

>>> np.allclose(np.dot(q1.T, q1), np.eye(3))
True

scipy.linalg.qr_insert

scipy.linalg.qr_insert(Q, R, u, k, which=u’row’, rcond=None, overwrite_qru=False,
check_finite=True)

QR update on row or column insertions
If A = Q R is the QR factorization of A, return the QR factorization of A where rows or columns have been
inserted starting at row or column k.

Parameters

Q [(M, M) array_like] Unitary/orthogonal matrix from the QR decomposition of A.
R [(M, N) array_like] Upper triangular matrix from the QR decomposition of A.
u [(N,), (p, N), (M,), or (M, p) array_like] Rows or columns to insert
k [int] Index before which u is to be inserted.
which: {‘row’, ‘col’}, optional

Determines if rows or columns will be inserted, defaults to ‘row’
rcond [float] Lower bound on the reciprocal condition number of Q augmented with u/||u||

Only used when updating economic mode (thin, (M,N) (N,N)) decompositions. If None,
machine precision is used. Defaults to None.
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overwrite_qru
[bool, optional] If True, consume Q, R, and u, if possible, while performing the update,
otherwise make copies as necessary. Defaults to False.

check_finite
[bool, optional] Whether to check that the input matrices contain only finite numbers. Dis-
abling may give a performance gain, but may result in problems (crashes, non-termination)
if the inputs do contain infinities or NaNs. Default is True.

Returns

Q1 [ndarray] Updated unitary/orthogonal factor
R1 [ndarray] Updated upper triangular factor

Raises

LinAlgError :
If updating a (M,N) (N,N) factorization and the reciprocal condition number of Q augmented
with u/||u|| is smaller than rcond.

See also:
qr, qr_multiply, qr_delete, qr_update

Notes

This routine does not guarantee that the diagonal entries of R1 are positive.
New in version 0.16.0.

References

[1], [2], [3]

Examples

>>> from scipy import linalg
>>> a = np.array([[ 3., -2., -2.],
... [ 6., -7., 4.],
... [ 7., 8., -6.]])
>>> q, r = linalg.qr(a)

Given this QR decomposition, update q and r when 2 rows are inserted.

>>> u = np.array([[ 6., -9., -3.],
... [ -3., 10., 1.]])
>>> q1, r1 = linalg.qr_insert(q, r, u, 2, 'row')
>>> q1
array([[-0.25445668, 0.02246245, 0.18146236, -0.72798806, 0.60979671],␣
↪→ # may vary (signs)

[-0.50891336, 0.23226178, -0.82836478, -0.02837033, -0.00828114],
[-0.50891336, 0.35715302, 0.38937158, 0.58110733, 0.35235345],
[ 0.25445668, -0.52202743, -0.32165498, 0.36263239, 0.65404509],
[-0.59373225, -0.73856549, 0.16065817, -0.0063658 , -0.27595554]])

>>> r1
(continues on next page)
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(continued from previous page)
array([[-11.78982612, 6.44623587, 3.81685018], # may vary (signs)

[ 0. , -16.01393278, 3.72202865],
[ 0. , 0. , -6.13010256],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ]])

The update is equivalent, but faster than the following.

>>> a1 = np.insert(a, 2, u, 0)
>>> a1
array([[ 3., -2., -2.],

[ 6., -7., 4.],
[ 6., -9., -3.],
[ -3., 10., 1.],
[ 7., 8., -6.]])

>>> q_direct, r_direct = linalg.qr(a1)

Check that we have equivalent results:

>>> np.dot(q1, r1)
array([[ 3., -2., -2.],

[ 6., -7., 4.],
[ 6., -9., -3.],
[ -3., 10., 1.],
[ 7., 8., -6.]])

>>> np.allclose(np.dot(q1, r1), a1)
True

And the updated Q is still unitary:

>>> np.allclose(np.dot(q1.T, q1), np.eye(5))
True

scipy.linalg.rq

scipy.linalg.rq(a, overwrite_a=False, lwork=None, mode=’full’, check_finite=True)
Compute RQ decomposition of a matrix.
Calculate the decomposition A = R Q where Q is unitary/orthogonal and R upper triangular.

Parameters

a [(M, N) array_like] Matrix to be decomposed
overwrite_a

[bool, optional] Whether data in a is overwritten (may improve performance)
lwork [int, optional] Work array size, lwork >= a.shape[1]. If None or -1, an optimal size is com-

puted.
mode [{‘full’, ‘r’, ‘economic’}, optional] Determines what information is to be returned: either

both Q and R (‘full’, default), only R (‘r’) or both Q and R but computed in economy-size
(‘economic’, see Notes).

check_finite
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[bool, optional] Whether to check that the input matrix contains only finite numbers. Dis-
abling may give a performance gain, but may result in problems (crashes, non-termination)
if the inputs do contain infinities or NaNs.

Returns

R [float or complex ndarray] Of shape (M, N) or (M, K) for mode='economic'. K =
min(M, N).

Q [float or complex ndarray] Of shape (N, N) or (K, N) for mode='economic'. Not re-
turned if mode='r'.

Raises

LinAlgError
If decomposition fails.

Notes

This is an interface to the LAPACK routines sgerqf, dgerqf, cgerqf, zgerqf, sorgrq, dorgrq, cungrq and zungrq.
If mode=economic, the shapes of Q and R are (K, N) and (M, K) instead of (N,N) and (M,N), with K=min(M,
N).

Examples

>>> from scipy import linalg
>>> a = np.random.randn(6, 9)
>>> r, q = linalg.rq(a)
>>> np.allclose(a, r @ q)
True
>>> r.shape, q.shape
((6, 9), (9, 9))
>>> r2 = linalg.rq(a, mode='r')
>>> np.allclose(r, r2)
True
>>> r3, q3 = linalg.rq(a, mode='economic')
>>> r3.shape, q3.shape
((6, 6), (6, 9))

scipy.linalg.qz

scipy.linalg.qz(A, B, output=’real’, lwork=None, sort=None, overwrite_a=False, overwrite_b=False,
check_finite=True)

QZ decomposition for generalized eigenvalues of a pair of matrices.
The QZ, or generalized Schur, decomposition for a pair of N x N nonsymmetric matrices (A,B) is:

(A,B) = (Q*AA*Z', Q*BB*Z')

where AA, BB is in generalized Schur form if BB is upper-triangular with non-negative diagonal and AA is upper-
triangular, or for real QZ decomposition (output='real') block upper triangular with 1x1 and 2x2 blocks. In
this case, the 1x1 blocks correspond to real generalized eigenvalues and 2x2 blocks are ‘standardized’ by making
the corresponding elements of BB have the form:
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[ a 0 ]
[ 0 b ]

and the pair of corresponding 2x2 blocks in AA and BB will have a complex conjugate pair of generalized eigen-
values. If (output='complex') or A and B are complex matrices, Z’ denotes the conjugate-transpose of Z. Q
and Z are unitary matrices.

Parameters

A [(N, N) array_like] 2d array to decompose
B [(N, N) array_like] 2d array to decompose
output [{‘real’, ‘complex’}, optional] Construct the real or complex QZ decomposition for real ma-

trices. Default is ‘real’.
lwork [int, optional] Work array size. If None or -1, it is automatically computed.
sort [{None, callable, ‘lhp’, ‘rhp’, ‘iuc’, ‘ouc’}, optional] NOTE: THIS INPUT IS DISABLED

FOR NOW. Use ordqz instead.
Specifies whether the upper eigenvalues should be sorted. A callable may be passed that,
given a eigenvalue, returns a boolean denoting whether the eigenvalue should be sorted to the
top-left (True). For real matrix pairs, the sort function takes three real arguments (alphar,
alphai, beta). The eigenvalue x = (alphar + alphai*1j)/beta. For complex
matrix pairs or output=’complex’, the sort function takes two complex arguments (alpha,
beta). The eigenvalue x = (alpha/beta). Alternatively, string parameters may be
used:
• ‘lhp’ Left-hand plane (x.real < 0.0)
• ‘rhp’ Right-hand plane (x.real > 0.0)
• ‘iuc’ Inside the unit circle (x*x.conjugate() < 1.0)
• ‘ouc’ Outside the unit circle (x*x.conjugate() > 1.0)
Defaults to None (no sorting).

overwrite_a
[bool, optional] Whether to overwrite data in a (may improve performance)

overwrite_b
[bool, optional] Whether to overwrite data in b (may improve performance)

check_finite
[bool, optional] If true checks the elements of A and B are finite numbers. If false does no
checking and passes matrix through to underlying algorithm.

Returns

AA [(N, N) ndarray] Generalized Schur form of A.
BB [(N, N) ndarray] Generalized Schur form of B.
Q [(N, N) ndarray] The left Schur vectors.
Z [(N, N) ndarray] The right Schur vectors.

See also:
ordqz

Notes

Q is transposed versus the equivalent function in Matlab.
New in version 0.11.0.
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Examples

>>> from scipy import linalg
>>> np.random.seed(1234)
>>> A = np.arange(9).reshape((3, 3))
>>> B = np.random.randn(3, 3)

>>> AA, BB, Q, Z = linalg.qz(A, B)
>>> AA
array([[-13.40928183, -4.62471562, 1.09215523],

[ 0. , 0. , 1.22805978],
[ 0. , 0. , 0.31973817]])

>>> BB
array([[ 0.33362547, -1.37393632, 0.02179805],

[ 0. , 1.68144922, 0.74683866],
[ 0. , 0. , 0.9258294 ]])

>>> Q
array([[ 0.14134727, -0.97562773, 0.16784365],

[ 0.49835904, -0.07636948, -0.86360059],
[ 0.85537081, 0.20571399, 0.47541828]])

>>> Z
array([[-0.24900855, -0.51772687, 0.81850696],

[-0.79813178, 0.58842606, 0.12938478],
[-0.54861681, -0.6210585 , -0.55973739]])

scipy.linalg.ordqz

scipy.linalg.ordqz(A, B, sort=’lhp’, output=’real’, overwrite_a=False, overwrite_b=False,
check_finite=True)

QZ decomposition for a pair of matrices with reordering.
New in version 0.17.0.

Parameters

A [(N, N) array_like] 2d array to decompose
B [(N, N) array_like] 2d array to decompose
sort [{callable, ‘lhp’, ‘rhp’, ‘iuc’, ‘ouc’}, optional] Specifies whether the upper eigenvalues should

be sorted. A callable may be passed that, given an ordered pair (alpha, beta) rep-
resenting the eigenvalue x = (alpha/beta), returns a boolean denoting whether the
eigenvalue should be sorted to the top-left (True). For the real matrix pairs beta is real
while alpha can be complex, and for complex matrix pairs both alpha and beta can be
complex. The callable must be able to accept a numpy array. Alternatively, string parameters
may be used:
• ‘lhp’ Left-hand plane (x.real < 0.0)
• ‘rhp’ Right-hand plane (x.real > 0.0)
• ‘iuc’ Inside the unit circle (x*x.conjugate() < 1.0)
• ‘ouc’ Outside the unit circle (x*x.conjugate() > 1.0)
With the predefined sorting functions, an infinite eigenvalue (i.e. alpha != 0 and beta
= 0) is considered to lie in neither the left-hand nor the right-hand plane, but it is consid-
ered to lie outside the unit circle. For the eigenvalue (alpha, beta) = (0, 0) the
predefined sorting functions all return False.

output [str {‘real’,’complex’}, optional] Construct the real or complex QZ decomposition for real
matrices. Default is ‘real’.
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overwrite_a
[bool, optional] If True, the contents of A are overwritten.

overwrite_b
[bool, optional] If True, the contents of B are overwritten.

check_finite
[bool, optional] If true checks the elements of A and B are finite numbers. If false does no
checking and passes matrix through to underlying algorithm.

Returns

AA [(N, N) ndarray] Generalized Schur form of A.
BB [(N, N) ndarray] Generalized Schur form of B.
alpha [(N,) ndarray] alpha = alphar + alphai * 1j. See notes.
beta [(N,) ndarray] See notes.
Q [(N, N) ndarray] The left Schur vectors.
Z [(N, N) ndarray] The right Schur vectors.

See also:
qz

Notes

On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will be the generalized eigenvalues.
ALPHAR(j) + ALPHAI(j)*i and BETA(j),j=1,...,N are the diagonals of the complex Schur form
(S,T) that would result if the 2-by-2 diagonal blocks of the real generalized Schur form of (A,B) were further
reduced to triangular form using complex unitary transformations. If ALPHAI(j) is zero, then the j-th eigenvalue
is real; if positive, then the j-th and (j+1)-st eigenvalues are a complex conjugate pair, with ALPHAI(j+1)
negative.

Examples

>>> from scipy.linalg import ordqz
>>> A = np.array([[2, 5, 8, 7], [5, 2, 2, 8], [7, 5, 6, 6], [5, 4, 4, 8]])
>>> B = np.array([[0, 6, 0, 0], [5, 0, 2, 1], [5, 2, 6, 6], [4, 7, 7, 7]])
>>> AA, BB, alpha, beta, Q, Z = ordqz(A, B, sort='lhp')

Since we have sorted for left half plane eigenvalues, negatives come first

>>> (alpha/beta).real < 0
array([ True, True, False, False], dtype=bool)

scipy.linalg.schur

scipy.linalg.schur(a, output=’real’, lwork=None, overwrite_a=False, sort=None, check_finite=True)
Compute Schur decomposition of a matrix.
The Schur decomposition is:

A = Z T Z^H

where Z is unitary and T is either upper-triangular, or for real Schur decomposition (output=’real’), quasi-upper
triangular. In the quasi-triangular form, 2x2 blocks describing complex-valued eigenvalue pairs may extrude from
the diagonal.
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Parameters

a [(M, M) array_like] Matrix to decompose
output [{‘real’, ‘complex’}, optional] Construct the real or complex Schur decomposition (for real

matrices).
lwork [int, optional] Work array size. If None or -1, it is automatically computed.
overwrite_a

[bool, optional] Whether to overwrite data in a (may improve performance).
sort [{None, callable, ‘lhp’, ‘rhp’, ‘iuc’, ‘ouc’}, optional] Specifies whether the upper eigenvalues

should be sorted. A callable may be passed that, given a eigenvalue, returns a boolean de-
noting whether the eigenvalue should be sorted to the top-left (True). Alternatively, string
parameters may be used:

'lhp' Left-hand plane (x.real < 0.0)
'rhp' Right-hand plane (x.real > 0.0)
'iuc' Inside the unit circle (x*x.conjugate() <= 1.0)
'ouc' Outside the unit circle (x*x.conjugate() > 1.0)

Defaults to None (no sorting).
check_finite

[bool, optional] Whether to check that the input matrix contains only finite numbers. Dis-
abling may give a performance gain, but may result in problems (crashes, non-termination)
if the inputs do contain infinities or NaNs.

Returns

T [(M, M) ndarray] Schur form of A. It is real-valued for the real Schur decomposition.
Z [(M, M) ndarray] An unitary Schur transformation matrix for A. It is real-valued for the real

Schur decomposition.
sdim [int] If and only if sorting was requested, a third return value will contain the number of

eigenvalues satisfying the sort condition.
Raises

LinAlgError
Error raised under three conditions:
1. The algorithm failed due to a failure of the QR algorithm to compute all eigenvalues
2. If eigenvalue sorting was requested, the eigenvalues could not be reordered due to a failure

to separate eigenvalues, usually because of poor conditioning
3. If eigenvalue sorting was requested, roundoff errors caused the leading eigenvalues to no

longer satisfy the sorting condition
See also:

rsf2csf

Convert real Schur form to complex Schur form

Examples

>>> from scipy.linalg import schur, eigvals
>>> A = np.array([[0, 2, 2], [0, 1, 2], [1, 0, 1]])
>>> T, Z = schur(A)
>>> T
array([[ 2.65896708, 1.42440458, -1.92933439],

[ 0. , -0.32948354, -0.49063704],
(continues on next page)
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(continued from previous page)
[ 0. , 1.31178921, -0.32948354]])

>>> Z
array([[0.72711591, -0.60156188, 0.33079564],

[0.52839428, 0.79801892, 0.28976765],
[0.43829436, 0.03590414, -0.89811411]])

>>> T2, Z2 = schur(A, output='complex')
>>> T2
array([[ 2.65896708, -1.22839825+1.32378589j, 0.42590089+1.51937378j],

[ 0. , -0.32948354+0.80225456j, -0.59877807+0.56192146j],
[ 0. , 0. , -0.32948354-0.80225456j]])

>>> eigvals(T2)
array([2.65896708, -0.32948354+0.80225456j, -0.32948354-0.80225456j])

An arbitrary custom eig-sorting condition, having positive imaginary part, which is satisfied by only one eigenvalue

>>> T3, Z3, sdim = schur(A, output='complex', sort=lambda x: x.imag > 0)
>>> sdim
1

scipy.linalg.rsf2csf

scipy.linalg.rsf2csf(T, Z, check_finite=True)
Convert real Schur form to complex Schur form.
Convert a quasi-diagonal real-valued Schur form to the upper triangular complex-valued Schur form.

Parameters

T [(M, M) array_like] Real Schur form of the original array
Z [(M, M) array_like] Schur transformation matrix
check_finite

[bool, optional]Whether to check that the input arrays contain only finite numbers. Disabling
may give a performance gain, but may result in problems (crashes, non-termination) if the
inputs do contain infinities or NaNs.

Returns

T [(M, M) ndarray] Complex Schur form of the original array
Z [(M, M) ndarray] Schur transformation matrix corresponding to the complex form

See also:

schur

Schur decomposition of an array

Examples

>>> from scipy.linalg import schur, rsf2csf
>>> A = np.array([[0, 2, 2], [0, 1, 2], [1, 0, 1]])
>>> T, Z = schur(A)
>>> T

(continues on next page)
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(continued from previous page)
array([[ 2.65896708, 1.42440458, -1.92933439],

[ 0. , -0.32948354, -0.49063704],
[ 0. , 1.31178921, -0.32948354]])

>>> Z
array([[0.72711591, -0.60156188, 0.33079564],

[0.52839428, 0.79801892, 0.28976765],
[0.43829436, 0.03590414, -0.89811411]])

>>> T2 , Z2 = rsf2csf(T, Z)
>>> T2
array([[2.65896708+0.j, -1.64592781+0.743164187j, -1.21516887+1.
↪→00660462j],

[0.+0.j , -0.32948354+8.02254558e-01j, -0.82115218-2.77555756e-
↪→17j],

[0.+0.j , 0.+0.j, -0.32948354-0.802254558j]])
>>> Z2
array([[0.72711591+0.j, 0.28220393-0.31385693j, 0.51319638-0.17258824j],

[0.52839428+0.j, 0.24720268+0.41635578j, -0.68079517-0.15118243j],
[0.43829436+0.j, -0.76618703+0.01873251j, -0.03063006+0.

↪→46857912j]])

scipy.linalg.hessenberg

scipy.linalg.hessenberg(a, calc_q=False, overwrite_a=False, check_finite=True)
Compute Hessenberg form of a matrix.
The Hessenberg decomposition is:

A = Q H Q^H

where Q is unitary/orthogonal and H has only zero elements below the first sub-diagonal.
Parameters

a [(M, M) array_like] Matrix to bring into Hessenberg form.
calc_q [bool, optional] Whether to compute the transformation matrix. Default is False.
overwrite_a

[bool, optional] Whether to overwrite a; may improve performance. Default is False.
check_finite

[bool, optional] Whether to check that the input matrix contains only finite numbers. Dis-
abling may give a performance gain, but may result in problems (crashes, non-termination)
if the inputs do contain infinities or NaNs.

Returns

H [(M, M) ndarray] Hessenberg form of a.
Q [(M, M) ndarray] Unitary/orthogonal similarity transformation matrix A = Q H Q^H.

Only returned if calc_q=True.

Examples

826 Chapter 6. API Reference



SciPy Reference Guide, Release 1.3.1

>>> from scipy.linalg import hessenberg
>>> A = np.array([[2, 5, 8, 7], [5, 2, 2, 8], [7, 5, 6, 6], [5, 4, 4, 8]])
>>> H, Q = hessenberg(A, calc_q=True)
>>> H
array([[ 2. , -11.65843866, 1.42005301, 0.25349066],

[ -9.94987437, 14.53535354, -5.31022304, 2.43081618],
[ 0. , -1.83299243, 0.38969961, -0.51527034],
[ 0. , 0. , -3.83189513, 1.07494686]])

>>> np.allclose(Q @ H @ Q.conj().T - A, np.zeros((4, 4)))
True

scipy.linalg.cdf2rdf

scipy.linalg.cdf2rdf(w, v)
Converts complex eigenvalues w and eigenvectors v to real eigenvalues in a block diagonal form wr and the asso-
ciated real eigenvectors vr, such that:

vr @ wr = X @ vr

continues to hold, where X is the original array for which w and v are the eigenvalues and eigenvectors.
New in version 1.1.0.

Parameters

w [(…, M) array_like] Complex or real eigenvalues, an array or stack of arrays
Conjugate pairs must not be interleaved, else the wrong result will be produced. So [1+1j,
1, 1-1j] will give a correct result, but [1+1j, 2+1j, 1-1j, 2-1j] will not.

v [(…, M, M) array_like] Complex or real eigenvectors, a square array or stack of square
arrays.

Returns

wr [(…, M, M) ndarray] Real diagonal block form of eigenvalues
vr [(…, M, M) ndarray] Real eigenvectors associated with wr

See also:

eig

Eigenvalues and right eigenvectors for non-symmetric arrays
rsf2csf

Convert real Schur form to complex Schur form

Notes

w, v must be the eigenstructure for some real matrix X. For example, obtained by w, v = scipy.linalg.
eig(X) or w, v = numpy.linalg.eig(X) in which case X can also represent stacked arrays.
New in version 1.1.0.
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Examples

>>> X = np.array([[1, 2, 3], [0, 4, 5], [0, -5, 4]])
>>> X
array([[ 1, 2, 3],

[ 0, 4, 5],
[ 0, -5, 4]])

>>> from scipy import linalg
>>> w, v = linalg.eig(X)
>>> w
array([ 1.+0.j, 4.+5.j, 4.-5.j])
>>> v
array([[ 1.00000+0.j , -0.01906-0.40016j, -0.01906+0.40016j],

[ 0.00000+0.j , 0.00000-0.64788j, 0.00000+0.64788j],
[ 0.00000+0.j , 0.64788+0.j , 0.64788-0.j ]])

>>> wr, vr = linalg.cdf2rdf(w, v)
>>> wr
array([[ 1., 0., 0.],

[ 0., 4., 5.],
[ 0., -5., 4.]])

>>> vr
array([[ 1. , 0.40016, -0.01906],

[ 0. , 0.64788, 0. ],
[ 0. , 0. , 0.64788]])

>>> vr @ wr
array([[ 1. , 1.69593, 1.9246 ],

[ 0. , 2.59153, 3.23942],
[ 0. , -3.23942, 2.59153]])

>>> X @ vr
array([[ 1. , 1.69593, 1.9246 ],

[ 0. , 2.59153, 3.23942],
[ 0. , -3.23942, 2.59153]])

See also:
scipy.linalg.interpolative – Interpolative matrix decompositions

6.9.4 Matrix Functions

expm(A) Compute the matrix exponential using Pade approxima-
tion.

logm(A[, disp]) Compute matrix logarithm.
cosm(A) Compute the matrix cosine.
sinm(A) Compute the matrix sine.
tanm(A) Compute the matrix tangent.
coshm(A) Compute the hyperbolic matrix cosine.
sinhm(A) Compute the hyperbolic matrix sine.

Continued on next page
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Table 86 – continued from previous page
tanhm(A) Compute the hyperbolic matrix tangent.
signm(A[, disp]) Matrix sign function.
sqrtm(A[, disp, blocksize]) Matrix square root.
funm(A, func[, disp]) Evaluate a matrix function specified by a callable.
expm_frechet(A, E[, method, compute_expm, …]) Frechet derivative of the matrix exponential of A in the

direction E.
expm_cond(A[, check_finite]) Relative condition number of the matrix exponential in

the Frobenius norm.
fractional_matrix_power(A, t) Compute the fractional power of a matrix.

scipy.linalg.expm

scipy.linalg.expm(A)
Compute the matrix exponential using Pade approximation.

Parameters

A [(N, N) array_like or sparse matrix] Matrix to be exponentiated.
Returns

expm [(N, N) ndarray] Matrix exponential of A.

References

[1]

Examples

>>> from scipy.linalg import expm, sinm, cosm

Matrix version of the formula exp(0) = 1:

>>> expm(np.zeros((2,2)))
array([[ 1., 0.],

[ 0., 1.]])

Euler’s identity (exp(i*theta) = cos(theta) + i*sin(theta)) applied to a matrix:

>>> a = np.array([[1.0, 2.0], [-1.0, 3.0]])
>>> expm(1j*a)
array([[ 0.42645930+1.89217551j, -2.13721484-0.97811252j],

[ 1.06860742+0.48905626j, -1.71075555+0.91406299j]])
>>> cosm(a) + 1j*sinm(a)
array([[ 0.42645930+1.89217551j, -2.13721484-0.97811252j],

[ 1.06860742+0.48905626j, -1.71075555+0.91406299j]])

scipy.linalg.logm

scipy.linalg.logm(A, disp=True)
Compute matrix logarithm.
The matrix logarithm is the inverse of expm: expm(logm(A)) == A
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Parameters

A [(N, N) array_like] Matrix whose logarithm to evaluate
disp [bool, optional] Print warning if error in the result is estimated large instead of returning

estimated error. (Default: True)
Returns

logm [(N, N) ndarray] Matrix logarithm of A
errest [float] (if disp == False)

1-norm of the estimated error, ||err||_1 / ||A||_1

References

[1], [2], [3]

Examples

>>> from scipy.linalg import logm, expm
>>> a = np.array([[1.0, 3.0], [1.0, 4.0]])
>>> b = logm(a)
>>> b
array([[-1.02571087, 2.05142174],

[ 0.68380725, 1.02571087]])
>>> expm(b) # Verify expm(logm(a)) returns a
array([[ 1., 3.],

[ 1., 4.]])

scipy.linalg.cosm

scipy.linalg.cosm(A)
Compute the matrix cosine.
This routine uses expm to compute the matrix exponentials.

Parameters

A [(N, N) array_like] Input array
Returns

cosm [(N, N) ndarray] Matrix cosine of A

Examples

>>> from scipy.linalg import expm, sinm, cosm

Euler’s identity (exp(i*theta) = cos(theta) + i*sin(theta)) applied to a matrix:

>>> a = np.array([[1.0, 2.0], [-1.0, 3.0]])
>>> expm(1j*a)
array([[ 0.42645930+1.89217551j, -2.13721484-0.97811252j],

[ 1.06860742+0.48905626j, -1.71075555+0.91406299j]])
(continues on next page)

830 Chapter 6. API Reference



SciPy Reference Guide, Release 1.3.1

(continued from previous page)
>>> cosm(a) + 1j*sinm(a)
array([[ 0.42645930+1.89217551j, -2.13721484-0.97811252j],

[ 1.06860742+0.48905626j, -1.71075555+0.91406299j]])

scipy.linalg.sinm

scipy.linalg.sinm(A)
Compute the matrix sine.
This routine uses expm to compute the matrix exponentials.

Parameters

A [(N, N) array_like] Input array.
Returns

sinm [(N, N) ndarray] Matrix sine of A

Examples

>>> from scipy.linalg import expm, sinm, cosm

Euler’s identity (exp(i*theta) = cos(theta) + i*sin(theta)) applied to a matrix:

>>> a = np.array([[1.0, 2.0], [-1.0, 3.0]])
>>> expm(1j*a)
array([[ 0.42645930+1.89217551j, -2.13721484-0.97811252j],

[ 1.06860742+0.48905626j, -1.71075555+0.91406299j]])
>>> cosm(a) + 1j*sinm(a)
array([[ 0.42645930+1.89217551j, -2.13721484-0.97811252j],

[ 1.06860742+0.48905626j, -1.71075555+0.91406299j]])

scipy.linalg.tanm

scipy.linalg.tanm(A)
Compute the matrix tangent.
This routine uses expm to compute the matrix exponentials.

Parameters

A [(N, N) array_like] Input array.
Returns

tanm [(N, N) ndarray] Matrix tangent of A

Examples
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>>> from scipy.linalg import tanm, sinm, cosm
>>> a = np.array([[1.0, 3.0], [1.0, 4.0]])
>>> t = tanm(a)
>>> t
array([[ -2.00876993, -8.41880636],

[ -2.80626879, -10.42757629]])

Verify tanm(a) = sinm(a).dot(inv(cosm(a)))

>>> s = sinm(a)
>>> c = cosm(a)
>>> s.dot(np.linalg.inv(c))
array([[ -2.00876993, -8.41880636],

[ -2.80626879, -10.42757629]])

scipy.linalg.coshm

scipy.linalg.coshm(A)
Compute the hyperbolic matrix cosine.
This routine uses expm to compute the matrix exponentials.

Parameters

A [(N, N) array_like] Input array.
Returns

coshm [(N, N) ndarray] Hyperbolic matrix cosine of A

Examples

>>> from scipy.linalg import tanhm, sinhm, coshm
>>> a = np.array([[1.0, 3.0], [1.0, 4.0]])
>>> c = coshm(a)
>>> c
array([[ 11.24592233, 38.76236492],

[ 12.92078831, 50.00828725]])

Verify tanhm(a) = sinhm(a).dot(inv(coshm(a)))

>>> t = tanhm(a)
>>> s = sinhm(a)
>>> t - s.dot(np.linalg.inv(c))
array([[ 2.72004641e-15, 4.55191440e-15],

[ 0.00000000e+00, -5.55111512e-16]])

scipy.linalg.sinhm

scipy.linalg.sinhm(A)
Compute the hyperbolic matrix sine.
This routine uses expm to compute the matrix exponentials.
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Parameters

A [(N, N) array_like] Input array.
Returns

sinhm [(N, N) ndarray] Hyperbolic matrix sine of A

Examples

>>> from scipy.linalg import tanhm, sinhm, coshm
>>> a = np.array([[1.0, 3.0], [1.0, 4.0]])
>>> s = sinhm(a)
>>> s
array([[ 10.57300653, 39.28826594],

[ 13.09608865, 49.86127247]])

Verify tanhm(a) = sinhm(a).dot(inv(coshm(a)))

>>> t = tanhm(a)
>>> c = coshm(a)
>>> t - s.dot(np.linalg.inv(c))
array([[ 2.72004641e-15, 4.55191440e-15],

[ 0.00000000e+00, -5.55111512e-16]])

scipy.linalg.tanhm

scipy.linalg.tanhm(A)
Compute the hyperbolic matrix tangent.
This routine uses expm to compute the matrix exponentials.

Parameters

A [(N, N) array_like] Input array
Returns

tanhm [(N, N) ndarray] Hyperbolic matrix tangent of A

Examples

>>> from scipy.linalg import tanhm, sinhm, coshm
>>> a = np.array([[1.0, 3.0], [1.0, 4.0]])
>>> t = tanhm(a)
>>> t
array([[ 0.3428582 , 0.51987926],

[ 0.17329309, 0.86273746]])

Verify tanhm(a) = sinhm(a).dot(inv(coshm(a)))

6.9. Linear algebra (scipy.linalg) 833



SciPy Reference Guide, Release 1.3.1

>>> s = sinhm(a)
>>> c = coshm(a)
>>> t - s.dot(np.linalg.inv(c))
array([[ 2.72004641e-15, 4.55191440e-15],

[ 0.00000000e+00, -5.55111512e-16]])

scipy.linalg.signm

scipy.linalg.signm(A, disp=True)
Matrix sign function.
Extension of the scalar sign(x) to matrices.

Parameters

A [(N, N) array_like] Matrix at which to evaluate the sign function
disp [bool, optional] Print warning if error in the result is estimated large instead of returning

estimated error. (Default: True)
Returns

signm [(N, N) ndarray] Value of the sign function at A
errest [float] (if disp == False)

1-norm of the estimated error, ||err||_1 / ||A||_1

Examples

>>> from scipy.linalg import signm, eigvals
>>> a = [[1,2,3], [1,2,1], [1,1,1]]
>>> eigvals(a)
array([ 4.12488542+0.j, -0.76155718+0.j, 0.63667176+0.j])
>>> eigvals(signm(a))
array([-1.+0.j, 1.+0.j, 1.+0.j])

scipy.linalg.sqrtm

scipy.linalg.sqrtm(A, disp=True, blocksize=64)
Matrix square root.

Parameters

A [(N, N) array_like] Matrix whose square root to evaluate
disp [bool, optional] Print warning if error in the result is estimated large instead of returning

estimated error. (Default: True)
blocksize [integer, optional] If the blocksize is not degenerate with respect to the size of the input array,

then use a blocked algorithm. (Default: 64)
Returns

sqrtm [(N, N) ndarray] Value of the sqrt function at A
errest [float] (if disp == False)

Frobenius norm of the estimated error, ||err||_F / ||A||_F

834 Chapter 6. API Reference



SciPy Reference Guide, Release 1.3.1

References

[1]

Examples

>>> from scipy.linalg import sqrtm
>>> a = np.array([[1.0, 3.0], [1.0, 4.0]])
>>> r = sqrtm(a)
>>> r
array([[ 0.75592895, 1.13389342],

[ 0.37796447, 1.88982237]])
>>> r.dot(r)
array([[ 1., 3.],

[ 1., 4.]])

scipy.linalg.funm

scipy.linalg.funm(A, func, disp=True)
Evaluate a matrix function specified by a callable.
Returns the value of matrix-valued function f at A. The function f is an extension of the scalar-valued function
func to matrices.

Parameters

A [(N, N) array_like] Matrix at which to evaluate the function
func [callable] Callable object that evaluates a scalar function f. Must be vectorized (eg. using

vectorize).
disp [bool, optional] Print warning if error in the result is estimated large instead of returning

estimated error. (Default: True)
Returns

funm [(N, N) ndarray] Value of the matrix function specified by func evaluated at A
errest [float] (if disp == False)

1-norm of the estimated error, ||err||_1 / ||A||_1

Notes

This function implements the general algorithm based on Schur decomposition (Algorithm 9.1.1. in [1]).
If the input matrix is known to be diagonalizable, then relying on the eigendecomposition is likely to be faster. For
example, if your matrix is Hermitian, you can do

>>> from scipy.linalg import eigh
>>> def funm_herm(a, func, check_finite=False):
... w, v = eigh(a, check_finite=check_finite)
... ## if you further know that your matrix is positive semidefinite,
... ## you can optionally guard against precision errors by doing
... # w = np.maximum(w, 0)
... w = func(w)
... return (v * w).dot(v.conj().T)
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References

[1]

Examples

>>> from scipy.linalg import funm
>>> a = np.array([[1.0, 3.0], [1.0, 4.0]])
>>> funm(a, lambda x: x*x)
array([[ 4., 15.],

[ 5., 19.]])
>>> a.dot(a)
array([[ 4., 15.],

[ 5., 19.]])

scipy.linalg.expm_frechet

scipy.linalg.expm_frechet(A, E, method=None, compute_expm=True, check_finite=True)
Frechet derivative of the matrix exponential of A in the direction E.

Parameters

A [(N, N) array_like] Matrix of which to take the matrix exponential.
E [(N, N) array_like] Matrix direction in which to take the Frechet derivative.
method [str, optional] Choice of algorithm. Should be one of

• SPS (default)
• blockEnlarge

compute_expm
[bool, optional] Whether to compute also expm_A in addition to expm_frechet_AE. Default
is True.

check_finite
[bool, optional] Whether to check that the input matrix contains only finite numbers. Dis-
abling may give a performance gain, but may result in problems (crashes, non-termination)
if the inputs do contain infinities or NaNs.

Returns

expm_A [ndarray] Matrix exponential of A.
expm_frechet_AE

[ndarray] Frechet derivative of the matrix exponential of A in the direction E.
For ‘‘compute_expm = False‘‘, only ‘expm_frechet_AE‘ is returned.

See also:

expm

Compute the exponential of a matrix.

Notes

This section describes the available implementations that can be selected by the method parameter. The default
method is SPS.
Method blockEnlarge is a naive algorithm.
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Method SPS is Scaling-Pade-Squaring [1]. It is a sophisticated implementation which should take only about 3/8
as much time as the naive implementation. The asymptotics are the same.
New in version 0.13.0.

References

[1]

Examples

>>> import scipy.linalg
>>> A = np.random.randn(3, 3)
>>> E = np.random.randn(3, 3)
>>> expm_A, expm_frechet_AE = scipy.linalg.expm_frechet(A, E)
>>> expm_A.shape, expm_frechet_AE.shape
((3, 3), (3, 3))

>>> import scipy.linalg
>>> A = np.random.randn(3, 3)
>>> E = np.random.randn(3, 3)
>>> expm_A, expm_frechet_AE = scipy.linalg.expm_frechet(A, E)
>>> M = np.zeros((6, 6))
>>> M[:3, :3] = A; M[:3, 3:] = E; M[3:, 3:] = A
>>> expm_M = scipy.linalg.expm(M)
>>> np.allclose(expm_A, expm_M[:3, :3])
True
>>> np.allclose(expm_frechet_AE, expm_M[:3, 3:])
True

scipy.linalg.expm_cond

scipy.linalg.expm_cond(A, check_finite=True)
Relative condition number of the matrix exponential in the Frobenius norm.

Parameters

A [2d array_like] Square input matrix with shape (N, N).
check_finite

[bool, optional] Whether to check that the input matrix contains only finite numbers. Dis-
abling may give a performance gain, but may result in problems (crashes, non-termination)
if the inputs do contain infinities or NaNs.

Returns

kappa [float] The relative condition number of the matrix exponential in the Frobenius norm
See also:

expm

Compute the exponential of a matrix.
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expm_frechet

Compute the Frechet derivative of the matrix exponential.

Notes

A faster estimate for the condition number in the 1-norm has been published but is not yet implemented in scipy.
New in version 0.14.0.

Examples

>>> from scipy.linalg import expm_cond
>>> A = np.array([[-0.3, 0.2, 0.6], [0.6, 0.3, -0.1], [-0.7, 1.2, 0.9]])
>>> k = expm_cond(A)
>>> k
1.7787805864469866

scipy.linalg.fractional_matrix_power

scipy.linalg.fractional_matrix_power(A, t)
Compute the fractional power of a matrix.
Proceeds according to the discussion in section (6) of [1].

Parameters

A [(N, N) array_like] Matrix whose fractional power to evaluate.
t [float] Fractional power.

Returns

X [(N, N) array_like] The fractional power of the matrix.

References

[1]

Examples

>>> from scipy.linalg import fractional_matrix_power
>>> a = np.array([[1.0, 3.0], [1.0, 4.0]])
>>> b = fractional_matrix_power(a, 0.5)
>>> b
array([[ 0.75592895, 1.13389342],

[ 0.37796447, 1.88982237]])
>>> np.dot(b, b) # Verify square root
array([[ 1., 3.],

[ 1., 4.]])
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6.9.5 Matrix Equation Solvers

solve_sylvester(a, b, q) Computes a solution (X) to the Sylvester equation AX +
XB = Q.

solve_continuous_are(a, b, q, r[, e, s, …]) Solves the continuous-time algebraic Riccati equation
(CARE).

solve_discrete_are(a, b, q, r[, e, s, balanced]) Solves the discrete-time algebraic Riccati equation
(DARE).

solve_continuous_lyapunov(a, q) Solves the continuous Lyapunov equationAX+XAH =
Q.

solve_discrete_lyapunov(a, q[, method]) Solves the discrete Lyapunov equation AXAH − X +
Q = 0.

scipy.linalg.solve_sylvester

scipy.linalg.solve_sylvester(a, b, q)
Computes a solution (X) to the Sylvester equation AX +XB = Q.

Parameters

a [(M, M) array_like] Leading matrix of the Sylvester equation
b [(N, N) array_like] Trailing matrix of the Sylvester equation
q [(M, N) array_like] Right-hand side

Returns

x [(M, N) ndarray] The solution to the Sylvester equation.
Raises

LinAlgError
If solution was not found

Notes

Computes a solution to the Sylvester matrix equation via the Bartels- Stewart algorithm. The A and B matrices
first undergo Schur decompositions. The resulting matrices are used to construct an alternative Sylvester equation
(RY + YS^T = F) where the R and S matrices are in quasi-triangular form (or, when R, S or F are complex,
triangular form). The simplified equation is then solved using *TRSYL from LAPACK directly.
New in version 0.11.0.

Examples

Given a, b, and q solve for x:

>>> from scipy import linalg
>>> a = np.array([[-3, -2, 0], [-1, -1, 3], [3, -5, -1]])
>>> b = np.array([[1]])
>>> q = np.array([[1],[2],[3]])
>>> x = linalg.solve_sylvester(a, b, q)
>>> x
array([[ 0.0625],

[-0.5625],
(continues on next page)
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(continued from previous page)
[ 0.6875]])

>>> np.allclose(a.dot(x) + x.dot(b), q)
True

scipy.linalg.solve_continuous_are

scipy.linalg.solve_continuous_are(a, b, q, r, e=None, s=None, balanced=True)
Solves the continuous-time algebraic Riccati equation (CARE).
The CARE is defined as

XA+AHX −XBR−1BHX +Q = 0

The limitations for a solution to exist are :
• All eigenvalues of A on the right half plane, should be controllable.
• The associated hamiltonian pencil (See Notes), should have eigenvalues sufficiently away from the imaginary
axis.

Moreover, if e or s is not precisely None, then the generalized version of CARE

EHXA+AHXE − (EHXB + S)R−1(BHXE + SH) +Q = 0

is solved. When omitted, e is assumed to be the identity ands is assumed to be the zeromatrix with sizes compatible
with a and b respectively.

Parameters

a [(M, M) array_like] Square matrix
b [(M, N) array_like] Input
q [(M, M) array_like] Input
r [(N, N) array_like] Nonsingular square matrix
e [(M, M) array_like, optional] Nonsingular square matrix
s [(M, N) array_like, optional] Input
balanced [bool, optional] The boolean that indicates whether a balancing step is performed on the data.

The default is set to True.
Returns

x [(M, M) ndarray] Solution to the continuous-time algebraic Riccati equation.
Raises

LinAlgError
For cases where the stable subspace of the pencil could not be isolated. See Notes section
and the references for details.

See also:

solve_discrete_are

Solves the discrete-time algebraic Riccati equation
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Notes

The equation is solved by forming the extended hamiltonian matrix pencil, as described in [1], H − λJ given by
the block matrices

[ A 0 B ] [ E 0 0 ]
[-Q -A^H -S ] - \lambda * [ 0 E^H 0 ]
[ S^H B^H R ] [ 0 0 0 ]

and using a QZ decomposition method.
In this algorithm, the fail conditions are linked to the symmetry of the product U2U

−1
1 and condition number of

U1. Here, U is the 2m-by-m matrix that holds the eigenvectors spanning the stable subspace with 2m rows and
partitioned into two m-row matrices. See [1] and [2] for more details.
In order to improve the QZ decomposition accuracy, the pencil goes through a balancing step where the sum of
absolute values ofH and J entries (after removing the diagonal entries of the sum) is balanced following the recipe
given in [3].
New in version 0.11.0.

References

[1], [2], [3]

Examples

Given a, b, q, and r solve for x:

>>> from scipy import linalg
>>> a = np.array([[4, 3], [-4.5, -3.5]])
>>> b = np.array([[1], [-1]])
>>> q = np.array([[9, 6], [6, 4.]])
>>> r = 1
>>> x = linalg.solve_continuous_are(a, b, q, r)
>>> x
array([[ 21.72792206, 14.48528137],

[ 14.48528137, 9.65685425]])
>>> np.allclose(a.T.dot(x) + x.dot(a)-x.dot(b).dot(b.T).dot(x), -q)
True

scipy.linalg.solve_discrete_are

scipy.linalg.solve_discrete_are(a, b, q, r, e=None, s=None, balanced=True)
Solves the discrete-time algebraic Riccati equation (DARE).
The DARE is defined as

AHXA−X − (AHXB)(R+BHXB)−1(BHXA) +Q = 0

The limitations for a solution to exist are :
• All eigenvalues of A outside the unit disc, should be controllable.
• The associated symplectic pencil (See Notes), should have eigenvalues sufficiently away from the unit circle.
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Moreover, if e and s are not both precisely None, then the generalized version of DARE

AHXA− EHXE − (AHXB + S)(R+BHXB)−1(BHXA+ SH) +Q = 0

is solved. When omitted, e is assumed to be the identity and s is assumed to be the zero matrix.
Parameters

a [(M, M) array_like] Square matrix
b [(M, N) array_like] Input
q [(M, M) array_like] Input
r [(N, N) array_like] Square matrix
e [(M, M) array_like, optional] Nonsingular square matrix
s [(M, N) array_like, optional] Input
balanced [bool] The boolean that indicates whether a balancing step is performed on the data. The

default is set to True.
Returns

x [(M, M) ndarray] Solution to the discrete algebraic Riccati equation.
Raises

LinAlgError
For cases where the stable subspace of the pencil could not be isolated. See Notes section
and the references for details.

See also:

solve_continuous_are

Solves the continuous algebraic Riccati equation

Notes

The equation is solved by forming the extended symplectic matrix pencil, as described in [1],H −λJ given by the
block matrices

[ A 0 B ] [ E 0 B ]
[ -Q E^H -S ] - \lambda * [ 0 A^H 0 ]
[ S^H 0 R ] [ 0 -B^H 0 ]

and using a QZ decomposition method.
In this algorithm, the fail conditions are linked to the symmetry of the product U2U

−1
1 and condition number of

U1. Here, U is the 2m-by-m matrix that holds the eigenvectors spanning the stable subspace with 2m rows and
partitioned into two m-row matrices. See [1] and [2] for more details.
In order to improve the QZ decomposition accuracy, the pencil goes through a balancing step where the sum of
absolute values of H and J rows/cols (after removing the diagonal entries) is balanced following the recipe given
in [3]. If the data has small numerical noise, balancing may amplify their effects and some clean up is required.
New in version 0.11.0.

References

[1], [2], [3]
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Examples

Given a, b, q, and r solve for x:

>>> from scipy import linalg as la
>>> a = np.array([[0, 1], [0, -1]])
>>> b = np.array([[1, 0], [2, 1]])
>>> q = np.array([[-4, -4], [-4, 7]])
>>> r = np.array([[9, 3], [3, 1]])
>>> x = la.solve_discrete_are(a, b, q, r)
>>> x
array([[-4., -4.],

[-4., 7.]])
>>> R = la.solve(r + b.T.dot(x).dot(b), b.T.dot(x).dot(a))
>>> np.allclose(a.T.dot(x).dot(a) - x - a.T.dot(x).dot(b).dot(R), -q)
True

scipy.linalg.solve_continuous_lyapunov

scipy.linalg.solve_continuous_lyapunov(a, q)
Solves the continuous Lyapunov equation AX +XAH = Q.
Uses the Bartels-Stewart algorithm to find X .

Parameters

a [array_like] A square matrix
q [array_like] Right-hand side square matrix

Returns

x [ndarray] Solution to the continuous Lyapunov equation
See also:

solve_discrete_lyapunov

computes the solution to the discrete-time Lyapunov equation
solve_sylvester

computes the solution to the Sylvester equation

Notes

The continuous Lyapunov equation is a special form of the Sylvester equation, hence this solver relies on LAPACK
routine ?TRSYL.
New in version 0.11.0.

Examples

Given a and q solve for x:
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>>> from scipy import linalg
>>> a = np.array([[-3, -2, 0], [-1, -1, 0], [0, -5, -1]])
>>> b = np.array([2, 4, -1])
>>> q = np.eye(3)
>>> x = linalg.solve_continuous_lyapunov(a, q)
>>> x
array([[ -0.75 , 0.875 , -3.75 ],

[ 0.875 , -1.375 , 5.3125],
[ -3.75 , 5.3125, -27.0625]])

>>> np.allclose(a.dot(x) + x.dot(a.T), q)
True

scipy.linalg.solve_discrete_lyapunov

scipy.linalg.solve_discrete_lyapunov(a, q, method=None)
Solves the discrete Lyapunov equation AXAH −X +Q = 0.

Parameters

a, q [(M, M) array_like] Square matrices corresponding to A and Q in the equation above re-
spectively. Must have the same shape.

method [{‘direct’, ‘bilinear’}, optional] Type of solver.
If not given, chosen to be direct if M is less than 10 and bilinear otherwise.

Returns

x [ndarray] Solution to the discrete Lyapunov equation
See also:

solve_continuous_lyapunov

computes the solution to the continuous-time Lyapunov equation

Notes

This section describes the available solvers that can be selected by the ‘method’ parameter. The default method is
direct if M is less than 10 and bilinear otherwise.
Method direct uses a direct analytical solution to the discrete Lyapunov equation. The algorithm is given in, for
example, [1]. However it requires the linear solution of a system with dimensionM2 so that performance degrades
rapidly for even moderately sized matrices.
Method bilinear uses a bilinear transformation to convert the discrete Lyapunov equation to a continuous Lyapunov
equation (BX+XB′ = −C) whereB = (A−I)(A+I)−1 andC = 2(A′+I)−1Q(A+I)−1. The continuous
equation can be efficiently solved since it is a special case of a Sylvester equation. The transformation algorithm is
from Popov (1964) as described in [2].
New in version 0.11.0.

References

[1], [2]
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Examples

Given a and q solve for x:

>>> from scipy import linalg
>>> a = np.array([[0.2, 0.5],[0.7, -0.9]])
>>> q = np.eye(2)
>>> x = linalg.solve_discrete_lyapunov(a, q)
>>> x
array([[ 0.70872893, 1.43518822],

[ 1.43518822, -2.4266315 ]])
>>> np.allclose(a.dot(x).dot(a.T)-x, -q)
True

6.9.6 Sketches and Random Projections

clarkson_woodruff_transform(input_matrix,
…)

”

scipy.linalg.clarkson_woodruff_transform

scipy.linalg.clarkson_woodruff_transform(input_matrix, sketch_size, seed=None)
” Applies a Clarkson-Woodruff Transform/sketch to the input matrix.
Given an input_matrix A of size (n, d), compute a matrix A' of size (sketch_size, d) so that

∥Ax∥ ≈ ∥A′x∥

with high probability via the Clarkson-Woodruff Transform, otherwise known as the CountSketch matrix.
Parameters

input_matrix: array_like
Input matrix, of shape (n, d).

sketch_size: int
Number of rows for the sketch.

seed [None or int or numpy.random.mtrand.RandomState instance, optional] This pa-
rameter defines the RandomState object to use for drawing random variates. If None (or
np.random), the global np.random state is used. If integer, it is used to seed the local
RandomState instance. Default is None.

Returns

A’ [array_like] Sketch of the input matrix A, of size (sketch_size, d).

Notes

To make the statement

∥Ax∥ ≈ ∥A′x∥

precise, observe the following result which is adapted from the proof of Theorem 14 of [2] via Markov’s Inequality.
If we have a sketch size sketch_size=k which is at least

k ≥ 2

ϵ2δ
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Then for any fixed vector x,

∥Ax∥ = (1± ϵ)∥A′x∥

with probability at least one minus delta.
This implementation takes advantage of sparsity: computing a sketch takes time proportional to A.nnz. Data A
which is in scipy.sparse.csc_matrix format gives the quickest computation time for sparse input.

>>> from scipy import linalg
>>> from scipy import sparse
>>> n_rows, n_columns, density, sketch_n_rows = 15000, 100, 0.01, 200
>>> A = sparse.rand(n_rows, n_columns, density=density, format='csc')
>>> B = sparse.rand(n_rows, n_columns, density=density, format='csr')
>>> C = sparse.rand(n_rows, n_columns, density=density, format='coo')
>>> D = np.random.randn(n_rows, n_columns)
>>> SA = linalg.clarkson_woodruff_transform(A, sketch_n_rows) # fastest
>>> SB = linalg.clarkson_woodruff_transform(B, sketch_n_rows) # fast
>>> SC = linalg.clarkson_woodruff_transform(C, sketch_n_rows) # slower
>>> SD = linalg.clarkson_woodruff_transform(D, sketch_n_rows) # slowest

That said, this method does perform well on dense inputs, just slower on a relative scale.

References

[1], [2]

Examples

Given a big dense matrix A:

>>> from scipy import linalg
>>> n_rows, n_columns, sketch_n_rows = 15000, 100, 200
>>> A = np.random.randn(n_rows, n_columns)
>>> sketch = linalg.clarkson_woodruff_transform(A, sketch_n_rows)
>>> sketch.shape
(200, 100)
>>> norm_A = np.linalg.norm(A)
>>> norm_sketch = np.linalg.norm(sketch)

Nowwith high probability, the true norm norm_A is close to the sketched norm norm_sketch in absolute value.
Similarly, applying our sketch preserves the solution to a linear regression of min ∥Ax− b∥.

>>> from scipy import linalg
>>> n_rows, n_columns, sketch_n_rows = 15000, 100, 200
>>> A = np.random.randn(n_rows, n_columns)
>>> b = np.random.randn(n_rows)
>>> x = np.linalg.lstsq(A, b, rcond=None)
>>> Ab = np.hstack((A, b.reshape(-1,1)))
>>> SAb = linalg.clarkson_woodruff_transform(Ab, sketch_n_rows)
>>> SA, Sb = SAb[:,:-1], SAb[:,-1]
>>> x_sketched = np.linalg.lstsq(SA, Sb, rcond=None)
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As with the matrix norm example, np.linalg.norm(A @ x - b) is close to np.linalg.norm(A @
x_sketched - b) with high probability.

6.9.7 Special Matrices

block_diag(*arrs) Create a block diagonal matrix from provided arrays.
circulant(c) Construct a circulant matrix.
companion(a) Create a companion matrix.
dft(n[, scale]) Discrete Fourier transform matrix.
fiedler(a) Returns a symmetric Fiedler matrix
fiedler_companion(a) Returns a Fiedler companion matrix
hadamard(n[, dtype]) Construct a Hadamard matrix.
hankel(c[, r]) Construct a Hankel matrix.
helmert(n[, full]) Create a Helmert matrix of order n.
hilbert(n) Create a Hilbert matrix of order n.
invhilbert(n[, exact]) Compute the inverse of the Hilbert matrix of order n.
leslie(f, s) Create a Leslie matrix.
pascal(n[, kind, exact]) Returns the n x n Pascal matrix.
invpascal(n[, kind, exact]) Returns the inverse of the n x n Pascal matrix.
toeplitz(c[, r]) Construct a Toeplitz matrix.
tri(N[, M, k, dtype]) Construct (N, M) matrix filled with ones at and below the

k-th diagonal.

scipy.linalg.block_diag

scipy.linalg.block_diag(*arrs)
Create a block diagonal matrix from provided arrays.
Given the inputs A, B and C, the output will have these arrays arranged on the diagonal:

[[A, 0, 0],
[0, B, 0],
[0, 0, C]]

Parameters

A, B, C, …
[array_like, up to 2-D] Input arrays. A 1-D array or array_like sequence of length n is treated
as a 2-D array with shape (1,n).

Returns

D [ndarray] Array with A, B, C, … on the diagonal. D has the same dtype as A.

Notes

If all the input arrays are square, the output is known as a block diagonal matrix.
Empty sequences (i.e., array-likes of zero size) will not be ignored. Noteworthy, both [] and [[]] are treated as
matrices with shape (1,0).
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Examples

>>> from scipy.linalg import block_diag
>>> A = [[1, 0],
... [0, 1]]
>>> B = [[3, 4, 5],
... [6, 7, 8]]
>>> C = [[7]]
>>> P = np.zeros((2, 0), dtype='int32')
>>> block_diag(A, B, C)
array([[1, 0, 0, 0, 0, 0],

[0, 1, 0, 0, 0, 0],
[0, 0, 3, 4, 5, 0],
[0, 0, 6, 7, 8, 0],
[0, 0, 0, 0, 0, 7]])

>>> block_diag(A, P, B, C)
array([[1, 0, 0, 0, 0, 0],

[0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 3, 4, 5, 0],
[0, 0, 6, 7, 8, 0],
[0, 0, 0, 0, 0, 7]])

>>> block_diag(1.0, [2, 3], [[4, 5], [6, 7]])
array([[ 1., 0., 0., 0., 0.],

[ 0., 2., 3., 0., 0.],
[ 0., 0., 0., 4., 5.],
[ 0., 0., 0., 6., 7.]])

scipy.linalg.circulant

scipy.linalg.circulant(c)
Construct a circulant matrix.

Parameters

c [(N,) array_like] 1-D array, the first column of the matrix.
Returns

A [(N, N) ndarray] A circulant matrix whose first column is c.
See also:

toeplitz

Toeplitz matrix
hankel

Hankel matrix
solve_circulant

Solve a circulant system.
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Notes

New in version 0.8.0.

Examples

>>> from scipy.linalg import circulant
>>> circulant([1, 2, 3])
array([[1, 3, 2],

[2, 1, 3],
[3, 2, 1]])

scipy.linalg.companion

scipy.linalg.companion(a)
Create a companion matrix.
Create the companion matrix [1] associated with the polynomial whose coefficients are given in a.

Parameters

a [(N,) array_like] 1-D array of polynomial coefficients. The length of a must be at least two,
and a[0] must not be zero.

Returns

c [(N-1, N-1) ndarray] The first row of c is -a[1:]/a[0], and the first sub-diagonal is all
ones. The data-type of the array is the same as the data-type of 1.0*a[0].

Raises

ValueError
If any of the following are true: a) a.ndim != 1; b) a.size < 2; c) a[0] == 0.

Notes

New in version 0.8.0.

References

[1]

Examples

>>> from scipy.linalg import companion
>>> companion([1, -10, 31, -30])
array([[ 10., -31., 30.],

[ 1., 0., 0.],
[ 0., 1., 0.]])
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scipy.linalg.dft

scipy.linalg.dft(n, scale=None)
Discrete Fourier transform matrix.
Create the matrix that computes the discrete Fourier transform of a sequence [1]. The n-th primitive root of unity
used to generate the matrix is exp(-2*pi*i/n), where i = sqrt(-1).

Parameters

n [int] Size the matrix to create.
scale [str, optional] Must be None, ‘sqrtn’, or ‘n’. If scale is ‘sqrtn’, the matrix is divided by sqrt(n).

If scale is ‘n’, the matrix is divided by n. If scale is None (the default), the matrix is not
normalized, and the return value is simply the Vandermonde matrix of the roots of unity.

Returns

m [(n, n) ndarray] The DFT matrix.

Notes

When scale is None, multiplying a vector by the matrix returned by dft is mathematically equivalent to (but much
less efficient than) the calculation performed by scipy.fftpack.fft.
New in version 0.14.0.

References

[1]

Examples

>>> from scipy.linalg import dft
>>> np.set_printoptions(precision=5, suppress=True)
>>> x = np.array([1, 2, 3, 0, 3, 2, 1, 0])
>>> m = dft(8)
>>> m.dot(x) # Compute the DFT of x
array([ 12.+0.j, -2.-2.j, 0.-4.j, -2.+2.j, 4.+0.j, -2.-2.j,

-0.+4.j, -2.+2.j])

Verify that m.dot(x) is the same as fft(x).

>>> from scipy.fftpack import fft
>>> fft(x) # Same result as m.dot(x)
array([ 12.+0.j, -2.-2.j, 0.-4.j, -2.+2.j, 4.+0.j, -2.-2.j,

0.+4.j, -2.+2.j])

scipy.linalg.fiedler

scipy.linalg.fiedler(a)
Returns a symmetric Fiedler matrix
Given an sequence of numbers a, Fiedler matrices have the structure F[i, j] = np.abs(a[i] - a[j]),
and hence zero diagonals and nonnegative entries. A Fiedler matrix has a dominant positive eigenvalue and other

850 Chapter 6. API Reference



SciPy Reference Guide, Release 1.3.1

eigenvalues are negative. Although not valid generally, for certain inputs, the inverse and the determinant can be
derived explicitly as given in [1].

Parameters

a [(n,) array_like] coefficient array
Returns

F [(n, n) ndarray]
See also:
circulant, toeplitz

Notes

New in version 1.3.0.

References

[1]

Examples

>>> from scipy.linalg import det, inv, fiedler
>>> a = [1, 4, 12, 45, 77]
>>> n = len(a)
>>> A = fiedler(a)
>>> A
array([[ 0, 3, 11, 44, 76],

[ 3, 0, 8, 41, 73],
[11, 8, 0, 33, 65],
[44, 41, 33, 0, 32],
[76, 73, 65, 32, 0]])

The explicit formulas for determinant and inverse seem to hold only for monotonically increasing/decreasing arrays.
Note the tridiagonal structure and the corners.

>>> Ai = inv(A)
>>> Ai[np.abs(Ai) < 1e-12] = 0. # cleanup the numerical noise for display
>>> Ai
array([[-0.16008772, 0.16666667, 0. , 0. , 0.00657895],

[ 0.16666667, -0.22916667, 0.0625 , 0. , 0. ],
[ 0. , 0.0625 , -0.07765152, 0.01515152, 0. ],
[ 0. , 0. , 0.01515152, -0.03077652, 0.015625 ],
[ 0.00657895, 0. , 0. , 0.015625 , -0.00904605]])

>>> det(A)
15409151.999999998
>>> (-1)**(n-1) * 2**(n-2) * np.diff(a).prod() * (a[-1] - a[0])
15409152
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scipy.linalg.fiedler_companion

scipy.linalg.fiedler_companion(a)
Returns a Fiedler companion matrix
Given a polynomial coefficient array a, this function forms a pentadiagonal matrix with a special structure whose
eigenvalues coincides with the roots of a.

Parameters

a [(N,) array_like] 1-D array of polynomial coefficients in descending order with a nonzero
leading coefficient. For N < 2, an empty array is returned.

Returns

c [(N-1, N-1) ndarray] Resulting companion matrix
See also:
companion

Notes

Similar to companion the leading coefficient should be nonzero. In case the leading coefficient is not 1., other
coefficients are rescaled before the array generation. To avoid numerical issues, it is best to provide a monic
polynomial.
New in version 1.3.0.

References

[1]

Examples

>>> from scipy.linalg import fiedler_companion, eigvals
>>> p = np.poly(np.arange(1, 9, 2)) # [1., -16., 86., -176., 105.]
>>> fc = fiedler_companion(p)
>>> fc
array([[ 16., -86., 1., 0.],

[ 1., 0., 0., 0.],
[ 0., 176., 0., -105.],
[ 0., 1., 0., 0.]])

>>> eigvals(fc)
array([7.+0.j, 5.+0.j, 3.+0.j, 1.+0.j])

scipy.linalg.hadamard

scipy.linalg.hadamard(n, dtype=<class ’int’>)
Construct a Hadamard matrix.
Constructs an n-by-n Hadamard matrix, using Sylvester’s construction. n must be a power of 2.

Parameters
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n [int] The order of the matrix. n must be a power of 2.
dtype [dtype, optional] The data type of the array to be constructed.

Returns

H [(n, n) ndarray] The Hadamard matrix.

Notes

New in version 0.8.0.

Examples

>>> from scipy.linalg import hadamard
>>> hadamard(2, dtype=complex)
array([[ 1.+0.j, 1.+0.j],

[ 1.+0.j, -1.-0.j]])
>>> hadamard(4)
array([[ 1, 1, 1, 1],

[ 1, -1, 1, -1],
[ 1, 1, -1, -1],
[ 1, -1, -1, 1]])

scipy.linalg.hankel

scipy.linalg.hankel(c, r=None)
Construct a Hankel matrix.
The Hankel matrix has constant anti-diagonals, with c as its first column and r as its last row. If r is not given, then
r = zeros_like(c) is assumed.

Parameters

c [array_like] First column of the matrix. Whatever the actual shape of c, it will be converted
to a 1-D array.

r [array_like, optional] Last row of thematrix. If None, r = zeros_like(c) is assumed.
r[0] is ignored; the last row of the returned matrix is [c[-1], r[1:]]. Whatever the
actual shape of r, it will be converted to a 1-D array.

Returns

A [(len(c), len(r)) ndarray] The Hankel matrix. Dtype is the same as (c[0] + r[0]).
dtype.

See also:

toeplitz

Toeplitz matrix
circulant

circulant matrix

6.9. Linear algebra (scipy.linalg) 853



SciPy Reference Guide, Release 1.3.1

Examples

>>> from scipy.linalg import hankel
>>> hankel([1, 17, 99])
array([[ 1, 17, 99],

[17, 99, 0],
[99, 0, 0]])

>>> hankel([1,2,3,4], [4,7,7,8,9])
array([[1, 2, 3, 4, 7],

[2, 3, 4, 7, 7],
[3, 4, 7, 7, 8],
[4, 7, 7, 8, 9]])

scipy.linalg.helmert

scipy.linalg.helmert(n, full=False)
Create a Helmert matrix of order n.
This has applications in statistics, compositional or simplicial analysis, and in Aitchison geometry.

Parameters

n [int] The size of the array to create.
full [bool, optional] If True the (n, n) ndarray will be returned. Otherwise the submatrix that

does not include the first row will be returned. Default: False.
Returns

M [ndarray] The Helmert matrix. The shape is (n, n) or (n-1, n) depending on the full argument.

Examples

>>> from scipy.linalg import helmert
>>> helmert(5, full=True)
array([[ 0.4472136 , 0.4472136 , 0.4472136 , 0.4472136 , 0.4472136 ],

[ 0.70710678, -0.70710678, 0. , 0. , 0. ],
[ 0.40824829, 0.40824829, -0.81649658, 0. , 0. ],
[ 0.28867513, 0.28867513, 0.28867513, -0.8660254 , 0. ],
[ 0.2236068 , 0.2236068 , 0.2236068 , 0.2236068 , -0.89442719]])

scipy.linalg.hilbert

scipy.linalg.hilbert(n)
Create a Hilbert matrix of order n.
Returns the n by n array with entries h[i,j] = 1 / (i + j + 1).

Parameters

n [int] The size of the array to create.
Returns

h [(n, n) ndarray] The Hilbert matrix.
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See also:

invhilbert

Compute the inverse of a Hilbert matrix.

Notes

New in version 0.10.0.

Examples

>>> from scipy.linalg import hilbert
>>> hilbert(3)
array([[ 1. , 0.5 , 0.33333333],

[ 0.5 , 0.33333333, 0.25 ],
[ 0.33333333, 0.25 , 0.2 ]])

scipy.linalg.invhilbert

scipy.linalg.invhilbert(n, exact=False)
Compute the inverse of the Hilbert matrix of order n.
The entries in the inverse of a Hilbert matrix are integers. When n is greater than 14, some entries in the inverse
exceed the upper limit of 64 bit integers. The exact argument provides two options for dealing with these large
integers.

Parameters

n [int] The order of the Hilbert matrix.
exact [bool, optional] If False, the data type of the array that is returned is np.float64, and the array

is an approximation of the inverse. If True, the array is the exact integer inverse array. To
represent the exact inverse when n > 14, the returned array is an object array of long integers.
For n <= 14, the exact inverse is returned as an array with data type np.int64.

Returns

invh [(n, n) ndarray] The data type of the array is np.float64 if exact is False. If exact is True, the
data type is either np.int64 (for n <= 14) or object (for n > 14). In the latter case, the objects
in the array will be long integers.

See also:

hilbert

Create a Hilbert matrix.

Notes

New in version 0.10.0.
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Examples

>>> from scipy.linalg import invhilbert
>>> invhilbert(4)
array([[ 16., -120., 240., -140.],

[ -120., 1200., -2700., 1680.],
[ 240., -2700., 6480., -4200.],
[ -140., 1680., -4200., 2800.]])

>>> invhilbert(4, exact=True)
array([[ 16, -120, 240, -140],

[ -120, 1200, -2700, 1680],
[ 240, -2700, 6480, -4200],
[ -140, 1680, -4200, 2800]], dtype=int64)

>>> invhilbert(16)[7,7]
4.2475099528537506e+19
>>> invhilbert(16, exact=True)[7,7]
42475099528537378560L

scipy.linalg.leslie

scipy.linalg.leslie(f, s)
Create a Leslie matrix.
Given the length n array of fecundity coefficients f and the length n-1 array of survival coefficients s, return the
associated Leslie matrix.

Parameters

f [(N,) array_like] The “fecundity” coefficients.
s [(N-1,) array_like] The “survival” coefficients, has to be 1-D. The length of s must be one

less than the length of f, and it must be at least 1.
Returns

L [(N, N) ndarray] The array is zero except for the first row, which is f, and the first sub-
diagonal, which is s. The data-type of the array will be the data-type of f[0]+s[0].

Notes

New in version 0.8.0.
The Leslie matrix is used to model discrete-time, age-structured population growth [1] [2]. In a population with
n age classes, two sets of parameters define a Leslie matrix: the n “fecundity coefficients”, which give the number
of offspring per-capita produced by each age class, and the n - 1 “survival coefficients”, which give the per-capita
survival rate of each age class.

References

[1], [2]
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Examples

>>> from scipy.linalg import leslie
>>> leslie([0.1, 2.0, 1.0, 0.1], [0.2, 0.8, 0.7])
array([[ 0.1, 2. , 1. , 0.1],

[ 0.2, 0. , 0. , 0. ],
[ 0. , 0.8, 0. , 0. ],
[ 0. , 0. , 0.7, 0. ]])

scipy.linalg.pascal

scipy.linalg.pascal(n, kind=’symmetric’, exact=True)
Returns the n x n Pascal matrix.
The Pascal matrix is a matrix containing the binomial coefficients as its elements.

Parameters

n [int] The size of the matrix to create; that is, the result is an n x n matrix.
kind [str, optional] Must be one of ‘symmetric’, ‘lower’, or ‘upper’. Default is ‘symmetric’.
exact [bool, optional] If exact is True, the result is either an array of type numpy.uint64 (if n < 35)

or an object array of Python long integers. If exact is False, the coefficients in the matrix are
computed using scipy.special.comb with exact=False. The result will be a floating
point array, and the values in the array will not be the exact coefficients, but this version is
much faster than exact=True.

Returns

p [(n, n) ndarray] The Pascal matrix.
See also:
invpascal

Notes

See https://en.wikipedia.org/wiki/Pascal_matrix for more information about Pascal matrices.
New in version 0.11.0.

Examples

>>> from scipy.linalg import pascal
>>> pascal(4)
array([[ 1, 1, 1, 1],

[ 1, 2, 3, 4],
[ 1, 3, 6, 10],
[ 1, 4, 10, 20]], dtype=uint64)

>>> pascal(4, kind='lower')
array([[1, 0, 0, 0],

[1, 1, 0, 0],
[1, 2, 1, 0],
[1, 3, 3, 1]], dtype=uint64)

>>> pascal(50)[-1, -1]
(continues on next page)
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(continued from previous page)
25477612258980856902730428600L
>>> from scipy.special import comb
>>> comb(98, 49, exact=True)
25477612258980856902730428600L

scipy.linalg.invpascal

scipy.linalg.invpascal(n, kind=’symmetric’, exact=True)
Returns the inverse of the n x n Pascal matrix.
The Pascal matrix is a matrix containing the binomial coefficients as its elements.

Parameters

n [int] The size of the matrix to create; that is, the result is an n x n matrix.
kind [str, optional] Must be one of ‘symmetric’, ‘lower’, or ‘upper’. Default is ‘symmetric’.
exact [bool, optional] If exact is True, the result is either an array of type numpy.int64 (if n <=

35) or an object array of Python integers. If exact is False, the coefficients in the matrix are
computed using scipy.special.comb with exact=False. The result will be a floating
point array, and for large n, the values in the array will not be the exact coefficients.

Returns

invp [(n, n) ndarray] The inverse of the Pascal matrix.
See also:
pascal

Notes

New in version 0.16.0.

References

[1], [2]

Examples

>>> from scipy.linalg import invpascal, pascal
>>> invp = invpascal(5)
>>> invp
array([[ 5, -10, 10, -5, 1],

[-10, 30, -35, 19, -4],
[ 10, -35, 46, -27, 6],
[ -5, 19, -27, 17, -4],
[ 1, -4, 6, -4, 1]])
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>>> p = pascal(5)
>>> p.dot(invp)
array([[ 1., 0., 0., 0., 0.],

[ 0., 1., 0., 0., 0.],
[ 0., 0., 1., 0., 0.],
[ 0., 0., 0., 1., 0.],
[ 0., 0., 0., 0., 1.]])

An example of the use of kind and exact:

>>> invpascal(5, kind='lower', exact=False)
array([[ 1., -0., 0., -0., 0.],

[-1., 1., -0., 0., -0.],
[ 1., -2., 1., -0., 0.],
[-1., 3., -3., 1., -0.],
[ 1., -4., 6., -4., 1.]])

scipy.linalg.toeplitz

scipy.linalg.toeplitz(c, r=None)
Construct a Toeplitz matrix.
The Toeplitz matrix has constant diagonals, with c as its first column and r as its first row. If r is not given, r ==
conjugate(c) is assumed.

Parameters

c [array_like] First column of the matrix. Whatever the actual shape of c, it will be converted
to a 1-D array.

r [array_like, optional] First row of the matrix. If None, r = conjugate(c) is assumed;
in this case, if c[0] is real, the result is a Hermitian matrix. r[0] is ignored; the first row of the
returned matrix is [c[0], r[1:]]. Whatever the actual shape of r, it will be converted
to a 1-D array.

Returns

A [(len(c), len(r)) ndarray] The Toeplitz matrix. Dtype is the same as (c[0] + r[0]).
dtype.

See also:

circulant

circulant matrix
hankel

Hankel matrix
solve_toeplitz

Solve a Toeplitz system.

Notes

The behavior when c or r is a scalar, or when c is complex and r is None, was changed in version 0.8.0. The
behavior in previous versions was undocumented and is no longer supported.
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Examples

>>> from scipy.linalg import toeplitz
>>> toeplitz([1,2,3], [1,4,5,6])
array([[1, 4, 5, 6],

[2, 1, 4, 5],
[3, 2, 1, 4]])

>>> toeplitz([1.0, 2+3j, 4-1j])
array([[ 1.+0.j, 2.-3.j, 4.+1.j],

[ 2.+3.j, 1.+0.j, 2.-3.j],
[ 4.-1.j, 2.+3.j, 1.+0.j]])

scipy.linalg.tri

scipy.linalg.tri(N, M=None, k=0, dtype=None)
Construct (N, M) matrix filled with ones at and below the k-th diagonal.
The matrix has A[i,j] == 1 for i <= j + k

Parameters

N [int] The size of the first dimension of the matrix.
M [int or None, optional] The size of the second dimension of the matrix. If M is None, M =

N is assumed.
k [int, optional] Number of subdiagonal below which matrix is filled with ones. k = 0 is the

main diagonal, k < 0 subdiagonal and k > 0 superdiagonal.
dtype [dtype, optional] Data type of the matrix.

Returns

tri [(N, M) ndarray] Tri matrix.

Examples

>>> from scipy.linalg import tri
>>> tri(3, 5, 2, dtype=int)
array([[1, 1, 1, 0, 0],

[1, 1, 1, 1, 0],
[1, 1, 1, 1, 1]])

>>> tri(3, 5, -1, dtype=int)
array([[0, 0, 0, 0, 0],

[1, 0, 0, 0, 0],
[1, 1, 0, 0, 0]])

6.9.8 Low-level routines

get_blas_funcs(names[, arrays, dtype]) Return available BLAS function objects from names.
get_lapack_funcs(names[, arrays, dtype]) Return available LAPACK function objects from names.
find_best_blas_type([arrays, dtype]) Find best-matching BLAS/LAPACK type.
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scipy.linalg.get_blas_funcs

scipy.linalg.get_blas_funcs(names, arrays=(), dtype=None)
Return available BLAS function objects from names.
Arrays are used to determine the optimal prefix of BLAS routines.

Parameters

names [str or sequence of str] Name(s) of BLAS functions without type prefix.
arrays [sequence of ndarrays, optional] Arrays can be given to determine optimal prefix of BLAS

routines. If not given, double-precision routines will be used, otherwise the most generic
type in arrays will be used.

dtype [str or dtype, optional] Data-type specifier. Not used if arrays is non-empty.
Returns

funcs [list] List containing the found function(s).

Notes

This routine automatically chooses between Fortran/C interfaces. Fortran code is used whenever possible for arrays
with column major order. In all other cases, C code is preferred.
In BLAS, the naming convention is that all functions start with a type prefix, which depends on the type of the prin-
cipal matrix. These can be one of {‘s’, ‘d’, ‘c’, ‘z’} for the numpy types {float32, float64, complex64, complex128}
respectively. The code and the dtype are stored in attributes typecode and dtype of the returned functions.

Examples

>>> import scipy.linalg as LA
>>> a = np.random.rand(3,2)
>>> x_gemv = LA.get_blas_funcs('gemv', (a,))
>>> x_gemv.typecode
'd'
>>> x_gemv = LA.get_blas_funcs('gemv',(a*1j,))
>>> x_gemv.typecode
'z'

scipy.linalg.get_lapack_funcs

scipy.linalg.get_lapack_funcs(names, arrays=(), dtype=None)
Return available LAPACK function objects from names.
Arrays are used to determine the optimal prefix of LAPACK routines.

Parameters

names [str or sequence of str] Name(s) of LAPACK functions without type prefix.
arrays [sequence of ndarrays, optional] Arrays can be given to determine optimal prefix of LA-

PACK routines. If not given, double-precision routines will be used, otherwise the most
generic type in arrays will be used.

dtype [str or dtype, optional] Data-type specifier. Not used if arrays is non-empty.
Returns
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funcs [list] List containing the found function(s).

Notes

This routine automatically chooses between Fortran/C interfaces. Fortran code is used whenever possible for arrays
with column major order. In all other cases, C code is preferred.
In LAPACK, the naming convention is that all functions start with a type prefix, which depends on the type of
the principal matrix. These can be one of {‘s’, ‘d’, ‘c’, ‘z’} for the numpy types {float32, float64, complex64,
complex128} respectively, and are stored in attribute typecode of the returned functions.

Examples

Suppose we would like to use ‘?lange’ routine which computes the selected norm of an array. We pass our array in
order to get the correct ‘lange’ flavor.

>>> import scipy.linalg as LA
>>> a = np.random.rand(3,2)
>>> x_lange = LA.get_lapack_funcs('lange', (a,))
>>> x_lange.typecode
'd'
>>> x_lange = LA.get_lapack_funcs('lange',(a*1j,))
>>> x_lange.typecode
'z'

Several LAPACK routines work best when its internal WORK array has the optimal size (big enough for fast
computation and small enough to avoid waste of memory). This size is determined also by a dedicated query to
the function which is often wrapped as a standalone function and commonly denoted as ###_lwork. Below is an
example for ?sysv

>>> import scipy.linalg as LA
>>> a = np.random.rand(1000,1000)
>>> b = np.random.rand(1000,1)*1j
>>> # We pick up zsysv and zsysv_lwork due to b array
... xsysv, xlwork = LA.get_lapack_funcs(('sysv', 'sysv_lwork'), (a, b))
>>> opt_lwork, _ = xlwork(a.shape[0]) # returns a complex for 'z' prefix
>>> udut, ipiv, x, info = xsysv(a, b, lwork=int(opt_lwork.real))

scipy.linalg.find_best_blas_type

scipy.linalg.find_best_blas_type(arrays=(), dtype=None)
Find best-matching BLAS/LAPACK type.
Arrays are used to determine the optimal prefix of BLAS routines.

Parameters

arrays [sequence of ndarrays, optional] Arrays can be given to determine optimal prefix of BLAS
routines. If not given, double-precision routines will be used, otherwise the most generic
type in arrays will be used.

dtype [str or dtype, optional] Data-type specifier. Not used if arrays is non-empty.
Returns

prefix [str] BLAS/LAPACK prefix character.
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dtype [dtype] Inferred Numpy data type.
prefer_fortran

[bool] Whether to prefer Fortran order routines over C order.

Examples

>>> import scipy.linalg.blas as bla
>>> a = np.random.rand(10,15)
>>> b = np.asfortranarray(a) # Change the memory layout order
>>> bla.find_best_blas_type((a,))
('d', dtype('float64'), False)
>>> bla.find_best_blas_type((a*1j,))
('z', dtype('complex128'), False)
>>> bla.find_best_blas_type((b,))
('d', dtype('float64'), True)

See also:
scipy.linalg.blas – Low-level BLAS functions
scipy.linalg.lapack – Low-level LAPACK functions
scipy.linalg.cython_blas – Low-level BLAS functions for Cython
scipy.linalg.cython_lapack – Low-level LAPACK functions for Cython

6.10 Low-level BLAS functions (scipy.linalg.blas)

This module contains low-level functions from the BLAS library.
New in version 0.12.0.

Note: The common overwrite_<> option in many routines, allows the input arrays to be overwritten to avoid extra
memory allocation. However this requires the array to satisfy two conditions which are memory order and the data type
to match exactly the order and the type expected by the routine.
As an example, if you pass a double precision float array to any S.... routine which expects single precision arguments,
f2py will create an intermediate array to match the argument types and overwriting will be performed on that intermediate
array.
Similarly, if a C-contiguous array is passed, f2py will pass a FORTRAN-contiguous array internally. Please make sure
that these details are satisfied. More information can be found in the f2py documentation.

Warning: These functions do little to no error checking. It is possible to cause crashes by mis-using them, so prefer
using the higher-level routines in scipy.linalg.

6.10.1 Finding functions
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get_blas_funcs(names[, arrays, dtype]) Return available BLAS function objects from names.
find_best_blas_type([arrays, dtype]) Find best-matching BLAS/LAPACK type.

scipy.linalg.blas.get_blas_funcs

scipy.linalg.blas.get_blas_funcs(names, arrays=(), dtype=None)
Return available BLAS function objects from names.
Arrays are used to determine the optimal prefix of BLAS routines.

Parameters

names [str or sequence of str] Name(s) of BLAS functions without type prefix.
arrays [sequence of ndarrays, optional] Arrays can be given to determine optimal prefix of BLAS

routines. If not given, double-precision routines will be used, otherwise the most generic
type in arrays will be used.

dtype [str or dtype, optional] Data-type specifier. Not used if arrays is non-empty.
Returns

funcs [list] List containing the found function(s).

Notes

This routine automatically chooses between Fortran/C interfaces. Fortran code is used whenever possible for arrays
with column major order. In all other cases, C code is preferred.
In BLAS, the naming convention is that all functions start with a type prefix, which depends on the type of the prin-
cipal matrix. These can be one of {‘s’, ‘d’, ‘c’, ‘z’} for the numpy types {float32, float64, complex64, complex128}
respectively. The code and the dtype are stored in attributes typecode and dtype of the returned functions.

Examples

>>> import scipy.linalg as LA
>>> a = np.random.rand(3,2)
>>> x_gemv = LA.get_blas_funcs('gemv', (a,))
>>> x_gemv.typecode
'd'
>>> x_gemv = LA.get_blas_funcs('gemv',(a*1j,))
>>> x_gemv.typecode
'z'

scipy.linalg.blas.find_best_blas_type

scipy.linalg.blas.find_best_blas_type(arrays=(), dtype=None)
Find best-matching BLAS/LAPACK type.
Arrays are used to determine the optimal prefix of BLAS routines.

Parameters

arrays [sequence of ndarrays, optional] Arrays can be given to determine optimal prefix of BLAS
routines. If not given, double-precision routines will be used, otherwise the most generic
type in arrays will be used.
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dtype [str or dtype, optional] Data-type specifier. Not used if arrays is non-empty.
Returns

prefix [str] BLAS/LAPACK prefix character.
dtype [dtype] Inferred Numpy data type.
prefer_fortran

[bool] Whether to prefer Fortran order routines over C order.

Examples

>>> import scipy.linalg.blas as bla
>>> a = np.random.rand(10,15)
>>> b = np.asfortranarray(a) # Change the memory layout order
>>> bla.find_best_blas_type((a,))
('d', dtype('float64'), False)
>>> bla.find_best_blas_type((a*1j,))
('z', dtype('complex128'), False)
>>> bla.find_best_blas_type((b,))
('d', dtype('float64'), True)

6.10.2 BLAS Level 1 functions

caxpy(x,y,[n,a,offx,incx,offy,incy]) Wrapper for caxpy.
ccopy(x,y,[n,offx,incx,offy,incy]) Wrapper for ccopy.
cdotc(x,y,[n,offx,incx,offy,incy]) Wrapper for cdotc.
cdotu(x,y,[n,offx,incx,offy,incy]) Wrapper for cdotu.
crotg(a,b) Wrapper for crotg.
cscal(a,x,[n,offx,incx]) Wrapper for cscal.
csrot(…) Wrapper for csrot.
csscal(a,x,[n,offx,incx,overwrite_x]) Wrapper for csscal.
cswap(x,y,[n,offx,incx,offy,incy]) Wrapper for cswap.
dasum(x,[n,offx,incx]) Wrapper for dasum.
daxpy(x,y,[n,a,offx,incx,offy,incy]) Wrapper for daxpy.
dcopy(x,y,[n,offx,incx,offy,incy]) Wrapper for dcopy.
ddot(x,y,[n,offx,incx,offy,incy]) Wrapper for ddot.
dnrm2(x,[n,offx,incx]) Wrapper for dnrm2.
drot(…) Wrapper for drot.
drotg(a,b) Wrapper for drotg.
drotm(…) Wrapper for drotm.
drotmg(d1,d2,x1,y1) Wrapper for drotmg.
dscal(a,x,[n,offx,incx]) Wrapper for dscal.
dswap(x,y,[n,offx,incx,offy,incy]) Wrapper for dswap.
dzasum(x,[n,offx,incx]) Wrapper for dzasum.
dznrm2(x,[n,offx,incx]) Wrapper for dznrm2.
icamax(x,[n,offx,incx]) Wrapper for icamax.
idamax(x,[n,offx,incx]) Wrapper for idamax.
isamax(x,[n,offx,incx]) Wrapper for isamax.
izamax(x,[n,offx,incx]) Wrapper for izamax.
sasum(x,[n,offx,incx]) Wrapper for sasum.

Continued on next page
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Table 92 – continued from previous page
saxpy(x,y,[n,a,offx,incx,offy,incy]) Wrapper for saxpy.
scasum(x,[n,offx,incx]) Wrapper for scasum.
scnrm2(x,[n,offx,incx]) Wrapper for scnrm2.
scopy(x,y,[n,offx,incx,offy,incy]) Wrapper for scopy.
sdot(x,y,[n,offx,incx,offy,incy]) Wrapper for sdot.
snrm2(x,[n,offx,incx]) Wrapper for snrm2.
srot(…) Wrapper for srot.
srotg(a,b) Wrapper for srotg.
srotm(…) Wrapper for srotm.
srotmg(d1,d2,x1,y1) Wrapper for srotmg.
sscal(a,x,[n,offx,incx]) Wrapper for sscal.
sswap(x,y,[n,offx,incx,offy,incy]) Wrapper for sswap.
zaxpy(x,y,[n,a,offx,incx,offy,incy]) Wrapper for zaxpy.
zcopy(x,y,[n,offx,incx,offy,incy]) Wrapper for zcopy.
zdotc(x,y,[n,offx,incx,offy,incy]) Wrapper for zdotc.
zdotu(x,y,[n,offx,incx,offy,incy]) Wrapper for zdotu.
zdrot(…) Wrapper for zdrot.
zdscal(a,x,[n,offx,incx,overwrite_x]) Wrapper for zdscal.
zrotg(a,b) Wrapper for zrotg.
zscal(a,x,[n,offx,incx]) Wrapper for zscal.
zswap(x,y,[n,offx,incx,offy,incy]) Wrapper for zswap.

scipy.linalg.blas.caxpy

scipy.linalg.blas.caxpy(x, y[, n, a, offx, incx, offy, incy]) = <fortran object>
Wrapper for caxpy.

Parameters

x [input rank-1 array(‘F’) with bounds (*)]
y [input rank-1 array(‘F’) with bounds (*)]

Returns

z [rank-1 array(‘F’) with bounds (*) and y storage]
Other Parameters

n [input int, optional] Default: (len(x)-offx)/abs(incx)
a [input complex, optional] Default: (1.0, 0.0)
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1
offy [input int, optional] Default: 0
incy [input int, optional] Default: 1

scipy.linalg.blas.ccopy

scipy.linalg.blas.ccopy(x, y[, n, offx, incx, offy, incy]) = <fortran object>
Wrapper for ccopy.

Parameters

x [input rank-1 array(‘F’) with bounds (*)]
y [input rank-1 array(‘F’) with bounds (*)]
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Returns

y [rank-1 array(‘F’) with bounds (*)]
Other Parameters

n [input int, optional] Default: (len(x)-offx)/abs(incx)
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1
offy [input int, optional] Default: 0
incy [input int, optional] Default: 1

scipy.linalg.blas.cdotc

scipy.linalg.blas.cdotc(x, y[, n, offx, incx, offy, incy]) = <fortran cdotc>
Wrapper for cdotc.

Parameters

x [input rank-1 array(‘F’) with bounds (*)]
y [input rank-1 array(‘F’) with bounds (*)]

Returns

xy [complex]
Other Parameters

n [input int, optional] Default: (len(x)-offx)/abs(incx)
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1
offy [input int, optional] Default: 0
incy [input int, optional] Default: 1

scipy.linalg.blas.cdotu

scipy.linalg.blas.cdotu(x, y[, n, offx, incx, offy, incy]) = <fortran cdotu>
Wrapper for cdotu.

Parameters

x [input rank-1 array(‘F’) with bounds (*)]
y [input rank-1 array(‘F’) with bounds (*)]

Returns

xy [complex]
Other Parameters

n [input int, optional] Default: (len(x)-offx)/abs(incx)
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1
offy [input int, optional] Default: 0
incy [input int, optional] Default: 1
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scipy.linalg.blas.crotg

scipy.linalg.blas.crotg(a, b) = <fortran object>
Wrapper for crotg.

Parameters

a [input complex]
b [input complex]

Returns

c [complex]
s [complex]

scipy.linalg.blas.cscal

scipy.linalg.blas.cscal(a, x[, n, offx, incx ]) = <fortran object>
Wrapper for cscal.

Parameters

a [input complex]
x [input rank-1 array(‘F’) with bounds (*)]

Returns

x [rank-1 array(‘F’) with bounds (*)]
Other Parameters

n [input int, optional] Default: (len(x)-offx)/abs(incx)
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1

scipy.linalg.blas.csrot

scipy.linalg.blas.csrot(x, y, c, s[, n, offx, incx, offy, incy, overwrite_x, overwrite_y]) = <fortran
object>

Wrapper for csrot.
Parameters

x [input rank-1 array(‘F’) with bounds (*)]
y [input rank-1 array(‘F’) with bounds (*)]
c [input float]
s [input float]

Returns

x [rank-1 array(‘F’) with bounds (*)]
y [rank-1 array(‘F’) with bounds (*)]

Other Parameters

n [input int, optional] Default: (len(x)-1-offx)/abs(incx)+1
overwrite_x

[input int, optional] Default: 0
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1
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overwrite_y
[input int, optional] Default: 0

offy [input int, optional] Default: 0
incy [input int, optional] Default: 1

scipy.linalg.blas.csscal

scipy.linalg.blas.csscal(a, x[, n, offx, incx, overwrite_x ]) = <fortran object>
Wrapper for csscal.

Parameters

a [input float]
x [input rank-1 array(‘F’) with bounds (*)]

Returns

x [rank-1 array(‘F’) with bounds (*)]
Other Parameters

n [input int, optional] Default: (len(x)-offx)/abs(incx)
overwrite_x

[input int, optional] Default: 0
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1

scipy.linalg.blas.cswap

scipy.linalg.blas.cswap(x, y[, n, offx, incx, offy, incy]) = <fortran object>
Wrapper for cswap.

Parameters

x [input rank-1 array(‘F’) with bounds (*)]
y [input rank-1 array(‘F’) with bounds (*)]

Returns

x [rank-1 array(‘F’) with bounds (*)]
y [rank-1 array(‘F’) with bounds (*)]

Other Parameters

n [input int, optional] Default: (len(x)-offx)/abs(incx)
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1
offy [input int, optional] Default: 0
incy [input int, optional] Default: 1

scipy.linalg.blas.dasum

scipy.linalg.blas.dasum(x[, n, offx, incx ]) = <fortran dasum>
Wrapper for dasum.

Parameters

x [input rank-1 array(‘d’) with bounds (*)]
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Returns

s [float]
Other Parameters

n [input int, optional] Default: (len(x)-offx)/abs(incx)
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1

scipy.linalg.blas.daxpy

scipy.linalg.blas.daxpy(x, y[, n, a, offx, incx, offy, incy]) = <fortran object>
Wrapper for daxpy.

Parameters

x [input rank-1 array(‘d’) with bounds (*)]
y [input rank-1 array(‘d’) with bounds (*)]

Returns

z [rank-1 array(‘d’) with bounds (*) and y storage]
Other Parameters

n [input int, optional] Default: (len(x)-offx)/abs(incx)
a [input float, optional] Default: 1.0
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1
offy [input int, optional] Default: 0
incy [input int, optional] Default: 1

scipy.linalg.blas.dcopy

scipy.linalg.blas.dcopy(x, y[, n, offx, incx, offy, incy]) = <fortran object>
Wrapper for dcopy.

Parameters

x [input rank-1 array(‘d’) with bounds (*)]
y [input rank-1 array(‘d’) with bounds (*)]

Returns

y [rank-1 array(‘d’) with bounds (*)]
Other Parameters

n [input int, optional] Default: (len(x)-offx)/abs(incx)
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1
offy [input int, optional] Default: 0
incy [input int, optional] Default: 1
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scipy.linalg.blas.ddot

scipy.linalg.blas.ddot(x, y[, n, offx, incx, offy, incy]) = <fortran ddot>
Wrapper for ddot.

Parameters

x [input rank-1 array(‘d’) with bounds (*)]
y [input rank-1 array(‘d’) with bounds (*)]

Returns

xy [float]
Other Parameters

n [input int, optional] Default: (len(x)-offx)/abs(incx)
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1
offy [input int, optional] Default: 0
incy [input int, optional] Default: 1

scipy.linalg.blas.dnrm2

scipy.linalg.blas.dnrm2(x[, n, offx, incx ]) = <fortran dnrm2>
Wrapper for dnrm2.

Parameters

x [input rank-1 array(‘d’) with bounds (*)]
Returns

n2 [float]
Other Parameters

n [input int, optional] Default: (len(x)-offx)/abs(incx)
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1

scipy.linalg.blas.drot

scipy.linalg.blas.drot(x, y, c, s[, n, offx, incx, offy, incy, overwrite_x, overwrite_y]) = <fortran
object>

Wrapper for drot.
Parameters

x [input rank-1 array(‘d’) with bounds (*)]
y [input rank-1 array(‘d’) with bounds (*)]
c [input float]
s [input float]

Returns

x [rank-1 array(‘d’) with bounds (*)]
y [rank-1 array(‘d’) with bounds (*)]

Other Parameters
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n [input int, optional] Default: (len(x)-1-offx)/abs(incx)+1
overwrite_x

[input int, optional] Default: 0
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1
overwrite_y

[input int, optional] Default: 0
offy [input int, optional] Default: 0
incy [input int, optional] Default: 1

scipy.linalg.blas.drotg

scipy.linalg.blas.drotg(a, b) = <fortran object>
Wrapper for drotg.

Parameters

a [input float]
b [input float]

Returns

c [float]
s [float]

scipy.linalg.blas.drotm

scipy.linalg.blas.drotm(x, y, param[, n, offx, incx, offy, incy, overwrite_x, overwrite_y]) =
<fortran object>

Wrapper for drotm.
Parameters

x [input rank-1 array(‘d’) with bounds (*)]
y [input rank-1 array(‘d’) with bounds (*)]
param [input rank-1 array(‘d’) with bounds (5)]

Returns

x [rank-1 array(‘d’) with bounds (*)]
y [rank-1 array(‘d’) with bounds (*)]

Other Parameters

n [input int, optional] Default: (len(x)-offx)/abs(incx)
overwrite_x

[input int, optional] Default: 0
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1
overwrite_y

[input int, optional] Default: 0
offy [input int, optional] Default: 0
incy [input int, optional] Default: 1
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scipy.linalg.blas.drotmg

scipy.linalg.blas.drotmg(d1, d2, x1, y1) = <fortran object>
Wrapper for drotmg.

Parameters

d1 [input float]
d2 [input float]
x1 [input float]
y1 [input float]

Returns

param [rank-1 array(‘d’) with bounds (5)]

scipy.linalg.blas.dscal

scipy.linalg.blas.dscal(a, x[, n, offx, incx ]) = <fortran object>
Wrapper for dscal.

Parameters

a [input float]
x [input rank-1 array(‘d’) with bounds (*)]

Returns

x [rank-1 array(‘d’) with bounds (*)]
Other Parameters

n [input int, optional] Default: (len(x)-offx)/abs(incx)
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1

scipy.linalg.blas.dswap

scipy.linalg.blas.dswap(x, y[, n, offx, incx, offy, incy]) = <fortran object>
Wrapper for dswap.

Parameters

x [input rank-1 array(‘d’) with bounds (*)]
y [input rank-1 array(‘d’) with bounds (*)]

Returns

x [rank-1 array(‘d’) with bounds (*)]
y [rank-1 array(‘d’) with bounds (*)]

Other Parameters

n [input int, optional] Default: (len(x)-offx)/abs(incx)
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1
offy [input int, optional] Default: 0
incy [input int, optional] Default: 1
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scipy.linalg.blas.dzasum

scipy.linalg.blas.dzasum(x[, n, offx, incx ]) = <fortran dzasum>
Wrapper for dzasum.

Parameters

x [input rank-1 array(‘D’) with bounds (*)]
Returns

s [float]
Other Parameters

n [input int, optional] Default: (len(x)-offx)/abs(incx)
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1

scipy.linalg.blas.dznrm2

scipy.linalg.blas.dznrm2(x[, n, offx, incx ]) = <fortran dznrm2>
Wrapper for dznrm2.

Parameters

x [input rank-1 array(‘D’) with bounds (*)]
Returns

n2 [float]
Other Parameters

n [input int, optional] Default: (len(x)-offx)/abs(incx)
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1

scipy.linalg.blas.icamax

scipy.linalg.blas.icamax(x[, n, offx, incx ]) = <fortran object>
Wrapper for icamax.

Parameters

x [input rank-1 array(‘F’) with bounds (*)]
Returns

k [int]
Other Parameters

n [input int, optional] Default: (len(x)-offx)/abs(incx)
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1
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scipy.linalg.blas.idamax

scipy.linalg.blas.idamax(x[, n, offx, incx ]) = <fortran object>
Wrapper for idamax.

Parameters

x [input rank-1 array(‘d’) with bounds (*)]
Returns

k [int]
Other Parameters

n [input int, optional] Default: (len(x)-offx)/abs(incx)
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1

scipy.linalg.blas.isamax

scipy.linalg.blas.isamax(x[, n, offx, incx ]) = <fortran object>
Wrapper for isamax.

Parameters

x [input rank-1 array(‘f’) with bounds (*)]
Returns

k [int]
Other Parameters

n [input int, optional] Default: (len(x)-offx)/abs(incx)
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1

scipy.linalg.blas.izamax

scipy.linalg.blas.izamax(x[, n, offx, incx ]) = <fortran object>
Wrapper for izamax.

Parameters

x [input rank-1 array(‘D’) with bounds (*)]
Returns

k [int]
Other Parameters

n [input int, optional] Default: (len(x)-offx)/abs(incx)
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1
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scipy.linalg.blas.sasum

scipy.linalg.blas.sasum(x[, n, offx, incx ]) = <fortran sasum>
Wrapper for sasum.

Parameters

x [input rank-1 array(‘f’) with bounds (*)]
Returns

s [float]
Other Parameters

n [input int, optional] Default: (len(x)-offx)/abs(incx)
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1

scipy.linalg.blas.saxpy

scipy.linalg.blas.saxpy(x, y[, n, a, offx, incx, offy, incy]) = <fortran object>
Wrapper for saxpy.

Parameters

x [input rank-1 array(‘f’) with bounds (*)]
y [input rank-1 array(‘f’) with bounds (*)]

Returns

z [rank-1 array(‘f’) with bounds (*) and y storage]
Other Parameters

n [input int, optional] Default: (len(x)-offx)/abs(incx)
a [input float, optional] Default: 1.0
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1
offy [input int, optional] Default: 0
incy [input int, optional] Default: 1

scipy.linalg.blas.scasum

scipy.linalg.blas.scasum(x[, n, offx, incx ]) = <fortran scasum>
Wrapper for scasum.

Parameters

x [input rank-1 array(‘F’) with bounds (*)]
Returns

s [float]
Other Parameters

n [input int, optional] Default: (len(x)-offx)/abs(incx)
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1
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scipy.linalg.blas.scnrm2

scipy.linalg.blas.scnrm2(x[, n, offx, incx ]) = <fortran scnrm2>
Wrapper for scnrm2.

Parameters

x [input rank-1 array(‘F’) with bounds (*)]
Returns

n2 [float]
Other Parameters

n [input int, optional] Default: (len(x)-offx)/abs(incx)
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1

scipy.linalg.blas.scopy

scipy.linalg.blas.scopy(x, y[, n, offx, incx, offy, incy]) = <fortran object>
Wrapper for scopy.

Parameters

x [input rank-1 array(‘f’) with bounds (*)]
y [input rank-1 array(‘f’) with bounds (*)]

Returns

y [rank-1 array(‘f’) with bounds (*)]
Other Parameters

n [input int, optional] Default: (len(x)-offx)/abs(incx)
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1
offy [input int, optional] Default: 0
incy [input int, optional] Default: 1

scipy.linalg.blas.sdot

scipy.linalg.blas.sdot(x, y[, n, offx, incx, offy, incy]) = <fortran sdot>
Wrapper for sdot.

Parameters

x [input rank-1 array(‘f’) with bounds (*)]
y [input rank-1 array(‘f’) with bounds (*)]

Returns

xy [float]
Other Parameters

n [input int, optional] Default: (len(x)-offx)/abs(incx)
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1
offy [input int, optional] Default: 0
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incy [input int, optional] Default: 1

scipy.linalg.blas.snrm2

scipy.linalg.blas.snrm2(x[, n, offx, incx ]) = <fortran snrm2>
Wrapper for snrm2.

Parameters

x [input rank-1 array(‘f’) with bounds (*)]
Returns

n2 [float]
Other Parameters

n [input int, optional] Default: (len(x)-offx)/abs(incx)
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1

scipy.linalg.blas.srot

scipy.linalg.blas.srot(x, y, c, s[, n, offx, incx, offy, incy, overwrite_x, overwrite_y]) = <fortran
object>

Wrapper for srot.
Parameters

x [input rank-1 array(‘f’) with bounds (*)]
y [input rank-1 array(‘f’) with bounds (*)]
c [input float]
s [input float]

Returns

x [rank-1 array(‘f’) with bounds (*)]
y [rank-1 array(‘f’) with bounds (*)]

Other Parameters

n [input int, optional] Default: (len(x)-1-offx)/abs(incx)+1
overwrite_x

[input int, optional] Default: 0
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1
overwrite_y

[input int, optional] Default: 0
offy [input int, optional] Default: 0
incy [input int, optional] Default: 1
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scipy.linalg.blas.srotg

scipy.linalg.blas.srotg(a, b) = <fortran object>
Wrapper for srotg.

Parameters

a [input float]
b [input float]

Returns

c [float]
s [float]

scipy.linalg.blas.srotm

scipy.linalg.blas.srotm(x, y, param[, n, offx, incx, offy, incy, overwrite_x, overwrite_y]) =
<fortran object>

Wrapper for srotm.
Parameters

x [input rank-1 array(‘f’) with bounds (*)]
y [input rank-1 array(‘f’) with bounds (*)]
param [input rank-1 array(‘f’) with bounds (5)]

Returns

x [rank-1 array(‘f’) with bounds (*)]
y [rank-1 array(‘f’) with bounds (*)]

Other Parameters

n [input int, optional] Default: (len(x)-offx)/abs(incx)
overwrite_x

[input int, optional] Default: 0
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1
overwrite_y

[input int, optional] Default: 0
offy [input int, optional] Default: 0
incy [input int, optional] Default: 1

scipy.linalg.blas.srotmg

scipy.linalg.blas.srotmg(d1, d2, x1, y1) = <fortran object>
Wrapper for srotmg.

Parameters

d1 [input float]
d2 [input float]
x1 [input float]
y1 [input float]

Returns

param [rank-1 array(‘f’) with bounds (5)]
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scipy.linalg.blas.sscal

scipy.linalg.blas.sscal(a, x[, n, offx, incx ]) = <fortran object>
Wrapper for sscal.

Parameters

a [input float]
x [input rank-1 array(‘f’) with bounds (*)]

Returns

x [rank-1 array(‘f’) with bounds (*)]
Other Parameters

n [input int, optional] Default: (len(x)-offx)/abs(incx)
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1

scipy.linalg.blas.sswap

scipy.linalg.blas.sswap(x, y[, n, offx, incx, offy, incy]) = <fortran object>
Wrapper for sswap.

Parameters

x [input rank-1 array(‘f’) with bounds (*)]
y [input rank-1 array(‘f’) with bounds (*)]

Returns

x [rank-1 array(‘f’) with bounds (*)]
y [rank-1 array(‘f’) with bounds (*)]

Other Parameters

n [input int, optional] Default: (len(x)-offx)/abs(incx)
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1
offy [input int, optional] Default: 0
incy [input int, optional] Default: 1

scipy.linalg.blas.zaxpy

scipy.linalg.blas.zaxpy(x, y[, n, a, offx, incx, offy, incy]) = <fortran object>
Wrapper for zaxpy.

Parameters

x [input rank-1 array(‘D’) with bounds (*)]
y [input rank-1 array(‘D’) with bounds (*)]

Returns

z [rank-1 array(‘D’) with bounds (*) and y storage]
Other Parameters

n [input int, optional] Default: (len(x)-offx)/abs(incx)
a [input complex, optional] Default: (1.0, 0.0)
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offx [input int, optional] Default: 0
incx [input int, optional] Default: 1
offy [input int, optional] Default: 0
incy [input int, optional] Default: 1

scipy.linalg.blas.zcopy

scipy.linalg.blas.zcopy(x, y[, n, offx, incx, offy, incy]) = <fortran object>
Wrapper for zcopy.

Parameters

x [input rank-1 array(‘D’) with bounds (*)]
y [input rank-1 array(‘D’) with bounds (*)]

Returns

y [rank-1 array(‘D’) with bounds (*)]
Other Parameters

n [input int, optional] Default: (len(x)-offx)/abs(incx)
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1
offy [input int, optional] Default: 0
incy [input int, optional] Default: 1

scipy.linalg.blas.zdotc

scipy.linalg.blas.zdotc(x, y[, n, offx, incx, offy, incy]) = <fortran zdotc>
Wrapper for zdotc.

Parameters

x [input rank-1 array(‘D’) with bounds (*)]
y [input rank-1 array(‘D’) with bounds (*)]

Returns

xy [complex]
Other Parameters

n [input int, optional] Default: (len(x)-offx)/abs(incx)
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1
offy [input int, optional] Default: 0
incy [input int, optional] Default: 1

scipy.linalg.blas.zdotu

scipy.linalg.blas.zdotu(x, y[, n, offx, incx, offy, incy]) = <fortran zdotu>
Wrapper for zdotu.

Parameters

x [input rank-1 array(‘D’) with bounds (*)]
y [input rank-1 array(‘D’) with bounds (*)]
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Returns

xy [complex]
Other Parameters

n [input int, optional] Default: (len(x)-offx)/abs(incx)
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1
offy [input int, optional] Default: 0
incy [input int, optional] Default: 1

scipy.linalg.blas.zdrot

scipy.linalg.blas.zdrot(x, y, c, s[, n, offx, incx, offy, incy, overwrite_x, overwrite_y]) = <fortran
object>

Wrapper for zdrot.
Parameters

x [input rank-1 array(‘D’) with bounds (*)]
y [input rank-1 array(‘D’) with bounds (*)]
c [input float]
s [input float]

Returns

x [rank-1 array(‘D’) with bounds (*)]
y [rank-1 array(‘D’) with bounds (*)]

Other Parameters

n [input int, optional] Default: (len(x)-1-offx)/abs(incx)+1
overwrite_x

[input int, optional] Default: 0
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1
overwrite_y

[input int, optional] Default: 0
offy [input int, optional] Default: 0
incy [input int, optional] Default: 1

scipy.linalg.blas.zdscal

scipy.linalg.blas.zdscal(a, x[, n, offx, incx, overwrite_x ]) = <fortran object>
Wrapper for zdscal.

Parameters

a [input float]
x [input rank-1 array(‘D’) with bounds (*)]

Returns

x [rank-1 array(‘D’) with bounds (*)]
Other Parameters

n [input int, optional] Default: (len(x)-offx)/abs(incx)
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overwrite_x
[input int, optional] Default: 0

offx [input int, optional] Default: 0
incx [input int, optional] Default: 1

scipy.linalg.blas.zrotg

scipy.linalg.blas.zrotg(a, b) = <fortran object>
Wrapper for zrotg.

Parameters

a [input complex]
b [input complex]

Returns

c [complex]
s [complex]

scipy.linalg.blas.zscal

scipy.linalg.blas.zscal(a, x[, n, offx, incx ]) = <fortran object>
Wrapper for zscal.

Parameters

a [input complex]
x [input rank-1 array(‘D’) with bounds (*)]

Returns

x [rank-1 array(‘D’) with bounds (*)]
Other Parameters

n [input int, optional] Default: (len(x)-offx)/abs(incx)
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1

scipy.linalg.blas.zswap

scipy.linalg.blas.zswap(x, y[, n, offx, incx, offy, incy]) = <fortran object>
Wrapper for zswap.

Parameters

x [input rank-1 array(‘D’) with bounds (*)]
y [input rank-1 array(‘D’) with bounds (*)]

Returns

x [rank-1 array(‘D’) with bounds (*)]
y [rank-1 array(‘D’) with bounds (*)]

Other Parameters

n [input int, optional] Default: (len(x)-offx)/abs(incx)
offx [input int, optional] Default: 0
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incx [input int, optional] Default: 1
offy [input int, optional] Default: 0
incy [input int, optional] Default: 1

6.10.3 BLAS Level 2 functions

sgbmv(…) Wrapper for sgbmv.
sgemv(…) Wrapper for sgemv.
sger(…) Wrapper for sger.
ssbmv(…) Wrapper for ssbmv.
sspr(n,alpha,x,ap,[incx,offx,lower,overwrite_ap]) Wrapper for sspr.
sspr2(…) Wrapper for sspr2.
ssymv(…) Wrapper for ssymv.
ssyr(alpha,x,[lower,incx,offx,n,a,overwrite_a]) Wrapper for ssyr.
ssyr2(…) Wrapper for ssyr2.
stbmv(…) Wrapper for stbmv.
stpsv(…) Wrapper for stpsv.
strmv(…) Wrapper for strmv.
strsv(…) Wrapper for strsv.
dgbmv(…) Wrapper for dgbmv.
dgemv(…) Wrapper for dgemv.
dger(…) Wrapper for dger.
dsbmv(…) Wrapper for dsbmv.
dspr(n,alpha,x,ap,[incx,offx,lower,overwrite_ap]) Wrapper for dspr.
dspr2(…) Wrapper for dspr2.
dsymv(…) Wrapper for dsymv.
dsyr(alpha,x,[lower,incx,offx,n,a,overwrite_a]) Wrapper for dsyr.
dsyr2(…) Wrapper for dsyr2.
dtbmv(…) Wrapper for dtbmv.
dtpsv(…) Wrapper for dtpsv.
dtrmv(…) Wrapper for dtrmv.
dtrsv(…) Wrapper for dtrsv.
cgbmv(…) Wrapper for cgbmv.
cgemv(…) Wrapper for cgemv.
cgerc(…) Wrapper for cgerc.
cgeru(…) Wrapper for cgeru.
chbmv(…) Wrapper for chbmv.
chemv(…) Wrapper for chemv.
cher(alpha,x,[lower,incx,offx,n,a,overwrite_a]) Wrapper for cher.
cher2(…) Wrapper for cher2.
chpmv(…) Wrapper for chpmv.
chpr(n,alpha,x,ap,[incx,offx,lower,overwrite_ap]) Wrapper for chpr.
chpr2(…) Wrapper for chpr2.
ctbmv(…) Wrapper for ctbmv.
ctbsv(…) Wrapper for ctbsv.
ctpmv(…) Wrapper for ctpmv.
ctpsv(…) Wrapper for ctpsv.
ctrmv(…) Wrapper for ctrmv.
ctrsv(…) Wrapper for ctrsv.
csyr(alpha,x,[lower,incx,offx,n,a,overwrite_a]) Wrapper for csyr.

Continued on next page
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Table 93 – continued from previous page
zgbmv(…) Wrapper for zgbmv.
zgemv(…) Wrapper for zgemv.
zgerc(…) Wrapper for zgerc.
zgeru(…) Wrapper for zgeru.
zhbmv(…) Wrapper for zhbmv.
zhemv(…) Wrapper for zhemv.
zher(alpha,x,[lower,incx,offx,n,a,overwrite_a]) Wrapper for zher.
zher2(…) Wrapper for zher2.
zhpmv(…) Wrapper for zhpmv.
zhpr(n,alpha,x,ap,[incx,offx,lower,overwrite_ap]) Wrapper for zhpr.
zhpr2(…) Wrapper for zhpr2.
ztbmv(…) Wrapper for ztbmv.
ztbsv(…) Wrapper for ztbsv.
ztpmv(…) Wrapper for ztpmv.
ztrmv(…) Wrapper for ztrmv.
ztrsv(…) Wrapper for ztrsv.
zsyr(alpha,x,[lower,incx,offx,n,a,overwrite_a]) Wrapper for zsyr.

scipy.linalg.blas.sgbmv

scipy.linalg.blas.sgbmv(m, n, kl, ku, alpha, a, x[, incx, offx, beta, y, incy, offy, trans, overwrite_y])
= <fortran object>

Wrapper for sgbmv.
Parameters

m [input int]
n [input int]
kl [input int]
ku [input int]
alpha [input float]
a [input rank-2 array(‘f’) with bounds (lda,n)]
x [input rank-1 array(‘f’) with bounds (*)]

Returns

yout [rank-1 array(‘f’) with bounds (ly) and y storage]
Other Parameters

incx [input int, optional] Default: 1
offx [input int, optional] Default: 0
beta [input float, optional] Default: 0.0
y [input rank-1 array(‘f’) with bounds (ly)]
overwrite_y

[input int, optional] Default: 0
incy [input int, optional] Default: 1
offy [input int, optional] Default: 0
trans [input int, optional] Default: 0

scipy.linalg.blas.sgemv

scipy.linalg.blas.sgemv(alpha, a, x[, beta, y, offx, incx, offy, incy, trans, overwrite_y]) =
<fortran object>

Wrapper for sgemv.
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Parameters

alpha [input float]
a [input rank-2 array(‘f’) with bounds (m,n)]
x [input rank-1 array(‘f’) with bounds (*)]

Returns

y [rank-1 array(‘f’) with bounds (ly)]
Other Parameters

beta [input float, optional] Default: 0.0
y [input rank-1 array(‘f’) with bounds (ly)]
overwrite_y

[input int, optional] Default: 0
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1
offy [input int, optional] Default: 0
incy [input int, optional] Default: 1
trans [input int, optional] Default: 0

scipy.linalg.blas.sger

scipy.linalg.blas.sger(alpha, x, y[, incx, incy, a, overwrite_x, overwrite_y, overwrite_a]) =
<fortran object>

Wrapper for sger.
Parameters

alpha [input float]
x [input rank-1 array(‘f’) with bounds (m)]
y [input rank-1 array(‘f’) with bounds (n)]

Returns

a [rank-2 array(‘f’) with bounds (m,n)]
Other Parameters

overwrite_x
[input int, optional] Default: 1

incx [input int, optional] Default: 1
overwrite_y

[input int, optional] Default: 1
incy [input int, optional] Default: 1
a [input rank-2 array(‘f’) with bounds (m,n), optional] Default: 0.0
overwrite_a

[input int, optional] Default: 0

scipy.linalg.blas.ssbmv

scipy.linalg.blas.ssbmv(k, alpha, a, x[, incx, offx, beta, y, incy, offy, lower, overwrite_y]) =
<fortran object>

Wrapper for ssbmv.
Parameters

k [input int]
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alpha [input float]
a [input rank-2 array(‘f’) with bounds (lda,n)]
x [input rank-1 array(‘f’) with bounds (*)]

Returns

yout [rank-1 array(‘f’) with bounds (ly) and y storage]
Other Parameters

incx [input int, optional] Default: 1
offx [input int, optional] Default: 0
beta [input float, optional] Default: 0.0
y [input rank-1 array(‘f’) with bounds (ly)]
overwrite_y

[input int, optional] Default: 0
incy [input int, optional] Default: 1
offy [input int, optional] Default: 0
lower [input int, optional] Default: 0

scipy.linalg.blas.sspr

scipy.linalg.blas.sspr(n, alpha, x, ap[, incx, offx, lower, overwrite_ap]) = <fortran object>
Wrapper for sspr.

Parameters

n [input int]
alpha [input float]
x [input rank-1 array(‘f’) with bounds (*)]
ap [input rank-1 array(‘f’) with bounds (*)]

Returns

apu [rank-1 array(‘f’) with bounds (*) and ap storage]
Other Parameters

incx [input int, optional] Default: 1
offx [input int, optional] Default: 0
overwrite_ap

[input int, optional] Default: 0
lower [input int, optional] Default: 0

scipy.linalg.blas.sspr2

scipy.linalg.blas.sspr2(n, alpha, x, y, ap[, incx, offx, incy, offy, lower, overwrite_ap]) =
<fortran object>

Wrapper for sspr2.
Parameters

n [input int]
alpha [input float]
x [input rank-1 array(‘f’) with bounds (*)]
y [input rank-1 array(‘f’) with bounds (*)]
ap [input rank-1 array(‘f’) with bounds (*)]

Returns
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apu [rank-1 array(‘f’) with bounds (*) and ap storage]
Other Parameters

incx [input int, optional] Default: 1
offx [input int, optional] Default: 0
incy [input int, optional] Default: 1
offy [input int, optional] Default: 0
overwrite_ap

[input int, optional] Default: 0
lower [input int, optional] Default: 0

scipy.linalg.blas.ssymv

scipy.linalg.blas.ssymv(alpha, a, x[, beta, y, offx, incx, offy, incy, lower, overwrite_y]) =
<fortran object>

Wrapper for ssymv.
Parameters

alpha [input float]
a [input rank-2 array(‘f’) with bounds (n,n)]
x [input rank-1 array(‘f’) with bounds (*)]

Returns

y [rank-1 array(‘f’) with bounds (ly)]
Other Parameters

beta [input float, optional] Default: 0.0
y [input rank-1 array(‘f’) with bounds (ly)]
overwrite_y

[input int, optional] Default: 0
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1
offy [input int, optional] Default: 0
incy [input int, optional] Default: 1
lower [input int, optional] Default: 0

scipy.linalg.blas.ssyr

scipy.linalg.blas.ssyr(alpha, x[, lower, incx, offx, n, a, overwrite_a]) = <fortran object>
Wrapper for ssyr.

Parameters

alpha [input float]
x [input rank-1 array(‘f’) with bounds (*)]

Returns

a [rank-2 array(‘f’) with bounds (n,n)]
Other Parameters

lower [input int, optional] Default: 0
incx [input int, optional] Default: 1
offx [input int, optional] Default: 0
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n [input int, optional] Default: (len(x)-1-offx)/abs(incx)+1
a [input rank-2 array(‘f’) with bounds (n,n)]
overwrite_a

[input int, optional] Default: 0

scipy.linalg.blas.ssyr2

scipy.linalg.blas.ssyr2(alpha, x, y[, lower, incx, offx, incy, offy, n, a, overwrite_a]) = <fortran
object>

Wrapper for ssyr2.
Parameters

alpha [input float]
x [input rank-1 array(‘f’) with bounds (*)]
y [input rank-1 array(‘f’) with bounds (*)]

Returns

a [rank-2 array(‘f’) with bounds (n,n)]
Other Parameters

lower [input int, optional] Default: 0
incx [input int, optional] Default: 1
offx [input int, optional] Default: 0
incy [input int, optional] Default: 1
offy [input int, optional] Default: 0
n [input int, optional] Default: ((len(x)-1-offx)/abs(incx)+1 <=(len(y)-1-offy)/abs(incy)+1

?(len(x)-1-offx)/abs(incx)+1 :(len(y)-1-offy)/abs(incy)+1)
a [input rank-2 array(‘f’) with bounds (n,n)]
overwrite_a

[input int, optional] Default: 0

scipy.linalg.blas.stbmv

scipy.linalg.blas.stbmv(k, a, x[, incx, offx, lower, trans, diag, overwrite_x ]) = <fortran
object>

Wrapper for stbmv.
Parameters

k [input int]
a [input rank-2 array(‘f’) with bounds (lda,n)]
x [input rank-1 array(‘f’) with bounds (*)]

Returns

xout [rank-1 array(‘f’) with bounds (*) and x storage]
Other Parameters

overwrite_x
[input int, optional] Default: 0

incx [input int, optional] Default: 1
offx [input int, optional] Default: 0
lower [input int, optional] Default: 0
trans [input int, optional] Default: 0
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diag [input int, optional] Default: 0

scipy.linalg.blas.stpsv

scipy.linalg.blas.stpsv(n, ap, x[, incx, offx, lower, trans, diag, overwrite_x ]) = <fortran
object>

Wrapper for stpsv.
Parameters

n [input int]
ap [input rank-1 array(‘f’) with bounds (*)]
x [input rank-1 array(‘f’) with bounds (*)]

Returns

xout [rank-1 array(‘f’) with bounds (*) and x storage]
Other Parameters

overwrite_x
[input int, optional] Default: 0

incx [input int, optional] Default: 1
offx [input int, optional] Default: 0
lower [input int, optional] Default: 0
trans [input int, optional] Default: 0
diag [input int, optional] Default: 0

scipy.linalg.blas.strmv

scipy.linalg.blas.strmv(a, x[, offx, incx, lower, trans, diag, overwrite_x ]) = <fortran
object>

Wrapper for strmv.
Parameters

a [input rank-2 array(‘f’) with bounds (n,n)]
x [input rank-1 array(‘f’) with bounds (*)]

Returns

x [rank-1 array(‘f’) with bounds (*)]
Other Parameters

overwrite_x
[input int, optional] Default: 0

offx [input int, optional] Default: 0
incx [input int, optional] Default: 1
lower [input int, optional] Default: 0
trans [input int, optional] Default: 0
diag [input int, optional] Default: 0
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scipy.linalg.blas.strsv

scipy.linalg.blas.strsv(a, x[, incx, offx, lower, trans, diag, overwrite_x ]) = <fortran
object>

Wrapper for strsv.
Parameters

a [input rank-2 array(‘f’) with bounds (n,n)]
x [input rank-1 array(‘f’) with bounds (*)]

Returns

xout [rank-1 array(‘f’) with bounds (*) and x storage]
Other Parameters

overwrite_x
[input int, optional] Default: 0

incx [input int, optional] Default: 1
offx [input int, optional] Default: 0
lower [input int, optional] Default: 0
trans [input int, optional] Default: 0
diag [input int, optional] Default: 0

scipy.linalg.blas.dgbmv

scipy.linalg.blas.dgbmv(m, n, kl, ku, alpha, a, x[, incx, offx, beta, y, incy, offy, trans, overwrite_y])
= <fortran object>

Wrapper for dgbmv.
Parameters

m [input int]
n [input int]
kl [input int]
ku [input int]
alpha [input float]
a [input rank-2 array(‘d’) with bounds (lda,n)]
x [input rank-1 array(‘d’) with bounds (*)]

Returns

yout [rank-1 array(‘d’) with bounds (ly) and y storage]
Other Parameters

incx [input int, optional] Default: 1
offx [input int, optional] Default: 0
beta [input float, optional] Default: 0.0
y [input rank-1 array(‘d’) with bounds (ly)]
overwrite_y

[input int, optional] Default: 0
incy [input int, optional] Default: 1
offy [input int, optional] Default: 0
trans [input int, optional] Default: 0
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scipy.linalg.blas.dgemv

scipy.linalg.blas.dgemv(alpha, a, x[, beta, y, offx, incx, offy, incy, trans, overwrite_y]) =
<fortran object>

Wrapper for dgemv.
Parameters

alpha [input float]
a [input rank-2 array(‘d’) with bounds (m,n)]
x [input rank-1 array(‘d’) with bounds (*)]

Returns

y [rank-1 array(‘d’) with bounds (ly)]
Other Parameters

beta [input float, optional] Default: 0.0
y [input rank-1 array(‘d’) with bounds (ly)]
overwrite_y

[input int, optional] Default: 0
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1
offy [input int, optional] Default: 0
incy [input int, optional] Default: 1
trans [input int, optional] Default: 0

scipy.linalg.blas.dger

scipy.linalg.blas.dger(alpha, x, y[, incx, incy, a, overwrite_x, overwrite_y, overwrite_a]) =
<fortran object>

Wrapper for dger.
Parameters

alpha [input float]
x [input rank-1 array(‘d’) with bounds (m)]
y [input rank-1 array(‘d’) with bounds (n)]

Returns

a [rank-2 array(‘d’) with bounds (m,n)]
Other Parameters

overwrite_x
[input int, optional] Default: 1

incx [input int, optional] Default: 1
overwrite_y

[input int, optional] Default: 1
incy [input int, optional] Default: 1
a [input rank-2 array(‘d’) with bounds (m,n), optional] Default: 0.0
overwrite_a

[input int, optional] Default: 0
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scipy.linalg.blas.dsbmv

scipy.linalg.blas.dsbmv(k, alpha, a, x[, incx, offx, beta, y, incy, offy, lower, overwrite_y]) =
<fortran object>

Wrapper for dsbmv.
Parameters

k [input int]
alpha [input float]
a [input rank-2 array(‘d’) with bounds (lda,n)]
x [input rank-1 array(‘d’) with bounds (*)]

Returns

yout [rank-1 array(‘d’) with bounds (ly) and y storage]
Other Parameters

incx [input int, optional] Default: 1
offx [input int, optional] Default: 0
beta [input float, optional] Default: 0.0
y [input rank-1 array(‘d’) with bounds (ly)]
overwrite_y

[input int, optional] Default: 0
incy [input int, optional] Default: 1
offy [input int, optional] Default: 0
lower [input int, optional] Default: 0

scipy.linalg.blas.dspr

scipy.linalg.blas.dspr(n, alpha, x, ap[, incx, offx, lower, overwrite_ap]) = <fortran object>
Wrapper for dspr.

Parameters

n [input int]
alpha [input float]
x [input rank-1 array(‘d’) with bounds (*)]
ap [input rank-1 array(‘d’) with bounds (*)]

Returns

apu [rank-1 array(‘d’) with bounds (*) and ap storage]
Other Parameters

incx [input int, optional] Default: 1
offx [input int, optional] Default: 0
overwrite_ap

[input int, optional] Default: 0
lower [input int, optional] Default: 0
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scipy.linalg.blas.dspr2

scipy.linalg.blas.dspr2(n, alpha, x, y, ap[, incx, offx, incy, offy, lower, overwrite_ap]) =
<fortran object>

Wrapper for dspr2.
Parameters

n [input int]
alpha [input float]
x [input rank-1 array(‘d’) with bounds (*)]
y [input rank-1 array(‘d’) with bounds (*)]
ap [input rank-1 array(‘d’) with bounds (*)]

Returns

apu [rank-1 array(‘d’) with bounds (*) and ap storage]
Other Parameters

incx [input int, optional] Default: 1
offx [input int, optional] Default: 0
incy [input int, optional] Default: 1
offy [input int, optional] Default: 0
overwrite_ap

[input int, optional] Default: 0
lower [input int, optional] Default: 0

scipy.linalg.blas.dsymv

scipy.linalg.blas.dsymv(alpha, a, x[, beta, y, offx, incx, offy, incy, lower, overwrite_y]) =
<fortran object>

Wrapper for dsymv.
Parameters

alpha [input float]
a [input rank-2 array(‘d’) with bounds (n,n)]
x [input rank-1 array(‘d’) with bounds (*)]

Returns

y [rank-1 array(‘d’) with bounds (ly)]
Other Parameters

beta [input float, optional] Default: 0.0
y [input rank-1 array(‘d’) with bounds (ly)]
overwrite_y

[input int, optional] Default: 0
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1
offy [input int, optional] Default: 0
incy [input int, optional] Default: 1
lower [input int, optional] Default: 0
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scipy.linalg.blas.dsyr

scipy.linalg.blas.dsyr(alpha, x[, lower, incx, offx, n, a, overwrite_a]) = <fortran object>
Wrapper for dsyr.

Parameters

alpha [input float]
x [input rank-1 array(‘d’) with bounds (*)]

Returns

a [rank-2 array(‘d’) with bounds (n,n)]
Other Parameters

lower [input int, optional] Default: 0
incx [input int, optional] Default: 1
offx [input int, optional] Default: 0
n [input int, optional] Default: (len(x)-1-offx)/abs(incx)+1
a [input rank-2 array(‘d’) with bounds (n,n)]
overwrite_a

[input int, optional] Default: 0

scipy.linalg.blas.dsyr2

scipy.linalg.blas.dsyr2(alpha, x, y[, lower, incx, offx, incy, offy, n, a, overwrite_a]) = <fortran
object>

Wrapper for dsyr2.
Parameters

alpha [input float]
x [input rank-1 array(‘d’) with bounds (*)]
y [input rank-1 array(‘d’) with bounds (*)]

Returns

a [rank-2 array(‘d’) with bounds (n,n)]
Other Parameters

lower [input int, optional] Default: 0
incx [input int, optional] Default: 1
offx [input int, optional] Default: 0
incy [input int, optional] Default: 1
offy [input int, optional] Default: 0
n [input int, optional] Default: ((len(x)-1-offx)/abs(incx)+1 <=(len(y)-1-offy)/abs(incy)+1

?(len(x)-1-offx)/abs(incx)+1 :(len(y)-1-offy)/abs(incy)+1)
a [input rank-2 array(‘d’) with bounds (n,n)]
overwrite_a

[input int, optional] Default: 0
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scipy.linalg.blas.dtbmv

scipy.linalg.blas.dtbmv(k, a, x[, incx, offx, lower, trans, diag, overwrite_x ]) = <fortran
object>

Wrapper for dtbmv.
Parameters

k [input int]
a [input rank-2 array(‘d’) with bounds (lda,n)]
x [input rank-1 array(‘d’) with bounds (*)]

Returns

xout [rank-1 array(‘d’) with bounds (*) and x storage]
Other Parameters

overwrite_x
[input int, optional] Default: 0

incx [input int, optional] Default: 1
offx [input int, optional] Default: 0
lower [input int, optional] Default: 0
trans [input int, optional] Default: 0
diag [input int, optional] Default: 0

scipy.linalg.blas.dtpsv

scipy.linalg.blas.dtpsv(n, ap, x[, incx, offx, lower, trans, diag, overwrite_x ]) = <fortran
object>

Wrapper for dtpsv.
Parameters

n [input int]
ap [input rank-1 array(‘d’) with bounds (*)]
x [input rank-1 array(‘d’) with bounds (*)]

Returns

xout [rank-1 array(‘d’) with bounds (*) and x storage]
Other Parameters

overwrite_x
[input int, optional] Default: 0

incx [input int, optional] Default: 1
offx [input int, optional] Default: 0
lower [input int, optional] Default: 0
trans [input int, optional] Default: 0
diag [input int, optional] Default: 0

scipy.linalg.blas.dtrmv

scipy.linalg.blas.dtrmv(a, x[, offx, incx, lower, trans, diag, overwrite_x ]) = <fortran
object>

Wrapper for dtrmv.
Parameters
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a [input rank-2 array(‘d’) with bounds (n,n)]
x [input rank-1 array(‘d’) with bounds (*)]

Returns

x [rank-1 array(‘d’) with bounds (*)]
Other Parameters

overwrite_x
[input int, optional] Default: 0

offx [input int, optional] Default: 0
incx [input int, optional] Default: 1
lower [input int, optional] Default: 0
trans [input int, optional] Default: 0
diag [input int, optional] Default: 0

scipy.linalg.blas.dtrsv

scipy.linalg.blas.dtrsv(a, x[, incx, offx, lower, trans, diag, overwrite_x ]) = <fortran
object>

Wrapper for dtrsv.
Parameters

a [input rank-2 array(‘d’) with bounds (n,n)]
x [input rank-1 array(‘d’) with bounds (*)]

Returns

xout [rank-1 array(‘d’) with bounds (*) and x storage]
Other Parameters

overwrite_x
[input int, optional] Default: 0

incx [input int, optional] Default: 1
offx [input int, optional] Default: 0
lower [input int, optional] Default: 0
trans [input int, optional] Default: 0
diag [input int, optional] Default: 0

scipy.linalg.blas.cgbmv

scipy.linalg.blas.cgbmv(m, n, kl, ku, alpha, a, x[, incx, offx, beta, y, incy, offy, trans, overwrite_y])
= <fortran object>

Wrapper for cgbmv.
Parameters

m [input int]
n [input int]
kl [input int]
ku [input int]
alpha [input complex]
a [input rank-2 array(‘F’) with bounds (lda,n)]
x [input rank-1 array(‘F’) with bounds (*)]

Returns
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yout [rank-1 array(‘F’) with bounds (ly) and y storage]
Other Parameters

incx [input int, optional] Default: 1
offx [input int, optional] Default: 0
beta [input complex, optional] Default: (0.0, 0.0)
y [input rank-1 array(‘F’) with bounds (ly)]
overwrite_y

[input int, optional] Default: 0
incy [input int, optional] Default: 1
offy [input int, optional] Default: 0
trans [input int, optional] Default: 0

scipy.linalg.blas.cgemv

scipy.linalg.blas.cgemv(alpha, a, x[, beta, y, offx, incx, offy, incy, trans, overwrite_y]) =
<fortran object>

Wrapper for cgemv.
Parameters

alpha [input complex]
a [input rank-2 array(‘F’) with bounds (m,n)]
x [input rank-1 array(‘F’) with bounds (*)]

Returns

y [rank-1 array(‘F’) with bounds (ly)]
Other Parameters

beta [input complex, optional] Default: (0.0, 0.0)
y [input rank-1 array(‘F’) with bounds (ly)]
overwrite_y

[input int, optional] Default: 0
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1
offy [input int, optional] Default: 0
incy [input int, optional] Default: 1
trans [input int, optional] Default: 0

scipy.linalg.blas.cgerc

scipy.linalg.blas.cgerc(alpha, x, y[, incx, incy, a, overwrite_x, overwrite_y, overwrite_a]) =
<fortran object>

Wrapper for cgerc.
Parameters

alpha [input complex]
x [input rank-1 array(‘F’) with bounds (m)]
y [input rank-1 array(‘F’) with bounds (n)]

Returns

a [rank-2 array(‘F’) with bounds (m,n)]
Other Parameters
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overwrite_x
[input int, optional] Default: 1

incx [input int, optional] Default: 1
overwrite_y

[input int, optional] Default: 1
incy [input int, optional] Default: 1
a [input rank-2 array(‘F’) with bounds (m,n), optional] Default: (0.0,0.0)
overwrite_a

[input int, optional] Default: 0

scipy.linalg.blas.cgeru

scipy.linalg.blas.cgeru(alpha, x, y[, incx, incy, a, overwrite_x, overwrite_y, overwrite_a]) =
<fortran object>

Wrapper for cgeru.
Parameters

alpha [input complex]
x [input rank-1 array(‘F’) with bounds (m)]
y [input rank-1 array(‘F’) with bounds (n)]

Returns

a [rank-2 array(‘F’) with bounds (m,n)]
Other Parameters

overwrite_x
[input int, optional] Default: 1

incx [input int, optional] Default: 1
overwrite_y

[input int, optional] Default: 1
incy [input int, optional] Default: 1
a [input rank-2 array(‘F’) with bounds (m,n), optional] Default: (0.0,0.0)
overwrite_a

[input int, optional] Default: 0

scipy.linalg.blas.chbmv

scipy.linalg.blas.chbmv(k, alpha, a, x[, incx, offx, beta, y, incy, offy, lower, overwrite_y]) =
<fortran object>

Wrapper for chbmv.
Parameters

k [input int]
alpha [input complex]
a [input rank-2 array(‘F’) with bounds (lda,n)]
x [input rank-1 array(‘F’) with bounds (*)]

Returns

yout [rank-1 array(‘F’) with bounds (ly) and y storage]
Other Parameters

incx [input int, optional] Default: 1
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offx [input int, optional] Default: 0
beta [input complex, optional] Default: (0.0, 0.0)
y [input rank-1 array(‘F’) with bounds (ly)]
overwrite_y

[input int, optional] Default: 0
incy [input int, optional] Default: 1
offy [input int, optional] Default: 0
lower [input int, optional] Default: 0

scipy.linalg.blas.chemv

scipy.linalg.blas.chemv(alpha, a, x[, beta, y, offx, incx, offy, incy, lower, overwrite_y]) =
<fortran object>

Wrapper for chemv.
Parameters

alpha [input complex]
a [input rank-2 array(‘F’) with bounds (n,n)]
x [input rank-1 array(‘F’) with bounds (*)]

Returns

y [rank-1 array(‘F’) with bounds (ly)]
Other Parameters

beta [input complex, optional] Default: (0.0, 0.0)
y [input rank-1 array(‘F’) with bounds (ly)]
overwrite_y

[input int, optional] Default: 0
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1
offy [input int, optional] Default: 0
incy [input int, optional] Default: 1
lower [input int, optional] Default: 0

scipy.linalg.blas.cher

scipy.linalg.blas.cher(alpha, x[, lower, incx, offx, n, a, overwrite_a]) = <fortran object>
Wrapper for cher.

Parameters

alpha [input complex]
x [input rank-1 array(‘F’) with bounds (*)]

Returns

a [rank-2 array(‘F’) with bounds (n,n)]
Other Parameters

lower [input int, optional] Default: 0
incx [input int, optional] Default: 1
offx [input int, optional] Default: 0
n [input int, optional] Default: (len(x)-1-offx)/abs(incx)+1
a [input rank-2 array(‘F’) with bounds (n,n)]
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overwrite_a
[input int, optional] Default: 0

scipy.linalg.blas.cher2

scipy.linalg.blas.cher2(alpha, x, y[, lower, incx, offx, incy, offy, n, a, overwrite_a]) = <fortran
object>

Wrapper for cher2.
Parameters

alpha [input complex]
x [input rank-1 array(‘F’) with bounds (*)]
y [input rank-1 array(‘F’) with bounds (*)]

Returns

a [rank-2 array(‘F’) with bounds (n,n)]
Other Parameters

lower [input int, optional] Default: 0
incx [input int, optional] Default: 1
offx [input int, optional] Default: 0
incy [input int, optional] Default: 1
offy [input int, optional] Default: 0
n [input int, optional] Default: ((len(x)-1-offx)/abs(incx)+1 <=(len(y)-1-offy)/abs(incy)+1

?(len(x)-1-offx)/abs(incx)+1 :(len(y)-1-offy)/abs(incy)+1)
a [input rank-2 array(‘F’) with bounds (n,n)]
overwrite_a

[input int, optional] Default: 0

scipy.linalg.blas.chpmv

scipy.linalg.blas.chpmv(n, alpha, ap, x[, incx, offx, beta, y, incy, offy, lower, overwrite_y]) =
<fortran object>

Wrapper for chpmv.
Parameters

n [input int]
alpha [input complex]
ap [input rank-1 array(‘F’) with bounds (*)]
x [input rank-1 array(‘F’) with bounds (*)]

Returns

yout [rank-1 array(‘F’) with bounds (ly) and y storage]
Other Parameters

incx [input int, optional] Default: 1
offx [input int, optional] Default: 0
beta [input complex, optional] Default: (0.0, 0.0)
y [input rank-1 array(‘F’) with bounds (ly)]
overwrite_y

[input int, optional] Default: 0
incy [input int, optional] Default: 1
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offy [input int, optional] Default: 0
lower [input int, optional] Default: 0

scipy.linalg.blas.chpr

scipy.linalg.blas.chpr(n, alpha, x, ap[, incx, offx, lower, overwrite_ap]) = <fortran object>
Wrapper for chpr.

Parameters

n [input int]
alpha [input float]
x [input rank-1 array(‘F’) with bounds (*)]
ap [input rank-1 array(‘F’) with bounds (*)]

Returns

apu [rank-1 array(‘F’) with bounds (*) and ap storage]
Other Parameters

incx [input int, optional] Default: 1
offx [input int, optional] Default: 0
overwrite_ap

[input int, optional] Default: 0
lower [input int, optional] Default: 0

scipy.linalg.blas.chpr2

scipy.linalg.blas.chpr2(n, alpha, x, y, ap[, incx, offx, incy, offy, lower, overwrite_ap]) =
<fortran object>

Wrapper for chpr2.
Parameters

n [input int]
alpha [input complex]
x [input rank-1 array(‘F’) with bounds (*)]
y [input rank-1 array(‘F’) with bounds (*)]
ap [input rank-1 array(‘F’) with bounds (*)]

Returns

apu [rank-1 array(‘F’) with bounds (*) and ap storage]
Other Parameters

incx [input int, optional] Default: 1
offx [input int, optional] Default: 0
incy [input int, optional] Default: 1
offy [input int, optional] Default: 0
overwrite_ap

[input int, optional] Default: 0
lower [input int, optional] Default: 0
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scipy.linalg.blas.ctbmv

scipy.linalg.blas.ctbmv(k, a, x[, incx, offx, lower, trans, diag, overwrite_x ]) = <fortran
object>

Wrapper for ctbmv.
Parameters

k [input int]
a [input rank-2 array(‘F’) with bounds (lda,n)]
x [input rank-1 array(‘F’) with bounds (*)]

Returns

xout [rank-1 array(‘F’) with bounds (*) and x storage]
Other Parameters

overwrite_x
[input int, optional] Default: 0

incx [input int, optional] Default: 1
offx [input int, optional] Default: 0
lower [input int, optional] Default: 0
trans [input int, optional] Default: 0
diag [input int, optional] Default: 0

scipy.linalg.blas.ctbsv

scipy.linalg.blas.ctbsv(k, a, x[, incx, offx, lower, trans, diag, overwrite_x ]) = <fortran
object>

Wrapper for ctbsv.
Parameters

k [input int]
a [input rank-2 array(‘F’) with bounds (lda,n)]
x [input rank-1 array(‘F’) with bounds (*)]

Returns

xout [rank-1 array(‘F’) with bounds (*) and x storage]
Other Parameters

overwrite_x
[input int, optional] Default: 0

incx [input int, optional] Default: 1
offx [input int, optional] Default: 0
lower [input int, optional] Default: 0
trans [input int, optional] Default: 0
diag [input int, optional] Default: 0

scipy.linalg.blas.ctpmv

scipy.linalg.blas.ctpmv(n, ap, x[, incx, offx, lower, trans, diag, overwrite_x ]) = <fortran
object>

Wrapper for ctpmv.
Parameters
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n [input int]
ap [input rank-1 array(‘F’) with bounds (*)]
x [input rank-1 array(‘F’) with bounds (*)]

Returns

xout [rank-1 array(‘F’) with bounds (*) and x storage]
Other Parameters

overwrite_x
[input int, optional] Default: 0

incx [input int, optional] Default: 1
offx [input int, optional] Default: 0
lower [input int, optional] Default: 0
trans [input int, optional] Default: 0
diag [input int, optional] Default: 0

scipy.linalg.blas.ctpsv

scipy.linalg.blas.ctpsv(n, ap, x[, incx, offx, lower, trans, diag, overwrite_x ]) = <fortran
object>

Wrapper for ctpsv.
Parameters

n [input int]
ap [input rank-1 array(‘F’) with bounds (*)]
x [input rank-1 array(‘F’) with bounds (*)]

Returns

xout [rank-1 array(‘F’) with bounds (*) and x storage]
Other Parameters

overwrite_x
[input int, optional] Default: 0

incx [input int, optional] Default: 1
offx [input int, optional] Default: 0
lower [input int, optional] Default: 0
trans [input int, optional] Default: 0
diag [input int, optional] Default: 0

scipy.linalg.blas.ctrmv

scipy.linalg.blas.ctrmv(a, x[, offx, incx, lower, trans, diag, overwrite_x ]) = <fortran
object>

Wrapper for ctrmv.
Parameters

a [input rank-2 array(‘F’) with bounds (n,n)]
x [input rank-1 array(‘F’) with bounds (*)]

Returns

x [rank-1 array(‘F’) with bounds (*)]
Other Parameters
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overwrite_x
[input int, optional] Default: 0

offx [input int, optional] Default: 0
incx [input int, optional] Default: 1
lower [input int, optional] Default: 0
trans [input int, optional] Default: 0
diag [input int, optional] Default: 0

scipy.linalg.blas.ctrsv

scipy.linalg.blas.ctrsv(a, x[, incx, offx, lower, trans, diag, overwrite_x ]) = <fortran
object>

Wrapper for ctrsv.
Parameters

a [input rank-2 array(‘F’) with bounds (n,n)]
x [input rank-1 array(‘F’) with bounds (*)]

Returns

xout [rank-1 array(‘F’) with bounds (*) and x storage]
Other Parameters

overwrite_x
[input int, optional] Default: 0

incx [input int, optional] Default: 1
offx [input int, optional] Default: 0
lower [input int, optional] Default: 0
trans [input int, optional] Default: 0
diag [input int, optional] Default: 0

scipy.linalg.blas.csyr

scipy.linalg.blas.csyr(alpha, x[, lower, incx, offx, n, a, overwrite_a]) = <fortran object>
Wrapper for csyr.

Parameters

alpha [input complex]
x [input rank-1 array(‘F’) with bounds (*)]

Returns

a [rank-2 array(‘F’) with bounds (n,n)]
Other Parameters

lower [input int, optional] Default: 0
incx [input int, optional] Default: 1
offx [input int, optional] Default: 0
n [input int, optional] Default: (len(x)-1-offx)/abs(incx)+1
a [input rank-2 array(‘F’) with bounds (n,n)]
overwrite_a

[input int, optional] Default: 0
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scipy.linalg.blas.zgbmv

scipy.linalg.blas.zgbmv(m, n, kl, ku, alpha, a, x[, incx, offx, beta, y, incy, offy, trans, overwrite_y])
= <fortran object>

Wrapper for zgbmv.
Parameters

m [input int]
n [input int]
kl [input int]
ku [input int]
alpha [input complex]
a [input rank-2 array(‘D’) with bounds (lda,n)]
x [input rank-1 array(‘D’) with bounds (*)]

Returns

yout [rank-1 array(‘D’) with bounds (ly) and y storage]
Other Parameters

incx [input int, optional] Default: 1
offx [input int, optional] Default: 0
beta [input complex, optional] Default: (0.0, 0.0)
y [input rank-1 array(‘D’) with bounds (ly)]
overwrite_y

[input int, optional] Default: 0
incy [input int, optional] Default: 1
offy [input int, optional] Default: 0
trans [input int, optional] Default: 0

scipy.linalg.blas.zgemv

scipy.linalg.blas.zgemv(alpha, a, x[, beta, y, offx, incx, offy, incy, trans, overwrite_y]) =
<fortran object>

Wrapper for zgemv.
Parameters

alpha [input complex]
a [input rank-2 array(‘D’) with bounds (m,n)]
x [input rank-1 array(‘D’) with bounds (*)]

Returns

y [rank-1 array(‘D’) with bounds (ly)]
Other Parameters

beta [input complex, optional] Default: (0.0, 0.0)
y [input rank-1 array(‘D’) with bounds (ly)]
overwrite_y

[input int, optional] Default: 0
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1
offy [input int, optional] Default: 0
incy [input int, optional] Default: 1
trans [input int, optional] Default: 0
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scipy.linalg.blas.zgerc

scipy.linalg.blas.zgerc(alpha, x, y[, incx, incy, a, overwrite_x, overwrite_y, overwrite_a]) =
<fortran object>

Wrapper for zgerc.
Parameters

alpha [input complex]
x [input rank-1 array(‘D’) with bounds (m)]
y [input rank-1 array(‘D’) with bounds (n)]

Returns

a [rank-2 array(‘D’) with bounds (m,n)]
Other Parameters

overwrite_x
[input int, optional] Default: 1

incx [input int, optional] Default: 1
overwrite_y

[input int, optional] Default: 1
incy [input int, optional] Default: 1
a [input rank-2 array(‘D’) with bounds (m,n), optional] Default: (0.0,0.0)
overwrite_a

[input int, optional] Default: 0

scipy.linalg.blas.zgeru

scipy.linalg.blas.zgeru(alpha, x, y[, incx, incy, a, overwrite_x, overwrite_y, overwrite_a]) =
<fortran object>

Wrapper for zgeru.
Parameters

alpha [input complex]
x [input rank-1 array(‘D’) with bounds (m)]
y [input rank-1 array(‘D’) with bounds (n)]

Returns

a [rank-2 array(‘D’) with bounds (m,n)]
Other Parameters

overwrite_x
[input int, optional] Default: 1

incx [input int, optional] Default: 1
overwrite_y

[input int, optional] Default: 1
incy [input int, optional] Default: 1
a [input rank-2 array(‘D’) with bounds (m,n), optional] Default: (0.0,0.0)
overwrite_a

[input int, optional] Default: 0

6.10. Low-level BLAS functions (scipy.linalg.blas) 907



SciPy Reference Guide, Release 1.3.1

scipy.linalg.blas.zhbmv

scipy.linalg.blas.zhbmv(k, alpha, a, x[, incx, offx, beta, y, incy, offy, lower, overwrite_y]) =
<fortran object>

Wrapper for zhbmv.
Parameters

k [input int]
alpha [input complex]
a [input rank-2 array(‘D’) with bounds (lda,n)]
x [input rank-1 array(‘D’) with bounds (*)]

Returns

yout [rank-1 array(‘D’) with bounds (ly) and y storage]
Other Parameters

incx [input int, optional] Default: 1
offx [input int, optional] Default: 0
beta [input complex, optional] Default: (0.0, 0.0)
y [input rank-1 array(‘D’) with bounds (ly)]
overwrite_y

[input int, optional] Default: 0
incy [input int, optional] Default: 1
offy [input int, optional] Default: 0
lower [input int, optional] Default: 0

scipy.linalg.blas.zhemv

scipy.linalg.blas.zhemv(alpha, a, x[, beta, y, offx, incx, offy, incy, lower, overwrite_y]) =
<fortran object>

Wrapper for zhemv.
Parameters

alpha [input complex]
a [input rank-2 array(‘D’) with bounds (n,n)]
x [input rank-1 array(‘D’) with bounds (*)]

Returns

y [rank-1 array(‘D’) with bounds (ly)]
Other Parameters

beta [input complex, optional] Default: (0.0, 0.0)
y [input rank-1 array(‘D’) with bounds (ly)]
overwrite_y

[input int, optional] Default: 0
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1
offy [input int, optional] Default: 0
incy [input int, optional] Default: 1
lower [input int, optional] Default: 0
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scipy.linalg.blas.zher

scipy.linalg.blas.zher(alpha, x[, lower, incx, offx, n, a, overwrite_a]) = <fortran object>
Wrapper for zher.

Parameters

alpha [input complex]
x [input rank-1 array(‘D’) with bounds (*)]

Returns

a [rank-2 array(‘D’) with bounds (n,n)]
Other Parameters

lower [input int, optional] Default: 0
incx [input int, optional] Default: 1
offx [input int, optional] Default: 0
n [input int, optional] Default: (len(x)-1-offx)/abs(incx)+1
a [input rank-2 array(‘D’) with bounds (n,n)]
overwrite_a

[input int, optional] Default: 0

scipy.linalg.blas.zher2

scipy.linalg.blas.zher2(alpha, x, y[, lower, incx, offx, incy, offy, n, a, overwrite_a]) = <fortran
object>

Wrapper for zher2.
Parameters

alpha [input complex]
x [input rank-1 array(‘D’) with bounds (*)]
y [input rank-1 array(‘D’) with bounds (*)]

Returns

a [rank-2 array(‘D’) with bounds (n,n)]
Other Parameters

lower [input int, optional] Default: 0
incx [input int, optional] Default: 1
offx [input int, optional] Default: 0
incy [input int, optional] Default: 1
offy [input int, optional] Default: 0
n [input int, optional] Default: ((len(x)-1-offx)/abs(incx)+1 <=(len(y)-1-offy)/abs(incy)+1

?(len(x)-1-offx)/abs(incx)+1 :(len(y)-1-offy)/abs(incy)+1)
a [input rank-2 array(‘D’) with bounds (n,n)]
overwrite_a

[input int, optional] Default: 0
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scipy.linalg.blas.zhpmv

scipy.linalg.blas.zhpmv(n, alpha, ap, x[, incx, offx, beta, y, incy, offy, lower, overwrite_y]) =
<fortran object>

Wrapper for zhpmv.
Parameters

n [input int]
alpha [input complex]
ap [input rank-1 array(‘D’) with bounds (*)]
x [input rank-1 array(‘D’) with bounds (*)]

Returns

yout [rank-1 array(‘D’) with bounds (ly) and y storage]
Other Parameters

incx [input int, optional] Default: 1
offx [input int, optional] Default: 0
beta [input complex, optional] Default: (0.0, 0.0)
y [input rank-1 array(‘D’) with bounds (ly)]
overwrite_y

[input int, optional] Default: 0
incy [input int, optional] Default: 1
offy [input int, optional] Default: 0
lower [input int, optional] Default: 0

scipy.linalg.blas.zhpr

scipy.linalg.blas.zhpr(n, alpha, x, ap[, incx, offx, lower, overwrite_ap]) = <fortran object>
Wrapper for zhpr.

Parameters

n [input int]
alpha [input float]
x [input rank-1 array(‘D’) with bounds (*)]
ap [input rank-1 array(‘D’) with bounds (*)]

Returns

apu [rank-1 array(‘D’) with bounds (*) and ap storage]
Other Parameters

incx [input int, optional] Default: 1
offx [input int, optional] Default: 0
overwrite_ap

[input int, optional] Default: 0
lower [input int, optional] Default: 0
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scipy.linalg.blas.zhpr2

scipy.linalg.blas.zhpr2(n, alpha, x, y, ap[, incx, offx, incy, offy, lower, overwrite_ap]) =
<fortran object>

Wrapper for zhpr2.
Parameters

n [input int]
alpha [input complex]
x [input rank-1 array(‘D’) with bounds (*)]
y [input rank-1 array(‘D’) with bounds (*)]
ap [input rank-1 array(‘D’) with bounds (*)]

Returns

apu [rank-1 array(‘D’) with bounds (*) and ap storage]
Other Parameters

incx [input int, optional] Default: 1
offx [input int, optional] Default: 0
incy [input int, optional] Default: 1
offy [input int, optional] Default: 0
overwrite_ap

[input int, optional] Default: 0
lower [input int, optional] Default: 0

scipy.linalg.blas.ztbmv

scipy.linalg.blas.ztbmv(k, a, x[, incx, offx, lower, trans, diag, overwrite_x ]) = <fortran
object>

Wrapper for ztbmv.
Parameters

k [input int]
a [input rank-2 array(‘D’) with bounds (lda,n)]
x [input rank-1 array(‘D’) with bounds (*)]

Returns

xout [rank-1 array(‘D’) with bounds (*) and x storage]
Other Parameters

overwrite_x
[input int, optional] Default: 0

incx [input int, optional] Default: 1
offx [input int, optional] Default: 0
lower [input int, optional] Default: 0
trans [input int, optional] Default: 0
diag [input int, optional] Default: 0
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scipy.linalg.blas.ztbsv

scipy.linalg.blas.ztbsv(k, a, x[, incx, offx, lower, trans, diag, overwrite_x ]) = <fortran
object>

Wrapper for ztbsv.
Parameters

k [input int]
a [input rank-2 array(‘D’) with bounds (lda,n)]
x [input rank-1 array(‘D’) with bounds (*)]

Returns

xout [rank-1 array(‘D’) with bounds (*) and x storage]
Other Parameters

overwrite_x
[input int, optional] Default: 0

incx [input int, optional] Default: 1
offx [input int, optional] Default: 0
lower [input int, optional] Default: 0
trans [input int, optional] Default: 0
diag [input int, optional] Default: 0

scipy.linalg.blas.ztpmv

scipy.linalg.blas.ztpmv(n, ap, x[, incx, offx, lower, trans, diag, overwrite_x ]) = <fortran
object>

Wrapper for ztpmv.
Parameters

n [input int]
ap [input rank-1 array(‘D’) with bounds (*)]
x [input rank-1 array(‘D’) with bounds (*)]

Returns

xout [rank-1 array(‘D’) with bounds (*) and x storage]
Other Parameters

overwrite_x
[input int, optional] Default: 0

incx [input int, optional] Default: 1
offx [input int, optional] Default: 0
lower [input int, optional] Default: 0
trans [input int, optional] Default: 0
diag [input int, optional] Default: 0

scipy.linalg.blas.ztrmv

scipy.linalg.blas.ztrmv(a, x[, offx, incx, lower, trans, diag, overwrite_x ]) = <fortran
object>

Wrapper for ztrmv.
Parameters
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a [input rank-2 array(‘D’) with bounds (n,n)]
x [input rank-1 array(‘D’) with bounds (*)]

Returns

x [rank-1 array(‘D’) with bounds (*)]
Other Parameters

overwrite_x
[input int, optional] Default: 0

offx [input int, optional] Default: 0
incx [input int, optional] Default: 1
lower [input int, optional] Default: 0
trans [input int, optional] Default: 0
diag [input int, optional] Default: 0

scipy.linalg.blas.ztrsv

scipy.linalg.blas.ztrsv(a, x[, incx, offx, lower, trans, diag, overwrite_x ]) = <fortran
object>

Wrapper for ztrsv.
Parameters

a [input rank-2 array(‘D’) with bounds (n,n)]
x [input rank-1 array(‘D’) with bounds (*)]

Returns

xout [rank-1 array(‘D’) with bounds (*) and x storage]
Other Parameters

overwrite_x
[input int, optional] Default: 0

incx [input int, optional] Default: 1
offx [input int, optional] Default: 0
lower [input int, optional] Default: 0
trans [input int, optional] Default: 0
diag [input int, optional] Default: 0

scipy.linalg.blas.zsyr

scipy.linalg.blas.zsyr(alpha, x[, lower, incx, offx, n, a, overwrite_a]) = <fortran object>
Wrapper for zsyr.

Parameters

alpha [input complex]
x [input rank-1 array(‘D’) with bounds (*)]

Returns

a [rank-2 array(‘D’) with bounds (n,n)]
Other Parameters

lower [input int, optional] Default: 0
incx [input int, optional] Default: 1
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offx [input int, optional] Default: 0
n [input int, optional] Default: (len(x)-1-offx)/abs(incx)+1
a [input rank-2 array(‘D’) with bounds (n,n)]
overwrite_a

[input int, optional] Default: 0

6.10.4 BLAS Level 3 functions

sgemm(…) Wrapper for sgemm.
ssymm(alpha,a,b,[beta,c,side,lower,overwrite_c]) Wrapper for ssymm.
ssyr2k(…) Wrapper for ssyr2k.
ssyrk(alpha,a,[beta,c,trans,lower,overwrite_c]) Wrapper for ssyrk.
strmm(…) Wrapper for strmm.
strsm(…) Wrapper for strsm.
dgemm(…) Wrapper for dgemm.
dsymm(alpha,a,b,[beta,c,side,lower,overwrite_c]) Wrapper for dsymm.
dsyr2k(…) Wrapper for dsyr2k.
dsyrk(alpha,a,[beta,c,trans,lower,overwrite_c]) Wrapper for dsyrk.
dtrmm(…) Wrapper for dtrmm.
dtrsm(…) Wrapper for dtrsm.
cgemm(…) Wrapper for cgemm.
chemm(alpha,a,b,[beta,c,side,lower,overwrite_c]) Wrapper for chemm.
cher2k(…) Wrapper for cher2k.
cherk(alpha,a,[beta,c,trans,lower,overwrite_c]) Wrapper for cherk.
csymm(alpha,a,b,[beta,c,side,lower,overwrite_c]) Wrapper for csymm.
csyr2k(…) Wrapper for csyr2k.
csyrk(alpha,a,[beta,c,trans,lower,overwrite_c]) Wrapper for csyrk.
ctrmm(…) Wrapper for ctrmm.
ctrsm(…) Wrapper for ctrsm.
zgemm(…) Wrapper for zgemm.
zhemm(alpha,a,b,[beta,c,side,lower,overwrite_c]) Wrapper for zhemm.
zher2k(…) Wrapper for zher2k.
zherk(alpha,a,[beta,c,trans,lower,overwrite_c]) Wrapper for zherk.
zsymm(alpha,a,b,[beta,c,side,lower,overwrite_c]) Wrapper for zsymm.
zsyr2k(…) Wrapper for zsyr2k.
zsyrk(alpha,a,[beta,c,trans,lower,overwrite_c]) Wrapper for zsyrk.
ztrmm(…) Wrapper for ztrmm.
ztrsm(…) Wrapper for ztrsm.

scipy.linalg.blas.sgemm

scipy.linalg.blas.sgemm(alpha, a, b[, beta, c, trans_a, trans_b, overwrite_c ]) = <fortran
object>

Wrapper for sgemm.
Parameters

alpha [input float]
a [input rank-2 array(‘f’) with bounds (lda,ka)]
b [input rank-2 array(‘f’) with bounds (ldb,kb)]

Returns
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c [rank-2 array(‘f’) with bounds (m,n)]
Other Parameters

beta [input float, optional] Default: 0.0
c [input rank-2 array(‘f’) with bounds (m,n)]
overwrite_c

[input int, optional] Default: 0
trans_a [input int, optional] Default: 0
trans_b [input int, optional] Default: 0

scipy.linalg.blas.ssymm

scipy.linalg.blas.ssymm(alpha, a, b[, beta, c, side, lower, overwrite_c ]) = <fortran object>
Wrapper for ssymm.

Parameters

alpha [input float]
a [input rank-2 array(‘f’) with bounds (lda,ka)]
b [input rank-2 array(‘f’) with bounds (ldb,kb)]

Returns

c [rank-2 array(‘f’) with bounds (m,n)]
Other Parameters

beta [input float, optional] Default: 0.0
c [input rank-2 array(‘f’) with bounds (m,n)]
overwrite_c

[input int, optional] Default: 0
side [input int, optional] Default: 0
lower [input int, optional] Default: 0

scipy.linalg.blas.ssyr2k

scipy.linalg.blas.ssyr2k(alpha, a, b[, beta, c, trans, lower, overwrite_c ]) = <fortran
object>

Wrapper for ssyr2k.
Parameters

alpha [input float]
a [input rank-2 array(‘f’) with bounds (lda,ka)]
b [input rank-2 array(‘f’) with bounds (ldb,kb)]

Returns

c [rank-2 array(‘f’) with bounds (n,n)]
Other Parameters

beta [input float, optional] Default: 0.0
c [input rank-2 array(‘f’) with bounds (n,n)]
overwrite_c

[input int, optional] Default: 0
trans [input int, optional] Default: 0
lower [input int, optional] Default: 0
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scipy.linalg.blas.ssyrk

scipy.linalg.blas.ssyrk(alpha, a[, beta, c, trans, lower, overwrite_c ]) = <fortran object>
Wrapper for ssyrk.

Parameters

alpha [input float]
a [input rank-2 array(‘f’) with bounds (lda,ka)]

Returns

c [rank-2 array(‘f’) with bounds (n,n)]
Other Parameters

beta [input float, optional] Default: 0.0
c [input rank-2 array(‘f’) with bounds (n,n)]
overwrite_c

[input int, optional] Default: 0
trans [input int, optional] Default: 0
lower [input int, optional] Default: 0

scipy.linalg.blas.strmm

scipy.linalg.blas.strmm(alpha, a, b[, side, lower, trans_a, diag, overwrite_b]) = <fortran
object>

Wrapper for strmm.
Parameters

alpha [input float]
a [input rank-2 array(‘f’) with bounds (lda,k)]
b [input rank-2 array(‘f’) with bounds (ldb,n)]

Returns

b [rank-2 array(‘f’) with bounds (ldb,n)]
Other Parameters

overwrite_b
[input int, optional] Default: 0

side [input int, optional] Default: 0
lower [input int, optional] Default: 0
trans_a [input int, optional] Default: 0
diag [input int, optional] Default: 0

scipy.linalg.blas.strsm

scipy.linalg.blas.strsm(alpha, a, b[, side, lower, trans_a, diag, overwrite_b]) = <fortran
object>

Wrapper for strsm.
Parameters

alpha [input float]
a [input rank-2 array(‘f’) with bounds (lda,*)]
b [input rank-2 array(‘f’) with bounds (ldb,n)]
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Returns

x [rank-2 array(‘f’) with bounds (ldb,n) and b storage]
Other Parameters

overwrite_b
[input int, optional] Default: 0

side [input int, optional] Default: 0
lower [input int, optional] Default: 0
trans_a [input int, optional] Default: 0
diag [input int, optional] Default: 0

scipy.linalg.blas.dgemm

scipy.linalg.blas.dgemm(alpha, a, b[, beta, c, trans_a, trans_b, overwrite_c ]) = <fortran
object>

Wrapper for dgemm.
Parameters

alpha [input float]
a [input rank-2 array(‘d’) with bounds (lda,ka)]
b [input rank-2 array(‘d’) with bounds (ldb,kb)]

Returns

c [rank-2 array(‘d’) with bounds (m,n)]
Other Parameters

beta [input float, optional] Default: 0.0
c [input rank-2 array(‘d’) with bounds (m,n)]
overwrite_c

[input int, optional] Default: 0
trans_a [input int, optional] Default: 0
trans_b [input int, optional] Default: 0

scipy.linalg.blas.dsymm

scipy.linalg.blas.dsymm(alpha, a, b[, beta, c, side, lower, overwrite_c ]) = <fortran object>
Wrapper for dsymm.

Parameters

alpha [input float]
a [input rank-2 array(‘d’) with bounds (lda,ka)]
b [input rank-2 array(‘d’) with bounds (ldb,kb)]

Returns

c [rank-2 array(‘d’) with bounds (m,n)]
Other Parameters

beta [input float, optional] Default: 0.0
c [input rank-2 array(‘d’) with bounds (m,n)]
overwrite_c

[input int, optional] Default: 0
side [input int, optional] Default: 0
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lower [input int, optional] Default: 0

scipy.linalg.blas.dsyr2k

scipy.linalg.blas.dsyr2k(alpha, a, b[, beta, c, trans, lower, overwrite_c ]) = <fortran
object>

Wrapper for dsyr2k.
Parameters

alpha [input float]
a [input rank-2 array(‘d’) with bounds (lda,ka)]
b [input rank-2 array(‘d’) with bounds (ldb,kb)]

Returns

c [rank-2 array(‘d’) with bounds (n,n)]
Other Parameters

beta [input float, optional] Default: 0.0
c [input rank-2 array(‘d’) with bounds (n,n)]
overwrite_c

[input int, optional] Default: 0
trans [input int, optional] Default: 0
lower [input int, optional] Default: 0

scipy.linalg.blas.dsyrk

scipy.linalg.blas.dsyrk(alpha, a[, beta, c, trans, lower, overwrite_c ]) = <fortran object>
Wrapper for dsyrk.

Parameters

alpha [input float]
a [input rank-2 array(‘d’) with bounds (lda,ka)]

Returns

c [rank-2 array(‘d’) with bounds (n,n)]
Other Parameters

beta [input float, optional] Default: 0.0
c [input rank-2 array(‘d’) with bounds (n,n)]
overwrite_c

[input int, optional] Default: 0
trans [input int, optional] Default: 0
lower [input int, optional] Default: 0

scipy.linalg.blas.dtrmm

scipy.linalg.blas.dtrmm(alpha, a, b[, side, lower, trans_a, diag, overwrite_b]) = <fortran
object>

Wrapper for dtrmm.
Parameters
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alpha [input float]
a [input rank-2 array(‘d’) with bounds (lda,k)]
b [input rank-2 array(‘d’) with bounds (ldb,n)]

Returns

b [rank-2 array(‘d’) with bounds (ldb,n)]
Other Parameters

overwrite_b
[input int, optional] Default: 0

side [input int, optional] Default: 0
lower [input int, optional] Default: 0
trans_a [input int, optional] Default: 0
diag [input int, optional] Default: 0

scipy.linalg.blas.dtrsm

scipy.linalg.blas.dtrsm(alpha, a, b[, side, lower, trans_a, diag, overwrite_b]) = <fortran
object>

Wrapper for dtrsm.
Parameters

alpha [input float]
a [input rank-2 array(‘d’) with bounds (lda,*)]
b [input rank-2 array(‘d’) with bounds (ldb,n)]

Returns

x [rank-2 array(‘d’) with bounds (ldb,n) and b storage]
Other Parameters

overwrite_b
[input int, optional] Default: 0

side [input int, optional] Default: 0
lower [input int, optional] Default: 0
trans_a [input int, optional] Default: 0
diag [input int, optional] Default: 0

scipy.linalg.blas.cgemm

scipy.linalg.blas.cgemm(alpha, a, b[, beta, c, trans_a, trans_b, overwrite_c ]) = <fortran
object>

Wrapper for cgemm.
Parameters

alpha [input complex]
a [input rank-2 array(‘F’) with bounds (lda,ka)]
b [input rank-2 array(‘F’) with bounds (ldb,kb)]

Returns

c [rank-2 array(‘F’) with bounds (m,n)]
Other Parameters
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beta [input complex, optional] Default: (0.0, 0.0)
c [input rank-2 array(‘F’) with bounds (m,n)]
overwrite_c

[input int, optional] Default: 0
trans_a [input int, optional] Default: 0
trans_b [input int, optional] Default: 0

scipy.linalg.blas.chemm

scipy.linalg.blas.chemm(alpha, a, b[, beta, c, side, lower, overwrite_c ]) = <fortran object>
Wrapper for chemm.

Parameters

alpha [input complex]
a [input rank-2 array(‘F’) with bounds (lda,ka)]
b [input rank-2 array(‘F’) with bounds (ldb,kb)]

Returns

c [rank-2 array(‘F’) with bounds (m,n)]
Other Parameters

beta [input complex, optional] Default: (0.0, 0.0)
c [input rank-2 array(‘F’) with bounds (m,n)]
overwrite_c

[input int, optional] Default: 0
side [input int, optional] Default: 0
lower [input int, optional] Default: 0

scipy.linalg.blas.cher2k

scipy.linalg.blas.cher2k(alpha, a, b[, beta, c, trans, lower, overwrite_c ]) = <fortran
object>

Wrapper for cher2k.
Parameters

alpha [input complex]
a [input rank-2 array(‘F’) with bounds (lda,ka)]
b [input rank-2 array(‘F’) with bounds (ldb,kb)]

Returns

c [rank-2 array(‘F’) with bounds (n,n)]
Other Parameters

beta [input complex, optional] Default: (0.0, 0.0)
c [input rank-2 array(‘F’) with bounds (n,n)]
overwrite_c

[input int, optional] Default: 0
trans [input int, optional] Default: 0
lower [input int, optional] Default: 0
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scipy.linalg.blas.cherk

scipy.linalg.blas.cherk(alpha, a[, beta, c, trans, lower, overwrite_c ]) = <fortran object>
Wrapper for cherk.

Parameters

alpha [input complex]
a [input rank-2 array(‘F’) with bounds (lda,ka)]

Returns

c [rank-2 array(‘F’) with bounds (n,n)]
Other Parameters

beta [input complex, optional] Default: (0.0, 0.0)
c [input rank-2 array(‘F’) with bounds (n,n)]
overwrite_c

[input int, optional] Default: 0
trans [input int, optional] Default: 0
lower [input int, optional] Default: 0

scipy.linalg.blas.csymm

scipy.linalg.blas.csymm(alpha, a, b[, beta, c, side, lower, overwrite_c ]) = <fortran object>
Wrapper for csymm.

Parameters

alpha [input complex]
a [input rank-2 array(‘F’) with bounds (lda,ka)]
b [input rank-2 array(‘F’) with bounds (ldb,kb)]

Returns

c [rank-2 array(‘F’) with bounds (m,n)]
Other Parameters

beta [input complex, optional] Default: (0.0, 0.0)
c [input rank-2 array(‘F’) with bounds (m,n)]
overwrite_c

[input int, optional] Default: 0
side [input int, optional] Default: 0
lower [input int, optional] Default: 0

scipy.linalg.blas.csyr2k

scipy.linalg.blas.csyr2k(alpha, a, b[, beta, c, trans, lower, overwrite_c ]) = <fortran
object>

Wrapper for csyr2k.
Parameters

alpha [input complex]
a [input rank-2 array(‘F’) with bounds (lda,ka)]
b [input rank-2 array(‘F’) with bounds (ldb,kb)]
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Returns

c [rank-2 array(‘F’) with bounds (n,n)]
Other Parameters

beta [input complex, optional] Default: (0.0, 0.0)
c [input rank-2 array(‘F’) with bounds (n,n)]
overwrite_c

[input int, optional] Default: 0
trans [input int, optional] Default: 0
lower [input int, optional] Default: 0

scipy.linalg.blas.csyrk

scipy.linalg.blas.csyrk(alpha, a[, beta, c, trans, lower, overwrite_c ]) = <fortran object>
Wrapper for csyrk.

Parameters

alpha [input complex]
a [input rank-2 array(‘F’) with bounds (lda,ka)]

Returns

c [rank-2 array(‘F’) with bounds (n,n)]
Other Parameters

beta [input complex, optional] Default: (0.0, 0.0)
c [input rank-2 array(‘F’) with bounds (n,n)]
overwrite_c

[input int, optional] Default: 0
trans [input int, optional] Default: 0
lower [input int, optional] Default: 0

scipy.linalg.blas.ctrmm

scipy.linalg.blas.ctrmm(alpha, a, b[, side, lower, trans_a, diag, overwrite_b]) = <fortran
object>

Wrapper for ctrmm.
Parameters

alpha [input complex]
a [input rank-2 array(‘F’) with bounds (lda,k)]
b [input rank-2 array(‘F’) with bounds (ldb,n)]

Returns

b [rank-2 array(‘F’) with bounds (ldb,n)]
Other Parameters

overwrite_b
[input int, optional] Default: 0

side [input int, optional] Default: 0
lower [input int, optional] Default: 0
trans_a [input int, optional] Default: 0
diag [input int, optional] Default: 0
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scipy.linalg.blas.ctrsm

scipy.linalg.blas.ctrsm(alpha, a, b[, side, lower, trans_a, diag, overwrite_b]) = <fortran
object>

Wrapper for ctrsm.
Parameters

alpha [input complex]
a [input rank-2 array(‘F’) with bounds (lda,*)]
b [input rank-2 array(‘F’) with bounds (ldb,n)]

Returns

x [rank-2 array(‘F’) with bounds (ldb,n) and b storage]
Other Parameters

overwrite_b
[input int, optional] Default: 0

side [input int, optional] Default: 0
lower [input int, optional] Default: 0
trans_a [input int, optional] Default: 0
diag [input int, optional] Default: 0

scipy.linalg.blas.zgemm

scipy.linalg.blas.zgemm(alpha, a, b[, beta, c, trans_a, trans_b, overwrite_c ]) = <fortran
object>

Wrapper for zgemm.
Parameters

alpha [input complex]
a [input rank-2 array(‘D’) with bounds (lda,ka)]
b [input rank-2 array(‘D’) with bounds (ldb,kb)]

Returns

c [rank-2 array(‘D’) with bounds (m,n)]
Other Parameters

beta [input complex, optional] Default: (0.0, 0.0)
c [input rank-2 array(‘D’) with bounds (m,n)]
overwrite_c

[input int, optional] Default: 0
trans_a [input int, optional] Default: 0
trans_b [input int, optional] Default: 0

scipy.linalg.blas.zhemm

scipy.linalg.blas.zhemm(alpha, a, b[, beta, c, side, lower, overwrite_c ]) = <fortran object>
Wrapper for zhemm.

Parameters

alpha [input complex]
a [input rank-2 array(‘D’) with bounds (lda,ka)]
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b [input rank-2 array(‘D’) with bounds (ldb,kb)]
Returns

c [rank-2 array(‘D’) with bounds (m,n)]
Other Parameters

beta [input complex, optional] Default: (0.0, 0.0)
c [input rank-2 array(‘D’) with bounds (m,n)]
overwrite_c

[input int, optional] Default: 0
side [input int, optional] Default: 0
lower [input int, optional] Default: 0

scipy.linalg.blas.zher2k

scipy.linalg.blas.zher2k(alpha, a, b[, beta, c, trans, lower, overwrite_c ]) = <fortran
object>

Wrapper for zher2k.
Parameters

alpha [input complex]
a [input rank-2 array(‘D’) with bounds (lda,ka)]
b [input rank-2 array(‘D’) with bounds (ldb,kb)]

Returns

c [rank-2 array(‘D’) with bounds (n,n)]
Other Parameters

beta [input complex, optional] Default: (0.0, 0.0)
c [input rank-2 array(‘D’) with bounds (n,n)]
overwrite_c

[input int, optional] Default: 0
trans [input int, optional] Default: 0
lower [input int, optional] Default: 0

scipy.linalg.blas.zherk

scipy.linalg.blas.zherk(alpha, a[, beta, c, trans, lower, overwrite_c ]) = <fortran object>
Wrapper for zherk.

Parameters

alpha [input complex]
a [input rank-2 array(‘D’) with bounds (lda,ka)]

Returns

c [rank-2 array(‘D’) with bounds (n,n)]
Other Parameters

beta [input complex, optional] Default: (0.0, 0.0)
c [input rank-2 array(‘D’) with bounds (n,n)]
overwrite_c

[input int, optional] Default: 0
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trans [input int, optional] Default: 0
lower [input int, optional] Default: 0

scipy.linalg.blas.zsymm

scipy.linalg.blas.zsymm(alpha, a, b[, beta, c, side, lower, overwrite_c ]) = <fortran object>
Wrapper for zsymm.

Parameters

alpha [input complex]
a [input rank-2 array(‘D’) with bounds (lda,ka)]
b [input rank-2 array(‘D’) with bounds (ldb,kb)]

Returns

c [rank-2 array(‘D’) with bounds (m,n)]
Other Parameters

beta [input complex, optional] Default: (0.0, 0.0)
c [input rank-2 array(‘D’) with bounds (m,n)]
overwrite_c

[input int, optional] Default: 0
side [input int, optional] Default: 0
lower [input int, optional] Default: 0

scipy.linalg.blas.zsyr2k

scipy.linalg.blas.zsyr2k(alpha, a, b[, beta, c, trans, lower, overwrite_c ]) = <fortran
object>

Wrapper for zsyr2k.
Parameters

alpha [input complex]
a [input rank-2 array(‘D’) with bounds (lda,ka)]
b [input rank-2 array(‘D’) with bounds (ldb,kb)]

Returns

c [rank-2 array(‘D’) with bounds (n,n)]
Other Parameters

beta [input complex, optional] Default: (0.0, 0.0)
c [input rank-2 array(‘D’) with bounds (n,n)]
overwrite_c

[input int, optional] Default: 0
trans [input int, optional] Default: 0
lower [input int, optional] Default: 0
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scipy.linalg.blas.zsyrk

scipy.linalg.blas.zsyrk(alpha, a[, beta, c, trans, lower, overwrite_c ]) = <fortran object>
Wrapper for zsyrk.

Parameters

alpha [input complex]
a [input rank-2 array(‘D’) with bounds (lda,ka)]

Returns

c [rank-2 array(‘D’) with bounds (n,n)]
Other Parameters

beta [input complex, optional] Default: (0.0, 0.0)
c [input rank-2 array(‘D’) with bounds (n,n)]
overwrite_c

[input int, optional] Default: 0
trans [input int, optional] Default: 0
lower [input int, optional] Default: 0

scipy.linalg.blas.ztrmm

scipy.linalg.blas.ztrmm(alpha, a, b[, side, lower, trans_a, diag, overwrite_b]) = <fortran
object>

Wrapper for ztrmm.
Parameters

alpha [input complex]
a [input rank-2 array(‘D’) with bounds (lda,k)]
b [input rank-2 array(‘D’) with bounds (ldb,n)]

Returns

b [rank-2 array(‘D’) with bounds (ldb,n)]
Other Parameters

overwrite_b
[input int, optional] Default: 0

side [input int, optional] Default: 0
lower [input int, optional] Default: 0
trans_a [input int, optional] Default: 0
diag [input int, optional] Default: 0

scipy.linalg.blas.ztrsm

scipy.linalg.blas.ztrsm(alpha, a, b[, side, lower, trans_a, diag, overwrite_b]) = <fortran
object>

Wrapper for ztrsm.
Parameters

alpha [input complex]
a [input rank-2 array(‘D’) with bounds (lda,*)]
b [input rank-2 array(‘D’) with bounds (ldb,n)]
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Returns

x [rank-2 array(‘D’) with bounds (ldb,n) and b storage]
Other Parameters

overwrite_b
[input int, optional] Default: 0

side [input int, optional] Default: 0
lower [input int, optional] Default: 0
trans_a [input int, optional] Default: 0
diag [input int, optional] Default: 0

6.11 Low-level LAPACK functions (scipy.linalg.lapack)

This module contains low-level functions from the LAPACK library.
The *gegv family of routines have been removed from LAPACK 3.6.0 and have been deprecated in SciPy 0.17.0. They
will be removed in a future release.
New in version 0.12.0.

Note: The common overwrite_<> option in many routines, allows the input arrays to be overwritten to avoid extra
memory allocation. However this requires the array to satisfy two conditions which are memory order and the data type
to match exactly the order and the type expected by the routine.
As an example, if you pass a double precision float array to any S.... routine which expects single precision arguments,
f2py will create an intermediate array to match the argument types and overwriting will be performed on that intermediate
array.
Similarly, if a C-contiguous array is passed, f2py will pass a FORTRAN-contiguous array internally. Please make sure
that these details are satisfied. More information can be found in the f2py documentation.

Warning: These functions do little to no error checking. It is possible to cause crashes by mis-using them, so prefer
using the higher-level routines in scipy.linalg.

6.11.1 Finding functions

get_lapack_funcs(names[, arrays, dtype]) Return available LAPACK function objects from names.

scipy.linalg.lapack.get_lapack_funcs

scipy.linalg.lapack.get_lapack_funcs(names, arrays=(), dtype=None)
Return available LAPACK function objects from names.
Arrays are used to determine the optimal prefix of LAPACK routines.

Parameters

names [str or sequence of str] Name(s) of LAPACK functions without type prefix.
arrays [sequence of ndarrays, optional] Arrays can be given to determine optimal prefix of LA-

PACK routines. If not given, double-precision routines will be used, otherwise the most
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generic type in arrays will be used.
dtype [str or dtype, optional] Data-type specifier. Not used if arrays is non-empty.

Returns

funcs [list] List containing the found function(s).

Notes

This routine automatically chooses between Fortran/C interfaces. Fortran code is used whenever possible for arrays
with column major order. In all other cases, C code is preferred.
In LAPACK, the naming convention is that all functions start with a type prefix, which depends on the type of
the principal matrix. These can be one of {‘s’, ‘d’, ‘c’, ‘z’} for the numpy types {float32, float64, complex64,
complex128} respectively, and are stored in attribute typecode of the returned functions.

Examples

Suppose we would like to use ‘?lange’ routine which computes the selected norm of an array. We pass our array in
order to get the correct ‘lange’ flavor.

>>> import scipy.linalg as LA
>>> a = np.random.rand(3,2)
>>> x_lange = LA.get_lapack_funcs('lange', (a,))
>>> x_lange.typecode
'd'
>>> x_lange = LA.get_lapack_funcs('lange',(a*1j,))
>>> x_lange.typecode
'z'

Several LAPACK routines work best when its internal WORK array has the optimal size (big enough for fast
computation and small enough to avoid waste of memory). This size is determined also by a dedicated query to
the function which is often wrapped as a standalone function and commonly denoted as ###_lwork. Below is an
example for ?sysv

>>> import scipy.linalg as LA
>>> a = np.random.rand(1000,1000)
>>> b = np.random.rand(1000,1)*1j
>>> # We pick up zsysv and zsysv_lwork due to b array
... xsysv, xlwork = LA.get_lapack_funcs(('sysv', 'sysv_lwork'), (a, b))
>>> opt_lwork, _ = xlwork(a.shape[0]) # returns a complex for 'z' prefix
>>> udut, ipiv, x, info = xsysv(a, b, lwork=int(opt_lwork.real))

6.11.2 All functions

sgbsv(kl,ku,ab,b,[overwrite_ab,overwrite_b]) Wrapper for sgbsv.
dgbsv(kl,ku,ab,b,[overwrite_ab,overwrite_b]) Wrapper for dgbsv.
cgbsv(kl,ku,ab,b,[overwrite_ab,overwrite_b]) Wrapper for cgbsv.
zgbsv(kl,ku,ab,b,[overwrite_ab,overwrite_b]) Wrapper for zgbsv.
sgbtrf(ab,kl,ku,[m,n,ldab,overwrite_ab]) Wrapper for sgbtrf.
dgbtrf(ab,kl,ku,[m,n,ldab,overwrite_ab]) Wrapper for dgbtrf.
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cgbtrf(ab,kl,ku,[m,n,ldab,overwrite_ab]) Wrapper for cgbtrf.
zgbtrf(ab,kl,ku,[m,n,ldab,overwrite_ab]) Wrapper for zgbtrf.
sgbtrs(…) Wrapper for sgbtrs.
dgbtrs(…) Wrapper for dgbtrs.
cgbtrs(…) Wrapper for cgbtrs.
zgbtrs(…) Wrapper for zgbtrs.
sgebal(a,[scale,permute,overwrite_a]) Wrapper for sgebal.
dgebal(a,[scale,permute,overwrite_a]) Wrapper for dgebal.
cgebal(a,[scale,permute,overwrite_a]) Wrapper for cgebal.
zgebal(a,[scale,permute,overwrite_a]) Wrapper for zgebal.
sgecon(a,anorm,[norm]) Wrapper for sgecon.
dgecon(a,anorm,[norm]) Wrapper for dgecon.
cgecon(a,anorm,[norm]) Wrapper for cgecon.
zgecon(a,anorm,[norm]) Wrapper for zgecon.
sgees(…) Wrapper for sgees.
dgees(…) Wrapper for dgees.
cgees(…) Wrapper for cgees.
zgees(…) Wrapper for zgees.
sgeev(…) Wrapper for sgeev.
dgeev(…) Wrapper for dgeev.
cgeev(…) Wrapper for cgeev.
zgeev(…) Wrapper for zgeev.
sgeev_lwork(n,[compute_vl,compute_vr]) Wrapper for sgeev_lwork.
dgeev_lwork(n,[compute_vl,compute_vr]) Wrapper for dgeev_lwork.
cgeev_lwork(n,[compute_vl,compute_vr]) Wrapper for cgeev_lwork.
zgeev_lwork(n,[compute_vl,compute_vr]) Wrapper for zgeev_lwork.
sgegv(*args, **kwds) sgegv is deprecated! The *gegv family of routines has

been deprecated in LAPACK 3.6.0 in favor of the *ggev
family of routines.

dgegv(*args, **kwds) dgegv is deprecated! The *gegv family of routines has
been deprecated in LAPACK 3.6.0 in favor of the *ggev
family of routines.

cgegv(*args, **kwds) cgegv is deprecated! The *gegv family of routines has
been deprecated in LAPACK 3.6.0 in favor of the *ggev
family of routines.

zgegv(*args, **kwds) zgegv is deprecated! The *gegv family of routines has
been deprecated in LAPACK 3.6.0 in favor of the *ggev
family of routines.

sgehrd(a,[lo,hi,lwork,overwrite_a]) Wrapper for sgehrd.
dgehrd(a,[lo,hi,lwork,overwrite_a]) Wrapper for dgehrd.
cgehrd(a,[lo,hi,lwork,overwrite_a]) Wrapper for cgehrd.
zgehrd(a,[lo,hi,lwork,overwrite_a]) Wrapper for zgehrd.
sgehrd_lwork(n,[lo,hi]) Wrapper for sgehrd_lwork.
dgehrd_lwork(n,[lo,hi]) Wrapper for dgehrd_lwork.
cgehrd_lwork(n,[lo,hi]) Wrapper for cgehrd_lwork.
zgehrd_lwork(n,[lo,hi]) Wrapper for zgehrd_lwork.
sgels(a,b,[trans,lwork,overwrite_a,overwrite_b]) Wrapper for sgels.
dgels(a,b,[trans,lwork,overwrite_a,overwrite_b]) Wrapper for dgels.
cgels(a,b,[trans,lwork,overwrite_a,overwrite_b]) Wrapper for cgels.
zgels(a,b,[trans,lwork,overwrite_a,overwrite_b]) Wrapper for zgels.
sgels_lwork(m,n,nrhs,[trans]) Wrapper for sgels_lwork.
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dgels_lwork(m,n,nrhs,[trans]) Wrapper for dgels_lwork.
cgels_lwork(m,n,nrhs,[trans]) Wrapper for cgels_lwork.
zgels_lwork(m,n,nrhs,[trans]) Wrapper for zgels_lwork.
sgelsd(…) Wrapper for sgelsd.
dgelsd(…) Wrapper for dgelsd.
cgelsd(…) Wrapper for cgelsd.
zgelsd(…) Wrapper for zgelsd.
sgelsd_lwork(m,n,nrhs,[cond,lwork]) Wrapper for sgelsd_lwork.
dgelsd_lwork(m,n,nrhs,[cond,lwork]) Wrapper for dgelsd_lwork.
cgelsd_lwork(m,n,nrhs,[cond,lwork]) Wrapper for cgelsd_lwork.
zgelsd_lwork(m,n,nrhs,[cond,lwork]) Wrapper for zgelsd_lwork.
sgelss(a,b,[cond,lwork,overwrite_a,overwrite_b]) Wrapper for sgelss.
dgelss(a,b,[cond,lwork,overwrite_a,overwrite_b]) Wrapper for dgelss.
cgelss(a,b,[cond,lwork,overwrite_a,overwrite_b]) Wrapper for cgelss.
zgelss(a,b,[cond,lwork,overwrite_a,overwrite_b]) Wrapper for zgelss.
sgelss_lwork(m,n,nrhs,[cond,lwork]) Wrapper for sgelss_lwork.
dgelss_lwork(m,n,nrhs,[cond,lwork]) Wrapper for dgelss_lwork.
cgelss_lwork(m,n,nrhs,[cond,lwork]) Wrapper for cgelss_lwork.
zgelss_lwork(m,n,nrhs,[cond,lwork]) Wrapper for zgelss_lwork.
sgelsy(…) Wrapper for sgelsy.
dgelsy(…) Wrapper for dgelsy.
cgelsy(…) Wrapper for cgelsy.
zgelsy(…) Wrapper for zgelsy.
sgelsy_lwork(m,n,nrhs,cond,[lwork]) Wrapper for sgelsy_lwork.
dgelsy_lwork(m,n,nrhs,cond,[lwork]) Wrapper for dgelsy_lwork.
cgelsy_lwork(m,n,nrhs,cond,[lwork]) Wrapper for cgelsy_lwork.
zgelsy_lwork(m,n,nrhs,cond,[lwork]) Wrapper for zgelsy_lwork.
sgeqp3(a,[lwork,overwrite_a]) Wrapper for sgeqp3.
dgeqp3(a,[lwork,overwrite_a]) Wrapper for dgeqp3.
cgeqp3(a,[lwork,overwrite_a]) Wrapper for cgeqp3.
zgeqp3(a,[lwork,overwrite_a]) Wrapper for zgeqp3.
sgeqrf(a,[lwork,overwrite_a]) Wrapper for sgeqrf.
dgeqrf(a,[lwork,overwrite_a]) Wrapper for dgeqrf.
cgeqrf(a,[lwork,overwrite_a]) Wrapper for cgeqrf.
zgeqrf(a,[lwork,overwrite_a]) Wrapper for zgeqrf.
sgerqf(a,[lwork,overwrite_a]) Wrapper for sgerqf.
dgerqf(a,[lwork,overwrite_a]) Wrapper for dgerqf.
cgerqf(a,[lwork,overwrite_a]) Wrapper for cgerqf.
zgerqf(a,[lwork,overwrite_a]) Wrapper for zgerqf.
sgesdd(…) Wrapper for sgesdd.
dgesdd(…) Wrapper for dgesdd.
cgesdd(…) Wrapper for cgesdd.
zgesdd(…) Wrapper for zgesdd.
sgesdd_lwork(m,n,[compute_uv,full_matrices]) Wrapper for sgesdd_lwork.
dgesdd_lwork(m,n,[compute_uv,full_matrices]) Wrapper for dgesdd_lwork.
cgesdd_lwork(m,n,[compute_uv,full_matrices]) Wrapper for cgesdd_lwork.
zgesdd_lwork(m,n,[compute_uv,full_matrices]) Wrapper for zgesdd_lwork.
sgesv(a,b,[overwrite_a,overwrite_b]) Wrapper for sgesv.
dgesv(a,b,[overwrite_a,overwrite_b]) Wrapper for dgesv.
cgesv(a,b,[overwrite_a,overwrite_b]) Wrapper for cgesv.
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zgesv(a,b,[overwrite_a,overwrite_b]) Wrapper for zgesv.
sgesvd(…) Wrapper for sgesvd.
dgesvd(…) Wrapper for dgesvd.
cgesvd(…) Wrapper for cgesvd.
zgesvd(…) Wrapper for zgesvd.
sgesvd_lwork(m,n,[compute_uv,full_matrices]) Wrapper for sgesvd_lwork.
dgesvd_lwork(m,n,[compute_uv,full_matrices]) Wrapper for dgesvd_lwork.
cgesvd_lwork(m,n,[compute_uv,full_matrices]) Wrapper for cgesvd_lwork.
zgesvd_lwork(m,n,[compute_uv,full_matrices]) Wrapper for zgesvd_lwork.
sgesvx(…) Wrapper for sgesvx.
dgesvx(…) Wrapper for dgesvx.
cgesvx(…) Wrapper for cgesvx.
zgesvx(…) Wrapper for zgesvx.
sgetrf(a,[overwrite_a]) Wrapper for sgetrf.
dgetrf(a,[overwrite_a]) Wrapper for dgetrf.
cgetrf(a,[overwrite_a]) Wrapper for cgetrf.
zgetrf(a,[overwrite_a]) Wrapper for zgetrf.
sgetri(lu,piv,[lwork,overwrite_lu]) Wrapper for sgetri.
dgetri(lu,piv,[lwork,overwrite_lu]) Wrapper for dgetri.
cgetri(lu,piv,[lwork,overwrite_lu]) Wrapper for cgetri.
zgetri(lu,piv,[lwork,overwrite_lu]) Wrapper for zgetri.
sgetri_lwork(n) Wrapper for sgetri_lwork.
dgetri_lwork(n) Wrapper for dgetri_lwork.
cgetri_lwork(n) Wrapper for cgetri_lwork.
zgetri_lwork(n) Wrapper for zgetri_lwork.
sgetrs(lu,piv,b,[trans,overwrite_b]) Wrapper for sgetrs.
dgetrs(lu,piv,b,[trans,overwrite_b]) Wrapper for dgetrs.
cgetrs(lu,piv,b,[trans,overwrite_b]) Wrapper for cgetrs.
zgetrs(lu,piv,b,[trans,overwrite_b]) Wrapper for zgetrs.
sgges(…) Wrapper for sgges.
dgges(…) Wrapper for dgges.
cgges(…) Wrapper for cgges.
zgges(…) Wrapper for zgges.
sggev(…) Wrapper for sggev.
dggev(…) Wrapper for dggev.
cggev(…) Wrapper for cggev.
zggev(…) Wrapper for zggev.
sgglse(…) Wrapper for sgglse.
dgglse(…) Wrapper for dgglse.
cgglse(…) Wrapper for cgglse.
zgglse(…) Wrapper for zgglse.
sgglse_lwork(m,n,p) Wrapper for sgglse_lwork.
dgglse_lwork(m,n,p) Wrapper for dgglse_lwork.
cgglse_lwork(m,n,p) Wrapper for cgglse_lwork.
zgglse_lwork(m,n,p) Wrapper for zgglse_lwork.
sgtsv(…) Wrapper for sgtsv.
dgtsv(…) Wrapper for dgtsv.
cgtsv(…) Wrapper for cgtsv.
zgtsv(…) Wrapper for zgtsv.
chbevd(…) Wrapper for chbevd.
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zhbevd(…) Wrapper for zhbevd.
chbevx(…) Wrapper for chbevx.
zhbevx(…) Wrapper for zhbevx.
checon(a,ipiv,anorm,[lower]) Wrapper for checon.
zhecon(a,ipiv,anorm,[lower]) Wrapper for zhecon.
cheev(a,[compute_v,lower,lwork,overwrite_a]) Wrapper for cheev.
zheev(a,[compute_v,lower,lwork,overwrite_a]) Wrapper for zheev.
cheevd(a,[compute_v,lower,lwork,overwrite_a]) Wrapper for cheevd.
zheevd(a,[compute_v,lower,lwork,overwrite_a]) Wrapper for zheevd.
cheevr(…) Wrapper for cheevr.
zheevr(…) Wrapper for zheevr.
chegst(a,b,[itype,lower,overwrite_a]) Wrapper for chegst.
zhegst(a,b,[itype,lower,overwrite_a]) Wrapper for zhegst.
chegv(…) Wrapper for chegv.
zhegv(…) Wrapper for zhegv.
chegvd(…) Wrapper for chegvd.
zhegvd(…) Wrapper for zhegvd.
chegvx(…) Wrapper for chegvx.
zhegvx(…) Wrapper for zhegvx.
chesv(a,b,[lwork,lower,overwrite_a,overwrite_b]) Wrapper for chesv.
zhesv(a,b,[lwork,lower,overwrite_a,overwrite_b]) Wrapper for zhesv.
chesv_lwork(n,[lower]) Wrapper for chesv_lwork.
zhesv_lwork(n,[lower]) Wrapper for zhesv_lwork.
chesvx(…) Wrapper for chesvx.
zhesvx(…) Wrapper for zhesvx.
chesvx_lwork(n,[lower]) Wrapper for chesvx_lwork.
zhesvx_lwork(n,[lower]) Wrapper for zhesvx_lwork.
chetrd(a,[lower,lwork,overwrite_a]) Wrapper for chetrd.
zhetrd(a,[lower,lwork,overwrite_a]) Wrapper for zhetrd.
chetrd_lwork(n,[lower]) Wrapper for chetrd_lwork.
zhetrd_lwork(n,[lower]) Wrapper for zhetrd_lwork.
chetrf(a,[lower,lwork,overwrite_a]) Wrapper for chetrf.
zhetrf(a,[lower,lwork,overwrite_a]) Wrapper for zhetrf.
chetrf_lwork(n,[lower]) Wrapper for chetrf_lwork.
zhetrf_lwork(n,[lower]) Wrapper for zhetrf_lwork.
chfrk(…) Wrapper for chfrk.
zhfrk(…) Wrapper for zhfrk.
slamch(cmach) Wrapper for slamch.
dlamch(cmach) Wrapper for dlamch.
slange(norm,a) Wrapper for slange.
dlange(norm,a) Wrapper for dlange.
clange(norm,a) Wrapper for clange.
zlange(norm,a) Wrapper for zlange.
slarf(v,tau,c,work,[side,incv,overwrite_c]) Wrapper for slarf.
dlarf(v,tau,c,work,[side,incv,overwrite_c]) Wrapper for dlarf.
clarf(v,tau,c,work,[side,incv,overwrite_c]) Wrapper for clarf.
zlarf(v,tau,c,work,[side,incv,overwrite_c]) Wrapper for zlarf.
slarfg(n,alpha,x,[incx,overwrite_x]) Wrapper for slarfg.
dlarfg(n,alpha,x,[incx,overwrite_x]) Wrapper for dlarfg.
clarfg(n,alpha,x,[incx,overwrite_x]) Wrapper for clarfg.
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zlarfg(n,alpha,x,[incx,overwrite_x]) Wrapper for zlarfg.
slartg(f,g) Wrapper for slartg.
dlartg(f,g) Wrapper for dlartg.
clartg(f,g) Wrapper for clartg.
zlartg(f,g) Wrapper for zlartg.
slasd4(i,d,z,[rho]) Wrapper for slasd4.
dlasd4(i,d,z,[rho]) Wrapper for dlasd4.
slaswp(a,piv,[k1,k2,off,inc,overwrite_a]) Wrapper for slaswp.
dlaswp(a,piv,[k1,k2,off,inc,overwrite_a]) Wrapper for dlaswp.
claswp(a,piv,[k1,k2,off,inc,overwrite_a]) Wrapper for claswp.
zlaswp(a,piv,[k1,k2,off,inc,overwrite_a]) Wrapper for zlaswp.
slauum(c,[lower,overwrite_c]) Wrapper for slauum.
dlauum(c,[lower,overwrite_c]) Wrapper for dlauum.
clauum(c,[lower,overwrite_c]) Wrapper for clauum.
zlauum(c,[lower,overwrite_c]) Wrapper for zlauum.
sorghr(a,tau,[lo,hi,lwork,overwrite_a]) Wrapper for sorghr.
dorghr(a,tau,[lo,hi,lwork,overwrite_a]) Wrapper for dorghr.
sorghr_lwork(n,[lo,hi]) Wrapper for sorghr_lwork.
dorghr_lwork(n,[lo,hi]) Wrapper for dorghr_lwork.
sorgqr(a,tau,[lwork,overwrite_a]) Wrapper for sorgqr.
dorgqr(a,tau,[lwork,overwrite_a]) Wrapper for dorgqr.
sorgrq(a,tau,[lwork,overwrite_a]) Wrapper for sorgrq.
dorgrq(a,tau,[lwork,overwrite_a]) Wrapper for dorgrq.
sormqr(side,trans,a,tau,c,lwork,[overwrite_c]) Wrapper for sormqr.
dormqr(side,trans,a,tau,c,lwork,[overwrite_c]) Wrapper for dormqr.
sormrz(a,tau,c,[side,trans,lwork,overwrite_c]) Wrapper for sormrz.
dormrz(a,tau,c,[side,trans,lwork,overwrite_c]) Wrapper for dormrz.
sormrz_lwork(m,n,[side,trans]) Wrapper for sormrz_lwork.
dormrz_lwork(m,n,[side,trans]) Wrapper for dormrz_lwork.
spbsv(ab,b,[lower,ldab,overwrite_ab,overwrite_b]) Wrapper for spbsv.
dpbsv(ab,b,[lower,ldab,overwrite_ab,overwrite_b]) Wrapper for dpbsv.
cpbsv(ab,b,[lower,ldab,overwrite_ab,overwrite_b]) Wrapper for cpbsv.
zpbsv(ab,b,[lower,ldab,overwrite_ab,overwrite_b]) Wrapper for zpbsv.
spbtrf(ab,[lower,ldab,overwrite_ab]) Wrapper for spbtrf.
dpbtrf(ab,[lower,ldab,overwrite_ab]) Wrapper for dpbtrf.
cpbtrf(ab,[lower,ldab,overwrite_ab]) Wrapper for cpbtrf.
zpbtrf(ab,[lower,ldab,overwrite_ab]) Wrapper for zpbtrf.
spbtrs(ab,b,[lower,ldab,overwrite_b]) Wrapper for spbtrs.
dpbtrs(ab,b,[lower,ldab,overwrite_b]) Wrapper for dpbtrs.
cpbtrs(ab,b,[lower,ldab,overwrite_b]) Wrapper for cpbtrs.
zpbtrs(ab,b,[lower,ldab,overwrite_b]) Wrapper for zpbtrs.
spftrf(n,a,[transr,uplo,overwrite_a]) Wrapper for spftrf.
dpftrf(n,a,[transr,uplo,overwrite_a]) Wrapper for dpftrf.
cpftrf(n,a,[transr,uplo,overwrite_a]) Wrapper for cpftrf.
zpftrf(n,a,[transr,uplo,overwrite_a]) Wrapper for zpftrf.
spftri(n,a,[transr,uplo,overwrite_a]) Wrapper for spftri.
dpftri(n,a,[transr,uplo,overwrite_a]) Wrapper for dpftri.
cpftri(n,a,[transr,uplo,overwrite_a]) Wrapper for cpftri.
zpftri(n,a,[transr,uplo,overwrite_a]) Wrapper for zpftri.
spftrs(n,a,b,[transr,uplo,overwrite_b]) Wrapper for spftrs.
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dpftrs(n,a,b,[transr,uplo,overwrite_b]) Wrapper for dpftrs.
cpftrs(n,a,b,[transr,uplo,overwrite_b]) Wrapper for cpftrs.
zpftrs(n,a,b,[transr,uplo,overwrite_b]) Wrapper for zpftrs.
spocon(a,anorm,[uplo]) Wrapper for spocon.
dpocon(a,anorm,[uplo]) Wrapper for dpocon.
cpocon(a,anorm,[uplo]) Wrapper for cpocon.
zpocon(a,anorm,[uplo]) Wrapper for zpocon.
sposv(a,b,[lower,overwrite_a,overwrite_b]) Wrapper for sposv.
dposv(a,b,[lower,overwrite_a,overwrite_b]) Wrapper for dposv.
cposv(a,b,[lower,overwrite_a,overwrite_b]) Wrapper for cposv.
zposv(a,b,[lower,overwrite_a,overwrite_b]) Wrapper for zposv.
sposvx(…) Wrapper for sposvx.
dposvx(…) Wrapper for dposvx.
cposvx(…) Wrapper for cposvx.
zposvx(…) Wrapper for zposvx.
spotrf(a,[lower,clean,overwrite_a]) Wrapper for spotrf.
dpotrf(a,[lower,clean,overwrite_a]) Wrapper for dpotrf.
cpotrf(a,[lower,clean,overwrite_a]) Wrapper for cpotrf.
zpotrf(a,[lower,clean,overwrite_a]) Wrapper for zpotrf.
spotri(c,[lower,overwrite_c]) Wrapper for spotri.
dpotri(c,[lower,overwrite_c]) Wrapper for dpotri.
cpotri(c,[lower,overwrite_c]) Wrapper for cpotri.
zpotri(c,[lower,overwrite_c]) Wrapper for zpotri.
spotrs(c,b,[lower,overwrite_b]) Wrapper for spotrs.
dpotrs(c,b,[lower,overwrite_b]) Wrapper for dpotrs.
cpotrs(c,b,[lower,overwrite_b]) Wrapper for cpotrs.
zpotrs(c,b,[lower,overwrite_b]) Wrapper for zpotrs.
sptsv(…) Wrapper for sptsv.
dptsv(…) Wrapper for dptsv.
cptsv(…) Wrapper for cptsv.
zptsv(…) Wrapper for zptsv.
crot(…) Wrapper for crot.
zrot(…) Wrapper for zrot.
ssbev(ab,[compute_v,lower,ldab,overwrite_ab]) Wrapper for ssbev.
dsbev(ab,[compute_v,lower,ldab,overwrite_ab]) Wrapper for dsbev.
ssbevd(…) Wrapper for ssbevd.
dsbevd(…) Wrapper for dsbevd.
ssbevx(…) Wrapper for ssbevx.
dsbevx(…) Wrapper for dsbevx.
ssfrk(…) Wrapper for ssfrk.
dsfrk(…) Wrapper for dsfrk.
sstebz(d,e,range,vl,vu,il,iu,tol,order) Wrapper for sstebz.
dstebz(d,e,range,vl,vu,il,iu,tol,order) Wrapper for dstebz.
sstein(d,e,w,iblock,isplit) Wrapper for sstein.
dstein(d,e,w,iblock,isplit) Wrapper for dstein.
sstemr(…) Wrapper for sstemr.
dstemr(…) Wrapper for dstemr.
sstemr_lwork(…) Wrapper for sstemr_lwork.
dstemr_lwork(…) Wrapper for dstemr_lwork.
ssterf(d,e,[overwrite_d,overwrite_e]) Wrapper for ssterf.
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dsterf(d,e,[overwrite_d,overwrite_e]) Wrapper for dsterf.
sstev(d,e,[compute_v,overwrite_d,overwrite_e]) Wrapper for sstev.
dstev(d,e,[compute_v,overwrite_d,overwrite_e]) Wrapper for dstev.
ssycon(a,ipiv,anorm,[lower]) Wrapper for ssycon.
dsycon(a,ipiv,anorm,[lower]) Wrapper for dsycon.
csycon(a,ipiv,anorm,[lower]) Wrapper for csycon.
zsycon(a,ipiv,anorm,[lower]) Wrapper for zsycon.
ssyconv(a,ipiv,[lower,way,overwrite_a]) Wrapper for ssyconv.
dsyconv(a,ipiv,[lower,way,overwrite_a]) Wrapper for dsyconv.
csyconv(a,ipiv,[lower,way,overwrite_a]) Wrapper for csyconv.
zsyconv(a,ipiv,[lower,way,overwrite_a]) Wrapper for zsyconv.
ssyev(a,[compute_v,lower,lwork,overwrite_a]) Wrapper for ssyev.
dsyev(a,[compute_v,lower,lwork,overwrite_a]) Wrapper for dsyev.
ssyevd(a,[compute_v,lower,lwork,overwrite_a]) Wrapper for ssyevd.
dsyevd(a,[compute_v,lower,lwork,overwrite_a]) Wrapper for dsyevd.
ssyevr(…) Wrapper for ssyevr.
dsyevr(…) Wrapper for dsyevr.
ssygst(a,b,[itype,lower,overwrite_a]) Wrapper for ssygst.
dsygst(a,b,[itype,lower,overwrite_a]) Wrapper for dsygst.
ssygv(…) Wrapper for ssygv.
dsygv(…) Wrapper for dsygv.
ssygvd(…) Wrapper for ssygvd.
dsygvd(…) Wrapper for dsygvd.
ssygvx(…) Wrapper for ssygvx.
dsygvx(…) Wrapper for dsygvx.
ssysv(a,b,[lwork,lower,overwrite_a,overwrite_b]) Wrapper for ssysv.
dsysv(a,b,[lwork,lower,overwrite_a,overwrite_b]) Wrapper for dsysv.
csysv(a,b,[lwork,lower,overwrite_a,overwrite_b]) Wrapper for csysv.
zsysv(a,b,[lwork,lower,overwrite_a,overwrite_b]) Wrapper for zsysv.
ssysv_lwork(n,[lower]) Wrapper for ssysv_lwork.
dsysv_lwork(n,[lower]) Wrapper for dsysv_lwork.
csysv_lwork(n,[lower]) Wrapper for csysv_lwork.
zsysv_lwork(n,[lower]) Wrapper for zsysv_lwork.
ssysvx(…) Wrapper for ssysvx.
dsysvx(…) Wrapper for dsysvx.
csysvx(…) Wrapper for csysvx.
zsysvx(…) Wrapper for zsysvx.
ssysvx_lwork(n,[lower]) Wrapper for ssysvx_lwork.
dsysvx_lwork(n,[lower]) Wrapper for dsysvx_lwork.
csysvx_lwork(n,[lower]) Wrapper for csysvx_lwork.
zsysvx_lwork(n,[lower]) Wrapper for zsysvx_lwork.
ssytf2(a,[lower,overwrite_a]) Wrapper for ssytf2.
dsytf2(a,[lower,overwrite_a]) Wrapper for dsytf2.
csytf2(a,[lower,overwrite_a]) Wrapper for csytf2.
zsytf2(a,[lower,overwrite_a]) Wrapper for zsytf2.
ssytrd(a,[lower,lwork,overwrite_a]) Wrapper for ssytrd.
dsytrd(a,[lower,lwork,overwrite_a]) Wrapper for dsytrd.
ssytrd_lwork(n,[lower]) Wrapper for ssytrd_lwork.
dsytrd_lwork(n,[lower]) Wrapper for dsytrd_lwork.
ssytrf(a,[lower,lwork,overwrite_a]) Wrapper for ssytrf.

Continued on next page
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Table 96 – continued from previous page
dsytrf(a,[lower,lwork,overwrite_a]) Wrapper for dsytrf.
csytrf(a,[lower,lwork,overwrite_a]) Wrapper for csytrf.
zsytrf(a,[lower,lwork,overwrite_a]) Wrapper for zsytrf.
ssytrf_lwork(n,[lower]) Wrapper for ssytrf_lwork.
dsytrf_lwork(n,[lower]) Wrapper for dsytrf_lwork.
csytrf_lwork(n,[lower]) Wrapper for csytrf_lwork.
zsytrf_lwork(n,[lower]) Wrapper for zsytrf_lwork.
stfsm(…) Wrapper for stfsm.
dtfsm(…) Wrapper for dtfsm.
ctfsm(…) Wrapper for ctfsm.
ztfsm(…) Wrapper for ztfsm.
stfttp(n,arf,[transr,uplo]) Wrapper for stfttp.
dtfttp(n,arf,[transr,uplo]) Wrapper for dtfttp.
ctfttp(n,arf,[transr,uplo]) Wrapper for ctfttp.
ztfttp(n,arf,[transr,uplo]) Wrapper for ztfttp.
stfttr(n,arf,[transr,uplo]) Wrapper for stfttr.
dtfttr(n,arf,[transr,uplo]) Wrapper for dtfttr.
ctfttr(n,arf,[transr,uplo]) Wrapper for ctfttr.
ztfttr(n,arf,[transr,uplo]) Wrapper for ztfttr.
stgsen(…) Wrapper for stgsen.
dtgsen(…) Wrapper for dtgsen.
ctgsen(…) Wrapper for ctgsen.
ztgsen(…) Wrapper for ztgsen.
stpttf(n,ap,[transr,uplo]) Wrapper for stpttf.
dtpttf(n,ap,[transr,uplo]) Wrapper for dtpttf.
ctpttf(n,ap,[transr,uplo]) Wrapper for ctpttf.
ztpttf(n,ap,[transr,uplo]) Wrapper for ztpttf.
stpttr(n,ap,[uplo]) Wrapper for stpttr.
dtpttr(n,ap,[uplo]) Wrapper for dtpttr.
ctpttr(n,ap,[uplo]) Wrapper for ctpttr.
ztpttr(n,ap,[uplo]) Wrapper for ztpttr.
strsyl(a,b,c,[trana,tranb,isgn,overwrite_c]) Wrapper for strsyl.
dtrsyl(a,b,c,[trana,tranb,isgn,overwrite_c]) Wrapper for dtrsyl.
ctrsyl(a,b,c,[trana,tranb,isgn,overwrite_c]) Wrapper for ctrsyl.
ztrsyl(a,b,c,[trana,tranb,isgn,overwrite_c]) Wrapper for ztrsyl.
strtri(c,[lower,unitdiag,overwrite_c]) Wrapper for strtri.
dtrtri(c,[lower,unitdiag,overwrite_c]) Wrapper for dtrtri.
ctrtri(c,[lower,unitdiag,overwrite_c]) Wrapper for ctrtri.
ztrtri(c,[lower,unitdiag,overwrite_c]) Wrapper for ztrtri.
strtrs(…) Wrapper for strtrs.
dtrtrs(…) Wrapper for dtrtrs.
ctrtrs(…) Wrapper for ctrtrs.
ztrtrs(…) Wrapper for ztrtrs.
strttf(a,[transr,uplo]) Wrapper for strttf.
dtrttf(a,[transr,uplo]) Wrapper for dtrttf.
ctrttf(a,[transr,uplo]) Wrapper for ctrttf.
ztrttf(a,[transr,uplo]) Wrapper for ztrttf.
strttp(a,[uplo]) Wrapper for strttp.
dtrttp(a,[uplo]) Wrapper for dtrttp.
ctrttp(a,[uplo]) Wrapper for ctrttp.

Continued on next page

936 Chapter 6. API Reference



SciPy Reference Guide, Release 1.3.1

Table 96 – continued from previous page
ztrttp(a,[uplo]) Wrapper for ztrttp.
stzrzf(a,[lwork,overwrite_a]) Wrapper for stzrzf.
dtzrzf(a,[lwork,overwrite_a]) Wrapper for dtzrzf.
ctzrzf(a,[lwork,overwrite_a]) Wrapper for ctzrzf.
ztzrzf(a,[lwork,overwrite_a]) Wrapper for ztzrzf.
stzrzf_lwork(m,n) Wrapper for stzrzf_lwork.
dtzrzf_lwork(m,n) Wrapper for dtzrzf_lwork.
ctzrzf_lwork(m,n) Wrapper for ctzrzf_lwork.
ztzrzf_lwork(m,n) Wrapper for ztzrzf_lwork.
cunghr(a,tau,[lo,hi,lwork,overwrite_a]) Wrapper for cunghr.
zunghr(a,tau,[lo,hi,lwork,overwrite_a]) Wrapper for zunghr.
cunghr_lwork(n,[lo,hi]) Wrapper for cunghr_lwork.
zunghr_lwork(n,[lo,hi]) Wrapper for zunghr_lwork.
cungqr(a,tau,[lwork,overwrite_a]) Wrapper for cungqr.
zungqr(a,tau,[lwork,overwrite_a]) Wrapper for zungqr.
cungrq(a,tau,[lwork,overwrite_a]) Wrapper for cungrq.
zungrq(a,tau,[lwork,overwrite_a]) Wrapper for zungrq.
cunmqr(side,trans,a,tau,c,lwork,[overwrite_c]) Wrapper for cunmqr.
zunmqr(side,trans,a,tau,c,lwork,[overwrite_c]) Wrapper for zunmqr.
cunmrz(a,tau,c,[side,trans,lwork,overwrite_c]) Wrapper for cunmrz.
zunmrz(a,tau,c,[side,trans,lwork,overwrite_c]) Wrapper for zunmrz.
cunmrz_lwork(m,n,[side,trans]) Wrapper for cunmrz_lwork.
zunmrz_lwork(m,n,[side,trans]) Wrapper for zunmrz_lwork.
ilaver() Wrapper for ilaver.

scipy.linalg.lapack.sgbsv

scipy.linalg.lapack.sgbsv(kl, ku, ab, b[, overwrite_ab, overwrite_b]) = <fortran object>
Wrapper for sgbsv.

Parameters

kl [input int]
ku [input int]
ab [input rank-2 array(‘f’) with bounds (2*kl+ku+1,n)]
b [input rank-2 array(‘f’) with bounds (n,nrhs)]

Returns

lub [rank-2 array(‘f’) with bounds (2*kl+ku+1,n) and ab storage]
piv [rank-1 array(‘i’) with bounds (n)]
x [rank-2 array(‘f’) with bounds (n,nrhs) and b storage]
info [int]

Other Parameters

overwrite_ab
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0
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scipy.linalg.lapack.dgbsv

scipy.linalg.lapack.dgbsv(kl, ku, ab, b[, overwrite_ab, overwrite_b]) = <fortran object>
Wrapper for dgbsv.

Parameters

kl [input int]
ku [input int]
ab [input rank-2 array(‘d’) with bounds (2*kl+ku+1,n)]
b [input rank-2 array(‘d’) with bounds (n,nrhs)]

Returns

lub [rank-2 array(‘d’) with bounds (2*kl+ku+1,n) and ab storage]
piv [rank-1 array(‘i’) with bounds (n)]
x [rank-2 array(‘d’) with bounds (n,nrhs) and b storage]
info [int]

Other Parameters

overwrite_ab
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0

scipy.linalg.lapack.cgbsv

scipy.linalg.lapack.cgbsv(kl, ku, ab, b[, overwrite_ab, overwrite_b]) = <fortran object>
Wrapper for cgbsv.

Parameters

kl [input int]
ku [input int]
ab [input rank-2 array(‘F’) with bounds (2*kl+ku+1,n)]
b [input rank-2 array(‘F’) with bounds (n,nrhs)]

Returns

lub [rank-2 array(‘F’) with bounds (2*kl+ku+1,n) and ab storage]
piv [rank-1 array(‘i’) with bounds (n)]
x [rank-2 array(‘F’) with bounds (n,nrhs) and b storage]
info [int]

Other Parameters

overwrite_ab
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0
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scipy.linalg.lapack.zgbsv

scipy.linalg.lapack.zgbsv(kl, ku, ab, b[, overwrite_ab, overwrite_b]) = <fortran object>
Wrapper for zgbsv.

Parameters

kl [input int]
ku [input int]
ab [input rank-2 array(‘D’) with bounds (2*kl+ku+1,n)]
b [input rank-2 array(‘D’) with bounds (n,nrhs)]

Returns

lub [rank-2 array(‘D’) with bounds (2*kl+ku+1,n) and ab storage]
piv [rank-1 array(‘i’) with bounds (n)]
x [rank-2 array(‘D’) with bounds (n,nrhs) and b storage]
info [int]

Other Parameters

overwrite_ab
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0

scipy.linalg.lapack.sgbtrf

scipy.linalg.lapack.sgbtrf(ab, kl, ku[, m, n, ldab, overwrite_ab]) = <fortran object>
Wrapper for sgbtrf.

Parameters

ab [input rank-2 array(‘f’) with bounds (ldab,n)]
kl [input int]
ku [input int]

Returns

lu [rank-2 array(‘f’) with bounds (ldab,n) and ab storage]
ipiv [rank-1 array(‘i’) with bounds (MIN(m,n))]
info [int]

Other Parameters

m [input int, optional] Default: shape(ab,1)
n [input int, optional] Default: shape(ab,1)
overwrite_ab

[input int, optional] Default: 0
ldab [input int, optional] Default: max(shape(ab,0),1)

scipy.linalg.lapack.dgbtrf

scipy.linalg.lapack.dgbtrf(ab, kl, ku[, m, n, ldab, overwrite_ab]) = <fortran object>
Wrapper for dgbtrf.

Parameters

ab [input rank-2 array(‘d’) with bounds (ldab,n)]
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kl [input int]
ku [input int]

Returns

lu [rank-2 array(‘d’) with bounds (ldab,n) and ab storage]
ipiv [rank-1 array(‘i’) with bounds (MIN(m,n))]
info [int]

Other Parameters

m [input int, optional] Default: shape(ab,1)
n [input int, optional] Default: shape(ab,1)
overwrite_ab

[input int, optional] Default: 0
ldab [input int, optional] Default: max(shape(ab,0),1)

scipy.linalg.lapack.cgbtrf

scipy.linalg.lapack.cgbtrf(ab, kl, ku[, m, n, ldab, overwrite_ab]) = <fortran object>
Wrapper for cgbtrf.

Parameters

ab [input rank-2 array(‘F’) with bounds (ldab,n)]
kl [input int]
ku [input int]

Returns

lu [rank-2 array(‘F’) with bounds (ldab,n) and ab storage]
ipiv [rank-1 array(‘i’) with bounds (MIN(m,n))]
info [int]

Other Parameters

m [input int, optional] Default: shape(ab,1)
n [input int, optional] Default: shape(ab,1)
overwrite_ab

[input int, optional] Default: 0
ldab [input int, optional] Default: max(shape(ab,0),1)

scipy.linalg.lapack.zgbtrf

scipy.linalg.lapack.zgbtrf(ab, kl, ku[, m, n, ldab, overwrite_ab]) = <fortran object>
Wrapper for zgbtrf.

Parameters

ab [input rank-2 array(‘D’) with bounds (ldab,n)]
kl [input int]
ku [input int]

Returns

lu [rank-2 array(‘D’) with bounds (ldab,n) and ab storage]
ipiv [rank-1 array(‘i’) with bounds (MIN(m,n))]
info [int]
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Other Parameters

m [input int, optional] Default: shape(ab,1)
n [input int, optional] Default: shape(ab,1)
overwrite_ab

[input int, optional] Default: 0
ldab [input int, optional] Default: max(shape(ab,0),1)

scipy.linalg.lapack.sgbtrs

scipy.linalg.lapack.sgbtrs(ab, kl, ku, b, ipiv[, trans, n, ldab, ldb, overwrite_b]) = <fortran
object>

Wrapper for sgbtrs.
Parameters

ab [input rank-2 array(‘f’) with bounds (ldab,n)]
kl [input int]
ku [input int]
b [input rank-2 array(‘f’) with bounds (ldb,nrhs)]
ipiv [input rank-1 array(‘i’) with bounds (n)]

Returns

x [rank-2 array(‘f’) with bounds (ldb,nrhs) and b storage]
info [int]

Other Parameters

overwrite_b
[input int, optional] Default: 0

trans [input int, optional] Default: 0
n [input int, optional] Default: shape(ab,1)
ldab [input int, optional] Default: shape(ab,0)
ldb [input int, optional] Default: shape(b,0)

scipy.linalg.lapack.dgbtrs

scipy.linalg.lapack.dgbtrs(ab, kl, ku, b, ipiv[, trans, n, ldab, ldb, overwrite_b]) = <fortran
object>

Wrapper for dgbtrs.
Parameters

ab [input rank-2 array(‘d’) with bounds (ldab,n)]
kl [input int]
ku [input int]
b [input rank-2 array(‘d’) with bounds (ldb,nrhs)]
ipiv [input rank-1 array(‘i’) with bounds (n)]

Returns

x [rank-2 array(‘d’) with bounds (ldb,nrhs) and b storage]
info [int]

Other Parameters

overwrite_b
[input int, optional] Default: 0
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trans [input int, optional] Default: 0
n [input int, optional] Default: shape(ab,1)
ldab [input int, optional] Default: shape(ab,0)
ldb [input int, optional] Default: shape(b,0)

scipy.linalg.lapack.cgbtrs

scipy.linalg.lapack.cgbtrs(ab, kl, ku, b, ipiv[, trans, n, ldab, ldb, overwrite_b]) = <fortran
object>

Wrapper for cgbtrs.
Parameters

ab [input rank-2 array(‘F’) with bounds (ldab,n)]
kl [input int]
ku [input int]
b [input rank-2 array(‘F’) with bounds (ldb,nrhs)]
ipiv [input rank-1 array(‘i’) with bounds (n)]

Returns

x [rank-2 array(‘F’) with bounds (ldb,nrhs) and b storage]
info [int]

Other Parameters

overwrite_b
[input int, optional] Default: 0

trans [input int, optional] Default: 0
n [input int, optional] Default: shape(ab,1)
ldab [input int, optional] Default: shape(ab,0)
ldb [input int, optional] Default: shape(b,0)

scipy.linalg.lapack.zgbtrs

scipy.linalg.lapack.zgbtrs(ab, kl, ku, b, ipiv[, trans, n, ldab, ldb, overwrite_b]) = <fortran
object>

Wrapper for zgbtrs.
Parameters

ab [input rank-2 array(‘D’) with bounds (ldab,n)]
kl [input int]
ku [input int]
b [input rank-2 array(‘D’) with bounds (ldb,nrhs)]
ipiv [input rank-1 array(‘i’) with bounds (n)]

Returns

x [rank-2 array(‘D’) with bounds (ldb,nrhs) and b storage]
info [int]

Other Parameters

overwrite_b
[input int, optional] Default: 0

trans [input int, optional] Default: 0
n [input int, optional] Default: shape(ab,1)
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ldab [input int, optional] Default: shape(ab,0)
ldb [input int, optional] Default: shape(b,0)

scipy.linalg.lapack.sgebal

scipy.linalg.lapack.sgebal(a[, scale, permute, overwrite_a]) = <fortran object>
Wrapper for sgebal.

Parameters

a [input rank-2 array(‘f’) with bounds (m,n)]
Returns

ba [rank-2 array(‘f’) with bounds (m,n) and a storage]
lo [int]
hi [int]
pivscale [rank-1 array(‘f’) with bounds (n)]
info [int]

Other Parameters

scale [input int, optional] Default: 0
permute [input int, optional] Default: 0
overwrite_a

[input int, optional] Default: 0

scipy.linalg.lapack.dgebal

scipy.linalg.lapack.dgebal(a[, scale, permute, overwrite_a]) = <fortran object>
Wrapper for dgebal.

Parameters

a [input rank-2 array(‘d’) with bounds (m,n)]
Returns

ba [rank-2 array(‘d’) with bounds (m,n) and a storage]
lo [int]
hi [int]
pivscale [rank-1 array(‘d’) with bounds (n)]
info [int]

Other Parameters

scale [input int, optional] Default: 0
permute [input int, optional] Default: 0
overwrite_a

[input int, optional] Default: 0
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scipy.linalg.lapack.cgebal

scipy.linalg.lapack.cgebal(a[, scale, permute, overwrite_a]) = <fortran object>
Wrapper for cgebal.

Parameters

a [input rank-2 array(‘F’) with bounds (m,n)]
Returns

ba [rank-2 array(‘F’) with bounds (m,n) and a storage]
lo [int]
hi [int]
pivscale [rank-1 array(‘f’) with bounds (n)]
info [int]

Other Parameters

scale [input int, optional] Default: 0
permute [input int, optional] Default: 0
overwrite_a

[input int, optional] Default: 0

scipy.linalg.lapack.zgebal

scipy.linalg.lapack.zgebal(a[, scale, permute, overwrite_a]) = <fortran object>
Wrapper for zgebal.

Parameters

a [input rank-2 array(‘D’) with bounds (m,n)]
Returns

ba [rank-2 array(‘D’) with bounds (m,n) and a storage]
lo [int]
hi [int]
pivscale [rank-1 array(‘d’) with bounds (n)]
info [int]

Other Parameters

scale [input int, optional] Default: 0
permute [input int, optional] Default: 0
overwrite_a

[input int, optional] Default: 0

scipy.linalg.lapack.sgecon

scipy.linalg.lapack.sgecon(a, anorm[, norm]) = <fortran object>
Wrapper for sgecon.

Parameters

a [input rank-2 array(‘f’) with bounds (n,n)]
anorm [input float]

Returns
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rcond [float]
info [int]

Other Parameters

norm [input string(len=1), optional] Default: ‘1’

scipy.linalg.lapack.dgecon

scipy.linalg.lapack.dgecon(a, anorm[, norm]) = <fortran object>
Wrapper for dgecon.

Parameters

a [input rank-2 array(‘d’) with bounds (n,n)]
anorm [input float]

Returns

rcond [float]
info [int]

Other Parameters

norm [input string(len=1), optional] Default: ‘1’

scipy.linalg.lapack.cgecon

scipy.linalg.lapack.cgecon(a, anorm[, norm]) = <fortran object>
Wrapper for cgecon.

Parameters

a [input rank-2 array(‘F’) with bounds (n,n)]
anorm [input float]

Returns

rcond [float]
info [int]

Other Parameters

norm [input string(len=1), optional] Default: ‘1’

scipy.linalg.lapack.zgecon

scipy.linalg.lapack.zgecon(a, anorm[, norm]) = <fortran object>
Wrapper for zgecon.

Parameters

a [input rank-2 array(‘D’) with bounds (n,n)]
anorm [input float]

Returns

rcond [float]
info [int]

Other Parameters
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norm [input string(len=1), optional] Default: ‘1’

scipy.linalg.lapack.sgees

scipy.linalg.lapack.sgees(sselect, a[, compute_v, sort_t, lwork, sselect_extra_args, overwrite_a]) =
<fortran object>

Wrapper for sgees.
Parameters

sselect [call-back function]
a [input rank-2 array(‘f’) with bounds (n,n)]

Returns

t [rank-2 array(‘f’) with bounds (n,n) and a storage]
sdim [int]
wr [rank-1 array(‘f’) with bounds (n)]
wi [rank-1 array(‘f’) with bounds (n)]
vs [rank-2 array(‘f’) with bounds (ldvs,n)]
work [rank-1 array(‘f’) with bounds (MAX(lwork,1))]
info [int]

Other Parameters

compute_v
[input int, optional] Default: 1

sort_t [input int, optional] Default: 0
sselect_extra_args

[input tuple, optional] Default: ()
overwrite_a

[input int, optional] Default: 0
lwork [input int, optional] Default: max(3*n,1)

Notes

Call-back functions:

def sselect(arg1,arg2): return sselect
Required arguments:

arg1 : input float
arg2 : input float

Return objects:
sselect : int

scipy.linalg.lapack.dgees

scipy.linalg.lapack.dgees(dselect, a[, compute_v, sort_t, lwork, dselect_extra_args, overwrite_a]) =
<fortran object>

Wrapper for dgees.
Parameters

dselect [call-back function]
a [input rank-2 array(‘d’) with bounds (n,n)]
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Returns

t [rank-2 array(‘d’) with bounds (n,n) and a storage]
sdim [int]
wr [rank-1 array(‘d’) with bounds (n)]
wi [rank-1 array(‘d’) with bounds (n)]
vs [rank-2 array(‘d’) with bounds (ldvs,n)]
work [rank-1 array(‘d’) with bounds (MAX(lwork,1))]
info [int]

Other Parameters

compute_v
[input int, optional] Default: 1

sort_t [input int, optional] Default: 0
dselect_extra_args

[input tuple, optional] Default: ()
overwrite_a

[input int, optional] Default: 0
lwork [input int, optional] Default: max(3*n,1)

Notes

Call-back functions:

def dselect(arg1,arg2): return dselect
Required arguments:

arg1 : input float
arg2 : input float

Return objects:
dselect : int

scipy.linalg.lapack.cgees

scipy.linalg.lapack.cgees(cselect, a[, compute_v, sort_t, lwork, cselect_extra_args, overwrite_a]) =
<fortran object>

Wrapper for cgees.
Parameters

cselect [call-back function]
a [input rank-2 array(‘F’) with bounds (n,n)]

Returns

t [rank-2 array(‘F’) with bounds (n,n) and a storage]
sdim [int]
w [rank-1 array(‘F’) with bounds (n)]
vs [rank-2 array(‘F’) with bounds (ldvs,n)]
work [rank-1 array(‘F’) with bounds (MAX(lwork,1))]
info [int]

Other Parameters

compute_v
[input int, optional] Default: 1

sort_t [input int, optional] Default: 0
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cselect_extra_args
[input tuple, optional] Default: ()

overwrite_a
[input int, optional] Default: 0

lwork [input int, optional] Default: max(3*n,1)

Notes

Call-back functions:

def cselect(arg): return cselect
Required arguments:

arg : input complex
Return objects:

cselect : int

scipy.linalg.lapack.zgees

scipy.linalg.lapack.zgees(zselect, a[, compute_v, sort_t, lwork, zselect_extra_args, overwrite_a]) =
<fortran object>

Wrapper for zgees.
Parameters

zselect [call-back function]
a [input rank-2 array(‘D’) with bounds (n,n)]

Returns

t [rank-2 array(‘D’) with bounds (n,n) and a storage]
sdim [int]
w [rank-1 array(‘D’) with bounds (n)]
vs [rank-2 array(‘D’) with bounds (ldvs,n)]
work [rank-1 array(‘D’) with bounds (MAX(lwork,1))]
info [int]

Other Parameters

compute_v
[input int, optional] Default: 1

sort_t [input int, optional] Default: 0
zselect_extra_args

[input tuple, optional] Default: ()
overwrite_a

[input int, optional] Default: 0
lwork [input int, optional] Default: max(3*n,1)

Notes

Call-back functions:
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def zselect(arg): return zselect
Required arguments:

arg : input complex
Return objects:

zselect : int

scipy.linalg.lapack.sgeev

scipy.linalg.lapack.sgeev(a[, compute_vl, compute_vr, lwork, overwrite_a]) = <fortran
object>

Wrapper for sgeev.
Parameters

a [input rank-2 array(‘f’) with bounds (n,n)]
Returns

wr [rank-1 array(‘f’) with bounds (n)]
wi [rank-1 array(‘f’) with bounds (n)]
vl [rank-2 array(‘f’) with bounds (ldvl,n)]
vr [rank-2 array(‘f’) with bounds (ldvr,n)]
info [int]

Other Parameters

compute_vl
[input int, optional] Default: 1

compute_vr
[input int, optional] Default: 1

overwrite_a
[input int, optional] Default: 0

lwork [input int, optional] Default: max(4*n,1)

scipy.linalg.lapack.dgeev

scipy.linalg.lapack.dgeev(a[, compute_vl, compute_vr, lwork, overwrite_a]) = <fortran
object>

Wrapper for dgeev.
Parameters

a [input rank-2 array(‘d’) with bounds (n,n)]
Returns

wr [rank-1 array(‘d’) with bounds (n)]
wi [rank-1 array(‘d’) with bounds (n)]
vl [rank-2 array(‘d’) with bounds (ldvl,n)]
vr [rank-2 array(‘d’) with bounds (ldvr,n)]
info [int]

Other Parameters

compute_vl
[input int, optional] Default: 1
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compute_vr
[input int, optional] Default: 1

overwrite_a
[input int, optional] Default: 0

lwork [input int, optional] Default: max(4*n,1)

scipy.linalg.lapack.cgeev

scipy.linalg.lapack.cgeev(a[, compute_vl, compute_vr, lwork, overwrite_a]) = <fortran
object>

Wrapper for cgeev.
Parameters

a [input rank-2 array(‘F’) with bounds (n,n)]
Returns

w [rank-1 array(‘F’) with bounds (n)]
vl [rank-2 array(‘F’) with bounds (ldvl,n)]
vr [rank-2 array(‘F’) with bounds (ldvr,n)]
info [int]

Other Parameters

compute_vl
[input int, optional] Default: 1

compute_vr
[input int, optional] Default: 1

overwrite_a
[input int, optional] Default: 0

lwork [input int, optional] Default: max(2*n,1)

scipy.linalg.lapack.zgeev

scipy.linalg.lapack.zgeev(a[, compute_vl, compute_vr, lwork, overwrite_a]) = <fortran
object>

Wrapper for zgeev.
Parameters

a [input rank-2 array(‘D’) with bounds (n,n)]
Returns

w [rank-1 array(‘D’) with bounds (n)]
vl [rank-2 array(‘D’) with bounds (ldvl,n)]
vr [rank-2 array(‘D’) with bounds (ldvr,n)]
info [int]

Other Parameters

compute_vl
[input int, optional] Default: 1

compute_vr
[input int, optional] Default: 1

overwrite_a
[input int, optional] Default: 0
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lwork [input int, optional] Default: max(2*n,1)

scipy.linalg.lapack.sgeev_lwork

scipy.linalg.lapack.sgeev_lwork(n[, compute_vl, compute_vr ]) = <fortran object>
Wrapper for sgeev_lwork.

Parameters

n [input int]
Returns

work [float]
info [int]

Other Parameters

compute_vl
[input int, optional] Default: 1

compute_vr
[input int, optional] Default: 1

scipy.linalg.lapack.dgeev_lwork

scipy.linalg.lapack.dgeev_lwork(n[, compute_vl, compute_vr ]) = <fortran object>
Wrapper for dgeev_lwork.

Parameters

n [input int]
Returns

work [float]
info [int]

Other Parameters

compute_vl
[input int, optional] Default: 1

compute_vr
[input int, optional] Default: 1

scipy.linalg.lapack.cgeev_lwork

scipy.linalg.lapack.cgeev_lwork(n[, compute_vl, compute_vr ]) = <fortran object>
Wrapper for cgeev_lwork.

Parameters

n [input int]
Returns

work [complex]
info [int]

Other Parameters

6.11. Low-level LAPACK functions (scipy.linalg.lapack) 951



SciPy Reference Guide, Release 1.3.1

compute_vl
[input int, optional] Default: 1

compute_vr
[input int, optional] Default: 1

scipy.linalg.lapack.zgeev_lwork

scipy.linalg.lapack.zgeev_lwork(n[, compute_vl, compute_vr ]) = <fortran object>
Wrapper for zgeev_lwork.

Parameters

n [input int]
Returns

work [complex]
info [int]

Other Parameters

compute_vl
[input int, optional] Default: 1

compute_vr
[input int, optional] Default: 1

scipy.linalg.lapack.sgegv

scipy.linalg.lapack.sgegv(*args, **kwds)
sgegv is deprecated! The *gegv family of routines has been deprecated in LAPACK 3.6.0 in favor of the *ggev
family of routines. The corresponding wrappers will be removed from SciPy in a future release.
alphar,alphai,beta,vl,vr,info = sgegv(a,b,[compute_vl,compute_vr,lwork,overwrite_a,overwrite_b])
Wrapper for sgegv.

Parameters

a [input rank-2 array(‘f’) with bounds (n,n)]
b [input rank-2 array(‘f’) with bounds (n,n)]

Returns

alphar [rank-1 array(‘f’) with bounds (n)]
alphai [rank-1 array(‘f’) with bounds (n)]
beta [rank-1 array(‘f’) with bounds (n)]
vl [rank-2 array(‘f’) with bounds (ldvl,n)]
vr [rank-2 array(‘f’) with bounds (ldvr,n)]
info [int]

Other Parameters

compute_vl
[input int, optional] Default: 1

compute_vr
[input int, optional] Default: 1

overwrite_a
[input int, optional] Default: 0
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overwrite_b
[input int, optional] Default: 0

lwork [input int, optional] Default: max(8*n,1)

scipy.linalg.lapack.dgegv

scipy.linalg.lapack.dgegv(*args, **kwds)
dgegv is deprecated! The *gegv family of routines has been deprecated in LAPACK 3.6.0 in favor of the *ggev
family of routines. The corresponding wrappers will be removed from SciPy in a future release.
alphar,alphai,beta,vl,vr,info = dgegv(a,b,[compute_vl,compute_vr,lwork,overwrite_a,overwrite_b])
Wrapper for dgegv.

Parameters

a [input rank-2 array(‘d’) with bounds (n,n)]
b [input rank-2 array(‘d’) with bounds (n,n)]

Returns

alphar [rank-1 array(‘d’) with bounds (n)]
alphai [rank-1 array(‘d’) with bounds (n)]
beta [rank-1 array(‘d’) with bounds (n)]
vl [rank-2 array(‘d’) with bounds (ldvl,n)]
vr [rank-2 array(‘d’) with bounds (ldvr,n)]
info [int]

Other Parameters

compute_vl
[input int, optional] Default: 1

compute_vr
[input int, optional] Default: 1

overwrite_a
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0

lwork [input int, optional] Default: max(8*n,1)

scipy.linalg.lapack.cgegv

scipy.linalg.lapack.cgegv(*args, **kwds)
cgegv is deprecated! The *gegv family of routines has been deprecated in LAPACK 3.6.0 in favor of the *ggev
family of routines. The corresponding wrappers will be removed from SciPy in a future release.
alpha,beta,vl,vr,info = cgegv(a,b,[compute_vl,compute_vr,lwork,overwrite_a,overwrite_b])
Wrapper for cgegv.

Parameters

a [input rank-2 array(‘F’) with bounds (n,n)]
b [input rank-2 array(‘F’) with bounds (n,n)]

Returns

alpha [rank-1 array(‘F’) with bounds (n)]
beta [rank-1 array(‘F’) with bounds (n)]
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vl [rank-2 array(‘F’) with bounds (ldvl,n)]
vr [rank-2 array(‘F’) with bounds (ldvr,n)]
info [int]

Other Parameters

compute_vl
[input int, optional] Default: 1

compute_vr
[input int, optional] Default: 1

overwrite_a
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0

lwork [input int, optional] Default: max(2*n,1)

scipy.linalg.lapack.zgegv

scipy.linalg.lapack.zgegv(*args, **kwds)
zgegv is deprecated! The *gegv family of routines has been deprecated in LAPACK 3.6.0 in favor of the *ggev
family of routines. The corresponding wrappers will be removed from SciPy in a future release.
alpha,beta,vl,vr,info = zgegv(a,b,[compute_vl,compute_vr,lwork,overwrite_a,overwrite_b])
Wrapper for zgegv.

Parameters

a [input rank-2 array(‘D’) with bounds (n,n)]
b [input rank-2 array(‘D’) with bounds (n,n)]

Returns

alpha [rank-1 array(‘D’) with bounds (n)]
beta [rank-1 array(‘D’) with bounds (n)]
vl [rank-2 array(‘D’) with bounds (ldvl,n)]
vr [rank-2 array(‘D’) with bounds (ldvr,n)]
info [int]

Other Parameters

compute_vl
[input int, optional] Default: 1

compute_vr
[input int, optional] Default: 1

overwrite_a
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0

lwork [input int, optional] Default: max(2*n,1)

scipy.linalg.lapack.sgehrd

scipy.linalg.lapack.sgehrd(a[, lo, hi, lwork, overwrite_a]) = <fortran object>
Wrapper for sgehrd.

Parameters
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a [input rank-2 array(‘f’) with bounds (n,n)]
Returns

ht [rank-2 array(‘f’) with bounds (n,n) and a storage]
tau [rank-1 array(‘f’) with bounds (n - 1)]
info [int]

Other Parameters

lo [input int, optional] Default: 0
hi [input int, optional] Default: n-1
overwrite_a

[input int, optional] Default: 0
lwork [input int, optional] Default: MAX(n,1)

scipy.linalg.lapack.dgehrd

scipy.linalg.lapack.dgehrd(a[, lo, hi, lwork, overwrite_a]) = <fortran object>
Wrapper for dgehrd.

Parameters

a [input rank-2 array(‘d’) with bounds (n,n)]
Returns

ht [rank-2 array(‘d’) with bounds (n,n) and a storage]
tau [rank-1 array(‘d’) with bounds (n - 1)]
info [int]

Other Parameters

lo [input int, optional] Default: 0
hi [input int, optional] Default: n-1
overwrite_a

[input int, optional] Default: 0
lwork [input int, optional] Default: MAX(n,1)

scipy.linalg.lapack.cgehrd

scipy.linalg.lapack.cgehrd(a[, lo, hi, lwork, overwrite_a]) = <fortran object>
Wrapper for cgehrd.

Parameters

a [input rank-2 array(‘F’) with bounds (n,n)]
Returns

ht [rank-2 array(‘F’) with bounds (n,n) and a storage]
tau [rank-1 array(‘F’) with bounds (n - 1)]
info [int]

Other Parameters

lo [input int, optional] Default: 0
hi [input int, optional] Default: n-1
overwrite_a

[input int, optional] Default: 0
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lwork [input int, optional] Default: MAX(n,1)

scipy.linalg.lapack.zgehrd

scipy.linalg.lapack.zgehrd(a[, lo, hi, lwork, overwrite_a]) = <fortran object>
Wrapper for zgehrd.

Parameters

a [input rank-2 array(‘D’) with bounds (n,n)]
Returns

ht [rank-2 array(‘D’) with bounds (n,n) and a storage]
tau [rank-1 array(‘D’) with bounds (n - 1)]
info [int]

Other Parameters

lo [input int, optional] Default: 0
hi [input int, optional] Default: n-1
overwrite_a

[input int, optional] Default: 0
lwork [input int, optional] Default: MAX(n,1)

scipy.linalg.lapack.sgehrd_lwork

scipy.linalg.lapack.sgehrd_lwork(n[, lo, hi ]) = <fortran object>
Wrapper for sgehrd_lwork.

Parameters

n [input int]
Returns

work [float]
info [int]

Other Parameters

lo [input int, optional] Default: 0
hi [input int, optional] Default: n-1

scipy.linalg.lapack.dgehrd_lwork

scipy.linalg.lapack.dgehrd_lwork(n[, lo, hi ]) = <fortran object>
Wrapper for dgehrd_lwork.

Parameters

n [input int]
Returns

work [float]
info [int]

Other Parameters
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lo [input int, optional] Default: 0
hi [input int, optional] Default: n-1

scipy.linalg.lapack.cgehrd_lwork

scipy.linalg.lapack.cgehrd_lwork(n[, lo, hi ]) = <fortran object>
Wrapper for cgehrd_lwork.

Parameters

n [input int]
Returns

work [complex]
info [int]

Other Parameters

lo [input int, optional] Default: 0
hi [input int, optional] Default: n-1

scipy.linalg.lapack.zgehrd_lwork

scipy.linalg.lapack.zgehrd_lwork(n[, lo, hi ]) = <fortran object>
Wrapper for zgehrd_lwork.

Parameters

n [input int]
Returns

work [complex]
info [int]

Other Parameters

lo [input int, optional] Default: 0
hi [input int, optional] Default: n-1

scipy.linalg.lapack.sgels

scipy.linalg.lapack.sgels(a, b[, trans, lwork, overwrite_a, overwrite_b]) = <fortran
object>

Wrapper for sgels.
Parameters

a [input rank-2 array(‘f’) with bounds (m,n)]
b [input rank-2 array(‘f’) with bounds (MAX(m,n),nrhs)]

Returns

lqr [rank-2 array(‘f’) with bounds (m,n) and a storage]
x [rank-2 array(‘f’) with bounds (MAX(m,n),nrhs) and b storage]
info [int]

Other Parameters
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trans [input string(len=1), optional] Default: ‘N’
overwrite_a

[input int, optional] Default: 0
overwrite_b

[input int, optional] Default: 0
lwork [input int, optional] Default: MAX(MIN(m,n)+MAX(MIN(m,n),nrhs),1)

scipy.linalg.lapack.dgels

scipy.linalg.lapack.dgels(a, b[, trans, lwork, overwrite_a, overwrite_b]) = <fortran
object>

Wrapper for dgels.
Parameters

a [input rank-2 array(‘d’) with bounds (m,n)]
b [input rank-2 array(‘d’) with bounds (MAX(m,n),nrhs)]

Returns

lqr [rank-2 array(‘d’) with bounds (m,n) and a storage]
x [rank-2 array(‘d’) with bounds (MAX(m,n),nrhs) and b storage]
info [int]

Other Parameters

trans [input string(len=1), optional] Default: ‘N’
overwrite_a

[input int, optional] Default: 0
overwrite_b

[input int, optional] Default: 0
lwork [input int, optional] Default: MAX(MIN(m,n)+MAX(MIN(m,n),nrhs),1)

scipy.linalg.lapack.cgels

scipy.linalg.lapack.cgels(a, b[, trans, lwork, overwrite_a, overwrite_b]) = <fortran
object>

Wrapper for cgels.
Parameters

a [input rank-2 array(‘F’) with bounds (m,n)]
b [input rank-2 array(‘F’) with bounds (MAX(m,n),nrhs)]

Returns

lqr [rank-2 array(‘F’) with bounds (m,n) and a storage]
x [rank-2 array(‘F’) with bounds (MAX(m,n),nrhs) and b storage]
info [int]

Other Parameters

trans [input string(len=1), optional] Default: ‘N’
overwrite_a

[input int, optional] Default: 0
overwrite_b

[input int, optional] Default: 0
lwork [input int, optional] Default: MAX(MIN(m,n)+MAX(MIN(m,n),nrhs),1)

958 Chapter 6. API Reference



SciPy Reference Guide, Release 1.3.1

scipy.linalg.lapack.zgels

scipy.linalg.lapack.zgels(a, b[, trans, lwork, overwrite_a, overwrite_b]) = <fortran
object>

Wrapper for zgels.
Parameters

a [input rank-2 array(‘D’) with bounds (m,n)]
b [input rank-2 array(‘D’) with bounds (MAX(m,n),nrhs)]

Returns

lqr [rank-2 array(‘D’) with bounds (m,n) and a storage]
x [rank-2 array(‘D’) with bounds (MAX(m,n),nrhs) and b storage]
info [int]

Other Parameters

trans [input string(len=1), optional] Default: ‘N’
overwrite_a

[input int, optional] Default: 0
overwrite_b

[input int, optional] Default: 0
lwork [input int, optional] Default: MAX(MIN(m,n)+MAX(MIN(m,n),nrhs),1)

scipy.linalg.lapack.sgels_lwork

scipy.linalg.lapack.sgels_lwork(m, n, nrhs[, trans ]) = <fortran object>
Wrapper for sgels_lwork.

Parameters

m [input int]
n [input int]
nrhs [input int]

Returns

work [float]
info [int]

Other Parameters

trans [input string(len=1), optional] Default: ‘N’

scipy.linalg.lapack.dgels_lwork

scipy.linalg.lapack.dgels_lwork(m, n, nrhs[, trans ]) = <fortran object>
Wrapper for dgels_lwork.

Parameters

m [input int]
n [input int]
nrhs [input int]

Returns

work [float]
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info [int]
Other Parameters

trans [input string(len=1), optional] Default: ‘N’

scipy.linalg.lapack.cgels_lwork

scipy.linalg.lapack.cgels_lwork(m, n, nrhs[, trans ]) = <fortran object>
Wrapper for cgels_lwork.

Parameters

m [input int]
n [input int]
nrhs [input int]

Returns

work [complex]
info [int]

Other Parameters

trans [input string(len=1), optional] Default: ‘N’

scipy.linalg.lapack.zgels_lwork

scipy.linalg.lapack.zgels_lwork(m, n, nrhs[, trans ]) = <fortran object>
Wrapper for zgels_lwork.

Parameters

m [input int]
n [input int]
nrhs [input int]

Returns

work [complex]
info [int]

Other Parameters

trans [input string(len=1), optional] Default: ‘N’

scipy.linalg.lapack.sgelsd

scipy.linalg.lapack.sgelsd(a, b, lwork, size_iwork[, cond, overwrite_a, overwrite_b]) =
<fortran object>

Wrapper for sgelsd.
Parameters

a [input rank-2 array(‘f’) with bounds (m,n)]
b [input rank-2 array(‘f’) with bounds (maxmn,nrhs)]
lwork [input int]
size_iwork [input int]

Returns
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x [rank-2 array(‘f’) with bounds (maxmn,nrhs) and b storage]
s [rank-1 array(‘f’) with bounds (minmn)]
rank [int]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0

cond [input float, optional] Default: -1.0

scipy.linalg.lapack.dgelsd

scipy.linalg.lapack.dgelsd(a, b, lwork, size_iwork[, cond, overwrite_a, overwrite_b]) =
<fortran object>

Wrapper for dgelsd.
Parameters

a [input rank-2 array(‘d’) with bounds (m,n)]
b [input rank-2 array(‘d’) with bounds (maxmn,nrhs)]
lwork [input int]
size_iwork [input int]

Returns

x [rank-2 array(‘d’) with bounds (maxmn,nrhs) and b storage]
s [rank-1 array(‘d’) with bounds (minmn)]
rank [int]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0

cond [input float, optional] Default: -1.0

scipy.linalg.lapack.cgelsd

scipy.linalg.lapack.cgelsd(a, b, lwork, size_rwork, size_iwork[, cond, overwrite_a, overwrite_b])
= <fortran object>

Wrapper for cgelsd.
Parameters

a [input rank-2 array(‘F’) with bounds (m,n)]
b [input rank-2 array(‘F’) with bounds (maxmn,nrhs)]
lwork [input int]
size_rwork

[input int]
size_iwork [input int]

Returns
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x [rank-2 array(‘F’) with bounds (maxmn,nrhs) and b storage]
s [rank-1 array(‘f’) with bounds (minmn)]
rank [int]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0

cond [input float, optional] Default: -1.0

scipy.linalg.lapack.zgelsd

scipy.linalg.lapack.zgelsd(a, b, lwork, size_rwork, size_iwork[, cond, overwrite_a, overwrite_b])
= <fortran object>

Wrapper for zgelsd.
Parameters

a [input rank-2 array(‘D’) with bounds (m,n)]
b [input rank-2 array(‘D’) with bounds (maxmn,nrhs)]
lwork [input int]
size_rwork

[input int]
size_iwork [input int]

Returns

x [rank-2 array(‘D’) with bounds (maxmn,nrhs) and b storage]
s [rank-1 array(‘d’) with bounds (minmn)]
rank [int]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0

cond [input float, optional] Default: -1.0

scipy.linalg.lapack.sgelsd_lwork

scipy.linalg.lapack.sgelsd_lwork(m, n, nrhs[, cond, lwork ]) = <fortran object>
Wrapper for sgelsd_lwork.

Parameters

m [input int]
n [input int]
nrhs [input int]

Returns

work [float]
iwork [int]
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info [int]
Other Parameters

cond [input float, optional] Default: -1.0
lwork [input int, optional] Default: -1

scipy.linalg.lapack.dgelsd_lwork

scipy.linalg.lapack.dgelsd_lwork(m, n, nrhs[, cond, lwork ]) = <fortran object>
Wrapper for dgelsd_lwork.

Parameters

m [input int]
n [input int]
nrhs [input int]

Returns

work [float]
iwork [int]
info [int]

Other Parameters

cond [input float, optional] Default: -1.0
lwork [input int, optional] Default: -1

scipy.linalg.lapack.cgelsd_lwork

scipy.linalg.lapack.cgelsd_lwork(m, n, nrhs[, cond, lwork ]) = <fortran object>
Wrapper for cgelsd_lwork.

Parameters

m [input int]
n [input int]
nrhs [input int]

Returns

work [complex]
rwork [float]
iwork [int]
info [int]

Other Parameters

cond [input float, optional] Default: -1.0
lwork [input int, optional] Default: -1
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scipy.linalg.lapack.zgelsd_lwork

scipy.linalg.lapack.zgelsd_lwork(m, n, nrhs[, cond, lwork ]) = <fortran object>
Wrapper for zgelsd_lwork.

Parameters

m [input int]
n [input int]
nrhs [input int]

Returns

work [complex]
rwork [float]
iwork [int]
info [int]

Other Parameters

cond [input float, optional] Default: -1.0
lwork [input int, optional] Default: -1

scipy.linalg.lapack.sgelss

scipy.linalg.lapack.sgelss(a, b[, cond, lwork, overwrite_a, overwrite_b]) = <fortran
object>

Wrapper for sgelss.
Parameters

a [input rank-2 array(‘f’) with bounds (m,n)]
b [input rank-2 array(‘f’) with bounds (maxmn,nrhs)]

Returns

v [rank-2 array(‘f’) with bounds (m,n) and a storage]
x [rank-2 array(‘f’) with bounds (maxmn,nrhs) and b storage]
s [rank-1 array(‘f’) with bounds (minmn)]
rank [int]
work [rank-1 array(‘f’) with bounds (MAX(lwork,1))]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0

cond [input float, optional] Default: -1.0
lwork [input int, optional] Default: max(3*minmn+MAX(2*minmn,MAX(maxmn,nrhs)),1)
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scipy.linalg.lapack.dgelss

scipy.linalg.lapack.dgelss(a, b[, cond, lwork, overwrite_a, overwrite_b]) = <fortran
object>

Wrapper for dgelss.
Parameters

a [input rank-2 array(‘d’) with bounds (m,n)]
b [input rank-2 array(‘d’) with bounds (maxmn,nrhs)]

Returns

v [rank-2 array(‘d’) with bounds (m,n) and a storage]
x [rank-2 array(‘d’) with bounds (maxmn,nrhs) and b storage]
s [rank-1 array(‘d’) with bounds (minmn)]
rank [int]
work [rank-1 array(‘d’) with bounds (MAX(lwork,1))]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0

cond [input float, optional] Default: -1.0
lwork [input int, optional] Default: max(3*minmn+MAX(2*minmn,MAX(maxmn,nrhs)),1)

scipy.linalg.lapack.cgelss

scipy.linalg.lapack.cgelss(a, b[, cond, lwork, overwrite_a, overwrite_b]) = <fortran
object>

Wrapper for cgelss.
Parameters

a [input rank-2 array(‘F’) with bounds (m,n)]
b [input rank-2 array(‘F’) with bounds (maxmn,nrhs)]

Returns

v [rank-2 array(‘F’) with bounds (m,n) and a storage]
x [rank-2 array(‘F’) with bounds (maxmn,nrhs) and b storage]
s [rank-1 array(‘f’) with bounds (minmn)]
rank [int]
work [rank-1 array(‘F’) with bounds (MAX(lwork,1))]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0

cond [input float, optional] Default: -1.0
lwork [input int, optional] Default: max(2*minmn+MAX(maxmn,nrhs),1)
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scipy.linalg.lapack.zgelss

scipy.linalg.lapack.zgelss(a, b[, cond, lwork, overwrite_a, overwrite_b]) = <fortran
object>

Wrapper for zgelss.
Parameters

a [input rank-2 array(‘D’) with bounds (m,n)]
b [input rank-2 array(‘D’) with bounds (maxmn,nrhs)]

Returns

v [rank-2 array(‘D’) with bounds (m,n) and a storage]
x [rank-2 array(‘D’) with bounds (maxmn,nrhs) and b storage]
s [rank-1 array(‘d’) with bounds (minmn)]
rank [int]
work [rank-1 array(‘D’) with bounds (MAX(lwork,1))]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0

cond [input float, optional] Default: -1.0
lwork [input int, optional] Default: max(2*minmn+MAX(maxmn,nrhs),1)

scipy.linalg.lapack.sgelss_lwork

scipy.linalg.lapack.sgelss_lwork(m, n, nrhs[, cond, lwork ]) = <fortran object>
Wrapper for sgelss_lwork.

Parameters

m [input int]
n [input int]
nrhs [input int]

Returns

work [float]
info [int]

Other Parameters

cond [input float, optional] Default: -1.0
lwork [input int, optional] Default: -1

scipy.linalg.lapack.dgelss_lwork

scipy.linalg.lapack.dgelss_lwork(m, n, nrhs[, cond, lwork ]) = <fortran object>
Wrapper for dgelss_lwork.

Parameters

m [input int]
n [input int]
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nrhs [input int]
Returns

work [float]
info [int]

Other Parameters

cond [input float, optional] Default: -1.0
lwork [input int, optional] Default: -1

scipy.linalg.lapack.cgelss_lwork

scipy.linalg.lapack.cgelss_lwork(m, n, nrhs[, cond, lwork ]) = <fortran object>
Wrapper for cgelss_lwork.

Parameters

m [input int]
n [input int]
nrhs [input int]

Returns

work [complex]
info [int]

Other Parameters

cond [input float, optional] Default: -1.0
lwork [input int, optional] Default: -1

scipy.linalg.lapack.zgelss_lwork

scipy.linalg.lapack.zgelss_lwork(m, n, nrhs[, cond, lwork ]) = <fortran object>
Wrapper for zgelss_lwork.

Parameters

m [input int]
n [input int]
nrhs [input int]

Returns

work [complex]
info [int]

Other Parameters

cond [input float, optional] Default: -1.0
lwork [input int, optional] Default: -1
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scipy.linalg.lapack.sgelsy

scipy.linalg.lapack.sgelsy(a, b, jptv, cond, lwork[, overwrite_a, overwrite_b]) = <fortran
object>

Wrapper for sgelsy.
Parameters

a [input rank-2 array(‘f’) with bounds (m,n)]
b [input rank-2 array(‘f’) with bounds (maxmn,nrhs)]
jptv [input rank-1 array(‘i’) with bounds (n)]
cond [input float]
lwork [input int]

Returns

v [rank-2 array(‘f’) with bounds (m,n) and a storage]
x [rank-2 array(‘f’) with bounds (maxmn,nrhs) and b storage]
j [rank-1 array(‘i’) with bounds (n) and jptv storage]
rank [int]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0

scipy.linalg.lapack.dgelsy

scipy.linalg.lapack.dgelsy(a, b, jptv, cond, lwork[, overwrite_a, overwrite_b]) = <fortran
object>

Wrapper for dgelsy.
Parameters

a [input rank-2 array(‘d’) with bounds (m,n)]
b [input rank-2 array(‘d’) with bounds (maxmn,nrhs)]
jptv [input rank-1 array(‘i’) with bounds (n)]
cond [input float]
lwork [input int]

Returns

v [rank-2 array(‘d’) with bounds (m,n) and a storage]
x [rank-2 array(‘d’) with bounds (maxmn,nrhs) and b storage]
j [rank-1 array(‘i’) with bounds (n) and jptv storage]
rank [int]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0
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scipy.linalg.lapack.cgelsy

scipy.linalg.lapack.cgelsy(a, b, jptv, cond, lwork[, overwrite_a, overwrite_b]) = <fortran
object>

Wrapper for cgelsy.
Parameters

a [input rank-2 array(‘F’) with bounds (m,n)]
b [input rank-2 array(‘F’) with bounds (maxmn,nrhs)]
jptv [input rank-1 array(‘i’) with bounds (n)]
cond [input float]
lwork [input int]

Returns

v [rank-2 array(‘F’) with bounds (m,n) and a storage]
x [rank-2 array(‘F’) with bounds (maxmn,nrhs) and b storage]
j [rank-1 array(‘i’) with bounds (n) and jptv storage]
rank [int]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0

scipy.linalg.lapack.zgelsy

scipy.linalg.lapack.zgelsy(a, b, jptv, cond, lwork[, overwrite_a, overwrite_b]) = <fortran
object>

Wrapper for zgelsy.
Parameters

a [input rank-2 array(‘D’) with bounds (m,n)]
b [input rank-2 array(‘D’) with bounds (maxmn,nrhs)]
jptv [input rank-1 array(‘i’) with bounds (n)]
cond [input float]
lwork [input int]

Returns

v [rank-2 array(‘D’) with bounds (m,n) and a storage]
x [rank-2 array(‘D’) with bounds (maxmn,nrhs) and b storage]
j [rank-1 array(‘i’) with bounds (n) and jptv storage]
rank [int]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0
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scipy.linalg.lapack.sgelsy_lwork

scipy.linalg.lapack.sgelsy_lwork(m, n, nrhs, cond[, lwork ]) = <fortran object>
Wrapper for sgelsy_lwork.

Parameters

m [input int]
n [input int]
nrhs [input int]
cond [input float]

Returns

work [float]
info [int]

Other Parameters

lwork [input int, optional] Default: -1

scipy.linalg.lapack.dgelsy_lwork

scipy.linalg.lapack.dgelsy_lwork(m, n, nrhs, cond[, lwork ]) = <fortran object>
Wrapper for dgelsy_lwork.

Parameters

m [input int]
n [input int]
nrhs [input int]
cond [input float]

Returns

work [float]
info [int]

Other Parameters

lwork [input int, optional] Default: -1

scipy.linalg.lapack.cgelsy_lwork

scipy.linalg.lapack.cgelsy_lwork(m, n, nrhs, cond[, lwork ]) = <fortran object>
Wrapper for cgelsy_lwork.

Parameters

m [input int]
n [input int]
nrhs [input int]
cond [input float]

Returns

work [complex]
info [int]

Other Parameters
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lwork [input int, optional] Default: -1

scipy.linalg.lapack.zgelsy_lwork

scipy.linalg.lapack.zgelsy_lwork(m, n, nrhs, cond[, lwork ]) = <fortran object>
Wrapper for zgelsy_lwork.

Parameters

m [input int]
n [input int]
nrhs [input int]
cond [input float]

Returns

work [complex]
info [int]

Other Parameters

lwork [input int, optional] Default: -1

scipy.linalg.lapack.sgeqp3

scipy.linalg.lapack.sgeqp3(a[, lwork, overwrite_a]) = <fortran object>
Wrapper for sgeqp3.

Parameters

a [input rank-2 array(‘f’) with bounds (m,n)]
Returns

qr [rank-2 array(‘f’) with bounds (m,n) and a storage]
jpvt [rank-1 array(‘i’) with bounds (n)]
tau [rank-1 array(‘f’) with bounds (MIN(m,n))]
work [rank-1 array(‘f’) with bounds (MAX(lwork,1))]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

lwork [input int, optional] Default: max(3*(n+1),1)

scipy.linalg.lapack.dgeqp3

scipy.linalg.lapack.dgeqp3(a[, lwork, overwrite_a]) = <fortran object>
Wrapper for dgeqp3.

Parameters

a [input rank-2 array(‘d’) with bounds (m,n)]
Returns

qr [rank-2 array(‘d’) with bounds (m,n) and a storage]
jpvt [rank-1 array(‘i’) with bounds (n)]
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tau [rank-1 array(‘d’) with bounds (MIN(m,n))]
work [rank-1 array(‘d’) with bounds (MAX(lwork,1))]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

lwork [input int, optional] Default: max(3*(n+1),1)

scipy.linalg.lapack.cgeqp3

scipy.linalg.lapack.cgeqp3(a[, lwork, overwrite_a]) = <fortran object>
Wrapper for cgeqp3.

Parameters

a [input rank-2 array(‘F’) with bounds (m,n)]
Returns

qr [rank-2 array(‘F’) with bounds (m,n) and a storage]
jpvt [rank-1 array(‘i’) with bounds (n)]
tau [rank-1 array(‘F’) with bounds (MIN(m,n))]
work [rank-1 array(‘F’) with bounds (MAX(lwork,1))]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

lwork [input int, optional] Default: max(3*(n+1),1)

scipy.linalg.lapack.zgeqp3

scipy.linalg.lapack.zgeqp3(a[, lwork, overwrite_a]) = <fortran object>
Wrapper for zgeqp3.

Parameters

a [input rank-2 array(‘D’) with bounds (m,n)]
Returns

qr [rank-2 array(‘D’) with bounds (m,n) and a storage]
jpvt [rank-1 array(‘i’) with bounds (n)]
tau [rank-1 array(‘D’) with bounds (MIN(m,n))]
work [rank-1 array(‘D’) with bounds (MAX(lwork,1))]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

lwork [input int, optional] Default: max(3*(n+1),1)
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scipy.linalg.lapack.sgeqrf

scipy.linalg.lapack.sgeqrf(a[, lwork, overwrite_a]) = <fortran object>
Wrapper for sgeqrf.

Parameters

a [input rank-2 array(‘f’) with bounds (m,n)]
Returns

qr [rank-2 array(‘f’) with bounds (m,n) and a storage]
tau [rank-1 array(‘f’) with bounds (MIN(m,n))]
work [rank-1 array(‘f’) with bounds (MAX(lwork,1))]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

lwork [input int, optional] Default: max(3*n,1)

scipy.linalg.lapack.dgeqrf

scipy.linalg.lapack.dgeqrf(a[, lwork, overwrite_a]) = <fortran object>
Wrapper for dgeqrf.

Parameters

a [input rank-2 array(‘d’) with bounds (m,n)]
Returns

qr [rank-2 array(‘d’) with bounds (m,n) and a storage]
tau [rank-1 array(‘d’) with bounds (MIN(m,n))]
work [rank-1 array(‘d’) with bounds (MAX(lwork,1))]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

lwork [input int, optional] Default: max(3*n,1)

scipy.linalg.lapack.cgeqrf

scipy.linalg.lapack.cgeqrf(a[, lwork, overwrite_a]) = <fortran object>
Wrapper for cgeqrf.

Parameters

a [input rank-2 array(‘F’) with bounds (m,n)]
Returns

qr [rank-2 array(‘F’) with bounds (m,n) and a storage]
tau [rank-1 array(‘F’) with bounds (MIN(m,n))]
work [rank-1 array(‘F’) with bounds (MAX(lwork,1))]
info [int]
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Other Parameters

overwrite_a
[input int, optional] Default: 0

lwork [input int, optional] Default: max(3*n,1)

scipy.linalg.lapack.zgeqrf

scipy.linalg.lapack.zgeqrf(a[, lwork, overwrite_a]) = <fortran object>
Wrapper for zgeqrf.

Parameters

a [input rank-2 array(‘D’) with bounds (m,n)]
Returns

qr [rank-2 array(‘D’) with bounds (m,n) and a storage]
tau [rank-1 array(‘D’) with bounds (MIN(m,n))]
work [rank-1 array(‘D’) with bounds (MAX(lwork,1))]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

lwork [input int, optional] Default: max(3*n,1)

scipy.linalg.lapack.sgerqf

scipy.linalg.lapack.sgerqf(a[, lwork, overwrite_a]) = <fortran object>
Wrapper for sgerqf.

Parameters

a [input rank-2 array(‘f’) with bounds (m,n)]
Returns

qr [rank-2 array(‘f’) with bounds (m,n) and a storage]
tau [rank-1 array(‘f’) with bounds (MIN(m,n))]
work [rank-1 array(‘f’) with bounds (MAX(lwork,1))]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

lwork [input int, optional] Default: max(3*m,1)

scipy.linalg.lapack.dgerqf

scipy.linalg.lapack.dgerqf(a[, lwork, overwrite_a]) = <fortran object>
Wrapper for dgerqf.

Parameters

a [input rank-2 array(‘d’) with bounds (m,n)]
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Returns

qr [rank-2 array(‘d’) with bounds (m,n) and a storage]
tau [rank-1 array(‘d’) with bounds (MIN(m,n))]
work [rank-1 array(‘d’) with bounds (MAX(lwork,1))]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

lwork [input int, optional] Default: max(3*m,1)

scipy.linalg.lapack.cgerqf

scipy.linalg.lapack.cgerqf(a[, lwork, overwrite_a]) = <fortran object>
Wrapper for cgerqf.

Parameters

a [input rank-2 array(‘F’) with bounds (m,n)]
Returns

qr [rank-2 array(‘F’) with bounds (m,n) and a storage]
tau [rank-1 array(‘F’) with bounds (MIN(m,n))]
work [rank-1 array(‘F’) with bounds (MAX(lwork,1))]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

lwork [input int, optional] Default: max(3*m,1)

scipy.linalg.lapack.zgerqf

scipy.linalg.lapack.zgerqf(a[, lwork, overwrite_a]) = <fortran object>
Wrapper for zgerqf.

Parameters

a [input rank-2 array(‘D’) with bounds (m,n)]
Returns

qr [rank-2 array(‘D’) with bounds (m,n) and a storage]
tau [rank-1 array(‘D’) with bounds (MIN(m,n))]
work [rank-1 array(‘D’) with bounds (MAX(lwork,1))]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

lwork [input int, optional] Default: max(3*m,1)
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scipy.linalg.lapack.sgesdd

scipy.linalg.lapack.sgesdd(a[, compute_uv, full_matrices, lwork, overwrite_a]) = <fortran
object>

Wrapper for sgesdd.
Parameters

a [input rank-2 array(‘f’) with bounds (m,n)]
Returns

u [rank-2 array(‘f’) with bounds (u0,u1)]
s [rank-1 array(‘f’) with bounds (minmn)]
vt [rank-2 array(‘f’) with bounds (vt0,vt1)]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

compute_uv
[input int, optional] Default: 1

full_matrices
[input int, optional] Default: 1

lwork [input int, optional] Default: max((compute_uv?4*minmn*minmn+MAX(m,n)+9*minmn:MAX(14*minmn+4,10*minmn+2+25*(25+8))+MAX(m,n)),1)

scipy.linalg.lapack.dgesdd

scipy.linalg.lapack.dgesdd(a[, compute_uv, full_matrices, lwork, overwrite_a]) = <fortran
object>

Wrapper for dgesdd.
Parameters

a [input rank-2 array(‘d’) with bounds (m,n)]
Returns

u [rank-2 array(‘d’) with bounds (u0,u1)]
s [rank-1 array(‘d’) with bounds (minmn)]
vt [rank-2 array(‘d’) with bounds (vt0,vt1)]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

compute_uv
[input int, optional] Default: 1

full_matrices
[input int, optional] Default: 1

lwork [input int, optional] Default: max((compute_uv?4*minmn*minmn+MAX(m,n)+9*minmn:MAX(14*minmn+4,10*minmn+2+25*(25+8))+MAX(m,n)),1)
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scipy.linalg.lapack.cgesdd

scipy.linalg.lapack.cgesdd(a[, compute_uv, full_matrices, lwork, overwrite_a]) = <fortran
object>

Wrapper for cgesdd.
Parameters

a [input rank-2 array(‘F’) with bounds (m,n)]
Returns

u [rank-2 array(‘F’) with bounds (u0,u1)]
s [rank-1 array(‘f’) with bounds (minmn)]
vt [rank-2 array(‘F’) with bounds (vt0,vt1)]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

compute_uv
[input int, optional] Default: 1

full_matrices
[input int, optional] Default: 1

lwork [input int, optional] Default: max((compute_uv?2*minmn*minmn+MAX(m,n)+2*minmn:2*minmn+MAX(m,n)),1)

scipy.linalg.lapack.zgesdd

scipy.linalg.lapack.zgesdd(a[, compute_uv, full_matrices, lwork, overwrite_a]) = <fortran
object>

Wrapper for zgesdd.
Parameters

a [input rank-2 array(‘D’) with bounds (m,n)]
Returns

u [rank-2 array(‘D’) with bounds (u0,u1)]
s [rank-1 array(‘d’) with bounds (minmn)]
vt [rank-2 array(‘D’) with bounds (vt0,vt1)]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

compute_uv
[input int, optional] Default: 1

full_matrices
[input int, optional] Default: 1

lwork [input int, optional] Default: max((compute_uv?2*minmn*minmn+MAX(m,n)+2*minmn:2*minmn+MAX(m,n)),1)

6.11. Low-level LAPACK functions (scipy.linalg.lapack) 977



SciPy Reference Guide, Release 1.3.1

scipy.linalg.lapack.sgesdd_lwork

scipy.linalg.lapack.sgesdd_lwork(m, n[, compute_uv, full_matrices ]) = <fortran
object>

Wrapper for sgesdd_lwork.
Parameters

m [input int]
n [input int]

Returns

work [float]
info [int]

Other Parameters

compute_uv
[input int, optional] Default: 1

full_matrices
[input int, optional] Default: 1

scipy.linalg.lapack.dgesdd_lwork

scipy.linalg.lapack.dgesdd_lwork(m, n[, compute_uv, full_matrices ]) = <fortran
object>

Wrapper for dgesdd_lwork.
Parameters

m [input int]
n [input int]

Returns

work [float]
info [int]

Other Parameters

compute_uv
[input int, optional] Default: 1

full_matrices
[input int, optional] Default: 1

scipy.linalg.lapack.cgesdd_lwork

scipy.linalg.lapack.cgesdd_lwork(m, n[, compute_uv, full_matrices ]) = <fortran
object>

Wrapper for cgesdd_lwork.
Parameters

m [input int]
n [input int]

Returns

work [complex]
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info [int]
Other Parameters

compute_uv
[input int, optional] Default: 1

full_matrices
[input int, optional] Default: 1

scipy.linalg.lapack.zgesdd_lwork

scipy.linalg.lapack.zgesdd_lwork(m, n[, compute_uv, full_matrices ]) = <fortran
object>

Wrapper for zgesdd_lwork.
Parameters

m [input int]
n [input int]

Returns

work [complex]
info [int]

Other Parameters

compute_uv
[input int, optional] Default: 1

full_matrices
[input int, optional] Default: 1

scipy.linalg.lapack.sgesv

scipy.linalg.lapack.sgesv(a, b[, overwrite_a, overwrite_b]) = <fortran object>
Wrapper for sgesv.

Parameters

a [input rank-2 array(‘f’) with bounds (n,n)]
b [input rank-2 array(‘f’) with bounds (n,nrhs)]

Returns

lu [rank-2 array(‘f’) with bounds (n,n) and a storage]
piv [rank-1 array(‘i’) with bounds (n)]
x [rank-2 array(‘f’) with bounds (n,nrhs) and b storage]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0
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scipy.linalg.lapack.dgesv

scipy.linalg.lapack.dgesv(a, b[, overwrite_a, overwrite_b]) = <fortran object>
Wrapper for dgesv.

Parameters

a [input rank-2 array(‘d’) with bounds (n,n)]
b [input rank-2 array(‘d’) with bounds (n,nrhs)]

Returns

lu [rank-2 array(‘d’) with bounds (n,n) and a storage]
piv [rank-1 array(‘i’) with bounds (n)]
x [rank-2 array(‘d’) with bounds (n,nrhs) and b storage]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0

scipy.linalg.lapack.cgesv

scipy.linalg.lapack.cgesv(a, b[, overwrite_a, overwrite_b]) = <fortran object>
Wrapper for cgesv.

Parameters

a [input rank-2 array(‘F’) with bounds (n,n)]
b [input rank-2 array(‘F’) with bounds (n,nrhs)]

Returns

lu [rank-2 array(‘F’) with bounds (n,n) and a storage]
piv [rank-1 array(‘i’) with bounds (n)]
x [rank-2 array(‘F’) with bounds (n,nrhs) and b storage]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0

scipy.linalg.lapack.zgesv

scipy.linalg.lapack.zgesv(a, b[, overwrite_a, overwrite_b]) = <fortran object>
Wrapper for zgesv.

Parameters

a [input rank-2 array(‘D’) with bounds (n,n)]
b [input rank-2 array(‘D’) with bounds (n,nrhs)]

Returns
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lu [rank-2 array(‘D’) with bounds (n,n) and a storage]
piv [rank-1 array(‘i’) with bounds (n)]
x [rank-2 array(‘D’) with bounds (n,nrhs) and b storage]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0

scipy.linalg.lapack.sgesvd

scipy.linalg.lapack.sgesvd(a[, compute_uv, full_matrices, lwork, overwrite_a]) = <fortran
object>

Wrapper for sgesvd.
Parameters

a [input rank-2 array(‘f’) with bounds (m,n)]
Returns

u [rank-2 array(‘f’) with bounds (u0,u1)]
s [rank-1 array(‘f’) with bounds (minmn)]
vt [rank-2 array(‘f’) with bounds (vt0,vt1)]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

compute_uv
[input int, optional] Default: 1

full_matrices
[input int, optional] Default: 1

lwork [input int, optional] Default: max(MAX(3*minmn+MAX(m,n),5*minmn),1)

scipy.linalg.lapack.dgesvd

scipy.linalg.lapack.dgesvd(a[, compute_uv, full_matrices, lwork, overwrite_a]) = <fortran
object>

Wrapper for dgesvd.
Parameters

a [input rank-2 array(‘d’) with bounds (m,n)]
Returns

u [rank-2 array(‘d’) with bounds (u0,u1)]
s [rank-1 array(‘d’) with bounds (minmn)]
vt [rank-2 array(‘d’) with bounds (vt0,vt1)]
info [int]

Other Parameters
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overwrite_a
[input int, optional] Default: 0

compute_uv
[input int, optional] Default: 1

full_matrices
[input int, optional] Default: 1

lwork [input int, optional] Default: max(MAX(3*minmn+MAX(m,n),5*minmn),1)

scipy.linalg.lapack.cgesvd

scipy.linalg.lapack.cgesvd(a[, compute_uv, full_matrices, lwork, overwrite_a]) = <fortran
object>

Wrapper for cgesvd.
Parameters

a [input rank-2 array(‘F’) with bounds (m,n)]
Returns

u [rank-2 array(‘F’) with bounds (u0,u1)]
s [rank-1 array(‘f’) with bounds (minmn)]
vt [rank-2 array(‘F’) with bounds (vt0,vt1)]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

compute_uv
[input int, optional] Default: 1

full_matrices
[input int, optional] Default: 1

lwork [input int, optional] Default: MAX(2*minmn+MAX(m,n),1)

scipy.linalg.lapack.zgesvd

scipy.linalg.lapack.zgesvd(a[, compute_uv, full_matrices, lwork, overwrite_a]) = <fortran
object>

Wrapper for zgesvd.
Parameters

a [input rank-2 array(‘D’) with bounds (m,n)]
Returns

u [rank-2 array(‘D’) with bounds (u0,u1)]
s [rank-1 array(‘d’) with bounds (minmn)]
vt [rank-2 array(‘D’) with bounds (vt0,vt1)]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

compute_uv
[input int, optional] Default: 1
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full_matrices
[input int, optional] Default: 1

lwork [input int, optional] Default: MAX(2*minmn+MAX(m,n),1)

scipy.linalg.lapack.sgesvd_lwork

scipy.linalg.lapack.sgesvd_lwork(m, n[, compute_uv, full_matrices ]) = <fortran
object>

Wrapper for sgesvd_lwork.
Parameters

m [input int]
n [input int]

Returns

work [float]
info [int]

Other Parameters

compute_uv
[input int, optional] Default: 1

full_matrices
[input int, optional] Default: 1

scipy.linalg.lapack.dgesvd_lwork

scipy.linalg.lapack.dgesvd_lwork(m, n[, compute_uv, full_matrices ]) = <fortran
object>

Wrapper for dgesvd_lwork.
Parameters

m [input int]
n [input int]

Returns

work [float]
info [int]

Other Parameters

compute_uv
[input int, optional] Default: 1

full_matrices
[input int, optional] Default: 1

scipy.linalg.lapack.cgesvd_lwork

scipy.linalg.lapack.cgesvd_lwork(m, n[, compute_uv, full_matrices ]) = <fortran
object>

Wrapper for cgesvd_lwork.
Parameters

m [input int]
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n [input int]
Returns

work [complex]
info [int]

Other Parameters

compute_uv
[input int, optional] Default: 1

full_matrices
[input int, optional] Default: 1

scipy.linalg.lapack.zgesvd_lwork

scipy.linalg.lapack.zgesvd_lwork(m, n[, compute_uv, full_matrices ]) = <fortran
object>

Wrapper for zgesvd_lwork.
Parameters

m [input int]
n [input int]

Returns

work [complex]
info [int]

Other Parameters

compute_uv
[input int, optional] Default: 1

full_matrices
[input int, optional] Default: 1

scipy.linalg.lapack.sgesvx

scipy.linalg.lapack.sgesvx(a, b[, fact, trans, af, ipiv, equed, r, c, overwrite_a, overwrite_b]) =
<fortran object>

Wrapper for sgesvx.
Parameters

a [input rank-2 array(‘f’) with bounds (n,n)]
b [input rank-2 array(‘f’) with bounds (n,nrhs)]

Returns

as [rank-2 array(‘f’) with bounds (n,n) and a storage]
lu [rank-2 array(‘f’) with bounds (n,n) and af storage]
ipiv [rank-1 array(‘i’) with bounds (n)]
equed [string(len=1)]
rs [rank-1 array(‘f’) with bounds (n) and r storage]
cs [rank-1 array(‘f’) with bounds (n) and c storage]
bs [rank-2 array(‘f’) with bounds (n,nrhs) and b storage]
x [rank-2 array(‘f’) with bounds (n,nrhs)]
rcond [float]
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ferr [rank-1 array(‘f’) with bounds (nrhs)]
berr [rank-1 array(‘f’) with bounds (nrhs)]
info [int]

Other Parameters

fact [input string(len=1), optional] Default: ‘E’
trans [input string(len=1), optional] Default: ‘N’
overwrite_a

[input int, optional] Default: 0
af [input rank-2 array(‘f’) with bounds (n,n)]
ipiv [input rank-1 array(‘i’) with bounds (n)]
equed [input string(len=1), optional] Default: ‘B’
r [input rank-1 array(‘f’) with bounds (n)]
c [input rank-1 array(‘f’) with bounds (n)]
overwrite_b

[input int, optional] Default: 0

scipy.linalg.lapack.dgesvx

scipy.linalg.lapack.dgesvx(a, b[, fact, trans, af, ipiv, equed, r, c, overwrite_a, overwrite_b]) =
<fortran object>

Wrapper for dgesvx.
Parameters

a [input rank-2 array(‘d’) with bounds (n,n)]
b [input rank-2 array(‘d’) with bounds (n,nrhs)]

Returns

as [rank-2 array(‘d’) with bounds (n,n) and a storage]
lu [rank-2 array(‘d’) with bounds (n,n) and af storage]
ipiv [rank-1 array(‘i’) with bounds (n)]
equed [string(len=1)]
rs [rank-1 array(‘d’) with bounds (n) and r storage]
cs [rank-1 array(‘d’) with bounds (n) and c storage]
bs [rank-2 array(‘d’) with bounds (n,nrhs) and b storage]
x [rank-2 array(‘d’) with bounds (n,nrhs)]
rcond [float]
ferr [rank-1 array(‘d’) with bounds (nrhs)]
berr [rank-1 array(‘d’) with bounds (nrhs)]
info [int]

Other Parameters

fact [input string(len=1), optional] Default: ‘E’
trans [input string(len=1), optional] Default: ‘N’
overwrite_a

[input int, optional] Default: 0
af [input rank-2 array(‘d’) with bounds (n,n)]
ipiv [input rank-1 array(‘i’) with bounds (n)]
equed [input string(len=1), optional] Default: ‘B’
r [input rank-1 array(‘d’) with bounds (n)]
c [input rank-1 array(‘d’) with bounds (n)]
overwrite_b

[input int, optional] Default: 0
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scipy.linalg.lapack.cgesvx

scipy.linalg.lapack.cgesvx(a, b[, fact, trans, af, ipiv, equed, r, c, overwrite_a, overwrite_b]) =
<fortran object>

Wrapper for cgesvx.
Parameters

a [input rank-2 array(‘F’) with bounds (n,n)]
b [input rank-2 array(‘F’) with bounds (n,nrhs)]

Returns

as [rank-2 array(‘F’) with bounds (n,n) and a storage]
lu [rank-2 array(‘F’) with bounds (n,n) and af storage]
ipiv [rank-1 array(‘i’) with bounds (n)]
equed [string(len=1)]
rs [rank-1 array(‘f’) with bounds (n) and r storage]
cs [rank-1 array(‘f’) with bounds (n) and c storage]
bs [rank-2 array(‘F’) with bounds (n,nrhs) and b storage]
x [rank-2 array(‘F’) with bounds (n,nrhs)]
rcond [float]
ferr [rank-1 array(‘f’) with bounds (nrhs)]
berr [rank-1 array(‘f’) with bounds (nrhs)]
info [int]

Other Parameters

fact [input string(len=1), optional] Default: ‘E’
trans [input string(len=1), optional] Default: ‘N’
overwrite_a

[input int, optional] Default: 0
af [input rank-2 array(‘F’) with bounds (n,n)]
ipiv [input rank-1 array(‘i’) with bounds (n)]
equed [input string(len=1), optional] Default: ‘B’
r [input rank-1 array(‘f’) with bounds (n)]
c [input rank-1 array(‘f’) with bounds (n)]
overwrite_b

[input int, optional] Default: 0

scipy.linalg.lapack.zgesvx

scipy.linalg.lapack.zgesvx(a, b[, fact, trans, af, ipiv, equed, r, c, overwrite_a, overwrite_b]) =
<fortran object>

Wrapper for zgesvx.
Parameters

a [input rank-2 array(‘D’) with bounds (n,n)]
b [input rank-2 array(‘D’) with bounds (n,nrhs)]

Returns

as [rank-2 array(‘D’) with bounds (n,n) and a storage]
lu [rank-2 array(‘D’) with bounds (n,n) and af storage]
ipiv [rank-1 array(‘i’) with bounds (n)]
equed [string(len=1)]
rs [rank-1 array(‘d’) with bounds (n) and r storage]
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cs [rank-1 array(‘d’) with bounds (n) and c storage]
bs [rank-2 array(‘D’) with bounds (n,nrhs) and b storage]
x [rank-2 array(‘D’) with bounds (n,nrhs)]
rcond [float]
ferr [rank-1 array(‘d’) with bounds (nrhs)]
berr [rank-1 array(‘d’) with bounds (nrhs)]
info [int]

Other Parameters

fact [input string(len=1), optional] Default: ‘E’
trans [input string(len=1), optional] Default: ‘N’
overwrite_a

[input int, optional] Default: 0
af [input rank-2 array(‘D’) with bounds (n,n)]
ipiv [input rank-1 array(‘i’) with bounds (n)]
equed [input string(len=1), optional] Default: ‘B’
r [input rank-1 array(‘d’) with bounds (n)]
c [input rank-1 array(‘d’) with bounds (n)]
overwrite_b

[input int, optional] Default: 0

scipy.linalg.lapack.sgetrf

scipy.linalg.lapack.sgetrf(a[, overwrite_a]) = <fortran object>
Wrapper for sgetrf.

Parameters

a [input rank-2 array(‘f’) with bounds (m,n)]
Returns

lu [rank-2 array(‘f’) with bounds (m,n) and a storage]
piv [rank-1 array(‘i’) with bounds (MIN(m,n))]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

scipy.linalg.lapack.dgetrf

scipy.linalg.lapack.dgetrf(a[, overwrite_a]) = <fortran object>
Wrapper for dgetrf.

Parameters

a [input rank-2 array(‘d’) with bounds (m,n)]
Returns

lu [rank-2 array(‘d’) with bounds (m,n) and a storage]
piv [rank-1 array(‘i’) with bounds (MIN(m,n))]
info [int]

Other Parameters

6.11. Low-level LAPACK functions (scipy.linalg.lapack) 987



SciPy Reference Guide, Release 1.3.1

overwrite_a
[input int, optional] Default: 0

scipy.linalg.lapack.cgetrf

scipy.linalg.lapack.cgetrf(a[, overwrite_a]) = <fortran object>
Wrapper for cgetrf.

Parameters

a [input rank-2 array(‘F’) with bounds (m,n)]
Returns

lu [rank-2 array(‘F’) with bounds (m,n) and a storage]
piv [rank-1 array(‘i’) with bounds (MIN(m,n))]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

scipy.linalg.lapack.zgetrf

scipy.linalg.lapack.zgetrf(a[, overwrite_a]) = <fortran object>
Wrapper for zgetrf.

Parameters

a [input rank-2 array(‘D’) with bounds (m,n)]
Returns

lu [rank-2 array(‘D’) with bounds (m,n) and a storage]
piv [rank-1 array(‘i’) with bounds (MIN(m,n))]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

scipy.linalg.lapack.sgetri

scipy.linalg.lapack.sgetri(lu, piv[, lwork, overwrite_lu]) = <fortran object>
Wrapper for sgetri.

Parameters

lu [input rank-2 array(‘f’) with bounds (n,n)]
piv [input rank-1 array(‘i’) with bounds (n)]

Returns

inv_a [rank-2 array(‘f’) with bounds (n,n) and lu storage]
info [int]

Other Parameters
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overwrite_lu
[input int, optional] Default: 0

lwork [input int, optional] Default: max(3*n,1)

scipy.linalg.lapack.dgetri

scipy.linalg.lapack.dgetri(lu, piv[, lwork, overwrite_lu]) = <fortran object>
Wrapper for dgetri.

Parameters

lu [input rank-2 array(‘d’) with bounds (n,n)]
piv [input rank-1 array(‘i’) with bounds (n)]

Returns

inv_a [rank-2 array(‘d’) with bounds (n,n) and lu storage]
info [int]

Other Parameters

overwrite_lu
[input int, optional] Default: 0

lwork [input int, optional] Default: max(3*n,1)

scipy.linalg.lapack.cgetri

scipy.linalg.lapack.cgetri(lu, piv[, lwork, overwrite_lu]) = <fortran object>
Wrapper for cgetri.

Parameters

lu [input rank-2 array(‘F’) with bounds (n,n)]
piv [input rank-1 array(‘i’) with bounds (n)]

Returns

inv_a [rank-2 array(‘F’) with bounds (n,n) and lu storage]
info [int]

Other Parameters

overwrite_lu
[input int, optional] Default: 0

lwork [input int, optional] Default: max(3*n,1)

scipy.linalg.lapack.zgetri

scipy.linalg.lapack.zgetri(lu, piv[, lwork, overwrite_lu]) = <fortran object>
Wrapper for zgetri.

Parameters

lu [input rank-2 array(‘D’) with bounds (n,n)]
piv [input rank-1 array(‘i’) with bounds (n)]

Returns

inv_a [rank-2 array(‘D’) with bounds (n,n) and lu storage]
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info [int]
Other Parameters

overwrite_lu
[input int, optional] Default: 0

lwork [input int, optional] Default: max(3*n,1)

scipy.linalg.lapack.sgetri_lwork

scipy.linalg.lapack.sgetri_lwork(n) = <fortran object>
Wrapper for sgetri_lwork.

Parameters

n [input int]
Returns

work [float]
info [int]

scipy.linalg.lapack.dgetri_lwork

scipy.linalg.lapack.dgetri_lwork(n) = <fortran object>
Wrapper for dgetri_lwork.

Parameters

n [input int]
Returns

work [float]
info [int]

scipy.linalg.lapack.cgetri_lwork

scipy.linalg.lapack.cgetri_lwork(n) = <fortran object>
Wrapper for cgetri_lwork.

Parameters

n [input int]
Returns

work [complex]
info [int]

scipy.linalg.lapack.zgetri_lwork

scipy.linalg.lapack.zgetri_lwork(n) = <fortran object>
Wrapper for zgetri_lwork.

Parameters

n [input int]
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Returns

work [complex]
info [int]

scipy.linalg.lapack.sgetrs

scipy.linalg.lapack.sgetrs(lu, piv, b[, trans, overwrite_b]) = <fortran object>
Wrapper for sgetrs.

Parameters

lu [input rank-2 array(‘f’) with bounds (n,n)]
piv [input rank-1 array(‘i’) with bounds (n)]
b [input rank-2 array(‘f’) with bounds (n,nrhs)]

Returns

x [rank-2 array(‘f’) with bounds (n,nrhs) and b storage]
info [int]

Other Parameters

overwrite_b
[input int, optional] Default: 0

trans [input int, optional] Default: 0

scipy.linalg.lapack.dgetrs

scipy.linalg.lapack.dgetrs(lu, piv, b[, trans, overwrite_b]) = <fortran object>
Wrapper for dgetrs.

Parameters

lu [input rank-2 array(‘d’) with bounds (n,n)]
piv [input rank-1 array(‘i’) with bounds (n)]
b [input rank-2 array(‘d’) with bounds (n,nrhs)]

Returns

x [rank-2 array(‘d’) with bounds (n,nrhs) and b storage]
info [int]

Other Parameters

overwrite_b
[input int, optional] Default: 0

trans [input int, optional] Default: 0

scipy.linalg.lapack.cgetrs

scipy.linalg.lapack.cgetrs(lu, piv, b[, trans, overwrite_b]) = <fortran object>
Wrapper for cgetrs.

Parameters

lu [input rank-2 array(‘F’) with bounds (n,n)]
piv [input rank-1 array(‘i’) with bounds (n)]
b [input rank-2 array(‘F’) with bounds (n,nrhs)]
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Returns

x [rank-2 array(‘F’) with bounds (n,nrhs) and b storage]
info [int]

Other Parameters

overwrite_b
[input int, optional] Default: 0

trans [input int, optional] Default: 0

scipy.linalg.lapack.zgetrs

scipy.linalg.lapack.zgetrs(lu, piv, b[, trans, overwrite_b]) = <fortran object>
Wrapper for zgetrs.

Parameters

lu [input rank-2 array(‘D’) with bounds (n,n)]
piv [input rank-1 array(‘i’) with bounds (n)]
b [input rank-2 array(‘D’) with bounds (n,nrhs)]

Returns

x [rank-2 array(‘D’) with bounds (n,nrhs) and b storage]
info [int]

Other Parameters

overwrite_b
[input int, optional] Default: 0

trans [input int, optional] Default: 0

scipy.linalg.lapack.sgges

scipy.linalg.lapack.sgges(sselect, a, b[, jobvsl, jobvsr, sort_t, ldvsl, ldvsr, lwork, sselect_extra_args,
overwrite_a, overwrite_b]) = <fortran object>

Wrapper for sgges.
Parameters

sselect [call-back function]
a [input rank-2 array(‘f’) with bounds (lda,n)]
b [input rank-2 array(‘f’) with bounds (ldb,n)]

Returns

a [rank-2 array(‘f’) with bounds (lda,n)]
b [rank-2 array(‘f’) with bounds (ldb,n)]
sdim [int]
alphar [rank-1 array(‘f’) with bounds (n)]
alphai [rank-1 array(‘f’) with bounds (n)]
beta [rank-1 array(‘f’) with bounds (n)]
vsl [rank-2 array(‘f’) with bounds (ldvsl,n)]
vsr [rank-2 array(‘f’) with bounds (ldvsr,n)]
work [rank-1 array(‘f’) with bounds (MAX(lwork,1))]
info [int]

Other Parameters
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jobvsl [input int, optional] Default: 1
jobvsr [input int, optional] Default: 1
sort_t [input int, optional] Default: 0
sselect_extra_args

[input tuple, optional] Default: ()
overwrite_a

[input int, optional] Default: 0
overwrite_b

[input int, optional] Default: 0
ldvsl [input int, optional] Default: ((jobvsl==1)?n:1)
ldvsr [input int, optional] Default: ((jobvsr==1)?n:1)
lwork [input int, optional] Default: max(8*n+16,1)

Notes

Call-back functions:

def sselect(alphar,alphai,beta): return sselect
Required arguments:

alphar : input float
alphai : input float
beta : input float

Return objects:
sselect : int

scipy.linalg.lapack.dgges

scipy.linalg.lapack.dgges(dselect, a, b[, jobvsl, jobvsr, sort_t, ldvsl, ldvsr, lwork, dselect_extra_args,
overwrite_a, overwrite_b]) = <fortran object>

Wrapper for dgges.
Parameters

dselect [call-back function]
a [input rank-2 array(‘d’) with bounds (lda,n)]
b [input rank-2 array(‘d’) with bounds (ldb,n)]

Returns

a [rank-2 array(‘d’) with bounds (lda,n)]
b [rank-2 array(‘d’) with bounds (ldb,n)]
sdim [int]
alphar [rank-1 array(‘d’) with bounds (n)]
alphai [rank-1 array(‘d’) with bounds (n)]
beta [rank-1 array(‘d’) with bounds (n)]
vsl [rank-2 array(‘d’) with bounds (ldvsl,n)]
vsr [rank-2 array(‘d’) with bounds (ldvsr,n)]
work [rank-1 array(‘d’) with bounds (MAX(lwork,1))]
info [int]

Other Parameters

jobvsl [input int, optional] Default: 1
jobvsr [input int, optional] Default: 1
sort_t [input int, optional] Default: 0
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dselect_extra_args
[input tuple, optional] Default: ()

overwrite_a
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0

ldvsl [input int, optional] Default: ((jobvsl==1)?n:1)
ldvsr [input int, optional] Default: ((jobvsr==1)?n:1)
lwork [input int, optional] Default: max(8*n+16,1)

Notes

Call-back functions:

def dselect(alphar,alphai,beta): return dselect
Required arguments:

alphar : input float
alphai : input float
beta : input float

Return objects:
dselect : int

scipy.linalg.lapack.cgges

scipy.linalg.lapack.cgges(cselect, a, b[, jobvsl, jobvsr, sort_t, ldvsl, ldvsr, lwork, cselect_extra_args,
overwrite_a, overwrite_b]) = <fortran object>

Wrapper for cgges.
Parameters

cselect [call-back function]
a [input rank-2 array(‘F’) with bounds (lda,n)]
b [input rank-2 array(‘F’) with bounds (ldb,n)]

Returns

a [rank-2 array(‘F’) with bounds (lda,n)]
b [rank-2 array(‘F’) with bounds (ldb,n)]
sdim [int]
alpha [rank-1 array(‘F’) with bounds (n)]
beta [rank-1 array(‘F’) with bounds (n)]
vsl [rank-2 array(‘F’) with bounds (ldvsl,n)]
vsr [rank-2 array(‘F’) with bounds (ldvsr,n)]
work [rank-1 array(‘F’) with bounds (MAX(lwork,1))]
info [int]

Other Parameters

jobvsl [input int, optional] Default: 1
jobvsr [input int, optional] Default: 1
sort_t [input int, optional] Default: 0
cselect_extra_args

[input tuple, optional] Default: ()
overwrite_a

[input int, optional] Default: 0
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overwrite_b
[input int, optional] Default: 0

ldvsl [input int, optional] Default: ((jobvsl==1)?n:1)
ldvsr [input int, optional] Default: ((jobvsr==1)?n:1)
lwork [input int, optional] Default: max(2*n,1)

Notes

Call-back functions:

def cselect(alpha,beta): return cselect
Required arguments:

alpha : input complex
beta : input complex

Return objects:
cselect : int

scipy.linalg.lapack.zgges

scipy.linalg.lapack.zgges(zselect, a, b[, jobvsl, jobvsr, sort_t, ldvsl, ldvsr, lwork, zselect_extra_args,
overwrite_a, overwrite_b]) = <fortran object>

Wrapper for zgges.
Parameters

zselect [call-back function]
a [input rank-2 array(‘D’) with bounds (lda,n)]
b [input rank-2 array(‘D’) with bounds (ldb,n)]

Returns

a [rank-2 array(‘D’) with bounds (lda,n)]
b [rank-2 array(‘D’) with bounds (ldb,n)]
sdim [int]
alpha [rank-1 array(‘D’) with bounds (n)]
beta [rank-1 array(‘D’) with bounds (n)]
vsl [rank-2 array(‘D’) with bounds (ldvsl,n)]
vsr [rank-2 array(‘D’) with bounds (ldvsr,n)]
work [rank-1 array(‘D’) with bounds (MAX(lwork,1))]
info [int]

Other Parameters

jobvsl [input int, optional] Default: 1
jobvsr [input int, optional] Default: 1
sort_t [input int, optional] Default: 0
zselect_extra_args

[input tuple, optional] Default: ()
overwrite_a

[input int, optional] Default: 0
overwrite_b

[input int, optional] Default: 0
ldvsl [input int, optional] Default: ((jobvsl==1)?n:1)
ldvsr [input int, optional] Default: ((jobvsr==1)?n:1)
lwork [input int, optional] Default: max(2*n,1)
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Notes

Call-back functions:

def zselect(alpha,beta): return zselect
Required arguments:

alpha : input complex
beta : input complex

Return objects:
zselect : int

scipy.linalg.lapack.sggev

scipy.linalg.lapack.sggev(a, b[, compute_vl, compute_vr, lwork, overwrite_a, overwrite_b]) =
<fortran object>

Wrapper for sggev.
Parameters

a [input rank-2 array(‘f’) with bounds (n,n)]
b [input rank-2 array(‘f’) with bounds (n,n)]

Returns

alphar [rank-1 array(‘f’) with bounds (n)]
alphai [rank-1 array(‘f’) with bounds (n)]
beta [rank-1 array(‘f’) with bounds (n)]
vl [rank-2 array(‘f’) with bounds (ldvl,n)]
vr [rank-2 array(‘f’) with bounds (ldvr,n)]
work [rank-1 array(‘f’) with bounds (MAX(lwork,1))]
info [int]

Other Parameters

compute_vl
[input int, optional] Default: 1

compute_vr
[input int, optional] Default: 1

overwrite_a
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0

lwork [input int, optional] Default: max(8*n,1)

scipy.linalg.lapack.dggev

scipy.linalg.lapack.dggev(a, b[, compute_vl, compute_vr, lwork, overwrite_a, overwrite_b]) =
<fortran object>

Wrapper for dggev.
Parameters

a [input rank-2 array(‘d’) with bounds (n,n)]
b [input rank-2 array(‘d’) with bounds (n,n)]

Returns
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alphar [rank-1 array(‘d’) with bounds (n)]
alphai [rank-1 array(‘d’) with bounds (n)]
beta [rank-1 array(‘d’) with bounds (n)]
vl [rank-2 array(‘d’) with bounds (ldvl,n)]
vr [rank-2 array(‘d’) with bounds (ldvr,n)]
work [rank-1 array(‘d’) with bounds (MAX(lwork,1))]
info [int]

Other Parameters

compute_vl
[input int, optional] Default: 1

compute_vr
[input int, optional] Default: 1

overwrite_a
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0

lwork [input int, optional] Default: max(8*n,1)

scipy.linalg.lapack.cggev

scipy.linalg.lapack.cggev(a, b[, compute_vl, compute_vr, lwork, overwrite_a, overwrite_b]) =
<fortran object>

Wrapper for cggev.
Parameters

a [input rank-2 array(‘F’) with bounds (n,n)]
b [input rank-2 array(‘F’) with bounds (n,n)]

Returns

alpha [rank-1 array(‘F’) with bounds (n)]
beta [rank-1 array(‘F’) with bounds (n)]
vl [rank-2 array(‘F’) with bounds (ldvl,n)]
vr [rank-2 array(‘F’) with bounds (ldvr,n)]
work [rank-1 array(‘F’) with bounds (MAX(lwork,1))]
info [int]

Other Parameters

compute_vl
[input int, optional] Default: 1

compute_vr
[input int, optional] Default: 1

overwrite_a
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0

lwork [input int, optional] Default: max(2*n,1)
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scipy.linalg.lapack.zggev

scipy.linalg.lapack.zggev(a, b[, compute_vl, compute_vr, lwork, overwrite_a, overwrite_b]) =
<fortran object>

Wrapper for zggev.
Parameters

a [input rank-2 array(‘D’) with bounds (n,n)]
b [input rank-2 array(‘D’) with bounds (n,n)]

Returns

alpha [rank-1 array(‘D’) with bounds (n)]
beta [rank-1 array(‘D’) with bounds (n)]
vl [rank-2 array(‘D’) with bounds (ldvl,n)]
vr [rank-2 array(‘D’) with bounds (ldvr,n)]
work [rank-1 array(‘D’) with bounds (MAX(lwork,1))]
info [int]

Other Parameters

compute_vl
[input int, optional] Default: 1

compute_vr
[input int, optional] Default: 1

overwrite_a
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0

lwork [input int, optional] Default: max(2*n,1)

scipy.linalg.lapack.sgglse

scipy.linalg.lapack.sgglse(a, b, c, d[, lwork, overwrite_a, overwrite_b, overwrite_c, overwrite_d ])
= <fortran object>

Wrapper for sgglse.
Parameters

a [input rank-2 array(‘f’) with bounds (m,n)]
b [input rank-2 array(‘f’) with bounds (p,n)]
c [input rank-1 array(‘f’) with bounds (m)]
d [input rank-1 array(‘f’) with bounds (p)]

Returns

t [rank-2 array(‘f’) with bounds (m,n) and a storage]
r [rank-2 array(‘f’) with bounds (p,n) and b storage]
res [rank-1 array(‘f’) with bounds (m) and c storage]
x [rank-1 array(‘f’) with bounds (n)]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0
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overwrite_c
[input int, optional] Default: 0

overwrite_d
[input int, optional] Default: 0

lwork [input int, optional] Default: max(m+n+p,1)

scipy.linalg.lapack.dgglse

scipy.linalg.lapack.dgglse(a, b, c, d[, lwork, overwrite_a, overwrite_b, overwrite_c, overwrite_d ])
= <fortran object>

Wrapper for dgglse.
Parameters

a [input rank-2 array(‘d’) with bounds (m,n)]
b [input rank-2 array(‘d’) with bounds (p,n)]
c [input rank-1 array(‘d’) with bounds (m)]
d [input rank-1 array(‘d’) with bounds (p)]

Returns

t [rank-2 array(‘d’) with bounds (m,n) and a storage]
r [rank-2 array(‘d’) with bounds (p,n) and b storage]
res [rank-1 array(‘d’) with bounds (m) and c storage]
x [rank-1 array(‘d’) with bounds (n)]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0

overwrite_c
[input int, optional] Default: 0

overwrite_d
[input int, optional] Default: 0

lwork [input int, optional] Default: max(m+n+p,1)

scipy.linalg.lapack.cgglse

scipy.linalg.lapack.cgglse(a, b, c, d[, lwork, overwrite_a, overwrite_b, overwrite_c, overwrite_d ])
= <fortran object>

Wrapper for cgglse.
Parameters

a [input rank-2 array(‘F’) with bounds (m,n)]
b [input rank-2 array(‘F’) with bounds (p,n)]
c [input rank-1 array(‘F’) with bounds (m)]
d [input rank-1 array(‘F’) with bounds (p)]

Returns

t [rank-2 array(‘F’) with bounds (m,n) and a storage]
r [rank-2 array(‘F’) with bounds (p,n) and b storage]
res [rank-1 array(‘F’) with bounds (m) and c storage]
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x [rank-1 array(‘F’) with bounds (n)]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0

overwrite_c
[input int, optional] Default: 0

overwrite_d
[input int, optional] Default: 0

lwork [input int, optional] Default: max(m+n+p,1)

scipy.linalg.lapack.zgglse

scipy.linalg.lapack.zgglse(a, b, c, d[, lwork, overwrite_a, overwrite_b, overwrite_c, overwrite_d ])
= <fortran object>

Wrapper for zgglse.
Parameters

a [input rank-2 array(‘D’) with bounds (m,n)]
b [input rank-2 array(‘D’) with bounds (p,n)]
c [input rank-1 array(‘D’) with bounds (m)]
d [input rank-1 array(‘D’) with bounds (p)]

Returns

t [rank-2 array(‘D’) with bounds (m,n) and a storage]
r [rank-2 array(‘D’) with bounds (p,n) and b storage]
res [rank-1 array(‘D’) with bounds (m) and c storage]
x [rank-1 array(‘D’) with bounds (n)]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0

overwrite_c
[input int, optional] Default: 0

overwrite_d
[input int, optional] Default: 0

lwork [input int, optional] Default: max(m+n+p,1)

scipy.linalg.lapack.sgglse_lwork

scipy.linalg.lapack.sgglse_lwork(m, n, p) = <fortran object>
Wrapper for sgglse_lwork.

Parameters

m [input int]
n [input int]
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p [input int]
Returns

work [float]
info [int]

scipy.linalg.lapack.dgglse_lwork

scipy.linalg.lapack.dgglse_lwork(m, n, p) = <fortran object>
Wrapper for dgglse_lwork.

Parameters

m [input int]
n [input int]
p [input int]

Returns

work [float]
info [int]

scipy.linalg.lapack.cgglse_lwork

scipy.linalg.lapack.cgglse_lwork(m, n, p) = <fortran object>
Wrapper for cgglse_lwork.

Parameters

m [input int]
n [input int]
p [input int]

Returns

work [complex]
info [int]

scipy.linalg.lapack.zgglse_lwork

scipy.linalg.lapack.zgglse_lwork(m, n, p) = <fortran object>
Wrapper for zgglse_lwork.

Parameters

m [input int]
n [input int]
p [input int]

Returns

work [complex]
info [int]
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scipy.linalg.lapack.sgtsv

scipy.linalg.lapack.sgtsv(dl, d, du, b[, overwrite_dl, overwrite_d, overwrite_du, overwrite_b]) =
<fortran object>

Wrapper for sgtsv.
Parameters

dl [input rank-1 array(‘f’) with bounds (n - 1)]
d [input rank-1 array(‘f’) with bounds (n)]
du [input rank-1 array(‘f’) with bounds (n - 1)]
b [input rank-2 array(‘f’) with bounds (n,nrhs)]

Returns

du2 [rank-1 array(‘f’) with bounds (n - 1) and dl storage]
d [rank-1 array(‘f’) with bounds (n)]
du [rank-1 array(‘f’) with bounds (n - 1)]
x [rank-2 array(‘f’) with bounds (n,nrhs) and b storage]
info [int]

Other Parameters

overwrite_dl
[input int, optional] Default: 0

overwrite_d
[input int, optional] Default: 0

overwrite_du
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0

scipy.linalg.lapack.dgtsv

scipy.linalg.lapack.dgtsv(dl, d, du, b[, overwrite_dl, overwrite_d, overwrite_du, overwrite_b]) =
<fortran object>

Wrapper for dgtsv.
Parameters

dl [input rank-1 array(‘d’) with bounds (n - 1)]
d [input rank-1 array(‘d’) with bounds (n)]
du [input rank-1 array(‘d’) with bounds (n - 1)]
b [input rank-2 array(‘d’) with bounds (n,nrhs)]

Returns

du2 [rank-1 array(‘d’) with bounds (n - 1) and dl storage]
d [rank-1 array(‘d’) with bounds (n)]
du [rank-1 array(‘d’) with bounds (n - 1)]
x [rank-2 array(‘d’) with bounds (n,nrhs) and b storage]
info [int]

Other Parameters

overwrite_dl
[input int, optional] Default: 0

overwrite_d
[input int, optional] Default: 0
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overwrite_du
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0

scipy.linalg.lapack.cgtsv

scipy.linalg.lapack.cgtsv(dl, d, du, b[, overwrite_dl, overwrite_d, overwrite_du, overwrite_b]) =
<fortran object>

Wrapper for cgtsv.
Parameters

dl [input rank-1 array(‘F’) with bounds (n - 1)]
d [input rank-1 array(‘F’) with bounds (n)]
du [input rank-1 array(‘F’) with bounds (n - 1)]
b [input rank-2 array(‘F’) with bounds (n,nrhs)]

Returns

du2 [rank-1 array(‘F’) with bounds (n - 1) and dl storage]
d [rank-1 array(‘F’) with bounds (n)]
du [rank-1 array(‘F’) with bounds (n - 1)]
x [rank-2 array(‘F’) with bounds (n,nrhs) and b storage]
info [int]

Other Parameters

overwrite_dl
[input int, optional] Default: 0

overwrite_d
[input int, optional] Default: 0

overwrite_du
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0

scipy.linalg.lapack.zgtsv

scipy.linalg.lapack.zgtsv(dl, d, du, b[, overwrite_dl, overwrite_d, overwrite_du, overwrite_b]) =
<fortran object>

Wrapper for zgtsv.
Parameters

dl [input rank-1 array(‘D’) with bounds (n - 1)]
d [input rank-1 array(‘D’) with bounds (n)]
du [input rank-1 array(‘D’) with bounds (n - 1)]
b [input rank-2 array(‘D’) with bounds (n,nrhs)]

Returns

du2 [rank-1 array(‘D’) with bounds (n - 1) and dl storage]
d [rank-1 array(‘D’) with bounds (n)]
du [rank-1 array(‘D’) with bounds (n - 1)]
x [rank-2 array(‘D’) with bounds (n,nrhs) and b storage]
info [int]
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Other Parameters

overwrite_dl
[input int, optional] Default: 0

overwrite_d
[input int, optional] Default: 0

overwrite_du
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0

scipy.linalg.lapack.chbevd

scipy.linalg.lapack.chbevd(ab[, compute_v, lower, ldab, lrwork, liwork, overwrite_ab]) =
<fortran object>

Wrapper for chbevd.
Parameters

ab [input rank-2 array(‘F’) with bounds (ldab,n)]
Returns

w [rank-1 array(‘f’) with bounds (n)]
z [rank-2 array(‘F’) with bounds (ldz,ldz)]
info [int]

Other Parameters

overwrite_ab
[input int, optional] Default: 1

compute_v
[input int, optional] Default: 1

lower [input int, optional] Default: 0
ldab [input int, optional] Default: shape(ab,0)
lrwork [input int, optional] Default: (compute_v?1+5*n+2*n*n:n)
liwork [input int, optional] Default: (compute_v?3+5*n:1)

scipy.linalg.lapack.zhbevd

scipy.linalg.lapack.zhbevd(ab[, compute_v, lower, ldab, lrwork, liwork, overwrite_ab]) =
<fortran object>

Wrapper for zhbevd.
Parameters

ab [input rank-2 array(‘D’) with bounds (ldab,n)]
Returns

w [rank-1 array(‘d’) with bounds (n)]
z [rank-2 array(‘D’) with bounds (ldz,ldz)]
info [int]

Other Parameters

overwrite_ab
[input int, optional] Default: 1
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compute_v
[input int, optional] Default: 1

lower [input int, optional] Default: 0
ldab [input int, optional] Default: shape(ab,0)
lrwork [input int, optional] Default: (compute_v?1+5*n+2*n*n:n)
liwork [input int, optional] Default: (compute_v?3+5*n:1)

scipy.linalg.lapack.chbevx

scipy.linalg.lapack.chbevx(ab, vl, vu, il, iu[, ldab, compute_v, range, lower, abstol, mmax, over-
write_ab]) = <fortran object>

Wrapper for chbevx.
Parameters

ab [input rank-2 array(‘F’) with bounds (ldab,n)]
vl [input float]
vu [input float]
il [input int]
iu [input int]

Returns

w [rank-1 array(‘f’) with bounds (n)]
z [rank-2 array(‘F’) with bounds (ldz,mmax)]
m [int]
ifail [rank-1 array(‘i’) with bounds ((compute_v?n:1))]
info [int]

Other Parameters

overwrite_ab
[input int, optional] Default: 1

ldab [input int, optional] Default: shape(ab,0)
compute_v

[input int, optional] Default: 1
range [input int, optional] Default: 0
lower [input int, optional] Default: 0
abstol [input float, optional] Default: 0.0
mmax [input int, optional] Default: (compute_v?(range==2?(iu-il+1):n):1)

scipy.linalg.lapack.zhbevx

scipy.linalg.lapack.zhbevx(ab, vl, vu, il, iu[, ldab, compute_v, range, lower, abstol, mmax, over-
write_ab]) = <fortran object>

Wrapper for zhbevx.
Parameters

ab [input rank-2 array(‘D’) with bounds (ldab,n)]
vl [input float]
vu [input float]
il [input int]
iu [input int]

Returns
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w [rank-1 array(‘d’) with bounds (n)]
z [rank-2 array(‘D’) with bounds (ldz,mmax)]
m [int]
ifail [rank-1 array(‘i’) with bounds ((compute_v?n:1))]
info [int]

Other Parameters

overwrite_ab
[input int, optional] Default: 1

ldab [input int, optional] Default: shape(ab,0)
compute_v

[input int, optional] Default: 1
range [input int, optional] Default: 0
lower [input int, optional] Default: 0
abstol [input float, optional] Default: 0.0
mmax [input int, optional] Default: (compute_v?(range==2?(iu-il+1):n):1)

scipy.linalg.lapack.checon

scipy.linalg.lapack.checon(a, ipiv, anorm[, lower ]) = <fortran object>
Wrapper for checon.

Parameters

a [input rank-2 array(‘F’) with bounds (n,n)]
ipiv [input rank-1 array(‘i’) with bounds (n)]
anorm [input float]

Returns

rcond [float]
info [int]

Other Parameters

lower [input int, optional] Default: 0

scipy.linalg.lapack.zhecon

scipy.linalg.lapack.zhecon(a, ipiv, anorm[, lower ]) = <fortran object>
Wrapper for zhecon.

Parameters

a [input rank-2 array(‘D’) with bounds (n,n)]
ipiv [input rank-1 array(‘i’) with bounds (n)]
anorm [input float]

Returns

rcond [float]
info [int]

Other Parameters

lower [input int, optional] Default: 0
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scipy.linalg.lapack.cheev

scipy.linalg.lapack.cheev(a[, compute_v, lower, lwork, overwrite_a]) = <fortran object>
Wrapper for cheev.

Parameters

a [input rank-2 array(‘F’) with bounds (n,n)]
Returns

w [rank-1 array(‘f’) with bounds (n)]
v [rank-2 array(‘F’) with bounds (n,n) and a storage]
info [int]

Other Parameters

compute_v
[input int, optional] Default: 1

lower [input int, optional] Default: 0
overwrite_a

[input int, optional] Default: 0
lwork [input int, optional] Default: max(2*n-1,1)

scipy.linalg.lapack.zheev

scipy.linalg.lapack.zheev(a[, compute_v, lower, lwork, overwrite_a]) = <fortran object>
Wrapper for zheev.

Parameters

a [input rank-2 array(‘D’) with bounds (n,n)]
Returns

w [rank-1 array(‘d’) with bounds (n)]
v [rank-2 array(‘D’) with bounds (n,n) and a storage]
info [int]

Other Parameters

compute_v
[input int, optional] Default: 1

lower [input int, optional] Default: 0
overwrite_a

[input int, optional] Default: 0
lwork [input int, optional] Default: max(2*n-1,1)

scipy.linalg.lapack.cheevd

scipy.linalg.lapack.cheevd(a[, compute_v, lower, lwork, overwrite_a]) = <fortran
object>

Wrapper for cheevd.
Parameters

a [input rank-2 array(‘F’) with bounds (n,n)]
Returns
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w [rank-1 array(‘f’) with bounds (n)]
v [rank-2 array(‘F’) with bounds (n,n) and a storage]
info [int]

Other Parameters

compute_v
[input int, optional] Default: 1

lower [input int, optional] Default: 0
overwrite_a

[input int, optional] Default: 0
lwork [input int, optional] Default: max((compute_v?2*n+n*n:n+1),1)

scipy.linalg.lapack.zheevd

scipy.linalg.lapack.zheevd(a[, compute_v, lower, lwork, overwrite_a]) = <fortran
object>

Wrapper for zheevd.
Parameters

a [input rank-2 array(‘D’) with bounds (n,n)]
Returns

w [rank-1 array(‘d’) with bounds (n)]
v [rank-2 array(‘D’) with bounds (n,n) and a storage]
info [int]

Other Parameters

compute_v
[input int, optional] Default: 1

lower [input int, optional] Default: 0
overwrite_a

[input int, optional] Default: 0
lwork [input int, optional] Default: max((compute_v?2*n+n*n:n+1),1)

scipy.linalg.lapack.cheevr

scipy.linalg.lapack.cheevr(a[, jobz, range, uplo, il, iu, lwork, overwrite_a]) = <fortran
object>

Wrapper for cheevr.
Parameters

a [input rank-2 array(‘F’) with bounds (n,n)]
Returns

w [rank-1 array(‘f’) with bounds (n)]
z [rank-2 array(‘F’) with bounds (n,m)]
info [int]

Other Parameters

jobz [input string(len=1), optional] Default: ‘V’
range [input string(len=1), optional] Default: ‘A’
uplo [input string(len=1), optional] Default: ‘L’
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overwrite_a
[input int, optional] Default: 0

il [input int, optional] Default: 1
iu [input int, optional] Default: n
lwork [input int, optional] Default: max(18*n,1)

scipy.linalg.lapack.zheevr

scipy.linalg.lapack.zheevr(a[, jobz, range, uplo, il, iu, lwork, overwrite_a]) = <fortran
object>

Wrapper for zheevr.
Parameters

a [input rank-2 array(‘D’) with bounds (n,n)]
Returns

w [rank-1 array(‘d’) with bounds (n)]
z [rank-2 array(‘D’) with bounds (n,m)]
info [int]

Other Parameters

jobz [input string(len=1), optional] Default: ‘V’
range [input string(len=1), optional] Default: ‘A’
uplo [input string(len=1), optional] Default: ‘L’
overwrite_a

[input int, optional] Default: 0
il [input int, optional] Default: 1
iu [input int, optional] Default: n
lwork [input int, optional] Default: max(18*n,1)

scipy.linalg.lapack.chegst

scipy.linalg.lapack.chegst(a, b[, itype, lower, overwrite_a]) = <fortran object>
Wrapper for chegst.

Parameters

a [input rank-2 array(‘F’) with bounds (n,n)]
b [input rank-2 array(‘F’) with bounds (n,n)]

Returns

c [rank-2 array(‘F’) with bounds (n,n) and a storage]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

itype [input int, optional] Default: 1
lower [input int, optional] Default: 0
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scipy.linalg.lapack.zhegst

scipy.linalg.lapack.zhegst(a, b[, itype, lower, overwrite_a]) = <fortran object>
Wrapper for zhegst.

Parameters

a [input rank-2 array(‘D’) with bounds (n,n)]
b [input rank-2 array(‘D’) with bounds (n,n)]

Returns

c [rank-2 array(‘D’) with bounds (n,n) and a storage]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

itype [input int, optional] Default: 1
lower [input int, optional] Default: 0

scipy.linalg.lapack.chegv

scipy.linalg.lapack.chegv(a, b[, itype, jobz, uplo, overwrite_a, overwrite_b]) = <fortran
object>

Wrapper for chegv.
Parameters

a [input rank-2 array(‘F’) with bounds (n,n)]
b [input rank-2 array(‘F’) with bounds (n,n)]

Returns

a [rank-2 array(‘F’) with bounds (n,n)]
w [rank-1 array(‘f’) with bounds (n)]
info [int]

Other Parameters

itype [input int, optional] Default: 1
jobz [input string(len=1), optional] Default: ‘V’
uplo [input string(len=1), optional] Default: ‘L’
overwrite_a

[input int, optional] Default: 0
overwrite_b

[input int, optional] Default: 0

scipy.linalg.lapack.zhegv

scipy.linalg.lapack.zhegv(a, b[, itype, jobz, uplo, overwrite_a, overwrite_b]) = <fortran
object>

Wrapper for zhegv.
Parameters

a [input rank-2 array(‘D’) with bounds (n,n)]
b [input rank-2 array(‘D’) with bounds (n,n)]
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Returns

a [rank-2 array(‘D’) with bounds (n,n)]
w [rank-1 array(‘d’) with bounds (n)]
info [int]

Other Parameters

itype [input int, optional] Default: 1
jobz [input string(len=1), optional] Default: ‘V’
uplo [input string(len=1), optional] Default: ‘L’
overwrite_a

[input int, optional] Default: 0
overwrite_b

[input int, optional] Default: 0

scipy.linalg.lapack.chegvd

scipy.linalg.lapack.chegvd(a, b[, itype, jobz, uplo, lwork, overwrite_a, overwrite_b]) =
<fortran object>

Wrapper for chegvd.
Parameters

a [input rank-2 array(‘F’) with bounds (n,n)]
b [input rank-2 array(‘F’) with bounds (n,n)]

Returns

a [rank-2 array(‘F’) with bounds (n,n)]
w [rank-1 array(‘f’) with bounds (n)]
info [int]

Other Parameters

itype [input int, optional] Default: 1
jobz [input string(len=1), optional] Default: ‘V’
uplo [input string(len=1), optional] Default: ‘L’
overwrite_a

[input int, optional] Default: 0
overwrite_b

[input int, optional] Default: 0
lwork [input int, optional] Default: max(2*n+n*n,1)

scipy.linalg.lapack.zhegvd

scipy.linalg.lapack.zhegvd(a, b[, itype, jobz, uplo, lwork, overwrite_a, overwrite_b]) =
<fortran object>

Wrapper for zhegvd.
Parameters

a [input rank-2 array(‘D’) with bounds (n,n)]
b [input rank-2 array(‘D’) with bounds (n,n)]

Returns

a [rank-2 array(‘D’) with bounds (n,n)]
w [rank-1 array(‘d’) with bounds (n)]
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info [int]
Other Parameters

itype [input int, optional] Default: 1
jobz [input string(len=1), optional] Default: ‘V’
uplo [input string(len=1), optional] Default: ‘L’
overwrite_a

[input int, optional] Default: 0
overwrite_b

[input int, optional] Default: 0
lwork [input int, optional] Default: max(2*n+n*n,1)

scipy.linalg.lapack.chegvx

scipy.linalg.lapack.chegvx(a, b, iu[, itype, jobz, uplo, il, lwork, overwrite_a, overwrite_b]) =
<fortran object>

Wrapper for chegvx.
Parameters

a [input rank-2 array(‘F’) with bounds (n,n)]
b [input rank-2 array(‘F’) with bounds (n,n)]
iu [input int]

Returns

w [rank-1 array(‘f’) with bounds (n)]
z [rank-2 array(‘F’) with bounds (n,m)]
ifail [rank-1 array(‘i’) with bounds (n)]
info [int]

Other Parameters

itype [input int, optional] Default: 1
jobz [input string(len=1), optional] Default: ‘V’
uplo [input string(len=1), optional] Default: ‘L’
overwrite_a

[input int, optional] Default: 0
overwrite_b

[input int, optional] Default: 0
il [input int, optional] Default: 1
lwork [input int, optional] Default: max(18*n-1,1)

scipy.linalg.lapack.zhegvx

scipy.linalg.lapack.zhegvx(a, b, iu[, itype, jobz, uplo, il, lwork, overwrite_a, overwrite_b]) =
<fortran object>

Wrapper for zhegvx.
Parameters

a [input rank-2 array(‘D’) with bounds (n,n)]
b [input rank-2 array(‘D’) with bounds (n,n)]
iu [input int]

Returns
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w [rank-1 array(‘d’) with bounds (n)]
z [rank-2 array(‘D’) with bounds (n,m)]
ifail [rank-1 array(‘i’) with bounds (n)]
info [int]

Other Parameters

itype [input int, optional] Default: 1
jobz [input string(len=1), optional] Default: ‘V’
uplo [input string(len=1), optional] Default: ‘L’
overwrite_a

[input int, optional] Default: 0
overwrite_b

[input int, optional] Default: 0
il [input int, optional] Default: 1
lwork [input int, optional] Default: max(18*n-1,1)

scipy.linalg.lapack.chesv

scipy.linalg.lapack.chesv(a, b[, lwork, lower, overwrite_a, overwrite_b]) = <fortran
object>

Wrapper for chesv.
Parameters

a [input rank-2 array(‘F’) with bounds (n,n)]
b [input rank-2 array(‘F’) with bounds (n,nrhs)]

Returns

uduh [rank-2 array(‘F’) with bounds (n,n) and a storage]
ipiv [rank-1 array(‘i’) with bounds (n)]
x [rank-2 array(‘F’) with bounds (n,nrhs) and b storage]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0

lwork [input int, optional] Default: max(n,1)
lower [input int, optional] Default: 0

scipy.linalg.lapack.zhesv

scipy.linalg.lapack.zhesv(a, b[, lwork, lower, overwrite_a, overwrite_b]) = <fortran
object>

Wrapper for zhesv.
Parameters

a [input rank-2 array(‘D’) with bounds (n,n)]
b [input rank-2 array(‘D’) with bounds (n,nrhs)]

Returns

uduh [rank-2 array(‘D’) with bounds (n,n) and a storage]
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ipiv [rank-1 array(‘i’) with bounds (n)]
x [rank-2 array(‘D’) with bounds (n,nrhs) and b storage]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0

lwork [input int, optional] Default: max(n,1)
lower [input int, optional] Default: 0

scipy.linalg.lapack.chesv_lwork

scipy.linalg.lapack.chesv_lwork(n[, lower ]) = <fortran object>
Wrapper for chesv_lwork.

Parameters

n [input int]
Returns

work [complex]
info [int]

Other Parameters

lower [input int, optional] Default: 0

scipy.linalg.lapack.zhesv_lwork

scipy.linalg.lapack.zhesv_lwork(n[, lower ]) = <fortran object>
Wrapper for zhesv_lwork.

Parameters

n [input int]
Returns

work [complex]
info [int]

Other Parameters

lower [input int, optional] Default: 0

scipy.linalg.lapack.chesvx

scipy.linalg.lapack.chesvx(a, b[, af, ipiv, lwork, factored, lower, overwrite_a, overwrite_b]) =
<fortran object>

Wrapper for chesvx.
Parameters

a [input rank-2 array(‘F’) with bounds (n,n)]
b [input rank-2 array(‘F’) with bounds (n,nrhs)]
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Returns

uduh [rank-2 array(‘F’) with bounds (n,n) and af storage]
ipiv [rank-1 array(‘i’) with bounds (n)]
x [rank-2 array(‘F’) with bounds (n,nrhs)]
rcond [float]
ferr [rank-1 array(‘f’) with bounds (nrhs)]
berr [rank-1 array(‘f’) with bounds (nrhs)]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

af [input rank-2 array(‘F’) with bounds (n,n)]
ipiv [input rank-1 array(‘i’) with bounds (n)]
overwrite_b

[input int, optional] Default: 0
lwork [input int, optional] Default: max(2*n,1)
factored [input int, optional] Default: 0
lower [input int, optional] Default: 0

scipy.linalg.lapack.zhesvx

scipy.linalg.lapack.zhesvx(a, b[, af, ipiv, lwork, factored, lower, overwrite_a, overwrite_b]) =
<fortran object>

Wrapper for zhesvx.
Parameters

a [input rank-2 array(‘D’) with bounds (n,n)]
b [input rank-2 array(‘D’) with bounds (n,nrhs)]

Returns

uduh [rank-2 array(‘D’) with bounds (n,n) and af storage]
ipiv [rank-1 array(‘i’) with bounds (n)]
x [rank-2 array(‘D’) with bounds (n,nrhs)]
rcond [float]
ferr [rank-1 array(‘d’) with bounds (nrhs)]
berr [rank-1 array(‘d’) with bounds (nrhs)]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

af [input rank-2 array(‘D’) with bounds (n,n)]
ipiv [input rank-1 array(‘i’) with bounds (n)]
overwrite_b

[input int, optional] Default: 0
lwork [input int, optional] Default: max(2*n,1)
factored [input int, optional] Default: 0
lower [input int, optional] Default: 0
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scipy.linalg.lapack.chesvx_lwork

scipy.linalg.lapack.chesvx_lwork(n[, lower ]) = <fortran object>
Wrapper for chesvx_lwork.

Parameters

n [input int]
Returns

work [complex]
info [int]

Other Parameters

lower [input int, optional] Default: 0

scipy.linalg.lapack.zhesvx_lwork

scipy.linalg.lapack.zhesvx_lwork(n[, lower ]) = <fortran object>
Wrapper for zhesvx_lwork.

Parameters

n [input int]
Returns

work [complex]
info [int]

Other Parameters

lower [input int, optional] Default: 0

scipy.linalg.lapack.chetrd

scipy.linalg.lapack.chetrd(a[, lower, lwork, overwrite_a]) = <fortran object>
Wrapper for chetrd.

Parameters

a [input rank-2 array(‘F’) with bounds (lda,n)]
Returns

c [rank-2 array(‘F’) with bounds (lda,n) and a storage]
d [rank-1 array(‘f’) with bounds (n)]
e [rank-1 array(‘f’) with bounds (n - 1)]
tau [rank-1 array(‘F’) with bounds (n - 1)]
info [int]

Other Parameters

lower [input int, optional] Default: 0
overwrite_a

[input int, optional] Default: 0
lwork [input int, optional] Default: MAX(n,1)
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scipy.linalg.lapack.zhetrd

scipy.linalg.lapack.zhetrd(a[, lower, lwork, overwrite_a]) = <fortran object>
Wrapper for zhetrd.

Parameters

a [input rank-2 array(‘D’) with bounds (lda,n)]
Returns

c [rank-2 array(‘D’) with bounds (lda,n) and a storage]
d [rank-1 array(‘d’) with bounds (n)]
e [rank-1 array(‘d’) with bounds (n - 1)]
tau [rank-1 array(‘D’) with bounds (n - 1)]
info [int]

Other Parameters

lower [input int, optional] Default: 0
overwrite_a

[input int, optional] Default: 0
lwork [input int, optional] Default: MAX(n,1)

scipy.linalg.lapack.chetrd_lwork

scipy.linalg.lapack.chetrd_lwork(n[, lower ]) = <fortran object>
Wrapper for chetrd_lwork.

Parameters

n [input int]
Returns

work [complex]
info [int]

Other Parameters

lower [input int, optional] Default: 0

scipy.linalg.lapack.zhetrd_lwork

scipy.linalg.lapack.zhetrd_lwork(n[, lower ]) = <fortran object>
Wrapper for zhetrd_lwork.

Parameters

n [input int]
Returns

work [complex]
info [int]

Other Parameters

lower [input int, optional] Default: 0

6.11. Low-level LAPACK functions (scipy.linalg.lapack) 1017



SciPy Reference Guide, Release 1.3.1

scipy.linalg.lapack.chetrf

scipy.linalg.lapack.chetrf(a[, lower, lwork, overwrite_a]) = <fortran object>
Wrapper for chetrf.

Parameters

a [input rank-2 array(‘F’) with bounds (n,n)]
Returns

ldu [rank-2 array(‘F’) with bounds (n,n) and a storage]
ipiv [rank-1 array(‘i’) with bounds (n)]
info [int]

Other Parameters

lower [input int, optional] Default: 0
overwrite_a

[input int, optional] Default: 0
lwork [input int, optional] Default: max(n,1)

scipy.linalg.lapack.zhetrf

scipy.linalg.lapack.zhetrf(a[, lower, lwork, overwrite_a]) = <fortran object>
Wrapper for zhetrf.

Parameters

a [input rank-2 array(‘D’) with bounds (n,n)]
Returns

ldu [rank-2 array(‘D’) with bounds (n,n) and a storage]
ipiv [rank-1 array(‘i’) with bounds (n)]
info [int]

Other Parameters

lower [input int, optional] Default: 0
overwrite_a

[input int, optional] Default: 0
lwork [input int, optional] Default: max(n,1)

scipy.linalg.lapack.chetrf_lwork

scipy.linalg.lapack.chetrf_lwork(n[, lower ]) = <fortran object>
Wrapper for chetrf_lwork.

Parameters

n [input int]
Returns

work [complex]
info [int]

Other Parameters

lower [input int, optional] Default: 0
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scipy.linalg.lapack.zhetrf_lwork

scipy.linalg.lapack.zhetrf_lwork(n[, lower ]) = <fortran object>
Wrapper for zhetrf_lwork.

Parameters

n [input int]
Returns

work [complex]
info [int]

Other Parameters

lower [input int, optional] Default: 0

scipy.linalg.lapack.chfrk

scipy.linalg.lapack.chfrk(n, k, alpha, a, beta, c[, transr, uplo, trans, overwrite_c ]) = <fortran
object>

Wrapper for chfrk.
Parameters

n [input int]
k [input int]
alpha [input float]
a [input rank-2 array(‘F’) with bounds (lda,ka)]
beta [input float]
c [input rank-1 array(‘F’) with bounds (nt)]

Returns

cout [rank-1 array(‘F’) with bounds (nt) and c storage]
Other Parameters

transr [input string(len=1), optional] Default: ‘N’
uplo [input string(len=1), optional] Default: ‘U’
trans [input string(len=1), optional] Default: ‘N’
overwrite_c

[input int, optional] Default: 0

scipy.linalg.lapack.zhfrk

scipy.linalg.lapack.zhfrk(n, k, alpha, a, beta, c[, transr, uplo, trans, overwrite_c ]) = <fortran
object>

Wrapper for zhfrk.
Parameters

n [input int]
k [input int]
alpha [input float]
a [input rank-2 array(‘D’) with bounds (lda,ka)]
beta [input float]
c [input rank-1 array(‘D’) with bounds (nt)]
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Returns

cout [rank-1 array(‘D’) with bounds (nt) and c storage]
Other Parameters

transr [input string(len=1), optional] Default: ‘N’
uplo [input string(len=1), optional] Default: ‘U’
trans [input string(len=1), optional] Default: ‘N’
overwrite_c

[input int, optional] Default: 0

scipy.linalg.lapack.slamch

scipy.linalg.lapack.slamch(cmach) = <fortran slamch>
Wrapper for slamch.

Parameters

cmach [input string(len=1)]
Returns

slamch [float]

scipy.linalg.lapack.dlamch

scipy.linalg.lapack.dlamch(cmach) = <fortran dlamch>
Wrapper for dlamch.

Parameters

cmach [input string(len=1)]
Returns

dlamch [float]

scipy.linalg.lapack.slange

scipy.linalg.lapack.slange(norm, a) = <fortran slange>
Wrapper for slange.

Parameters

norm [input string(len=1)]
a [input rank-2 array(‘f’) with bounds (m,n)]

Returns

n2 [float]
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scipy.linalg.lapack.dlange

scipy.linalg.lapack.dlange(norm, a) = <fortran dlange>
Wrapper for dlange.

Parameters

norm [input string(len=1)]
a [input rank-2 array(‘d’) with bounds (m,n)]

Returns

n2 [float]

scipy.linalg.lapack.clange

scipy.linalg.lapack.clange(norm, a) = <fortran clange>
Wrapper for clange.

Parameters

norm [input string(len=1)]
a [input rank-2 array(‘F’) with bounds (m,n)]

Returns

n2 [float]

scipy.linalg.lapack.zlange

scipy.linalg.lapack.zlange(norm, a) = <fortran zlange>
Wrapper for zlange.

Parameters

norm [input string(len=1)]
a [input rank-2 array(‘D’) with bounds (m,n)]

Returns

n2 [float]

scipy.linalg.lapack.slarf

scipy.linalg.lapack.slarf(v, tau, c, work[, side, incv, overwrite_c ]) = <fortran object>
Wrapper for slarf.

Parameters

v [input rank-1 array(‘f’) with bounds ((side[0]==’L’?(1 + (m-1)*abs(incv)):(1 + (n-
1)*abs(incv))))]

tau [input float]
c [input rank-2 array(‘f’) with bounds (m,n)]
work [input rank-1 array(‘f’) with bounds (lwork)]

Returns

c [rank-2 array(‘f’) with bounds (m,n)]
Other Parameters
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side [input string(len=1), optional] Default: ‘L’
incv [input int, optional] Default: 1
overwrite_c

[input int, optional] Default: 0

scipy.linalg.lapack.dlarf

scipy.linalg.lapack.dlarf(v, tau, c, work[, side, incv, overwrite_c ]) = <fortran object>
Wrapper for dlarf.

Parameters

v [input rank-1 array(‘d’) with bounds ((side[0]==’L’?(1 + (m-1)*abs(incv)):(1 + (n-
1)*abs(incv))))]

tau [input float]
c [input rank-2 array(‘d’) with bounds (m,n)]
work [input rank-1 array(‘d’) with bounds (lwork)]

Returns

c [rank-2 array(‘d’) with bounds (m,n)]
Other Parameters

side [input string(len=1), optional] Default: ‘L’
incv [input int, optional] Default: 1
overwrite_c

[input int, optional] Default: 0

scipy.linalg.lapack.clarf

scipy.linalg.lapack.clarf(v, tau, c, work[, side, incv, overwrite_c ]) = <fortran object>
Wrapper for clarf.

Parameters

v [input rank-1 array(‘F’) with bounds ((side[0]==’L’?(1 + (m-1)*abs(incv)):(1 + (n-
1)*abs(incv))))]

tau [input complex]
c [input rank-2 array(‘F’) with bounds (m,n)]
work [input rank-1 array(‘F’) with bounds (lwork)]

Returns

c [rank-2 array(‘F’) with bounds (m,n)]
Other Parameters

side [input string(len=1), optional] Default: ‘L’
incv [input int, optional] Default: 1
overwrite_c

[input int, optional] Default: 0
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scipy.linalg.lapack.zlarf

scipy.linalg.lapack.zlarf(v, tau, c, work[, side, incv, overwrite_c ]) = <fortran object>
Wrapper for zlarf.

Parameters

v [input rank-1 array(‘D’) with bounds ((side[0]==’L’?(1 + (m-1)*abs(incv)):(1 + (n-
1)*abs(incv))))]

tau [input complex]
c [input rank-2 array(‘D’) with bounds (m,n)]
work [input rank-1 array(‘D’) with bounds (lwork)]

Returns

c [rank-2 array(‘D’) with bounds (m,n)]
Other Parameters

side [input string(len=1), optional] Default: ‘L’
incv [input int, optional] Default: 1
overwrite_c

[input int, optional] Default: 0

scipy.linalg.lapack.slarfg

scipy.linalg.lapack.slarfg(n, alpha, x[, incx, overwrite_x ]) = <fortran object>
Wrapper for slarfg.

Parameters

n [input int]
alpha [input float]
x [input rank-1 array(‘f’) with bounds (lx)]

Returns

alpha [float]
x [rank-1 array(‘f’) with bounds (lx)]
tau [float]

Other Parameters

overwrite_x
[input int, optional] Default: 0

incx [input int, optional] Default: 1

scipy.linalg.lapack.dlarfg

scipy.linalg.lapack.dlarfg(n, alpha, x[, incx, overwrite_x ]) = <fortran object>
Wrapper for dlarfg.

Parameters

n [input int]
alpha [input float]
x [input rank-1 array(‘d’) with bounds (lx)]

Returns
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alpha [float]
x [rank-1 array(‘d’) with bounds (lx)]
tau [float]

Other Parameters

overwrite_x
[input int, optional] Default: 0

incx [input int, optional] Default: 1

scipy.linalg.lapack.clarfg

scipy.linalg.lapack.clarfg(n, alpha, x[, incx, overwrite_x ]) = <fortran object>
Wrapper for clarfg.

Parameters

n [input int]
alpha [input complex]
x [input rank-1 array(‘F’) with bounds (lx)]

Returns

alpha [complex]
x [rank-1 array(‘F’) with bounds (lx)]
tau [complex]

Other Parameters

overwrite_x
[input int, optional] Default: 0

incx [input int, optional] Default: 1

scipy.linalg.lapack.zlarfg

scipy.linalg.lapack.zlarfg(n, alpha, x[, incx, overwrite_x ]) = <fortran object>
Wrapper for zlarfg.

Parameters

n [input int]
alpha [input complex]
x [input rank-1 array(‘D’) with bounds (lx)]

Returns

alpha [complex]
x [rank-1 array(‘D’) with bounds (lx)]
tau [complex]

Other Parameters

overwrite_x
[input int, optional] Default: 0

incx [input int, optional] Default: 1
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scipy.linalg.lapack.slartg

scipy.linalg.lapack.slartg(f, g) = <fortran object>
Wrapper for slartg.

Parameters

f [input float]
g [input float]

Returns

cs [float]
sn [float]
r [float]

scipy.linalg.lapack.dlartg

scipy.linalg.lapack.dlartg(f, g) = <fortran object>
Wrapper for dlartg.

Parameters

f [input float]
g [input float]

Returns

cs [float]
sn [float]
r [float]

scipy.linalg.lapack.clartg

scipy.linalg.lapack.clartg(f, g) = <fortran object>
Wrapper for clartg.

Parameters

f [input complex]
g [input complex]

Returns

cs [float]
sn [complex]
r [complex]

scipy.linalg.lapack.zlartg

scipy.linalg.lapack.zlartg(f, g) = <fortran object>
Wrapper for zlartg.

Parameters

f [input complex]
g [input complex]

Returns
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cs [float]
sn [complex]
r [complex]

scipy.linalg.lapack.slasd4

scipy.linalg.lapack.slasd4(i, d, z[, rho]) = <fortran object>
Wrapper for slasd4.

Parameters

i [input int]
d [input rank-1 array(‘f’) with bounds (n)]
z [input rank-1 array(‘f’) with bounds (n)]

Returns

delta [rank-1 array(‘f’) with bounds (n)]
sigma [float]
work [rank-1 array(‘f’) with bounds (n)]
info [int]

Other Parameters

rho [input float, optional] Default: 1.0

scipy.linalg.lapack.dlasd4

scipy.linalg.lapack.dlasd4(i, d, z[, rho]) = <fortran object>
Wrapper for dlasd4.

Parameters

i [input int]
d [input rank-1 array(‘d’) with bounds (n)]
z [input rank-1 array(‘d’) with bounds (n)]

Returns

delta [rank-1 array(‘d’) with bounds (n)]
sigma [float]
work [rank-1 array(‘d’) with bounds (n)]
info [int]

Other Parameters

rho [input float, optional] Default: 1.0

scipy.linalg.lapack.slaswp

scipy.linalg.lapack.slaswp(a, piv[, k1, k2, off, inc, overwrite_a]) = <fortran object>
Wrapper for slaswp.

Parameters

a [input rank-2 array(‘f’) with bounds (nrows,n)]
piv [input rank-1 array(‘i’) with bounds (npiv)]

Returns
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a [rank-2 array(‘f’) with bounds (nrows,n)]
Other Parameters

overwrite_a
[input int, optional] Default: 0

k1 [input int, optional] Default: 0
k2 [input int, optional] Default: npiv-1
off [input int, optional] Default: 0
inc [input int, optional] Default: 1

scipy.linalg.lapack.dlaswp

scipy.linalg.lapack.dlaswp(a, piv[, k1, k2, off, inc, overwrite_a]) = <fortran object>
Wrapper for dlaswp.

Parameters

a [input rank-2 array(‘d’) with bounds (nrows,n)]
piv [input rank-1 array(‘i’) with bounds (npiv)]

Returns

a [rank-2 array(‘d’) with bounds (nrows,n)]
Other Parameters

overwrite_a
[input int, optional] Default: 0

k1 [input int, optional] Default: 0
k2 [input int, optional] Default: npiv-1
off [input int, optional] Default: 0
inc [input int, optional] Default: 1

scipy.linalg.lapack.claswp

scipy.linalg.lapack.claswp(a, piv[, k1, k2, off, inc, overwrite_a]) = <fortran object>
Wrapper for claswp.

Parameters

a [input rank-2 array(‘F’) with bounds (nrows,n)]
piv [input rank-1 array(‘i’) with bounds (npiv)]

Returns

a [rank-2 array(‘F’) with bounds (nrows,n)]
Other Parameters

overwrite_a
[input int, optional] Default: 0

k1 [input int, optional] Default: 0
k2 [input int, optional] Default: npiv-1
off [input int, optional] Default: 0
inc [input int, optional] Default: 1
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scipy.linalg.lapack.zlaswp

scipy.linalg.lapack.zlaswp(a, piv[, k1, k2, off, inc, overwrite_a]) = <fortran object>
Wrapper for zlaswp.

Parameters

a [input rank-2 array(‘D’) with bounds (nrows,n)]
piv [input rank-1 array(‘i’) with bounds (npiv)]

Returns

a [rank-2 array(‘D’) with bounds (nrows,n)]
Other Parameters

overwrite_a
[input int, optional] Default: 0

k1 [input int, optional] Default: 0
k2 [input int, optional] Default: npiv-1
off [input int, optional] Default: 0
inc [input int, optional] Default: 1

scipy.linalg.lapack.slauum

scipy.linalg.lapack.slauum(c[, lower, overwrite_c ]) = <fortran object>
Wrapper for slauum.

Parameters

c [input rank-2 array(‘f’) with bounds (n,n)]
Returns

a [rank-2 array(‘f’) with bounds (n,n) and c storage]
info [int]

Other Parameters

overwrite_c
[input int, optional] Default: 0

lower [input int, optional] Default: 0

scipy.linalg.lapack.dlauum

scipy.linalg.lapack.dlauum(c[, lower, overwrite_c ]) = <fortran object>
Wrapper for dlauum.

Parameters

c [input rank-2 array(‘d’) with bounds (n,n)]
Returns

a [rank-2 array(‘d’) with bounds (n,n) and c storage]
info [int]

Other Parameters

overwrite_c
[input int, optional] Default: 0
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lower [input int, optional] Default: 0

scipy.linalg.lapack.clauum

scipy.linalg.lapack.clauum(c[, lower, overwrite_c ]) = <fortran object>
Wrapper for clauum.

Parameters

c [input rank-2 array(‘F’) with bounds (n,n)]
Returns

a [rank-2 array(‘F’) with bounds (n,n) and c storage]
info [int]

Other Parameters

overwrite_c
[input int, optional] Default: 0

lower [input int, optional] Default: 0

scipy.linalg.lapack.zlauum

scipy.linalg.lapack.zlauum(c[, lower, overwrite_c ]) = <fortran object>
Wrapper for zlauum.

Parameters

c [input rank-2 array(‘D’) with bounds (n,n)]
Returns

a [rank-2 array(‘D’) with bounds (n,n) and c storage]
info [int]

Other Parameters

overwrite_c
[input int, optional] Default: 0

lower [input int, optional] Default: 0

scipy.linalg.lapack.sorghr

scipy.linalg.lapack.sorghr(a, tau[, lo, hi, lwork, overwrite_a]) = <fortran object>
Wrapper for sorghr.

Parameters

a [input rank-2 array(‘f’) with bounds (n,n)]
tau [input rank-1 array(‘f’) with bounds (n - 1)]

Returns

ht [rank-2 array(‘f’) with bounds (n,n) and a storage]
info [int]

Other Parameters

lo [input int, optional] Default: 0
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hi [input int, optional] Default: n-1
overwrite_a

[input int, optional] Default: 0
lwork [input int, optional] Default: max(hi-lo,1)

scipy.linalg.lapack.dorghr

scipy.linalg.lapack.dorghr(a, tau[, lo, hi, lwork, overwrite_a]) = <fortran object>
Wrapper for dorghr.

Parameters

a [input rank-2 array(‘d’) with bounds (n,n)]
tau [input rank-1 array(‘d’) with bounds (n - 1)]

Returns

ht [rank-2 array(‘d’) with bounds (n,n) and a storage]
info [int]

Other Parameters

lo [input int, optional] Default: 0
hi [input int, optional] Default: n-1
overwrite_a

[input int, optional] Default: 0
lwork [input int, optional] Default: max(hi-lo,1)

scipy.linalg.lapack.sorghr_lwork

scipy.linalg.lapack.sorghr_lwork(n[, lo, hi ]) = <fortran object>
Wrapper for sorghr_lwork.

Parameters

n [input int]
Returns

work [float]
info [int]

Other Parameters

lo [input int, optional] Default: 0
hi [input int, optional] Default: n-1

scipy.linalg.lapack.dorghr_lwork

scipy.linalg.lapack.dorghr_lwork(n[, lo, hi ]) = <fortran object>
Wrapper for dorghr_lwork.

Parameters

n [input int]
Returns

work [float]
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info [int]
Other Parameters

lo [input int, optional] Default: 0
hi [input int, optional] Default: n-1

scipy.linalg.lapack.sorgqr

scipy.linalg.lapack.sorgqr(a, tau[, lwork, overwrite_a]) = <fortran object>
Wrapper for sorgqr.

Parameters

a [input rank-2 array(‘f’) with bounds (m,n)]
tau [input rank-1 array(‘f’) with bounds (k)]

Returns

q [rank-2 array(‘f’) with bounds (m,n) and a storage]
work [rank-1 array(‘f’) with bounds (MAX(lwork,1))]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

lwork [input int, optional] Default: max(3*n,1)

scipy.linalg.lapack.dorgqr

scipy.linalg.lapack.dorgqr(a, tau[, lwork, overwrite_a]) = <fortran object>
Wrapper for dorgqr.

Parameters

a [input rank-2 array(‘d’) with bounds (m,n)]
tau [input rank-1 array(‘d’) with bounds (k)]

Returns

q [rank-2 array(‘d’) with bounds (m,n) and a storage]
work [rank-1 array(‘d’) with bounds (MAX(lwork,1))]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

lwork [input int, optional] Default: max(3*n,1)

scipy.linalg.lapack.sorgrq

scipy.linalg.lapack.sorgrq(a, tau[, lwork, overwrite_a]) = <fortran object>
Wrapper for sorgrq.

Parameters

a [input rank-2 array(‘f’) with bounds (m,n)]
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tau [input rank-1 array(‘f’) with bounds (k)]
Returns

q [rank-2 array(‘f’) with bounds (m,n) and a storage]
work [rank-1 array(‘f’) with bounds (MAX(lwork,1))]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

lwork [input int, optional] Default: max(3*m,1)

scipy.linalg.lapack.dorgrq

scipy.linalg.lapack.dorgrq(a, tau[, lwork, overwrite_a]) = <fortran object>
Wrapper for dorgrq.

Parameters

a [input rank-2 array(‘d’) with bounds (m,n)]
tau [input rank-1 array(‘d’) with bounds (k)]

Returns

q [rank-2 array(‘d’) with bounds (m,n) and a storage]
work [rank-1 array(‘d’) with bounds (MAX(lwork,1))]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

lwork [input int, optional] Default: max(3*m,1)

scipy.linalg.lapack.sormqr

scipy.linalg.lapack.sormqr(side, trans, a, tau, c, lwork[, overwrite_c ]) = <fortran object>
Wrapper for sormqr.

Parameters

side [input string(len=1)]
trans [input string(len=1)]
a [input rank-2 array(‘f’) with bounds (lda,k)]
tau [input rank-1 array(‘f’) with bounds (k)]
c [input rank-2 array(‘f’) with bounds (ldc,n)]
lwork [input int]

Returns

cq [rank-2 array(‘f’) with bounds (ldc,n) and c storage]
work [rank-1 array(‘f’) with bounds (MAX(lwork,1))]
info [int]

Other Parameters

overwrite_c
[input int, optional] Default: 0
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scipy.linalg.lapack.dormqr

scipy.linalg.lapack.dormqr(side, trans, a, tau, c, lwork[, overwrite_c ]) = <fortran object>
Wrapper for dormqr.

Parameters

side [input string(len=1)]
trans [input string(len=1)]
a [input rank-2 array(‘d’) with bounds (lda,k)]
tau [input rank-1 array(‘d’) with bounds (k)]
c [input rank-2 array(‘d’) with bounds (ldc,n)]
lwork [input int]

Returns

cq [rank-2 array(‘d’) with bounds (ldc,n) and c storage]
work [rank-1 array(‘d’) with bounds (MAX(lwork,1))]
info [int]

Other Parameters

overwrite_c
[input int, optional] Default: 0

scipy.linalg.lapack.sormrz

scipy.linalg.lapack.sormrz(a, tau, c[, side, trans, lwork, overwrite_c ]) = <fortran object>
Wrapper for sormrz.

Parameters

a [input rank-2 array(‘f’) with bounds (k,nt)]
tau [input rank-1 array(‘f’) with bounds (k)]
c [input rank-2 array(‘f’) with bounds (m,n)]

Returns

cq [rank-2 array(‘f’) with bounds (m,n) and c storage]
info [int]

Other Parameters

side [input string(len=1), optional] Default: ‘L’
trans [input string(len=1), optional] Default: ‘N’
overwrite_c

[input int, optional] Default: 0
lwork [input int, optional] Default: MAX((side[0]==’L’?n:m),1)

scipy.linalg.lapack.dormrz

scipy.linalg.lapack.dormrz(a, tau, c[, side, trans, lwork, overwrite_c ]) = <fortran object>
Wrapper for dormrz.

Parameters

a [input rank-2 array(‘d’) with bounds (k,nt)]
tau [input rank-1 array(‘d’) with bounds (k)]
c [input rank-2 array(‘d’) with bounds (m,n)]
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Returns

cq [rank-2 array(‘d’) with bounds (m,n) and c storage]
info [int]

Other Parameters

side [input string(len=1), optional] Default: ‘L’
trans [input string(len=1), optional] Default: ‘N’
overwrite_c

[input int, optional] Default: 0
lwork [input int, optional] Default: MAX((side[0]==’L’?n:m),1)

scipy.linalg.lapack.sormrz_lwork

scipy.linalg.lapack.sormrz_lwork(m, n[, side, trans ]) = <fortran object>
Wrapper for sormrz_lwork.

Parameters

m [input int]
n [input int]

Returns

work [float]
info [int]

Other Parameters

side [input string(len=1), optional] Default: ‘L’
trans [input string(len=1), optional] Default: ‘N’

scipy.linalg.lapack.dormrz_lwork

scipy.linalg.lapack.dormrz_lwork(m, n[, side, trans ]) = <fortran object>
Wrapper for dormrz_lwork.

Parameters

m [input int]
n [input int]

Returns

work [float]
info [int]

Other Parameters

side [input string(len=1), optional] Default: ‘L’
trans [input string(len=1), optional] Default: ‘N’
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scipy.linalg.lapack.spbsv

scipy.linalg.lapack.spbsv(ab, b[, lower, ldab, overwrite_ab, overwrite_b]) = <fortran
object>

Wrapper for spbsv.
Parameters

ab [input rank-2 array(‘f’) with bounds (ldab,n)]
b [input rank-2 array(‘f’) with bounds (ldb,nrhs)]

Returns

c [rank-2 array(‘f’) with bounds (ldab,n) and ab storage]
x [rank-2 array(‘f’) with bounds (ldb,nrhs) and b storage]
info [int]

Other Parameters

lower [input int, optional] Default: 0
overwrite_ab

[input int, optional] Default: 0
ldab [input int, optional] Default: shape(ab,0)
overwrite_b

[input int, optional] Default: 0

scipy.linalg.lapack.dpbsv

scipy.linalg.lapack.dpbsv(ab, b[, lower, ldab, overwrite_ab, overwrite_b]) = <fortran
object>

Wrapper for dpbsv.
Parameters

ab [input rank-2 array(‘d’) with bounds (ldab,n)]
b [input rank-2 array(‘d’) with bounds (ldb,nrhs)]

Returns

c [rank-2 array(‘d’) with bounds (ldab,n) and ab storage]
x [rank-2 array(‘d’) with bounds (ldb,nrhs) and b storage]
info [int]

Other Parameters

lower [input int, optional] Default: 0
overwrite_ab

[input int, optional] Default: 0
ldab [input int, optional] Default: shape(ab,0)
overwrite_b

[input int, optional] Default: 0

scipy.linalg.lapack.cpbsv

scipy.linalg.lapack.cpbsv(ab, b[, lower, ldab, overwrite_ab, overwrite_b]) = <fortran
object>

Wrapper for cpbsv.
Parameters
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ab [input rank-2 array(‘F’) with bounds (ldab,n)]
b [input rank-2 array(‘F’) with bounds (ldb,nrhs)]

Returns

c [rank-2 array(‘F’) with bounds (ldab,n) and ab storage]
x [rank-2 array(‘F’) with bounds (ldb,nrhs) and b storage]
info [int]

Other Parameters

lower [input int, optional] Default: 0
overwrite_ab

[input int, optional] Default: 0
ldab [input int, optional] Default: shape(ab,0)
overwrite_b

[input int, optional] Default: 0

scipy.linalg.lapack.zpbsv

scipy.linalg.lapack.zpbsv(ab, b[, lower, ldab, overwrite_ab, overwrite_b]) = <fortran
object>

Wrapper for zpbsv.
Parameters

ab [input rank-2 array(‘D’) with bounds (ldab,n)]
b [input rank-2 array(‘D’) with bounds (ldb,nrhs)]

Returns

c [rank-2 array(‘D’) with bounds (ldab,n) and ab storage]
x [rank-2 array(‘D’) with bounds (ldb,nrhs) and b storage]
info [int]

Other Parameters

lower [input int, optional] Default: 0
overwrite_ab

[input int, optional] Default: 0
ldab [input int, optional] Default: shape(ab,0)
overwrite_b

[input int, optional] Default: 0

scipy.linalg.lapack.spbtrf

scipy.linalg.lapack.spbtrf(ab[, lower, ldab, overwrite_ab]) = <fortran object>
Wrapper for spbtrf.

Parameters

ab [input rank-2 array(‘f’) with bounds (ldab,n)]
Returns

c [rank-2 array(‘f’) with bounds (ldab,n) and ab storage]
info [int]

Other Parameters
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lower [input int, optional] Default: 0
overwrite_ab

[input int, optional] Default: 0
ldab [input int, optional] Default: shape(ab,0)

scipy.linalg.lapack.dpbtrf

scipy.linalg.lapack.dpbtrf(ab[, lower, ldab, overwrite_ab]) = <fortran object>
Wrapper for dpbtrf.

Parameters

ab [input rank-2 array(‘d’) with bounds (ldab,n)]
Returns

c [rank-2 array(‘d’) with bounds (ldab,n) and ab storage]
info [int]

Other Parameters

lower [input int, optional] Default: 0
overwrite_ab

[input int, optional] Default: 0
ldab [input int, optional] Default: shape(ab,0)

scipy.linalg.lapack.cpbtrf

scipy.linalg.lapack.cpbtrf(ab[, lower, ldab, overwrite_ab]) = <fortran object>
Wrapper for cpbtrf.

Parameters

ab [input rank-2 array(‘F’) with bounds (ldab,n)]
Returns

c [rank-2 array(‘F’) with bounds (ldab,n) and ab storage]
info [int]

Other Parameters

lower [input int, optional] Default: 0
overwrite_ab

[input int, optional] Default: 0
ldab [input int, optional] Default: shape(ab,0)

scipy.linalg.lapack.zpbtrf

scipy.linalg.lapack.zpbtrf(ab[, lower, ldab, overwrite_ab]) = <fortran object>
Wrapper for zpbtrf.

Parameters

ab [input rank-2 array(‘D’) with bounds (ldab,n)]
Returns

c [rank-2 array(‘D’) with bounds (ldab,n) and ab storage]
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info [int]
Other Parameters

lower [input int, optional] Default: 0
overwrite_ab

[input int, optional] Default: 0
ldab [input int, optional] Default: shape(ab,0)

scipy.linalg.lapack.spbtrs

scipy.linalg.lapack.spbtrs(ab, b[, lower, ldab, overwrite_b]) = <fortran object>
Wrapper for spbtrs.

Parameters

ab [input rank-2 array(‘f’) with bounds (ldab,n)]
b [input rank-2 array(‘f’) with bounds (ldb,nrhs)]

Returns

x [rank-2 array(‘f’) with bounds (ldb,nrhs) and b storage]
info [int]

Other Parameters

lower [input int, optional] Default: 0
ldab [input int, optional] Default: shape(ab,0)
overwrite_b

[input int, optional] Default: 0

scipy.linalg.lapack.dpbtrs

scipy.linalg.lapack.dpbtrs(ab, b[, lower, ldab, overwrite_b]) = <fortran object>
Wrapper for dpbtrs.

Parameters

ab [input rank-2 array(‘d’) with bounds (ldab,n)]
b [input rank-2 array(‘d’) with bounds (ldb,nrhs)]

Returns

x [rank-2 array(‘d’) with bounds (ldb,nrhs) and b storage]
info [int]

Other Parameters

lower [input int, optional] Default: 0
ldab [input int, optional] Default: shape(ab,0)
overwrite_b

[input int, optional] Default: 0
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scipy.linalg.lapack.cpbtrs

scipy.linalg.lapack.cpbtrs(ab, b[, lower, ldab, overwrite_b]) = <fortran object>
Wrapper for cpbtrs.

Parameters

ab [input rank-2 array(‘F’) with bounds (ldab,n)]
b [input rank-2 array(‘F’) with bounds (ldb,nrhs)]

Returns

x [rank-2 array(‘F’) with bounds (ldb,nrhs) and b storage]
info [int]

Other Parameters

lower [input int, optional] Default: 0
ldab [input int, optional] Default: shape(ab,0)
overwrite_b

[input int, optional] Default: 0

scipy.linalg.lapack.zpbtrs

scipy.linalg.lapack.zpbtrs(ab, b[, lower, ldab, overwrite_b]) = <fortran object>
Wrapper for zpbtrs.

Parameters

ab [input rank-2 array(‘D’) with bounds (ldab,n)]
b [input rank-2 array(‘D’) with bounds (ldb,nrhs)]

Returns

x [rank-2 array(‘D’) with bounds (ldb,nrhs) and b storage]
info [int]

Other Parameters

lower [input int, optional] Default: 0
ldab [input int, optional] Default: shape(ab,0)
overwrite_b

[input int, optional] Default: 0

scipy.linalg.lapack.spftrf

scipy.linalg.lapack.spftrf(n, a[, transr, uplo, overwrite_a]) = <fortran object>
Wrapper for spftrf.

Parameters

n [input int]
a [input rank-1 array(‘f’) with bounds (nt)]

Returns

achol [rank-1 array(‘f’) with bounds (nt) and a storage]
info [int]

Other Parameters
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transr [input string(len=1), optional] Default: ‘N’
uplo [input string(len=1), optional] Default: ‘U’
overwrite_a

[input int, optional] Default: 0

scipy.linalg.lapack.dpftrf

scipy.linalg.lapack.dpftrf(n, a[, transr, uplo, overwrite_a]) = <fortran object>
Wrapper for dpftrf.

Parameters

n [input int]
a [input rank-1 array(‘d’) with bounds (nt)]

Returns

achol [rank-1 array(‘d’) with bounds (nt) and a storage]
info [int]

Other Parameters

transr [input string(len=1), optional] Default: ‘N’
uplo [input string(len=1), optional] Default: ‘U’
overwrite_a

[input int, optional] Default: 0

scipy.linalg.lapack.cpftrf

scipy.linalg.lapack.cpftrf(n, a[, transr, uplo, overwrite_a]) = <fortran object>
Wrapper for cpftrf.

Parameters

n [input int]
a [input rank-1 array(‘F’) with bounds (nt)]

Returns

achol [rank-1 array(‘F’) with bounds (nt) and a storage]
info [int]

Other Parameters

transr [input string(len=1), optional] Default: ‘N’
uplo [input string(len=1), optional] Default: ‘U’
overwrite_a

[input int, optional] Default: 0

scipy.linalg.lapack.zpftrf

scipy.linalg.lapack.zpftrf(n, a[, transr, uplo, overwrite_a]) = <fortran object>
Wrapper for zpftrf.

Parameters

n [input int]
a [input rank-1 array(‘D’) with bounds (nt)]
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Returns

achol [rank-1 array(‘D’) with bounds (nt) and a storage]
info [int]

Other Parameters

transr [input string(len=1), optional] Default: ‘N’
uplo [input string(len=1), optional] Default: ‘U’
overwrite_a

[input int, optional] Default: 0

scipy.linalg.lapack.spftri

scipy.linalg.lapack.spftri(n, a[, transr, uplo, overwrite_a]) = <fortran object>
Wrapper for spftri.

Parameters

n [input int]
a [input rank-1 array(‘f’) with bounds (nt)]

Returns

ainv [rank-1 array(‘f’) with bounds (nt) and a storage]
info [int]

Other Parameters

transr [input string(len=1), optional] Default: ‘N’
uplo [input string(len=1), optional] Default: ‘U’
overwrite_a

[input int, optional] Default: 0

scipy.linalg.lapack.dpftri

scipy.linalg.lapack.dpftri(n, a[, transr, uplo, overwrite_a]) = <fortran object>
Wrapper for dpftri.

Parameters

n [input int]
a [input rank-1 array(‘d’) with bounds (nt)]

Returns

ainv [rank-1 array(‘d’) with bounds (nt) and a storage]
info [int]

Other Parameters

transr [input string(len=1), optional] Default: ‘N’
uplo [input string(len=1), optional] Default: ‘U’
overwrite_a

[input int, optional] Default: 0
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scipy.linalg.lapack.cpftri

scipy.linalg.lapack.cpftri(n, a[, transr, uplo, overwrite_a]) = <fortran object>
Wrapper for cpftri.

Parameters

n [input int]
a [input rank-1 array(‘F’) with bounds (nt)]

Returns

ainv [rank-1 array(‘F’) with bounds (nt) and a storage]
info [int]

Other Parameters

transr [input string(len=1), optional] Default: ‘N’
uplo [input string(len=1), optional] Default: ‘U’
overwrite_a

[input int, optional] Default: 0

scipy.linalg.lapack.zpftri

scipy.linalg.lapack.zpftri(n, a[, transr, uplo, overwrite_a]) = <fortran object>
Wrapper for zpftri.

Parameters

n [input int]
a [input rank-1 array(‘D’) with bounds (nt)]

Returns

ainv [rank-1 array(‘D’) with bounds (nt) and a storage]
info [int]

Other Parameters

transr [input string(len=1), optional] Default: ‘N’
uplo [input string(len=1), optional] Default: ‘U’
overwrite_a

[input int, optional] Default: 0

scipy.linalg.lapack.spftrs

scipy.linalg.lapack.spftrs(n, a, b[, transr, uplo, overwrite_b]) = <fortran object>
Wrapper for spftrs.

Parameters

n [input int]
a [input rank-1 array(‘f’) with bounds (nt)]
b [input rank-2 array(‘f’) with bounds (ldb,nhrs)]

Returns

x [rank-2 array(‘f’) with bounds (ldb,nhrs) and b storage]
info [int]
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Other Parameters

transr [input string(len=1), optional] Default: ‘N’
uplo [input string(len=1), optional] Default: ‘U’
overwrite_b

[input int, optional] Default: 0

scipy.linalg.lapack.dpftrs

scipy.linalg.lapack.dpftrs(n, a, b[, transr, uplo, overwrite_b]) = <fortran object>
Wrapper for dpftrs.

Parameters

n [input int]
a [input rank-1 array(‘d’) with bounds (nt)]
b [input rank-2 array(‘d’) with bounds (ldb,nhrs)]

Returns

x [rank-2 array(‘d’) with bounds (ldb,nhrs) and b storage]
info [int]

Other Parameters

transr [input string(len=1), optional] Default: ‘N’
uplo [input string(len=1), optional] Default: ‘U’
overwrite_b

[input int, optional] Default: 0

scipy.linalg.lapack.cpftrs

scipy.linalg.lapack.cpftrs(n, a, b[, transr, uplo, overwrite_b]) = <fortran object>
Wrapper for cpftrs.

Parameters

n [input int]
a [input rank-1 array(‘F’) with bounds (nt)]
b [input rank-2 array(‘F’) with bounds (ldb,nhrs)]

Returns

x [rank-2 array(‘F’) with bounds (ldb,nhrs) and b storage]
info [int]

Other Parameters

transr [input string(len=1), optional] Default: ‘N’
uplo [input string(len=1), optional] Default: ‘U’
overwrite_b

[input int, optional] Default: 0
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scipy.linalg.lapack.zpftrs

scipy.linalg.lapack.zpftrs(n, a, b[, transr, uplo, overwrite_b]) = <fortran object>
Wrapper for zpftrs.

Parameters

n [input int]
a [input rank-1 array(‘D’) with bounds (nt)]
b [input rank-2 array(‘D’) with bounds (ldb,nhrs)]

Returns

x [rank-2 array(‘D’) with bounds (ldb,nhrs) and b storage]
info [int]

Other Parameters

transr [input string(len=1), optional] Default: ‘N’
uplo [input string(len=1), optional] Default: ‘U’
overwrite_b

[input int, optional] Default: 0

scipy.linalg.lapack.spocon

scipy.linalg.lapack.spocon(a, anorm[, uplo]) = <fortran object>
Wrapper for spocon.

Parameters

a [input rank-2 array(‘f’) with bounds (n,n)]
anorm [input float]

Returns

rcond [float]
info [int]

Other Parameters

uplo [input string(len=1), optional] Default: ‘U’

scipy.linalg.lapack.dpocon

scipy.linalg.lapack.dpocon(a, anorm[, uplo]) = <fortran object>
Wrapper for dpocon.

Parameters

a [input rank-2 array(‘d’) with bounds (n,n)]
anorm [input float]

Returns

rcond [float]
info [int]

Other Parameters

uplo [input string(len=1), optional] Default: ‘U’
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scipy.linalg.lapack.cpocon

scipy.linalg.lapack.cpocon(a, anorm[, uplo]) = <fortran object>
Wrapper for cpocon.

Parameters

a [input rank-2 array(‘F’) with bounds (n,n)]
anorm [input float]

Returns

rcond [float]
info [int]

Other Parameters

uplo [input string(len=1), optional] Default: ‘U’

scipy.linalg.lapack.zpocon

scipy.linalg.lapack.zpocon(a, anorm[, uplo]) = <fortran object>
Wrapper for zpocon.

Parameters

a [input rank-2 array(‘D’) with bounds (n,n)]
anorm [input float]

Returns

rcond [float]
info [int]

Other Parameters

uplo [input string(len=1), optional] Default: ‘U’

scipy.linalg.lapack.sposv

scipy.linalg.lapack.sposv(a, b[, lower, overwrite_a, overwrite_b]) = <fortran object>
Wrapper for sposv.

Parameters

a [input rank-2 array(‘f’) with bounds (n,n)]
b [input rank-2 array(‘f’) with bounds (n,nrhs)]

Returns

c [rank-2 array(‘f’) with bounds (n,n) and a storage]
x [rank-2 array(‘f’) with bounds (n,nrhs) and b storage]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0

lower [input int, optional] Default: 0
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scipy.linalg.lapack.dposv

scipy.linalg.lapack.dposv(a, b[, lower, overwrite_a, overwrite_b]) = <fortran object>
Wrapper for dposv.

Parameters

a [input rank-2 array(‘d’) with bounds (n,n)]
b [input rank-2 array(‘d’) with bounds (n,nrhs)]

Returns

c [rank-2 array(‘d’) with bounds (n,n) and a storage]
x [rank-2 array(‘d’) with bounds (n,nrhs) and b storage]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0

lower [input int, optional] Default: 0

scipy.linalg.lapack.cposv

scipy.linalg.lapack.cposv(a, b[, lower, overwrite_a, overwrite_b]) = <fortran object>
Wrapper for cposv.

Parameters

a [input rank-2 array(‘F’) with bounds (n,n)]
b [input rank-2 array(‘F’) with bounds (n,nrhs)]

Returns

c [rank-2 array(‘F’) with bounds (n,n) and a storage]
x [rank-2 array(‘F’) with bounds (n,nrhs) and b storage]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0

lower [input int, optional] Default: 0

scipy.linalg.lapack.zposv

scipy.linalg.lapack.zposv(a, b[, lower, overwrite_a, overwrite_b]) = <fortran object>
Wrapper for zposv.

Parameters

a [input rank-2 array(‘D’) with bounds (n,n)]
b [input rank-2 array(‘D’) with bounds (n,nrhs)]

Returns
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c [rank-2 array(‘D’) with bounds (n,n) and a storage]
x [rank-2 array(‘D’) with bounds (n,nrhs) and b storage]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0

lower [input int, optional] Default: 0

scipy.linalg.lapack.sposvx

scipy.linalg.lapack.sposvx(a, b[, fact, af, equed, s, lower, overwrite_a, overwrite_b]) =
<fortran object>

Wrapper for sposvx.
Parameters

a [input rank-2 array(‘f’) with bounds (n,n)]
b [input rank-2 array(‘f’) with bounds (n,nrhs)]

Returns

a_s [rank-2 array(‘f’) with bounds (n,n) and a storage]
lu [rank-2 array(‘f’) with bounds (n,n) and af storage]
equed [string(len=1)]
s [rank-1 array(‘f’) with bounds (n)]
b_s [rank-2 array(‘f’) with bounds (n,nrhs) and b storage]
x [rank-2 array(‘f’) with bounds (n,nrhs)]
rcond [float]
ferr [rank-1 array(‘f’) with bounds (nrhs)]
berr [rank-1 array(‘f’) with bounds (nrhs)]
info [int]

Other Parameters

fact [input string(len=1), optional] Default: ‘E’
overwrite_a

[input int, optional] Default: 0
af [input rank-2 array(‘f’) with bounds (n,n)]
equed [input string(len=1), optional] Default: ‘Y’
s [input rank-1 array(‘f’) with bounds (n)]
overwrite_b

[input int, optional] Default: 0
lower [input int, optional] Default: 0

scipy.linalg.lapack.dposvx

scipy.linalg.lapack.dposvx(a, b[, fact, af, equed, s, lower, overwrite_a, overwrite_b]) =
<fortran object>

Wrapper for dposvx.
Parameters

a [input rank-2 array(‘d’) with bounds (n,n)]
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b [input rank-2 array(‘d’) with bounds (n,nrhs)]
Returns

a_s [rank-2 array(‘d’) with bounds (n,n) and a storage]
lu [rank-2 array(‘d’) with bounds (n,n) and af storage]
equed [string(len=1)]
s [rank-1 array(‘d’) with bounds (n)]
b_s [rank-2 array(‘d’) with bounds (n,nrhs) and b storage]
x [rank-2 array(‘d’) with bounds (n,nrhs)]
rcond [float]
ferr [rank-1 array(‘d’) with bounds (nrhs)]
berr [rank-1 array(‘d’) with bounds (nrhs)]
info [int]

Other Parameters

fact [input string(len=1), optional] Default: ‘E’
overwrite_a

[input int, optional] Default: 0
af [input rank-2 array(‘d’) with bounds (n,n)]
equed [input string(len=1), optional] Default: ‘Y’
s [input rank-1 array(‘d’) with bounds (n)]
overwrite_b

[input int, optional] Default: 0
lower [input int, optional] Default: 0

scipy.linalg.lapack.cposvx

scipy.linalg.lapack.cposvx(a, b[, fact, af, equed, s, lower, overwrite_a, overwrite_b]) =
<fortran object>

Wrapper for cposvx.
Parameters

a [input rank-2 array(‘F’) with bounds (n,n)]
b [input rank-2 array(‘F’) with bounds (n,nrhs)]

Returns

a_s [rank-2 array(‘F’) with bounds (n,n) and a storage]
lu [rank-2 array(‘F’) with bounds (n,n) and af storage]
equed [string(len=1)]
s [rank-1 array(‘f’) with bounds (n)]
b_s [rank-2 array(‘F’) with bounds (n,nrhs) and b storage]
x [rank-2 array(‘F’) with bounds (n,nrhs)]
rcond [float]
ferr [rank-1 array(‘f’) with bounds (nrhs)]
berr [rank-1 array(‘f’) with bounds (nrhs)]
info [int]

Other Parameters

fact [input string(len=1), optional] Default: ‘E’
overwrite_a

[input int, optional] Default: 0
af [input rank-2 array(‘F’) with bounds (n,n)]
equed [input string(len=1), optional] Default: ‘Y’
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s [input rank-1 array(‘f’) with bounds (n)]
overwrite_b

[input int, optional] Default: 0
lower [input int, optional] Default: 0

scipy.linalg.lapack.zposvx

scipy.linalg.lapack.zposvx(a, b[, fact, af, equed, s, lower, overwrite_a, overwrite_b]) =
<fortran object>

Wrapper for zposvx.
Parameters

a [input rank-2 array(‘D’) with bounds (n,n)]
b [input rank-2 array(‘D’) with bounds (n,nrhs)]

Returns

a_s [rank-2 array(‘D’) with bounds (n,n) and a storage]
lu [rank-2 array(‘D’) with bounds (n,n) and af storage]
equed [string(len=1)]
s [rank-1 array(‘d’) with bounds (n)]
b_s [rank-2 array(‘D’) with bounds (n,nrhs) and b storage]
x [rank-2 array(‘D’) with bounds (n,nrhs)]
rcond [float]
ferr [rank-1 array(‘d’) with bounds (nrhs)]
berr [rank-1 array(‘d’) with bounds (nrhs)]
info [int]

Other Parameters

fact [input string(len=1), optional] Default: ‘E’
overwrite_a

[input int, optional] Default: 0
af [input rank-2 array(‘D’) with bounds (n,n)]
equed [input string(len=1), optional] Default: ‘Y’
s [input rank-1 array(‘d’) with bounds (n)]
overwrite_b

[input int, optional] Default: 0
lower [input int, optional] Default: 0

scipy.linalg.lapack.spotrf

scipy.linalg.lapack.spotrf(a[, lower, clean, overwrite_a]) = <fortran object>
Wrapper for spotrf.

Parameters

a [input rank-2 array(‘f’) with bounds (n,n)]
Returns

c [rank-2 array(‘f’) with bounds (n,n) and a storage]
info [int]

Other Parameters
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overwrite_a
[input int, optional] Default: 0

lower [input int, optional] Default: 0
clean [input int, optional] Default: 1

scipy.linalg.lapack.dpotrf

scipy.linalg.lapack.dpotrf(a[, lower, clean, overwrite_a]) = <fortran object>
Wrapper for dpotrf.

Parameters

a [input rank-2 array(‘d’) with bounds (n,n)]
Returns

c [rank-2 array(‘d’) with bounds (n,n) and a storage]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

lower [input int, optional] Default: 0
clean [input int, optional] Default: 1

scipy.linalg.lapack.cpotrf

scipy.linalg.lapack.cpotrf(a[, lower, clean, overwrite_a]) = <fortran object>
Wrapper for cpotrf.

Parameters

a [input rank-2 array(‘F’) with bounds (n,n)]
Returns

c [rank-2 array(‘F’) with bounds (n,n) and a storage]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

lower [input int, optional] Default: 0
clean [input int, optional] Default: 1

scipy.linalg.lapack.zpotrf

scipy.linalg.lapack.zpotrf(a[, lower, clean, overwrite_a]) = <fortran object>
Wrapper for zpotrf.

Parameters

a [input rank-2 array(‘D’) with bounds (n,n)]
Returns

c [rank-2 array(‘D’) with bounds (n,n) and a storage]
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info [int]
Other Parameters

overwrite_a
[input int, optional] Default: 0

lower [input int, optional] Default: 0
clean [input int, optional] Default: 1

scipy.linalg.lapack.spotri

scipy.linalg.lapack.spotri(c[, lower, overwrite_c ]) = <fortran object>
Wrapper for spotri.

Parameters

c [input rank-2 array(‘f’) with bounds (n,n)]
Returns

inv_a [rank-2 array(‘f’) with bounds (n,n) and c storage]
info [int]

Other Parameters

overwrite_c
[input int, optional] Default: 0

lower [input int, optional] Default: 0

scipy.linalg.lapack.dpotri

scipy.linalg.lapack.dpotri(c[, lower, overwrite_c ]) = <fortran object>
Wrapper for dpotri.

Parameters

c [input rank-2 array(‘d’) with bounds (n,n)]
Returns

inv_a [rank-2 array(‘d’) with bounds (n,n) and c storage]
info [int]

Other Parameters

overwrite_c
[input int, optional] Default: 0

lower [input int, optional] Default: 0

scipy.linalg.lapack.cpotri

scipy.linalg.lapack.cpotri(c[, lower, overwrite_c ]) = <fortran object>
Wrapper for cpotri.

Parameters

c [input rank-2 array(‘F’) with bounds (n,n)]
Returns

6.11. Low-level LAPACK functions (scipy.linalg.lapack) 1051



SciPy Reference Guide, Release 1.3.1

inv_a [rank-2 array(‘F’) with bounds (n,n) and c storage]
info [int]

Other Parameters

overwrite_c
[input int, optional] Default: 0

lower [input int, optional] Default: 0

scipy.linalg.lapack.zpotri

scipy.linalg.lapack.zpotri(c[, lower, overwrite_c ]) = <fortran object>
Wrapper for zpotri.

Parameters

c [input rank-2 array(‘D’) with bounds (n,n)]
Returns

inv_a [rank-2 array(‘D’) with bounds (n,n) and c storage]
info [int]

Other Parameters

overwrite_c
[input int, optional] Default: 0

lower [input int, optional] Default: 0

scipy.linalg.lapack.spotrs

scipy.linalg.lapack.spotrs(c, b[, lower, overwrite_b]) = <fortran object>
Wrapper for spotrs.

Parameters

c [input rank-2 array(‘f’) with bounds (n,n)]
b [input rank-2 array(‘f’) with bounds (n,nrhs)]

Returns

x [rank-2 array(‘f’) with bounds (n,nrhs) and b storage]
info [int]

Other Parameters

overwrite_b
[input int, optional] Default: 0

lower [input int, optional] Default: 0

scipy.linalg.lapack.dpotrs

scipy.linalg.lapack.dpotrs(c, b[, lower, overwrite_b]) = <fortran object>
Wrapper for dpotrs.

Parameters

c [input rank-2 array(‘d’) with bounds (n,n)]
b [input rank-2 array(‘d’) with bounds (n,nrhs)]

1052 Chapter 6. API Reference



SciPy Reference Guide, Release 1.3.1

Returns

x [rank-2 array(‘d’) with bounds (n,nrhs) and b storage]
info [int]

Other Parameters

overwrite_b
[input int, optional] Default: 0

lower [input int, optional] Default: 0

scipy.linalg.lapack.cpotrs

scipy.linalg.lapack.cpotrs(c, b[, lower, overwrite_b]) = <fortran object>
Wrapper for cpotrs.

Parameters

c [input rank-2 array(‘F’) with bounds (n,n)]
b [input rank-2 array(‘F’) with bounds (n,nrhs)]

Returns

x [rank-2 array(‘F’) with bounds (n,nrhs) and b storage]
info [int]

Other Parameters

overwrite_b
[input int, optional] Default: 0

lower [input int, optional] Default: 0

scipy.linalg.lapack.zpotrs

scipy.linalg.lapack.zpotrs(c, b[, lower, overwrite_b]) = <fortran object>
Wrapper for zpotrs.

Parameters

c [input rank-2 array(‘D’) with bounds (n,n)]
b [input rank-2 array(‘D’) with bounds (n,nrhs)]

Returns

x [rank-2 array(‘D’) with bounds (n,nrhs) and b storage]
info [int]

Other Parameters

overwrite_b
[input int, optional] Default: 0

lower [input int, optional] Default: 0
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scipy.linalg.lapack.sptsv

scipy.linalg.lapack.sptsv(d, e, b[, overwrite_d, overwrite_e, overwrite_b]) = <fortran
object>

Wrapper for sptsv.
Parameters

d [input rank-1 array(‘f’) with bounds (n)]
e [input rank-1 array(‘f’) with bounds (n - 1)]
b [input rank-2 array(‘f’) with bounds (n,nrhs)]

Returns

d [rank-1 array(‘f’) with bounds (n)]
du [rank-1 array(‘f’) with bounds (n - 1) and e storage]
x [rank-2 array(‘f’) with bounds (n,nrhs) and b storage]
info [int]

Other Parameters

overwrite_d
[input int, optional] Default: 0

overwrite_e
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0

scipy.linalg.lapack.dptsv

scipy.linalg.lapack.dptsv(d, e, b[, overwrite_d, overwrite_e, overwrite_b]) = <fortran
object>

Wrapper for dptsv.
Parameters

d [input rank-1 array(‘d’) with bounds (n)]
e [input rank-1 array(‘d’) with bounds (n - 1)]
b [input rank-2 array(‘d’) with bounds (n,nrhs)]

Returns

d [rank-1 array(‘d’) with bounds (n)]
du [rank-1 array(‘d’) with bounds (n - 1) and e storage]
x [rank-2 array(‘d’) with bounds (n,nrhs) and b storage]
info [int]

Other Parameters

overwrite_d
[input int, optional] Default: 0

overwrite_e
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0
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scipy.linalg.lapack.cptsv

scipy.linalg.lapack.cptsv(d, e, b[, overwrite_d, overwrite_e, overwrite_b]) = <fortran
object>

Wrapper for cptsv.
Parameters

d [input rank-1 array(‘f’) with bounds (n)]
e [input rank-1 array(‘F’) with bounds (n - 1)]
b [input rank-2 array(‘F’) with bounds (n,nrhs)]

Returns

d [rank-1 array(‘f’) with bounds (n)]
du [rank-1 array(‘F’) with bounds (n - 1) and e storage]
x [rank-2 array(‘F’) with bounds (n,nrhs) and b storage]
info [int]

Other Parameters

overwrite_d
[input int, optional] Default: 0

overwrite_e
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0

scipy.linalg.lapack.zptsv

scipy.linalg.lapack.zptsv(d, e, b[, overwrite_d, overwrite_e, overwrite_b]) = <fortran
object>

Wrapper for zptsv.
Parameters

d [input rank-1 array(‘d’) with bounds (n)]
e [input rank-1 array(‘D’) with bounds (n - 1)]
b [input rank-2 array(‘D’) with bounds (n,nrhs)]

Returns

d [rank-1 array(‘d’) with bounds (n)]
du [rank-1 array(‘D’) with bounds (n - 1) and e storage]
x [rank-2 array(‘D’) with bounds (n,nrhs) and b storage]
info [int]

Other Parameters

overwrite_d
[input int, optional] Default: 0

overwrite_e
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0
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scipy.linalg.lapack.crot

scipy.linalg.lapack.crot(x, y, c, s[, n, offx, incx, offy, incy, overwrite_x, overwrite_y]) =
<fortran object>

Wrapper for crot.
Parameters

x [input rank-1 array(‘F’) with bounds (lx)]
y [input rank-1 array(‘F’) with bounds (ly)]
c [input float]
s [input complex]

Returns

x [rank-1 array(‘F’) with bounds (lx)]
y [rank-1 array(‘F’) with bounds (ly)]

Other Parameters

n [input int, optional] Default: (lx-1-offx)/abs(incx)+1
overwrite_x

[input int, optional] Default: 0
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1
overwrite_y

[input int, optional] Default: 0
offy [input int, optional] Default: 0
incy [input int, optional] Default: 1

scipy.linalg.lapack.zrot

scipy.linalg.lapack.zrot(x, y, c, s[, n, offx, incx, offy, incy, overwrite_x, overwrite_y]) =
<fortran object>

Wrapper for zrot.
Parameters

x [input rank-1 array(‘D’) with bounds (lx)]
y [input rank-1 array(‘D’) with bounds (ly)]
c [input float]
s [input complex]

Returns

x [rank-1 array(‘D’) with bounds (lx)]
y [rank-1 array(‘D’) with bounds (ly)]

Other Parameters

n [input int, optional] Default: (lx-1-offx)/abs(incx)+1
overwrite_x

[input int, optional] Default: 0
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1
overwrite_y

[input int, optional] Default: 0
offy [input int, optional] Default: 0
incy [input int, optional] Default: 1
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scipy.linalg.lapack.ssbev

scipy.linalg.lapack.ssbev(ab[, compute_v, lower, ldab, overwrite_ab]) = <fortran
object>

Wrapper for ssbev.
Parameters

ab [input rank-2 array(‘f’) with bounds (ldab,n)]
Returns

w [rank-1 array(‘f’) with bounds (n)]
z [rank-2 array(‘f’) with bounds (ldz,ldz)]
info [int]

Other Parameters

overwrite_ab
[input int, optional] Default: 1

compute_v
[input int, optional] Default: 1

lower [input int, optional] Default: 0
ldab [input int, optional] Default: shape(ab,0)

scipy.linalg.lapack.dsbev

scipy.linalg.lapack.dsbev(ab[, compute_v, lower, ldab, overwrite_ab]) = <fortran
object>

Wrapper for dsbev.
Parameters

ab [input rank-2 array(‘d’) with bounds (ldab,n)]
Returns

w [rank-1 array(‘d’) with bounds (n)]
z [rank-2 array(‘d’) with bounds (ldz,ldz)]
info [int]

Other Parameters

overwrite_ab
[input int, optional] Default: 1

compute_v
[input int, optional] Default: 1

lower [input int, optional] Default: 0
ldab [input int, optional] Default: shape(ab,0)

scipy.linalg.lapack.ssbevd

scipy.linalg.lapack.ssbevd(ab[, compute_v, lower, ldab, liwork, overwrite_ab]) = <fortran
object>

Wrapper for ssbevd.
Parameters

ab [input rank-2 array(‘f’) with bounds (ldab,n)]
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Returns

w [rank-1 array(‘f’) with bounds (n)]
z [rank-2 array(‘f’) with bounds (ldz,ldz)]
info [int]

Other Parameters

overwrite_ab
[input int, optional] Default: 1

compute_v
[input int, optional] Default: 1

lower [input int, optional] Default: 0
ldab [input int, optional] Default: shape(ab,0)
liwork [input int, optional] Default: (compute_v?3+5*n:1)

scipy.linalg.lapack.dsbevd

scipy.linalg.lapack.dsbevd(ab[, compute_v, lower, ldab, liwork, overwrite_ab]) = <fortran
object>

Wrapper for dsbevd.
Parameters

ab [input rank-2 array(‘d’) with bounds (ldab,n)]
Returns

w [rank-1 array(‘d’) with bounds (n)]
z [rank-2 array(‘d’) with bounds (ldz,ldz)]
info [int]

Other Parameters

overwrite_ab
[input int, optional] Default: 1

compute_v
[input int, optional] Default: 1

lower [input int, optional] Default: 0
ldab [input int, optional] Default: shape(ab,0)
liwork [input int, optional] Default: (compute_v?3+5*n:1)

scipy.linalg.lapack.ssbevx

scipy.linalg.lapack.ssbevx(ab, vl, vu, il, iu[, ldab, compute_v, range, lower, abstol, mmax, over-
write_ab]) = <fortran object>

Wrapper for ssbevx.
Parameters

ab [input rank-2 array(‘f’) with bounds (ldab,n)]
vl [input float]
vu [input float]
il [input int]
iu [input int]

Returns

w [rank-1 array(‘f’) with bounds (n)]
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z [rank-2 array(‘f’) with bounds (ldz,mmax)]
m [int]
ifail [rank-1 array(‘i’) with bounds ((compute_v?n:1))]
info [int]

Other Parameters

overwrite_ab
[input int, optional] Default: 1

ldab [input int, optional] Default: shape(ab,0)
compute_v

[input int, optional] Default: 1
range [input int, optional] Default: 0
lower [input int, optional] Default: 0
abstol [input float, optional] Default: 0.0
mmax [input int, optional] Default: (compute_v?(range==2?(iu-il+1):n):1)

scipy.linalg.lapack.dsbevx

scipy.linalg.lapack.dsbevx(ab, vl, vu, il, iu[, ldab, compute_v, range, lower, abstol, mmax, over-
write_ab]) = <fortran object>

Wrapper for dsbevx.
Parameters

ab [input rank-2 array(‘d’) with bounds (ldab,n)]
vl [input float]
vu [input float]
il [input int]
iu [input int]

Returns

w [rank-1 array(‘d’) with bounds (n)]
z [rank-2 array(‘d’) with bounds (ldz,mmax)]
m [int]
ifail [rank-1 array(‘i’) with bounds ((compute_v?n:1))]
info [int]

Other Parameters

overwrite_ab
[input int, optional] Default: 1

ldab [input int, optional] Default: shape(ab,0)
compute_v

[input int, optional] Default: 1
range [input int, optional] Default: 0
lower [input int, optional] Default: 0
abstol [input float, optional] Default: 0.0
mmax [input int, optional] Default: (compute_v?(range==2?(iu-il+1):n):1)
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scipy.linalg.lapack.ssfrk

scipy.linalg.lapack.ssfrk(n, k, alpha, a, beta, c[, transr, uplo, trans, overwrite_c ]) = <fortran
object>

Wrapper for ssfrk.
Parameters

n [input int]
k [input int]
alpha [input float]
a [input rank-2 array(‘f’) with bounds (lda,ka)]
beta [input float]
c [input rank-1 array(‘f’) with bounds (nt)]

Returns

cout [rank-1 array(‘f’) with bounds (nt) and c storage]
Other Parameters

transr [input string(len=1), optional] Default: ‘N’
uplo [input string(len=1), optional] Default: ‘U’
trans [input string(len=1), optional] Default: ‘N’
overwrite_c

[input int, optional] Default: 0

scipy.linalg.lapack.dsfrk

scipy.linalg.lapack.dsfrk(n, k, alpha, a, beta, c[, transr, uplo, trans, overwrite_c ]) = <fortran
object>

Wrapper for dsfrk.
Parameters

n [input int]
k [input int]
alpha [input float]
a [input rank-2 array(‘d’) with bounds (lda,ka)]
beta [input float]
c [input rank-1 array(‘d’) with bounds (nt)]

Returns

cout [rank-1 array(‘d’) with bounds (nt) and c storage]
Other Parameters

transr [input string(len=1), optional] Default: ‘N’
uplo [input string(len=1), optional] Default: ‘U’
trans [input string(len=1), optional] Default: ‘N’
overwrite_c

[input int, optional] Default: 0
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scipy.linalg.lapack.sstebz

scipy.linalg.lapack.sstebz(d, e, range, vl, vu, il, iu, tol, order) = <fortran object>
Wrapper for sstebz.

Parameters

d [input rank-1 array(‘f’) with bounds (n)]
e [input rank-1 array(‘f’) with bounds (n - 1)]
range [input int]
vl [input float]
vu [input float]
il [input int]
iu [input int]
tol [input float]
order [input string(len=1)]

Returns

m [int]
w [rank-1 array(‘f’) with bounds (n)]
iblock [rank-1 array(‘i’) with bounds (n)]
isplit [rank-1 array(‘i’) with bounds (n)]
info [int]

scipy.linalg.lapack.dstebz

scipy.linalg.lapack.dstebz(d, e, range, vl, vu, il, iu, tol, order) = <fortran object>
Wrapper for dstebz.

Parameters

d [input rank-1 array(‘d’) with bounds (n)]
e [input rank-1 array(‘d’) with bounds (n - 1)]
range [input int]
vl [input float]
vu [input float]
il [input int]
iu [input int]
tol [input float]
order [input string(len=1)]

Returns

m [int]
w [rank-1 array(‘d’) with bounds (n)]
iblock [rank-1 array(‘i’) with bounds (n)]
isplit [rank-1 array(‘i’) with bounds (n)]
info [int]

scipy.linalg.lapack.sstein

scipy.linalg.lapack.sstein(d, e, w, iblock, isplit) = <fortran object>
Wrapper for sstein.

Parameters

6.11. Low-level LAPACK functions (scipy.linalg.lapack) 1061



SciPy Reference Guide, Release 1.3.1

d [input rank-1 array(‘f’) with bounds (n)]
e [input rank-1 array(‘f’) with bounds (n - 1)]
w [input rank-1 array(‘f’) with bounds (m)]
iblock [input rank-1 array(‘i’) with bounds (n)]
isplit [input rank-1 array(‘i’) with bounds (n)]

Returns

z [rank-2 array(‘f’) with bounds (ldz,m)]
info [int]

scipy.linalg.lapack.dstein

scipy.linalg.lapack.dstein(d, e, w, iblock, isplit) = <fortran object>
Wrapper for dstein.

Parameters

d [input rank-1 array(‘d’) with bounds (n)]
e [input rank-1 array(‘d’) with bounds (n - 1)]
w [input rank-1 array(‘d’) with bounds (m)]
iblock [input rank-1 array(‘i’) with bounds (n)]
isplit [input rank-1 array(‘i’) with bounds (n)]

Returns

z [rank-2 array(‘d’) with bounds (ldz,m)]
info [int]

scipy.linalg.lapack.sstemr

scipy.linalg.lapack.sstemr(d, e, range, vl, vu, il, iu[, compute_v, lwork, liwork, overwrite_d ]) =
<fortran object>

Wrapper for sstemr.
Parameters

d [input rank-1 array(‘f’) with bounds (n)]
e [input rank-1 array(‘f’) with bounds (n)]
range [input int]
vl [input float]
vu [input float]
il [input int]
iu [input int]

Returns

m [int]
w [rank-1 array(‘f’) with bounds (n)]
z [rank-2 array(‘f’) with bounds (n,n)]
info [int]

Other Parameters

overwrite_d
[input int, optional] Default: 0

compute_v
[input int, optional] Default: 1
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lwork [input int, optional] Default: max((compute_v?18*n:12*n),1)
liwork [input int, optional] Default: (compute_v?10*n:8*n)

scipy.linalg.lapack.dstemr

scipy.linalg.lapack.dstemr(d, e, range, vl, vu, il, iu[, compute_v, lwork, liwork, overwrite_d ]) =
<fortran object>

Wrapper for dstemr.
Parameters

d [input rank-1 array(‘d’) with bounds (n)]
e [input rank-1 array(‘d’) with bounds (n)]
range [input int]
vl [input float]
vu [input float]
il [input int]
iu [input int]

Returns

m [int]
w [rank-1 array(‘d’) with bounds (n)]
z [rank-2 array(‘d’) with bounds (n,n)]
info [int]

Other Parameters

overwrite_d
[input int, optional] Default: 0

compute_v
[input int, optional] Default: 1

lwork [input int, optional] Default: max((compute_v?18*n:12*n),1)
liwork [input int, optional] Default: (compute_v?10*n:8*n)

scipy.linalg.lapack.sstemr_lwork

scipy.linalg.lapack.sstemr_lwork(d, e, range, vl, vu, il, iu[, compute_v, overwrite_d, overwrite_e
]) = <fortran object>

Wrapper for sstemr_lwork.
Parameters

d [input rank-1 array(‘f’) with bounds (n)]
e [input rank-1 array(‘f’) with bounds (n)]
range [input int]
vl [input float]
vu [input float]
il [input int]
iu [input int]

Returns

work [float]
iwork [int]
info [int]

Other Parameters
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overwrite_d
[input int, optional] Default: 0

overwrite_e
[input int, optional] Default: 0

compute_v
[input int, optional] Default: 1

scipy.linalg.lapack.dstemr_lwork

scipy.linalg.lapack.dstemr_lwork(d, e, range, vl, vu, il, iu[, compute_v, overwrite_d, overwrite_e
]) = <fortran object>

Wrapper for dstemr_lwork.
Parameters

d [input rank-1 array(‘d’) with bounds (n)]
e [input rank-1 array(‘d’) with bounds (n)]
range [input int]
vl [input float]
vu [input float]
il [input int]
iu [input int]

Returns

work [float]
iwork [int]
info [int]

Other Parameters

overwrite_d
[input int, optional] Default: 0

overwrite_e
[input int, optional] Default: 0

compute_v
[input int, optional] Default: 1

scipy.linalg.lapack.ssterf

scipy.linalg.lapack.ssterf(d, e[, overwrite_d, overwrite_e]) = <fortran object>
Wrapper for ssterf.

Parameters

d [input rank-1 array(‘f’) with bounds (n)]
e [input rank-1 array(‘f’) with bounds (n - 1)]

Returns

vals [rank-1 array(‘f’) with bounds (n) and d storage]
info [int]

Other Parameters

overwrite_d
[input int, optional] Default: 0
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overwrite_e
[input int, optional] Default: 0

scipy.linalg.lapack.dsterf

scipy.linalg.lapack.dsterf(d, e[, overwrite_d, overwrite_e]) = <fortran object>
Wrapper for dsterf.

Parameters

d [input rank-1 array(‘d’) with bounds (n)]
e [input rank-1 array(‘d’) with bounds (n - 1)]

Returns

vals [rank-1 array(‘d’) with bounds (n) and d storage]
info [int]

Other Parameters

overwrite_d
[input int, optional] Default: 0

overwrite_e
[input int, optional] Default: 0

scipy.linalg.lapack.sstev

scipy.linalg.lapack.sstev(d, e[, compute_v, overwrite_d, overwrite_e]) = <fortran
object>

Wrapper for sstev.
Parameters

d [input rank-1 array(‘f’) with bounds (n)]
e [input rank-1 array(‘f’) with bounds (MAX(n-1,1))]

Returns

vals [rank-1 array(‘f’) with bounds (n) and d storage]
z [rank-2 array(‘f’) with bounds (ldz,(compute_v?n:1))]
info [int]

Other Parameters

overwrite_d
[input int, optional] Default: 0

overwrite_e
[input int, optional] Default: 0

compute_v
[input int, optional] Default: 1
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scipy.linalg.lapack.dstev

scipy.linalg.lapack.dstev(d, e[, compute_v, overwrite_d, overwrite_e]) = <fortran
object>

Wrapper for dstev.
Parameters

d [input rank-1 array(‘d’) with bounds (n)]
e [input rank-1 array(‘d’) with bounds (MAX(n-1,1))]

Returns

vals [rank-1 array(‘d’) with bounds (n) and d storage]
z [rank-2 array(‘d’) with bounds (ldz,(compute_v?n:1))]
info [int]

Other Parameters

overwrite_d
[input int, optional] Default: 0

overwrite_e
[input int, optional] Default: 0

compute_v
[input int, optional] Default: 1

scipy.linalg.lapack.ssycon

scipy.linalg.lapack.ssycon(a, ipiv, anorm[, lower ]) = <fortran object>
Wrapper for ssycon.

Parameters

a [input rank-2 array(‘f’) with bounds (n,n)]
ipiv [input rank-1 array(‘i’) with bounds (n)]
anorm [input float]

Returns

rcond [float]
info [int]

Other Parameters

lower [input int, optional] Default: 0

scipy.linalg.lapack.dsycon

scipy.linalg.lapack.dsycon(a, ipiv, anorm[, lower ]) = <fortran object>
Wrapper for dsycon.

Parameters

a [input rank-2 array(‘d’) with bounds (n,n)]
ipiv [input rank-1 array(‘i’) with bounds (n)]
anorm [input float]

Returns

rcond [float]
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info [int]
Other Parameters

lower [input int, optional] Default: 0

scipy.linalg.lapack.csycon

scipy.linalg.lapack.csycon(a, ipiv, anorm[, lower ]) = <fortran object>
Wrapper for csycon.

Parameters

a [input rank-2 array(‘F’) with bounds (n,n)]
ipiv [input rank-1 array(‘i’) with bounds (n)]
anorm [input float]

Returns

rcond [float]
info [int]

Other Parameters

lower [input int, optional] Default: 0

scipy.linalg.lapack.zsycon

scipy.linalg.lapack.zsycon(a, ipiv, anorm[, lower ]) = <fortran object>
Wrapper for zsycon.

Parameters

a [input rank-2 array(‘D’) with bounds (n,n)]
ipiv [input rank-1 array(‘i’) with bounds (n)]
anorm [input float]

Returns

rcond [float]
info [int]

Other Parameters

lower [input int, optional] Default: 0

scipy.linalg.lapack.ssyconv

scipy.linalg.lapack.ssyconv(a, ipiv[, lower, way, overwrite_a]) = <fortran object>
Wrapper for ssyconv.

Parameters

a [input rank-2 array(‘f’) with bounds (n,n)]
ipiv [input rank-1 array(‘i’) with bounds (n)]

Returns

a [rank-2 array(‘f’) with bounds (n,n)]
e [rank-1 array(‘f’) with bounds (n)]
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info [int]
Other Parameters

lower [input int, optional] Default: 0
way [input int, optional] Default: 0
overwrite_a

[input int, optional] Default: 0

scipy.linalg.lapack.dsyconv

scipy.linalg.lapack.dsyconv(a, ipiv[, lower, way, overwrite_a]) = <fortran object>
Wrapper for dsyconv.

Parameters

a [input rank-2 array(‘d’) with bounds (n,n)]
ipiv [input rank-1 array(‘i’) with bounds (n)]

Returns

a [rank-2 array(‘d’) with bounds (n,n)]
e [rank-1 array(‘d’) with bounds (n)]
info [int]

Other Parameters

lower [input int, optional] Default: 0
way [input int, optional] Default: 0
overwrite_a

[input int, optional] Default: 0

scipy.linalg.lapack.csyconv

scipy.linalg.lapack.csyconv(a, ipiv[, lower, way, overwrite_a]) = <fortran object>
Wrapper for csyconv.

Parameters

a [input rank-2 array(‘F’) with bounds (n,n)]
ipiv [input rank-1 array(‘i’) with bounds (n)]

Returns

a [rank-2 array(‘F’) with bounds (n,n)]
e [rank-1 array(‘F’) with bounds (n)]
info [int]

Other Parameters

lower [input int, optional] Default: 0
way [input int, optional] Default: 0
overwrite_a

[input int, optional] Default: 0
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scipy.linalg.lapack.zsyconv

scipy.linalg.lapack.zsyconv(a, ipiv[, lower, way, overwrite_a]) = <fortran object>
Wrapper for zsyconv.

Parameters

a [input rank-2 array(‘D’) with bounds (n,n)]
ipiv [input rank-1 array(‘i’) with bounds (n)]

Returns

a [rank-2 array(‘D’) with bounds (n,n)]
e [rank-1 array(‘D’) with bounds (n)]
info [int]

Other Parameters

lower [input int, optional] Default: 0
way [input int, optional] Default: 0
overwrite_a

[input int, optional] Default: 0

scipy.linalg.lapack.ssyev

scipy.linalg.lapack.ssyev(a[, compute_v, lower, lwork, overwrite_a]) = <fortran object>
Wrapper for ssyev.

Parameters

a [input rank-2 array(‘f’) with bounds (n,n)]
Returns

w [rank-1 array(‘f’) with bounds (n)]
v [rank-2 array(‘f’) with bounds (n,n) and a storage]
info [int]

Other Parameters

compute_v
[input int, optional] Default: 1

lower [input int, optional] Default: 0
overwrite_a

[input int, optional] Default: 0
lwork [input int, optional] Default: max(3*n-1,1)

scipy.linalg.lapack.dsyev

scipy.linalg.lapack.dsyev(a[, compute_v, lower, lwork, overwrite_a]) = <fortran object>
Wrapper for dsyev.

Parameters

a [input rank-2 array(‘d’) with bounds (n,n)]
Returns

w [rank-1 array(‘d’) with bounds (n)]
v [rank-2 array(‘d’) with bounds (n,n) and a storage]
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info [int]
Other Parameters

compute_v
[input int, optional] Default: 1

lower [input int, optional] Default: 0
overwrite_a

[input int, optional] Default: 0
lwork [input int, optional] Default: max(3*n-1,1)

scipy.linalg.lapack.ssyevd

scipy.linalg.lapack.ssyevd(a[, compute_v, lower, lwork, overwrite_a]) = <fortran
object>

Wrapper for ssyevd.
Parameters

a [input rank-2 array(‘f’) with bounds (n,n)]
Returns

w [rank-1 array(‘f’) with bounds (n)]
v [rank-2 array(‘f’) with bounds (n,n) and a storage]
info [int]

Other Parameters

compute_v
[input int, optional] Default: 1

lower [input int, optional] Default: 0
overwrite_a

[input int, optional] Default: 0
lwork [input int, optional] Default: max((compute_v?1+6*n+2*n*n:2*n+1),1)

scipy.linalg.lapack.dsyevd

scipy.linalg.lapack.dsyevd(a[, compute_v, lower, lwork, overwrite_a]) = <fortran
object>

Wrapper for dsyevd.
Parameters

a [input rank-2 array(‘d’) with bounds (n,n)]
Returns

w [rank-1 array(‘d’) with bounds (n)]
v [rank-2 array(‘d’) with bounds (n,n) and a storage]
info [int]

Other Parameters

compute_v
[input int, optional] Default: 1

lower [input int, optional] Default: 0
overwrite_a

[input int, optional] Default: 0
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lwork [input int, optional] Default: max((compute_v?1+6*n+2*n*n:2*n+1),1)

scipy.linalg.lapack.ssyevr

scipy.linalg.lapack.ssyevr(a[, jobz, range, uplo, il, iu, lwork, overwrite_a]) = <fortran
object>

Wrapper for ssyevr.
Parameters

a [input rank-2 array(‘f’) with bounds (n,n)]
Returns

w [rank-1 array(‘f’) with bounds (n)]
z [rank-2 array(‘f’) with bounds (n,m)]
info [int]

Other Parameters

jobz [input string(len=1), optional] Default: ‘V’
range [input string(len=1), optional] Default: ‘A’
uplo [input string(len=1), optional] Default: ‘L’
overwrite_a

[input int, optional] Default: 0
il [input int, optional] Default: 1
iu [input int, optional] Default: n
lwork [input int, optional] Default: max(26*n,1)

scipy.linalg.lapack.dsyevr

scipy.linalg.lapack.dsyevr(a[, jobz, range, uplo, il, iu, lwork, overwrite_a]) = <fortran
object>

Wrapper for dsyevr.
Parameters

a [input rank-2 array(‘d’) with bounds (n,n)]
Returns

w [rank-1 array(‘d’) with bounds (n)]
z [rank-2 array(‘d’) with bounds (n,m)]
info [int]

Other Parameters

jobz [input string(len=1), optional] Default: ‘V’
range [input string(len=1), optional] Default: ‘A’
uplo [input string(len=1), optional] Default: ‘L’
overwrite_a

[input int, optional] Default: 0
il [input int, optional] Default: 1
iu [input int, optional] Default: n
lwork [input int, optional] Default: max(26*n,1)
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scipy.linalg.lapack.ssygst

scipy.linalg.lapack.ssygst(a, b[, itype, lower, overwrite_a]) = <fortran object>
Wrapper for ssygst.

Parameters

a [input rank-2 array(‘f’) with bounds (n,n)]
b [input rank-2 array(‘f’) with bounds (n,n)]

Returns

c [rank-2 array(‘f’) with bounds (n,n) and a storage]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

itype [input int, optional] Default: 1
lower [input int, optional] Default: 0

scipy.linalg.lapack.dsygst

scipy.linalg.lapack.dsygst(a, b[, itype, lower, overwrite_a]) = <fortran object>
Wrapper for dsygst.

Parameters

a [input rank-2 array(‘d’) with bounds (n,n)]
b [input rank-2 array(‘d’) with bounds (n,n)]

Returns

c [rank-2 array(‘d’) with bounds (n,n) and a storage]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

itype [input int, optional] Default: 1
lower [input int, optional] Default: 0

scipy.linalg.lapack.ssygv

scipy.linalg.lapack.ssygv(a, b[, itype, jobz, uplo, overwrite_a, overwrite_b]) = <fortran
object>

Wrapper for ssygv.
Parameters

a [input rank-2 array(‘f’) with bounds (n,n)]
b [input rank-2 array(‘f’) with bounds (n,n)]

Returns

a [rank-2 array(‘f’) with bounds (n,n)]
w [rank-1 array(‘f’) with bounds (n)]
info [int]

1072 Chapter 6. API Reference



SciPy Reference Guide, Release 1.3.1

Other Parameters

itype [input int, optional] Default: 1
jobz [input string(len=1), optional] Default: ‘V’
uplo [input string(len=1), optional] Default: ‘L’
overwrite_a

[input int, optional] Default: 0
overwrite_b

[input int, optional] Default: 0

scipy.linalg.lapack.dsygv

scipy.linalg.lapack.dsygv(a, b[, itype, jobz, uplo, overwrite_a, overwrite_b]) = <fortran
object>

Wrapper for dsygv.
Parameters

a [input rank-2 array(‘d’) with bounds (n,n)]
b [input rank-2 array(‘d’) with bounds (n,n)]

Returns

a [rank-2 array(‘d’) with bounds (n,n)]
w [rank-1 array(‘d’) with bounds (n)]
info [int]

Other Parameters

itype [input int, optional] Default: 1
jobz [input string(len=1), optional] Default: ‘V’
uplo [input string(len=1), optional] Default: ‘L’
overwrite_a

[input int, optional] Default: 0
overwrite_b

[input int, optional] Default: 0

scipy.linalg.lapack.ssygvd

scipy.linalg.lapack.ssygvd(a, b[, itype, jobz, uplo, lwork, overwrite_a, overwrite_b]) =
<fortran object>

Wrapper for ssygvd.
Parameters

a [input rank-2 array(‘f’) with bounds (n,n)]
b [input rank-2 array(‘f’) with bounds (n,n)]

Returns

a [rank-2 array(‘f’) with bounds (n,n)]
w [rank-1 array(‘f’) with bounds (n)]
info [int]

Other Parameters

itype [input int, optional] Default: 1
jobz [input string(len=1), optional] Default: ‘V’
uplo [input string(len=1), optional] Default: ‘L’
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overwrite_a
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0

lwork [input int, optional] Default: max(1+6*n+2*n*n,1)

scipy.linalg.lapack.dsygvd

scipy.linalg.lapack.dsygvd(a, b[, itype, jobz, uplo, lwork, overwrite_a, overwrite_b]) =
<fortran object>

Wrapper for dsygvd.
Parameters

a [input rank-2 array(‘d’) with bounds (n,n)]
b [input rank-2 array(‘d’) with bounds (n,n)]

Returns

a [rank-2 array(‘d’) with bounds (n,n)]
w [rank-1 array(‘d’) with bounds (n)]
info [int]

Other Parameters

itype [input int, optional] Default: 1
jobz [input string(len=1), optional] Default: ‘V’
uplo [input string(len=1), optional] Default: ‘L’
overwrite_a

[input int, optional] Default: 0
overwrite_b

[input int, optional] Default: 0
lwork [input int, optional] Default: max(1+6*n+2*n*n,1)

scipy.linalg.lapack.ssygvx

scipy.linalg.lapack.ssygvx(a, b, iu[, itype, jobz, uplo, il, lwork, overwrite_a, overwrite_b]) =
<fortran object>

Wrapper for ssygvx.
Parameters

a [input rank-2 array(‘f’) with bounds (n,n)]
b [input rank-2 array(‘f’) with bounds (n,n)]
iu [input int]

Returns

w [rank-1 array(‘f’) with bounds (n)]
z [rank-2 array(‘f’) with bounds (n,m)]
ifail [rank-1 array(‘i’) with bounds (n)]
info [int]

Other Parameters

itype [input int, optional] Default: 1
jobz [input string(len=1), optional] Default: ‘V’
uplo [input string(len=1), optional] Default: ‘L’
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overwrite_a
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0

il [input int, optional] Default: 1
lwork [input int, optional] Default: max(8*n,1)

scipy.linalg.lapack.dsygvx

scipy.linalg.lapack.dsygvx(a, b, iu[, itype, jobz, uplo, il, lwork, overwrite_a, overwrite_b]) =
<fortran object>

Wrapper for dsygvx.
Parameters

a [input rank-2 array(‘d’) with bounds (n,n)]
b [input rank-2 array(‘d’) with bounds (n,n)]
iu [input int]

Returns

w [rank-1 array(‘d’) with bounds (n)]
z [rank-2 array(‘d’) with bounds (n,m)]
ifail [rank-1 array(‘i’) with bounds (n)]
info [int]

Other Parameters

itype [input int, optional] Default: 1
jobz [input string(len=1), optional] Default: ‘V’
uplo [input string(len=1), optional] Default: ‘L’
overwrite_a

[input int, optional] Default: 0
overwrite_b

[input int, optional] Default: 0
il [input int, optional] Default: 1
lwork [input int, optional] Default: max(8*n,1)

scipy.linalg.lapack.ssysv

scipy.linalg.lapack.ssysv(a, b[, lwork, lower, overwrite_a, overwrite_b]) = <fortran
object>

Wrapper for ssysv.
Parameters

a [input rank-2 array(‘f’) with bounds (n,n)]
b [input rank-2 array(‘f’) with bounds (n,nrhs)]

Returns

udut [rank-2 array(‘f’) with bounds (n,n) and a storage]
ipiv [rank-1 array(‘i’) with bounds (n)]
x [rank-2 array(‘f’) with bounds (n,nrhs) and b storage]
info [int]

Other Parameters
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overwrite_a
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0

lwork [input int, optional] Default: max(n,1)
lower [input int, optional] Default: 0

scipy.linalg.lapack.dsysv

scipy.linalg.lapack.dsysv(a, b[, lwork, lower, overwrite_a, overwrite_b]) = <fortran
object>

Wrapper for dsysv.
Parameters

a [input rank-2 array(‘d’) with bounds (n,n)]
b [input rank-2 array(‘d’) with bounds (n,nrhs)]

Returns

udut [rank-2 array(‘d’) with bounds (n,n) and a storage]
ipiv [rank-1 array(‘i’) with bounds (n)]
x [rank-2 array(‘d’) with bounds (n,nrhs) and b storage]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0

lwork [input int, optional] Default: max(n,1)
lower [input int, optional] Default: 0

scipy.linalg.lapack.csysv

scipy.linalg.lapack.csysv(a, b[, lwork, lower, overwrite_a, overwrite_b]) = <fortran
object>

Wrapper for csysv.
Parameters

a [input rank-2 array(‘F’) with bounds (n,n)]
b [input rank-2 array(‘F’) with bounds (n,nrhs)]

Returns

udut [rank-2 array(‘F’) with bounds (n,n) and a storage]
ipiv [rank-1 array(‘i’) with bounds (n)]
x [rank-2 array(‘F’) with bounds (n,nrhs) and b storage]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0
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lwork [input int, optional] Default: max(n,1)
lower [input int, optional] Default: 0

scipy.linalg.lapack.zsysv

scipy.linalg.lapack.zsysv(a, b[, lwork, lower, overwrite_a, overwrite_b]) = <fortran
object>

Wrapper for zsysv.
Parameters

a [input rank-2 array(‘D’) with bounds (n,n)]
b [input rank-2 array(‘D’) with bounds (n,nrhs)]

Returns

udut [rank-2 array(‘D’) with bounds (n,n) and a storage]
ipiv [rank-1 array(‘i’) with bounds (n)]
x [rank-2 array(‘D’) with bounds (n,nrhs) and b storage]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0

lwork [input int, optional] Default: max(n,1)
lower [input int, optional] Default: 0

scipy.linalg.lapack.ssysv_lwork

scipy.linalg.lapack.ssysv_lwork(n[, lower ]) = <fortran object>
Wrapper for ssysv_lwork.

Parameters

n [input int]
Returns

work [float]
info [int]

Other Parameters

lower [input int, optional] Default: 0

scipy.linalg.lapack.dsysv_lwork

scipy.linalg.lapack.dsysv_lwork(n[, lower ]) = <fortran object>
Wrapper for dsysv_lwork.

Parameters

n [input int]
Returns
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work [float]
info [int]

Other Parameters

lower [input int, optional] Default: 0

scipy.linalg.lapack.csysv_lwork

scipy.linalg.lapack.csysv_lwork(n[, lower ]) = <fortran object>
Wrapper for csysv_lwork.

Parameters

n [input int]
Returns

work [complex]
info [int]

Other Parameters

lower [input int, optional] Default: 0

scipy.linalg.lapack.zsysv_lwork

scipy.linalg.lapack.zsysv_lwork(n[, lower ]) = <fortran object>
Wrapper for zsysv_lwork.

Parameters

n [input int]
Returns

work [complex]
info [int]

Other Parameters

lower [input int, optional] Default: 0

scipy.linalg.lapack.ssysvx

scipy.linalg.lapack.ssysvx(a, b[, af, ipiv, lwork, factored, lower, overwrite_a, overwrite_b]) =
<fortran object>

Wrapper for ssysvx.
Parameters

a [input rank-2 array(‘f’) with bounds (n,n)]
b [input rank-2 array(‘f’) with bounds (n,nrhs)]

Returns

a_s [rank-2 array(‘f’) with bounds (n,n) and a storage]
udut [rank-2 array(‘f’) with bounds (n,n) and af storage]
ipiv [rank-1 array(‘i’) with bounds (n)]
b_s [rank-2 array(‘f’) with bounds (n,nrhs) and b storage]
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x [rank-2 array(‘f’) with bounds (n,nrhs)]
rcond [float]
ferr [rank-1 array(‘f’) with bounds (nrhs)]
berr [rank-1 array(‘f’) with bounds (nrhs)]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

af [input rank-2 array(‘f’) with bounds (n,n)]
ipiv [input rank-1 array(‘i’) with bounds (n)]
overwrite_b

[input int, optional] Default: 0
lwork [input int, optional] Default: max(3*n,1)
factored [input int, optional] Default: 0
lower [input int, optional] Default: 0

scipy.linalg.lapack.dsysvx

scipy.linalg.lapack.dsysvx(a, b[, af, ipiv, lwork, factored, lower, overwrite_a, overwrite_b]) =
<fortran object>

Wrapper for dsysvx.
Parameters

a [input rank-2 array(‘d’) with bounds (n,n)]
b [input rank-2 array(‘d’) with bounds (n,nrhs)]

Returns

a_s [rank-2 array(‘d’) with bounds (n,n) and a storage]
udut [rank-2 array(‘d’) with bounds (n,n) and af storage]
ipiv [rank-1 array(‘i’) with bounds (n)]
b_s [rank-2 array(‘d’) with bounds (n,nrhs) and b storage]
x [rank-2 array(‘d’) with bounds (n,nrhs)]
rcond [float]
ferr [rank-1 array(‘d’) with bounds (nrhs)]
berr [rank-1 array(‘d’) with bounds (nrhs)]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

af [input rank-2 array(‘d’) with bounds (n,n)]
ipiv [input rank-1 array(‘i’) with bounds (n)]
overwrite_b

[input int, optional] Default: 0
lwork [input int, optional] Default: max(3*n,1)
factored [input int, optional] Default: 0
lower [input int, optional] Default: 0
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scipy.linalg.lapack.csysvx

scipy.linalg.lapack.csysvx(a, b[, af, ipiv, lwork, factored, lower, overwrite_a, overwrite_b]) =
<fortran object>

Wrapper for csysvx.
Parameters

a [input rank-2 array(‘F’) with bounds (n,n)]
b [input rank-2 array(‘F’) with bounds (n,nrhs)]

Returns

a_s [rank-2 array(‘F’) with bounds (n,n) and a storage]
udut [rank-2 array(‘F’) with bounds (n,n) and af storage]
ipiv [rank-1 array(‘i’) with bounds (n)]
b_s [rank-2 array(‘F’) with bounds (n,nrhs) and b storage]
x [rank-2 array(‘F’) with bounds (n,nrhs)]
rcond [float]
ferr [rank-1 array(‘f’) with bounds (nrhs)]
berr [rank-1 array(‘f’) with bounds (nrhs)]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

af [input rank-2 array(‘F’) with bounds (n,n)]
ipiv [input rank-1 array(‘i’) with bounds (n)]
overwrite_b

[input int, optional] Default: 0
lwork [input int, optional] Default: max(3*n,1)
factored [input int, optional] Default: 0
lower [input int, optional] Default: 0

scipy.linalg.lapack.zsysvx

scipy.linalg.lapack.zsysvx(a, b[, af, ipiv, lwork, factored, lower, overwrite_a, overwrite_b]) =
<fortran object>

Wrapper for zsysvx.
Parameters

a [input rank-2 array(‘D’) with bounds (n,n)]
b [input rank-2 array(‘D’) with bounds (n,nrhs)]

Returns

a_s [rank-2 array(‘D’) with bounds (n,n) and a storage]
udut [rank-2 array(‘D’) with bounds (n,n) and af storage]
ipiv [rank-1 array(‘i’) with bounds (n)]
b_s [rank-2 array(‘D’) with bounds (n,nrhs) and b storage]
x [rank-2 array(‘D’) with bounds (n,nrhs)]
rcond [float]
ferr [rank-1 array(‘d’) with bounds (nrhs)]
berr [rank-1 array(‘d’) with bounds (nrhs)]
info [int]

Other Parameters
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overwrite_a
[input int, optional] Default: 0

af [input rank-2 array(‘D’) with bounds (n,n)]
ipiv [input rank-1 array(‘i’) with bounds (n)]
overwrite_b

[input int, optional] Default: 0
lwork [input int, optional] Default: max(3*n,1)
factored [input int, optional] Default: 0
lower [input int, optional] Default: 0

scipy.linalg.lapack.ssysvx_lwork

scipy.linalg.lapack.ssysvx_lwork(n[, lower ]) = <fortran object>
Wrapper for ssysvx_lwork.

Parameters

n [input int]
Returns

work [float]
info [int]

Other Parameters

lower [input int, optional] Default: 0

scipy.linalg.lapack.dsysvx_lwork

scipy.linalg.lapack.dsysvx_lwork(n[, lower ]) = <fortran object>
Wrapper for dsysvx_lwork.

Parameters

n [input int]
Returns

work [float]
info [int]

Other Parameters

lower [input int, optional] Default: 0

scipy.linalg.lapack.csysvx_lwork

scipy.linalg.lapack.csysvx_lwork(n[, lower ]) = <fortran object>
Wrapper for csysvx_lwork.

Parameters

n [input int]
Returns

work [complex]
info [int]
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Other Parameters

lower [input int, optional] Default: 0

scipy.linalg.lapack.zsysvx_lwork

scipy.linalg.lapack.zsysvx_lwork(n[, lower ]) = <fortran object>
Wrapper for zsysvx_lwork.

Parameters

n [input int]
Returns

work [complex]
info [int]

Other Parameters

lower [input int, optional] Default: 0

scipy.linalg.lapack.ssytf2

scipy.linalg.lapack.ssytf2(a[, lower, overwrite_a]) = <fortran object>
Wrapper for ssytf2.

Parameters

a [input rank-2 array(‘f’) with bounds (n,n)]
Returns

ldu [rank-2 array(‘f’) with bounds (n,n) and a storage]
ipiv [rank-1 array(‘i’) with bounds (n)]
info [int]

Other Parameters

lower [input int, optional] Default: 0
overwrite_a

[input int, optional] Default: 0

scipy.linalg.lapack.dsytf2

scipy.linalg.lapack.dsytf2(a[, lower, overwrite_a]) = <fortran object>
Wrapper for dsytf2.

Parameters

a [input rank-2 array(‘d’) with bounds (n,n)]
Returns

ldu [rank-2 array(‘d’) with bounds (n,n) and a storage]
ipiv [rank-1 array(‘i’) with bounds (n)]
info [int]

Other Parameters

lower [input int, optional] Default: 0
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overwrite_a
[input int, optional] Default: 0

scipy.linalg.lapack.csytf2

scipy.linalg.lapack.csytf2(a[, lower, overwrite_a]) = <fortran object>
Wrapper for csytf2.

Parameters

a [input rank-2 array(‘F’) with bounds (n,n)]
Returns

ldu [rank-2 array(‘F’) with bounds (n,n) and a storage]
ipiv [rank-1 array(‘i’) with bounds (n)]
info [int]

Other Parameters

lower [input int, optional] Default: 0
overwrite_a

[input int, optional] Default: 0

scipy.linalg.lapack.zsytf2

scipy.linalg.lapack.zsytf2(a[, lower, overwrite_a]) = <fortran object>
Wrapper for zsytf2.

Parameters

a [input rank-2 array(‘D’) with bounds (n,n)]
Returns

ldu [rank-2 array(‘D’) with bounds (n,n) and a storage]
ipiv [rank-1 array(‘i’) with bounds (n)]
info [int]

Other Parameters

lower [input int, optional] Default: 0
overwrite_a

[input int, optional] Default: 0

scipy.linalg.lapack.ssytrd

scipy.linalg.lapack.ssytrd(a[, lower, lwork, overwrite_a]) = <fortran object>
Wrapper for ssytrd.

Parameters

a [input rank-2 array(‘f’) with bounds (lda,n)]
Returns

c [rank-2 array(‘f’) with bounds (lda,n) and a storage]
d [rank-1 array(‘f’) with bounds (n)]
e [rank-1 array(‘f’) with bounds (n - 1)]

6.11. Low-level LAPACK functions (scipy.linalg.lapack) 1083



SciPy Reference Guide, Release 1.3.1

tau [rank-1 array(‘f’) with bounds (n - 1)]
info [int]

Other Parameters

lower [input int, optional] Default: 0
overwrite_a

[input int, optional] Default: 0
lwork [input int, optional] Default: MAX(n,1)

scipy.linalg.lapack.dsytrd

scipy.linalg.lapack.dsytrd(a[, lower, lwork, overwrite_a]) = <fortran object>
Wrapper for dsytrd.

Parameters

a [input rank-2 array(‘d’) with bounds (lda,n)]
Returns

c [rank-2 array(‘d’) with bounds (lda,n) and a storage]
d [rank-1 array(‘d’) with bounds (n)]
e [rank-1 array(‘d’) with bounds (n - 1)]
tau [rank-1 array(‘d’) with bounds (n - 1)]
info [int]

Other Parameters

lower [input int, optional] Default: 0
overwrite_a

[input int, optional] Default: 0
lwork [input int, optional] Default: MAX(n,1)

scipy.linalg.lapack.ssytrd_lwork

scipy.linalg.lapack.ssytrd_lwork(n[, lower ]) = <fortran object>
Wrapper for ssytrd_lwork.

Parameters

n [input int]
Returns

work [float]
info [int]

Other Parameters

lower [input int, optional] Default: 0
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scipy.linalg.lapack.dsytrd_lwork

scipy.linalg.lapack.dsytrd_lwork(n[, lower ]) = <fortran object>
Wrapper for dsytrd_lwork.

Parameters

n [input int]
Returns

work [float]
info [int]

Other Parameters

lower [input int, optional] Default: 0

scipy.linalg.lapack.ssytrf

scipy.linalg.lapack.ssytrf(a[, lower, lwork, overwrite_a]) = <fortran object>
Wrapper for ssytrf.

Parameters

a [input rank-2 array(‘f’) with bounds (n,n)]
Returns

ldu [rank-2 array(‘f’) with bounds (n,n) and a storage]
ipiv [rank-1 array(‘i’) with bounds (n)]
info [int]

Other Parameters

lower [input int, optional] Default: 0
overwrite_a

[input int, optional] Default: 0
lwork [input int, optional] Default: max(n,1)

scipy.linalg.lapack.dsytrf

scipy.linalg.lapack.dsytrf(a[, lower, lwork, overwrite_a]) = <fortran object>
Wrapper for dsytrf.

Parameters

a [input rank-2 array(‘d’) with bounds (n,n)]
Returns

ldu [rank-2 array(‘d’) with bounds (n,n) and a storage]
ipiv [rank-1 array(‘i’) with bounds (n)]
info [int]

Other Parameters

lower [input int, optional] Default: 0
overwrite_a

[input int, optional] Default: 0
lwork [input int, optional] Default: max(n,1)
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scipy.linalg.lapack.csytrf

scipy.linalg.lapack.csytrf(a[, lower, lwork, overwrite_a]) = <fortran object>
Wrapper for csytrf.

Parameters

a [input rank-2 array(‘F’) with bounds (n,n)]
Returns

ldu [rank-2 array(‘F’) with bounds (n,n) and a storage]
ipiv [rank-1 array(‘i’) with bounds (n)]
info [int]

Other Parameters

lower [input int, optional] Default: 0
overwrite_a

[input int, optional] Default: 0
lwork [input int, optional] Default: max(n,1)

scipy.linalg.lapack.zsytrf

scipy.linalg.lapack.zsytrf(a[, lower, lwork, overwrite_a]) = <fortran object>
Wrapper for zsytrf.

Parameters

a [input rank-2 array(‘D’) with bounds (n,n)]
Returns

ldu [rank-2 array(‘D’) with bounds (n,n) and a storage]
ipiv [rank-1 array(‘i’) with bounds (n)]
info [int]

Other Parameters

lower [input int, optional] Default: 0
overwrite_a

[input int, optional] Default: 0
lwork [input int, optional] Default: max(n,1)

scipy.linalg.lapack.ssytrf_lwork

scipy.linalg.lapack.ssytrf_lwork(n[, lower ]) = <fortran object>
Wrapper for ssytrf_lwork.

Parameters

n [input int]
Returns

work [float]
info [int]

Other Parameters

lower [input int, optional] Default: 0
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scipy.linalg.lapack.dsytrf_lwork

scipy.linalg.lapack.dsytrf_lwork(n[, lower ]) = <fortran object>
Wrapper for dsytrf_lwork.

Parameters

n [input int]
Returns

work [float]
info [int]

Other Parameters

lower [input int, optional] Default: 0

scipy.linalg.lapack.csytrf_lwork

scipy.linalg.lapack.csytrf_lwork(n[, lower ]) = <fortran object>
Wrapper for csytrf_lwork.

Parameters

n [input int]
Returns

work [complex]
info [int]

Other Parameters

lower [input int, optional] Default: 0

scipy.linalg.lapack.zsytrf_lwork

scipy.linalg.lapack.zsytrf_lwork(n[, lower ]) = <fortran object>
Wrapper for zsytrf_lwork.

Parameters

n [input int]
Returns

work [complex]
info [int]

Other Parameters

lower [input int, optional] Default: 0
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scipy.linalg.lapack.stfsm

scipy.linalg.lapack.stfsm(alpha, a, b[, transr, side, uplo, trans, diag, overwrite_b]) = <fortran
object>

Wrapper for stfsm.
Parameters

alpha [input float]
a [input rank-1 array(‘f’) with bounds (nt)]
b [input rank-2 array(‘f’) with bounds (m,n)]

Returns

x [rank-2 array(‘f’) with bounds (m,n) and b storage]
Other Parameters

transr [input string(len=1), optional] Default: ‘N’
side [input string(len=1), optional] Default: ‘L’
uplo [input string(len=1), optional] Default: ‘U’
trans [input string(len=1), optional] Default: ‘N’
diag [input string(len=1), optional] Default: ‘N’
overwrite_b

[input int, optional] Default: 0

scipy.linalg.lapack.dtfsm

scipy.linalg.lapack.dtfsm(alpha, a, b[, transr, side, uplo, trans, diag, overwrite_b]) = <fortran
object>

Wrapper for dtfsm.
Parameters

alpha [input float]
a [input rank-1 array(‘d’) with bounds (nt)]
b [input rank-2 array(‘d’) with bounds (m,n)]

Returns

x [rank-2 array(‘d’) with bounds (m,n) and b storage]
Other Parameters

transr [input string(len=1), optional] Default: ‘N’
side [input string(len=1), optional] Default: ‘L’
uplo [input string(len=1), optional] Default: ‘U’
trans [input string(len=1), optional] Default: ‘N’
diag [input string(len=1), optional] Default: ‘N’
overwrite_b

[input int, optional] Default: 0

scipy.linalg.lapack.ctfsm

scipy.linalg.lapack.ctfsm(alpha, a, b[, transr, side, uplo, trans, diag, overwrite_b]) = <fortran
object>

Wrapper for ctfsm.
Parameters
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alpha [input complex]
a [input rank-1 array(‘F’) with bounds (nt)]
b [input rank-2 array(‘F’) with bounds (m,n)]

Returns

x [rank-2 array(‘F’) with bounds (m,n) and b storage]
Other Parameters

transr [input string(len=1), optional] Default: ‘N’
side [input string(len=1), optional] Default: ‘L’
uplo [input string(len=1), optional] Default: ‘U’
trans [input string(len=1), optional] Default: ‘N’
diag [input string(len=1), optional] Default: ‘N’
overwrite_b

[input int, optional] Default: 0

scipy.linalg.lapack.ztfsm

scipy.linalg.lapack.ztfsm(alpha, a, b[, transr, side, uplo, trans, diag, overwrite_b]) = <fortran
object>

Wrapper for ztfsm.
Parameters

alpha [input complex]
a [input rank-1 array(‘D’) with bounds (nt)]
b [input rank-2 array(‘D’) with bounds (m,n)]

Returns

x [rank-2 array(‘D’) with bounds (m,n) and b storage]
Other Parameters

transr [input string(len=1), optional] Default: ‘N’
side [input string(len=1), optional] Default: ‘L’
uplo [input string(len=1), optional] Default: ‘U’
trans [input string(len=1), optional] Default: ‘N’
diag [input string(len=1), optional] Default: ‘N’
overwrite_b

[input int, optional] Default: 0

scipy.linalg.lapack.stfttp

scipy.linalg.lapack.stfttp(n, arf[, transr, uplo]) = <fortran object>
Wrapper for stfttp.

Parameters

n [input int]
arf [input rank-1 array(‘f’) with bounds (nt)]

Returns

ap [rank-1 array(‘f’) with bounds (nt)]
info [int]

Other Parameters
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transr [input string(len=1), optional] Default: ‘N’
uplo [input string(len=1), optional] Default: ‘U’

scipy.linalg.lapack.dtfttp

scipy.linalg.lapack.dtfttp(n, arf[, transr, uplo]) = <fortran object>
Wrapper for dtfttp.

Parameters

n [input int]
arf [input rank-1 array(‘d’) with bounds (nt)]

Returns

ap [rank-1 array(‘d’) with bounds (nt)]
info [int]

Other Parameters

transr [input string(len=1), optional] Default: ‘N’
uplo [input string(len=1), optional] Default: ‘U’

scipy.linalg.lapack.ctfttp

scipy.linalg.lapack.ctfttp(n, arf[, transr, uplo]) = <fortran object>
Wrapper for ctfttp.

Parameters

n [input int]
arf [input rank-1 array(‘F’) with bounds (nt)]

Returns

ap [rank-1 array(‘F’) with bounds (nt)]
info [int]

Other Parameters

transr [input string(len=1), optional] Default: ‘N’
uplo [input string(len=1), optional] Default: ‘U’

scipy.linalg.lapack.ztfttp

scipy.linalg.lapack.ztfttp(n, arf[, transr, uplo]) = <fortran object>
Wrapper for ztfttp.

Parameters

n [input int]
arf [input rank-1 array(‘D’) with bounds (nt)]

Returns

ap [rank-1 array(‘D’) with bounds (nt)]
info [int]

Other Parameters

1090 Chapter 6. API Reference



SciPy Reference Guide, Release 1.3.1

transr [input string(len=1), optional] Default: ‘N’
uplo [input string(len=1), optional] Default: ‘U’

scipy.linalg.lapack.stfttr

scipy.linalg.lapack.stfttr(n, arf[, transr, uplo]) = <fortran object>
Wrapper for stfttr.

Parameters

n [input int]
arf [input rank-1 array(‘f’) with bounds (nt)]

Returns

a [rank-2 array(‘f’) with bounds (lda,n)]
info [int]

Other Parameters

transr [input string(len=1), optional] Default: ‘N’
uplo [input string(len=1), optional] Default: ‘U’

scipy.linalg.lapack.dtfttr

scipy.linalg.lapack.dtfttr(n, arf[, transr, uplo]) = <fortran object>
Wrapper for dtfttr.

Parameters

n [input int]
arf [input rank-1 array(‘d’) with bounds (nt)]

Returns

a [rank-2 array(‘d’) with bounds (lda,n)]
info [int]

Other Parameters

transr [input string(len=1), optional] Default: ‘N’
uplo [input string(len=1), optional] Default: ‘U’

scipy.linalg.lapack.ctfttr

scipy.linalg.lapack.ctfttr(n, arf[, transr, uplo]) = <fortran object>
Wrapper for ctfttr.

Parameters

n [input int]
arf [input rank-1 array(‘F’) with bounds (nt)]

Returns

a [rank-2 array(‘F’) with bounds (lda,n)]
info [int]

Other Parameters
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transr [input string(len=1), optional] Default: ‘N’
uplo [input string(len=1), optional] Default: ‘U’

scipy.linalg.lapack.ztfttr

scipy.linalg.lapack.ztfttr(n, arf[, transr, uplo]) = <fortran object>
Wrapper for ztfttr.

Parameters

n [input int]
arf [input rank-1 array(‘D’) with bounds (nt)]

Returns

a [rank-2 array(‘D’) with bounds (lda,n)]
info [int]

Other Parameters

transr [input string(len=1), optional] Default: ‘N’
uplo [input string(len=1), optional] Default: ‘U’

scipy.linalg.lapack.stgsen

scipy.linalg.lapack.stgsen(select, a, b, q, z[, lwork, liwork, overwrite_a, overwrite_b, overwrite_q,
overwrite_z]) = <fortran object>

Wrapper for stgsen.
Parameters

select [input rank-1 array(‘i’) with bounds (n)]
a [input rank-2 array(‘f’) with bounds (lda,n)]
b [input rank-2 array(‘f’) with bounds (ldb,n)]
q [input rank-2 array(‘f’) with bounds (ldq,n)]
z [input rank-2 array(‘f’) with bounds (ldz,n)]

Returns

a [rank-2 array(‘f’) with bounds (lda,n)]
b [rank-2 array(‘f’) with bounds (ldb,n)]
alphar [rank-1 array(‘f’) with bounds (n)]
alphai [rank-1 array(‘f’) with bounds (n)]
beta [rank-1 array(‘f’) with bounds (n)]
q [rank-2 array(‘f’) with bounds (ldq,n)]
z [rank-2 array(‘f’) with bounds (ldz,n)]
m [int]
pl [float]
pr [float]
dif [rank-1 array(‘f’) with bounds (2)]
work [rank-1 array(‘f’) with bounds (MAX(lwork,1))]
iwork [rank-1 array(‘i’) with bounds (MAX(1,liwork))]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0
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overwrite_b
[input int, optional] Default: 0

overwrite_q
[input int, optional] Default: 0

overwrite_z
[input int, optional] Default: 0

lwork [input int, optional] Default: max(MAX(4*n+16,2*m*(n-m)),1)
liwork [input int, optional] Default: n+6

scipy.linalg.lapack.dtgsen

scipy.linalg.lapack.dtgsen(select, a, b, q, z[, lwork, liwork, overwrite_a, overwrite_b, overwrite_q,
overwrite_z]) = <fortran object>

Wrapper for dtgsen.
Parameters

select [input rank-1 array(‘i’) with bounds (n)]
a [input rank-2 array(‘d’) with bounds (lda,n)]
b [input rank-2 array(‘d’) with bounds (ldb,n)]
q [input rank-2 array(‘d’) with bounds (ldq,n)]
z [input rank-2 array(‘d’) with bounds (ldz,n)]

Returns

a [rank-2 array(‘d’) with bounds (lda,n)]
b [rank-2 array(‘d’) with bounds (ldb,n)]
alphar [rank-1 array(‘d’) with bounds (n)]
alphai [rank-1 array(‘d’) with bounds (n)]
beta [rank-1 array(‘d’) with bounds (n)]
q [rank-2 array(‘d’) with bounds (ldq,n)]
z [rank-2 array(‘d’) with bounds (ldz,n)]
m [int]
pl [float]
pr [float]
dif [rank-1 array(‘d’) with bounds (2)]
work [rank-1 array(‘d’) with bounds (MAX(lwork,1))]
iwork [rank-1 array(‘i’) with bounds (MAX(1,liwork))]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0

overwrite_q
[input int, optional] Default: 0

overwrite_z
[input int, optional] Default: 0

lwork [input int, optional] Default: max(MAX(4*n+16,2*m*(n-m)),1)
liwork [input int, optional] Default: n+6
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scipy.linalg.lapack.ctgsen

scipy.linalg.lapack.ctgsen(select, a, b, q, z[, lwork, liwork, overwrite_a, overwrite_b, overwrite_q,
overwrite_z]) = <fortran object>

Wrapper for ctgsen.
Parameters

select [input rank-1 array(‘i’) with bounds (n)]
a [input rank-2 array(‘F’) with bounds (lda,n)]
b [input rank-2 array(‘F’) with bounds (ldb,n)]
q [input rank-2 array(‘F’) with bounds (ldq,n)]
z [input rank-2 array(‘F’) with bounds (ldz,n)]

Returns

a [rank-2 array(‘F’) with bounds (lda,n)]
b [rank-2 array(‘F’) with bounds (ldb,n)]
alpha [rank-1 array(‘F’) with bounds (n)]
beta [rank-1 array(‘F’) with bounds (n)]
q [rank-2 array(‘F’) with bounds (ldq,n)]
z [rank-2 array(‘F’) with bounds (ldz,n)]
m [int]
pl [float]
pr [float]
dif [rank-1 array(‘f’) with bounds (2)]
work [rank-1 array(‘F’) with bounds (MAX(lwork,1))]
iwork [rank-1 array(‘i’) with bounds (MAX(1,liwork))]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0

overwrite_q
[input int, optional] Default: 0

overwrite_z
[input int, optional] Default: 0

lwork [input int, optional] Default: max(2*m*(n-m),1)
liwork [input int, optional] Default: n+2

scipy.linalg.lapack.ztgsen

scipy.linalg.lapack.ztgsen(select, a, b, q, z[, lwork, liwork, overwrite_a, overwrite_b, overwrite_q,
overwrite_z]) = <fortran object>

Wrapper for ztgsen.
Parameters

select [input rank-1 array(‘i’) with bounds (n)]
a [input rank-2 array(‘D’) with bounds (lda,n)]
b [input rank-2 array(‘D’) with bounds (ldb,n)]
q [input rank-2 array(‘D’) with bounds (ldq,n)]
z [input rank-2 array(‘D’) with bounds (ldz,n)]

Returns
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a [rank-2 array(‘D’) with bounds (lda,n)]
b [rank-2 array(‘D’) with bounds (ldb,n)]
alpha [rank-1 array(‘D’) with bounds (n)]
beta [rank-1 array(‘D’) with bounds (n)]
q [rank-2 array(‘D’) with bounds (ldq,n)]
z [rank-2 array(‘D’) with bounds (ldz,n)]
m [int]
pl [float]
pr [float]
dif [rank-1 array(‘d’) with bounds (2)]
work [rank-1 array(‘D’) with bounds (MAX(lwork,1))]
iwork [rank-1 array(‘i’) with bounds (MAX(1,liwork))]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0

overwrite_q
[input int, optional] Default: 0

overwrite_z
[input int, optional] Default: 0

lwork [input int, optional] Default: max(2*m*(n-m),1)
liwork [input int, optional] Default: n+2

scipy.linalg.lapack.stpttf

scipy.linalg.lapack.stpttf(n, ap[, transr, uplo]) = <fortran object>
Wrapper for stpttf.

Parameters

n [input int]
ap [input rank-1 array(‘f’) with bounds (nt)]

Returns

arf [rank-1 array(‘f’) with bounds (nt)]
info [int]

Other Parameters

transr [input string(len=1), optional] Default: ‘N’
uplo [input string(len=1), optional] Default: ‘U’

scipy.linalg.lapack.dtpttf

scipy.linalg.lapack.dtpttf(n, ap[, transr, uplo]) = <fortran object>
Wrapper for dtpttf.

Parameters

n [input int]
ap [input rank-1 array(‘d’) with bounds (nt)]

6.11. Low-level LAPACK functions (scipy.linalg.lapack) 1095



SciPy Reference Guide, Release 1.3.1

Returns

arf [rank-1 array(‘d’) with bounds (nt)]
info [int]

Other Parameters

transr [input string(len=1), optional] Default: ‘N’
uplo [input string(len=1), optional] Default: ‘U’

scipy.linalg.lapack.ctpttf

scipy.linalg.lapack.ctpttf(n, ap[, transr, uplo]) = <fortran object>
Wrapper for ctpttf.

Parameters

n [input int]
ap [input rank-1 array(‘F’) with bounds (nt)]

Returns

arf [rank-1 array(‘F’) with bounds (nt)]
info [int]

Other Parameters

transr [input string(len=1), optional] Default: ‘N’
uplo [input string(len=1), optional] Default: ‘U’

scipy.linalg.lapack.ztpttf

scipy.linalg.lapack.ztpttf(n, ap[, transr, uplo]) = <fortran object>
Wrapper for ztpttf.

Parameters

n [input int]
ap [input rank-1 array(‘D’) with bounds (nt)]

Returns

arf [rank-1 array(‘D’) with bounds (nt)]
info [int]

Other Parameters

transr [input string(len=1), optional] Default: ‘N’
uplo [input string(len=1), optional] Default: ‘U’

scipy.linalg.lapack.stpttr

scipy.linalg.lapack.stpttr(n, ap[, uplo]) = <fortran object>
Wrapper for stpttr.

Parameters

n [input int]
ap [input rank-1 array(‘f’) with bounds (nt)]
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Returns

a [rank-2 array(‘f’) with bounds (n,n)]
info [int]

Other Parameters

uplo [input string(len=1), optional] Default: ‘U’

scipy.linalg.lapack.dtpttr

scipy.linalg.lapack.dtpttr(n, ap[, uplo]) = <fortran object>
Wrapper for dtpttr.

Parameters

n [input int]
ap [input rank-1 array(‘d’) with bounds (nt)]

Returns

a [rank-2 array(‘d’) with bounds (n,n)]
info [int]

Other Parameters

uplo [input string(len=1), optional] Default: ‘U’

scipy.linalg.lapack.ctpttr

scipy.linalg.lapack.ctpttr(n, ap[, uplo]) = <fortran object>
Wrapper for ctpttr.

Parameters

n [input int]
ap [input rank-1 array(‘F’) with bounds (nt)]

Returns

a [rank-2 array(‘F’) with bounds (n,n)]
info [int]

Other Parameters

uplo [input string(len=1), optional] Default: ‘U’

scipy.linalg.lapack.ztpttr

scipy.linalg.lapack.ztpttr(n, ap[, uplo]) = <fortran object>
Wrapper for ztpttr.

Parameters

n [input int]
ap [input rank-1 array(‘D’) with bounds (nt)]

Returns

a [rank-2 array(‘D’) with bounds (n,n)]
info [int]
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Other Parameters

uplo [input string(len=1), optional] Default: ‘U’

scipy.linalg.lapack.strsyl

scipy.linalg.lapack.strsyl(a, b, c[, trana, tranb, isgn, overwrite_c ]) = <fortran object>
Wrapper for strsyl.

Parameters

a [input rank-2 array(‘f’) with bounds (m,m)]
b [input rank-2 array(‘f’) with bounds (n,n)]
c [input rank-2 array(‘f’) with bounds (m,n)]

Returns

x [rank-2 array(‘f’) with bounds (m,n) and c storage]
scale [float]
info [int]

Other Parameters

trana [input string(len=1), optional] Default: ‘N’
tranb [input string(len=1), optional] Default: ‘N’
isgn [input int, optional] Default: 1
overwrite_c

[input int, optional] Default: 0

scipy.linalg.lapack.dtrsyl

scipy.linalg.lapack.dtrsyl(a, b, c[, trana, tranb, isgn, overwrite_c ]) = <fortran object>
Wrapper for dtrsyl.

Parameters

a [input rank-2 array(‘d’) with bounds (m,m)]
b [input rank-2 array(‘d’) with bounds (n,n)]
c [input rank-2 array(‘d’) with bounds (m,n)]

Returns

x [rank-2 array(‘d’) with bounds (m,n) and c storage]
scale [float]
info [int]

Other Parameters

trana [input string(len=1), optional] Default: ‘N’
tranb [input string(len=1), optional] Default: ‘N’
isgn [input int, optional] Default: 1
overwrite_c

[input int, optional] Default: 0
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scipy.linalg.lapack.ctrsyl

scipy.linalg.lapack.ctrsyl(a, b, c[, trana, tranb, isgn, overwrite_c ]) = <fortran object>
Wrapper for ctrsyl.

Parameters

a [input rank-2 array(‘F’) with bounds (m,m)]
b [input rank-2 array(‘F’) with bounds (n,n)]
c [input rank-2 array(‘F’) with bounds (m,n)]

Returns

x [rank-2 array(‘F’) with bounds (m,n) and c storage]
scale [float]
info [int]

Other Parameters

trana [input string(len=1), optional] Default: ‘N’
tranb [input string(len=1), optional] Default: ‘N’
isgn [input int, optional] Default: 1
overwrite_c

[input int, optional] Default: 0

scipy.linalg.lapack.ztrsyl

scipy.linalg.lapack.ztrsyl(a, b, c[, trana, tranb, isgn, overwrite_c ]) = <fortran object>
Wrapper for ztrsyl.

Parameters

a [input rank-2 array(‘D’) with bounds (m,m)]
b [input rank-2 array(‘D’) with bounds (n,n)]
c [input rank-2 array(‘D’) with bounds (m,n)]

Returns

x [rank-2 array(‘D’) with bounds (m,n) and c storage]
scale [float]
info [int]

Other Parameters

trana [input string(len=1), optional] Default: ‘N’
tranb [input string(len=1), optional] Default: ‘N’
isgn [input int, optional] Default: 1
overwrite_c

[input int, optional] Default: 0

scipy.linalg.lapack.strtri

scipy.linalg.lapack.strtri(c[, lower, unitdiag, overwrite_c ]) = <fortran object>
Wrapper for strtri.

Parameters

c [input rank-2 array(‘f’) with bounds (n,n)]
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Returns

inv_c [rank-2 array(‘f’) with bounds (n,n) and c storage]
info [int]

Other Parameters

overwrite_c
[input int, optional] Default: 0

lower [input int, optional] Default: 0
unitdiag [input int, optional] Default: 0

scipy.linalg.lapack.dtrtri

scipy.linalg.lapack.dtrtri(c[, lower, unitdiag, overwrite_c ]) = <fortran object>
Wrapper for dtrtri.

Parameters

c [input rank-2 array(‘d’) with bounds (n,n)]
Returns

inv_c [rank-2 array(‘d’) with bounds (n,n) and c storage]
info [int]

Other Parameters

overwrite_c
[input int, optional] Default: 0

lower [input int, optional] Default: 0
unitdiag [input int, optional] Default: 0

scipy.linalg.lapack.ctrtri

scipy.linalg.lapack.ctrtri(c[, lower, unitdiag, overwrite_c ]) = <fortran object>
Wrapper for ctrtri.

Parameters

c [input rank-2 array(‘F’) with bounds (n,n)]
Returns

inv_c [rank-2 array(‘F’) with bounds (n,n) and c storage]
info [int]

Other Parameters

overwrite_c
[input int, optional] Default: 0

lower [input int, optional] Default: 0
unitdiag [input int, optional] Default: 0
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scipy.linalg.lapack.ztrtri

scipy.linalg.lapack.ztrtri(c[, lower, unitdiag, overwrite_c ]) = <fortran object>
Wrapper for ztrtri.

Parameters

c [input rank-2 array(‘D’) with bounds (n,n)]
Returns

inv_c [rank-2 array(‘D’) with bounds (n,n) and c storage]
info [int]

Other Parameters

overwrite_c
[input int, optional] Default: 0

lower [input int, optional] Default: 0
unitdiag [input int, optional] Default: 0

scipy.linalg.lapack.strtrs

scipy.linalg.lapack.strtrs(a, b[, lower, trans, unitdiag, lda, overwrite_b]) = <fortran
object>

Wrapper for strtrs.
Parameters

a [input rank-2 array(‘f’) with bounds (lda,n)]
b [input rank-2 array(‘f’) with bounds (ldb,nrhs)]

Returns

x [rank-2 array(‘f’) with bounds (ldb,nrhs) and b storage]
info [int]

Other Parameters

lower [input int, optional] Default: 0
trans [input int, optional] Default: 0
unitdiag [input int, optional] Default: 0
lda [input int, optional] Default: shape(a,0)
overwrite_b

[input int, optional] Default: 0

scipy.linalg.lapack.dtrtrs

scipy.linalg.lapack.dtrtrs(a, b[, lower, trans, unitdiag, lda, overwrite_b]) = <fortran
object>

Wrapper for dtrtrs.
Parameters

a [input rank-2 array(‘d’) with bounds (lda,n)]
b [input rank-2 array(‘d’) with bounds (ldb,nrhs)]

Returns

x [rank-2 array(‘d’) with bounds (ldb,nrhs) and b storage]
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info [int]
Other Parameters

lower [input int, optional] Default: 0
trans [input int, optional] Default: 0
unitdiag [input int, optional] Default: 0
lda [input int, optional] Default: shape(a,0)
overwrite_b

[input int, optional] Default: 0

scipy.linalg.lapack.ctrtrs

scipy.linalg.lapack.ctrtrs(a, b[, lower, trans, unitdiag, lda, overwrite_b]) = <fortran
object>

Wrapper for ctrtrs.
Parameters

a [input rank-2 array(‘F’) with bounds (lda,n)]
b [input rank-2 array(‘F’) with bounds (ldb,nrhs)]

Returns

x [rank-2 array(‘F’) with bounds (ldb,nrhs) and b storage]
info [int]

Other Parameters

lower [input int, optional] Default: 0
trans [input int, optional] Default: 0
unitdiag [input int, optional] Default: 0
lda [input int, optional] Default: shape(a,0)
overwrite_b

[input int, optional] Default: 0

scipy.linalg.lapack.ztrtrs

scipy.linalg.lapack.ztrtrs(a, b[, lower, trans, unitdiag, lda, overwrite_b]) = <fortran
object>

Wrapper for ztrtrs.
Parameters

a [input rank-2 array(‘D’) with bounds (lda,n)]
b [input rank-2 array(‘D’) with bounds (ldb,nrhs)]

Returns

x [rank-2 array(‘D’) with bounds (ldb,nrhs) and b storage]
info [int]

Other Parameters

lower [input int, optional] Default: 0
trans [input int, optional] Default: 0
unitdiag [input int, optional] Default: 0
lda [input int, optional] Default: shape(a,0)
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overwrite_b
[input int, optional] Default: 0

scipy.linalg.lapack.strttf

scipy.linalg.lapack.strttf(a[, transr, uplo]) = <fortran object>
Wrapper for strttf.

Parameters

a [input rank-2 array(‘f’) with bounds (lda,n)]
Returns

arf [rank-1 array(‘f’) with bounds (n*(n+1)/2)]
info [int]

Other Parameters

transr [input string(len=1), optional] Default: ‘N’
uplo [input string(len=1), optional] Default: ‘U’

scipy.linalg.lapack.dtrttf

scipy.linalg.lapack.dtrttf(a[, transr, uplo]) = <fortran object>
Wrapper for dtrttf.

Parameters

a [input rank-2 array(‘d’) with bounds (lda,n)]
Returns

arf [rank-1 array(‘d’) with bounds (n*(n+1)/2)]
info [int]

Other Parameters

transr [input string(len=1), optional] Default: ‘N’
uplo [input string(len=1), optional] Default: ‘U’

scipy.linalg.lapack.ctrttf

scipy.linalg.lapack.ctrttf(a[, transr, uplo]) = <fortran object>
Wrapper for ctrttf.

Parameters

a [input rank-2 array(‘F’) with bounds (lda,n)]
Returns

arf [rank-1 array(‘F’) with bounds (n*(n+1)/2)]
info [int]

Other Parameters

transr [input string(len=1), optional] Default: ‘N’
uplo [input string(len=1), optional] Default: ‘U’
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scipy.linalg.lapack.ztrttf

scipy.linalg.lapack.ztrttf(a[, transr, uplo]) = <fortran object>
Wrapper for ztrttf.

Parameters

a [input rank-2 array(‘D’) with bounds (lda,n)]
Returns

arf [rank-1 array(‘D’) with bounds (n*(n+1)/2)]
info [int]

Other Parameters

transr [input string(len=1), optional] Default: ‘N’
uplo [input string(len=1), optional] Default: ‘U’

scipy.linalg.lapack.strttp

scipy.linalg.lapack.strttp(a[, uplo]) = <fortran object>
Wrapper for strttp.

Parameters

a [input rank-2 array(‘f’) with bounds (lda,n)]
Returns

ap [rank-1 array(‘f’) with bounds (n*(n+1)/2)]
info [int]

Other Parameters

uplo [input string(len=1), optional] Default: ‘U’

scipy.linalg.lapack.dtrttp

scipy.linalg.lapack.dtrttp(a[, uplo]) = <fortran object>
Wrapper for dtrttp.

Parameters

a [input rank-2 array(‘d’) with bounds (lda,n)]
Returns

ap [rank-1 array(‘d’) with bounds (n*(n+1)/2)]
info [int]

Other Parameters

uplo [input string(len=1), optional] Default: ‘U’
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scipy.linalg.lapack.ctrttp

scipy.linalg.lapack.ctrttp(a[, uplo]) = <fortran object>
Wrapper for ctrttp.

Parameters

a [input rank-2 array(‘F’) with bounds (lda,n)]
Returns

ap [rank-1 array(‘F’) with bounds (n*(n+1)/2)]
info [int]

Other Parameters

uplo [input string(len=1), optional] Default: ‘U’

scipy.linalg.lapack.ztrttp

scipy.linalg.lapack.ztrttp(a[, uplo]) = <fortran object>
Wrapper for ztrttp.

Parameters

a [input rank-2 array(‘D’) with bounds (lda,n)]
Returns

ap [rank-1 array(‘D’) with bounds (n*(n+1)/2)]
info [int]

Other Parameters

uplo [input string(len=1), optional] Default: ‘U’

scipy.linalg.lapack.stzrzf

scipy.linalg.lapack.stzrzf(a[, lwork, overwrite_a]) = <fortran object>
Wrapper for stzrzf.

Parameters

a [input rank-2 array(‘f’) with bounds (m,n)]
Returns

rz [rank-2 array(‘f’) with bounds (m,n) and a storage]
tau [rank-1 array(‘f’) with bounds (m)]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

lwork [input int, optional] Default: MAX(m,1)
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scipy.linalg.lapack.dtzrzf

scipy.linalg.lapack.dtzrzf(a[, lwork, overwrite_a]) = <fortran object>
Wrapper for dtzrzf.

Parameters

a [input rank-2 array(‘d’) with bounds (m,n)]
Returns

rz [rank-2 array(‘d’) with bounds (m,n) and a storage]
tau [rank-1 array(‘d’) with bounds (m)]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

lwork [input int, optional] Default: MAX(m,1)

scipy.linalg.lapack.ctzrzf

scipy.linalg.lapack.ctzrzf(a[, lwork, overwrite_a]) = <fortran object>
Wrapper for ctzrzf.

Parameters

a [input rank-2 array(‘F’) with bounds (m,n)]
Returns

rz [rank-2 array(‘F’) with bounds (m,n) and a storage]
tau [rank-1 array(‘F’) with bounds (m)]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

lwork [input int, optional] Default: MAX(m,1)

scipy.linalg.lapack.ztzrzf

scipy.linalg.lapack.ztzrzf(a[, lwork, overwrite_a]) = <fortran object>
Wrapper for ztzrzf.

Parameters

a [input rank-2 array(‘D’) with bounds (m,n)]
Returns

rz [rank-2 array(‘D’) with bounds (m,n) and a storage]
tau [rank-1 array(‘D’) with bounds (m)]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0
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lwork [input int, optional] Default: MAX(m,1)

scipy.linalg.lapack.stzrzf_lwork

scipy.linalg.lapack.stzrzf_lwork(m, n) = <fortran object>
Wrapper for stzrzf_lwork.

Parameters

m [input int]
n [input int]

Returns

work [float]
info [int]

scipy.linalg.lapack.dtzrzf_lwork

scipy.linalg.lapack.dtzrzf_lwork(m, n) = <fortran object>
Wrapper for dtzrzf_lwork.

Parameters

m [input int]
n [input int]

Returns

work [float]
info [int]

scipy.linalg.lapack.ctzrzf_lwork

scipy.linalg.lapack.ctzrzf_lwork(m, n) = <fortran object>
Wrapper for ctzrzf_lwork.

Parameters

m [input int]
n [input int]

Returns

work [complex]
info [int]

scipy.linalg.lapack.ztzrzf_lwork

scipy.linalg.lapack.ztzrzf_lwork(m, n) = <fortran object>
Wrapper for ztzrzf_lwork.

Parameters

m [input int]
n [input int]

Returns
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work [complex]
info [int]

scipy.linalg.lapack.cunghr

scipy.linalg.lapack.cunghr(a, tau[, lo, hi, lwork, overwrite_a]) = <fortran object>
Wrapper for cunghr.

Parameters

a [input rank-2 array(‘F’) with bounds (n,n)]
tau [input rank-1 array(‘F’) with bounds (n - 1)]

Returns

ht [rank-2 array(‘F’) with bounds (n,n) and a storage]
info [int]

Other Parameters

lo [input int, optional] Default: 0
hi [input int, optional] Default: n-1
overwrite_a

[input int, optional] Default: 0
lwork [input int, optional] Default: max(hi-lo,1)

scipy.linalg.lapack.zunghr

scipy.linalg.lapack.zunghr(a, tau[, lo, hi, lwork, overwrite_a]) = <fortran object>
Wrapper for zunghr.

Parameters

a [input rank-2 array(‘D’) with bounds (n,n)]
tau [input rank-1 array(‘D’) with bounds (n - 1)]

Returns

ht [rank-2 array(‘D’) with bounds (n,n) and a storage]
info [int]

Other Parameters

lo [input int, optional] Default: 0
hi [input int, optional] Default: n-1
overwrite_a

[input int, optional] Default: 0
lwork [input int, optional] Default: max(hi-lo,1)

scipy.linalg.lapack.cunghr_lwork

scipy.linalg.lapack.cunghr_lwork(n[, lo, hi ]) = <fortran object>
Wrapper for cunghr_lwork.

Parameters

n [input int]
Returns
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work [complex]
info [int]

Other Parameters

lo [input int, optional] Default: 0
hi [input int, optional] Default: n-1

scipy.linalg.lapack.zunghr_lwork

scipy.linalg.lapack.zunghr_lwork(n[, lo, hi ]) = <fortran object>
Wrapper for zunghr_lwork.

Parameters

n [input int]
Returns

work [complex]
info [int]

Other Parameters

lo [input int, optional] Default: 0
hi [input int, optional] Default: n-1

scipy.linalg.lapack.cungqr

scipy.linalg.lapack.cungqr(a, tau[, lwork, overwrite_a]) = <fortran object>
Wrapper for cungqr.

Parameters

a [input rank-2 array(‘F’) with bounds (m,n)]
tau [input rank-1 array(‘F’) with bounds (k)]

Returns

q [rank-2 array(‘F’) with bounds (m,n) and a storage]
work [rank-1 array(‘F’) with bounds (MAX(lwork,1))]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

lwork [input int, optional] Default: max(3*n,1)

scipy.linalg.lapack.zungqr

scipy.linalg.lapack.zungqr(a, tau[, lwork, overwrite_a]) = <fortran object>
Wrapper for zungqr.

Parameters

a [input rank-2 array(‘D’) with bounds (m,n)]
tau [input rank-1 array(‘D’) with bounds (k)]

Returns
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q [rank-2 array(‘D’) with bounds (m,n) and a storage]
work [rank-1 array(‘D’) with bounds (MAX(lwork,1))]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

lwork [input int, optional] Default: max(3*n,1)

scipy.linalg.lapack.cungrq

scipy.linalg.lapack.cungrq(a, tau[, lwork, overwrite_a]) = <fortran object>
Wrapper for cungrq.

Parameters

a [input rank-2 array(‘F’) with bounds (m,n)]
tau [input rank-1 array(‘F’) with bounds (k)]

Returns

q [rank-2 array(‘F’) with bounds (m,n) and a storage]
work [rank-1 array(‘F’) with bounds (MAX(lwork,1))]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

lwork [input int, optional] Default: max(3*m,1)

scipy.linalg.lapack.zungrq

scipy.linalg.lapack.zungrq(a, tau[, lwork, overwrite_a]) = <fortran object>
Wrapper for zungrq.

Parameters

a [input rank-2 array(‘D’) with bounds (m,n)]
tau [input rank-1 array(‘D’) with bounds (k)]

Returns

q [rank-2 array(‘D’) with bounds (m,n) and a storage]
work [rank-1 array(‘D’) with bounds (MAX(lwork,1))]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

lwork [input int, optional] Default: max(3*m,1)
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scipy.linalg.lapack.cunmqr

scipy.linalg.lapack.cunmqr(side, trans, a, tau, c, lwork[, overwrite_c ]) = <fortran object>
Wrapper for cunmqr.

Parameters

side [input string(len=1)]
trans [input string(len=1)]
a [input rank-2 array(‘F’) with bounds (lda,k)]
tau [input rank-1 array(‘F’) with bounds (k)]
c [input rank-2 array(‘F’) with bounds (ldc,n)]
lwork [input int]

Returns

cq [rank-2 array(‘F’) with bounds (ldc,n) and c storage]
work [rank-1 array(‘F’) with bounds (MAX(lwork,1))]
info [int]

Other Parameters

overwrite_c
[input int, optional] Default: 0

scipy.linalg.lapack.zunmqr

scipy.linalg.lapack.zunmqr(side, trans, a, tau, c, lwork[, overwrite_c ]) = <fortran object>
Wrapper for zunmqr.

Parameters

side [input string(len=1)]
trans [input string(len=1)]
a [input rank-2 array(‘D’) with bounds (lda,k)]
tau [input rank-1 array(‘D’) with bounds (k)]
c [input rank-2 array(‘D’) with bounds (ldc,n)]
lwork [input int]

Returns

cq [rank-2 array(‘D’) with bounds (ldc,n) and c storage]
work [rank-1 array(‘D’) with bounds (MAX(lwork,1))]
info [int]

Other Parameters

overwrite_c
[input int, optional] Default: 0

scipy.linalg.lapack.cunmrz

scipy.linalg.lapack.cunmrz(a, tau, c[, side, trans, lwork, overwrite_c ]) = <fortran object>
Wrapper for cunmrz.

Parameters

a [input rank-2 array(‘F’) with bounds (k,nt)]
tau [input rank-1 array(‘F’) with bounds (k)]
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c [input rank-2 array(‘F’) with bounds (m,n)]
Returns

cq [rank-2 array(‘F’) with bounds (m,n) and c storage]
info [int]

Other Parameters

side [input string(len=1), optional] Default: ‘L’
trans [input string(len=1), optional] Default: ‘N’
overwrite_c

[input int, optional] Default: 0
lwork [input int, optional] Default: MAX((side[0]==’L’?n:m),1)

scipy.linalg.lapack.zunmrz

scipy.linalg.lapack.zunmrz(a, tau, c[, side, trans, lwork, overwrite_c ]) = <fortran object>
Wrapper for zunmrz.

Parameters

a [input rank-2 array(‘D’) with bounds (k,nt)]
tau [input rank-1 array(‘D’) with bounds (k)]
c [input rank-2 array(‘D’) with bounds (m,n)]

Returns

cq [rank-2 array(‘D’) with bounds (m,n) and c storage]
info [int]

Other Parameters

side [input string(len=1), optional] Default: ‘L’
trans [input string(len=1), optional] Default: ‘N’
overwrite_c

[input int, optional] Default: 0
lwork [input int, optional] Default: MAX((side[0]==’L’?n:m),1)

scipy.linalg.lapack.cunmrz_lwork

scipy.linalg.lapack.cunmrz_lwork(m, n[, side, trans ]) = <fortran object>
Wrapper for cunmrz_lwork.

Parameters

m [input int]
n [input int]

Returns

work [complex]
info [int]

Other Parameters

side [input string(len=1), optional] Default: ‘L’
trans [input string(len=1), optional] Default: ‘N’
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scipy.linalg.lapack.zunmrz_lwork

scipy.linalg.lapack.zunmrz_lwork(m, n[, side, trans ]) = <fortran object>
Wrapper for zunmrz_lwork.

Parameters

m [input int]
n [input int]

Returns

work [complex]
info [int]

Other Parameters

side [input string(len=1), optional] Default: ‘L’
trans [input string(len=1), optional] Default: ‘N’

scipy.linalg.lapack.ilaver

scipy.linalg.lapack.ilaver = <fortran object>
Wrapper for ilaver.

Returns

major [int]
minor [int]
patch [int]

6.12 BLAS Functions for Cython

Usable from Cython via:

cimport scipy.linalg.cython_blas

These wrappers do not check for alignment of arrays. Alignment should be checked before these wrappers are used.
Raw function pointers (Fortran-style pointer arguments):

• caxpy
• ccopy
• cdotc
• cdotu
• cgbmv
• cgemm
• cgemv
• cgerc
• cgeru
• chbmv
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• chemm
• chemv
• cher
• cher2
• cher2k
• cherk
• chpmv
• chpr
• chpr2
• crotg
• cscal
• csrot
• csscal
• cswap
• csymm
• csyr2k
• csyrk
• ctbmv
• ctbsv
• ctpmv
• ctpsv
• ctrmm
• ctrmv
• ctrsm
• ctrsv
• dasum
• daxpy
• dcabs1
• dcopy
• ddot
• dgbmv
• dgemm
• dgemv
• dger
• dnrm2
• drot
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• drotg
• drotm
• drotmg
• dsbmv
• dscal
• dsdot
• dspmv
• dspr
• dspr2
• dswap
• dsymm
• dsymv
• dsyr
• dsyr2
• dsyr2k
• dsyrk
• dtbmv
• dtbsv
• dtpmv
• dtpsv
• dtrmm
• dtrmv
• dtrsm
• dtrsv
• dzasum
• dznrm2
• icamax
• idamax
• isamax
• izamax
• lsame
• sasum
• saxpy
• scasum
• scnrm2
• scopy
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• sdot
• sdsdot
• sgbmv
• sgemm
• sgemv
• sger
• snrm2
• srot
• srotg
• srotm
• srotmg
• ssbmv
• sscal
• sspmv
• sspr
• sspr2
• sswap
• ssymm
• ssymv
• ssyr
• ssyr2
• ssyr2k
• ssyrk
• stbmv
• stbsv
• stpmv
• stpsv
• strmm
• strmv
• strsm
• strsv
• zaxpy
• zcopy
• zdotc
• zdotu
• zdrot
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• zdscal
• zgbmv
• zgemm
• zgemv
• zgerc
• zgeru
• zhbmv
• zhemm
• zhemv
• zher
• zher2
• zher2k
• zherk
• zhpmv
• zhpr
• zhpr2
• zrotg
• zscal
• zswap
• zsymm
• zsyr2k
• zsyrk
• ztbmv
• ztbsv
• ztpmv
• ztpsv
• ztrmm
• ztrmv
• ztrsm
• ztrsv

6.13 LAPACK functions for Cython

Usable from Cython via:

cimport scipy.linalg.cython_lapack
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This module provides Cython-level wrappers for all primary routines included in LAPACK 3.4.0 except for zcgesv
since its interface is not consistent from LAPACK 3.4.0 to 3.6.0. It also provides some of the fixed-api auxiliary routines.
These wrappers do not check for alignment of arrays. Alignment should be checked before these wrappers are used.
Raw function pointers (Fortran-style pointer arguments):

• cbbcsd
• cbdsqr
• cgbbrd
• cgbcon
• cgbequ
• cgbequb
• cgbrfs
• cgbsv
• cgbsvx
• cgbtf2
• cgbtrf
• cgbtrs
• cgebak
• cgebal
• cgebd2
• cgebrd
• cgecon
• cgeequ
• cgeequb
• cgees
• cgeesx
• cgeev
• cgeevx
• cgehd2
• cgehrd
• cgelq2
• cgelqf
• cgels
• cgelsd
• cgelss
• cgelsy
• cgemqrt
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• cgeql2
• cgeqlf
• cgeqp3
• cgeqr2
• cgeqr2p
• cgeqrf
• cgeqrfp
• cgeqrt
• cgeqrt2
• cgeqrt3
• cgerfs
• cgerq2
• cgerqf
• cgesc2
• cgesdd
• cgesv
• cgesvd
• cgesvx
• cgetc2
• cgetf2
• cgetrf
• cgetri
• cgetrs
• cggbak
• cggbal
• cgges
• cggesx
• cggev
• cggevx
• cggglm
• cgghrd
• cgglse
• cggqrf
• cggrqf
• cgtcon
• cgtrfs
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• cgtsv
• cgtsvx
• cgttrf
• cgttrs
• cgtts2
• chbev
• chbevd
• chbevx
• chbgst
• chbgv
• chbgvd
• chbgvx
• chbtrd
• checon
• cheequb
• cheev
• cheevd
• cheevr
• cheevx
• chegs2
• chegst
• chegv
• chegvd
• chegvx
• cherfs
• chesv
• chesvx
• cheswapr
• chetd2
• chetf2
• chetrd
• chetrf
• chetri
• chetri2
• chetri2x
• chetrs
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• chetrs2
• chfrk
• chgeqz
• chla_transtype
• chpcon
• chpev
• chpevd
• chpevx
• chpgst
• chpgv
• chpgvd
• chpgvx
• chprfs
• chpsv
• chpsvx
• chptrd
• chptrf
• chptri
• chptrs
• chsein
• chseqr
• clabrd
• clacgv
• clacn2
• clacon
• clacp2
• clacpy
• clacrm
• clacrt
• cladiv
• claed0
• claed7
• claed8
• claein
• claesy
• claev2
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• clag2z
• clags2
• clagtm
• clahef
• clahqr
• clahr2
• claic1
• clals0
• clalsa
• clalsd
• clangb
• clange
• clangt
• clanhb
• clanhe
• clanhf
• clanhp
• clanhs
• clanht
• clansb
• clansp
• clansy
• clantb
• clantp
• clantr
• clapll
• clapmr
• clapmt
• claqgb
• claqge
• claqhb
• claqhe
• claqhp
• claqp2
• claqps
• claqr0
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• claqr1
• claqr2
• claqr3
• claqr4
• claqr5
• claqsb
• claqsp
• claqsy
• clar1v
• clar2v
• clarcm
• clarf
• clarfb
• clarfg
• clarfgp
• clarft
• clarfx
• clargv
• clarnv
• clarrv
• clartg
• clartv
• clarz
• clarzb
• clarzt
• clascl
• claset
• clasr
• classq
• claswp
• clasyf
• clatbs
• clatdf
• clatps
• clatrd
• clatrs
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• clatrz
• clauu2
• clauum
• cpbcon
• cpbequ
• cpbrfs
• cpbstf
• cpbsv
• cpbsvx
• cpbtf2
• cpbtrf
• cpbtrs
• cpftrf
• cpftri
• cpftrs
• cpocon
• cpoequ
• cpoequb
• cporfs
• cposv
• cposvx
• cpotf2
• cpotrf
• cpotri
• cpotrs
• cppcon
• cppequ
• cpprfs
• cppsv
• cppsvx
• cpptrf
• cpptri
• cpptrs
• cpstf2
• cpstrf
• cptcon
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• cpteqr
• cptrfs
• cptsv
• cptsvx
• cpttrf
• cpttrs
• cptts2
• crot
• cspcon
• cspmv
• cspr
• csprfs
• cspsv
• cspsvx
• csptrf
• csptri
• csptrs
• csrscl
• cstedc
• cstegr
• cstein
• cstemr
• csteqr
• csycon
• csyconv
• csyequb
• csymv
• csyr
• csyrfs
• csysv
• csysvx
• csyswapr
• csytf2
• csytrf
• csytri
• csytri2
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• csytri2x
• csytrs
• csytrs2
• ctbcon
• ctbrfs
• ctbtrs
• ctfsm
• ctftri
• ctfttp
• ctfttr
• ctgevc
• ctgex2
• ctgexc
• ctgsen
• ctgsja
• ctgsna
• ctgsy2
• ctgsyl
• ctpcon
• ctpmqrt
• ctpqrt
• ctpqrt2
• ctprfb
• ctprfs
• ctptri
• ctptrs
• ctpttf
• ctpttr
• ctrcon
• ctrevc
• ctrexc
• ctrrfs
• ctrsen
• ctrsna
• ctrsyl
• ctrti2
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• ctrtri
• ctrtrs
• ctrttf
• ctrttp
• ctzrzf
• cunbdb
• cuncsd
• cung2l
• cung2r
• cungbr
• cunghr
• cungl2
• cunglq
• cungql
• cungqr
• cungr2
• cungrq
• cungtr
• cunm2l
• cunm2r
• cunmbr
• cunmhr
• cunml2
• cunmlq
• cunmql
• cunmqr
• cunmr2
• cunmr3
• cunmrq
• cunmrz
• cunmtr
• cupgtr
• cupmtr
• dbbcsd
• dbdsdc
• dbdsqr
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• ddisna
• dgbbrd
• dgbcon
• dgbequ
• dgbequb
• dgbrfs
• dgbsv
• dgbsvx
• dgbtf2
• dgbtrf
• dgbtrs
• dgebak
• dgebal
• dgebd2
• dgebrd
• dgecon
• dgeequ
• dgeequb
• dgees
• dgeesx
• dgeev
• dgeevx
• dgehd2
• dgehrd
• dgejsv
• dgelq2
• dgelqf
• dgels
• dgelsd
• dgelss
• dgelsy
• dgemqrt
• dgeql2
• dgeqlf
• dgeqp3
• dgeqr2
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• dgeqr2p
• dgeqrf
• dgeqrfp
• dgeqrt
• dgeqrt2
• dgeqrt3
• dgerfs
• dgerq2
• dgerqf
• dgesc2
• dgesdd
• dgesv
• dgesvd
• dgesvj
• dgesvx
• dgetc2
• dgetf2
• dgetrf
• dgetri
• dgetrs
• dggbak
• dggbal
• dgges
• dggesx
• dggev
• dggevx
• dggglm
• dgghrd
• dgglse
• dggqrf
• dggrqf
• dgsvj0
• dgsvj1
• dgtcon
• dgtrfs
• dgtsv
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• dgtsvx
• dgttrf
• dgttrs
• dgtts2
• dhgeqz
• dhsein
• dhseqr
• disnan
• dlabad
• dlabrd
• dlacn2
• dlacon
• dlacpy
• dladiv
• dlae2
• dlaebz
• dlaed0
• dlaed1
• dlaed2
• dlaed3
• dlaed4
• dlaed5
• dlaed6
• dlaed7
• dlaed8
• dlaed9
• dlaeda
• dlaein
• dlaev2
• dlaexc
• dlag2
• dlag2s
• dlags2
• dlagtf
• dlagtm
• dlagts

1130 Chapter 6. API Reference



SciPy Reference Guide, Release 1.3.1

• dlagv2
• dlahqr
• dlahr2
• dlaic1
• dlaln2
• dlals0
• dlalsa
• dlalsd
• dlamch
• dlamrg
• dlaneg
• dlangb
• dlange
• dlangt
• dlanhs
• dlansb
• dlansf
• dlansp
• dlanst
• dlansy
• dlantb
• dlantp
• dlantr
• dlanv2
• dlapll
• dlapmr
• dlapmt
• dlapy2
• dlapy3
• dlaqgb
• dlaqge
• dlaqp2
• dlaqps
• dlaqr0
• dlaqr1
• dlaqr2
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• dlaqr3
• dlaqr4
• dlaqr5
• dlaqsb
• dlaqsp
• dlaqsy
• dlaqtr
• dlar1v
• dlar2v
• dlarf
• dlarfb
• dlarfg
• dlarfgp
• dlarft
• dlarfx
• dlargv
• dlarnv
• dlarra
• dlarrb
• dlarrc
• dlarrd
• dlarre
• dlarrf
• dlarrj
• dlarrk
• dlarrr
• dlarrv
• dlartg
• dlartgp
• dlartgs
• dlartv
• dlaruv
• dlarz
• dlarzb
• dlarzt
• dlas2
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• dlascl
• dlasd0
• dlasd1
• dlasd2
• dlasd3
• dlasd4
• dlasd5
• dlasd6
• dlasd7
• dlasd8
• dlasda
• dlasdq
• dlasdt
• dlaset
• dlasq1
• dlasq2
• dlasq3
• dlasq4
• dlasq6
• dlasr
• dlasrt
• dlassq
• dlasv2
• dlaswp
• dlasy2
• dlasyf
• dlat2s
• dlatbs
• dlatdf
• dlatps
• dlatrd
• dlatrs
• dlatrz
• dlauu2
• dlauum
• dopgtr
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• dopmtr
• dorbdb
• dorcsd
• dorg2l
• dorg2r
• dorgbr
• dorghr
• dorgl2
• dorglq
• dorgql
• dorgqr
• dorgr2
• dorgrq
• dorgtr
• dorm2l
• dorm2r
• dormbr
• dormhr
• dorml2
• dormlq
• dormql
• dormqr
• dormr2
• dormr3
• dormrq
• dormrz
• dormtr
• dpbcon
• dpbequ
• dpbrfs
• dpbstf
• dpbsv
• dpbsvx
• dpbtf2
• dpbtrf
• dpbtrs
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• dpftrf
• dpftri
• dpftrs
• dpocon
• dpoequ
• dpoequb
• dporfs
• dposv
• dposvx
• dpotf2
• dpotrf
• dpotri
• dpotrs
• dppcon
• dppequ
• dpprfs
• dppsv
• dppsvx
• dpptrf
• dpptri
• dpptrs
• dpstf2
• dpstrf
• dptcon
• dpteqr
• dptrfs
• dptsv
• dptsvx
• dpttrf
• dpttrs
• dptts2
• drscl
• dsbev
• dsbevd
• dsbevx
• dsbgst
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• dsbgv
• dsbgvd
• dsbgvx
• dsbtrd
• dsfrk
• dsgesv
• dspcon
• dspev
• dspevd
• dspevx
• dspgst
• dspgv
• dspgvd
• dspgvx
• dsposv
• dsprfs
• dspsv
• dspsvx
• dsptrd
• dsptrf
• dsptri
• dsptrs
• dstebz
• dstedc
• dstegr
• dstein
• dstemr
• dsteqr
• dsterf
• dstev
• dstevd
• dstevr
• dstevx
• dsycon
• dsyconv
• dsyequb
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• dsyev
• dsyevd
• dsyevr
• dsyevx
• dsygs2
• dsygst
• dsygv
• dsygvd
• dsygvx
• dsyrfs
• dsysv
• dsysvx
• dsyswapr
• dsytd2
• dsytf2
• dsytrd
• dsytrf
• dsytri
• dsytri2
• dsytri2x
• dsytrs
• dsytrs2
• dtbcon
• dtbrfs
• dtbtrs
• dtfsm
• dtftri
• dtfttp
• dtfttr
• dtgevc
• dtgex2
• dtgexc
• dtgsen
• dtgsja
• dtgsna
• dtgsy2
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• dtgsyl
• dtpcon
• dtpmqrt
• dtpqrt
• dtpqrt2
• dtprfb
• dtprfs
• dtptri
• dtptrs
• dtpttf
• dtpttr
• dtrcon
• dtrevc
• dtrexc
• dtrrfs
• dtrsen
• dtrsna
• dtrsyl
• dtrti2
• dtrtri
• dtrtrs
• dtrttf
• dtrttp
• dtzrzf
• dzsum1
• icmax1
• ieeeck
• ilaclc
• ilaclr
• iladiag
• iladlc
• iladlr
• ilaprec
• ilaslc
• ilaslr
• ilatrans
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• ilauplo
• ilaver
• ilazlc
• ilazlr
• izmax1
• sbbcsd
• sbdsdc
• sbdsqr
• scsum1
• sdisna
• sgbbrd
• sgbcon
• sgbequ
• sgbequb
• sgbrfs
• sgbsv
• sgbsvx
• sgbtf2
• sgbtrf
• sgbtrs
• sgebak
• sgebal
• sgebd2
• sgebrd
• sgecon
• sgeequ
• sgeequb
• sgees
• sgeesx
• sgeev
• sgeevx
• sgehd2
• sgehrd
• sgejsv
• sgelq2
• sgelqf
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• sgels
• sgelsd
• sgelss
• sgelsy
• sgemqrt
• sgeql2
• sgeqlf
• sgeqp3
• sgeqr2
• sgeqr2p
• sgeqrf
• sgeqrfp
• sgeqrt
• sgeqrt2
• sgeqrt3
• sgerfs
• sgerq2
• sgerqf
• sgesc2
• sgesdd
• sgesv
• sgesvd
• sgesvj
• sgesvx
• sgetc2
• sgetf2
• sgetrf
• sgetri
• sgetrs
• sggbak
• sggbal
• sgges
• sggesx
• sggev
• sggevx
• sggglm
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• sgghrd
• sgglse
• sggqrf
• sggrqf
• sgsvj0
• sgsvj1
• sgtcon
• sgtrfs
• sgtsv
• sgtsvx
• sgttrf
• sgttrs
• sgtts2
• shgeqz
• shsein
• shseqr
• slabad
• slabrd
• slacn2
• slacon
• slacpy
• sladiv
• slae2
• slaebz
• slaed0
• slaed1
• slaed2
• slaed3
• slaed4
• slaed5
• slaed6
• slaed7
• slaed8
• slaed9
• slaeda
• slaein
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• slaev2
• slaexc
• slag2
• slag2d
• slags2
• slagtf
• slagtm
• slagts
• slagv2
• slahqr
• slahr2
• slaic1
• slaln2
• slals0
• slalsa
• slalsd
• slamch
• slamrg
• slangb
• slange
• slangt
• slanhs
• slansb
• slansf
• slansp
• slanst
• slansy
• slantb
• slantp
• slantr
• slanv2
• slapll
• slapmr
• slapmt
• slapy2
• slapy3
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• slaqgb
• slaqge
• slaqp2
• slaqps
• slaqr0
• slaqr1
• slaqr2
• slaqr3
• slaqr4
• slaqr5
• slaqsb
• slaqsp
• slaqsy
• slaqtr
• slar1v
• slar2v
• slarf
• slarfb
• slarfg
• slarfgp
• slarft
• slarfx
• slargv
• slarnv
• slarra
• slarrb
• slarrc
• slarrd
• slarre
• slarrf
• slarrj
• slarrk
• slarrr
• slarrv
• slartg
• slartgp
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• slartgs
• slartv
• slaruv
• slarz
• slarzb
• slarzt
• slas2
• slascl
• slasd0
• slasd1
• slasd2
• slasd3
• slasd4
• slasd5
• slasd6
• slasd7
• slasd8
• slasda
• slasdq
• slasdt
• slaset
• slasq1
• slasq2
• slasq3
• slasq4
• slasq6
• slasr
• slasrt
• slassq
• slasv2
• slaswp
• slasy2
• slasyf
• slatbs
• slatdf
• slatps
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• slatrd
• slatrs
• slatrz
• slauu2
• slauum
• sopgtr
• sopmtr
• sorbdb
• sorcsd
• sorg2l
• sorg2r
• sorgbr
• sorghr
• sorgl2
• sorglq
• sorgql
• sorgqr
• sorgr2
• sorgrq
• sorgtr
• sorm2l
• sorm2r
• sormbr
• sormhr
• sorml2
• sormlq
• sormql
• sormqr
• sormr2
• sormr3
• sormrq
• sormrz
• sormtr
• spbcon
• spbequ
• spbrfs
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• spbstf
• spbsv
• spbsvx
• spbtf2
• spbtrf
• spbtrs
• spftrf
• spftri
• spftrs
• spocon
• spoequ
• spoequb
• sporfs
• sposv
• sposvx
• spotf2
• spotrf
• spotri
• spotrs
• sppcon
• sppequ
• spprfs
• sppsv
• sppsvx
• spptrf
• spptri
• spptrs
• spstf2
• spstrf
• sptcon
• spteqr
• sptrfs
• sptsv
• sptsvx
• spttrf
• spttrs
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• sptts2
• srscl
• ssbev
• ssbevd
• ssbevx
• ssbgst
• ssbgv
• ssbgvd
• ssbgvx
• ssbtrd
• ssfrk
• sspcon
• sspev
• sspevd
• sspevx
• sspgst
• sspgv
• sspgvd
• sspgvx
• ssprfs
• sspsv
• sspsvx
• ssptrd
• ssptrf
• ssptri
• ssptrs
• sstebz
• sstedc
• sstegr
• sstein
• sstemr
• ssteqr
• ssterf
• sstev
• sstevd
• sstevr
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• sstevx
• ssycon
• ssyconv
• ssyequb
• ssyev
• ssyevd
• ssyevr
• ssyevx
• ssygs2
• ssygst
• ssygv
• ssygvd
• ssygvx
• ssyrfs
• ssysv
• ssysvx
• ssyswapr
• ssytd2
• ssytf2
• ssytrd
• ssytrf
• ssytri
• ssytri2
• ssytri2x
• ssytrs
• ssytrs2
• stbcon
• stbrfs
• stbtrs
• stfsm
• stftri
• stfttp
• stfttr
• stgevc
• stgex2
• stgexc
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• stgsen
• stgsja
• stgsna
• stgsy2
• stgsyl
• stpcon
• stpmqrt
• stpqrt
• stpqrt2
• stprfb
• stprfs
• stptri
• stptrs
• stpttf
• stpttr
• strcon
• strevc
• strexc
• strrfs
• strsen
• strsna
• strsyl
• strti2
• strtri
• strtrs
• strttf
• strttp
• stzrzf
• xerbla_array
• zbbcsd
• zbdsqr
• zcgesv
• zcposv
• zdrscl
• zgbbrd
• zgbcon
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• zgbequ
• zgbequb
• zgbrfs
• zgbsv
• zgbsvx
• zgbtf2
• zgbtrf
• zgbtrs
• zgebak
• zgebal
• zgebd2
• zgebrd
• zgecon
• zgeequ
• zgeequb
• zgees
• zgeesx
• zgeev
• zgeevx
• zgehd2
• zgehrd
• zgelq2
• zgelqf
• zgels
• zgelsd
• zgelss
• zgelsy
• zgemqrt
• zgeql2
• zgeqlf
• zgeqp3
• zgeqr2
• zgeqr2p
• zgeqrf
• zgeqrfp
• zgeqrt
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• zgeqrt2
• zgeqrt3
• zgerfs
• zgerq2
• zgerqf
• zgesc2
• zgesdd
• zgesv
• zgesvd
• zgesvx
• zgetc2
• zgetf2
• zgetrf
• zgetri
• zgetrs
• zggbak
• zggbal
• zgges
• zggesx
• zggev
• zggevx
• zggglm
• zgghrd
• zgglse
• zggqrf
• zggrqf
• zgtcon
• zgtrfs
• zgtsv
• zgtsvx
• zgttrf
• zgttrs
• zgtts2
• zhbev
• zhbevd
• zhbevx
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• zhbgst
• zhbgv
• zhbgvd
• zhbgvx
• zhbtrd
• zhecon
• zheequb
• zheev
• zheevd
• zheevr
• zheevx
• zhegs2
• zhegst
• zhegv
• zhegvd
• zhegvx
• zherfs
• zhesv
• zhesvx
• zheswapr
• zhetd2
• zhetf2
• zhetrd
• zhetrf
• zhetri
• zhetri2
• zhetri2x
• zhetrs
• zhetrs2
• zhfrk
• zhgeqz
• zhpcon
• zhpev
• zhpevd
• zhpevx
• zhpgst
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• zhpgv
• zhpgvd
• zhpgvx
• zhprfs
• zhpsv
• zhpsvx
• zhptrd
• zhptrf
• zhptri
• zhptrs
• zhsein
• zhseqr
• zlabrd
• zlacgv
• zlacn2
• zlacon
• zlacp2
• zlacpy
• zlacrm
• zlacrt
• zladiv
• zlaed0
• zlaed7
• zlaed8
• zlaein
• zlaesy
• zlaev2
• zlag2c
• zlags2
• zlagtm
• zlahef
• zlahqr
• zlahr2
• zlaic1
• zlals0
• zlalsa
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• zlalsd
• zlangb
• zlange
• zlangt
• zlanhb
• zlanhe
• zlanhf
• zlanhp
• zlanhs
• zlanht
• zlansb
• zlansp
• zlansy
• zlantb
• zlantp
• zlantr
• zlapll
• zlapmr
• zlapmt
• zlaqgb
• zlaqge
• zlaqhb
• zlaqhe
• zlaqhp
• zlaqp2
• zlaqps
• zlaqr0
• zlaqr1
• zlaqr2
• zlaqr3
• zlaqr4
• zlaqr5
• zlaqsb
• zlaqsp
• zlaqsy
• zlar1v
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• zlar2v
• zlarcm
• zlarf
• zlarfb
• zlarfg
• zlarfgp
• zlarft
• zlarfx
• zlargv
• zlarnv
• zlarrv
• zlartg
• zlartv
• zlarz
• zlarzb
• zlarzt
• zlascl
• zlaset
• zlasr
• zlassq
• zlaswp
• zlasyf
• zlat2c
• zlatbs
• zlatdf
• zlatps
• zlatrd
• zlatrs
• zlatrz
• zlauu2
• zlauum
• zpbcon
• zpbequ
• zpbrfs
• zpbstf
• zpbsv
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• zpbsvx
• zpbtf2
• zpbtrf
• zpbtrs
• zpftrf
• zpftri
• zpftrs
• zpocon
• zpoequ
• zpoequb
• zporfs
• zposv
• zposvx
• zpotf2
• zpotrf
• zpotri
• zpotrs
• zppcon
• zppequ
• zpprfs
• zppsv
• zppsvx
• zpptrf
• zpptri
• zpptrs
• zpstf2
• zpstrf
• zptcon
• zpteqr
• zptrfs
• zptsv
• zptsvx
• zpttrf
• zpttrs
• zptts2
• zrot
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• zspcon
• zspmv
• zspr
• zsprfs
• zspsv
• zspsvx
• zsptrf
• zsptri
• zsptrs
• zstedc
• zstegr
• zstein
• zstemr
• zsteqr
• zsycon
• zsyconv
• zsyequb
• zsymv
• zsyr
• zsyrfs
• zsysv
• zsysvx
• zsyswapr
• zsytf2
• zsytrf
• zsytri
• zsytri2
• zsytri2x
• zsytrs
• zsytrs2
• ztbcon
• ztbrfs
• ztbtrs
• ztfsm
• ztftri
• ztfttp
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• ztfttr
• ztgevc
• ztgex2
• ztgexc
• ztgsen
• ztgsja
• ztgsna
• ztgsy2
• ztgsyl
• ztpcon
• ztpmqrt
• ztpqrt
• ztpqrt2
• ztprfb
• ztprfs
• ztptri
• ztptrs
• ztpttf
• ztpttr
• ztrcon
• ztrevc
• ztrexc
• ztrrfs
• ztrsen
• ztrsna
• ztrsyl
• ztrti2
• ztrtri
• ztrtrs
• ztrttf
• ztrttp
• ztzrzf
• zunbdb
• zuncsd
• zung2l
• zung2r
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• zungbr
• zunghr
• zungl2
• zunglq
• zungql
• zungqr
• zungr2
• zungrq
• zungtr
• zunm2l
• zunm2r
• zunmbr
• zunmhr
• zunml2
• zunmlq
• zunmql
• zunmqr
• zunmr2
• zunmr3
• zunmrq
• zunmrz
• zunmtr
• zupgtr
• zupmtr

6.14 Interpolative matrix decomposition (scipy.linalg.
interpolative)

New in version 0.13.
An interpolative decomposition (ID) of a matrix A ∈ Cm×n of rank k ≤ min{m,n} is a factorization

AΠ =
[
AΠ1 AΠ2

]
= AΠ1

[
I T

]
,

whereΠ = [Π1,Π2] is a permutation matrix withΠ1 ∈ {0, 1}n×k, i.e.,AΠ2 = AΠ1T . This can equivalently be written
as A = BP , where B = AΠ1 and P = [I, T ]ΠT are the skeleton and interpolation matrices, respectively.
If A does not have exact rank k, then there exists an approximation in the form of an ID such that A = BP +E, where
∥E∥ ∼ σk+1 is on the order of the (k + 1)-th largest singular value of A. Note that σk+1 is the best possible error
for a rank-k approximation and, in fact, is achieved by the singular value decomposition (SVD) A ≈ USV ∗, where
U ∈ Cm×k and V ∈ Cn×k have orthonormal columns and S = diag(σi) ∈ Ck×k is diagonal with nonnegative entries.
The principal advantages of using an ID over an SVD are that:
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• it is cheaper to construct;
• it preserves the structure of A; and
• it is more efficient to compute with in light of the identity submatrix of P .

6.14.1 Routines

Main functionality:

interp_decomp(A, eps_or_k[, rand]) Compute ID of a matrix.
reconstruct_matrix_from_id(B, idx, proj) Reconstruct matrix from its ID.
reconstruct_interp_matrix(idx, proj) Reconstruct interpolation matrix from ID.
reconstruct_skel_matrix(A, k, idx) Reconstruct skeleton matrix from ID.
id_to_svd(B, idx, proj) Convert ID to SVD.
svd(A, eps_or_k[, rand]) Compute SVD of a matrix via an ID.
estimate_spectral_norm(A[, its]) Estimate spectral norm of a matrix by the randomized

power method.
estimate_spectral_norm_diff(A, B[, its]) Estimate spectral norm of the difference of two matrices

by the randomized power method.
estimate_rank(A, eps) Estimate matrix rank to a specified relative precision us-

ing randomized methods.

scipy.linalg.interpolative.interp_decomp

scipy.linalg.interpolative.interp_decomp(A, eps_or_k, rand=True)
Compute ID of a matrix.
An ID of a matrix A is a factorization defined by a rank k, a column index array idx, and interpolation coefficients
proj such that:

numpy.dot(A[:,idx[:k]], proj) = A[:,idx[k:]]

The original matrix can then be reconstructed as:

numpy.hstack([A[:,idx[:k]],
numpy.dot(A[:,idx[:k]], proj)]

)[:,numpy.argsort(idx)]

or via the routine reconstruct_matrix_from_id. This can equivalently be written as:

numpy.dot(A[:,idx[:k]],
numpy.hstack([numpy.eye(k), proj])

)[:,np.argsort(idx)]

in terms of the skeleton and interpolation matrices:

B = A[:,idx[:k]]

and:

P = numpy.hstack([numpy.eye(k), proj])[:,np.argsort(idx)]

respectively. See also reconstruct_interp_matrix and reconstruct_skel_matrix.
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The ID can be computed to any relative precision or rank (depending on the value of eps_or_k). If a precision is
specified (eps_or_k < 1), then this function has the output signature:

k, idx, proj = interp_decomp(A, eps_or_k)

Otherwise, if a rank is specified (eps_or_k >= 1), then the output signature is:

idx, proj = interp_decomp(A, eps_or_k)

Parameters

A [numpy.ndarray or scipy.sparse.linalg.LinearOperator with rmatvec]
Matrix to be factored

eps_or_k [float or int] Relative error (if eps_or_k < 1) or rank (if eps_or_k >= 1) of approximation.
rand [bool, optional] Whether to use random sampling if A is of type numpy.ndarray

(randomized algorithms are always used if A is of type scipy.sparse.linalg.
LinearOperator).

Returns

k [int] Rank required to achieve specified relative precision if eps_or_k < 1.
idx [numpy.ndarray] Column index array.
proj [numpy.ndarray] Interpolation coefficients.

scipy.linalg.interpolative.reconstruct_matrix_from_id

scipy.linalg.interpolative.reconstruct_matrix_from_id(B, idx, proj)
Reconstruct matrix from its ID.
A matrix A with skeleton matrix B and ID indices and coefficients idx and proj, respectively, can be reconstructed
as:

numpy.hstack([B, numpy.dot(B, proj)])[:,numpy.argsort(idx)]

See also reconstruct_interp_matrix and reconstruct_skel_matrix.
Parameters

B [numpy.ndarray] Skeleton matrix.
idx [numpy.ndarray] Column index array.
proj [numpy.ndarray] Interpolation coefficients.

Returns

:class:‘numpy.ndarray‘
Reconstructed matrix.

scipy.linalg.interpolative.reconstruct_interp_matrix

scipy.linalg.interpolative.reconstruct_interp_matrix(idx, proj)
Reconstruct interpolation matrix from ID.
The interpolation matrix can be reconstructed from the ID indices and coefficients idx and proj, respectively, as:

P = numpy.hstack([numpy.eye(proj.shape[0]), proj])[:,numpy.argsort(idx)]

The original matrix can then be reconstructed from its skeleton matrix B via:
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numpy.dot(B, P)

See also reconstruct_matrix_from_id and reconstruct_skel_matrix.
Parameters

idx [numpy.ndarray] Column index array.
proj [numpy.ndarray] Interpolation coefficients.

Returns

:class:‘numpy.ndarray‘
Interpolation matrix.

scipy.linalg.interpolative.reconstruct_skel_matrix

scipy.linalg.interpolative.reconstruct_skel_matrix(A, k, idx)
Reconstruct skeleton matrix from ID.
The skeleton matrix can be reconstructed from the original matrix A and its ID rank and indices k and idx, respec-
tively, as:

B = A[:,idx[:k]]

The original matrix can then be reconstructed via:

numpy.hstack([B, numpy.dot(B, proj)])[:,numpy.argsort(idx)]

See also reconstruct_matrix_from_id and reconstruct_interp_matrix.
Parameters

A [numpy.ndarray] Original matrix.
k [int] Rank of ID.
idx [numpy.ndarray] Column index array.

Returns

:class:‘numpy.ndarray‘
Skeleton matrix.

scipy.linalg.interpolative.id_to_svd

scipy.linalg.interpolative.id_to_svd(B, idx, proj)
Convert ID to SVD.
The SVD reconstruction of amatrix with skeletonmatrix B and ID indices and coefficients idx and proj, respectively,
is:

U, S, V = id_to_svd(B, idx, proj)
A = numpy.dot(U, numpy.dot(numpy.diag(S), V.conj().T))

See also svd.
Parameters

B [numpy.ndarray] Skeleton matrix.
idx [numpy.ndarray] Column index array.
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proj [numpy.ndarray] Interpolation coefficients.
Returns

U [numpy.ndarray] Left singular vectors.
S [numpy.ndarray] Singular values.
V [numpy.ndarray] Right singular vectors.

scipy.linalg.interpolative.svd

scipy.linalg.interpolative.svd(A, eps_or_k, rand=True)
Compute SVD of a matrix via an ID.
An SVD of a matrix A is a factorization:

A = numpy.dot(U, numpy.dot(numpy.diag(S), V.conj().T))

where U and V have orthonormal columns and S is nonnegative.
The SVD can be computed to any relative precision or rank (depending on the value of eps_or_k).
See also interp_decomp and id_to_svd.

Parameters

A [numpy.ndarray or scipy.sparse.linalg.LinearOperator] Matrix to
be factored, given as either a numpy.ndarray or a scipy.sparse.linalg.
LinearOperator with the matvec and rmatvec methods (to apply the matrix and its
adjoint).

eps_or_k [float or int] Relative error (if eps_or_k < 1) or rank (if eps_or_k >= 1) of approximation.
rand [bool, optional] Whether to use random sampling if A is of type numpy.ndarray

(randomized algorithms are always used if A is of type scipy.sparse.linalg.
LinearOperator).

Returns

U [numpy.ndarray] Left singular vectors.
S [numpy.ndarray] Singular values.
V [numpy.ndarray] Right singular vectors.

scipy.linalg.interpolative.estimate_spectral_norm

scipy.linalg.interpolative.estimate_spectral_norm(A, its=20)
Estimate spectral norm of a matrix by the randomized power method.

Parameters

A [scipy.sparse.linalg.LinearOperator]Matrix given as ascipy.sparse.
linalg.LinearOperator with the matvec and rmatvec methods (to apply the matrix
and its adjoint).

its [int, optional] Number of power method iterations.
Returns

float Spectral norm estimate.
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scipy.linalg.interpolative.estimate_spectral_norm_diff

scipy.linalg.interpolative.estimate_spectral_norm_diff(A, B, its=20)
Estimate spectral norm of the difference of two matrices by the randomized power method.

Parameters

A [scipy.sparse.linalg.LinearOperator] First matrix given as a scipy.
sparse.linalg.LinearOperator with the matvec and rmatvec methods (to apply
the matrix and its adjoint).

B [scipy.sparse.linalg.LinearOperator] Second matrix given as a scipy.
sparse.linalg.LinearOperator with the matvec and rmatvec methods (to apply
the matrix and its adjoint).

its [int, optional] Number of power method iterations.
Returns

float Spectral norm estimate of matrix difference.

scipy.linalg.interpolative.estimate_rank

scipy.linalg.interpolative.estimate_rank(A, eps)
Estimate matrix rank to a specified relative precision using randomized methods.
ThematrixA can be given as either anumpy.ndarray or ascipy.sparse.linalg.LinearOperator,
with different algorithms used for each case. If A is of type numpy.ndarray, then the output rank is typically
about 8 higher than the actual numerical rank.

Parameters

A [numpy.ndarray or scipy.sparse.linalg.LinearOperator] Matrix whose
rank is to be estimated, given as either a numpy.ndarray or a scipy.sparse.
linalg.LinearOperator with the rmatvec method (to apply the matrix adjoint).

eps [float] Relative error for numerical rank definition.
Returns

int Estimated matrix rank.
Support functions:

seed([seed]) Seed the internal random number generator used in this
ID package.

rand(*shape) Generate standard uniform pseudorandom numbers via a
very efficient lagged Fibonacci method.

scipy.linalg.interpolative.seed

scipy.linalg.interpolative.seed(seed=None)
Seed the internal random number generator used in this ID package.
The generator is a lagged Fibonacci method with 55-element internal state.

Parameters

seed [int, sequence, ‘default’, optional] If ‘default’, the random seed is reset to a default value.
If seed is a sequence containing 55 floating-point numbers in range [0,1], these are used to
set the internal state of the generator.
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If the value is an integer, the internal state is obtained from numpy.random.mtrand.
RandomState (MT19937) with the integer used as the initial seed.
If seed is omitted (None), numpy.random.rand is used to initialize the generator.

scipy.linalg.interpolative.rand

scipy.linalg.interpolative.rand(*shape)
Generate standard uniform pseudorandom numbers via a very efficient lagged Fibonacci method.
This routine is used for all random number generation in this package and can affect ID and SVD results.

Parameters

shape Shape of output array

6.14.2 References

This module uses the ID software package [R5a82238cdab4-1] by Martinsson, Rokhlin, Shkolnisky, and Tygert,
which is a Fortran library for computing IDs using various algorithms, including the rank-revealing QR approach of
[R5a82238cdab4-2] and the more recent randomized methods described in [R5a82238cdab4-3], [R5a82238cdab4-4],
and [R5a82238cdab4-5]. This module exposes its functionality in a way convenient for Python users. Note that this
module does not add any functionality beyond that of organizing a simpler and more consistent interface.
We advise the user to consult also the documentation for the ID package.

6.14.3 Tutorial

Initializing

The first step is to import scipy.linalg.interpolative by issuing the command:

>>> import scipy.linalg.interpolative as sli

Now let’s build a matrix. For this, we consider a Hilbert matrix, which is well know to have low rank:

>>> from scipy.linalg import hilbert
>>> n = 1000
>>> A = hilbert(n)

We can also do this explicitly via:

>>> import numpy as np
>>> n = 1000
>>> A = np.empty((n, n), order='F')
>>> for j in range(n):
>>> for i in range(m):
>>> A[i,j] = 1. / (i + j + 1)

Note the use of the flag order='F' in numpy.empty. This instantiates the matrix in Fortran-contiguous order and
is important for avoiding data copying when passing to the backend.
We then define multiplication routines for the matrix by regarding it as a scipy.sparse.linalg.
LinearOperator:
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>>> from scipy.sparse.linalg import aslinearoperator
>>> L = aslinearoperator(A)

This automatically sets up methods describing the action of the matrix and its adjoint on a vector.

Computing an ID

We have several choices of algorithm to compute an ID. These fall largely according to two dichotomies:
1. how the matrix is represented, i.e., via its entries or via its action on a vector; and
2. whether to approximate it to a fixed relative precision or to a fixed rank.

We step through each choice in turn below.
In all cases, the ID is represented by three parameters:

1. a rank k;
2. an index array idx; and
3. interpolation coefficients proj.

The ID is specified by the relation np.dot(A[:,idx[:k]], proj) == A[:,idx[k:]].

From matrix entries
We first consider a matrix given in terms of its entries.
To compute an ID to a fixed precision, type:

>>> k, idx, proj = sli.interp_decomp(A, eps)

where eps < 1 is the desired precision.
To compute an ID to a fixed rank, use:

>>> idx, proj = sli.interp_decomp(A, k)

where k >= 1 is the desired rank.
Both algorithms use random sampling and are usually faster than the corresponding older, deterministic algorithms, which
can be accessed via the commands:

>>> k, idx, proj = sli.interp_decomp(A, eps, rand=False)

and:

>>> idx, proj = sli.interp_decomp(A, k, rand=False)

respectively.

From matrix action
Now consider a matrix given in terms of its action on a vector as a scipy.sparse.linalg.LinearOperator.
To compute an ID to a fixed precision, type:

>>> k, idx, proj = sli.interp_decomp(L, eps)

To compute an ID to a fixed rank, use:
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>>> idx, proj = sli.interp_decomp(L, k)

These algorithms are randomized.

Reconstructing an ID

The ID routines above do not output the skeleton and interpolation matrices explicitly but instead return the relevant
information in a more compact (and sometimes more useful) form. To build these matrices, write:

>>> B = sli.reconstruct_skel_matrix(A, k, idx)

for the skeleton matrix and:

>>> P = sli.reconstruct_interp_matrix(idx, proj)

for the interpolation matrix. The ID approximation can then be computed as:

>>> C = np.dot(B, P)

This can also be constructed directly using:

>>> C = sli.reconstruct_matrix_from_id(B, idx, proj)

without having to first compute P.
Alternatively, this can be done explicitly as well using:

>>> B = A[:,idx[:k]]
>>> P = np.hstack([np.eye(k), proj])[:,np.argsort(idx)]
>>> C = np.dot(B, P)

Computing an SVD

An ID can be converted to an SVD via the command:

>>> U, S, V = sli.id_to_svd(B, idx, proj)

The SVD approximation is then:

>>> C = np.dot(U, np.dot(np.diag(S), np.dot(V.conj().T)))

The SVD can also be computed “fresh” by combining both the ID and conversion steps into one command. Following
the various ID algorithms above, there are correspondingly various SVD algorithms that one can employ.

From matrix entries
We consider first SVD algorithms for a matrix given in terms of its entries.
To compute an SVD to a fixed precision, type:

>>> U, S, V = sli.svd(A, eps)

To compute an SVD to a fixed rank, use:

6.14. Interpolative matrix decomposition (scipy.linalg.interpolative) 1167



SciPy Reference Guide, Release 1.3.1

>>> U, S, V = sli.svd(A, k)

Both algorithms use random sampling; for the determinstic versions, issue the keyword rand=False as above.

From matrix action
Now consider a matrix given in terms of its action on a vector.
To compute an SVD to a fixed precision, type:

>>> U, S, V = sli.svd(L, eps)

To compute an SVD to a fixed rank, use:

>>> U, S, V = sli.svd(L, k)

Utility routines

Several utility routines are also available.
To estimate the spectral norm of a matrix, use:

>>> snorm = sli.estimate_spectral_norm(A)

This algorithm is based on the randomized power method and thus requires only matrix-vector products. The number
of iterations to take can be set using the keyword its (default: its=20). The matrix is interpreted as a scipy.
sparse.linalg.LinearOperator, but it is also valid to supply it as a numpy.ndarray, in which case it is
trivially converted using scipy.sparse.linalg.aslinearoperator.
The same algorithm can also estimate the spectral norm of the difference of two matrices A1 and A2 as follows:

>>> diff = sli.estimate_spectral_norm_diff(A1, A2)

This is often useful for checking the accuracy of a matrix approximation.
Some routines in scipy.linalg.interpolative require estimating the rank of a matrix as well. This can be
done with either:

>>> k = sli.estimate_rank(A, eps)

or:

>>> k = sli.estimate_rank(L, eps)

depending on the representation. The parameter eps controls the definition of the numerical rank.
Finally, the random number generation required for all randomized routines can be controlled via scipy.linalg.
interpolative.seed. To reset the seed values to their original values, use:

>>> sli.seed('default')

To specify the seed values, use:

>>> sli.seed(s)
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where smust be an integer or array of 55 floats. If an integer, the array of floats is obtained by using numpy.random.
rand with the given integer seed.
To simply generate some random numbers, type:

>>> sli.rand(n)

where n is the number of random numbers to generate.

Remarks

The above functions all automatically detect the appropriate interface and work with both real and complex data types,
passing input arguments to the proper backend routine.

6.15 Miscellaneous routines (scipy.misc)

Various utilities that don’t have another home.

ascent() Get an 8-bit grayscale bit-depth, 512 x 512 derived image
for easy use in demos

central_diff_weights(Np[, ndiv]) Return weights for an Np-point central derivative.
derivative(func, x0[, dx, n, args, order]) Find the n-th derivative of a function at a point.
face([gray]) Get a 1024 x 768, color image of a raccoon face.
electrocardiogram() Load an electrocardiogram as an example for a one-

dimensional signal.

6.15.1 scipy.misc.ascent

scipy.misc.ascent()
Get an 8-bit grayscale bit-depth, 512 x 512 derived image for easy use in demos
The image is derived from accent-to-the-top.jpg at http://www.public-domain-image.com/
people-public-domain-images-pictures/

Parameters

None
Returns

ascent [ndarray] convenient image to use for testing and demonstration

Examples

>>> import scipy.misc
>>> ascent = scipy.misc.ascent()
>>> ascent.shape
(512, 512)
>>> ascent.max()
255
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>>> import matplotlib.pyplot as plt
>>> plt.gray()
>>> plt.imshow(ascent)
>>> plt.show()
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6.15.2 scipy.misc.central_diff_weights

scipy.misc.central_diff_weights(Np, ndiv=1)
Return weights for an Np-point central derivative.
Assumes equally-spaced function points.
If weights are in the vector w, then derivative is w[0] * f(x-ho*dx) + … + w[-1] * f(x+h0*dx)

Parameters

Np [int] Number of points for the central derivative.
ndiv [int, optional] Number of divisions. Default is 1.

Notes

Can be inaccurate for large number of points.

6.15.3 scipy.misc.derivative

scipy.misc.derivative(func, x0, dx=1.0, n=1, args=(), order=3)
Find the n-th derivative of a function at a point.
Given a function, use a central difference formula with spacing dx to compute the n-th derivative at x0.

Parameters

func [function] Input function.
x0 [float] The point at which n-th derivative is found.
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dx [float, optional] Spacing.
n [int, optional] Order of the derivative. Default is 1.
args [tuple, optional] Arguments
order [int, optional] Number of points to use, must be odd.

Notes

Decreasing the step size too small can result in round-off error.

Examples

>>> from scipy.misc import derivative
>>> def f(x):
... return x**3 + x**2
>>> derivative(f, 1.0, dx=1e-6)
4.9999999999217337

6.15.4 scipy.misc.face

scipy.misc.face(gray=False)
Get a 1024 x 768, color image of a raccoon face.
raccoon-procyon-lotor.jpg at http://www.public-domain-image.com

Parameters

gray [bool, optional] If True return 8-bit grey-scale image, otherwise return a color image
Returns

face [ndarray] image of a racoon face

Examples

>>> import scipy.misc
>>> face = scipy.misc.face()
>>> face.shape
(768, 1024, 3)
>>> face.max()
255
>>> face.dtype
dtype('uint8')

>>> import matplotlib.pyplot as plt
>>> plt.gray()
>>> plt.imshow(face)
>>> plt.show()
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6.15.5 scipy.misc.electrocardiogram

scipy.misc.electrocardiogram()
Load an electrocardiogram as an example for a one-dimensional signal.
The returned signal is a 5 minute long electrocardiogram (ECG), a medical recording of the heart’s electrical
activity, sampled at 360 Hz.

Returns

ecg [ndarray] The electrocardiogram in millivolt (mV) sampled at 360 Hz.

Notes

The provided signal is an excerpt (19:35 to 24:35) from the record 208 (lead MLII) provided by the MIT-BIH
Arrhythmia Database [1] on PhysioNet [2]. The excerpt includes noise induced artifacts, typical heartbeats as well
as pathological changes.
New in version 1.1.0.

References

[1], [2]

Examples

>>> from scipy.misc import electrocardiogram
>>> ecg = electrocardiogram()
>>> ecg
array([-0.245, -0.215, -0.185, ..., -0.405, -0.395, -0.385])
>>> ecg.shape, ecg.mean(), ecg.std()
((108000,), -0.16510875, 0.5992473991177294)
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As stated the signal features several areas with a different morphology. E.g. the first few seconds show the electrical
activity of a heart in normal sinus rhythm as seen below.

>>> import matplotlib.pyplot as plt
>>> fs = 360
>>> time = np.arange(ecg.size) / fs
>>> plt.plot(time, ecg)
>>> plt.xlabel("time in s")
>>> plt.ylabel("ECG in mV")
>>> plt.xlim(9, 10.2)
>>> plt.ylim(-1, 1.5)
>>> plt.show()

9.0 9.2 9.4 9.6 9.8 10.0 10.2
time in s

1.0

0.5

0.0

0.5

1.0

1.5

EC
G 

in
 m

V

After second 16 however, the first premature ventricular contractions, also called extrasystoles, appear. These have
a different morphology compared to typical heartbeats. The difference can easily be observed in the following plot.

>>> plt.plot(time, ecg)
>>> plt.xlabel("time in s")
>>> plt.ylabel("ECG in mV")
>>> plt.xlim(46.5, 50)
>>> plt.ylim(-2, 1.5)
>>> plt.show()

At several points large artifacts disturb the recording, e.g.:

>>> plt.plot(time, ecg)
>>> plt.xlabel("time in s")
>>> plt.ylabel("ECG in mV")
>>> plt.xlim(207, 215)
>>> plt.ylim(-2, 3.5)
>>> plt.show()

Finally, examining the power spectrum reveals that most of the biosignal is made up of lower frequencies. At 60
Hz the noise induced by the mains electricity can be clearly observed.
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>>> from scipy.signal import welch
>>> f, Pxx = welch(ecg, fs=fs, nperseg=2048, scaling="spectrum")
>>> plt.semilogy(f, Pxx)
>>> plt.xlabel("Frequency in Hz")
>>> plt.ylabel("Power spectrum of the ECG in mV**2")
>>> plt.xlim(f[[0, -1]])
>>> plt.show()
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6.16 Multi-dimensional image processing (scipy.ndimage)

This package contains various functions for multi-dimensional image processing.

6.16.1 Filters

convolve(input, weights[, output, mode, …]) Multidimensional convolution.
convolve1d(input, weights[, axis, output, …]) Calculate a one-dimensional convolution along the given

axis.
correlate(input, weights[, output, mode, …]) Multi-dimensional correlation.
correlate1d(input, weights[, axis, output, …]) Calculate a one-dimensional correlation along the given

axis.
gaussian_filter(input, sigma[, order, …]) Multidimensional Gaussian filter.
gaussian_filter1d(input, sigma[, axis, …]) One-dimensional Gaussian filter.
gaussian_gradient_magnitude(input, sigma[,
…])

Multidimensional gradient magnitude using Gaussian
derivatives.

gaussian_laplace(input, sigma[, output, …]) Multidimensional Laplace filter using gaussian second
derivatives.

generic_filter(input, function[, size, …]) Calculate a multi-dimensional filter using the given func-
tion.

generic_filter1d(input, function, filter_size) Calculate a one-dimensional filter along the given axis.
Continued on next page
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Table 100 – continued from previous page
generic_gradient_magnitude(input, deriva-
tive)

Gradient magnitude using a provided gradient function.

generic_laplace(input, derivative2[, …]) N-dimensional Laplace filter using a provided second
derivative function.

laplace(input[, output, mode, cval]) N-dimensional Laplace filter based on approximate sec-
ond derivatives.

maximum_filter(input[, size, footprint, …]) Calculate a multi-dimensional maximum filter.
maximum_filter1d(input, size[, axis, …]) Calculate a one-dimensional maximum filter along the

given axis.
median_filter(input[, size, footprint, …]) Calculate a multidimensional median filter.
minimum_filter(input[, size, footprint, …]) Calculate a multi-dimensional minimum filter.
minimum_filter1d(input, size[, axis, …]) Calculate a one-dimensional minimum filter along the

given axis.
percentile_filter(input, percentile[, size, …]) Calculate a multi-dimensional percentile filter.
prewitt(input[, axis, output, mode, cval]) Calculate a Prewitt filter.
rank_filter(input, rank[, size, footprint, …]) Calculate a multi-dimensional rank filter.
sobel(input[, axis, output, mode, cval]) Calculate a Sobel filter.
uniform_filter(input[, size, output, mode, …]) Multi-dimensional uniform filter.
uniform_filter1d(input, size[, axis, …]) Calculate a one-dimensional uniform filter along the given

axis.

scipy.ndimage.convolve

scipy.ndimage.convolve(input, weights, output=None, mode=’reflect’, cval=0.0, origin=0)
Multidimensional convolution.
The array is convolved with the given kernel.

Parameters

input [array_like] The input array.
weights [array_like] Array of weights, same number of dimensions as input
output [array or dtype, optional] The array in which to place the output, or the dtype of the returned

array. By default an array of the same dtype as input will be created.
mode [str or sequence, optional] The mode parameter determines how the input array is extended

when the filter overlaps a border. By passing a sequence of modes with length equal to the
number of dimensions of the input array, different modes can be specified along each axis.
Default value is ‘reflect’. The valid values and their behavior is as follows:
‘reflect’ (d c b a | a b c d | d c b a)

The input is extended by reflecting about the edge of the last pixel.
‘constant’ (k k k k | a b c d | k k k k)

The input is extended by filling all values beyond the edge with the same constant
value, defined by the cval parameter.

‘nearest’ (a a a a | a b c d | d d d d)
The input is extended by replicating the last pixel.

‘mirror’ (d c b | a b c d | c b a)
The input is extended by reflecting about the center of the last pixel.

‘wrap’ (a b c d | a b c d | a b c d)
The input is extended by wrapping around to the opposite edge.

cval [scalar, optional] Value to fill past edges of input if mode is ‘constant’. Default is 0.0
origin [int or sequence, optional] Controls the placement of the filter on the input array’s pixels. A

value of 0 (the default) centers the filter over the pixel, with positive values shifting the filter
to the left, and negative ones to the right. By passing a sequence of origins with length equal
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to the number of dimensions of the input array, different shifts can be specified along each
axis.

Returns

result [ndarray] The result of convolution of input with weights.
See also:

correlate

Correlate an image with a kernel.

Notes

Each value in result is Ci =
∑

j Ii+k−jWj , where W is the weights kernel, j is the n-D spatial index overW , I is
the input and k is the coordinate of the center of W, specified by origin in the input parameters.

Examples

Perhaps the simplest case to understand is mode='constant', cval=0.0, because in this case borders (i.e.
where the weights kernel, centered on any one value, extends beyond an edge of input) are treated as zeros.

>>> a = np.array([[1, 2, 0, 0],
... [5, 3, 0, 4],
... [0, 0, 0, 7],
... [9, 3, 0, 0]])
>>> k = np.array([[1,1,1],[1,1,0],[1,0,0]])
>>> from scipy import ndimage
>>> ndimage.convolve(a, k, mode='constant', cval=0.0)
array([[11, 10, 7, 4],

[10, 3, 11, 11],
[15, 12, 14, 7],
[12, 3, 7, 0]])

Setting cval=1.0 is equivalent to padding the outer edge of input with 1.0’s (and then extracting only the original
region of the result).

>>> ndimage.convolve(a, k, mode='constant', cval=1.0)
array([[13, 11, 8, 7],

[11, 3, 11, 14],
[16, 12, 14, 10],
[15, 6, 10, 5]])

With mode='reflect' (the default), outer values are reflected at the edge of input to fill in missing values.

>>> b = np.array([[2, 0, 0],
... [1, 0, 0],
... [0, 0, 0]])
>>> k = np.array([[0,1,0], [0,1,0], [0,1,0]])
>>> ndimage.convolve(b, k, mode='reflect')
array([[5, 0, 0],

[3, 0, 0],
[1, 0, 0]])
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This includes diagonally at the corners.

>>> k = np.array([[1,0,0],[0,1,0],[0,0,1]])
>>> ndimage.convolve(b, k)
array([[4, 2, 0],

[3, 2, 0],
[1, 1, 0]])

With mode='nearest', the single nearest value in to an edge in input is repeated as many times as needed to
match the overlapping weights.

>>> c = np.array([[2, 0, 1],
... [1, 0, 0],
... [0, 0, 0]])
>>> k = np.array([[0, 1, 0],
... [0, 1, 0],
... [0, 1, 0],
... [0, 1, 0],
... [0, 1, 0]])
>>> ndimage.convolve(c, k, mode='nearest')
array([[7, 0, 3],

[5, 0, 2],
[3, 0, 1]])

scipy.ndimage.convolve1d

scipy.ndimage.convolve1d(input, weights, axis=-1, output=None, mode=’reflect’, cval=0.0, origin=0)
Calculate a one-dimensional convolution along the given axis.
The lines of the array along the given axis are convolved with the given weights.

Parameters

input [array_like] The input array.
weights [ndarray] One-dimensional sequence of numbers.
axis [int, optional] The axis of input along which to calculate. Default is -1.
output [array or dtype, optional] The array in which to place the output, or the dtype of the returned

array. By default an array of the same dtype as input will be created.
mode [{‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, optional] The mode parameter determines

how the input array is extended beyond its boundaries. Default is ‘reflect’. Behavior for each
valid value is as follows:
‘reflect’ (d c b a | a b c d | d c b a)

The input is extended by reflecting about the edge of the last pixel.
‘constant’ (k k k k | a b c d | k k k k)

The input is extended by filling all values beyond the edge with the same constant
value, defined by the cval parameter.

‘nearest’ (a a a a | a b c d | d d d d)
The input is extended by replicating the last pixel.

‘mirror’ (d c b | a b c d | c b a)
The input is extended by reflecting about the center of the last pixel.

‘wrap’ (a b c d | a b c d | a b c d)
The input is extended by wrapping around to the opposite edge.

cval [scalar, optional] Value to fill past edges of input if mode is ‘constant’. Default is 0.0.
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origin [int, optional] Controls the placement of the filter on the input array’s pixels. A value of 0
(the default) centers the filter over the pixel, with positive values shifting the filter to the left,
and negative ones to the right.

Returns

convolve1d
[ndarray] Convolved array with same shape as input

Examples

>>> from scipy.ndimage import convolve1d
>>> convolve1d([2, 8, 0, 4, 1, 9, 9, 0], weights=[1, 3])
array([14, 24, 4, 13, 12, 36, 27, 0])

scipy.ndimage.correlate

scipy.ndimage.correlate(input, weights, output=None, mode=’reflect’, cval=0.0, origin=0)
Multi-dimensional correlation.
The array is correlated with the given kernel.

Parameters

input [array_like] The input array.
weights [ndarray] array of weights, same number of dimensions as input
output [array or dtype, optional] The array in which to place the output, or the dtype of the returned

array. By default an array of the same dtype as input will be created.
mode [str or sequence, optional] The mode parameter determines how the input array is extended

when the filter overlaps a border. By passing a sequence of modes with length equal to the
number of dimensions of the input array, different modes can be specified along each axis.
Default value is ‘reflect’. The valid values and their behavior is as follows:
‘reflect’ (d c b a | a b c d | d c b a)

The input is extended by reflecting about the edge of the last pixel.
‘constant’ (k k k k | a b c d | k k k k)

The input is extended by filling all values beyond the edge with the same constant
value, defined by the cval parameter.

‘nearest’ (a a a a | a b c d | d d d d)
The input is extended by replicating the last pixel.

‘mirror’ (d c b | a b c d | c b a)
The input is extended by reflecting about the center of the last pixel.

‘wrap’ (a b c d | a b c d | a b c d)
The input is extended by wrapping around to the opposite edge.

cval [scalar, optional] Value to fill past edges of input if mode is ‘constant’. Default is 0.0.
origin [int or sequence, optional] Controls the placement of the filter on the input array’s pixels. A

value of 0 (the default) centers the filter over the pixel, with positive values shifting the filter
to the left, and negative ones to the right. By passing a sequence of origins with length equal
to the number of dimensions of the input array, different shifts can be specified along each
axis.

See also:

convolve

Convolve an image with a kernel.

6.16. Multi-dimensional image processing (scipy.ndimage) 1179



SciPy Reference Guide, Release 1.3.1

scipy.ndimage.correlate1d

scipy.ndimage.correlate1d(input, weights, axis=-1, output=None, mode=’reflect’, cval=0.0, origin=0)
Calculate a one-dimensional correlation along the given axis.
The lines of the array along the given axis are correlated with the given weights.

Parameters

input [array_like] The input array.
weights [array] One-dimensional sequence of numbers.
axis [int, optional] The axis of input along which to calculate. Default is -1.
output [array or dtype, optional] The array in which to place the output, or the dtype of the returned

array. By default an array of the same dtype as input will be created.
mode [{‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, optional] The mode parameter determines

how the input array is extended beyond its boundaries. Default is ‘reflect’. Behavior for each
valid value is as follows:
‘reflect’ (d c b a | a b c d | d c b a)

The input is extended by reflecting about the edge of the last pixel.
‘constant’ (k k k k | a b c d | k k k k)

The input is extended by filling all values beyond the edge with the same constant
value, defined by the cval parameter.

‘nearest’ (a a a a | a b c d | d d d d)
The input is extended by replicating the last pixel.

‘mirror’ (d c b | a b c d | c b a)
The input is extended by reflecting about the center of the last pixel.

‘wrap’ (a b c d | a b c d | a b c d)
The input is extended by wrapping around to the opposite edge.

cval [scalar, optional] Value to fill past edges of input if mode is ‘constant’. Default is 0.0.
origin [int, optional] Controls the placement of the filter on the input array’s pixels. A value of 0

(the default) centers the filter over the pixel, with positive values shifting the filter to the left,
and negative ones to the right.

Examples

>>> from scipy.ndimage import correlate1d
>>> correlate1d([2, 8, 0, 4, 1, 9, 9, 0], weights=[1, 3])
array([ 8, 26, 8, 12, 7, 28, 36, 9])

scipy.ndimage.gaussian_filter

scipy.ndimage.gaussian_filter(input, sigma, order=0, output=None, mode=’reflect’, cval=0.0, trun-
cate=4.0)

Multidimensional Gaussian filter.
Parameters

input [array_like] The input array.
sigma [scalar or sequence of scalars] Standard deviation for Gaussian kernel. The standard devi-

ations of the Gaussian filter are given for each axis as a sequence, or as a single number, in
which case it is equal for all axes.

order [int or sequence of ints, optional] The order of the filter along each axis is given as a sequence
of integers, or as a single number. An order of 0 corresponds to convolution with a Gaussian
kernel. A positive order corresponds to convolution with that derivative of a Gaussian.
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output [array or dtype, optional] The array in which to place the output, or the dtype of the returned
array. By default an array of the same dtype as input will be created.

mode [str or sequence, optional] The mode parameter determines how the input array is extended
when the filter overlaps a border. By passing a sequence of modes with length equal to the
number of dimensions of the input array, different modes can be specified along each axis.
Default value is ‘reflect’. The valid values and their behavior is as follows:
‘reflect’ (d c b a | a b c d | d c b a)

The input is extended by reflecting about the edge of the last pixel.
‘constant’ (k k k k | a b c d | k k k k)

The input is extended by filling all values beyond the edge with the same constant
value, defined by the cval parameter.

‘nearest’ (a a a a | a b c d | d d d d)
The input is extended by replicating the last pixel.

‘mirror’ (d c b | a b c d | c b a)
The input is extended by reflecting about the center of the last pixel.

‘wrap’ (a b c d | a b c d | a b c d)
The input is extended by wrapping around to the opposite edge.

cval [scalar, optional] Value to fill past edges of input if mode is ‘constant’. Default is 0.0.
truncate [float] Truncate the filter at this many standard deviations. Default is 4.0.

Returns

gaussian_filter
[ndarray] Returned array of same shape as input.

Notes

The multidimensional filter is implemented as a sequence of one-dimensional convolution filters. The intermediate
arrays are stored in the same data type as the output. Therefore, for output types with a limited precision, the results
may be imprecise because intermediate results may be stored with insufficient precision.

Examples

>>> from scipy.ndimage import gaussian_filter
>>> a = np.arange(50, step=2).reshape((5,5))
>>> a
array([[ 0, 2, 4, 6, 8],

[10, 12, 14, 16, 18],
[20, 22, 24, 26, 28],
[30, 32, 34, 36, 38],
[40, 42, 44, 46, 48]])

>>> gaussian_filter(a, sigma=1)
array([[ 4, 6, 8, 9, 11],

[10, 12, 14, 15, 17],
[20, 22, 24, 25, 27],
[29, 31, 33, 34, 36],
[35, 37, 39, 40, 42]])

>>> from scipy import misc
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> plt.gray() # show the filtered result in grayscale

(continues on next page)
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(continued from previous page)
>>> ax1 = fig.add_subplot(121) # left side
>>> ax2 = fig.add_subplot(122) # right side
>>> ascent = misc.ascent()
>>> result = gaussian_filter(ascent, sigma=5)
>>> ax1.imshow(ascent)
>>> ax2.imshow(result)
>>> plt.show()
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scipy.ndimage.gaussian_filter1d

scipy.ndimage.gaussian_filter1d(input, sigma, axis=-1, order=0, output=None, mode=’reflect’,
cval=0.0, truncate=4.0)

One-dimensional Gaussian filter.
Parameters

input [array_like] The input array.
sigma [scalar] standard deviation for Gaussian kernel
axis [int, optional] The axis of input along which to calculate. Default is -1.
order [int, optional] An order of 0 corresponds to convolution with a Gaussian kernel. A positive

order corresponds to convolution with that derivative of a Gaussian.
output [array or dtype, optional] The array in which to place the output, or the dtype of the returned

array. By default an array of the same dtype as input will be created.
mode [{‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, optional] The mode parameter determines

how the input array is extended beyond its boundaries. Default is ‘reflect’. Behavior for each
valid value is as follows:
‘reflect’ (d c b a | a b c d | d c b a)

The input is extended by reflecting about the edge of the last pixel.
‘constant’ (k k k k | a b c d | k k k k)

The input is extended by filling all values beyond the edge with the same constant
value, defined by the cval parameter.

‘nearest’ (a a a a | a b c d | d d d d)
The input is extended by replicating the last pixel.
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‘mirror’ (d c b | a b c d | c b a)
The input is extended by reflecting about the center of the last pixel.

‘wrap’ (a b c d | a b c d | a b c d)
The input is extended by wrapping around to the opposite edge.

cval [scalar, optional] Value to fill past edges of input if mode is ‘constant’. Default is 0.0.
truncate [float, optional] Truncate the filter at this many standard deviations. Default is 4.0.

Returns

gaussian_filter1d
[ndarray]

Examples

>>> from scipy.ndimage import gaussian_filter1d
>>> gaussian_filter1d([1.0, 2.0, 3.0, 4.0, 5.0], 1)
array([ 1.42704095, 2.06782203, 3. , 3.93217797, 4.57295905])
>>> gaussian_filter1d([1.0, 2.0, 3.0, 4.0, 5.0], 4)
array([ 2.91948343, 2.95023502, 3. , 3.04976498, 3.08051657])
>>> import matplotlib.pyplot as plt
>>> np.random.seed(280490)
>>> x = np.random.randn(101).cumsum()
>>> y3 = gaussian_filter1d(x, 3)
>>> y6 = gaussian_filter1d(x, 6)
>>> plt.plot(x, 'k', label='original data')
>>> plt.plot(y3, '--', label='filtered, sigma=3')
>>> plt.plot(y6, ':', label='filtered, sigma=6')
>>> plt.legend()
>>> plt.grid()
>>> plt.show()
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scipy.ndimage.gaussian_gradient_magnitude

scipy.ndimage.gaussian_gradient_magnitude(input, sigma, output=None, mode=’reflect’,
cval=0.0, **kwargs)

Multidimensional gradient magnitude using Gaussian derivatives.
Parameters

input [array_like] The input array.
sigma [scalar or sequence of scalars] The standard deviations of the Gaussian filter are given for

each axis as a sequence, or as a single number, in which case it is equal for all axes..
output [array or dtype, optional] The array in which to place the output, or the dtype of the returned

array. By default an array of the same dtype as input will be created.
mode [str or sequence, optional] The mode parameter determines how the input array is extended

when the filter overlaps a border. By passing a sequence of modes with length equal to the
number of dimensions of the input array, different modes can be specified along each axis.
Default value is ‘reflect’. The valid values and their behavior is as follows:
‘reflect’ (d c b a | a b c d | d c b a)

The input is extended by reflecting about the edge of the last pixel.
‘constant’ (k k k k | a b c d | k k k k)

The input is extended by filling all values beyond the edge with the same constant
value, defined by the cval parameter.

‘nearest’ (a a a a | a b c d | d d d d)
The input is extended by replicating the last pixel.

‘mirror’ (d c b | a b c d | c b a)
The input is extended by reflecting about the center of the last pixel.

‘wrap’ (a b c d | a b c d | a b c d)
The input is extended by wrapping around to the opposite edge.

cval [scalar, optional] Value to fill past edges of input if mode is ‘constant’. Default is 0.0.
Extra keyword arguments will be passed to gaussian_filter().

Returns

gaussian_gradient_magnitude
[ndarray] Filtered array. Has the same shape as input.

Examples

>>> from scipy import ndimage, misc
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> plt.gray() # show the filtered result in grayscale
>>> ax1 = fig.add_subplot(121) # left side
>>> ax2 = fig.add_subplot(122) # right side
>>> ascent = misc.ascent()
>>> result = ndimage.gaussian_gradient_magnitude(ascent, sigma=5)
>>> ax1.imshow(ascent)
>>> ax2.imshow(result)
>>> plt.show()

scipy.ndimage.gaussian_laplace

scipy.ndimage.gaussian_laplace(input, sigma, output=None, mode=’reflect’, cval=0.0, **kwargs)
Multidimensional Laplace filter using gaussian second derivatives.
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Parameters

input [array_like] The input array.
sigma [scalar or sequence of scalars] The standard deviations of the Gaussian filter are given for

each axis as a sequence, or as a single number, in which case it is equal for all axes.
output [array or dtype, optional] The array in which to place the output, or the dtype of the returned

array. By default an array of the same dtype as input will be created.
mode [str or sequence, optional] The mode parameter determines how the input array is extended

when the filter overlaps a border. By passing a sequence of modes with length equal to the
number of dimensions of the input array, different modes can be specified along each axis.
Default value is ‘reflect’. The valid values and their behavior is as follows:
‘reflect’ (d c b a | a b c d | d c b a)

The input is extended by reflecting about the edge of the last pixel.
‘constant’ (k k k k | a b c d | k k k k)

The input is extended by filling all values beyond the edge with the same constant
value, defined by the cval parameter.

‘nearest’ (a a a a | a b c d | d d d d)
The input is extended by replicating the last pixel.

‘mirror’ (d c b | a b c d | c b a)
The input is extended by reflecting about the center of the last pixel.

‘wrap’ (a b c d | a b c d | a b c d)
The input is extended by wrapping around to the opposite edge.

cval [scalar, optional] Value to fill past edges of input if mode is ‘constant’. Default is 0.0.
Extra keyword arguments will be passed to gaussian_filter().

Examples

>>> from scipy import ndimage, misc
>>> import matplotlib.pyplot as plt
>>> ascent = misc.ascent()
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>>> fig = plt.figure()
>>> plt.gray() # show the filtered result in grayscale
>>> ax1 = fig.add_subplot(121) # left side
>>> ax2 = fig.add_subplot(122) # right side

>>> result = ndimage.gaussian_laplace(ascent, sigma=1)
>>> ax1.imshow(result)

>>> result = ndimage.gaussian_laplace(ascent, sigma=3)
>>> ax2.imshow(result)
>>> plt.show()
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scipy.ndimage.generic_filter

scipy.ndimage.generic_filter(input, function, size=None, footprint=None, output=None,
mode=’reflect’, cval=0.0, origin=0, extra_arguments=(), ex-
tra_keywords=None)

Calculate a multi-dimensional filter using the given function.
At each element the provided function is called. The input values within the filter footprint at that element are
passed to the function as a 1D array of double values.

Parameters

input [array_like] The input array.
function [{callable, scipy.LowLevelCallable}] Function to apply at each element.
size [scalar or tuple, optional] See footprint, below. Ignored if footprint is given.
footprint [array, optional] Either size or footprint must be defined. size gives the shape that is taken

from the input array, at every element position, to define the input to the filter function.
footprint is a boolean array that specifies (implicitly) a shape, but also which of the elements
within this shape will get passed to the filter function. Thus size=(n,m) is equivalent
to footprint=np.ones((n,m)). We adjust size to the number of dimensions of the
input array, so that, if the input array is shape (10,10,10), and size is 2, then the actual size
used is (2,2,2). When footprint is given, size is ignored.
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output [array or dtype, optional] The array in which to place the output, or the dtype of the returned
array. By default an array of the same dtype as input will be created.

mode [str or sequence, optional] The mode parameter determines how the input array is extended
when the filter overlaps a border. By passing a sequence of modes with length equal to the
number of dimensions of the input array, different modes can be specified along each axis.
Default value is ‘reflect’. The valid values and their behavior is as follows:
‘reflect’ (d c b a | a b c d | d c b a)

The input is extended by reflecting about the edge of the last pixel.
‘constant’ (k k k k | a b c d | k k k k)

The input is extended by filling all values beyond the edge with the same constant
value, defined by the cval parameter.

‘nearest’ (a a a a | a b c d | d d d d)
The input is extended by replicating the last pixel.

‘mirror’ (d c b | a b c d | c b a)
The input is extended by reflecting about the center of the last pixel.

‘wrap’ (a b c d | a b c d | a b c d)
The input is extended by wrapping around to the opposite edge.

cval [scalar, optional] Value to fill past edges of input if mode is ‘constant’. Default is 0.0.
origin [int or sequence, optional] Controls the placement of the filter on the input array’s pixels. A

value of 0 (the default) centers the filter over the pixel, with positive values shifting the filter
to the left, and negative ones to the right. By passing a sequence of origins with length equal
to the number of dimensions of the input array, different shifts can be specified along each
axis.

extra_arguments
[sequence, optional] Sequence of extra positional arguments to pass to passed function.

extra_keywords
[dict, optional] dict of extra keyword arguments to pass to passed function.

Notes

This function also accepts low-level callback functions with one of the following signatures and wrapped inscipy.
LowLevelCallable:

int callback(double *buffer, npy_intp filter_size,
double *return_value, void *user_data)

int callback(double *buffer, intptr_t filter_size,
double *return_value, void *user_data)

The calling function iterates over the elements of the input and output arrays, calling the callback function at each
element. The elements within the footprint of the filter at the current element are passed through the buffer
parameter, and the number of elements within the footprint through filter_size. The calculated value is
returned in return_value. user_data is the data pointer provided to scipy.LowLevelCallable
as-is.
The callback function must return an integer error status that is zero if something went wrong and one otherwise.
If an error occurs, you should normally set the python error status with an informative message before returning,
otherwise a default error message is set by the calling function.
In addition, some other low-level function pointer specifications are accepted, but these are for backward compat-
ibility only and should not be used in new code.
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scipy.ndimage.generic_filter1d

scipy.ndimage.generic_filter1d(input, function, filter_size, axis=-1, output=None, mode=’reflect’,
cval=0.0, origin=0, extra_arguments=(), extra_keywords=None)

Calculate a one-dimensional filter along the given axis.
generic_filter1d iterates over the lines of the array, calling the given function at each line. The arguments
of the line are the input line, and the output line. The input and output lines are 1D double arrays. The input line
is extended appropriately according to the filter size and origin. The output line must be modified in-place with the
result.

Parameters

input [array_like] The input array.
function [{callable, scipy.LowLevelCallable}] Function to apply along given axis.
filter_size [scalar] Length of the filter.
axis [int, optional] The axis of input along which to calculate. Default is -1.
output [array or dtype, optional] The array in which to place the output, or the dtype of the returned

array. By default an array of the same dtype as input will be created.
mode [{‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, optional] The mode parameter determines

how the input array is extended beyond its boundaries. Default is ‘reflect’. Behavior for each
valid value is as follows:
‘reflect’ (d c b a | a b c d | d c b a)

The input is extended by reflecting about the edge of the last pixel.
‘constant’ (k k k k | a b c d | k k k k)

The input is extended by filling all values beyond the edge with the same constant
value, defined by the cval parameter.

‘nearest’ (a a a a | a b c d | d d d d)
The input is extended by replicating the last pixel.

‘mirror’ (d c b | a b c d | c b a)
The input is extended by reflecting about the center of the last pixel.

‘wrap’ (a b c d | a b c d | a b c d)
The input is extended by wrapping around to the opposite edge.

cval [scalar, optional] Value to fill past edges of input if mode is ‘constant’. Default is 0.0.
origin [int, optional] Controls the placement of the filter on the input array’s pixels. A value of 0

(the default) centers the filter over the pixel, with positive values shifting the filter to the left,
and negative ones to the right.

extra_arguments
[sequence, optional] Sequence of extra positional arguments to pass to passed function.

extra_keywords
[dict, optional] dict of extra keyword arguments to pass to passed function.

Notes

This function also accepts low-level callback functions with one of the following signatures and wrapped inscipy.
LowLevelCallable:

int function(double *input_line, npy_intp input_length,
double *output_line, npy_intp output_length,
void *user_data)

int function(double *input_line, intptr_t input_length,
double *output_line, intptr_t output_length,
void *user_data)
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The calling function iterates over the lines of the input and output arrays, calling the callback function at each line.
The current line is extended according to the border conditions set by the calling function, and the result is copied
into the array that is passed through input_line. The length of the input line (after extension) is passed through
input_length. The callback function should apply the filter and store the result in the array passed through
output_line. The length of the output line is passed through output_length. user_data is the data
pointer provided to scipy.LowLevelCallable as-is.
The callback function must return an integer error status that is zero if something went wrong and one otherwise.
If an error occurs, you should normally set the python error status with an informative message before returning,
otherwise a default error message is set by the calling function.
In addition, some other low-level function pointer specifications are accepted, but these are for backward compat-
ibility only and should not be used in new code.

scipy.ndimage.generic_gradient_magnitude

scipy.ndimage.generic_gradient_magnitude(input, derivative, output=None, mode=’reflect’,
cval=0.0, extra_arguments=(), ex-
tra_keywords=None)

Gradient magnitude using a provided gradient function.
Parameters

input [array_like] The input array.
derivative [callable] Callable with the following signature:

derivative(input, axis, output, mode, cval,
*extra_arguments, **extra_keywords)

See extra_arguments, extra_keywords below. derivative can assume that input and output
are ndarrays. Note that the output from derivative is modified inplace; be careful to copy
important inputs before returning them.

output [array or dtype, optional] The array in which to place the output, or the dtype of the returned
array. By default an array of the same dtype as input will be created.

mode [str or sequence, optional] The mode parameter determines how the input array is extended
when the filter overlaps a border. By passing a sequence of modes with length equal to the
number of dimensions of the input array, different modes can be specified along each axis.
Default value is ‘reflect’. The valid values and their behavior is as follows:
‘reflect’ (d c b a | a b c d | d c b a)

The input is extended by reflecting about the edge of the last pixel.
‘constant’ (k k k k | a b c d | k k k k)

The input is extended by filling all values beyond the edge with the same constant
value, defined by the cval parameter.

‘nearest’ (a a a a | a b c d | d d d d)
The input is extended by replicating the last pixel.

‘mirror’ (d c b | a b c d | c b a)
The input is extended by reflecting about the center of the last pixel.

‘wrap’ (a b c d | a b c d | a b c d)
The input is extended by wrapping around to the opposite edge.

cval [scalar, optional] Value to fill past edges of input if mode is ‘constant’. Default is 0.0.
extra_keywords

[dict, optional] dict of extra keyword arguments to pass to passed function.
extra_arguments

[sequence, optional] Sequence of extra positional arguments to pass to passed function.
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scipy.ndimage.generic_laplace

scipy.ndimage.generic_laplace(input, derivative2, output=None, mode=’reflect’, cval=0.0, ex-
tra_arguments=(), extra_keywords=None)

N-dimensional Laplace filter using a provided second derivative function.
Parameters

input [array_like] The input array.
derivative2

[callable] Callable with the following signature:

derivative2(input, axis, output, mode, cval,
*extra_arguments, **extra_keywords)

See extra_arguments, extra_keywords below.
output [array or dtype, optional] The array in which to place the output, or the dtype of the returned

array. By default an array of the same dtype as input will be created.
mode [str or sequence, optional] The mode parameter determines how the input array is extended

when the filter overlaps a border. By passing a sequence of modes with length equal to the
number of dimensions of the input array, different modes can be specified along each axis.
Default value is ‘reflect’. The valid values and their behavior is as follows:
‘reflect’ (d c b a | a b c d | d c b a)

The input is extended by reflecting about the edge of the last pixel.
‘constant’ (k k k k | a b c d | k k k k)

The input is extended by filling all values beyond the edge with the same constant
value, defined by the cval parameter.

‘nearest’ (a a a a | a b c d | d d d d)
The input is extended by replicating the last pixel.

‘mirror’ (d c b | a b c d | c b a)
The input is extended by reflecting about the center of the last pixel.

‘wrap’ (a b c d | a b c d | a b c d)
The input is extended by wrapping around to the opposite edge.

cval [scalar, optional] Value to fill past edges of input if mode is ‘constant’. Default is 0.0.
extra_keywords

[dict, optional] dict of extra keyword arguments to pass to passed function.
extra_arguments

[sequence, optional] Sequence of extra positional arguments to pass to passed function.

scipy.ndimage.laplace

scipy.ndimage.laplace(input, output=None, mode=’reflect’, cval=0.0)
N-dimensional Laplace filter based on approximate second derivatives.

Parameters

input [array_like] The input array.
output [array or dtype, optional] The array in which to place the output, or the dtype of the returned

array. By default an array of the same dtype as input will be created.
mode [str or sequence, optional] The mode parameter determines how the input array is extended

when the filter overlaps a border. By passing a sequence of modes with length equal to the
number of dimensions of the input array, different modes can be specified along each axis.
Default value is ‘reflect’. The valid values and their behavior is as follows:
‘reflect’ (d c b a | a b c d | d c b a)

The input is extended by reflecting about the edge of the last pixel.
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‘constant’ (k k k k | a b c d | k k k k)
The input is extended by filling all values beyond the edge with the same constant
value, defined by the cval parameter.

‘nearest’ (a a a a | a b c d | d d d d)
The input is extended by replicating the last pixel.

‘mirror’ (d c b | a b c d | c b a)
The input is extended by reflecting about the center of the last pixel.

‘wrap’ (a b c d | a b c d | a b c d)
The input is extended by wrapping around to the opposite edge.

cval [scalar, optional] Value to fill past edges of input if mode is ‘constant’. Default is 0.0.

Examples

>>> from scipy import ndimage, misc
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> plt.gray() # show the filtered result in grayscale
>>> ax1 = fig.add_subplot(121) # left side
>>> ax2 = fig.add_subplot(122) # right side
>>> ascent = misc.ascent()
>>> result = ndimage.laplace(ascent)
>>> ax1.imshow(ascent)
>>> ax2.imshow(result)
>>> plt.show()
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scipy.ndimage.maximum_filter

scipy.ndimage.maximum_filter(input, size=None, footprint=None, output=None, mode=’reflect’,
cval=0.0, origin=0)

Calculate a multi-dimensional maximum filter.
Parameters
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input [array_like] The input array.
size [scalar or tuple, optional] See footprint, below. Ignored if footprint is given.
footprint [array, optional] Either size or footprint must be defined. size gives the shape that is taken

from the input array, at every element position, to define the input to the filter function.
footprint is a boolean array that specifies (implicitly) a shape, but also which of the elements
within this shape will get passed to the filter function. Thus size=(n,m) is equivalent
to footprint=np.ones((n,m)). We adjust size to the number of dimensions of the
input array, so that, if the input array is shape (10,10,10), and size is 2, then the actual size
used is (2,2,2). When footprint is given, size is ignored.

output [array or dtype, optional] The array in which to place the output, or the dtype of the returned
array. By default an array of the same dtype as input will be created.

mode [str or sequence, optional] The mode parameter determines how the input array is extended
when the filter overlaps a border. By passing a sequence of modes with length equal to the
number of dimensions of the input array, different modes can be specified along each axis.
Default value is ‘reflect’. The valid values and their behavior is as follows:
‘reflect’ (d c b a | a b c d | d c b a)

The input is extended by reflecting about the edge of the last pixel.
‘constant’ (k k k k | a b c d | k k k k)

The input is extended by filling all values beyond the edge with the same constant
value, defined by the cval parameter.

‘nearest’ (a a a a | a b c d | d d d d)
The input is extended by replicating the last pixel.

‘mirror’ (d c b | a b c d | c b a)
The input is extended by reflecting about the center of the last pixel.

‘wrap’ (a b c d | a b c d | a b c d)
The input is extended by wrapping around to the opposite edge.

cval [scalar, optional] Value to fill past edges of input if mode is ‘constant’. Default is 0.0.
origin [int or sequence, optional] Controls the placement of the filter on the input array’s pixels. A

value of 0 (the default) centers the filter over the pixel, with positive values shifting the filter
to the left, and negative ones to the right. By passing a sequence of origins with length equal
to the number of dimensions of the input array, different shifts can be specified along each
axis.

Returns

maximum_filter
[ndarray] Filtered array. Has the same shape as input.

Examples

>>> from scipy import ndimage, misc
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> plt.gray() # show the filtered result in grayscale
>>> ax1 = fig.add_subplot(121) # left side
>>> ax2 = fig.add_subplot(122) # right side
>>> ascent = misc.ascent()
>>> result = ndimage.maximum_filter(ascent, size=20)
>>> ax1.imshow(ascent)
>>> ax2.imshow(result)
>>> plt.show()
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scipy.ndimage.maximum_filter1d

scipy.ndimage.maximum_filter1d(input, size, axis=-1, output=None, mode=’reflect’, cval=0.0, ori-
gin=0)

Calculate a one-dimensional maximum filter along the given axis.
The lines of the array along the given axis are filtered with a maximum filter of given size.

Parameters

input [array_like] The input array.
size [int] Length along which to calculate the 1-D maximum.
axis [int, optional] The axis of input along which to calculate. Default is -1.
output [array or dtype, optional] The array in which to place the output, or the dtype of the returned

array. By default an array of the same dtype as input will be created.
mode [{‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, optional] The mode parameter determines

how the input array is extended beyond its boundaries. Default is ‘reflect’. Behavior for each
valid value is as follows:
‘reflect’ (d c b a | a b c d | d c b a)

The input is extended by reflecting about the edge of the last pixel.
‘constant’ (k k k k | a b c d | k k k k)

The input is extended by filling all values beyond the edge with the same constant
value, defined by the cval parameter.

‘nearest’ (a a a a | a b c d | d d d d)
The input is extended by replicating the last pixel.

‘mirror’ (d c b | a b c d | c b a)
The input is extended by reflecting about the center of the last pixel.

‘wrap’ (a b c d | a b c d | a b c d)
The input is extended by wrapping around to the opposite edge.

cval [scalar, optional] Value to fill past edges of input if mode is ‘constant’. Default is 0.0.
origin [int, optional] Controls the placement of the filter on the input array’s pixels. A value of 0

(the default) centers the filter over the pixel, with positive values shifting the filter to the left,
and negative ones to the right.

Returns
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maximum1d
[ndarray, None] Maximum-filtered array with same shape as input. None if output is not
None

Notes

This function implements the MAXLIST algorithm [1], as described by Richard Harter [2], and has a guaranteed
O(n) performance, n being the input length, regardless of filter size.

References

[1], [2]

Examples

>>> from scipy.ndimage import maximum_filter1d
>>> maximum_filter1d([2, 8, 0, 4, 1, 9, 9, 0], size=3)
array([8, 8, 8, 4, 9, 9, 9, 9])

scipy.ndimage.median_filter

scipy.ndimage.median_filter(input, size=None, footprint=None, output=None, mode=’reflect’,
cval=0.0, origin=0)

Calculate a multidimensional median filter.
Parameters

input [array_like] The input array.
size [scalar or tuple, optional] See footprint, below. Ignored if footprint is given.
footprint [array, optional] Either size or footprint must be defined. size gives the shape that is taken

from the input array, at every element position, to define the input to the filter function.
footprint is a boolean array that specifies (implicitly) a shape, but also which of the elements
within this shape will get passed to the filter function. Thus size=(n,m) is equivalent
to footprint=np.ones((n,m)). We adjust size to the number of dimensions of the
input array, so that, if the input array is shape (10,10,10), and size is 2, then the actual size
used is (2,2,2). When footprint is given, size is ignored.

output [array or dtype, optional] The array in which to place the output, or the dtype of the returned
array. By default an array of the same dtype as input will be created.

mode [str or sequence, optional] The mode parameter determines how the input array is extended
when the filter overlaps a border. By passing a sequence of modes with length equal to the
number of dimensions of the input array, different modes can be specified along each axis.
Default value is ‘reflect’. The valid values and their behavior is as follows:
‘reflect’ (d c b a | a b c d | d c b a)

The input is extended by reflecting about the edge of the last pixel.
‘constant’ (k k k k | a b c d | k k k k)

The input is extended by filling all values beyond the edge with the same constant
value, defined by the cval parameter.

‘nearest’ (a a a a | a b c d | d d d d)
The input is extended by replicating the last pixel.

‘mirror’ (d c b | a b c d | c b a)
The input is extended by reflecting about the center of the last pixel.
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‘wrap’ (a b c d | a b c d | a b c d)
The input is extended by wrapping around to the opposite edge.

cval [scalar, optional] Value to fill past edges of input if mode is ‘constant’. Default is 0.0.
origin [int or sequence, optional] Controls the placement of the filter on the input array’s pixels. A

value of 0 (the default) centers the filter over the pixel, with positive values shifting the filter
to the left, and negative ones to the right. By passing a sequence of origins with length equal
to the number of dimensions of the input array, different shifts can be specified along each
axis.

Returns

median_filter
[ndarray] Filtered array. Has the same shape as input.

Examples

>>> from scipy import ndimage, misc
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> plt.gray() # show the filtered result in grayscale
>>> ax1 = fig.add_subplot(121) # left side
>>> ax2 = fig.add_subplot(122) # right side
>>> ascent = misc.ascent()
>>> result = ndimage.median_filter(ascent, size=20)
>>> ax1.imshow(ascent)
>>> ax2.imshow(result)
>>> plt.show()
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scipy.ndimage.minimum_filter

scipy.ndimage.minimum_filter(input, size=None, footprint=None, output=None, mode=’reflect’,
cval=0.0, origin=0)

Calculate a multi-dimensional minimum filter.
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Parameters

input [array_like] The input array.
size [scalar or tuple, optional] See footprint, below. Ignored if footprint is given.
footprint [array, optional] Either size or footprint must be defined. size gives the shape that is taken

from the input array, at every element position, to define the input to the filter function.
footprint is a boolean array that specifies (implicitly) a shape, but also which of the elements
within this shape will get passed to the filter function. Thus size=(n,m) is equivalent
to footprint=np.ones((n,m)). We adjust size to the number of dimensions of the
input array, so that, if the input array is shape (10,10,10), and size is 2, then the actual size
used is (2,2,2). When footprint is given, size is ignored.

output [array or dtype, optional] The array in which to place the output, or the dtype of the returned
array. By default an array of the same dtype as input will be created.

mode [str or sequence, optional] The mode parameter determines how the input array is extended
when the filter overlaps a border. By passing a sequence of modes with length equal to the
number of dimensions of the input array, different modes can be specified along each axis.
Default value is ‘reflect’. The valid values and their behavior is as follows:
‘reflect’ (d c b a | a b c d | d c b a)

The input is extended by reflecting about the edge of the last pixel.
‘constant’ (k k k k | a b c d | k k k k)

The input is extended by filling all values beyond the edge with the same constant
value, defined by the cval parameter.

‘nearest’ (a a a a | a b c d | d d d d)
The input is extended by replicating the last pixel.

‘mirror’ (d c b | a b c d | c b a)
The input is extended by reflecting about the center of the last pixel.

‘wrap’ (a b c d | a b c d | a b c d)
The input is extended by wrapping around to the opposite edge.

cval [scalar, optional] Value to fill past edges of input if mode is ‘constant’. Default is 0.0.
origin [int or sequence, optional] Controls the placement of the filter on the input array’s pixels. A

value of 0 (the default) centers the filter over the pixel, with positive values shifting the filter
to the left, and negative ones to the right. By passing a sequence of origins with length equal
to the number of dimensions of the input array, different shifts can be specified along each
axis.

Returns

minimum_filter
[ndarray] Filtered array. Has the same shape as input.

Examples

>>> from scipy import ndimage, misc
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> plt.gray() # show the filtered result in grayscale
>>> ax1 = fig.add_subplot(121) # left side
>>> ax2 = fig.add_subplot(122) # right side
>>> ascent = misc.ascent()
>>> result = ndimage.minimum_filter(ascent, size=20)
>>> ax1.imshow(ascent)
>>> ax2.imshow(result)
>>> plt.show()
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scipy.ndimage.minimum_filter1d

scipy.ndimage.minimum_filter1d(input, size, axis=-1, output=None, mode=’reflect’, cval=0.0, ori-
gin=0)

Calculate a one-dimensional minimum filter along the given axis.
The lines of the array along the given axis are filtered with a minimum filter of given size.

Parameters

input [array_like] The input array.
size [int] length along which to calculate 1D minimum
axis [int, optional] The axis of input along which to calculate. Default is -1.
output [array or dtype, optional] The array in which to place the output, or the dtype of the returned

array. By default an array of the same dtype as input will be created.
mode [{‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, optional] The mode parameter determines

how the input array is extended beyond its boundaries. Default is ‘reflect’. Behavior for each
valid value is as follows:
‘reflect’ (d c b a | a b c d | d c b a)

The input is extended by reflecting about the edge of the last pixel.
‘constant’ (k k k k | a b c d | k k k k)

The input is extended by filling all values beyond the edge with the same constant
value, defined by the cval parameter.

‘nearest’ (a a a a | a b c d | d d d d)
The input is extended by replicating the last pixel.

‘mirror’ (d c b | a b c d | c b a)
The input is extended by reflecting about the center of the last pixel.

‘wrap’ (a b c d | a b c d | a b c d)
The input is extended by wrapping around to the opposite edge.

cval [scalar, optional] Value to fill past edges of input if mode is ‘constant’. Default is 0.0.
origin [int, optional] Controls the placement of the filter on the input array’s pixels. A value of 0

(the default) centers the filter over the pixel, with positive values shifting the filter to the left,
and negative ones to the right.
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Notes

This function implements the MINLIST algorithm [1], as described by Richard Harter [2], and has a guaranteed
O(n) performance, n being the input length, regardless of filter size.

References

[1], [2]

Examples

>>> from scipy.ndimage import minimum_filter1d
>>> minimum_filter1d([2, 8, 0, 4, 1, 9, 9, 0], size=3)
array([2, 0, 0, 0, 1, 1, 0, 0])

scipy.ndimage.percentile_filter

scipy.ndimage.percentile_filter(input, percentile, size=None, footprint=None, output=None,
mode=’reflect’, cval=0.0, origin=0)

Calculate a multi-dimensional percentile filter.
Parameters

input [array_like] The input array.
percentile [scalar] The percentile parameter may be less then zero, i.e., percentile = -20 equals per-

centile = 80
size [scalar or tuple, optional] See footprint, below. Ignored if footprint is given.
footprint [array, optional] Either size or footprint must be defined. size gives the shape that is taken

from the input array, at every element position, to define the input to the filter function.
footprint is a boolean array that specifies (implicitly) a shape, but also which of the elements
within this shape will get passed to the filter function. Thus size=(n,m) is equivalent
to footprint=np.ones((n,m)). We adjust size to the number of dimensions of the
input array, so that, if the input array is shape (10,10,10), and size is 2, then the actual size
used is (2,2,2). When footprint is given, size is ignored.

output [array or dtype, optional] The array in which to place the output, or the dtype of the returned
array. By default an array of the same dtype as input will be created.

mode [str or sequence, optional] The mode parameter determines how the input array is extended
when the filter overlaps a border. By passing a sequence of modes with length equal to the
number of dimensions of the input array, different modes can be specified along each axis.
Default value is ‘reflect’. The valid values and their behavior is as follows:
‘reflect’ (d c b a | a b c d | d c b a)

The input is extended by reflecting about the edge of the last pixel.
‘constant’ (k k k k | a b c d | k k k k)

The input is extended by filling all values beyond the edge with the same constant
value, defined by the cval parameter.

‘nearest’ (a a a a | a b c d | d d d d)
The input is extended by replicating the last pixel.

‘mirror’ (d c b | a b c d | c b a)
The input is extended by reflecting about the center of the last pixel.

‘wrap’ (a b c d | a b c d | a b c d)
The input is extended by wrapping around to the opposite edge.

cval [scalar, optional] Value to fill past edges of input if mode is ‘constant’. Default is 0.0.
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origin [int or sequence, optional] Controls the placement of the filter on the input array’s pixels. A
value of 0 (the default) centers the filter over the pixel, with positive values shifting the filter
to the left, and negative ones to the right. By passing a sequence of origins with length equal
to the number of dimensions of the input array, different shifts can be specified along each
axis.

Returns

percentile_filter
[ndarray] Filtered array. Has the same shape as input.

Examples

>>> from scipy import ndimage, misc
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> plt.gray() # show the filtered result in grayscale
>>> ax1 = fig.add_subplot(121) # left side
>>> ax2 = fig.add_subplot(122) # right side
>>> ascent = misc.ascent()
>>> result = ndimage.percentile_filter(ascent, percentile=20, size=20)
>>> ax1.imshow(ascent)
>>> ax2.imshow(result)
>>> plt.show()
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scipy.ndimage.prewitt

scipy.ndimage.prewitt(input, axis=-1, output=None, mode=’reflect’, cval=0.0)
Calculate a Prewitt filter.

Parameters

input [array_like] The input array.
axis [int, optional] The axis of input along which to calculate. Default is -1.
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output [array or dtype, optional] The array in which to place the output, or the dtype of the returned
array. By default an array of the same dtype as input will be created.

mode [str or sequence, optional] The mode parameter determines how the input array is extended
when the filter overlaps a border. By passing a sequence of modes with length equal to the
number of dimensions of the input array, different modes can be specified along each axis.
Default value is ‘reflect’. The valid values and their behavior is as follows:
‘reflect’ (d c b a | a b c d | d c b a)

The input is extended by reflecting about the edge of the last pixel.
‘constant’ (k k k k | a b c d | k k k k)

The input is extended by filling all values beyond the edge with the same constant
value, defined by the cval parameter.

‘nearest’ (a a a a | a b c d | d d d d)
The input is extended by replicating the last pixel.

‘mirror’ (d c b | a b c d | c b a)
The input is extended by reflecting about the center of the last pixel.

‘wrap’ (a b c d | a b c d | a b c d)
The input is extended by wrapping around to the opposite edge.

cval [scalar, optional] Value to fill past edges of input if mode is ‘constant’. Default is 0.0.

Examples

>>> from scipy import ndimage, misc
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> plt.gray() # show the filtered result in grayscale
>>> ax1 = fig.add_subplot(121) # left side
>>> ax2 = fig.add_subplot(122) # right side
>>> ascent = misc.ascent()
>>> result = ndimage.prewitt(ascent)
>>> ax1.imshow(ascent)
>>> ax2.imshow(result)
>>> plt.show()
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scipy.ndimage.rank_filter

scipy.ndimage.rank_filter(input, rank, size=None, footprint=None, output=None, mode=’reflect’,
cval=0.0, origin=0)

Calculate a multi-dimensional rank filter.
Parameters

input [array_like] The input array.
rank [int] The rank parameter may be less then zero, i.e., rank = -1 indicates the largest element.
size [scalar or tuple, optional] See footprint, below. Ignored if footprint is given.
footprint [array, optional] Either size or footprint must be defined. size gives the shape that is taken

from the input array, at every element position, to define the input to the filter function.
footprint is a boolean array that specifies (implicitly) a shape, but also which of the elements
within this shape will get passed to the filter function. Thus size=(n,m) is equivalent
to footprint=np.ones((n,m)). We adjust size to the number of dimensions of the
input array, so that, if the input array is shape (10,10,10), and size is 2, then the actual size
used is (2,2,2). When footprint is given, size is ignored.

output [array or dtype, optional] The array in which to place the output, or the dtype of the returned
array. By default an array of the same dtype as input will be created.

mode [str or sequence, optional] The mode parameter determines how the input array is extended
when the filter overlaps a border. By passing a sequence of modes with length equal to the
number of dimensions of the input array, different modes can be specified along each axis.
Default value is ‘reflect’. The valid values and their behavior is as follows:
‘reflect’ (d c b a | a b c d | d c b a)

The input is extended by reflecting about the edge of the last pixel.
‘constant’ (k k k k | a b c d | k k k k)

The input is extended by filling all values beyond the edge with the same constant
value, defined by the cval parameter.

‘nearest’ (a a a a | a b c d | d d d d)
The input is extended by replicating the last pixel.

‘mirror’ (d c b | a b c d | c b a)
The input is extended by reflecting about the center of the last pixel.

‘wrap’ (a b c d | a b c d | a b c d)
The input is extended by wrapping around to the opposite edge.

cval [scalar, optional] Value to fill past edges of input if mode is ‘constant’. Default is 0.0.
origin [int or sequence, optional] Controls the placement of the filter on the input array’s pixels. A

value of 0 (the default) centers the filter over the pixel, with positive values shifting the filter
to the left, and negative ones to the right. By passing a sequence of origins with length equal
to the number of dimensions of the input array, different shifts can be specified along each
axis.

Returns

rank_filter
[ndarray] Filtered array. Has the same shape as input.

Examples

>>> from scipy import ndimage, misc
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> plt.gray() # show the filtered result in grayscale
>>> ax1 = fig.add_subplot(121) # left side

(continues on next page)
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(continued from previous page)
>>> ax2 = fig.add_subplot(122) # right side
>>> ascent = misc.ascent()
>>> result = ndimage.rank_filter(ascent, rank=42, size=20)
>>> ax1.imshow(ascent)
>>> ax2.imshow(result)
>>> plt.show()
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scipy.ndimage.sobel

scipy.ndimage.sobel(input, axis=-1, output=None, mode=’reflect’, cval=0.0)
Calculate a Sobel filter.

Parameters

input [array_like] The input array.
axis [int, optional] The axis of input along which to calculate. Default is -1.
output [array or dtype, optional] The array in which to place the output, or the dtype of the returned

array. By default an array of the same dtype as input will be created.
mode [str or sequence, optional] The mode parameter determines how the input array is extended

when the filter overlaps a border. By passing a sequence of modes with length equal to the
number of dimensions of the input array, different modes can be specified along each axis.
Default value is ‘reflect’. The valid values and their behavior is as follows:
‘reflect’ (d c b a | a b c d | d c b a)

The input is extended by reflecting about the edge of the last pixel.
‘constant’ (k k k k | a b c d | k k k k)

The input is extended by filling all values beyond the edge with the same constant
value, defined by the cval parameter.

‘nearest’ (a a a a | a b c d | d d d d)
The input is extended by replicating the last pixel.

‘mirror’ (d c b | a b c d | c b a)
The input is extended by reflecting about the center of the last pixel.

‘wrap’ (a b c d | a b c d | a b c d)
The input is extended by wrapping around to the opposite edge.
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cval [scalar, optional] Value to fill past edges of input if mode is ‘constant’. Default is 0.0.

Examples

>>> from scipy import ndimage, misc
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> plt.gray() # show the filtered result in grayscale
>>> ax1 = fig.add_subplot(121) # left side
>>> ax2 = fig.add_subplot(122) # right side
>>> ascent = misc.ascent()
>>> result = ndimage.sobel(ascent)
>>> ax1.imshow(ascent)
>>> ax2.imshow(result)
>>> plt.show()
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scipy.ndimage.uniform_filter

scipy.ndimage.uniform_filter(input, size=3, output=None, mode=’reflect’, cval=0.0, origin=0)
Multi-dimensional uniform filter.

Parameters

input [array_like] The input array.
size [int or sequence of ints, optional] The sizes of the uniform filter are given for each axis as a

sequence, or as a single number, in which case the size is equal for all axes.
output [array or dtype, optional] The array in which to place the output, or the dtype of the returned

array. By default an array of the same dtype as input will be created.
mode [str or sequence, optional] The mode parameter determines how the input array is extended

when the filter overlaps a border. By passing a sequence of modes with length equal to the
number of dimensions of the input array, different modes can be specified along each axis.
Default value is ‘reflect’. The valid values and their behavior is as follows:
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‘reflect’ (d c b a | a b c d | d c b a)
The input is extended by reflecting about the edge of the last pixel.

‘constant’ (k k k k | a b c d | k k k k)
The input is extended by filling all values beyond the edge with the same constant
value, defined by the cval parameter.

‘nearest’ (a a a a | a b c d | d d d d)
The input is extended by replicating the last pixel.

‘mirror’ (d c b | a b c d | c b a)
The input is extended by reflecting about the center of the last pixel.

‘wrap’ (a b c d | a b c d | a b c d)
The input is extended by wrapping around to the opposite edge.

cval [scalar, optional] Value to fill past edges of input if mode is ‘constant’. Default is 0.0.
origin [int or sequence, optional] Controls the placement of the filter on the input array’s pixels. A

value of 0 (the default) centers the filter over the pixel, with positive values shifting the filter
to the left, and negative ones to the right. By passing a sequence of origins with length equal
to the number of dimensions of the input array, different shifts can be specified along each
axis.

Returns

uniform_filter
[ndarray] Filtered array. Has the same shape as input.

Notes

The multi-dimensional filter is implemented as a sequence of one-dimensional uniform filters. The intermediate
arrays are stored in the same data type as the output. Therefore, for output types with a limited precision, the results
may be imprecise because intermediate results may be stored with insufficient precision.

Examples

>>> from scipy import ndimage, misc
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> plt.gray() # show the filtered result in grayscale
>>> ax1 = fig.add_subplot(121) # left side
>>> ax2 = fig.add_subplot(122) # right side
>>> ascent = misc.ascent()
>>> result = ndimage.uniform_filter(ascent, size=20)
>>> ax1.imshow(ascent)
>>> ax2.imshow(result)
>>> plt.show()

scipy.ndimage.uniform_filter1d

scipy.ndimage.uniform_filter1d(input, size, axis=-1, output=None, mode=’reflect’, cval=0.0, ori-
gin=0)

Calculate a one-dimensional uniform filter along the given axis.
The lines of the array along the given axis are filtered with a uniform filter of given size.

Parameters
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input [array_like] The input array.
size [int] length of uniform filter
axis [int, optional] The axis of input along which to calculate. Default is -1.
output [array or dtype, optional] The array in which to place the output, or the dtype of the returned

array. By default an array of the same dtype as input will be created.
mode [{‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, optional] The mode parameter determines

how the input array is extended beyond its boundaries. Default is ‘reflect’. Behavior for each
valid value is as follows:
‘reflect’ (d c b a | a b c d | d c b a)

The input is extended by reflecting about the edge of the last pixel.
‘constant’ (k k k k | a b c d | k k k k)

The input is extended by filling all values beyond the edge with the same constant
value, defined by the cval parameter.

‘nearest’ (a a a a | a b c d | d d d d)
The input is extended by replicating the last pixel.

‘mirror’ (d c b | a b c d | c b a)
The input is extended by reflecting about the center of the last pixel.

‘wrap’ (a b c d | a b c d | a b c d)
The input is extended by wrapping around to the opposite edge.

cval [scalar, optional] Value to fill past edges of input if mode is ‘constant’. Default is 0.0.
origin [int, optional] Controls the placement of the filter on the input array’s pixels. A value of 0

(the default) centers the filter over the pixel, with positive values shifting the filter to the left,
and negative ones to the right.

Examples

>>> from scipy.ndimage import uniform_filter1d
>>> uniform_filter1d([2, 8, 0, 4, 1, 9, 9, 0], size=3)
array([4, 3, 4, 1, 4, 6, 6, 3])
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6.16.2 Fourier filters

fourier_ellipsoid(input, size[, n, axis, output]) Multi-dimensional ellipsoid fourier filter.
fourier_gaussian(input, sigma[, n, axis, output]) Multi-dimensional Gaussian fourier filter.
fourier_shift(input, shift[, n, axis, output]) Multi-dimensional fourier shift filter.
fourier_uniform(input, size[, n, axis, output]) Multi-dimensional uniform fourier filter.

scipy.ndimage.fourier_ellipsoid

scipy.ndimage.fourier_ellipsoid(input, size, n=-1, axis=-1, output=None)
Multi-dimensional ellipsoid fourier filter.
The array is multiplied with the fourier transform of a ellipsoid of given sizes.

Parameters

input [array_like] The input array.
size [float or sequence] The size of the box used for filtering. If a float, size is the same for all

axes. If a sequence, size has to contain one value for each axis.
n [int, optional] If n is negative (default), then the input is assumed to be the result of a complex

fft. If n is larger than or equal to zero, the input is assumed to be the result of a real fft, and
n gives the length of the array before transformation along the real transform direction.

axis [int, optional] The axis of the real transform.
output [ndarray, optional] If given, the result of filtering the input is placed in this array. None is

returned in this case.
Returns

fourier_ellipsoid
[ndarray] The filtered input.

Notes

This function is implemented for arrays of rank 1, 2, or 3.

Examples

>>> from scipy import ndimage, misc
>>> import numpy.fft
>>> import matplotlib.pyplot as plt
>>> fig, (ax1, ax2) = plt.subplots(1, 2)
>>> plt.gray() # show the filtered result in grayscale
>>> ascent = misc.ascent()
>>> input_ = numpy.fft.fft2(ascent)
>>> result = ndimage.fourier_ellipsoid(input_, size=20)
>>> result = numpy.fft.ifft2(result)
>>> ax1.imshow(ascent)
>>> ax2.imshow(result.real) # the imaginary part is an artifact
>>> plt.show()
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scipy.ndimage.fourier_gaussian

scipy.ndimage.fourier_gaussian(input, sigma, n=-1, axis=-1, output=None)
Multi-dimensional Gaussian fourier filter.
The array is multiplied with the fourier transform of a Gaussian kernel.

Parameters

input [array_like] The input array.
sigma [float or sequence] The sigma of the Gaussian kernel. If a float, sigma is the same for all

axes. If a sequence, sigma has to contain one value for each axis.
n [int, optional] If n is negative (default), then the input is assumed to be the result of a complex

fft. If n is larger than or equal to zero, the input is assumed to be the result of a real fft, and
n gives the length of the array before transformation along the real transform direction.

axis [int, optional] The axis of the real transform.
output [ndarray, optional] If given, the result of filtering the input is placed in this array. None is

returned in this case.
Returns

fourier_gaussian
[ndarray] The filtered input.

Examples

>>> from scipy import ndimage, misc
>>> import numpy.fft
>>> import matplotlib.pyplot as plt
>>> fig, (ax1, ax2) = plt.subplots(1, 2)
>>> plt.gray() # show the filtered result in grayscale
>>> ascent = misc.ascent()
>>> input_ = numpy.fft.fft2(ascent)
>>> result = ndimage.fourier_gaussian(input_, sigma=4)
>>> result = numpy.fft.ifft2(result)

(continues on next page)
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(continued from previous page)
>>> ax1.imshow(ascent)
>>> ax2.imshow(result.real) # the imaginary part is an artifact
>>> plt.show()
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scipy.ndimage.fourier_shift

scipy.ndimage.fourier_shift(input, shift, n=-1, axis=-1, output=None)
Multi-dimensional fourier shift filter.
The array is multiplied with the fourier transform of a shift operation.

Parameters

input [array_like] The input array.
shift [float or sequence] The size of the box used for filtering. If a float, shift is the same for

all axes. If a sequence, shift has to contain one value for each axis.
n [int, optional] If n is negative (default), then the input is assumed to be the result of a complex

fft. If n is larger than or equal to zero, the input is assumed to be the result of a real fft, and
n gives the length of the array before transformation along the real transform direction.

axis [int, optional] The axis of the real transform.
output [ndarray, optional] If given, the result of shifting the input is placed in this array. None is

returned in this case.
Returns

fourier_shift
[ndarray] The shifted input.

Examples

>>> from scipy import ndimage, misc
>>> import matplotlib.pyplot as plt
>>> import numpy.fft

(continues on next page)
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(continued from previous page)
>>> fig, (ax1, ax2) = plt.subplots(1, 2)
>>> plt.gray() # show the filtered result in grayscale
>>> ascent = misc.ascent()
>>> input_ = numpy.fft.fft2(ascent)
>>> result = ndimage.fourier_shift(input_, shift=200)
>>> result = numpy.fft.ifft2(result)
>>> ax1.imshow(ascent)
>>> ax2.imshow(result.real) # the imaginary part is an artifact
>>> plt.show()
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scipy.ndimage.fourier_uniform

scipy.ndimage.fourier_uniform(input, size, n=-1, axis=-1, output=None)
Multi-dimensional uniform fourier filter.
The array is multiplied with the fourier transform of a box of given size.

Parameters

input [array_like] The input array.
size [float or sequence] The size of the box used for filtering. If a float, size is the same for all

axes. If a sequence, size has to contain one value for each axis.
n [int, optional] If n is negative (default), then the input is assumed to be the result of a complex

fft. If n is larger than or equal to zero, the input is assumed to be the result of a real fft, and
n gives the length of the array before transformation along the real transform direction.

axis [int, optional] The axis of the real transform.
output [ndarray, optional] If given, the result of filtering the input is placed in this array. None is

returned in this case.
Returns

fourier_uniform
[ndarray] The filtered input.
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Examples

>>> from scipy import ndimage, misc
>>> import numpy.fft
>>> import matplotlib.pyplot as plt
>>> fig, (ax1, ax2) = plt.subplots(1, 2)
>>> plt.gray() # show the filtered result in grayscale
>>> ascent = misc.ascent()
>>> input_ = numpy.fft.fft2(ascent)
>>> result = ndimage.fourier_uniform(input_, size=20)
>>> result = numpy.fft.ifft2(result)
>>> ax1.imshow(ascent)
>>> ax2.imshow(result.real) # the imaginary part is an artifact
>>> plt.show()
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6.16.3 Interpolation

affine_transform(input, matrix[, offset, …]) Apply an affine transformation.
geometric_transform(input, mapping[, …]) Apply an arbitrary geometric transform.
map_coordinates(input, coordinates[, …]) Map the input array to new coordinates by interpolation.
rotate(input, angle[, axes, reshape, …]) Rotate an array.
shift(input, shift[, output, order, mode, …]) Shift an array.
spline_filter(input[, order, output, mode]) Multi-dimensional spline filter.
spline_filter1d(input[, order, axis, …]) Calculate a one-dimensional spline filter along the given

axis.
zoom(input, zoom[, output, order, mode, …]) Zoom an array.
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scipy.ndimage.affine_transform

scipy.ndimage.affine_transform(input, matrix, offset=0.0, output_shape=None, output=None, or-
der=3, mode=’constant’, cval=0.0, prefilter=True)

Apply an affine transformation.
Given an output image pixel index vector o, the pixel value is determined from the input image at position np.
dot(matrix, o) + offset.
This does ‘pull’ (or ‘backward’) resampling, transforming the output space to the input to locate data. Affine trans-
formations are often described in the ‘push’ (or ‘forward’) direction, transforming input to output. If you have a
matrix for the ‘push’ transformation, use its inverse (numpy.linalg.inv) in this function.

Parameters

input [array_like] The input array.
matrix [ndarray] The inverse coordinate transformation matrix, mapping output coordinates to input

coordinates. If ndim is the number of dimensions of input, the given matrix must have
one of the following shapes:
• (ndim, ndim): the linear transformation matrix for each output coordinate.
• (ndim,): assume that the 2D transformation matrix is diagonal, with the diagonal spec-
ified by the given value. A more efficient algorithm is then used that exploits the separa-
bility of the problem.

• (ndim + 1, ndim + 1): assume that the transformation is specified using homo-
geneous coordinates [1]. In this case, any value passed to offset is ignored.

• (ndim, ndim + 1): as above, but the bottom row of a homogeneous transformation
matrix is always [0, 0, ..., 1], and may be omitted.

offset [float or sequence, optional] The offset into the array where the transform is applied. If a
float, offset is the same for each axis. If a sequence, offset should contain one value for each
axis.

output_shape
[tuple of ints, optional] Shape tuple.

output [array or dtype, optional] The array in which to place the output, or the dtype of the returned
array. By default an array of the same dtype as input will be created.

order [int, optional] The order of the spline interpolation, default is 3. The order has to be in the
range 0-5.

mode [{‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, optional] The mode parameter determines
how the input array is extended beyond its boundaries. Default is ‘constant’. Behavior for
each valid value is as follows:
‘reflect’ (d c b a | a b c d | d c b a)

The input is extended by reflecting about the edge of the last pixel.
‘constant’ (k k k k | a b c d | k k k k)

The input is extended by filling all values beyond the edge with the same constant
value, defined by the cval parameter.

‘nearest’ (a a a a | a b c d | d d d d)
The input is extended by replicating the last pixel.

‘mirror’ (d c b | a b c d | c b a)
The input is extended by reflecting about the center of the last pixel.

‘wrap’ (a b c d | a b c d | a b c d)
The input is extended by wrapping around to the opposite edge.

cval [scalar, optional] Value to fill past edges of input if mode is ‘constant’. Default is 0.0.
prefilter [bool, optional] Determines if the input array is prefiltered with spline_filter before

interpolation. The default is True, which will create a temporary float64 array of filtered
values if order > 1. If setting this to False, the output will be slightly blurred if order > 1,
unless the input is prefiltered, i.e. it is the result of calling spline_filter on the original
input.
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Returns

affine_transform
[ndarray] The transformed input.

Notes

The given matrix and offset are used to find for each point in the output the corresponding coordinates in the input
by an affine transformation. The value of the input at those coordinates is determined by spline interpolation of the
requested order. Points outside the boundaries of the input are filled according to the given mode.
Changed in version 0.18.0: Previously, the exact interpretation of the affine transformation depended on whether
the matrix was supplied as a one-dimensional or two-dimensional array. If a one-dimensional array was supplied to
the matrix parameter, the output pixel value at index o was determined from the input image at position matrix
* (o + offset).

References

[1]

scipy.ndimage.geometric_transform

scipy.ndimage.geometric_transform(input, mapping, output_shape=None, output=None, or-
der=3, mode=’constant’, cval=0.0, prefilter=True, ex-
tra_arguments=(), extra_keywords={})

Apply an arbitrary geometric transform.
The given mapping function is used to find, for each point in the output, the corresponding coordinates in the input.
The value of the input at those coordinates is determined by spline interpolation of the requested order.

Parameters

input [array_like] The input array.
mapping [{callable, scipy.LowLevelCallable}] A callable object that accepts a tuple of length equal

to the output array rank, and returns the corresponding input coordinates as a tuple of length
equal to the input array rank.

output_shape
[tuple of ints, optional] Shape tuple.

output [array or dtype, optional] The array in which to place the output, or the dtype of the returned
array. By default an array of the same dtype as input will be created.

order [int, optional] The order of the spline interpolation, default is 3. The order has to be in the
range 0-5.

mode [{‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, optional] The mode parameter determines
how the input array is extended beyond its boundaries. Default is ‘constant’. Behavior for
each valid value is as follows:
‘reflect’ (d c b a | a b c d | d c b a)

The input is extended by reflecting about the edge of the last pixel.
‘constant’ (k k k k | a b c d | k k k k)

The input is extended by filling all values beyond the edge with the same constant
value, defined by the cval parameter.

‘nearest’ (a a a a | a b c d | d d d d)
The input is extended by replicating the last pixel.

‘mirror’ (d c b | a b c d | c b a)
The input is extended by reflecting about the center of the last pixel.
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‘wrap’ (a b c d | a b c d | a b c d)
The input is extended by wrapping around to the opposite edge.

cval [scalar, optional] Value to fill past edges of input if mode is ‘constant’. Default is 0.0.
prefilter [bool, optional] Determines if the input array is prefiltered with spline_filter before

interpolation. The default is True, which will create a temporary float64 array of filtered
values if order > 1. If setting this to False, the output will be slightly blurred if order > 1,
unless the input is prefiltered, i.e. it is the result of calling spline_filter on the original
input.

extra_arguments
[tuple, optional] Extra arguments passed to mapping.

extra_keywords
[dict, optional] Extra keywords passed to mapping.

Returns

output [ndarray] The filtered input.
See also:
map_coordinates, affine_transform, spline_filter1d

Notes

This function also accepts low-level callback functions with one the following signatures and wrapped in scipy.
LowLevelCallable:

int mapping(npy_intp *output_coordinates, double *input_coordinates,
int output_rank, int input_rank, void *user_data)

int mapping(intptr_t *output_coordinates, double *input_coordinates,
int output_rank, int input_rank, void *user_data)

The calling function iterates over the elements of the output array, calling the callback function at each element. The
coordinates of the current output element are passed through output_coordinates. The callback function
must return the coordinates at which the input must be interpolated in input_coordinates. The rank of the
input and output arrays are given by input_rank and output_rank respectively. user_data is the data
pointer provided to scipy.LowLevelCallable as-is.
The callback function must return an integer error status that is zero if something went wrong and one otherwise.
If an error occurs, you should normally set the python error status with an informative message before returning,
otherwise a default error message is set by the calling function.
In addition, some other low-level function pointer specifications are accepted, but these are for backward compat-
ibility only and should not be used in new code.

Examples

>>> import numpy as np
>>> from scipy.ndimage import geometric_transform
>>> a = np.arange(12.).reshape((4, 3))
>>> def shift_func(output_coords):
... return (output_coords[0] - 0.5, output_coords[1] - 0.5)
...
>>> geometric_transform(a, shift_func)
array([[ 0. , 0. , 0. ],

(continues on next page)
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(continued from previous page)
[ 0. , 1.362, 2.738],
[ 0. , 4.812, 6.187],
[ 0. , 8.263, 9.637]])

>>> b = [1, 2, 3, 4, 5]
>>> def shift_func(output_coords):
... return (output_coords[0] - 3,)
...
>>> geometric_transform(b, shift_func, mode='constant')
array([0, 0, 0, 1, 2])
>>> geometric_transform(b, shift_func, mode='nearest')
array([1, 1, 1, 1, 2])
>>> geometric_transform(b, shift_func, mode='reflect')
array([3, 2, 1, 1, 2])
>>> geometric_transform(b, shift_func, mode='wrap')
array([2, 3, 4, 1, 2])

scipy.ndimage.map_coordinates

scipy.ndimage.map_coordinates(input, coordinates, output=None, order=3, mode=’constant’,
cval=0.0, prefilter=True)

Map the input array to new coordinates by interpolation.
The array of coordinates is used to find, for each point in the output, the corresponding coordinates in the input.
The value of the input at those coordinates is determined by spline interpolation of the requested order.
The shape of the output is derived from that of the coordinate array by dropping the first axis. The values of the
array along the first axis are the coordinates in the input array at which the output value is found.

Parameters

input [array_like] The input array.
coordinates

[array_like] The coordinates at which input is evaluated.
output [array or dtype, optional] The array in which to place the output, or the dtype of the returned

array. By default an array of the same dtype as input will be created.
order [int, optional] The order of the spline interpolation, default is 3. The order has to be in the

range 0-5.
mode [{‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, optional] The mode parameter determines

how the input array is extended beyond its boundaries. Default is ‘constant’. Behavior for
each valid value is as follows:
‘reflect’ (d c b a | a b c d | d c b a)

The input is extended by reflecting about the edge of the last pixel.
‘constant’ (k k k k | a b c d | k k k k)

The input is extended by filling all values beyond the edge with the same constant
value, defined by the cval parameter.

‘nearest’ (a a a a | a b c d | d d d d)
The input is extended by replicating the last pixel.

‘mirror’ (d c b | a b c d | c b a)
The input is extended by reflecting about the center of the last pixel.

‘wrap’ (a b c d | a b c d | a b c d)
The input is extended by wrapping around to the opposite edge.

cval [scalar, optional] Value to fill past edges of input if mode is ‘constant’. Default is 0.0.
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prefilter [bool, optional] Determines if the input array is prefiltered with spline_filter before
interpolation. The default is True, which will create a temporary float64 array of filtered
values if order > 1. If setting this to False, the output will be slightly blurred if order > 1,
unless the input is prefiltered, i.e. it is the result of calling spline_filter on the original
input.

Returns

map_coordinates
[ndarray] The result of transforming the input. The shape of the output is derived from that
of coordinates by dropping the first axis.

See also:
spline_filter, geometric_transform, scipy.interpolate

Examples

>>> from scipy import ndimage
>>> a = np.arange(12.).reshape((4, 3))
>>> a
array([[ 0., 1., 2.],

[ 3., 4., 5.],
[ 6., 7., 8.],
[ 9., 10., 11.]])

>>> ndimage.map_coordinates(a, [[0.5, 2], [0.5, 1]], order=1)
array([ 2., 7.])

Above, the interpolated value of a[0.5, 0.5] gives output[0], while a[2, 1] is output[1].

>>> inds = np.array([[0.5, 2], [0.5, 4]])
>>> ndimage.map_coordinates(a, inds, order=1, cval=-33.3)
array([ 2. , -33.3])
>>> ndimage.map_coordinates(a, inds, order=1, mode='nearest')
array([ 2., 8.])
>>> ndimage.map_coordinates(a, inds, order=1, cval=0, output=bool)
array([ True, False], dtype=bool)

scipy.ndimage.rotate

scipy.ndimage.rotate(input, angle, axes=(1, 0), reshape=True, output=None, order=3, mode=’constant’,
cval=0.0, prefilter=True)

Rotate an array.
The array is rotated in the plane defined by the two axes given by the axes parameter using spline interpolation of
the requested order.

Parameters

input [array_like] The input array.
angle [float] The rotation angle in degrees.
axes [tuple of 2 ints, optional] The two axes that define the plane of rotation. Default is the first

two axes.
reshape [bool, optional] If reshape is true, the output shape is adapted so that the input array is

contained completely in the output. Default is True.
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output [array or dtype, optional] The array in which to place the output, or the dtype of the returned
array. By default an array of the same dtype as input will be created.

order [int, optional] The order of the spline interpolation, default is 3. The order has to be in the
range 0-5.

mode [{‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, optional] The mode parameter determines
how the input array is extended beyond its boundaries. Default is ‘constant’. Behavior for
each valid value is as follows:
‘reflect’ (d c b a | a b c d | d c b a)

The input is extended by reflecting about the edge of the last pixel.
‘constant’ (k k k k | a b c d | k k k k)

The input is extended by filling all values beyond the edge with the same constant
value, defined by the cval parameter.

‘nearest’ (a a a a | a b c d | d d d d)
The input is extended by replicating the last pixel.

‘mirror’ (d c b | a b c d | c b a)
The input is extended by reflecting about the center of the last pixel.

‘wrap’ (a b c d | a b c d | a b c d)
The input is extended by wrapping around to the opposite edge.

cval [scalar, optional] Value to fill past edges of input if mode is ‘constant’. Default is 0.0.
prefilter [bool, optional] Determines if the input array is prefiltered with spline_filter before

interpolation. The default is True, which will create a temporary float64 array of filtered
values if order > 1. If setting this to False, the output will be slightly blurred if order > 1,
unless the input is prefiltered, i.e. it is the result of calling spline_filter on the original
input.

Returns

rotate [ndarray] The rotated input.

Examples

>>> from scipy import ndimage, misc
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure(figsize=(10, 3))
>>> ax1, ax2, ax3 = fig.subplots(1, 3)
>>> img = misc.ascent()
>>> img_45 = ndimage.rotate(img, 45, reshape=False)
>>> full_img_45 = ndimage.rotate(img, 45, reshape=True)
>>> ax1.imshow(img, cmap='gray')
>>> ax1.set_axis_off()
>>> ax2.imshow(img_45, cmap='gray')
>>> ax2.set_axis_off()
>>> ax3.imshow(full_img_45, cmap='gray')
>>> ax3.set_axis_off()
>>> fig.set_tight_layout(True)
>>> plt.show()

>>> print(img.shape)
(512, 512)
>>> print(img_45.shape)
(512, 512)
>>> print(full_img_45.shape)
(724, 724)
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scipy.ndimage.shift

scipy.ndimage.shift(input, shift, output=None, order=3, mode=’constant’, cval=0.0, prefilter=True)
Shift an array.
The array is shifted using spline interpolation of the requested order. Points outside the boundaries of the input are
filled according to the given mode.

Parameters

input [array_like] The input array.
shift [float or sequence] The shift along the axes. If a float, shift is the same for each axis. If a

sequence, shift should contain one value for each axis.
output [array or dtype, optional] The array in which to place the output, or the dtype of the returned

array. By default an array of the same dtype as input will be created.
order [int, optional] The order of the spline interpolation, default is 3. The order has to be in the

range 0-5.
mode [{‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, optional] The mode parameter determines

how the input array is extended beyond its boundaries. Default is ‘constant’. Behavior for
each valid value is as follows:
‘reflect’ (d c b a | a b c d | d c b a)

The input is extended by reflecting about the edge of the last pixel.
‘constant’ (k k k k | a b c d | k k k k)

The input is extended by filling all values beyond the edge with the same constant
value, defined by the cval parameter.

‘nearest’ (a a a a | a b c d | d d d d)
The input is extended by replicating the last pixel.

‘mirror’ (d c b | a b c d | c b a)
The input is extended by reflecting about the center of the last pixel.

‘wrap’ (a b c d | a b c d | a b c d)
The input is extended by wrapping around to the opposite edge.

cval [scalar, optional] Value to fill past edges of input if mode is ‘constant’. Default is 0.0.
prefilter [bool, optional] Determines if the input array is prefiltered with spline_filter before

interpolation. The default is True, which will create a temporary float64 array of filtered
values if order > 1. If setting this to False, the output will be slightly blurred if order > 1,
unless the input is prefiltered, i.e. it is the result of calling spline_filter on the original
input.

Returns

shift [ndarray] The shifted input.
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scipy.ndimage.spline_filter

scipy.ndimage.spline_filter(input, order=3, output=<class ’numpy.float64’>, mode=’mirror’)
Multi-dimensional spline filter.
For more details, see spline_filter1d.
See also:
spline_filter1d

Notes

The multi-dimensional filter is implemented as a sequence of one-dimensional spline filters. The intermediate
arrays are stored in the same data type as the output. Therefore, for output types with a limited precision, the
results may be imprecise because intermediate results may be stored with insufficient precision.

scipy.ndimage.spline_filter1d

scipy.ndimage.spline_filter1d(input, order=3, axis=-1, output=<class ’numpy.float64’>,
mode=’mirror’)

Calculate a one-dimensional spline filter along the given axis.
The lines of the array along the given axis are filtered by a spline filter. The order of the spline must be >= 2 and
<= 5.

Parameters

input [array_like] The input array.
order [int, optional] The order of the spline, default is 3.
axis [int, optional] The axis along which the spline filter is applied. Default is the last axis.
output [ndarray or dtype, optional] The array in which to place the output, or the dtype of the

returned array. Default is numpy.float64.
mode [{‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, optional] The mode parameter determines

how the input array is extended beyond its boundaries. Default is ‘constant’. Behavior for
each valid value is as follows:
‘reflect’ (d c b a | a b c d | d c b a)

The input is extended by reflecting about the edge of the last pixel.
‘constant’ (k k k k | a b c d | k k k k)

The input is extended by filling all values beyond the edge with the same constant
value, defined by the cval parameter.

‘nearest’ (a a a a | a b c d | d d d d)
The input is extended by replicating the last pixel.

‘mirror’ (d c b | a b c d | c b a)
The input is extended by reflecting about the center of the last pixel.

‘wrap’ (a b c d | a b c d | a b c d)
The input is extended by wrapping around to the opposite edge.

Returns

spline_filter1d
[ndarray] The filtered input.
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Notes

All functions in ndimage.interpolation do spline interpolation of the input image. If using b-splines of order > 1, the
input image values have to be converted to b-spline coefficients first, which is done by applying this one-dimensional
filter sequentially along all axes of the input. All functions that require b-spline coefficients will automatically
filter their inputs, a behavior controllable with the prefilter keyword argument. For functions that accept a mode
parameter, the result will only be correct if it matches the mode used when filtering.

scipy.ndimage.zoom

scipy.ndimage.zoom(input, zoom, output=None, order=3, mode=’constant’, cval=0.0, prefilter=True)
Zoom an array.
The array is zoomed using spline interpolation of the requested order.

Parameters

input [array_like] The input array.
zoom [float or sequence] The zoom factor along the axes. If a float, zoom is the same for each

axis. If a sequence, zoom should contain one value for each axis.
output [array or dtype, optional] The array in which to place the output, or the dtype of the returned

array. By default an array of the same dtype as input will be created.
order [int, optional] The order of the spline interpolation, default is 3. The order has to be in the

range 0-5.
mode [{‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, optional] The mode parameter determines

how the input array is extended beyond its boundaries. Default is ‘constant’. Behavior for
each valid value is as follows:
‘reflect’ (d c b a | a b c d | d c b a)

The input is extended by reflecting about the edge of the last pixel.
‘constant’ (k k k k | a b c d | k k k k)

The input is extended by filling all values beyond the edge with the same constant
value, defined by the cval parameter.

‘nearest’ (a a a a | a b c d | d d d d)
The input is extended by replicating the last pixel.

‘mirror’ (d c b | a b c d | c b a)
The input is extended by reflecting about the center of the last pixel.

‘wrap’ (a b c d | a b c d | a b c d)
The input is extended by wrapping around to the opposite edge.

cval [scalar, optional] Value to fill past edges of input if mode is ‘constant’. Default is 0.0.
prefilter [bool, optional] Determines if the input array is prefiltered with spline_filter before

interpolation. The default is True, which will create a temporary float64 array of filtered
values if order > 1. If setting this to False, the output will be slightly blurred if order > 1,
unless the input is prefiltered, i.e. it is the result of calling spline_filter on the original
input.

Returns

zoom [ndarray] The zoomed input.

Examples

>>> from scipy import ndimage, misc
>>> import matplotlib.pyplot as plt
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>>> fig = plt.figure()
>>> ax1 = fig.add_subplot(121) # left side
>>> ax2 = fig.add_subplot(122) # right side
>>> ascent = misc.ascent()
>>> result = ndimage.zoom(ascent, 3.0)
>>> ax1.imshow(ascent)
>>> ax2.imshow(result)
>>> plt.show()
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>>> print(ascent.shape)
(512, 512)

>>> print(result.shape)
(1536, 1536)

6.16.4 Measurements

center_of_mass(input[, labels, index]) Calculate the center of mass of the values of an array at
labels.

extrema(input[, labels, index]) Calculate the minimums and maximums of the values of
an array at labels, along with their positions.

find_objects(input[, max_label]) Find objects in a labeled array.
histogram(input, min, max, bins[, labels, index]) Calculate the histogram of the values of an array, option-

ally at labels.
label(input[, structure, output]) Label features in an array.
labeled_comprehension(input, labels, index, …) Roughly equivalent to [func(input[labels == i]) for i in

index].
maximum(input[, labels, index]) Calculate the maximum of the values of an array over la-

beled regions.
Continued on next page
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Table 103 – continued from previous page
maximum_position(input[, labels, index]) Find the positions of the maximums of the values of an

array at labels.
mean(input[, labels, index]) Calculate the mean of the values of an array at labels.
median(input[, labels, index]) Calculate themedian of the values of an array over labeled

regions.
minimum(input[, labels, index]) Calculate the minimum of the values of an array over la-

beled regions.
minimum_position(input[, labels, index]) Find the positions of the minimums of the values of an

array at labels.
standard_deviation(input[, labels, index]) Calculate the standard deviation of the values of an n-D

image array, optionally at specified sub-regions.
sum(input[, labels, index]) Calculate the sum of the values of the array.
variance(input[, labels, index]) Calculate the variance of the values of an n-D image ar-

ray, optionally at specified sub-regions.
watershed_ift(input, markers[, structure, …]) Apply watershed from markers using image foresting

transform algorithm.

scipy.ndimage.center_of_mass

scipy.ndimage.center_of_mass(input, labels=None, index=None)
Calculate the center of mass of the values of an array at labels.

Parameters

input [ndarray] Data from which to calculate center-of-mass. The masses can either be positive or
negative.

labels [ndarray, optional] Labels for objects in input, as generated by ndimage.label. Only used with
index. Dimensions must be the same as input.

index [int or sequence of ints, optional] Labels for which to calculate centers-of-mass. If not spec-
ified, all labels greater than zero are used. Only used with labels.

Returns

center_of_mass
[tuple, or list of tuples] Coordinates of centers-of-mass.

Examples

>>> a = np.array(([0,0,0,0],
... [0,1,1,0],
... [0,1,1,0],
... [0,1,1,0]))
>>> from scipy import ndimage
>>> ndimage.measurements.center_of_mass(a)
(2.0, 1.5)

Calculation of multiple objects in an image

>>> b = np.array(([0,1,1,0],
... [0,1,0,0],
... [0,0,0,0],
... [0,0,1,1],
... [0,0,1,1]))

(continues on next page)
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(continued from previous page)
>>> lbl = ndimage.label(b)[0]
>>> ndimage.measurements.center_of_mass(b, lbl, [1,2])
[(0.33333333333333331, 1.3333333333333333), (3.5, 2.5)]

Negative masses are also accepted, which can occur for example when bias is removed from measured data due to
random noise.

>>> c = np.array(([-1,0,0,0],
... [0,-1,-1,0],
... [0,1,-1,0],
... [0,1,1,0]))
>>> ndimage.measurements.center_of_mass(c)
(-4.0, 1.0)

If there are division by zero issues, the function does not raise an error but rather issues a RuntimeWarning before
returning inf and/or NaN.

>>> d = np.array([-1, 1])
>>> ndimage.measurements.center_of_mass(d)
(inf,)

scipy.ndimage.extrema

scipy.ndimage.extrema(input, labels=None, index=None)
Calculate the minimums and maximums of the values of an array at labels, along with their positions.

Parameters

input [ndarray] Nd-image data to process.
labels [ndarray, optional] Labels of features in input. If not None, must be same shape as input.
index [int or sequence of ints, optional] Labels to include in output. If None (default), all values

where non-zero labels are used.
Returns

minimums, maximums
[int or ndarray] Values of minimums and maximums in each feature.

min_positions, max_positions
[tuple or list of tuples] Each tuple gives the n-D coordinates of the corresponding minimum
or maximum.

See also:
maximum, minimum, maximum_position, minimum_position, center_of_mass

Examples

>>> a = np.array([[1, 2, 0, 0],
... [5, 3, 0, 4],
... [0, 0, 0, 7],
... [9, 3, 0, 0]])
>>> from scipy import ndimage

(continues on next page)
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(continued from previous page)
>>> ndimage.extrema(a)
(0, 9, (0, 2), (3, 0))

Features to process can be specified using labels and index:

>>> lbl, nlbl = ndimage.label(a)
>>> ndimage.extrema(a, lbl, index=np.arange(1, nlbl+1))
(array([1, 4, 3]),
array([5, 7, 9]),
[(0, 0), (1, 3), (3, 1)],
[(1, 0), (2, 3), (3, 0)])

If no index is given, non-zero labels are processed:

>>> ndimage.extrema(a, lbl)
(1, 9, (0, 0), (3, 0))

scipy.ndimage.find_objects

scipy.ndimage.find_objects(input, max_label=0)
Find objects in a labeled array.

Parameters

input [ndarray of ints] Array containing objects defined by different labels. Labels with value 0 are
ignored.

max_label [int, optional] Maximum label to be searched for in input. If max_label is not given, the
positions of all objects are returned.

Returns

object_slices
[list of tuples] A list of tuples, with each tuple containing N slices (with N the dimension of
the input array). Slices correspond to the minimal parallelepiped that contains the object. If
a number is missing, None is returned instead of a slice.

See also:
label, center_of_mass

Notes

This function is very useful for isolating a volume of interest inside a 3-D array, that cannot be “seen through”.

Examples

>>> from scipy import ndimage
>>> a = np.zeros((6,6), dtype=int)
>>> a[2:4, 2:4] = 1
>>> a[4, 4] = 1
>>> a[:2, :3] = 2
>>> a[0, 5] = 3

(continues on next page)
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(continued from previous page)
>>> a
array([[2, 2, 2, 0, 0, 3],

[2, 2, 2, 0, 0, 0],
[0, 0, 1, 1, 0, 0],
[0, 0, 1, 1, 0, 0],
[0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0]])

>>> ndimage.find_objects(a)
[(slice(2, 5, None), slice(2, 5, None)), (slice(0, 2, None), slice(0, 3,␣
↪→None)), (slice(0, 1, None), slice(5, 6, None))]
>>> ndimage.find_objects(a, max_label=2)
[(slice(2, 5, None), slice(2, 5, None)), (slice(0, 2, None), slice(0, 3,␣
↪→None))]
>>> ndimage.find_objects(a == 1, max_label=2)
[(slice(2, 5, None), slice(2, 5, None)), None]

>>> loc = ndimage.find_objects(a)[0]
>>> a[loc]
array([[1, 1, 0],

[1, 1, 0],
[0, 0, 1]])

scipy.ndimage.histogram

scipy.ndimage.histogram(input, min, max, bins, labels=None, index=None)
Calculate the histogram of the values of an array, optionally at labels.
Histogram calculates the frequency of values in an array within bins determined by min, max, and bins. The labels
and index keywords can limit the scope of the histogram to specified sub-regions within the array.

Parameters

input [array_like] Data for which to calculate histogram.
min, max [int] Minimum and maximum values of range of histogram bins.
bins [int] Number of bins.
labels [array_like, optional] Labels for objects in input. If not None, must be same shape as input.
index [int or sequence of ints, optional] Label or labels for which to calculate histogram. If None,

all values where label is greater than zero are used
Returns

hist [ndarray] Histogram counts.

Examples

>>> a = np.array([[ 0. , 0.2146, 0.5962, 0. ],
... [ 0. , 0.7778, 0. , 0. ],
... [ 0. , 0. , 0. , 0. ],
... [ 0. , 0. , 0.7181, 0.2787],
... [ 0. , 0. , 0.6573, 0.3094]])
>>> from scipy import ndimage

(continues on next page)
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(continued from previous page)
>>> ndimage.measurements.histogram(a, 0, 1, 10)
array([13, 0, 2, 1, 0, 1, 1, 2, 0, 0])

With labels and no indices, non-zero elements are counted:

>>> lbl, nlbl = ndimage.label(a)
>>> ndimage.measurements.histogram(a, 0, 1, 10, lbl)
array([0, 0, 2, 1, 0, 1, 1, 2, 0, 0])

Indices can be used to count only certain objects:

>>> ndimage.measurements.histogram(a, 0, 1, 10, lbl, 2)
array([0, 0, 1, 1, 0, 0, 1, 1, 0, 0])

scipy.ndimage.label

scipy.ndimage.label(input, structure=None, output=None)
Label features in an array.

Parameters

input [array_like] An array-like object to be labeled. Any non-zero values in input are counted as
features and zero values are considered the background.

structure [array_like, optional] A structuring element that defines feature connections. structure must
be centrosymmetric (see Notes). If no structuring element is provided, one is automatically
generated with a squared connectivity equal to one. That is, for a 2-D input array, the default
structuring element is:

[[0,1,0],
[1,1,1],
[0,1,0]]

output [(None, data-type, array_like), optional] If output is a data type, it specifies the type of the
resulting labeled feature array. If output is an array-like object, then output will be updated
with the labeled features from this function. This function can operate in-place, by passing
output=input. Note that the output must be able to store the largest label, or this function
will raise an Exception.

Returns

label [ndarray or int] An integer ndarray where each unique feature in input has a unique label in
the returned array.

num_features
[int] How many objects were found.
If output is None, this function returns a tuple of (labeled_array, num_features).
If output is a ndarray, then it will be updated with values in labeled_array and only
num_features will be returned by this function.

See also:

find_objects

generate a list of slices for the labeled features (or objects); useful for finding features’ position or dimensions
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Notes

A centrosymmetric matrix is a matrix that is symmetric about the center. See [1] for more information.
The structurematrix must be centrosymmetric to ensure two-way connections. For instance, if the structurematrix
is not centrosymmetric and is defined as:

[[0,1,0],
[1,1,0],
[0,0,0]]

and the input is:

[[1,2],
[0,3]]

then the structure matrix would indicate the entry 2 in the input is connected to 1, but 1 is not connected to 2.

References

[1]

Examples

Create an image with some features, then label it using the default (cross-shaped) structuring element:

>>> from scipy.ndimage import label, generate_binary_structure
>>> a = np.array([[0,0,1,1,0,0],
... [0,0,0,1,0,0],
... [1,1,0,0,1,0],
... [0,0,0,1,0,0]])
>>> labeled_array, num_features = label(a)

Each of the 4 features are labeled with a different integer:

>>> num_features
4
>>> labeled_array
array([[0, 0, 1, 1, 0, 0],

[0, 0, 0, 1, 0, 0],
[2, 2, 0, 0, 3, 0],
[0, 0, 0, 4, 0, 0]])

Generate a structuring element that will consider features connected even if they touch diagonally:

>>> s = generate_binary_structure(2,2)

or,

>>> s = [[1,1,1],
... [1,1,1],
... [1,1,1]]

Label the image using the new structuring element:
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>>> labeled_array, num_features = label(a, structure=s)

Show the 2 labeled features (note that features 1, 3, and 4 from above are now considered a single feature):

>>> num_features
2
>>> labeled_array
array([[0, 0, 1, 1, 0, 0],

[0, 0, 0, 1, 0, 0],
[2, 2, 0, 0, 1, 0],
[0, 0, 0, 1, 0, 0]])

scipy.ndimage.labeled_comprehension

scipy.ndimage.labeled_comprehension(input, labels, index, func, out_dtype, default,
pass_positions=False)

Roughly equivalent to [func(input[labels == i]) for i in index].
Sequentially applies an arbitrary function (that works on array_like input) to subsets of an n-D image array specified
by labels and index. The option exists to provide the function with positional parameters as the second argument.

Parameters

input [array_like] Data from which to select labels to process.
labels [array_like or None] Labels to objects in input. If not None, array must be same shape as

input. If None, func is applied to raveled input.
index [int, sequence of ints or None] Subset of labels to which to apply func. If a scalar, a single

value is returned. If None, func is applied to all non-zero values of labels.
func [callable] Python function to apply to labels from input.
out_dtype [dtype] Dtype to use for result.
default [int, float or None] Default return value when a element of index does not exist in labels.
pass_positions

[bool, optional] If True, pass linear indices to func as a second argument. Default is False.
Returns

result [ndarray] Result of applying func to each of labels to input in index.

Examples

>>> a = np.array([[1, 2, 0, 0],
... [5, 3, 0, 4],
... [0, 0, 0, 7],
... [9, 3, 0, 0]])
>>> from scipy import ndimage
>>> lbl, nlbl = ndimage.label(a)
>>> lbls = np.arange(1, nlbl+1)
>>> ndimage.labeled_comprehension(a, lbl, lbls, np.mean, float, 0)
array([ 2.75, 5.5 , 6. ])

Falling back to default:
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>>> lbls = np.arange(1, nlbl+2)
>>> ndimage.labeled_comprehension(a, lbl, lbls, np.mean, float, -1)
array([ 2.75, 5.5 , 6. , -1. ])

Passing positions:

>>> def fn(val, pos):
... print("fn says: %s : %s" % (val, pos))
... return (val.sum()) if (pos.sum() % 2 == 0) else (-val.sum())
...
>>> ndimage.labeled_comprehension(a, lbl, lbls, fn, float, 0, True)
fn says: [1 2 5 3] : [0 1 4 5]
fn says: [4 7] : [ 7 11]
fn says: [9 3] : [12 13]
array([ 11., 11., -12., 0.])

scipy.ndimage.maximum

scipy.ndimage.maximum(input, labels=None, index=None)
Calculate the maximum of the values of an array over labeled regions.

Parameters

input [array_like] Array_like of values. For each region specified by labels, the maximal values of
input over the region is computed.

labels [array_like, optional] An array of integers marking different regions over which the maxi-
mum value of input is to be computed. labels must have the same shape as input. If labels is
not specified, the maximum over the whole array is returned.

index [array_like, optional] A list of region labels that are taken into account for computing the
maxima. If index is None, the maximum over all elements where labels is non-zero is re-
turned.

Returns

output [float or list of floats] List of maxima of input over the regions determined by labels and
whose index is in index. If index or labels are not specified, a float is returned: the maximal
value of input if labels is None, and the maximal value of elements where labels is greater
than zero if index is None.

See also:
label, minimum, median, maximum_position, extrema, sum, mean, variance,
standard_deviation

Notes

The function returns a Python list and not a NumPy array, use np.array to convert the list to an array.

Examples
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>>> a = np.arange(16).reshape((4,4))
>>> a
array([[ 0, 1, 2, 3],

[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15]])

>>> labels = np.zeros_like(a)
>>> labels[:2,:2] = 1
>>> labels[2:, 1:3] = 2
>>> labels
array([[1, 1, 0, 0],

[1, 1, 0, 0],
[0, 2, 2, 0],
[0, 2, 2, 0]])

>>> from scipy import ndimage
>>> ndimage.maximum(a)
15.0
>>> ndimage.maximum(a, labels=labels, index=[1,2])
[5.0, 14.0]
>>> ndimage.maximum(a, labels=labels)
14.0

>>> b = np.array([[1, 2, 0, 0],
... [5, 3, 0, 4],
... [0, 0, 0, 7],
... [9, 3, 0, 0]])
>>> labels, labels_nb = ndimage.label(b)
>>> labels
array([[1, 1, 0, 0],

[1, 1, 0, 2],
[0, 0, 0, 2],
[3, 3, 0, 0]])

>>> ndimage.maximum(b, labels=labels, index=np.arange(1, labels_nb + 1))
[5.0, 7.0, 9.0]

scipy.ndimage.maximum_position

scipy.ndimage.maximum_position(input, labels=None, index=None)
Find the positions of the maximums of the values of an array at labels.
For each region specified by labels, the position of the maximum value of input within the region is returned.

Parameters

input [array_like] Array_like of values.
labels [array_like, optional] An array of integers marking different regions over which the position

of the maximum value of input is to be computed. labelsmust have the same shape as input.
If labels is not specified, the location of the first maximum over the whole array is returned.
The labels argument only works when index is specified.

index [array_like, optional] A list of region labels that are taken into account for finding the location
of themaxima. If index is None, the first maximum over all elements where labels is non-zero
is returned.
The index argument only works when labels is specified.
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Returns

output [list of tuples of ints] List of tuples of ints that specify the location of maxima of input over
the regions determined by labels and whose index is in index.
If index or labels are not specified, a tuple of ints is returned specifying the location of the
first maximal value of input.

See also:
label, minimum, median, maximum_position, extrema, sum, mean, variance,
standard_deviation

scipy.ndimage.mean

scipy.ndimage.mean(input, labels=None, index=None)
Calculate the mean of the values of an array at labels.

Parameters

input [array_like] Array on which to compute the mean of elements over distinct regions.
labels [array_like, optional] Array of labels of same shape, or broadcastable to the same shape

as input. All elements sharing the same label form one region over which the mean of the
elements is computed.

index [int or sequence of ints, optional] Labels of the objects over which the mean is to be com-
puted. Default is None, in which case the mean for all values where label is greater than 0 is
calculated.

Returns

out [list] Sequence of same length as index, with the mean of the different regions labeled by the
labels in index.

See also:
variance, standard_deviation, minimum, maximum, sum, label

Examples

>>> from scipy import ndimage
>>> a = np.arange(25).reshape((5,5))
>>> labels = np.zeros_like(a)
>>> labels[3:5,3:5] = 1
>>> index = np.unique(labels)
>>> labels
array([[0, 0, 0, 0, 0],

[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 1, 1],
[0, 0, 0, 1, 1]])

>>> index
array([0, 1])
>>> ndimage.mean(a, labels=labels, index=index)
[10.285714285714286, 21.0]
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scipy.ndimage.median

scipy.ndimage.median(input, labels=None, index=None)
Calculate the median of the values of an array over labeled regions.

Parameters

input [array_like] Array_like of values. For each region specified by labels, the median value of
input over the region is computed.

labels [array_like, optional] An array_like of integers marking different regions over which the
median value of input is to be computed. labels must have the same shape as input. If labels
is not specified, the median over the whole array is returned.

index [array_like, optional] A list of region labels that are taken into account for computing the
medians. If index is None, the median over all elements where labels is non-zero is returned.

Returns

median [float or list of floats] List of medians of input over the regions determined by labels and
whose index is in index. If index or labels are not specified, a float is returned: the median
value of input if labels is None, and the median value of elements where labels is greater than
zero if index is None.

See also:
label, minimum, maximum, extrema, sum, mean, variance, standard_deviation

Notes

The function returns a Python list and not a NumPy array, use np.array to convert the list to an array.

Examples

>>> from scipy import ndimage
>>> a = np.array([[1, 2, 0, 1],
... [5, 3, 0, 4],
... [0, 0, 0, 7],
... [9, 3, 0, 0]])
>>> labels, labels_nb = ndimage.label(a)
>>> labels
array([[1, 1, 0, 2],

[1, 1, 0, 2],
[0, 0, 0, 2],
[3, 3, 0, 0]])

>>> ndimage.median(a, labels=labels, index=np.arange(1, labels_nb + 1))
[2.5, 4.0, 6.0]
>>> ndimage.median(a)
1.0
>>> ndimage.median(a, labels=labels)
3.0

scipy.ndimage.minimum

scipy.ndimage.minimum(input, labels=None, index=None)
Calculate the minimum of the values of an array over labeled regions.
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Parameters

input [array_like] Array_like of values. For each region specified by labels, the minimal values of
input over the region is computed.

labels [array_like, optional] An array_like of integers marking different regions over which the
minimum value of input is to be computed. labels must have the same shape as input. If
labels is not specified, the minimum over the whole array is returned.

index [array_like, optional] A list of region labels that are taken into account for computing the
minima. If index is None, the minimum over all elements where labels is non-zero is re-
turned.

Returns

minimum [float or list of floats] List of minima of input over the regions determined by labels and
whose index is in index. If index or labels are not specified, a float is returned: the minimal
value of input if labels is None, and the minimal value of elements where labels is greater
than zero if index is None.

See also:
label, maximum, median, minimum_position, extrema, sum, mean, variance,
standard_deviation

Notes

The function returns a Python list and not a NumPy array, use np.array to convert the list to an array.

Examples

>>> from scipy import ndimage
>>> a = np.array([[1, 2, 0, 0],
... [5, 3, 0, 4],
... [0, 0, 0, 7],
... [9, 3, 0, 0]])
>>> labels, labels_nb = ndimage.label(a)
>>> labels
array([[1, 1, 0, 0],

[1, 1, 0, 2],
[0, 0, 0, 2],
[3, 3, 0, 0]])

>>> ndimage.minimum(a, labels=labels, index=np.arange(1, labels_nb + 1))
[1.0, 4.0, 3.0]
>>> ndimage.minimum(a)
0.0
>>> ndimage.minimum(a, labels=labels)
1.0

scipy.ndimage.minimum_position

scipy.ndimage.minimum_position(input, labels=None, index=None)
Find the positions of the minimums of the values of an array at labels.

Parameters

1232 Chapter 6. API Reference



SciPy Reference Guide, Release 1.3.1

input [array_like] Array_like of values.
labels [array_like, optional] An array of integers marking different regions over which the position

of the minimum value of input is to be computed. labels must have the same shape as input.
If labels is not specified, the location of the first minimum over the whole array is returned.
The labels argument only works when index is specified.

index [array_like, optional] A list of region labels that are taken into account for finding the location
of the minima. If index is None, the firstminimum over all elements where labels is non-
zero is returned.
The index argument only works when labels is specified.

Returns

output [list of tuples of ints] Tuple of ints or list of tuples of ints that specify the location of minima
of input over the regions determined by labels and whose index is in index.
If index or labels are not specified, a tuple of ints is returned specifying the location of the
first minimal value of input.

See also:
label, minimum, median, maximum_position, extrema, sum, mean, variance,
standard_deviation

Examples

>>> a = np.array([[10, 20, 30],
... [40, 80, 100],
... [1, 100, 200]])
>>> b = np.array([[1, 2, 0, 1],
... [5, 3, 0, 4],
... [0, 0, 0, 7],
... [9, 3, 0, 0]])

>>> from scipy import ndimage

>>> ndimage.minimum_position(a)
(2, 0)
>>> ndimage.minimum_position(b)
(0, 2)

Features to process can be specified using labels and index:

>>> label, pos = ndimage.label(a)
>>> ndimage.minimum_position(a, label, index=np.arange(1, pos+1))
[(2, 0)]

>>> label, pos = ndimage.label(b)
>>> ndimage.minimum_position(b, label, index=np.arange(1, pos+1))
[(0, 0), (0, 3), (3, 1)]

scipy.ndimage.standard_deviation

scipy.ndimage.standard_deviation(input, labels=None, index=None)
Calculate the standard deviation of the values of an n-D image array, optionally at specified sub-regions.
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Parameters

input [array_like] Nd-image data to process.
labels [array_like, optional] Labels to identify sub-regions in input. If not None, must be same

shape as input.
index [int or sequence of ints, optional] labels to include in output. If None (default), all values

where labels is non-zero are used.
Returns

standard_deviation
[float or ndarray] Values of standard deviation, for each sub-region if labels and index are
specified.

See also:
label, variance, maximum, minimum, extrema

Examples

>>> a = np.array([[1, 2, 0, 0],
... [5, 3, 0, 4],
... [0, 0, 0, 7],
... [9, 3, 0, 0]])
>>> from scipy import ndimage
>>> ndimage.standard_deviation(a)
2.7585095613392387

Features to process can be specified using labels and index:

>>> lbl, nlbl = ndimage.label(a)
>>> ndimage.standard_deviation(a, lbl, index=np.arange(1, nlbl+1))
array([ 1.479, 1.5 , 3. ])

If no index is given, non-zero labels are processed:

>>> ndimage.standard_deviation(a, lbl)
2.4874685927665499

scipy.ndimage.sum

scipy.ndimage.sum(input, labels=None, index=None)
Calculate the sum of the values of the array.

Parameters

input [array_like] Values of input inside the regions defined by labels are summed together.
labels [array_like of ints, optional] Assign labels to the values of the array. Has to have the same

shape as input.
index [array_like, optional] A single label number or a sequence of label numbers of the objects to

be measured.
Returns

sum [ndarray or scalar] An array of the sums of values of input inside the regions defined by labels
with the same shape as index. If ‘index’ is None or scalar, a scalar is returned.
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See also:
mean, median

Examples

>>> from scipy import ndimage
>>> input = [0,1,2,3]
>>> labels = [1,1,2,2]
>>> ndimage.sum(input, labels, index=[1,2])
[1.0, 5.0]
>>> ndimage.sum(input, labels, index=1)
1
>>> ndimage.sum(input, labels)
6

scipy.ndimage.variance

scipy.ndimage.variance(input, labels=None, index=None)
Calculate the variance of the values of an n-D image array, optionally at specified sub-regions.

Parameters

input [array_like] Nd-image data to process.
labels [array_like, optional] Labels defining sub-regions in input. If not None, must be same shape

as input.
index [int or sequence of ints, optional] labels to include in output. If None (default), all values

where labels is non-zero are used.
Returns

variance [float or ndarray] Values of variance, for each sub-region if labels and index are specified.
See also:
label, standard_deviation, maximum, minimum, extrema

Examples

>>> a = np.array([[1, 2, 0, 0],
... [5, 3, 0, 4],
... [0, 0, 0, 7],
... [9, 3, 0, 0]])
>>> from scipy import ndimage
>>> ndimage.variance(a)
7.609375

Features to process can be specified using labels and index:

>>> lbl, nlbl = ndimage.label(a)
>>> ndimage.variance(a, lbl, index=np.arange(1, nlbl+1))
array([ 2.1875, 2.25 , 9. ])

If no index is given, all non-zero labels are processed:
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>>> ndimage.variance(a, lbl)
6.1875

scipy.ndimage.watershed_ift

scipy.ndimage.watershed_ift(input, markers, structure=None, output=None)
Apply watershed from markers using image foresting transform algorithm.

Parameters

input [array_like] Input.
markers [array_like]Markers are points within each watershed that form the beginning of the process.

Negative markers are considered background markers which are processed after the other
markers.

structure [structure element, optional] A structuring element defining the connectivity of the object
can be provided. If None, an element is generated with a squared connectivity equal to one.

output [ndarray, optional] An output array can optionally be provided. The same shape as input.
Returns

watershed_ift
[ndarray] Output. Same shape as input.

References

[1]

6.16.5 Morphology

binary_closing(input[, structure, …]) Multi-dimensional binary closing with the given structur-
ing element.

binary_dilation(input[, structure, …]) Multi-dimensional binary dilation with the given structur-
ing element.

binary_erosion(input[, structure, …]) Multi-dimensional binary erosion with a given structuring
element.

binary_fill_holes(input[, structure, …]) Fill the holes in binary objects.
binary_hit_or_miss(input[, structure1, …]) Multi-dimensional binary hit-or-miss transform.
binary_opening(input[, structure, …]) Multi-dimensional binary opening with the given struc-

turing element.
binary_propagation(input[, structure, mask, …]) Multi-dimensional binary propagation with the given

structuring element.
black_tophat(input[, size, footprint, …]) Multi-dimensional black tophat filter.
distance_transform_bf(input[, metric, …]) Distance transform function by a brute force algorithm.
distance_transform_cdt(input[, metric, …]) Distance transform for chamfer type of transforms.
distance_transform_edt(input[, sampling, …]) Exact euclidean distance transform.
generate_binary_structure(rank, connectiv-
ity)

Generate a binary structure for binary morphological op-
erations.

grey_closing(input[, size, footprint, …]) Multi-dimensional greyscale closing.
Continued on next page
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Table 104 – continued from previous page
grey_dilation(input[, size, footprint, …]) Calculate a greyscale dilation, using either a structuring

element, or a footprint corresponding to a flat structuring
element.

grey_erosion(input[, size, footprint, …]) Calculate a greyscale erosion, using either a structuring
element, or a footprint corresponding to a flat structuring
element.

grey_opening(input[, size, footprint, …]) Multi-dimensional greyscale opening.
iterate_structure(structure, iterations[, …]) Iterate a structure by dilating it with itself.
morphological_gradient(input[, size, …]) Multi-dimensional morphological gradient.
morphological_laplace(input[, size, …]) Multi-dimensional morphological laplace.
white_tophat(input[, size, footprint, …]) Multi-dimensional white tophat filter.

scipy.ndimage.binary_closing

scipy.ndimage.binary_closing(input, structure=None, iterations=1, output=None, origin=0,
mask=None, border_value=0, brute_force=False)

Multi-dimensional binary closing with the given structuring element.
The closing of an input image by a structuring element is the erosion of the dilation of the image by the structuring
element.

Parameters

input [array_like] Binary array_like to be closed. Non-zero (True) elements form the subset to be
closed.

structure [array_like, optional] Structuring element used for the closing. Non-zero elements are con-
sidered True. If no structuring element is provided an element is generated with a square
connectivity equal to one (i.e., only nearest neighbors are connected to the center, diagonally-
connected elements are not considered neighbors).

iterations [int, optional] The dilation step of the closing, then the erosion step are each repeated itera-
tions times (one, by default). If iterations is less than 1, each operations is repeated until the
result does not change anymore. Only an integer of iterations is accepted.

output [ndarray, optional] Array of the same shape as input, into which the output is placed. By
default, a new array is created.

origin [int or tuple of ints, optional] Placement of the filter, by default 0.
mask [array_like, optional] If a mask is given, only those elements with a True value at the corre-

sponding mask element are modified at each iteration.
New in version 1.1.0.

border_value
[int (cast to 0 or 1), optional] Value at the border in the output array.
New in version 1.1.0.

brute_force
[boolean, optional] Memory condition: if False, only the pixels whose value was changed in
the last iteration are tracked as candidates to be updated in the current iteration; if true al
pixels are considered as candidates for update, regardless of what happened in the previous
iteration. False by default.
New in version 1.1.0.

Returns

binary_closing
[ndarray of bools] Closing of the input by the structuring element.

See also:
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grey_closing, binary_opening, binary_dilation, binary_erosion,
generate_binary_structure

Notes

Closing [1] is a mathematical morphology operation [2] that consists in the succession of a dilation and an erosion
of the input with the same structuring element. Closing therefore fills holes smaller than the structuring element.
Together with opening (binary_opening), closing can be used for noise removal.

References

[1], [2]

Examples

>>> from scipy import ndimage
>>> a = np.zeros((5,5), dtype=int)
>>> a[1:-1, 1:-1] = 1; a[2,2] = 0
>>> a
array([[0, 0, 0, 0, 0],

[0, 1, 1, 1, 0],
[0, 1, 0, 1, 0],
[0, 1, 1, 1, 0],
[0, 0, 0, 0, 0]])

>>> # Closing removes small holes
>>> ndimage.binary_closing(a).astype(int)
array([[0, 0, 0, 0, 0],

[0, 1, 1, 1, 0],
[0, 1, 1, 1, 0],
[0, 1, 1, 1, 0],
[0, 0, 0, 0, 0]])

>>> # Closing is the erosion of the dilation of the input
>>> ndimage.binary_dilation(a).astype(int)
array([[0, 1, 1, 1, 0],

[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[0, 1, 1, 1, 0]])

>>> ndimage.binary_erosion(ndimage.binary_dilation(a)).astype(int)
array([[0, 0, 0, 0, 0],

[0, 1, 1, 1, 0],
[0, 1, 1, 1, 0],
[0, 1, 1, 1, 0],
[0, 0, 0, 0, 0]])

>>> a = np.zeros((7,7), dtype=int)
>>> a[1:6, 2:5] = 1; a[1:3,3] = 0
>>> a
array([[0, 0, 0, 0, 0, 0, 0],

[0, 0, 1, 0, 1, 0, 0],
(continues on next page)
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[0, 0, 1, 0, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0]])

>>> # In addition to removing holes, closing can also
>>> # coarsen boundaries with fine hollows.
>>> ndimage.binary_closing(a).astype(int)
array([[0, 0, 0, 0, 0, 0, 0],

[0, 0, 1, 0, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0]])

>>> ndimage.binary_closing(a, structure=np.ones((2,2))).astype(int)
array([[0, 0, 0, 0, 0, 0, 0],

[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0]])

scipy.ndimage.binary_dilation

scipy.ndimage.binary_dilation(input, structure=None, iterations=1, mask=None, output=None, bor-
der_value=0, origin=0, brute_force=False)

Multi-dimensional binary dilation with the given structuring element.
Parameters

input [array_like] Binary array_like to be dilated. Non-zero (True) elements form the subset to be
dilated.

structure [array_like, optional] Structuring element used for the dilation. Non-zero elements are con-
sidered True. If no structuring element is provided an element is generated with a square
connectivity equal to one.

iterations [int, optional] The dilation is repeated iterations times (one, by default). If iterations is less
than 1, the dilation is repeated until the result does not change anymore. Only an integer of
iterations is accepted.

mask [array_like, optional] If a mask is given, only those elements with a True value at the corre-
sponding mask element are modified at each iteration.

output [ndarray, optional] Array of the same shape as input, into which the output is placed. By
default, a new array is created.

border_value
[int (cast to 0 or 1), optional] Value at the border in the output array.

origin [int or tuple of ints, optional] Placement of the filter, by default 0.
brute_force

[boolean, optional] Memory condition: if False, only the pixels whose value was changed in
the last iteration are tracked as candidates to be updated (dilated) in the current iteration; if
True all pixels are considered as candidates for dilation, regardless of what happened in the
previous iteration. False by default.
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Returns

binary_dilation
[ndarray of bools] Dilation of the input by the structuring element.

See also:
grey_dilation, binary_erosion, binary_closing, binary_opening,
generate_binary_structure

Notes

Dilation [1] is a mathematical morphology operation [2] that uses a structuring element for expanding the shapes
in an image. The binary dilation of an image by a structuring element is the locus of the points covered by the
structuring element, when its center lies within the non-zero points of the image.

References

[1], [2]

Examples

>>> from scipy import ndimage
>>> a = np.zeros((5, 5))
>>> a[2, 2] = 1
>>> a
array([[ 0., 0., 0., 0., 0.],

[ 0., 0., 0., 0., 0.],
[ 0., 0., 1., 0., 0.],
[ 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0.]])

>>> ndimage.binary_dilation(a)
array([[False, False, False, False, False],

[False, False, True, False, False],
[False, True, True, True, False],
[False, False, True, False, False],
[False, False, False, False, False]], dtype=bool)

>>> ndimage.binary_dilation(a).astype(a.dtype)
array([[ 0., 0., 0., 0., 0.],

[ 0., 0., 1., 0., 0.],
[ 0., 1., 1., 1., 0.],
[ 0., 0., 1., 0., 0.],
[ 0., 0., 0., 0., 0.]])

>>> # 3x3 structuring element with connectivity 1, used by default
>>> struct1 = ndimage.generate_binary_structure(2, 1)
>>> struct1
array([[False, True, False],

[ True, True, True],
[False, True, False]], dtype=bool)

>>> # 3x3 structuring element with connectivity 2
>>> struct2 = ndimage.generate_binary_structure(2, 2)
>>> struct2

(continues on next page)
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array([[ True, True, True],

[ True, True, True],
[ True, True, True]], dtype=bool)

>>> ndimage.binary_dilation(a, structure=struct1).astype(a.dtype)
array([[ 0., 0., 0., 0., 0.],

[ 0., 0., 1., 0., 0.],
[ 0., 1., 1., 1., 0.],
[ 0., 0., 1., 0., 0.],
[ 0., 0., 0., 0., 0.]])

>>> ndimage.binary_dilation(a, structure=struct2).astype(a.dtype)
array([[ 0., 0., 0., 0., 0.],

[ 0., 1., 1., 1., 0.],
[ 0., 1., 1., 1., 0.],
[ 0., 1., 1., 1., 0.],
[ 0., 0., 0., 0., 0.]])

>>> ndimage.binary_dilation(a, structure=struct1,\
... iterations=2).astype(a.dtype)
array([[ 0., 0., 1., 0., 0.],

[ 0., 1., 1., 1., 0.],
[ 1., 1., 1., 1., 1.],
[ 0., 1., 1., 1., 0.],
[ 0., 0., 1., 0., 0.]])

scipy.ndimage.binary_erosion

scipy.ndimage.binary_erosion(input, structure=None, iterations=1, mask=None, output=None, bor-
der_value=0, origin=0, brute_force=False)

Multi-dimensional binary erosion with a given structuring element.
Binary erosion is a mathematical morphology operation used for image processing.

Parameters

input [array_like] Binary image to be eroded. Non-zero (True) elements form the subset to be
eroded.

structure [array_like, optional] Structuring element used for the erosion. Non-zero elements are con-
sidered True. If no structuring element is provided, an element is generated with a square
connectivity equal to one.

iterations [int, optional] The erosion is repeated iterations times (one, by default). If iterations is less
than 1, the erosion is repeated until the result does not change anymore.

mask [array_like, optional] If a mask is given, only those elements with a True value at the corre-
sponding mask element are modified at each iteration.

output [ndarray, optional] Array of the same shape as input, into which the output is placed. By
default, a new array is created.

border_value
[int (cast to 0 or 1), optional] Value at the border in the output array.

origin [int or tuple of ints, optional] Placement of the filter, by default 0.
brute_force

[boolean, optional] Memory condition: if False, only the pixels whose value was changed in
the last iteration are tracked as candidates to be updated (eroded) in the current iteration; if
True all pixels are considered as candidates for erosion, regardless of what happened in the
previous iteration. False by default.

Returns
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binary_erosion
[ndarray of bools] Erosion of the input by the structuring element.

See also:
grey_erosion, binary_dilation, binary_closing, binary_opening,
generate_binary_structure

Notes

Erosion [1] is a mathematical morphology operation [2] that uses a structuring element for shrinking the shapes in
an image. The binary erosion of an image by a structuring element is the locus of the points where a superimposition
of the structuring element centered on the point is entirely contained in the set of non-zero elements of the image.

References

[1], [2]

Examples

>>> from scipy import ndimage
>>> a = np.zeros((7,7), dtype=int)
>>> a[1:6, 2:5] = 1
>>> a
array([[0, 0, 0, 0, 0, 0, 0],

[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0]])

>>> ndimage.binary_erosion(a).astype(a.dtype)
array([[0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]])

>>> #Erosion removes objects smaller than the structure
>>> ndimage.binary_erosion(a, structure=np.ones((5,5))).astype(a.dtype)
array([[0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]])
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scipy.ndimage.binary_fill_holes

scipy.ndimage.binary_fill_holes(input, structure=None, output=None, origin=0)
Fill the holes in binary objects.

Parameters

input [array_like] n-dimensional binary array with holes to be filled
structure [array_like, optional] Structuring element used in the computation; large-size elements make

computations faster but may miss holes separated from the background by thin regions. The
default element (with a square connectivity equal to one) yields the intuitive result where all
holes in the input have been filled.

output [ndarray, optional] Array of the same shape as input, into which the output is placed. By
default, a new array is created.

origin [int, tuple of ints, optional] Position of the structuring element.
Returns

out [ndarray] Transformation of the initial image input where holes have been filled.
See also:
binary_dilation, binary_propagation, label

Notes

The algorithm used in this function consists in invading the complementary of the shapes in input from the outer
boundary of the image, using binary dilations. Holes are not connected to the boundary and are therefore not
invaded. The result is the complementary subset of the invaded region.

References

[1]

Examples

>>> from scipy import ndimage
>>> a = np.zeros((5, 5), dtype=int)
>>> a[1:4, 1:4] = 1
>>> a[2,2] = 0
>>> a
array([[0, 0, 0, 0, 0],

[0, 1, 1, 1, 0],
[0, 1, 0, 1, 0],
[0, 1, 1, 1, 0],
[0, 0, 0, 0, 0]])

>>> ndimage.binary_fill_holes(a).astype(int)
array([[0, 0, 0, 0, 0],

[0, 1, 1, 1, 0],
[0, 1, 1, 1, 0],
[0, 1, 1, 1, 0],
[0, 0, 0, 0, 0]])

>>> # Too big structuring element
(continues on next page)
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>>> ndimage.binary_fill_holes(a, structure=np.ones((5,5))).astype(int)
array([[0, 0, 0, 0, 0],

[0, 1, 1, 1, 0],
[0, 1, 0, 1, 0],
[0, 1, 1, 1, 0],
[0, 0, 0, 0, 0]])

scipy.ndimage.binary_hit_or_miss

scipy.ndimage.binary_hit_or_miss(input, structure1=None, structure2=None, output=None, ori-
gin1=0, origin2=None)

Multi-dimensional binary hit-or-miss transform.
The hit-or-miss transform finds the locations of a given pattern inside the input image.

Parameters

input [array_like (cast to booleans)] Binary image where a pattern is to be detected.
structure1 [array_like (cast to booleans), optional] Part of the structuring element to be fitted to the

foreground (non-zero elements) of input. If no value is provided, a structure of square con-
nectivity 1 is chosen.

structure2 [array_like (cast to booleans), optional] Second part of the structuring element that has to
miss completely the foreground. If no value is provided, the complementary of structure1 is
taken.

output [ndarray, optional] Array of the same shape as input, into which the output is placed. By
default, a new array is created.

origin1 [int or tuple of ints, optional] Placement of the first part of the structuring element structure1,
by default 0 for a centered structure.

origin2 [int or tuple of ints, optional] Placement of the second part of the structuring element struc-
ture2, by default 0 for a centered structure. If a value is provided for origin1 and not for
origin2, then origin2 is set to origin1.

Returns

binary_hit_or_miss
[ndarray] Hit-or-miss transform of input with the given structuring element (structure1, struc-
ture2).

See also:
binary_erosion

References

[1]

Examples

>>> from scipy import ndimage
>>> a = np.zeros((7,7), dtype=int)
>>> a[1, 1] = 1; a[2:4, 2:4] = 1; a[4:6, 4:6] = 1
>>> a

(continues on next page)
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array([[0, 0, 0, 0, 0, 0, 0],

[0, 1, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 0, 0, 0],
[0, 0, 1, 1, 0, 0, 0],
[0, 0, 0, 0, 1, 1, 0],
[0, 0, 0, 0, 1, 1, 0],
[0, 0, 0, 0, 0, 0, 0]])

>>> structure1 = np.array([[1, 0, 0], [0, 1, 1], [0, 1, 1]])
>>> structure1
array([[1, 0, 0],

[0, 1, 1],
[0, 1, 1]])

>>> # Find the matches of structure1 in the array a
>>> ndimage.binary_hit_or_miss(a, structure1=structure1).astype(int)
array([[0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]])

>>> # Change the origin of the filter
>>> # origin1=1 is equivalent to origin1=(1,1) here
>>> ndimage.binary_hit_or_miss(a, structure1=structure1,\
... origin1=1).astype(int)
array([[0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0]])

scipy.ndimage.binary_opening

scipy.ndimage.binary_opening(input, structure=None, iterations=1, output=None, origin=0,
mask=None, border_value=0, brute_force=False)

Multi-dimensional binary opening with the given structuring element.
The opening of an input image by a structuring element is the dilation of the erosion of the image by the structuring
element.

Parameters

input [array_like] Binary array_like to be opened. Non-zero (True) elements form the subset to
be opened.

structure [array_like, optional] Structuring element used for the opening. Non-zero elements are con-
sidered True. If no structuring element is provided an element is generated with a square
connectivity equal to one (i.e., only nearest neighbors are connected to the center, diagonally-
connected elements are not considered neighbors).

iterations [int, optional] The erosion step of the opening, then the dilation step are each repeated iter-
ations times (one, by default). If iterations is less than 1, each operation is repeated until the
result does not change anymore. Only an integer of iterations is accepted.
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output [ndarray, optional] Array of the same shape as input, into which the output is placed. By
default, a new array is created.

origin [int or tuple of ints, optional] Placement of the filter, by default 0.
mask [array_like, optional] If a mask is given, only those elements with a True value at the corre-

sponding mask element are modified at each iteration.
New in version 1.1.0.

border_value
[int (cast to 0 or 1), optional] Value at the border in the output array.
New in version 1.1.0.

brute_force
[boolean, optional] Memory condition: if False, only the pixels whose value was changed in
the last iteration are tracked as candidates to be updated in the current iteration; if true all
pixels are considered as candidates for update, regardless of what happened in the previous
iteration. False by default.
New in version 1.1.0.

Returns

binary_opening
[ndarray of bools] Opening of the input by the structuring element.

See also:
grey_opening, binary_closing, binary_erosion, binary_dilation,
generate_binary_structure

Notes

Opening [1] is a mathematical morphology operation [2] that consists in the succession of an erosion and a dilation
of the input with the same structuring element. Opening therefore removes objects smaller than the structuring
element.
Together with closing (binary_closing), opening can be used for noise removal.

References

[1], [2]

Examples

>>> from scipy import ndimage
>>> a = np.zeros((5,5), dtype=int)
>>> a[1:4, 1:4] = 1; a[4, 4] = 1
>>> a
array([[0, 0, 0, 0, 0],

[0, 1, 1, 1, 0],
[0, 1, 1, 1, 0],
[0, 1, 1, 1, 0],
[0, 0, 0, 0, 1]])

>>> # Opening removes small objects
>>> ndimage.binary_opening(a, structure=np.ones((3,3))).astype(int)
array([[0, 0, 0, 0, 0],

[0, 1, 1, 1, 0],
(continues on next page)

1246 Chapter 6. API Reference



SciPy Reference Guide, Release 1.3.1

(continued from previous page)
[0, 1, 1, 1, 0],
[0, 1, 1, 1, 0],
[0, 0, 0, 0, 0]])

>>> # Opening can also smooth corners
>>> ndimage.binary_opening(a).astype(int)
array([[0, 0, 0, 0, 0],

[0, 0, 1, 0, 0],
[0, 1, 1, 1, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 0, 0]])

>>> # Opening is the dilation of the erosion of the input
>>> ndimage.binary_erosion(a).astype(int)
array([[0, 0, 0, 0, 0],

[0, 0, 0, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]])

>>> ndimage.binary_dilation(ndimage.binary_erosion(a)).astype(int)
array([[0, 0, 0, 0, 0],

[0, 0, 1, 0, 0],
[0, 1, 1, 1, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 0, 0]])

scipy.ndimage.binary_propagation

scipy.ndimage.binary_propagation(input, structure=None, mask=None, output=None, bor-
der_value=0, origin=0)

Multi-dimensional binary propagation with the given structuring element.
Parameters

input [array_like] Binary image to be propagated inside mask.
structure [array_like, optional] Structuring element used in the successive dilations. The output may

depend on the structuring element, especially if mask has several connex components. If no
structuring element is provided, an element is generated with a squared connectivity equal to
one.

mask [array_like, optional] Binary mask defining the region into which input is allowed to propa-
gate.

output [ndarray, optional] Array of the same shape as input, into which the output is placed. By
default, a new array is created.

border_value
[int (cast to 0 or 1), optional] Value at the border in the output array.

origin [int or tuple of ints, optional] Placement of the filter, by default 0.
Returns

binary_propagation
[ndarray] Binary propagation of input inside mask.
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Notes

This function is functionally equivalent to calling binary_dilation with the number of iterations less than one: iter-
ative dilation until the result does not change anymore.
The succession of an erosion and propagation inside the original image can be used instead of an opening for deleting
small objects while keeping the contours of larger objects untouched.

References

[1], [2]

Examples

>>> from scipy import ndimage
>>> input = np.zeros((8, 8), dtype=int)
>>> input[2, 2] = 1
>>> mask = np.zeros((8, 8), dtype=int)
>>> mask[1:4, 1:4] = mask[4, 4] = mask[6:8, 6:8] = 1
>>> input
array([[0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]])

>>> mask
array([[0, 0, 0, 0, 0, 0, 0, 0],

[0, 1, 1, 1, 0, 0, 0, 0],
[0, 1, 1, 1, 0, 0, 0, 0],
[0, 1, 1, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 1],
[0, 0, 0, 0, 0, 0, 1, 1]])

>>> ndimage.binary_propagation(input, mask=mask).astype(int)
array([[0, 0, 0, 0, 0, 0, 0, 0],

[0, 1, 1, 1, 0, 0, 0, 0],
[0, 1, 1, 1, 0, 0, 0, 0],
[0, 1, 1, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]])

>>> ndimage.binary_propagation(input, mask=mask,\
... structure=np.ones((3,3))).astype(int)
array([[0, 0, 0, 0, 0, 0, 0, 0],

[0, 1, 1, 1, 0, 0, 0, 0],
[0, 1, 1, 1, 0, 0, 0, 0],
[0, 1, 1, 1, 0, 0, 0, 0],

(continues on next page)
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[0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]])

>>> # Comparison between opening and erosion+propagation
>>> a = np.zeros((6,6), dtype=int)
>>> a[2:5, 2:5] = 1; a[0, 0] = 1; a[5, 5] = 1
>>> a
array([[1, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 1, 0],
[0, 0, 1, 1, 1, 0],
[0, 0, 1, 1, 1, 0],
[0, 0, 0, 0, 0, 1]])

>>> ndimage.binary_opening(a).astype(int)
array([[0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0],
[0, 0, 1, 1, 1, 0],
[0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0]])

>>> b = ndimage.binary_erosion(a)
>>> b.astype(int)
array([[0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0]])

>>> ndimage.binary_propagation(b, mask=a).astype(int)
array([[0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 1, 0],
[0, 0, 1, 1, 1, 0],
[0, 0, 1, 1, 1, 0],
[0, 0, 0, 0, 0, 0]])

scipy.ndimage.black_tophat

scipy.ndimage.black_tophat(input, size=None, footprint=None, structure=None, output=None,
mode=’reflect’, cval=0.0, origin=0)

Multi-dimensional black tophat filter.
Parameters

input [array_like] Input.
size [tuple of ints, optional] Shape of a flat and full structuring element used for the filter. Optional

if footprint or structure is provided.
footprint [array of ints, optional] Positions of non-infinite elements of a flat structuring element used

for the black tophat filter.
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structure [array of ints, optional] Structuring element used for the filter. structure may be a non-flat
structuring element.

output [array, optional] An array used for storing the output of the filter may be provided.
mode [{‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, optional] The mode parameter determines

how the array borders are handled, where cval is the value when mode is equal to ‘constant’.
Default is ‘reflect’

cval [scalar, optional] Value to fill past edges of input if mode is ‘constant’. Default is 0.0.
origin [scalar, optional] The origin parameter controls the placement of the filter. Default 0

Returns

black_tophat
[ndarray] Result of the filter of input with structure.

See also:
white_tophat, grey_opening, grey_closing

scipy.ndimage.distance_transform_bf

scipy.ndimage.distance_transform_bf(input, metric=’euclidean’, sampling=None, re-
turn_distances=True, return_indices=False, dis-
tances=None, indices=None)

Distance transform function by a brute force algorithm.
This function calculates the distance transform of the input, by replacing each foreground (non-zero) element, with
its shortest distance to the background (any zero-valued element).
In addition to the distance transform, the feature transform can be calculated. In this case the index of the closest
background element is returned along the first axis of the result.

Parameters

input [array_like] Input
metric [str, optional] Three types of distance metric are supported: ‘euclidean’, ‘taxicab’ and ‘chess-

board’.
sampling [{int, sequence of ints}, optional] This parameter is only used in the case of the euclidean

metric distance transform.
The sampling along each axis can be given by the sampling parameter which should be a
sequence of length equal to the input rank, or a single number in which the sampling is
assumed to be equal along all axes.

return_distances
[bool, optional] The return_distances flag can be used to indicate if the distance transform is
returned.
The default is True.

return_indices
[bool, optional] The return_indices flags can be used to indicate if the feature transform is
returned.
The default is False.

distances [float64 ndarray, optional] Optional output array to hold distances (if return_distances is
True).

indices [int64 ndarray, optional] Optional output array to hold indices (if return_indices is True).
Returns

distances [ndarray] Distance array if return_distances is True.
indices [ndarray] Indices array if return_indices is True.
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Notes

This function employs a slow brute force algorithm, see also the function distance_transform_cdt for more efficient
taxicab and chessboard algorithms.

scipy.ndimage.distance_transform_cdt

scipy.ndimage.distance_transform_cdt(input, metric=’chessboard’, return_distances=True, re-
turn_indices=False, distances=None, indices=None)

Distance transform for chamfer type of transforms.
Parameters

input [array_like] Input
metric [{‘chessboard’, ‘taxicab’}, optional] The metric determines the type of chamfering that

is done. If the metric is equal to ‘taxicab’ a structure is generated using gener-
ate_binary_structure with a squared distance equal to 1. If themetric is equal to ‘chessboard’,
a metric is generated using generate_binary_structure with a squared distance equal to the
dimensionality of the array. These choices correspond to the common interpretations of the
‘taxicab’ and the ‘chessboard’ distance metrics in two dimensions.
The default for metric is ‘chessboard’.

return_distances, return_indices
[bool, optional] The return_distances, and return_indices flags can be used to indicate if the
distance transform, the feature transform, or both must be returned.
If the feature transform is returned (return_indices=True), the index of the closest
background element is returned along the first axis of the result.
The return_distances default is True, and the return_indices default is False.

distances, indices
[ndarrays of int32, optional] The distances and indices arguments can be used to give optional
output arrays that must be the same shape as input.

scipy.ndimage.distance_transform_edt

scipy.ndimage.distance_transform_edt(input, sampling=None, return_distances=True, re-
turn_indices=False, distances=None, indices=None)

Exact euclidean distance transform.
In addition to the distance transform, the feature transform can be calculated. In this case the index of the closest
background element is returned along the first axis of the result.

Parameters

input [array_like] Input data to transform. Can be any type but will be converted into binary: 1
wherever input equates to True, 0 elsewhere.

sampling [float or int, or sequence of same, optional] Spacing of elements along each dimension. If a
sequence, must be of length equal to the input rank; if a single number, this is used for all
axes. If not specified, a grid spacing of unity is implied.

return_distances
[bool, optional] Whether to return distance matrix. At least one of re-
turn_distances/return_indices must be True. Default is True.

return_indices
[bool, optional] Whether to return indices matrix. Default is False.

distances [ndarray, optional] Used for output of distance array, must be of type float64.
indices [ndarray, optional] Used for output of indices, must be of type int32.

Returns
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distance_transform_edt
[ndarray or list of ndarrays] Either distance matrix, index matrix, or a list of the two, de-
pending on return_x flags and distance and indices input parameters.

Notes

The euclidean distance transform gives values of the euclidean distance:

n
y_i = sqrt(sum (x[i]-b[i])**2)

i

where b[i] is the background point (value 0) with the smallest Euclidean distance to input points x[i], and n is the
number of dimensions.

Examples

>>> from scipy import ndimage
>>> a = np.array(([0,1,1,1,1],
... [0,0,1,1,1],
... [0,1,1,1,1],
... [0,1,1,1,0],
... [0,1,1,0,0]))
>>> ndimage.distance_transform_edt(a)
array([[ 0. , 1. , 1.4142, 2.2361, 3. ],

[ 0. , 0. , 1. , 2. , 2. ],
[ 0. , 1. , 1.4142, 1.4142, 1. ],
[ 0. , 1. , 1.4142, 1. , 0. ],
[ 0. , 1. , 1. , 0. , 0. ]])

With a sampling of 2 units along x, 1 along y:

>>> ndimage.distance_transform_edt(a, sampling=[2,1])
array([[ 0. , 1. , 2. , 2.8284, 3.6056],

[ 0. , 0. , 1. , 2. , 3. ],
[ 0. , 1. , 2. , 2.2361, 2. ],
[ 0. , 1. , 2. , 1. , 0. ],
[ 0. , 1. , 1. , 0. , 0. ]])

Asking for indices as well:

>>> edt, inds = ndimage.distance_transform_edt(a, return_indices=True)
>>> inds
array([[[0, 0, 1, 1, 3],

[1, 1, 1, 1, 3],
[2, 2, 1, 3, 3],
[3, 3, 4, 4, 3],
[4, 4, 4, 4, 4]],
[[0, 0, 1, 1, 4],
[0, 1, 1, 1, 4],
[0, 0, 1, 4, 4],

(continues on next page)
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[0, 0, 3, 3, 4],
[0, 0, 3, 3, 4]]])

With arrays provided for inplace outputs:

>>> indices = np.zeros(((np.ndim(a),) + a.shape), dtype=np.int32)
>>> ndimage.distance_transform_edt(a, return_indices=True,␣
↪→indices=indices)
array([[ 0. , 1. , 1.4142, 2.2361, 3. ],

[ 0. , 0. , 1. , 2. , 2. ],
[ 0. , 1. , 1.4142, 1.4142, 1. ],
[ 0. , 1. , 1.4142, 1. , 0. ],
[ 0. , 1. , 1. , 0. , 0. ]])

>>> indices
array([[[0, 0, 1, 1, 3],

[1, 1, 1, 1, 3],
[2, 2, 1, 3, 3],
[3, 3, 4, 4, 3],
[4, 4, 4, 4, 4]],
[[0, 0, 1, 1, 4],
[0, 1, 1, 1, 4],
[0, 0, 1, 4, 4],
[0, 0, 3, 3, 4],
[0, 0, 3, 3, 4]]])

scipy.ndimage.generate_binary_structure

scipy.ndimage.generate_binary_structure(rank, connectivity)
Generate a binary structure for binary morphological operations.

Parameters

rank [int] Number of dimensions of the array to which the structuring element will be applied, as
returned by np.ndim.

connectivity
[int] connectivity determines which elements of the output array belong to the structure, i.e.
are considered as neighbors of the central element. Elements up to a squared distance of
connectivity from the center are considered neighbors. connectivity may range from 1 (no
diagonal elements are neighbors) to rank (all elements are neighbors).

Returns

output [ndarray of bools] Structuring element which may be used for binary morphological opera-
tions, with rank dimensions and all dimensions equal to 3.

See also:
iterate_structure, binary_dilation, binary_erosion

Notes

generate_binary_structure can only create structuring elements with dimensions equal to 3, i.e. minimal
dimensions. For larger structuring elements, that are useful e.g. for eroding large objects, one may either use
iterate_structure, or create directly custom arrays with numpy functions such as numpy.ones.
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Examples

>>> from scipy import ndimage
>>> struct = ndimage.generate_binary_structure(2, 1)
>>> struct
array([[False, True, False],

[ True, True, True],
[False, True, False]], dtype=bool)

>>> a = np.zeros((5,5))
>>> a[2, 2] = 1
>>> a
array([[ 0., 0., 0., 0., 0.],

[ 0., 0., 0., 0., 0.],
[ 0., 0., 1., 0., 0.],
[ 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0.]])

>>> b = ndimage.binary_dilation(a, structure=struct).astype(a.dtype)
>>> b
array([[ 0., 0., 0., 0., 0.],

[ 0., 0., 1., 0., 0.],
[ 0., 1., 1., 1., 0.],
[ 0., 0., 1., 0., 0.],
[ 0., 0., 0., 0., 0.]])

>>> ndimage.binary_dilation(b, structure=struct).astype(a.dtype)
array([[ 0., 0., 1., 0., 0.],

[ 0., 1., 1., 1., 0.],
[ 1., 1., 1., 1., 1.],
[ 0., 1., 1., 1., 0.],
[ 0., 0., 1., 0., 0.]])

>>> struct = ndimage.generate_binary_structure(2, 2)
>>> struct
array([[ True, True, True],

[ True, True, True],
[ True, True, True]], dtype=bool)

>>> struct = ndimage.generate_binary_structure(3, 1)
>>> struct # no diagonal elements
array([[[False, False, False],

[False, True, False],
[False, False, False]],
[[False, True, False],
[ True, True, True],
[False, True, False]],
[[False, False, False],
[False, True, False],
[False, False, False]]], dtype=bool)

scipy.ndimage.grey_closing

scipy.ndimage.grey_closing(input, size=None, footprint=None, structure=None, output=None,
mode=’reflect’, cval=0.0, origin=0)

Multi-dimensional greyscale closing.
A greyscale closing consists in the succession of a greyscale dilation, and a greyscale erosion.
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Parameters

input [array_like] Array over which the grayscale closing is to be computed.
size [tuple of ints] Shape of a flat and full structuring element used for the grayscale closing.

Optional if footprint or structure is provided.
footprint [array of ints, optional] Positions of non-infinite elements of a flat structuring element used

for the grayscale closing.
structure [array of ints, optional] Structuring element used for the grayscale closing. structure may be

a non-flat structuring element.
output [array, optional] An array used for storing the output of the closing may be provided.
mode [{‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, optional] The mode parameter determines

how the array borders are handled, where cval is the value when mode is equal to ‘constant’.
Default is ‘reflect’

cval [scalar, optional] Value to fill past edges of input if mode is ‘constant’. Default is 0.0.
origin [scalar, optional] The origin parameter controls the placement of the filter. Default 0

Returns

grey_closing
[ndarray] Result of the grayscale closing of input with structure.

See also:
binary_closing, grey_dilation, grey_erosion, grey_opening,
generate_binary_structure

Notes

The action of a grayscale closing with a flat structuring element amounts to smoothen deep local minima, whereas
binary closing fills small holes.

References

[1]

Examples

>>> from scipy import ndimage
>>> a = np.arange(36).reshape((6,6))
>>> a[3,3] = 0
>>> a
array([[ 0, 1, 2, 3, 4, 5],

[ 6, 7, 8, 9, 10, 11],
[12, 13, 14, 15, 16, 17],
[18, 19, 20, 0, 22, 23],
[24, 25, 26, 27, 28, 29],
[30, 31, 32, 33, 34, 35]])

>>> ndimage.grey_closing(a, size=(3,3))
array([[ 7, 7, 8, 9, 10, 11],

[ 7, 7, 8, 9, 10, 11],
[13, 13, 14, 15, 16, 17],
[19, 19, 20, 20, 22, 23],
[25, 25, 26, 27, 28, 29],

(continues on next page)
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[31, 31, 32, 33, 34, 35]])

>>> # Note that the local minimum a[3,3] has disappeared

scipy.ndimage.grey_dilation

scipy.ndimage.grey_dilation(input, size=None, footprint=None, structure=None, output=None,
mode=’reflect’, cval=0.0, origin=0)

Calculate a greyscale dilation, using either a structuring element, or a footprint corresponding to a flat structuring
element.
Grayscale dilation is amathematicalmorphology operation. For the simple case of a full and flat structuring element,
it can be viewed as a maximum filter over a sliding window.

Parameters

input [array_like] Array over which the grayscale dilation is to be computed.
size [tuple of ints] Shape of a flat and full structuring element used for the grayscale dilation.

Optional if footprint or structure is provided.
footprint [array of ints, optional] Positions of non-infinite elements of a flat structuring element used

for the grayscale dilation. Non-zero values give the set of neighbors of the center over which
the maximum is chosen.

structure [array of ints, optional] Structuring element used for the grayscale dilation. structuremay be
a non-flat structuring element.

output [array, optional] An array used for storing the output of the dilation may be provided.
mode [{‘reflect’,’constant’,’nearest’,’mirror’, ‘wrap’}, optional] Themode parameter determines how

the array borders are handled, where cval is the value when mode is equal to ‘constant’.
Default is ‘reflect’

cval [scalar, optional] Value to fill past edges of input if mode is ‘constant’. Default is 0.0.
origin [scalar, optional] The origin parameter controls the placement of the filter. Default 0

Returns

grey_dilation
[ndarray] Grayscale dilation of input.

See also:
binary_dilation, grey_erosion, grey_closing, grey_opening,
generate_binary_structure, maximum_filter

Notes

The grayscale dilation of an image input by a structuring element s defined over a domain E is given by:
(input+s)(x) = max {input(y) + s(x-y), for y in E}
In particular, for structuring elements defined as s(y) = 0 for y in E, the grayscale dilation computes the maximum
of the input image inside a sliding window defined by E.
Grayscale dilation [1] is a mathematical morphology operation [2].

References

[1], [2]

1256 Chapter 6. API Reference



SciPy Reference Guide, Release 1.3.1

Examples

>>> from scipy import ndimage
>>> a = np.zeros((7,7), dtype=int)
>>> a[2:5, 2:5] = 1
>>> a[4,4] = 2; a[2,3] = 3
>>> a
array([[0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 3, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 2, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]])

>>> ndimage.grey_dilation(a, size=(3,3))
array([[0, 0, 0, 0, 0, 0, 0],

[0, 1, 3, 3, 3, 1, 0],
[0, 1, 3, 3, 3, 1, 0],
[0, 1, 3, 3, 3, 2, 0],
[0, 1, 1, 2, 2, 2, 0],
[0, 1, 1, 2, 2, 2, 0],
[0, 0, 0, 0, 0, 0, 0]])

>>> ndimage.grey_dilation(a, footprint=np.ones((3,3)))
array([[0, 0, 0, 0, 0, 0, 0],

[0, 1, 3, 3, 3, 1, 0],
[0, 1, 3, 3, 3, 1, 0],
[0, 1, 3, 3, 3, 2, 0],
[0, 1, 1, 2, 2, 2, 0],
[0, 1, 1, 2, 2, 2, 0],
[0, 0, 0, 0, 0, 0, 0]])

>>> s = ndimage.generate_binary_structure(2,1)
>>> s
array([[False, True, False],

[ True, True, True],
[False, True, False]], dtype=bool)

>>> ndimage.grey_dilation(a, footprint=s)
array([[0, 0, 0, 0, 0, 0, 0],

[0, 0, 1, 3, 1, 0, 0],
[0, 1, 3, 3, 3, 1, 0],
[0, 1, 1, 3, 2, 1, 0],
[0, 1, 1, 2, 2, 2, 0],
[0, 0, 1, 1, 2, 0, 0],
[0, 0, 0, 0, 0, 0, 0]])

>>> ndimage.grey_dilation(a, size=(3,3), structure=np.ones((3,3)))
array([[1, 1, 1, 1, 1, 1, 1],

[1, 2, 4, 4, 4, 2, 1],
[1, 2, 4, 4, 4, 2, 1],
[1, 2, 4, 4, 4, 3, 1],
[1, 2, 2, 3, 3, 3, 1],
[1, 2, 2, 3, 3, 3, 1],
[1, 1, 1, 1, 1, 1, 1]])
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scipy.ndimage.grey_erosion

scipy.ndimage.grey_erosion(input, size=None, footprint=None, structure=None, output=None,
mode=’reflect’, cval=0.0, origin=0)

Calculate a greyscale erosion, using either a structuring element, or a footprint corresponding to a flat structuring
element.
Grayscale erosion is amathematical morphology operation. For the simple case of a full and flat structuring element,
it can be viewed as a minimum filter over a sliding window.

Parameters

input [array_like] Array over which the grayscale erosion is to be computed.
size [tuple of ints] Shape of a flat and full structuring element used for the grayscale erosion.

Optional if footprint or structure is provided.
footprint [array of ints, optional] Positions of non-infinite elements of a flat structuring element used

for the grayscale erosion. Non-zero values give the set of neighbors of the center over which
the minimum is chosen.

structure [array of ints, optional] Structuring element used for the grayscale erosion. structure may be
a non-flat structuring element.

output [array, optional] An array used for storing the output of the erosion may be provided.
mode [{‘reflect’,’constant’,’nearest’,’mirror’, ‘wrap’}, optional] Themode parameter determines how

the array borders are handled, where cval is the value when mode is equal to ‘constant’.
Default is ‘reflect’

cval [scalar, optional] Value to fill past edges of input if mode is ‘constant’. Default is 0.0.
origin [scalar, optional] The origin parameter controls the placement of the filter. Default 0

Returns

output [ndarray] Grayscale erosion of input.
See also:
binary_erosion, grey_dilation, grey_opening, grey_closing,
generate_binary_structure, minimum_filter

Notes

The grayscale erosion of an image input by a structuring element s defined over a domain E is given by:
(input+s)(x) = min {input(y) - s(x-y), for y in E}
In particular, for structuring elements defined as s(y) = 0 for y in E, the grayscale erosion computes the minimum
of the input image inside a sliding window defined by E.
Grayscale erosion [1] is a mathematical morphology operation [2].

References

[1], [2]

Examples
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>>> from scipy import ndimage
>>> a = np.zeros((7,7), dtype=int)
>>> a[1:6, 1:6] = 3
>>> a[4,4] = 2; a[2,3] = 1
>>> a
array([[0, 0, 0, 0, 0, 0, 0],

[0, 3, 3, 3, 3, 3, 0],
[0, 3, 3, 1, 3, 3, 0],
[0, 3, 3, 3, 3, 3, 0],
[0, 3, 3, 3, 2, 3, 0],
[0, 3, 3, 3, 3, 3, 0],
[0, 0, 0, 0, 0, 0, 0]])

>>> ndimage.grey_erosion(a, size=(3,3))
array([[0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 3, 2, 2, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]])

>>> footprint = ndimage.generate_binary_structure(2, 1)
>>> footprint
array([[False, True, False],

[ True, True, True],
[False, True, False]], dtype=bool)

>>> # Diagonally-connected elements are not considered neighbors
>>> ndimage.grey_erosion(a, size=(3,3), footprint=footprint)
array([[0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 3, 1, 2, 0, 0],
[0, 0, 3, 2, 2, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]])

scipy.ndimage.grey_opening

scipy.ndimage.grey_opening(input, size=None, footprint=None, structure=None, output=None,
mode=’reflect’, cval=0.0, origin=0)

Multi-dimensional greyscale opening.
A greyscale opening consists in the succession of a greyscale erosion, and a greyscale dilation.

Parameters

input [array_like] Array over which the grayscale opening is to be computed.
size [tuple of ints] Shape of a flat and full structuring element used for the grayscale opening.

Optional if footprint or structure is provided.
footprint [array of ints, optional] Positions of non-infinite elements of a flat structuring element used

for the grayscale opening.
structure [array of ints, optional] Structuring element used for the grayscale opening. structuremay be

a non-flat structuring element.
output [array, optional] An array used for storing the output of the opening may be provided.

6.16. Multi-dimensional image processing (scipy.ndimage) 1259



SciPy Reference Guide, Release 1.3.1

mode [{‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, optional] The mode parameter determines
how the array borders are handled, where cval is the value when mode is equal to ‘constant’.
Default is ‘reflect’

cval [scalar, optional] Value to fill past edges of input if mode is ‘constant’. Default is 0.0.
origin [scalar, optional] The origin parameter controls the placement of the filter. Default 0

Returns

grey_opening
[ndarray] Result of the grayscale opening of input with structure.

See also:
binary_opening, grey_dilation, grey_erosion, grey_closing,
generate_binary_structure

Notes

The action of a grayscale opening with a flat structuring element amounts to smoothen high local maxima, whereas
binary opening erases small objects.

References

[1]

Examples

>>> from scipy import ndimage
>>> a = np.arange(36).reshape((6,6))
>>> a[3, 3] = 50
>>> a
array([[ 0, 1, 2, 3, 4, 5],

[ 6, 7, 8, 9, 10, 11],
[12, 13, 14, 15, 16, 17],
[18, 19, 20, 50, 22, 23],
[24, 25, 26, 27, 28, 29],
[30, 31, 32, 33, 34, 35]])

>>> ndimage.grey_opening(a, size=(3,3))
array([[ 0, 1, 2, 3, 4, 4],

[ 6, 7, 8, 9, 10, 10],
[12, 13, 14, 15, 16, 16],
[18, 19, 20, 22, 22, 22],
[24, 25, 26, 27, 28, 28],
[24, 25, 26, 27, 28, 28]])

>>> # Note that the local maximum a[3,3] has disappeared

scipy.ndimage.iterate_structure

scipy.ndimage.iterate_structure(structure, iterations, origin=None)
Iterate a structure by dilating it with itself.

Parameters

1260 Chapter 6. API Reference



SciPy Reference Guide, Release 1.3.1

structure [array_like] Structuring element (an array of bools, for example), to be dilated with itself.
iterations [int] number of dilations performed on the structure with itself
origin [optional] If origin is None, only the iterated structure is returned. If not, a tuple of the

iterated structure and the modified origin is returned.
Returns

iterate_structure
[ndarray of bools] A new structuring element obtained by dilating structure (iterations - 1)
times with itself.

See also:
generate_binary_structure

Examples

>>> from scipy import ndimage
>>> struct = ndimage.generate_binary_structure(2, 1)
>>> struct.astype(int)
array([[0, 1, 0],

[1, 1, 1],
[0, 1, 0]])

>>> ndimage.iterate_structure(struct, 2).astype(int)
array([[0, 0, 1, 0, 0],

[0, 1, 1, 1, 0],
[1, 1, 1, 1, 1],
[0, 1, 1, 1, 0],
[0, 0, 1, 0, 0]])

>>> ndimage.iterate_structure(struct, 3).astype(int)
array([[0, 0, 0, 1, 0, 0, 0],

[0, 0, 1, 1, 1, 0, 0],
[0, 1, 1, 1, 1, 1, 0],
[1, 1, 1, 1, 1, 1, 1],
[0, 1, 1, 1, 1, 1, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 0, 1, 0, 0, 0]])

scipy.ndimage.morphological_gradient

scipy.ndimage.morphological_gradient(input, size=None, footprint=None, structure=None, out-
put=None, mode=’reflect’, cval=0.0, origin=0)

Multi-dimensional morphological gradient.
The morphological gradient is calculated as the difference between a dilation and an erosion of the input with a
given structuring element.

Parameters

input [array_like] Array over which to compute the morphlogical gradient.
size [tuple of ints] Shape of a flat and full structuring element used for the mathematical mor-

phology operations. Optional if footprint or structure is provided. A larger size yields a more
blurred gradient.

footprint [array of ints, optional] Positions of non-infinite elements of a flat structuring element used
for themorphology operations. Larger footprints give amore blurredmorphological gradient.
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structure [array of ints, optional] Structuring element used for the morphology operations. structure
may be a non-flat structuring element.

output [array, optional] An array used for storing the output of the morphological gradient may be
provided.

mode [{‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, optional] The mode parameter determines
how the array borders are handled, where cval is the value when mode is equal to ‘constant’.
Default is ‘reflect’

cval [scalar, optional] Value to fill past edges of input if mode is ‘constant’. Default is 0.0.
origin [scalar, optional] The origin parameter controls the placement of the filter. Default 0

Returns

morphological_gradient
[ndarray] Morphological gradient of input.

See also:
grey_dilation, grey_erosion, gaussian_gradient_magnitude

Notes

For a flat structuring element, the morphological gradient computed at a given point corresponds to the maximal
difference between elements of the input among the elements covered by the structuring element centered on the
point.

References

[1]

Examples

>>> from scipy import ndimage
>>> a = np.zeros((7,7), dtype=int)
>>> a[2:5, 2:5] = 1
>>> ndimage.morphological_gradient(a, size=(3,3))
array([[0, 0, 0, 0, 0, 0, 0],

[0, 1, 1, 1, 1, 1, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 1, 1, 0, 1, 1, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 0, 0, 0, 0, 0, 0]])

>>> # The morphological gradient is computed as the difference
>>> # between a dilation and an erosion
>>> ndimage.grey_dilation(a, size=(3,3)) -\
... ndimage.grey_erosion(a, size=(3,3))
array([[0, 0, 0, 0, 0, 0, 0],

[0, 1, 1, 1, 1, 1, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 1, 1, 0, 1, 1, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 1, 1, 1, 1, 1, 0],

(continues on next page)
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(continued from previous page)
[0, 0, 0, 0, 0, 0, 0]])

>>> a = np.zeros((7,7), dtype=int)
>>> a[2:5, 2:5] = 1
>>> a[4,4] = 2; a[2,3] = 3
>>> a
array([[0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 3, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 2, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]])

>>> ndimage.morphological_gradient(a, size=(3,3))
array([[0, 0, 0, 0, 0, 0, 0],

[0, 1, 3, 3, 3, 1, 0],
[0, 1, 3, 3, 3, 1, 0],
[0, 1, 3, 2, 3, 2, 0],
[0, 1, 1, 2, 2, 2, 0],
[0, 1, 1, 2, 2, 2, 0],
[0, 0, 0, 0, 0, 0, 0]])

scipy.ndimage.morphological_laplace

scipy.ndimage.morphological_laplace(input, size=None, footprint=None, structure=None, out-
put=None, mode=’reflect’, cval=0.0, origin=0)

Multi-dimensional morphological laplace.
Parameters

input [array_like] Input.
size [int or sequence of ints, optional] See structure.
footprint [bool or ndarray, optional] See structure.
structure [structure, optional] Either size, footprint, or the structure must be provided.
output [ndarray, optional] An output array can optionally be provided.
mode [{‘reflect’,’constant’,’nearest’,’mirror’, ‘wrap’}, optional] The mode parameter determines

how the array borders are handled. For ‘constant’ mode, values beyond borders are set to
be cval. Default is ‘reflect’.

cval [scalar, optional] Value to fill past edges of input if mode is ‘constant’. Default is 0.0
origin [origin, optional] The origin parameter controls the placement of the filter.

Returns

morphological_laplace
[ndarray] Output

scipy.ndimage.white_tophat

scipy.ndimage.white_tophat(input, size=None, footprint=None, structure=None, output=None,
mode=’reflect’, cval=0.0, origin=0)

Multi-dimensional white tophat filter.
Parameters

input [array_like] Input.
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size [tuple of ints] Shape of a flat and full structuring element used for the filter. Optional if
footprint or structure is provided.

footprint [array of ints, optional] Positions of elements of a flat structuring element used for the white
tophat filter.

structure [array of ints, optional] Structuring element used for the filter. structure may be a non-flat
structuring element.

output [array, optional] An array used for storing the output of the filter may be provided.
mode [{‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, optional] The mode parameter determines

how the array borders are handled, where cval is the value when mode is equal to ‘constant’.
Default is ‘reflect’

cval [scalar, optional] Value to fill past edges of input if mode is ‘constant’. Default is 0.0.
origin [scalar, optional] The origin parameter controls the placement of the filter. Default is 0.

Returns

output [ndarray] Result of the filter of input with structure.
See also:
black_tophat

6.17 Orthogonal distance regression (scipy.odr)

6.17.1 Package Content

Data(x[, y, we, wd, fix, meta]) The data to fit.
RealData(x[, y, sx, sy, covx, covy, fix, meta]) The data, with weightings as actual standard deviations

and/or covariances.
Model(fcn[, fjacb, fjacd, extra_args, …]) TheModel class stores information about the function you

wish to fit.
ODR(data, model[, beta0, delta0, ifixb, …]) The ODR class gathers all information and coordinates

the running of the main fitting routine.
Output(output) The Output class stores the output of an ODR run.
odr(fcn, beta0, y, x[, we, wd, fjacb, …]) Low-level function for ODR.
OdrWarning Warning indicating that the data passed into ODR will

cause problems when passed into ‘odr’ that the user should
be aware of.

OdrError Exception indicating an error in fitting.
OdrStop Exception stopping fitting.

scipy.odr.Data

class scipy.odr.Data(x, y=None, we=None, wd=None, fix=None, meta={})
The data to fit.

Parameters

x [array_like] Observed data for the independent variable of the regression
y [array_like, optional] If array-like, observed data for the dependent variable of the regression.

A scalar input implies that the model to be used on the data is implicit.
we [array_like, optional] If we is a scalar, then that value is used for all data points (and all

dimensions of the response variable). If we is a rank-1 array of length q (the dimensionality
of the response variable), then this vector is the diagonal of the covariant weighting matrix
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for all data points. Ifwe is a rank-1 array of length n (the number of data points), then the i’th
element is the weight for the i’th response variable observation (single-dimensional only). If
we is a rank-2 array of shape (q, q), then this is the full covariant weighting matrix broadcast
to each observation. If we is a rank-2 array of shape (q, n), then we[:,i] is the diagonal of the
covariant weighting matrix for the i’th observation. If we is a rank-3 array of shape (q, q, n),
then we[:,:,i] is the full specification of the covariant weighting matrix for each observation.
If the fit is implicit, then only a positive scalar value is used.

wd [array_like, optional] If wd is a scalar, then that value is used for all data points (and all
dimensions of the input variable). If wd = 0, then the covariant weighting matrix for each
observation is set to the identity matrix (so each dimension of each observation has the same
weight). If wd is a rank-1 array of length m (the dimensionality of the input variable), then
this vector is the diagonal of the covariant weighting matrix for all data points. If wd is a
rank-1 array of length n (the number of data points), then the i’th element is the weight for
the i’th input variable observation (single-dimensional only). If wd is a rank-2 array of shape
(m, m), then this is the full covariant weighting matrix broadcast to each observation. Ifwd is
a rank-2 array of shape (m, n), then wd[:,i] is the diagonal of the covariant weighting matrix
for the i’th observation. If wd is a rank-3 array of shape (m, m, n), then wd[:,:,i] is the full
specification of the covariant weighting matrix for each observation.

fix [array_like of ints, optional] The fix argument is the same as ifixx in the class ODR. It is
an array of integers with the same shape as data.x that determines which input observations
are treated as fixed. One can use a sequence of length m (the dimensionality of the input
observations) to fix some dimensions for all observations. A value of 0 fixes the observation,
a value > 0 makes it free.

meta [dict, optional] Free-form dictionary for metadata.

Notes

Each argument is attached to the member of the instance of the same name. The structures of x and y are described
in the Model class docstring. If y is an integer, then the Data instance can only be used to fit with implicit models
where the dimensionality of the response is equal to the specified value of y.
The we argument weights the effect a deviation in the response variable has on the fit. The wd argument weights
the effect a deviation in the input variable has on the fit. To handle multidimensional inputs and responses easily,
the structure of these arguments has the n’th dimensional axis first. These arguments heavily use the structured
arguments feature of ODRPACK to conveniently and flexibly support all options. See the ODRPACK User’s
Guide for a full explanation of how these weights are used in the algorithm. Basically, a higher value of the weight
for a particular data point makes a deviation at that point more detrimental to the fit.

Methods

set_meta(**kwds) Update the metadata dictionary with the keywords and
data provided by keywords.

scipy.odr.Data.set_meta
Data.set_meta(**kwds)

Update the metadata dictionary with the keywords and data provided by keywords.
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Examples

data.set_meta(lab="Ph 7; Lab 26", title="Ag110 + Ag108 Decay")

scipy.odr.RealData

class scipy.odr.RealData(x, y=None, sx=None, sy=None, covx=None, covy=None, fix=None,
meta={})

The data, with weightings as actual standard deviations and/or covariances.
Parameters

x [array_like] Observed data for the independent variable of the regression
y [array_like, optional] If array-like, observed data for the dependent variable of the regression.

A scalar input implies that the model to be used on the data is implicit.
sx [array_like, optional] Standard deviations of x. sx are standard deviations of x and are con-

verted to weights by dividing 1.0 by their squares.
sy [array_like, optional] Standard deviations of y. sy are standard deviations of y and are con-

verted to weights by dividing 1.0 by their squares.
covx [array_like, optional] Covariance of x covx is an array of covariance matrices of x and are

converted to weights by performing a matrix inversion on each observation’s covariance ma-
trix.

covy [array_like, optional] Covariance of y covy is an array of covariance matrices and are con-
verted to weights by performing a matrix inversion on each observation’s covariance matrix.

fix [array_like, optional] The argument and member fix is the same as Data.fix and ODR.ifixx:
It is an array of integers with the same shape as x that determines which input observations
are treated as fixed. One can use a sequence of length m (the dimensionality of the input
observations) to fix some dimensions for all observations. A value of 0 fixes the observation,
a value > 0 makes it free.

meta [dict, optional] Free-form dictionary for metadata.

Notes

The weights wd and we are computed from provided values as follows:
sx and sy are converted to weights by dividing 1.0 by their squares. For example, wd = 1./numpy.
power(`sx`, 2).
covx and covy are arrays of covariance matrices and are converted to weights by performing a matrix inversion on
each observation’s covariance matrix. For example, we[i] = numpy.linalg.inv(covy[i]).
These arguments follow the same structured argument conventions as wd and we only restricted by their natures:
sx and sy can’t be rank-3, but covx and covy can be.
Only set either sx or covx (not both). Setting both will raise an exception. Same with sy and covy.

Methods

set_meta(**kwds) Update the metadata dictionary with the keywords and
data provided by keywords.
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scipy.odr.RealData.set_meta
RealData.set_meta(**kwds)

Update the metadata dictionary with the keywords and data provided by keywords.

Examples

data.set_meta(lab="Ph 7; Lab 26", title="Ag110 + Ag108 Decay")

scipy.odr.Model

class scipy.odr.Model(fcn, fjacb=None, fjacd=None, extra_args=None, estimate=None, implicit=0,
meta=None)

The Model class stores information about the function you wish to fit.
It stores the function itself, at the least, and optionally stores functions which compute the Jacobians used during
fitting. Also, one can provide a function that will provide reasonable starting values for the fit parameters possibly
given the set of data.

Parameters

fcn [function] fcn(beta, x) –> y
fjacb [function] Jacobian of fcn wrt the fit parameters beta.

fjacb(beta, x) –> @f_i(x,B)/@B_j
fjacd [function] Jacobian of fcn wrt the (possibly multidimensional) input variable.

fjacd(beta, x) –> @f_i(x,B)/@x_j
extra_args [tuple, optional] If specified, extra_args should be a tuple of extra arguments to pass to fcn,

fjacb, and fjacd. Each will be called by apply(fcn, (beta, x) + extra_args)
estimate [array_like of rank-1] Provides estimates of the fit parameters from the data

estimate(data) –> estbeta
implicit [boolean] If TRUE, specifies that the model is implicit; i.e fcn(beta, x) ~= 0 and there is no

y data to fit against
meta [dict, optional] freeform dictionary of metadata for the model

Notes

Note that the fcn, fjacb, and fjacd operate on NumPy arrays and return a NumPy array. The estimate object takes
an instance of the Data class.
Here are the rules for the shapes of the argument and return arrays of the callback functions:
x if the input data is single-dimensional, then x is rank-1 array; i.e. x = array([1, 2, 3, ...]); x.

shape = (n,) If the input data is multi-dimensional, then x is a rank-2 array; i.e., x = array([[1,
2, ...], [2, 4, ...]]); x.shape = (m, n). In all cases, it has the same shape as the input
data array passed to odr. m is the dimensionality of the input data, n is the number of observations.

y if the response variable is single-dimensional, then y is a rank-1 array, i.e., y = array([2, 4, ...
]); y.shape = (n,). If the response variable is multi-dimensional, then y is a rank-2 array, i.e., y =
array([[2, 4, ...], [3, 6, ...]]); y.shape = (q, n)where q is the dimensionality of
the response variable.

beta
rank-1 array of length p where p is the number of parameters; i.e. beta = array([B_1, B_2, ...,
B_p])

6.17. Orthogonal distance regression (scipy.odr) 1267



SciPy Reference Guide, Release 1.3.1

fjacb
if the response variable is multi-dimensional, then the return array’s shape is (q, p, n) such that fjacb(x,
beta)[l,k,i] = d f_l(X,B)/d B_k evaluated at the i’th data point. If q == 1, then the return array
is only rank-2 and with shape (p, n).

fjacd
as with fjacb, only the return array’s shape is (q, m, n) such that fjacd(x,beta)[l,j,i] = d f_l(X,
B)/d X_j at the i’th data point. If q == 1, then the return array’s shape is (m, n). If m == 1, the shape is (q,
n). If m == q == 1, the shape is (n,).

Methods

set_meta(**kwds) Update the metadata dictionary with the keywords and
data provided here.

scipy.odr.Model.set_meta
Model.set_meta(**kwds)

Update the metadata dictionary with the keywords and data provided here.

Examples

set_meta(name=”Exponential”, equation=”y = a exp(b x) + c”)

scipy.odr.ODR

class scipy.odr.ODR(data, model, beta0=None, delta0=None, ifixb=None, ifixx=None, job=None,
iprint=None, errfile=None, rptfile=None, ndigit=None, taufac=None, sstol=None,
partol=None, maxit=None, stpb=None, stpd=None, sclb=None, scld=None,
work=None, iwork=None)

The ODR class gathers all information and coordinates the running of the main fitting routine.
Members of instances of the ODR class have the same names as the arguments to the initialization routine.

Parameters

data [Data class instance] instance of the Data class
model [Model class instance] instance of the Model class

Other Parameters

beta0 [array_like of rank-1] a rank-1 sequence of initial parameter values. Optional if model
provides an “estimate” function to estimate these values.

delta0 [array_like of floats of rank-1, optional] a (double-precision) float array to hold the initial
values of the errors in the input variables. Must be same shape as data.x

ifixb [array_like of ints of rank-1, optional] sequence of integers with the same length as beta0
that determines which parameters are held fixed. A value of 0 fixes the parameter, a value >
0 makes the parameter free.

ifixx [array_like of ints with same shape as data.x, optional] an array of integers with the same
shape as data.x that determines which input observations are treated as fixed. One can use a
sequence of length m (the dimensionality of the input observations) to fix some dimensions
for all observations. A value of 0 fixes the observation, a value > 0 makes it free.
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job [int, optional] an integer telling ODRPACK what tasks to perform. See p. 31 of the ODR-
PACK User’s Guide if you absolutely must set the value here. Use the method set_job
post-initialization for a more readable interface.

iprint [int, optional] an integer telling ODRPACK what to print. See pp. 33-34 of the ODRPACK
User’s Guide if you absolutely must set the value here. Use the method set_iprint post-
initialization for a more readable interface.

errfile [str, optional] string with the filename to print ODRPACK errors to. Do Not Open This File
Yourself!

rptfile [str, optional] string with the filename to print ODRPACK summaries to. Do Not Open This
File Yourself!

ndigit [int, optional] integer specifying the number of reliable digits in the computation of the
function.

taufac [float, optional] float specifying the initial trust region. The default value is 1. The initial trust
region is equal to taufac times the length of the first computed Gauss-Newton step. taufac
must be less than 1.

sstol [float, optional] float specifying the tolerance for convergence based on the relative change
in the sum-of-squares. The default value is eps**(1/2) where eps is the smallest value such
that 1 + eps > 1 for double precision computation on the machine. sstol must be less than 1.

partol [float, optional] float specifying the tolerance for convergence based on the relative change
in the estimated parameters. The default value is eps**(2/3) for explicit models and
eps**(1/3) for implicit models. partol must be less than 1.

maxit [int, optional] integer specifying the maximum number of iterations to perform. For first
runs, maxit is the total number of iterations performed and defaults to 50. For restarts, maxit
is the number of additional iterations to perform and defaults to 10.

stpb [array_like, optional] sequence (len(stpb) == len(beta0)) of relative step sizes to
compute finite difference derivatives wrt the parameters.

stpd [optional] array (stpd.shape == data.x.shape or stpd.shape == (m,)) of
relative step sizes to compute finite difference derivatives wrt the input variable errors. If stpd
is a rank-1 array with length m (the dimensionality of the input variable), then the values are
broadcast to all observations.

sclb [array_like, optional] sequence (len(stpb) == len(beta0)) of scaling factors for
the parameters. The purpose of these scaling factors are to scale all of the parameters to
around unity. Normally appropriate scaling factors are computed if this argument is not
specified. Specify them yourself if the automatic procedure goes awry.

scld [array_like, optional] array (scld.shape == data.x.shape or scld.shape == (m,)) of scaling
factors for the errors in the input variables. Again, these factors are automatically computed
if you do not provide them. If scld.shape == (m,), then the scaling factors are broadcast to
all observations.

work [ndarray, optional] array to hold the double-valued working data for ODRPACK. When
restarting, takes the value of self.output.work.

iwork [ndarray, optional] array to hold the integer-valued working data for ODRPACK. When
restarting, takes the value of self.output.iwork.

Attributes

data [Data] The data for this fit
model [Model] The model used in fit
output [Output] An instance if theOutput class containing all of the returned data from an invocation

of ODR.run() or ODR.restart()

Methods
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restart([iter]) Restarts the run with iter more iterations.
run() Run the fitting routine with all of the information given

and with full_output=1.
set_iprint([init, so_init, iter, so_iter, …]) Set the iprint parameter for the printing of computa-

tion reports.
set_job([fit_type, deriv, var_calc, …]) Sets the “job” parameter is a hopefully comprehensible

way.

scipy.odr.ODR.restart
ODR.restart(iter=None)

Restarts the run with iter more iterations.
Parameters

iter [int, optional] ODRPACK’s default for the number of new iterations is 10.
Returns

output [Output instance] This object is also assigned to the attribute .output .

scipy.odr.ODR.run
ODR.run()

Run the fitting routine with all of the information given and with full_output=1.
Returns

output [Output instance] This object is also assigned to the attribute .output .

scipy.odr.ODR.set_iprint
ODR.set_iprint(init=None, so_init=None, iter=None, so_iter=None, iter_step=None, final=None,

so_final=None)
Set the iprint parameter for the printing of computation reports.
If any of the arguments are specified here, then they are set in the iprint member. If iprint is not set manually
or with this method, then ODRPACK defaults to no printing. If no filename is specified with the member
rptfile, then ODRPACK prints to stdout. One can tell ODRPACK to print to stdout in addition to the specified
filename by setting the so_* arguments to this function, but one cannot specify to print to stdout but not a file
since one can do that by not specifying a rptfile filename.
There are three reports: initialization, iteration, and final reports. They are represented by the arguments init,
iter, and final respectively. The permissible values are 0, 1, and 2 representing “no report”, “short report”,
and “long report” respectively.
The argument iter_step (0 <= iter_step <= 9) specifies how often to make the iteration report; the report will
be made for every iter_step’th iteration starting with iteration one. If iter_step == 0, then no iteration report
is made, regardless of the other arguments.
If the rptfile is None, then any so_* arguments supplied will raise an exception.

scipy.odr.ODR.set_job
ODR.set_job(fit_type=None, deriv=None, var_calc=None, del_init=None, restart=None)

Sets the “job” parameter is a hopefully comprehensible way.
If an argument is not specified, then the value is left as is. The default value from class initialization is for all
of these options set to 0.

Parameters

1270 Chapter 6. API Reference



SciPy Reference Guide, Release 1.3.1

fit_type [{0, 1, 2} int] 0 -> explicit ODR
1 -> implicit ODR
2 -> ordinary least-squares

deriv [{0, 1, 2, 3} int] 0 -> forward finite differences
1 -> central finite differences
2 -> user-supplied derivatives (Jacobians) with results

checked by ODRPACK
3 -> user-supplied derivatives, no checking

var_calc [{0, 1, 2} int]
0 -> calculate asymptotic covariance matrix and fit

parameter uncertainties (V_B, s_B) using derivatives recomputed at the
final solution

1 -> calculate V_B and s_B using derivatives from last iteration
2 -> do not calculate V_B and s_B

del_init [{0, 1} int] 0 -> initial input variable offsets set to 0
1 -> initial offsets provided by user in variable “work”

restart [{0, 1} int] 0 -> fit is not a restart
1 -> fit is a restart

Notes

The permissible values are different from those given on pg. 31 of the ODRPACK User’s Guide only in that
one cannot specify numbers greater than the last value for each variable.
If one does not supply functions to compute the Jacobians, the fitting procedure will change deriv to 0, finite
differences, as a default. To initialize the input variable offsets by yourself, set del_init to 1 and put the offsets
into the “work” variable correctly.

scipy.odr.Output

class scipy.odr.Output(output)
The Output class stores the output of an ODR run.

Notes

Takes one argument for initialization, the return value from the function odr. The attributes listed as “optional”
above are only present if odr was run with full_output=1.

Attributes

beta [ndarray] Estimated parameter values, of shape (q,).
sd_beta [ndarray] Standard errors of the estimated parameters, of shape (p,).
cov_beta [ndarray] Covariance matrix of the estimated parameters, of shape (p,p).
delta [ndarray, optional] Array of estimated errors in input variables, of same shape as x.
eps [ndarray, optional] Array of estimated errors in response variables, of same shape as y.
xplus [ndarray, optional] Array of x + delta.
y [ndarray, optional] Array y = fcn(x + delta).
res_var [float, optional] Residual variance.
sum_square

[float, optional] Sum of squares error.
sum_square_delta

[float, optional] Sum of squares of delta error.
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sum_square_eps
[float, optional] Sum of squares of eps error.

inv_condnum
[float, optional] Inverse condition number (cf. ODRPACK UG p. 77).

rel_error [float, optional] Relative error in function values computed within fcn.
work [ndarray, optional] Final work array.
work_ind [dict, optional] Indices into work for drawing out values (cf. ODRPACK UG p. 83).
info [int, optional] Reason for returning, as output by ODRPACK (cf. ODRPACK UG p. 38).
stopreason

[list of str, optional] info interpreted into English.

Methods

pprint() Pretty-print important results.

scipy.odr.Output.pprint
Output.pprint()

Pretty-print important results.

scipy.odr.odr

scipy.odr.odr(fcn, beta0, y, x, we=None, wd=None, fjacb=None, fjacd=None, extra_args=None,
ifixx=None, ifixb=None, job=0, iprint=0, errfile=None, rptfile=None, ndigit=0, tau-
fac=0.0, sstol=-1.0, partol=-1.0, maxit=-1, stpb=None, stpd=None, sclb=None, scld=None,
work=None, iwork=None, full_output=0)

Low-level function for ODR.
See also:
ODR, Model, Data, RealData

Notes

This is a function performing the same operation as the ODR, Model and Data classes together. The parameters
of this function are explained in the class documentation.

scipy.odr.OdrWarning

exception scipy.odr.OdrWarning
Warning indicating that the data passed into ODR will cause problems when passed into ‘odr’ that the user should
be aware of.
with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

scipy.odr.OdrError

exception scipy.odr.OdrError
Exception indicating an error in fitting.
This is raised by odr if an error occurs during fitting.
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with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

scipy.odr.OdrStop

exception scipy.odr.OdrStop
Exception stopping fitting.
You can raise this exception in your objective function to tell odr to stop fitting.
with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.
Prebuilt models:

polynomial(order) Factory function for a general polynomial model.

scipy.odr.exponential

scipy.odr.multilinear

scipy.odr.unilinear

scipy.odr.quadratic

scipy.odr.polynomial

6.17.2 Usage information

Introduction

Why Orthogonal Distance Regression (ODR)? Sometimes one has measurement errors in the explanatory (a.k.a., “in-
dependent”) variable(s), not just the response (a.k.a., “dependent”) variable(s). Ordinary Least Squares (OLS) fitting
procedures treat the data for explanatory variables as fixed, i.e., not subject to error of any kind. Furthermore, OLS
procedures require that the response variables be an explicit function of the explanatory variables; sometimes making the
equation explicit is impractical and/or introduces errors. ODR can handle both of these cases with ease, and can even
reduce to the OLS case if that is sufficient for the problem.
ODRPACK is a FORTRAN-77 library for performing ODR with possibly non-linear fitting functions. It uses a modified
trust-region Levenberg-Marquardt-type algorithm [R12d0b3321264-1] to estimate the function parameters. The fitting
functions are provided by Python functions operating on NumPy arrays. The required derivatives may be provided by
Python functions as well, or may be estimated numerically. ODRPACK can do explicit or implicit ODR fits, or it can do
OLS. Input and output variables may be multi-dimensional. Weights can be provided to account for different variances
of the observations, and even covariances between dimensions of the variables.
The scipy.odr package offers an object-oriented interface to ODRPACK, in addition to the low-level odr function.
Additional background information about ODRPACK can be found in the ODRPACK User’s Guide, reading which is
recommended.

Basic usage

1. Define the function you want to fit against.:

6.17. Orthogonal distance regression (scipy.odr) 1273

https://docs.scipy.org/doc/external/odrpack_guide.pdf


SciPy Reference Guide, Release 1.3.1

def f(B, x):
'''Linear function y = m*x + b'''
# B is a vector of the parameters.
# x is an array of the current x values.
# x is in the same format as the x passed to Data or RealData.
#
# Return an array in the same format as y passed to Data or RealData.
return B[0]*x + B[1]

2. Create a Model.:

linear = Model(f)

3. Create a Data or RealData instance.:

mydata = Data(x, y, wd=1./power(sx,2), we=1./power(sy,2))

or, when the actual covariances are known:

mydata = RealData(x, y, sx=sx, sy=sy)

4. Instantiate ODR with your data, model and initial parameter estimate.:

myodr = ODR(mydata, linear, beta0=[1., 2.])

5. Run the fit.:

myoutput = myodr.run()

6. Examine output.:

myoutput.pprint()

References

6.18 Optimization and Root Finding (scipy.optimize)

SciPy optimize provides functions for minimizing (or maximizing) objective functions, possibly subject to constraints.
It includes solvers for nonlinear problems (with support for both local and global optimization algorithms), linear pro-
graming, constrained and nonlinear least-squares, root finding and curve fitting.
Common functions and objects, shared across different solvers, are:

show_options([solver, method, disp]) Show documentation for additional options of optimiza-
tion solvers.

OptimizeResult Represents the optimization result.
OptimizeWarning
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6.18.1 scipy.optimize.show_options

scipy.optimize.show_options(solver=None, method=None, disp=True)
Show documentation for additional options of optimization solvers.
These are method-specific options that can be supplied through the options dict.

Parameters

solver [str] Type of optimization solver. One of ‘minimize’, ‘minimize_scalar’, ‘root’, or ‘linprog’.
method [str, optional] If not given, shows all methods of the specified solver. Otherwise, show only

the options for the specified method. Valid values corresponds to methods’ names of respec-
tive solver (e.g. ‘BFGS’ for ‘minimize’).

disp [bool, optional] Whether to print the result rather than returning it.
Returns

text Either None (for disp=True) or the text string (disp=False)

Notes

The solver-specific methods are:
scipy.optimize.minimize

• Nelder-Mead

• Powell

• CG

• BFGS

• Newton-CG

• L-BFGS-B

• TNC

• COBYLA

• SLSQP

• dogleg

• trust-ncg

scipy.optimize.root

• hybr

• lm

• broyden1

• broyden2

• anderson

• linearmixing

• diagbroyden

• excitingmixing

• krylov
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• df-sane

scipy.optimize.minimize_scalar

• brent

• golden

• bounded

scipy.optimize.linprog

• simplex

• interior-point

6.18.2 scipy.optimize.OptimizeResult

class scipy.optimize.OptimizeResult
Represents the optimization result.

Notes

There may be additional attributes not listed above depending of the specific solver. Since this class is essentially
a subclass of dict with attribute accessors, one can see which attributes are available using the keys() method.

Attributes

x [ndarray] The solution of the optimization.
success [bool] Whether or not the optimizer exited successfully.
status [int] Termination status of the optimizer. Its value depends on the underlying solver. Refer

to message for details.
message [str] Description of the cause of the termination.
fun, jac, hess: ndarray

Values of objective function, its Jacobian and its Hessian (if available). The Hessians may
be approximations, see the documentation of the function in question.

hess_inv [object] Inverse of the objective function’s Hessian; may be an approximation. Not
available for all solvers. The type of this attribute may be either np.ndarray or
scipy.sparse.linalg.LinearOperator.

nfev, njev, nhev
[int] Number of evaluations of the objective functions and of its Jacobian and Hessian.

nit [int] Number of iterations performed by the optimizer.
maxcv [float] The maximum constraint violation.

Methods

__getitem__ x.__getitem__(y) <==> x[y]
__len__($self, /) Return len(self).
clear()
copy()
fromkeys($type, iterable[, value]) Returns a new dict with keys from iterable and values

equal to value.
get(k[,d])
items()

Continued on next page

1276 Chapter 6. API Reference



SciPy Reference Guide, Release 1.3.1

Table 113 – continued from previous page
keys()
pop(k[,d]) If key is not found, d is returned if given, otherwise

KeyError is raised
popitem() 2-tuple; but raise KeyError if D is empty.
setdefault(k[,d])
update([E, ]**F) If E is present and has a .keys() method, then does: for

k in E: D[k] = E[k] If E is present and lacks a .keys()
method, then does: for k, v in E: D[k] = v In either
case, this is followed by: for k in F: D[k] = F[k]

values()

scipy.optimize.OptimizeResult.__getitem__

OptimizeResult.__getitem__()
x.__getitem__(y) <==> x[y]

scipy.optimize.OptimizeResult.__len__

OptimizeResult.__len__($self, /)
Return len(self).

scipy.optimize.OptimizeResult.clear

OptimizeResult.clear()→ None. Remove all items from D.

scipy.optimize.OptimizeResult.copy

OptimizeResult.copy()→ a shallow copy of D

scipy.optimize.OptimizeResult.fromkeys

OptimizeResult.fromkeys($type, iterable, value=None, /)
Returns a new dict with keys from iterable and values equal to value.

scipy.optimize.OptimizeResult.get

OptimizeResult.get(k[, d ])→ D[k] if k in D, else d. d defaults to None.

scipy.optimize.OptimizeResult.items

OptimizeResult.items()→ a set-like object providing a view on D’s items

scipy.optimize.OptimizeResult.keys

OptimizeResult.keys()→ a set-like object providing a view on D’s keys
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scipy.optimize.OptimizeResult.pop

OptimizeResult.pop(k[, d ])→ v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised

scipy.optimize.OptimizeResult.popitem

OptimizeResult.popitem()→ (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if D is empty.

scipy.optimize.OptimizeResult.setdefault

OptimizeResult.setdefault(k[, d ])→ D.get(k,d), also set D[k]=d if k not in D

scipy.optimize.OptimizeResult.update

OptimizeResult.update([E ], **F)→ None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys()
method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

scipy.optimize.OptimizeResult.values

OptimizeResult.values()→ an object providing a view on D’s values

6.18.3 scipy.optimize.OptimizeWarning

exception scipy.optimize.OptimizeWarning

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

6.18.4 Optimization

Scalar Functions Optimization

minimize_scalar(fun[, bracket, bounds, …]) Minimization of scalar function of one variable.

scipy.optimize.minimize_scalar
scipy.optimize.minimize_scalar(fun, bracket=None, bounds=None, args=(), method=’brent’,

tol=None, options=None)
Minimization of scalar function of one variable.

Parameters

fun [callable] Objective function. Scalar function, must return a scalar.
bracket [sequence, optional] For methods ‘brent’ and ‘golden’, bracket defines the bracketing in-

terval and can either have three items (a, b, c) so that a < b < c and fun(b) <
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fun(a), fun(c) or two items a and c which are assumed to be a starting interval for a
downhill bracket search (see bracket); it doesn’t always mean that the obtained solution
will satisfy a <= x <= c.

bounds [sequence, optional] For method ‘bounded’, bounds is mandatory and must have two items
corresponding to the optimization bounds.

args [tuple, optional] Extra arguments passed to the objective function.
method [str or callable, optional] Type of solver. Should be one of:

• ‘Brent’ (see here)
• ‘Bounded’ (see here)
• ‘Golden’ (see here)
• custom - a callable object (added in version 0.14.0), see below

tol [float, optional] Tolerance for termination. For detailed control, use solver-specific options.
options [dict, optional] A dictionary of solver options.

maxiter [int] Maximum number of iterations to perform.
disp [bool] Set to True to print convergence messages.

See show_options for solver-specific options.
Returns

res [OptimizeResult] The optimization result represented as a OptimizeResult object. Im-
portant attributes are: x the solution array, success a Boolean flag indicating if the opti-
mizer exited successfully and message which describes the cause of the termination. See
OptimizeResult for a description of other attributes.

See also:

minimize

Interface to minimization algorithms for scalar multivariate functions
show_options

Additional options accepted by the solvers

Notes

This section describes the available solvers that can be selected by the ‘method’ parameter. The default method is
Brent.
Method Brent uses Brent’s algorithm to find a local minimum. The algorithm uses inverse parabolic interpolation
when possible to speed up convergence of the golden section method.
Method Golden uses the golden section search technique. It uses analog of the bisection method to decrease the
bracketed interval. It is usually preferable to use the Brent method.
Method Bounded can perform bounded minimization. It uses the Brent method to find a local minimum in the
interval x1 < xopt < x2.
Custom minimizers
It may be useful to pass a custom minimization method, for example when using some library frontend to mini-
mize_scalar. You can simply pass a callable as the method parameter.
The callable is called as method(fun, args, **kwargs, **options) where kwargs corresponds to
any other parameters passed to minimize (such as bracket, tol, etc.), except the options dict, which has its
contents also passed as method parameters pair by pair. The method shall return an OptimizeResult object.
The provided method callable must be able to accept (and possibly ignore) arbitrary parameters; the set of pa-
rameters accepted by minimize may expand in future versions and then these parameters will be passed to the
method. You can find an example in the scipy.optimize tutorial.
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New in version 0.11.0.

Examples

Consider the problem of minimizing the following function.

>>> def f(x):
... return (x - 2) * x * (x + 2)**2

Using the Brent method, we find the local minimum as:

>>> from scipy.optimize import minimize_scalar
>>> res = minimize_scalar(f)
>>> res.x
1.28077640403

Using the Bounded method, we find a local minimum with specified bounds as:

>>> res = minimize_scalar(f, bounds=(-3, -1), method='bounded')
>>> res.x
-2.0000002026

The minimize_scalar function supports the following methods:

minimize_scalar(method=’brent’)
scipy.optimize.minimize_scalar(fun, args=(), method=’brent’, tol=None, options={’func’: None,

’brack’: None, ’xtol’: 1.48e-08, ’maxiter’: 500})

See also:
For documentation for the rest of the parameters, see scipy.optimize.minimize_scalar

Options

maxiter [int] Maximum number of iterations to perform.
xtol [float] Relative error in solution xopt acceptable for convergence.

Notes

Uses inverse parabolic interpolation when possible to speed up convergence of golden section method.

minimize_scalar(method=’bounded’)
scipy.optimize.minimize_scalar(fun, bounds=None, args=(), method=’bounded’, tol=None, op-

tions={’func’: None, ’xatol’: 1e-05, ’maxiter’: 500, ’disp’: 0})

See also:
For documentation for the rest of the parameters, see scipy.optimize.minimize_scalar

Options

maxiter [int] Maximum number of iterations to perform.
disp: int, optional
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If non-zero, print messages.
0 : no message printing. 1 : non-convergence notification messages only. 2 :
print a message on convergence too. 3 : print iteration results.

xatol [float] Absolute error in solution xopt acceptable for convergence.

minimize_scalar(method=’golden’)
scipy.optimize.minimize_scalar(fun, args=(), method=’golden’, tol=None, options={’func’: None,

’brack’: None, ’xtol’: 1.4901161193847656e-08, ’maxiter’: 5000})

See also:
For documentation for the rest of the parameters, see scipy.optimize.minimize_scalar

Options

maxiter [int] Maximum number of iterations to perform.
xtol [float] Relative error in solution xopt acceptable for convergence.

Local (Multivariate) Optimization

minimize(fun, x0[, args, method, jac, hess, …]) Minimization of scalar function of one or more variables.

scipy.optimize.minimize
scipy.optimize.minimize(fun, x0, args=(), method=None, jac=None, hess=None, hessp=None,

bounds=None, constraints=(), tol=None, callback=None, options=None)
Minimization of scalar function of one or more variables.

Parameters

fun [callable] The objective function to be minimized.
fun(x, *args) -> float

where x is an 1-D array with shape (n,) and args is a tuple of the fixed parameters needed to
completely specify the function.

x0 [ndarray, shape (n,)] Initial guess. Array of real elements of size (n,), where ‘n’ is the number
of independent variables.

args [tuple, optional] Extra arguments passed to the objective function and its derivatives (fun,
jac and hess functions).

method [str or callable, optional] Type of solver. Should be one of
• ‘Nelder-Mead’ (see here)
• ‘Powell’ (see here)
• ‘CG’ (see here)
• ‘BFGS’ (see here)
• ‘Newton-CG’ (see here)
• ‘L-BFGS-B’ (see here)
• ‘TNC’ (see here)
• ‘COBYLA’ (see here)
• ‘SLSQP’ (see here)
• ‘trust-constr’(see here)
• ‘dogleg’ (see here)
• ‘trust-ncg’ (see here)
• ‘trust-exact’ (see here)
• ‘trust-krylov’ (see here)
• custom - a callable object (added in version 0.14.0), see below for description.
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If not given, chosen to be one of BFGS, L-BFGS-B, SLSQP, depending if the problem has
constraints or bounds.

jac [{callable, ‘2-point’, ‘3-point’, ‘cs’, bool}, optional] Method for computing the gradient vec-
tor. Only for CG, BFGS, Newton-CG, L-BFGS-B, TNC, SLSQP, dogleg, trust-ncg, trust-
krylov, trust-exact and trust-constr. If it is a callable, it should be a function that returns the
gradient vector:
jac(x, *args) -> array_like, shape (n,)

where x is an array with shape (n,) and args is a tuple with the fixed parameters. Alterna-
tively, the keywords {‘2-point’, ‘3-point’, ‘cs’} select a finite difference scheme for numerical
estimation of the gradient. Options ‘3-point’ and ‘cs’ are available only to ‘trust-constr’. If
jac is a Boolean and is True, fun is assumed to return the gradient along with the objective
function. If False, the gradient will be estimated using ‘2-point’ finite difference estimation.

hess [{callable, ‘2-point’, ‘3-point’, ‘cs’, HessianUpdateStrategy}, optional]Method for computing
the Hessian matrix. Only for Newton-CG, dogleg, trust-ncg, trust-krylov, trust-exact and
trust-constr. If it is callable, it should return the Hessian matrix:
hess(x, *args) -> {LinearOperator, spmatrix, array}, (n,
n)

where x is a (n,) ndarray and args is a tuple with the fixed parameters. LinearOperator and
sparse matrix returns are allowed only for ‘trust-constr’ method. Alternatively, the keywords
{‘2-point’, ‘3-point’, ‘cs’} select a finite difference scheme for numerical estimation. Or,
objects implementing HessianUpdateStrategy interface can be used to approximate
the Hessian. Available quasi-Newton methods implementing this interface are:
• BFGS;
• SR1.
Whenever the gradient is estimated via finite-differences, the Hessian cannot be esti-
mated with options {‘2-point’, ‘3-point’, ‘cs’} and needs to be estimated using one of
the quasi-Newton strategies. Finite-difference options {‘2-point’, ‘3-point’, ‘cs’} and
HessianUpdateStrategy are available only for ‘trust-constr’ method.

hessp [callable, optional] Hessian of objective function times an arbitrary vector p. Only for
Newton-CG, trust-ncg, trust-krylov, trust-constr. Only one of hessp or hess needs to be
given. If hess is provided, then hessp will be ignored. hesspmust compute the Hessian times
an arbitrary vector:
hessp(x, p, *args) -> ndarray shape (n,)

where x is a (n,) ndarray, p is an arbitrary vector with dimension (n,) and args is a tuple with
the fixed parameters.

bounds [sequence or Bounds, optional] Bounds on variables for L-BFGS-B, TNC, SLSQP and
trust-constr methods. There are two ways to specify the bounds:
1. Instance of Bounds class.
2. Sequence of (min, max) pairs for each element in x. None is used to specify no bound.

constraints
[{Constraint, dict} or List of {Constraint, dict}, optional] Constraints definition (only for
COBYLA, SLSQP and trust-constr). Constraints for ‘trust-constr’ are defined as a single
object or a list of objects specifying constraints to the optimization problem. Available con-
straints are:
• LinearConstraint
• NonlinearConstraint
Constraints for COBYLA, SLSQP are defined as a list of dictionaries. Each dictionary with
fields:
type [str] Constraint type: ‘eq’ for equality, ‘ineq’ for inequality.
fun [callable] The function defining the constraint.
jac [callable, optional] The Jacobian of fun (only for SLSQP).
args [sequence, optional] Extra arguments to be passed to the function and Jaco-

bian.
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Equality constraint means that the constraint function result is to be zero whereas inequality
means that it is to be non-negative. Note that COBYLA only supports inequality constraints.

tol [float, optional] Tolerance for termination. For detailed control, use solver-specific options.
options [dict, optional] A dictionary of solver options. All methods accept the following generic

options:
maxiter [int] Maximum number of iterations to perform.
disp [bool] Set to True to print convergence messages.

For method-specific options, see show_options.
callback [callable, optional] Called after each iteration. For ‘trust-constr’ it is a callable with the sig-

nature:
callback(xk, OptimizeResult state) -> bool

where xk is the current parameter vector. and state is an OptimizeResult object,
with the same fields as the ones from the return. If callback returns True the algorithm
execution is terminated. For all the other methods, the signature is:
callback(xk)

where xk is the current parameter vector.
Returns

res [OptimizeResult] The optimization result represented as a OptimizeResult object. Im-
portant attributes are: x the solution array, success a Boolean flag indicating if the opti-
mizer exited successfully and message which describes the cause of the termination. See
OptimizeResult for a description of other attributes.

See also:

minimize_scalar

Interface to minimization algorithms for scalar univariate functions
show_options

Additional options accepted by the solvers

Notes

This section describes the available solvers that can be selected by the ‘method’ parameter. The default method is
BFGS.
Unconstrained minimization
Method Nelder-Mead uses the Simplex algorithm [1], [2]. This algorithm is robust in many applications. However,
if numerical computation of derivative can be trusted, other algorithms using the first and/or second derivatives
information might be preferred for their better performance in general.
Method Powell is a modification of Powell’s method [3], [4] which is a conjugate direction method. It performs
sequential one-dimensional minimizations along each vector of the directions set (direc field in options and info),
which is updated at each iteration of the main minimization loop. The function need not be differentiable, and no
derivatives are taken.
Method CG uses a nonlinear conjugate gradient algorithm by Polak and Ribiere, a variant of the Fletcher-Reeves
method described in [5] pp. 120-122. Only the first derivatives are used.
Method BFGS uses the quasi-Newton method of Broyden, Fletcher, Goldfarb, and Shanno (BFGS) [5] pp. 136.
It uses the first derivatives only. BFGS has proven good performance even for non-smooth optimizations. This
method also returns an approximation of the Hessian inverse, stored as hess_inv in the OptimizeResult object.
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Method Newton-CG uses a Newton-CG algorithm [5] pp. 168 (also known as the truncated Newton method). It
uses a CG method to the compute the search direction. See also TNC method for a box-constrained minimization
with a similar algorithm. Suitable for large-scale problems.
Method dogleg uses the dog-leg trust-region algorithm [5] for unconstrained minimization. This algorithm requires
the gradient and Hessian; furthermore the Hessian is required to be positive definite.
Method trust-ncg uses the Newton conjugate gradient trust-region algorithm [5] for unconstrained minimization.
This algorithm requires the gradient and either the Hessian or a function that computes the product of the Hessian
with a given vector. Suitable for large-scale problems.
Method trust-krylov uses the Newton GLTR trust-region algorithm [14], [15] for unconstrained minimization. This
algorithm requires the gradient and either the Hessian or a function that computes the product of the Hessian with
a given vector. Suitable for large-scale problems. On indefinite problems it requires usually less iterations than the
trust-ncg method and is recommended for medium and large-scale problems.
Method trust-exact is a trust-region method for unconstrained minimization in which quadratic subproblems are
solved almost exactly [13]. This algorithm requires the gradient and the Hessian (which is not required to be positive
definite). It is, in many situations, the Newton method to converge in fewer iteraction and the most recommended
for small and medium-size problems.
Bound-Constrained minimization
Method L-BFGS-B uses the L-BFGS-B algorithm [6], [7] for bound constrained minimization.
Method TNC uses a truncated Newton algorithm [5], [8] to minimize a function with variables subject to bounds.
This algorithm uses gradient information; it is also called Newton Conjugate-Gradient. It differs from the Newton-
CG method described above as it wraps a C implementation and allows each variable to be given upper and lower
bounds.
Constrained Minimization
Method COBYLA uses the Constrained Optimization BY Linear Approximation (COBYLA) method [9], [10],
[11]. The algorithm is based on linear approximations to the objective function and each constraint. The method
wraps a FORTRAN implementation of the algorithm. The constraints functions ‘fun’ may return either a single
number or an array or list of numbers.
Method SLSQP uses Sequential Least SQuares Programming to minimize a function of several variables with any
combination of bounds, equality and inequality constraints. The method wraps the SLSQPOptimization subroutine
originally implemented by Dieter Kraft [12]. Note that the wrapper handles infinite values in bounds by converting
them into large floating values.
Method trust-constr is a trust-region algorithm for constrained optimization. It swiches between two implemen-
tations depending on the problem definition. It is the most versatile constrained minimization algorithm imple-
mented in SciPy and the most appropriate for large-scale problems. For equality constrained problems it is an
implementation of Byrd-Omojokun Trust-Region SQP method described in [17] and in [5], p. 549. When in-
equality constraints are imposed as well, it swiches to the trust-region interior point method described in [16]. This
interior point algorithm, in turn, solves inequality constraints by introducing slack variables and solving a sequence
of equality-constrained barrier problems for progressively smaller values of the barrier parameter. The previously
described equality constrained SQP method is used to solve the subproblems with increasing levels of accuracy as
the iterate gets closer to a solution.
Finite-Difference Options
For Method trust-constr the gradient and the Hessian may be approximated using three finite-difference schemes:
{‘2-point’, ‘3-point’, ‘cs’}. The scheme ‘cs’ is, potentially, the most accurate but it requires the function to correctly
handles complex inputs and to be differentiable in the complex plane. The scheme ‘3-point’ is more accurate than
‘2-point’ but requires twice as much operations.
Custom minimizers
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It may be useful to pass a custom minimization method, for example when using a frontend to this method such
as scipy.optimize.basinhopping or a different library. You can simply pass a callable as the method
parameter.
The callable is called as method(fun, x0, args, **kwargs, **options) where kwargs corre-
sponds to any other parameters passed to minimize (such as callback, hess, etc.), except the options dict, which
has its contents also passed as method parameters pair by pair. Also, if jac has been passed as a bool type, jac
and fun are mangled so that fun returns just the function values and jac is converted to a function returning the
Jacobian. The method shall return an OptimizeResult object.
The provided method callable must be able to accept (and possibly ignore) arbitrary parameters; the set of pa-
rameters accepted by minimize may expand in future versions and then these parameters will be passed to the
method. You can find an example in the scipy.optimize tutorial.
New in version 0.11.0.

References

[1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17]

Examples

Let us consider the problem of minimizing the Rosenbrock function. This function (and its respective derivatives)
is implemented in rosen (resp. rosen_der, rosen_hess) in the scipy.optimize.

>>> from scipy.optimize import minimize, rosen, rosen_der

A simple application of the Nelder-Mead method is:

>>> x0 = [1.3, 0.7, 0.8, 1.9, 1.2]
>>> res = minimize(rosen, x0, method='Nelder-Mead', tol=1e-6)
>>> res.x
array([ 1., 1., 1., 1., 1.])

Now using the BFGS algorithm, using the first derivative and a few options:

>>> res = minimize(rosen, x0, method='BFGS', jac=rosen_der,
... options={'gtol': 1e-6, 'disp': True})
Optimization terminated successfully.

Current function value: 0.000000
Iterations: 26
Function evaluations: 31
Gradient evaluations: 31

>>> res.x
array([ 1., 1., 1., 1., 1.])
>>> print(res.message)
Optimization terminated successfully.
>>> res.hess_inv
array([[ 0.00749589, 0.01255155, 0.02396251, 0.04750988, 0.09495377],␣
↪→ # may vary

[ 0.01255155, 0.02510441, 0.04794055, 0.09502834, 0.18996269],
[ 0.02396251, 0.04794055, 0.09631614, 0.19092151, 0.38165151],
[ 0.04750988, 0.09502834, 0.19092151, 0.38341252, 0.7664427 ],
[ 0.09495377, 0.18996269, 0.38165151, 0.7664427, 1.53713523]])
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Next, consider a minimization problem with several constraints (namely Example 16.4 from [5]). The objective
function is:

>>> fun = lambda x: (x[0] - 1)**2 + (x[1] - 2.5)**2

There are three constraints defined as:

>>> cons = ({'type': 'ineq', 'fun': lambda x: x[0] - 2 * x[1] + 2},
... {'type': 'ineq', 'fun': lambda x: -x[0] - 2 * x[1] + 6},
... {'type': 'ineq', 'fun': lambda x: -x[0] + 2 * x[1] + 2})

And variables must be positive, hence the following bounds:

>>> bnds = ((0, None), (0, None))

The optimization problem is solved using the SLSQP method as:

>>> res = minimize(fun, (2, 0), method='SLSQP', bounds=bnds,
... constraints=cons)

It should converge to the theoretical solution (1.4 ,1.7).
The minimize function supports the following methods:

minimize(method=’Nelder-Mead’)
scipy.optimize.minimize(fun, x0, args=(), method=’Nelder-Mead’, tol=None, callback=None, op-

tions={’func’: None, ’maxiter’: None, ’maxfev’: None, ’disp’: False, ’return_all’:
False, ’initial_simplex’: None, ’xatol’: 0.0001, ’fatol’: 0.0001, ’adaptive’:
False})

Minimization of scalar function of one or more variables using the Nelder-Mead algorithm.
See also:
For documentation for the rest of the parameters, see scipy.optimize.minimize

Options

disp [bool] Set to True to print convergence messages.
maxiter, maxfev

[int] Maximum allowed number of iterations and function evaluations. Will default to
N*200, where N is the number of variables, if neither maxiter or maxfev is set. If both
maxiter and maxfev are set, minimization will stop at the first reached.

initial_simplex
[array_like of shape (N + 1, N)] Initial simplex. If given, overrides x0.
initial_simplex[j,:] should contain the coordinates of the j-th vertex of
the N+1 vertices in the simplex, where N is the dimension.

xatol [float, optional] Absolute error in xopt between iterations that is acceptable for convergence.
fatol [number, optional] Absolute error in func(xopt) between iterations that is acceptable for

convergence.
adaptive [bool, optional] Adapt algorithm parameters to dimensionality of problem. Useful for high-

dimensional minimization [1].

References

[1]
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minimize(method=’Powell’)
scipy.optimize.minimize(fun, x0, args=(), method=’Powell’, tol=None, callback=None, op-

tions={’func’: None, ’xtol’: 0.0001, ’ftol’: 0.0001, ’maxiter’: None, ’maxfev’:
None, ’disp’: False, ’direc’: None, ’return_all’: False})

Minimization of scalar function of one or more variables using the modified Powell algorithm.
See also:
For documentation for the rest of the parameters, see scipy.optimize.minimize

Options

disp [bool] Set to True to print convergence messages.
xtol [float] Relative error in solution xopt acceptable for convergence.
ftol [float] Relative error in fun(xopt) acceptable for convergence.
maxiter, maxfev

[int] Maximum allowed number of iterations and function evaluations. Will default to
N*1000, where N is the number of variables, if neither maxiter or maxfev is set. If both
maxiter and maxfev are set, minimization will stop at the first reached.

direc [ndarray] Initial set of direction vectors for the Powell method.

minimize(method=’CG’)
scipy.optimize.minimize(fun, x0, args=(), method=’CG’, jac=None, tol=None, callback=None, op-

tions={’gtol’: 1e-05, ’norm’: inf, ’eps’: 1.4901161193847656e-08, ’maxiter’:
None, ’disp’: False, ’return_all’: False})

Minimization of scalar function of one or more variables using the conjugate gradient algorithm.
See also:
For documentation for the rest of the parameters, see scipy.optimize.minimize

Options

disp [bool] Set to True to print convergence messages.
maxiter [int] Maximum number of iterations to perform.
gtol [float] Gradient norm must be less than gtol before successful termination.
norm [float] Order of norm (Inf is max, -Inf is min).
eps [float or ndarray] If jac is approximated, use this value for the step size.

minimize(method=’BFGS’)
scipy.optimize.minimize(fun, x0, args=(), method=’BFGS’, jac=None, tol=None, callback=None, op-

tions={’gtol’: 1e-05, ’norm’: inf, ’eps’: 1.4901161193847656e-08, ’maxiter’:
None, ’disp’: False, ’return_all’: False})

Minimization of scalar function of one or more variables using the BFGS algorithm.
See also:
For documentation for the rest of the parameters, see scipy.optimize.minimize

Options

disp [bool] Set to True to print convergence messages.
maxiter [int] Maximum number of iterations to perform.
gtol [float] Gradient norm must be less than gtol before successful termination.
norm [float] Order of norm (Inf is max, -Inf is min).
eps [float or ndarray] If jac is approximated, use this value for the step size.
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minimize(method=’Newton-CG’)
scipy.optimize.minimize(fun, x0, args=(), method=’Newton-CG’, jac=None, hess=None,

hessp=None, tol=None, callback=None, options={’xtol’: 1e-05, ’eps’:
1.4901161193847656e-08, ’maxiter’: None, ’disp’: False, ’return_all’:
False})

Minimization of scalar function of one or more variables using the Newton-CG algorithm.
Note that the jac parameter (Jacobian) is required.
See also:
For documentation for the rest of the parameters, see scipy.optimize.minimize

Options

disp [bool] Set to True to print convergence messages.
xtol [float] Average relative error in solution xopt acceptable for convergence.
maxiter [int] Maximum number of iterations to perform.
eps [float or ndarray] If jac is approximated, use this value for the step size.

minimize(method=’L-BFGS-B’)
scipy.optimize.minimize(fun, x0, args=(), method=’L-BFGS-B’, jac=None, bounds=None,

tol=None, callback=None, options={’disp’: None, ’maxcor’: 10, ’ftol’:
2.220446049250313e-09, ’gtol’: 1e-05, ’eps’: 1e-08, ’maxfun’: 15000,
’maxiter’: 15000, ’iprint’: -1, ’maxls’: 20})

Minimize a scalar function of one or more variables using the L-BFGS-B algorithm.
See also:
For documentation for the rest of the parameters, see scipy.optimize.minimize

Options

disp [None or int] If disp is None (the default), then the supplied version of iprint is used. If disp
is not None, then it overrides the supplied version of iprint with the behaviour you outlined.

maxcor [int] The maximum number of variable metric corrections used to define the limited memory
matrix. (The limitedmemory BFGSmethod does not store the full hessian but uses this many
terms in an approximation to it.)

ftol [float] The iteration stops when (f^k - f^{k+1})/max{|f^k|,|f^{k+1}|,1}
<= ftol.

gtol [float] The iteration will stop when max{|proj g_i | i = 1, ..., n} <=
gtol where pg_i is the i-th component of the projected gradient.

eps [float] Step size used for numerical approximation of the jacobian.
maxfun [int] Maximum number of function evaluations.
maxiter [int] Maximum number of iterations.
maxls [int, optional] Maximum number of line search steps (per iteration). Default is 20.

Notes

The option ftol is exposed via the scipy.optimize.minimize interface, but calling scipy.optimize.
fmin_l_bfgs_b directly exposes factr. The relationship between the two is ftol = factr * numpy.
finfo(float).eps. I.e., factr multiplies the default machine floating-point precision to arrive at ftol.
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minimize(method=’TNC’)
scipy.optimize.minimize(fun, x0, args=(), method=’TNC’, jac=None, bounds=None, tol=None, call-

back=None, options={’eps’: 1e-08, ’scale’: None, ’offset’: None, ’mesg_num’:
None, ’maxCGit’: -1, ’maxiter’: None, ’eta’: -1, ’stepmx’: 0, ’accuracy’: 0, ’min-
fev’: 0, ’ftol’: -1, ’xtol’: -1, ’gtol’: -1, ’rescale’: -1, ’disp’: False})

Minimize a scalar function of one or more variables using a truncated Newton (TNC) algorithm.
See also:
For documentation for the rest of the parameters, see scipy.optimize.minimize

Options

eps [float] Step size used for numerical approximation of the jacobian.
scale [list of floats] Scaling factors to apply to each variable. If None, the factors are up-low for

interval bounded variables and 1+|x] fo the others. Defaults to None
offset [float] Value to subtract from each variable. If None, the offsets are (up+low)/2 for interval

bounded variables and x for the others.
disp [bool] Set to True to print convergence messages.
maxCGit [int] Maximum number of hessian*vector evaluations per main iteration. If maxCGit ==

0, the direction chosen is -gradient if maxCGit < 0, maxCGit is set to max(1,min(50,n/2)).
Defaults to -1.

maxiter [int] Maximum number of function evaluation. if None, maxiter is set to max(100,
10*len(x0)). Defaults to None.

eta [float] Severity of the line search. if < 0 or > 1, set to 0.25. Defaults to -1.
stepmx [float] Maximum step for the line search. May be increased during call. If too small, it will

be set to 10.0. Defaults to 0.
accuracy [float] Relative precision for finite difference calculations. If <= machine_precision, set to

sqrt(machine_precision). Defaults to 0.
minfev [float] Minimum function value estimate. Defaults to 0.
ftol [float] Precision goal for the value of f in the stopping criterion. If ftol < 0.0, ftol is set to

0.0 defaults to -1.
xtol [float] Precision goal for the value of x in the stopping criterion (after applying x scaling

factors). If xtol < 0.0, xtol is set to sqrt(machine_precision). Defaults to -1.
gtol [float] Precision goal for the value of the projected gradient in the stopping criterion (after

applying x scaling factors). If gtol < 0.0, gtol is set to 1e-2 * sqrt(accuracy). Setting it to 0.0
is not recommended. Defaults to -1.

rescale [float] Scaling factor (in log10) used to trigger f value rescaling. If 0, rescale at each iteration.
If a large value, never rescale. If < 0, rescale is set to 1.3.

minimize(method=’COBYLA’)
scipy.optimize.minimize(fun, x0, args=(), method=’COBYLA’, constraints=(), tol=None, call-

back=None, options={’rhobeg’: 1.0, ’maxiter’: 1000, ’disp’: False, ’catol’:
0.0002})

Minimize a scalar function of one or more variables using the Constrained Optimization BY Linear Approximation
(COBYLA) algorithm.
See also:
For documentation for the rest of the parameters, see scipy.optimize.minimize

Options

rhobeg [float] Reasonable initial changes to the variables.
tol [float] Final accuracy in the optimization (not precisely guaranteed). This is a lower bound

on the size of the trust region.
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disp [bool] Set to True to print convergence messages. If False, verbosity is ignored as set to 0.
maxiter [int] Maximum number of function evaluations.
catol [float] Tolerance (absolute) for constraint violations

minimize(method=’SLSQP’)
scipy.optimize.minimize(fun, x0, args=(), method=’SLSQP’, jac=None, bounds=None, constraints=(),

tol=None, callback=None, options={’func’: None, ’maxiter’: 100, ’ftol’: 1e-06,
’iprint’: 1, ’disp’: False, ’eps’: 1.4901161193847656e-08})

Minimize a scalar function of one or more variables using Sequential Least SQuares Programming (SLSQP).
See also:
For documentation for the rest of the parameters, see scipy.optimize.minimize

Options

ftol [float] Precision goal for the value of f in the stopping criterion.
eps [float] Step size used for numerical approximation of the Jacobian.
disp [bool] Set to True to print convergence messages. If False, verbosity is ignored and set to 0.
maxiter [int] Maximum number of iterations.

minimize(method=’trust-constr’)
scipy.optimize.minimize(fun, x0, args=(), method=’trust-constr’, hess=None, hessp=None,

bounds=None, constraints=(), tol=None, callback=None, options={’grad’:
None, ’xtol’: 1e-08, ’gtol’: 1e-08, ’barrier_tol’: 1e-08, ’sparse_jacobian’:
None, ’maxiter’: 1000, ’verbose’: 0, ’finite_diff_rel_step’: None, ’ini-
tial_constr_penalty’: 1.0, ’initial_tr_radius’: 1.0, ’initial_barrier_parameter’:
0.1, ’initial_barrier_tolerance’: 0.1, ’factorization_method’: None, ’disp’:
False})

Minimize a scalar function subject to constraints.
Parameters

gtol [float, optional] Tolerance for termination by the norm of the Lagrangian gradient. The
algorithm will terminate when both the infinity norm (i.e. max abs value) of the Lagrangian
gradient and the constraint violation are smaller than gtol. Default is 1e-8.

xtol [float, optional] Tolerance for termination by the change of the independent variable. The
algorithm will terminate when tr_radius < xtol, where tr_radius is the radius
of the trust region used in the algorithm. Default is 1e-8.

barrier_tol
[float, optional] Threshold on the barrier parameter for the algorithm termination. When in-
equality constraints are present the algorithm will terminate only when the barrier parameter
is less than barrier_tol. Default is 1e-8.

sparse_jacobian
[{bool, None}, optional] Determines how to represent Jacobians of the constraints. If bool,
then Jacobians of all the constraints will be converted to the corresponding format. If None
(default), then Jacobians won’t be converted, but the algorithm can proceed only if they all
have the same format.

initial_tr_radius: float, optional
Initial trust radius. The trust radius gives the maximum distance between solution points
in consecutive iterations. It reflects the trust the algorithm puts in the local approximation
of the optimization problem. For an accurate local approximation the trust-region should
be large and for an approximation valid only close to the current point it should be a small
one. The trust radius is automatically updated throughout the optimization process, with
initial_tr_radius being its initial value. Default is 1 (recommended in [1], p. 19).
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initial_constr_penalty
[float, optional] Initial constraints penalty parameter. The penalty parameter is used for
balancing the requirements of decreasing the objective function and satisfying the con-
straints. It is used for defining the merit function: merit_function(x) = fun(x)
+ constr_penalty * constr_norm_l2(x), where constr_norm_l2(x) is
the l2 norm of a vector containing all the constraints. The merit function is used for accept-
ing or rejecting trial points and constr_penalty weights the two conflicting goals of
reducing objective function and constraints. The penalty is automatically updated through-
out the optimization process, with initial_constr_penalty being its initial value.
Default is 1 (recommended in [1], p 19).

initial_barrier_parameter, initial_barrier_tolerance: float, optional
Initial barrier parameter and initial tolerance for the barrier subproblem. Both
are used only when inequality constraints are present. For dealing with opti-
mization problems min_x f(x) subject to inequality constraints c(x) <= 0 the
algorithm introduces slack variables, solving the problem min_(x,s) f(x) +
barrier_parameter*sum(ln(s)) subject to the equality constraints c(x) +
s = 0 instead of the original problem. This subproblem is solved for increasing
values of barrier_parameter and with decreasing tolerances for the termina-
tion, starting with initial_barrier_parameter for the barrier parameter and
initial_barrier_tolerance for the barrier subproblem barrier. Default is 0.1 for
both values (recommended in [1] p. 19).

factorization_method
[string or None, optional] Method to factorize the Jacobian of the constraints. Use None
(default) for the auto selection or one of:
• ‘NormalEquation’ (requires scikit-sparse)
• ‘AugmentedSystem’
• ‘QRFactorization’
• ‘SVDFactorization’
The methods ‘NormalEquation’ and ‘AugmentedSystem’ can be used only with sparse con-
straints. The projections required by the algorithm will be computed using, respectively, the
the normal equation and the augmented system approaches explained in [1]. ‘NormalEqua-
tion’ computes the Cholesky factorization of A A.T and ‘AugmentedSystem’ performs the
LU factorization of an augmented system. They usually provide similar results. ‘Augment-
edSystem’ is used by default for sparse matrices.
The methods ‘QRFactorization’ and ‘SVDFactorization’ can be used only with dense con-
straints. They compute the required projections using, respectively, QR and SVD factoriza-
tions. The ‘SVDFactorization’ method can cope with Jacobian matrices with deficient row
rank and will be used whenever other factorization methods fail (which may imply the con-
version of sparse matrices to a dense format when required). By default ‘QRFactorization’
is used for dense matrices.

finite_diff_rel_step
[None or array_like, optional] Relative step size for the finite difference approximation.

maxiter [int, optional] Maximum number of algorithm iterations. Default is 1000.
verbose [{0, 1, 2}, optional] Level of algorithm’s verbosity:

• 0 (default) : work silently.
• 1 : display a termination report.
• 2 : display progress during iterations.
• 3 : display progress during iterations (more complete report).

disp [bool, optional] If True (default) then verbose will be set to 1 if it was 0.
Returns

OptimizeResult with the fields documented below. Note the following:
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1. All values corresponding to the constraints are ordered as they were passed to the solver.
And values corresponding to bounds constraints are put after other constraints.

2. All numbers of function, Jacobian or Hessian evaluations correspond to numbers of actual
Python function calls. It means, for example, that if a Jacobian is estimated by finite dif-
ferences then the number of Jacobian evaluations will be zero and the number of function
evaluations will be incremented by all calls during the finite difference estimation.

x [ndarray, shape (n,)] Solution found.
optimality [float] Infinity norm of the Lagrangian gradient at the solution.
constr_violation

[float] Maximum constraint violation at the solution.
fun [float] Objective function at the solution.
grad [ndarray, shape (n,)] Gradient of the objective function at the solution.
lagrangian_grad

[ndarray, shape (n,)] Gradient of the Lagrangian function at the solution.
nit [int] Total number of iterations.
nfev [integer] Number of the objective function evaluations.
ngev [integer] Number of the objective function gradient evaluations.
nhev [integer] Number of the objective function Hessian evaluations.
cg_niter [int] Total number of the conjugate gradient method iterations.
method [{‘equality_constrained_sqp’, ‘tr_interior_point’}] Optimization method used.
constr [list of ndarray] List of constraint values at the solution.
jac [list of {ndarray, sparse matrix}] List of the Jacobian matrices of the constraints at the so-

lution.
v [list of ndarray] List of the Lagrange multipliers for the constraints at the solution. For an

inequality constraint a positive multiplier means that the upper bound is active, a negative
multiplier means that the lower bound is active and if a multiplier is zero it means the con-
straint is not active.

constr_nfev
[list of int] Number of constraint evaluations for each of the constraints.

constr_njev
[list of int] Number of Jacobian matrix evaluations for each of the constraints.

constr_nhev
[list of int] Number of Hessian evaluations for each of the constraints.

tr_radius [float] Radius of the trust region at the last iteration.
constr_penalty

[float] Penalty parameter at the last iteration, see initial_constr_penalty.
barrier_tolerance

[float] Tolerance for the barrier subproblem at the last iteration. Only for problems with
inequality constraints.

barrier_parameter
[float] Barrier parameter at the last iteration. Only for problems with inequality constraints.

execution_time
[float] Total execution time.

message [str] Termination message.
status [{0, 1, 2, 3}] Termination status:

• 0 : The maximum number of function evaluations is exceeded.
• 1 : gtol termination condition is satisfied.
• 2 : xtol termination condition is satisfied.
• 3 : callback function requested termination.

cg_stop_cond
[int] Reason for CG subproblem termination at the last iteration:
• 0 : CG subproblem not evaluated.
• 1 : Iteration limit was reached.
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• 2 : Reached the trust-region boundary.
• 3 : Negative curvature detected.
• 4 : Tolerance was satisfied.

References

[1]

minimize(method=’dogleg’)
scipy.optimize.minimize(fun, x0, args=(), method=’dogleg’, jac=None, hess=None, tol=None, call-

back=None, options={})
Minimization of scalar function of one or more variables using the dog-leg trust-region algorithm.
See also:
For documentation for the rest of the parameters, see scipy.optimize.minimize

Options

initial_trust_radius
[float] Initial trust-region radius.

max_trust_radius
[float] Maximum value of the trust-region radius. No steps that are longer than this value
will be proposed.

eta [float] Trust region related acceptance stringency for proposed steps.
gtol [float] Gradient norm must be less than gtol before successful termination.

minimize(method=’trust-ncg’)
scipy.optimize.minimize(fun, x0, args=(), method=’trust-ncg’, jac=None, hess=None, hessp=None,

tol=None, callback=None, options={})
Minimization of scalar function of one or more variables using the Newton conjugate gradient trust-region algo-
rithm.
See also:
For documentation for the rest of the parameters, see scipy.optimize.minimize

Options

initial_trust_radius
[float] Initial trust-region radius.

max_trust_radius
[float] Maximum value of the trust-region radius. No steps that are longer than this value
will be proposed.

eta [float] Trust region related acceptance stringency for proposed steps.
gtol [float] Gradient norm must be less than gtol before successful termination.

minimize(method=’trust-krylov’)
scipy.optimize.minimize(fun, x0, args=(), method=’trust-krylov’, jac=None, hess=None, hessp=None,

tol=None, callback=None, options={’inexact’: True})
Minimization of a scalar function of one or more variables using a nearly exact trust-region algorithm that only
requires matrix vector products with the hessian matrix.
New in version 1.0.0.
See also:
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For documentation for the rest of the parameters, see scipy.optimize.minimize

Options

inexact [bool, optional] Accuracy to solve subproblems. If True requires less nonlinear iterations,
but more vector products.

minimize(method=’trust-exact’)
scipy.optimize.minimize(fun, x0, args=(), method=’trust-exact’, jac=None, hess=None, tol=None, call-

back=None, options={})
Minimization of scalar function of one or more variables using a nearly exact trust-region algorithm.
See also:
For documentation for the rest of the parameters, see scipy.optimize.minimize

Options

initial_tr_radius
[float] Initial trust-region radius.

max_tr_radius
[float] Maximum value of the trust-region radius. No steps that are longer than this value
will be proposed.

eta [float] Trust region related acceptance stringency for proposed steps.
gtol [float] Gradient norm must be less than gtol before successful termination.

Constraints are passed to minimize function as a single object or as a list of objects from the following classes:

NonlinearConstraint(fun, lb, ub[, jac, …]) Nonlinear constraint on the variables.
LinearConstraint(A, lb, ub[, keep_feasible]) Linear constraint on the variables.

scipy.optimize.NonlinearConstraint
class scipy.optimize.NonlinearConstraint(fun, lb, ub, jac=’2-point’,

hess=<scipy.optimize._hessian_update_strategy.BFGS
object>, keep_feasible=False, fi-
nite_diff_rel_step=None, fi-
nite_diff_jac_sparsity=None)

Nonlinear constraint on the variables.
The constraint has the general inequality form:

lb <= fun(x) <= ub

Here the vector of independent variables x is passed as ndarray of shape (n,) and fun returns a vector with m
components.
It is possible to use equal bounds to represent an equality constraint or infinite bounds to represent a one-sided
constraint.

Parameters

fun [callable] The function defining the constraint. The signature is fun(x) ->
array_like, shape (m,).

lb, ub [array_like] Lower and upper bounds on the constraint. Each array must have the shape (m,)
or be a scalar, in the latter case a bound will be the same for all components of the constraint.
Use np.inf with an appropriate sign to specify a one-sided constraint. Set components of
lb and ub equal to represent an equality constraint. Note that you can mix constraints of
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different types: interval, one-sided or equality, by setting different components of lb and ub
as necessary.

jac [{callable, ‘2-point’, ‘3-point’, ‘cs’}, optional] Method of computing the Jacobian matrix (an
m-by-n matrix, where element (i, j) is the partial derivative of f[i] with respect to x[j]). The
keywords {‘2-point’, ‘3-point’, ‘cs’} select a finite difference scheme for the numerical estima-
tion. A callable must have the following signature: jac(x) -> {ndarray, sparse
matrix}, shape (m, n). Default is ‘2-point’.

hess [{callable, ‘2-point’, ‘3-point’, ‘cs’, HessianUpdateStrategy, None}, optional] Method for
computing the Hessian matrix. The keywords {‘2-point’, ‘3-point’, ‘cs’} select a fi-
nite difference scheme for numerical estimation. Alternatively, objects implementing
HessianUpdateStrategy interface can be used to approximate the Hessian. Cur-
rently available implementations are:
• BFGS (default option)
• SR1
A callable must return the Hessian matrix of dot(fun, v) and must have the
following signature: hess(x, v) -> {LinearOperator, sparse matrix,
array_like}, shape (n, n). Here v is ndarray with shape (m,) containing La-
grange multipliers.

keep_feasible
[array_like of bool, optional]Whether to keep the constraint components feasible throughout
iterations. A single value set this property for all components. Default is False. Has no effect
for equality constraints.

finite_diff_rel_step: None or array_like, optional
Relative step size for the finite difference approximation. Default is None, which will select
a reasonable value automatically depending on a finite difference scheme.

finite_diff_jac_sparsity: {None, array_like, sparse matrix}, optional
Defines the sparsity structure of the Jacobian matrix for finite difference estimation, its shape
must be (m, n). If the Jacobian has only few non-zero elements in each row, providing
the sparsity structure will greatly speed up the computations. A zero entry means that a
corresponding element in the Jacobian is identically zero. If provided, forces the use of
‘lsmr’ trust-region solver. If None (default) then dense differencing will be used.

Notes

Finite difference schemes {‘2-point’, ‘3-point’, ‘cs’} may be used for approximating either the Jacobian or the Hes-
sian. We, however, do not allow its use for approximating both simultaneously. Hence whenever the Jacobian is
estimated via finite-differences, we require the Hessian to be estimated using one of the quasi-Newton strategies.
The scheme ‘cs’ is potentially the most accurate, but requires the function to correctly handles complex inputs and
be analytically continuable to the complex plane. The scheme ‘3-point’ is more accurate than ‘2-point’ but requires
twice as many operations.

scipy.optimize.LinearConstraint
class scipy.optimize.LinearConstraint(A, lb, ub, keep_feasible=False)

Linear constraint on the variables.
The constraint has the general inequality form:

lb <= A.dot(x) <= ub

Here the vector of independent variables x is passed as ndarray of shape (n,) and the matrix A has shape (m, n).
It is possible to use equal bounds to represent an equality constraint or infinite bounds to represent a one-sided
constraint.
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Parameters

A [{array_like, sparse matrix}, shape (m, n)] Matrix defining the constraint.
lb, ub [array_like] Lower and upper bounds on the constraint. Each array must have the shape (m,)

or be a scalar, in the latter case a bound will be the same for all components of the constraint.
Use np.inf with an appropriate sign to specify a one-sided constraint. Set components of
lb and ub equal to represent an equality constraint. Note that you can mix constraints of
different types: interval, one-sided or equality, by setting different components of lb and ub
as necessary.

keep_feasible
[array_like of bool, optional]Whether to keep the constraint components feasible throughout
iterations. A single value set this property for all components. Default is False. Has no effect
for equality constraints.

Simple bound constraints are handled separately and there is a special class for them:

Bounds(lb, ub[, keep_feasible]) Bounds constraint on the variables.

scipy.optimize.Bounds
class scipy.optimize.Bounds(lb, ub, keep_feasible=False)

Bounds constraint on the variables.
The constraint has the general inequality form:

lb <= x <= ub

It is possible to use equal bounds to represent an equality constraint or infinite bounds to represent a one-sided
constraint.

Parameters

lb, ub [array_like, optional] Lower and upper bounds on independent variables. Each array must
have the same size as x or be a scalar, in which case a bound will be the same for all the
variables. Set components of lb and ub equal to fix a variable. Use np.inf with an appro-
priate sign to disable bounds on all or some variables. Note that you can mix constraints of
different types: interval, one-sided or equality, by setting different components of lb and ub
as necessary.

keep_feasible
[array_like of bool, optional]Whether to keep the constraint components feasible throughout
iterations. A single value set this property for all components. Default is False. Has no effect
for equality constraints.

Quasi-Newton strategies implementing HessianUpdateStrategy interface can be used to approximate the Hessian
in minimize function (available only for the ‘trust-constr’ method). Available quasi-Newton methods implementing this
interface are:

BFGS([exception_strategy, min_curvature, …]) Broyden-Fletcher-Goldfarb-Shanno (BFGS) Hessian up-
date strategy.

SR1([min_denominator, init_scale]) Symmetric-rank-1 Hessian update strategy.

scipy.optimize.BFGS
class scipy.optimize.BFGS(exception_strategy=’skip_update’, min_curvature=None,

init_scale=’auto’)
Broyden-Fletcher-Goldfarb-Shanno (BFGS) Hessian update strategy.

Parameters

1296 Chapter 6. API Reference



SciPy Reference Guide, Release 1.3.1

exception_strategy
[{‘skip_update’, ‘damp_update’}, optional] Define how to proceed when the curvature con-
dition is violated. Set it to ‘skip_update’ to just skip the update. Or, alternatively, set it to
‘damp_update’ to interpolate between the actual BFGS result and the unmodified matrix.
Both exceptions strategies are explained in [1], p.536-537.

min_curvature
[float] This number, scaled by a normalization factor, defines the minimum curvature
dot(delta_grad, delta_x) allowed to go unaffected by the exception strategy. By
default is equal to 1e-8 when exception_strategy = 'skip_update' and equal
to 0.2 when exception_strategy = 'damp_update'.

init_scale [{float, ‘auto’}] Matrix scale at first iteration. At the first iteration the Hessian matrix or
its inverse will be initialized with init_scale*np.eye(n), where n is the problem
dimension. Set it to ‘auto’ in order to use an automatic heuristic for choosing the initial scale.
The heuristic is described in [1], p.143. By default uses ‘auto’.

Notes

The update is based on the description in [1], p.140.

References

[1]

Methods

dot(p) Compute the product of the internal matrix with the
given vector.

get_matrix() Return the current internal matrix.
initialize(n, approx_type) Initialize internal matrix.
update(delta_x, delta_grad) Update internal matrix.

scipy.optimize.BFGS.dot

BFGS.dot(p)
Compute the product of the internal matrix with the given vector.

Parameters

p [array_like] 1-d array representing a vector.
Returns

Hp [array] 1-d represents the result of multiplying the approximation matrix by vector p.

scipy.optimize.BFGS.get_matrix

BFGS.get_matrix()
Return the current internal matrix.

Returns
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M [ndarray, shape (n, n)] Dense matrix containing either the Hessian or its inverse (de-
pending on how approx_type was defined).

scipy.optimize.BFGS.initialize

BFGS.initialize(n, approx_type)
Initialize internal matrix.
Allocate internal memory for storing and updating the Hessian or its inverse.

Parameters

n [int] Problem dimension.
approx_type

[{‘hess’, ‘inv_hess’}] Selects either the Hessian or the inverse Hessian. When set to ‘hess’
the Hessian will be stored and updated. When set to ‘inv_hess’ its inverse will be used
instead.

scipy.optimize.BFGS.update

BFGS.update(delta_x, delta_grad)
Update internal matrix.
Update Hessian matrix or its inverse (depending on how ‘approx_type’ is defined) using information about
the last evaluated points.

Parameters

delta_x [ndarray] The difference between two points the gradient function have been evaluated
at: delta_x = x2 - x1.

delta_grad
[ndarray] The difference between the gradients: delta_grad = grad(x2) -
grad(x1).

scipy.optimize.SR1
class scipy.optimize.SR1(min_denominator=1e-08, init_scale=’auto’)

Symmetric-rank-1 Hessian update strategy.
Parameters

min_denominator
[float] This number, scaled by a normalization factor, defines the minimum denominator
magnitude allowed in the update. When the condition is violated we skip the update. By
default uses 1e-8.

init_scale [{float, ‘auto’}, optional]Matrix scale at first iteration. At the first iteration the Hessianmatrix
or its inverse will be initialized with init_scale*np.eye(n), where n is the problem
dimension. Set it to ‘auto’ in order to use an automatic heuristic for choosing the initial scale.
The heuristic is described in [1], p.143. By default uses ‘auto’.

Notes

The update is based on the description in [1], p.144-146.
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References
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Methods

dot(p) Compute the product of the internal matrix with the
given vector.

get_matrix() Return the current internal matrix.
initialize(n, approx_type) Initialize internal matrix.
update(delta_x, delta_grad) Update internal matrix.

scipy.optimize.SR1.dot

SR1.dot(p)
Compute the product of the internal matrix with the given vector.

Parameters

p [array_like] 1-d array representing a vector.
Returns

Hp [array] 1-d represents the result of multiplying the approximation matrix by vector p.

scipy.optimize.SR1.get_matrix

SR1.get_matrix()
Return the current internal matrix.

Returns

M [ndarray, shape (n, n)] Dense matrix containing either the Hessian or its inverse (de-
pending on how approx_type was defined).

scipy.optimize.SR1.initialize

SR1.initialize(n, approx_type)
Initialize internal matrix.
Allocate internal memory for storing and updating the Hessian or its inverse.

Parameters

n [int] Problem dimension.
approx_type

[{‘hess’, ‘inv_hess’}] Selects either the Hessian or the inverse Hessian. When set to ‘hess’
the Hessian will be stored and updated. When set to ‘inv_hess’ its inverse will be used
instead.
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scipy.optimize.SR1.update

SR1.update(delta_x, delta_grad)
Update internal matrix.
Update Hessian matrix or its inverse (depending on how ‘approx_type’ is defined) using information about
the last evaluated points.

Parameters

delta_x [ndarray] The difference between two points the gradient function have been evaluated
at: delta_x = x2 - x1.

delta_grad
[ndarray] The difference between the gradients: delta_grad = grad(x2) -
grad(x1).

Global Optimization

basinhopping(func, x0[, niter, T, stepsize, …]) Find the global minimum of a function using the basin-
hopping algorithm

brute(func, ranges[, args, Ns, full_output, …]) Minimize a function over a given range by brute force.
differential_evolution(func, bounds[, args,
…])

Finds the global minimum of a multivariate function.

shgo(func, bounds[, args, constraints, n, …]) Finds the global minimum of a function using SHG opti-
mization.

dual_annealing(func, bounds[, args, …]) Find the global minimum of a function using Dual An-
nealing.

scipy.optimize.basinhopping
scipy.optimize.basinhopping(func, x0, niter=100, T=1.0, stepsize=0.5, minimizer_kwargs=None,

take_step=None, accept_test=None, callback=None, interval=50,
disp=False, niter_success=None, seed=None)

Find the global minimum of a function using the basin-hopping algorithm
Basin-hopping is a two-phase method that combines a global stepping algorithm with local minimization at each
step. Designed to mimic the natural process of energy minimization of clusters of atoms, it works well for similar
problems with “funnel-like, but rugged” energy landscapes [5].
As the step-taking, step acceptance, and minimization methods are all customizable, this function can also be used
to implement other two-phase methods.

Parameters

func [callable f(x, *args)] Function to be optimized. args can be passed as an optional
item in the dict minimizer_kwargs

x0 [array_like] Initial guess.
niter [integer, optional] The number of basin-hopping iterations
T [float, optional] The “temperature” parameter for the accept or reject criterion. Higher “tem-

peratures” mean that larger jumps in function value will be accepted. For best results T
should be comparable to the separation (in function value) between local minima.

stepsize [float, optional] Maximum step size for use in the random displacement.
minimizer_kwargs

[dict, optional] Extra keyword arguments to be passed to the local minimizer scipy.
optimize.minimize() Some important options could be:
method [str] The minimization method (e.g. "L-BFGS-B")
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args [tuple] Extra arguments passed to the objective function (func) and its
derivatives (Jacobian, Hessian).

take_step [callable take_step(x), optional] Replace the default step-taking routine with this rou-
tine. The default step-taking routine is a random displacement of the coordinates, but other
step-taking algorithms may be better for some systems. take_step can optionally have
the attribute take_step.stepsize. If this attribute exists, then basinhopping will
adjust take_step.stepsize in order to try to optimize the global minimum search.

accept_test
[callable, accept_test(f_new=f_new, x_new=x_new, f_old=fold,
x_old=x_old), optional] Define a test which will be used to judge whether or not to
accept the step. This will be used in addition to the Metropolis test based on “temperature”
T. The acceptable return values are True, False, or "force accept". If any of the tests
return False then the step is rejected. If the latter, then this will override any other tests in
order to accept the step. This can be used, for example, to forcefully escape from a local
minimum that basinhopping is trapped in.

callback [callable, callback(x, f, accept), optional] A callback function which will be
called for all minima found. x and f are the coordinates and function value of the trial
minimum, and accept is whether or not that minimum was accepted. This can be used,
for example, to save the lowest N minima found. Also, callback can be used to spec-
ify a user defined stop criterion by optionally returning True to stop the basinhopping
routine.

interval [integer, optional] interval for how often to update the stepsize
disp [bool, optional] Set to True to print status messages
niter_success

[integer, optional] Stop the run if the global minimum candidate remains the same for this
number of iterations.

seed [int or np.random.RandomState, optional] If seed is not specified the np.RandomState
singleton is used. If seed is an int, a new np.random.RandomState instance is used,
seeded with seed. If seed is already a np.random.RandomState instance, then that
np.random.RandomState instance is used. Specify seed for repeatable minimizations. The
random numbers generated with this seed only affect the default Metropolis accept_test and
the default take_step. If you supply your own take_step and accept_test, and these functions
use random number generation, then those functions are responsible for the state of their
random number generator.

Returns

res [OptimizeResult] The optimization result represented as a OptimizeResult object. Im-
portant attributes are: x the solution array, fun the value of the function at the solution, and
message which describes the cause of the termination. The OptimizeResult object
returned by the selected minimizer at the lowest minimum is also contained within this ob-
ject and can be accessed through the lowest_optimization_result attribute. See
OptimizeResult for a description of other attributes.

See also:

minimize

The local minimization function called once for each basinhopping step. minimizer_kwargs is passed to
this routine.

Notes

Basin-hopping is a stochastic algorithm which attempts to find the global minimum of a smooth scalar function of
one or more variables [1] [2] [3] [4]. The algorithm in its current form was described by David Wales and Jonathan
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Doye [2] http://www-wales.ch.cam.ac.uk/.
The algorithm is iterative with each cycle composed of the following features
1) random perturbation of the coordinates
2) local minimization
3) accept or reject the new coordinates based on the minimized function value

The acceptance test used here is the Metropolis criterion of standard Monte Carlo algorithms, although there are
many other possibilities [3].
This global minimization method has been shown to be extremely efficient for a wide variety of problems in physics
and chemistry. It is particularly useful when the function has many minima separated by large barriers. See the
Cambridge Cluster Database http://www-wales.ch.cam.ac.uk/CCD.html for databases of molecular systems that
have been optimized primarily using basin-hopping. This database includes minimization problems exceeding 300
degrees of freedom.
See the free software program GMIN (http://www-wales.ch.cam.ac.uk/GMIN) for a Fortran implementation of
basin-hopping. This implementation has many different variations of the procedure described above, including
more advanced step taking algorithms and alternate acceptance criterion.
For stochastic global optimization there is no way to determine if the true global minimum has actually been
found. Instead, as a consistency check, the algorithm can be run from a number of different random starting points
to ensure the lowest minimum found in each example has converged to the global minimum. For this reason
basinhopping will by default simply run for the number of iterations niter and return the lowest minimum
found. It is left to the user to ensure that this is in fact the global minimum.
Choosing stepsize: This is a crucial parameter in basinhopping and depends on the problem being solved.
The step is chosen uniformly in the region from x0-stepsize to x0+stepsize, in each dimension. Ideally it should be
comparable to the typical separation (in argument values) between local minima of the function being optimized.
basinhopping will, by default, adjust stepsize to find an optimal value, but this may take many iterations.
You will get quicker results if you set a sensible initial value for stepsize.
Choosing T: The parameter T is the “temperature” used in the Metropolis criterion. Basinhopping steps are always
accepted if func(xnew) < func(xold). Otherwise, they are accepted with probability:

exp( -(func(xnew) - func(xold)) / T )

So, for best results, T should to be comparable to the typical difference (in function values) between local minima.
(The height of “walls” between local minima is irrelevant.)
If T is 0, the algorithm becomes Monotonic Basin-Hopping, in which all steps that increase energy are rejected.
New in version 0.12.0.

References

[1], [2], [3], [4], [5]

Examples

The following example is a one-dimensional minimization problem, with many local minima superimposed on a
parabola.
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>>> from scipy.optimize import basinhopping
>>> func = lambda x: np.cos(14.5 * x - 0.3) + (x + 0.2) * x
>>> x0=[1.]

Basinhopping, internally, uses a local minimization algorithm. We will use the parameter minimizer_kwargs
to tell basinhopping which algorithm to use and how to set up that minimizer. This parameter will be passed to
scipy.optimize.minimize().

>>> minimizer_kwargs = {"method": "BFGS"}
>>> ret = basinhopping(func, x0, minimizer_kwargs=minimizer_kwargs,
... niter=200)
>>> print("global minimum: x = %.4f, f(x0) = %.4f" % (ret.x, ret.fun))
global minimum: x = -0.1951, f(x0) = -1.0009

Next consider a two-dimensional minimization problem. Also, this time we will use gradient information to sig-
nificantly speed up the search.

>>> def func2d(x):
... f = np.cos(14.5 * x[0] - 0.3) + (x[1] + 0.2) * x[1] + (x[0] +
... 0.2) * x[0]
... df = np.zeros(2)
... df[0] = -14.5 * np.sin(14.5 * x[0] - 0.3) + 2. * x[0] + 0.2
... df[1] = 2. * x[1] + 0.2
... return f, df

We’ll also use a different local minimization algorithm. Also we must tell the minimizer that our function returns
both energy and gradient (jacobian)

>>> minimizer_kwargs = {"method":"L-BFGS-B", "jac":True}
>>> x0 = [1.0, 1.0]
>>> ret = basinhopping(func2d, x0, minimizer_kwargs=minimizer_kwargs,
... niter=200)
>>> print("global minimum: x = [%.4f, %.4f], f(x0) = %.4f" % (ret.x[0],
... ret.x[1],
... ret.fun))
global minimum: x = [-0.1951, -0.1000], f(x0) = -1.0109

Here is an example using a custom step-taking routine. Imagine you want the first coordinate to take larger steps
than the rest of the coordinates. This can be implemented like so:

>>> class MyTakeStep(object):
... def __init__(self, stepsize=0.5):
... self.stepsize = stepsize
... def __call__(self, x):
... s = self.stepsize
... x[0] += np.random.uniform(-2.*s, 2.*s)
... x[1:] += np.random.uniform(-s, s, x[1:].shape)
... return x

Since MyTakeStep.stepsize exists basinhopping will adjust the magnitude of stepsize to optimize the
search. We’ll use the same 2-D function as before

>>> mytakestep = MyTakeStep()
>>> ret = basinhopping(func2d, x0, minimizer_kwargs=minimizer_kwargs,

(continues on next page)
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(continued from previous page)
... niter=200, take_step=mytakestep)
>>> print("global minimum: x = [%.4f, %.4f], f(x0) = %.4f" % (ret.x[0],
... ret.x[1],
... ret.fun))
global minimum: x = [-0.1951, -0.1000], f(x0) = -1.0109

Now let’s do an example using a custom callback function which prints the value of every minimum found

>>> def print_fun(x, f, accepted):
... print("at minimum %.4f accepted %d" % (f, int(accepted)))

We’ll run it for only 10 basinhopping steps this time.

>>> np.random.seed(1)
>>> ret = basinhopping(func2d, x0, minimizer_kwargs=minimizer_kwargs,
... niter=10, callback=print_fun)
at minimum 0.4159 accepted 1
at minimum -0.9073 accepted 1
at minimum -0.1021 accepted 1
at minimum -0.1021 accepted 1
at minimum 0.9102 accepted 1
at minimum 0.9102 accepted 1
at minimum 2.2945 accepted 0
at minimum -0.1021 accepted 1
at minimum -1.0109 accepted 1
at minimum -1.0109 accepted 1

The minimum at -1.0109 is actually the global minimum, found already on the 8th iteration.
Now let’s implement bounds on the problem using a custom accept_test:

>>> class MyBounds(object):
... def __init__(self, xmax=[1.1,1.1], xmin=[-1.1,-1.1] ):
... self.xmax = np.array(xmax)
... self.xmin = np.array(xmin)
... def __call__(self, **kwargs):
... x = kwargs["x_new"]
... tmax = bool(np.all(x <= self.xmax))
... tmin = bool(np.all(x >= self.xmin))
... return tmax and tmin

>>> mybounds = MyBounds()
>>> ret = basinhopping(func2d, x0, minimizer_kwargs=minimizer_kwargs,
... niter=10, accept_test=mybounds)

scipy.optimize.brute
scipy.optimize.brute(func, ranges, args=(), Ns=20, full_output=0, finish=<function fmin>, disp=False,

workers=1)
Minimize a function over a given range by brute force.
Uses the “brute force” method, i.e. computes the function’s value at each point of a multidimensional grid of points,
to find the global minimum of the function.
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The function is evaluated everywhere in the range with the datatype of the first call to the function, as en-
forced by the vectorize NumPy function. The value and type of the function evaluation returned when
full_output=True are affected in addition by the finish argument (see Notes).
The brute force approach is inefficient because the number of grid points increases exponentially - the number of
grid points to evaluate is Ns ** len(x). Consequently, even with coarse grid spacing, even moderately sized
problems can take a long time to run, and/or run into memory limitations.

Parameters

func [callable] The objective function to be minimized. Must be in the form f(x, *args),
where x is the argument in the form of a 1-D array and args is a tuple of any additional
fixed parameters needed to completely specify the function.

ranges [tuple] Each component of the ranges tuple must be either a “slice object” or a range tuple
of the form (low, high). The program uses these to create the grid of points on which
the objective function will be computed. See Note 2 for more detail.

args [tuple, optional] Any additional fixed parameters needed to completely specify the function.
Ns [int, optional] Number of grid points along the axes, if not otherwise specified. See Note2.
full_output

[bool, optional] If True, return the evaluation grid and the objective function’s values on it.
finish [callable, optional] An optimization function that is called with the result of brute force mini-

mization as initial guess. finish should take func and the initial guess as positional arguments,
and take args as keyword arguments. It may additionally take full_output and/or disp as key-
word arguments. Use None if no “polishing” function is to be used. See Notes for more
details.

disp [bool, optional] Set to True to print convergence messages from the finish callable.
workers [int or map-like callable, optional] If workers is an int the grid is subdivided into workers

sections and evaluated in parallel (uses multiprocessing.Pool). Supply -1 to use
all cores available to the Process. Alternatively supply a map-like callable, such as mul-
tiprocessing.Pool.map for evaluating the grid in parallel. This evaluation is carried out as
workers(func, iterable). Requires that func be pickleable.
New in version 1.3.0.

Returns

x0 [ndarray] A 1-D array containing the coordinates of a point at which the objective function
had its minimum value. (See Note 1 for which point is returned.)

fval [float] Function value at the point x0. (Returned when full_output is True.)
grid [tuple] Representation of the evaluation grid. It has the same length as x0. (Returned when

full_output is True.)
Jout [ndarray] Function values at each point of the evaluation grid, i.e., Jout =

func(*grid). (Returned when full_output is True.)
See also:
basinhopping, differential_evolution

Notes

Note 1: The program finds the gridpoint at which the lowest value of the objective function occurs. If finish is None,
that is the point returned. When the global minimum occurs within (or not very far outside) the grid’s boundaries,
and the grid is fine enough, that point will be in the neighborhood of the global minimum.
However, users often employ some other optimization program to “polish” the gridpoint values, i.e., to seek a more
precise (local) minimum near brute’s best gridpoint. The brute function’s finish option provides a convenient way
to do that. Any polishing program used must take brute’s output as its initial guess as a positional argument, and
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take brute’s input values for args as keyword arguments, otherwise an error will be raised. It may additionally take
full_output and/or disp as keyword arguments.
brute assumes that the finish function returns either an OptimizeResult object or a tuple in the form:
(xmin, Jmin, ... , statuscode), where xmin is the minimizing value of the argument, Jmin is
the minimum value of the objective function, “…” may be some other returned values (which are not used by
brute), and statuscode is the status code of the finish program.
Note that when finish is not None, the values returned are those of the finish program, not the gridpoint ones.
Consequently, while brute confines its search to the input grid points, the finish program’s results usually will not
coincide with any gridpoint, and may fall outside the grid’s boundary. Thus, if a minimum only needs to be found
over the provided grid points, make sure to pass in finish=None.
Note 2: The grid of points is a numpy.mgrid object. For brute the ranges and Ns inputs have the following
effect. Each component of the ranges tuple can be either a slice object or a two-tuple giving a range of values, such
as (0, 5). If the component is a slice object, brute uses it directly. If the component is a two-tuple range, brute
internally converts it to a slice object that interpolates Ns points from its low-value to its high-value, inclusive.

Examples

We illustrate the use of brute to seek the global minimum of a function of two variables that is given as the sum
of a positive-definite quadratic and two deep “Gaussian-shaped” craters. Specifically, define the objective function
f as the sum of three other functions, f = f1 + f2 + f3. We suppose each of these has a signature (z,
*params), where z = (x, y), and params and the functions are as defined below.

>>> params = (2, 3, 7, 8, 9, 10, 44, -1, 2, 26, 1, -2, 0.5)
>>> def f1(z, *params):
... x, y = z
... a, b, c, d, e, f, g, h, i, j, k, l, scale = params
... return (a * x**2 + b * x * y + c * y**2 + d*x + e*y + f)

>>> def f2(z, *params):
... x, y = z
... a, b, c, d, e, f, g, h, i, j, k, l, scale = params
... return (-g*np.exp(-((x-h)**2 + (y-i)**2) / scale))

>>> def f3(z, *params):
... x, y = z
... a, b, c, d, e, f, g, h, i, j, k, l, scale = params
... return (-j*np.exp(-((x-k)**2 + (y-l)**2) / scale))

>>> def f(z, *params):
... return f1(z, *params) + f2(z, *params) + f3(z, *params)

Thus, the objective function may have local minima near the minimum of each of the three functions of which it
is composed. To use fmin to polish its gridpoint result, we may then continue as follows:

>>> rranges = (slice(-4, 4, 0.25), slice(-4, 4, 0.25))
>>> from scipy import optimize
>>> resbrute = optimize.brute(f, rranges, args=params, full_output=True,
... finish=optimize.fmin)
>>> resbrute[0] # global minimum
array([-1.05665192, 1.80834843])

(continues on next page)
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(continued from previous page)
>>> resbrute[1] # function value at global minimum
-3.4085818767

Note that if finish had been set to None, we would have gotten the gridpoint [-1.0 1.75] where the rounded function
value is -2.892.

scipy.optimize.differential_evolution
scipy.optimize.differential_evolution(func, bounds, args=(), strategy=’best1bin’, max-

iter=1000, popsize=15, tol=0.01, mutation=(0.5,
1), recombination=0.7, seed=None, callback=None,
disp=False, polish=True, init=’latinhypercube’, atol=0,
updating=’immediate’, workers=1)

Finds the global minimum of a multivariate function.
Differential Evolution is stochastic in nature (does not use gradient methods) to find the minimium, and can search
large areas of candidate space, but often requires larger numbers of function evaluations than conventional gradient
based techniques.
The algorithm is due to Storn and Price [1].

Parameters

func [callable] The objective function to be minimized. Must be in the form f(x, *args),
where x is the argument in the form of a 1-D array and args is a tuple of any additional
fixed parameters needed to completely specify the function.

bounds [sequence or Bounds, optional] Bounds for variables. There are two ways to specify the
bounds: 1. Instance of Bounds class. 2. (min, max) pairs for each element in x,
defining the finite lower and upper bounds for the optimizing argument of func. It is required
to have len(bounds) == len(x). len(bounds) is used to determine the number
of parameters in x.

args [tuple, optional] Any additional fixed parameters needed to completely specify the objective
function.

strategy [str, optional] The differential evolution strategy to use. Should be one of:
• ‘best1bin’
• ‘best1exp’
• ‘rand1exp’
• ‘randtobest1exp’
• ‘currenttobest1exp’
• ‘best2exp’
• ‘rand2exp’
• ‘randtobest1bin’
• ‘currenttobest1bin’
• ‘best2bin’
• ‘rand2bin’
• ‘rand1bin’
The default is ‘best1bin’.

maxiter [int, optional] The maximum number of generations over which the entire population is
evolved. The maximum number of function evaluations (with no polishing) is: (maxiter
+ 1) * popsize * len(x)

popsize [int, optional] Amultiplier for setting the total population size. The population haspopsize
* len(x) individuals (unless the initial population is supplied via the init keyword).

tol [float, optional] Relative tolerance for convergence, the solving stops when np.std(pop)
<= atol + tol * np.abs(np.mean(population_energies)), where and
atol and tol are the absolute and relative tolerance respectively.
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mutation [float or tuple(float, float), optional] Themutation constant. In the literature this is also known
as differential weight, being denoted by F. If specified as a float it should be in the range
[0, 2]. If specified as a tuple (min, max) dithering is employed. Dithering randomly
changes the mutation constant on a generation by generation basis. The mutation constant
for that generation is taken from U[min, max). Dithering can help speed convergence
significantly. Increasing the mutation constant increases the search radius, but will slow down
convergence.

recombination
[float, optional] The recombination constant, should be in the range [0, 1]. In the literature
this is also known as the crossover probability, being denoted by CR. Increasing this value
allows a larger number of mutants to progress into the next generation, but at the risk of
population stability.

seed [int or np.random.RandomState, optional] If seed is not specified the np.RandomState
singleton is used. If seed is an int, a new np.random.RandomState instance is used,
seeded with seed. If seed is already a np.random.RandomState instance, then that
np.random.RandomState instance is used. Specify seed for repeatable minimizations.

disp [bool, optional] Display status messages
callback [callable, callback(xk, convergence=val), optional] A function to follow the progress of the

minimization. xk is the current value of x0. val represents the fractional value of the
population convergence. When val is greater than one the function halts. If callback returns
True, then the minimization is halted (any polishing is still carried out).

polish [bool, optional] If True (default), then scipy.optimize.minimize with the L-BFGS-
B method is used to polish the best population member at the end, which can improve the
minimization slightly.

init [str or array-like, optional] Specify which type of population initialization is performed.
Should be one of:
• ‘latinhypercube’
• ‘random’
• array specifying the initial population. The array should have shape (M, len(x)),
where len(x) is the number of parameters. init is clipped to bounds before use.

The default is ‘latinhypercube’. Latin Hypercube sampling tries to maximize coverage of
the available parameter space. ‘random’ initializes the population randomly - this has the
drawback that clustering can occur, preventing the whole of parameter space being covered.
Use of an array to specify a population subset could be used, for example, to create a tight
bunch of initial guesses in an location where the solution is known to exist, thereby reducing
time for convergence.

atol [float, optional] Absolute tolerance for convergence, the solving stops when np.std(pop)
<= atol + tol * np.abs(np.mean(population_energies)), where and
atol and tol are the absolute and relative tolerance respectively.

updating [{‘immediate’, ‘deferred’}, optional] If 'immediate', the best solution vector is con-
tinuously updated within a single generation [4]. This can lead to faster convergence as
trial vectors can take advantage of continuous improvements in the best solution. With
'deferred', the best solution vector is updated once per generation. Only'deferred'
is compatible with parallelization, and the workers keyword can over-ride this option.
New in version 1.2.0.

workers [int or map-like callable, optional] If workers is an int the population is subdivided into
workers sections and evaluated in parallel (uses multiprocessing.Pool). Supply -1
to use all available CPU cores. Alternatively supply a map-like callable, such as multipro-
cessing.Pool.map for evaluating the population in parallel. This evaluation is carried out
as workers(func, iterable). This option will override the updating keyword to
updating='deferred' if workers != 1. Requires that func be pickleable.
New in version 1.2.0.

Returns
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res [OptimizeResult] The optimization result represented as a OptimizeResult object. Im-
portant attributes are: x the solution array, success a Boolean flag indicating if the opti-
mizer exited successfully and message which describes the cause of the termination. See
OptimizeResult for a description of other attributes. If polish was employed, and a
lower minimum was obtained by the polishing, then OptimizeResult also contains the jac
attribute.

Notes

Differential evolution is a stochastic population based method that is useful for global optimization problems. At
each pass through the population the algorithm mutates each candidate solution by mixing with other candidate
solutions to create a trial candidate. There are several strategies [2] for creating trial candidates, which suit some
problems more than others. The ‘best1bin’ strategy is a good starting point for many systems. In this strategy two
members of the population are randomly chosen. Their difference is used to mutate the best member (the best in
best1bin), b0, so far:

b′ = b0 +mutation ∗ (population[rand0]− population[rand1])

A trial vector is then constructed. Starting with a randomly chosen ‘i’th parameter the trial is sequentially filled
(in modulo) with parameters from b' or the original candidate. The choice of whether to use b' or the original
candidate is made with a binomial distribution (the ‘bin’ in ‘best1bin’) - a random number in [0, 1) is generated. If
this number is less than the recombination constant then the parameter is loaded from b', otherwise it is loaded
from the original candidate. The final parameter is always loaded from b'. Once the trial candidate is built its
fitness is assessed. If the trial is better than the original candidate then it takes its place. If it is also better than the
best overall candidate it also replaces that. To improve your chances of finding a global minimum use higher popsize
values, with higher mutation and (dithering), but lower recombination values. This has the effect of widening the
search radius, but slowing convergence. By default the best solution vector is updated continuously within a single
iteration (updating='immediate'). This is a modification [4] of the original differential evolution algorithm
which can lead to faster convergence as trial vectors can immediately benefit from improved solutions. To use the
original Storn and Price behaviour, updating the best solution once per iteration, set updating='deferred'.
New in version 0.15.0.

References

[1], [2], [3], [4]

Examples

Let us consider the problem of minimizing the Rosenbrock function. This function is implemented in rosen in
scipy.optimize.

>>> from scipy.optimize import rosen, differential_evolution
>>> bounds = [(0,2), (0, 2), (0, 2), (0, 2), (0, 2)]
>>> result = differential_evolution(rosen, bounds)
>>> result.x, result.fun
(array([1., 1., 1., 1., 1.]), 1.9216496320061384e-19)

Now repeat, but with parallelization.
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>>> bounds = [(0,2), (0, 2), (0, 2), (0, 2), (0, 2)]
>>> result = differential_evolution(rosen, bounds, updating='deferred',
... workers=2)
>>> result.x, result.fun
(array([1., 1., 1., 1., 1.]), 1.9216496320061384e-19)

Next find the minimum of the Ackley function (https://en.wikipedia.org/wiki/Test_functions_for_optimization).

>>> from scipy.optimize import differential_evolution
>>> import numpy as np
>>> def ackley(x):
... arg1 = -0.2 * np.sqrt(0.5 * (x[0] ** 2 + x[1] ** 2))
... arg2 = 0.5 * (np.cos(2. * np.pi * x[0]) + np.cos(2. * np.pi *␣
↪→x[1]))
... return -20. * np.exp(arg1) - np.exp(arg2) + 20. + np.e
>>> bounds = [(-5, 5), (-5, 5)]
>>> result = differential_evolution(ackley, bounds)
>>> result.x, result.fun
(array([ 0., 0.]), 4.4408920985006262e-16)

scipy.optimize.shgo
scipy.optimize.shgo(func, bounds, args=(), constraints=None, n=100, iters=1, callback=None, mini-

mizer_kwargs=None, options=None, sampling_method=’simplicial’)
Finds the global minimum of a function using SHG optimization.
SHGO stands for “simplicial homology global optimization”.

Parameters

func [callable] The objective function to be minimized. Must be in the form f(x, *args),
where x is the argument in the form of a 1-D array and args is a tuple of any additional
fixed parameters needed to completely specify the function.

bounds [sequence] Bounds for variables. (min, max) pairs for each element in x, defining
the lower and upper bounds for the optimizing argument of func. It is required to have
len(bounds) == len(x). len(bounds) is used to determine the number of pa-
rameters in x. Use None for one of min or max when there is no bound in that direction.
By default bounds are (None, None).

args [tuple, optional] Any additional fixed parameters needed to completely specify the objective
function.

constraints
[dict or sequence of dict, optional] Constraints definition. Function(s) R**n in the form:

g(x) <= 0 applied as g : R^n -> R^m
h(x) == 0 applied as h : R^n -> R^p

Each constraint is defined in a dictionary with fields:
type [str] Constraint type: ‘eq’ for equality, ‘ineq’ for inequality.
fun [callable] The function defining the constraint.
jac [callable, optional] The Jacobian of fun (only for SLSQP).
args [sequence, optional] Extra arguments to be passed to the function and Jaco-

bian.
Equality constraint means that the constraint function result is to be zero whereas inequality
means that it is to be non-negative. Note that COBYLA only supports inequality constraints.

1310 Chapter 6. API Reference

https://en.wikipedia.org/wiki/Test_functions_for_optimization


SciPy Reference Guide, Release 1.3.1

Note: Only the COBYLA and SLSQP local minimize methods currently support con-
straint arguments. If the constraints sequence used in the local optimization prob-
lem is not defined in minimizer_kwargs and a constrained method is used then
the global constraints will be used. (Defining a constraints sequence in
minimizer_kwargs means that constraints will not be added so if equality con-
straints and so forth need to be added then the inequality functions in constraints need
to be added to minimizer_kwargs too).

n [int, optional] Number of sampling points used in the construction of the simplicial complex.
Note that this argument is only used for sobol and other arbitrary sampling_methods.

iters [int, optional] Number of iterations used in the construction of the simplicial complex.
callback [callable, optional] Called after each iteration, as callback(xk), where xk is the current

parameter vector.
minimizer_kwargs

[dict, optional] Extra keyword arguments to be passed to the minimizer scipy.
optimize.minimize Some important options could be:
• method [str] The minimization method (e.g. SLSQP).
• args [tuple] Extra arguments passed to the objective function (func) and its

derivatives (Jacobian, Hessian).
• options [dict, optional] Note that by default the tolerance is specified as {ftol:

1e-12}
options [dict, optional] A dictionary of solver options. Many of the options specified for the global

routine are also passed to the scipy.optimize.minimize routine. The options that are also
passed to the local routine are marked with “(L)”.
Stopping criteria, the algorithm will terminate if any of the specified criteria are met. How-
ever, the default algorithm does not require any to be specified:
• maxfev [int (L)] Maximum number of function evaluations in the feasible domain.

(Note only methods that support this option will terminate the routine at pre-
cisely exact specified value. Otherwise the criterion will only terminate dur-
ing a global iteration)

• f_min Specify the minimum objective function value, if it is known.
• f_tol [float] Precision goal for the value of f in the stopping criterion. Note that

the global routine will also terminate if a sampling point in the global routine
is within this tolerance.

• maxiter [int] Maximum number of iterations to perform.
• maxev [int] Maximum number of sampling evaluations to perform (includes search-

ing in infeasible points).
• maxtime [float] Maximum processing runtime allowed
• minhgrd [int] Minimum homology group rank differential. The homology group of

the objective function is calculated (approximately) during every iteration.
The rank of this group has a one-to-one correspondence with the number of
locally convex subdomains in the objective function (after adequate sampling
points each of these subdomains contain a unique global minimum). If the
difference in the hgr is 0 between iterations for maxhgrd specified iterations
the algorithm will terminate.

Objective function knowledge:
• symmetry [bool] Specify True if the objective function contains symmetric variables.

The search space (and therefore performance) is decreased by O(n!).
• jac [bool or callable, optional] Jacobian (gradient) of objective function. Only

for CG, BFGS, Newton-CG, L-BFGS-B, TNC, SLSQP, dogleg, trust-ncg.
If jac is a boolean and is True, fun is assumed to return the gradient
along with the objective function. If False, the gradient will be estimated

6.18. Optimization and Root Finding (scipy.optimize) 1311



SciPy Reference Guide, Release 1.3.1

numerically. jac can also be a callable returning the gradient of the objec-
tive. In this case, it must accept the same arguments as fun. (Passed to
scipy.optimize.minmize automatically)

• hess, hessp
[callable, optional] Hessian (matrix of second-order derivatives) of objective
function or Hessian of objective function times an arbitrary vector p. Only
for Newton-CG, dogleg, trust-ncg. Only one of hessp or hess needs to be
given. If hess is provided, then hessp will be ignored. If neither hess
nor hessp is provided, then the Hessian product will be approximated us-
ing finite differences on jac. hessp must compute the Hessian times an
arbitrary vector. (Passed to scipy.optimize.minmize automatically)

Algorithm settings:
• minimize_every_iter

[bool] If True then promising global sampling points will be passed to a local
minimisation routine every iteration. If False then only the final minimiser
pool will be run. Defaults to False.

• local_iter [int] Only evaluate a few of the bestminimiser pool candidates every iteration.
If False all potential points are passed to the local minimisation routine.

• infty_constraints: bool
If True then any sampling points generated which are outside will the feasi-
ble domain will be saved and given an objective function value of inf. If
False then these points will be discarded. Using this functionality could lead
to higher performance with respect to function evaluations before the global
minimum is found, specifying False will use less memory at the cost of a
slight decrease in performance. Defaults to True.

Feedback:
• disp [bool (L)] Set to True to print convergence messages.

sampling_method
[str or function, optional] Current built in sampling method options are sobol and
simplicial. The default simplicial uses less memory and provides the theoreti-
cal guarantee of convergence to the global minimum in finite time. The sobol method is
faster in terms of sampling point generation at the cost of higher memory resources and the
loss of guaranteed convergence. It is more appropriate for most “easier” problems where the
convergence is relatively fast. User defined sampling functions must accept two arguments
of n sampling points of dimension dim per call and output an array of sampling points with
shape n x dim.

Returns

res [OptimizeResult] The optimization result represented as a OptimizeResult object. Im-
portant attributes are: x the solution array corresponding to the global minimum, fun the
function output at the global solution, xl an ordered list of local minima solutions, funl
the function output at the corresponding local solutions, success a Boolean flag indicating
if the optimizer exited successfully, message which describes the cause of the termina-
tion, nfev the total number of objective function evaluations including the sampling calls,
nlfev the total number of objective function evaluations culminating from all local search
optimisations, nit number of iterations performed by the global routine.

Notes

Global optimization using simplicial homology global optimisation [1]. Appropriate for solving general purpose
NLP and blackbox optimisation problems to global optimality (low dimensional problems).
In general, the optimization problems are of the form:
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minimize f(x) subject to

g_i(x) >= 0, i = 1,...,m
h_j(x) = 0, j = 1,...,p

where x is a vector of one ormore variables. f(x) is the objective functionR^n -> R,g_i(x) are the inequality
constraints, and h_j(x) are the equality constraints.
Optionally, the lower and upper bounds for each element in x can also be specified using the bounds argument.
While most of the theoretical advantages of SHGO are only proven for when f(x) is a Lipschitz smooth function.
The algorithm is also proven to converge to the global optimum for the more general case where f(x) is non-
continuous, non-convex and non-smooth, if the default sampling method is used [1].
The local search method may be specified using the minimizer_kwargs parameter which is passed on to
scipy.optimize.minimize. By default the SLSQP method is used. In general it is recommended to use
the SLSQP or COBYLA local minimization if inequality constraints are defined for the problem since the other
methods do not use constraints.
The sobol method points are generated using the Sobol (1967) [2] sequence. The primitive polynomials and
various sets of initial direction numbers for generating Sobol sequences is provided by [3] by Frances Kuo and
Stephen Joe. The original program sobol.cc (MIT) is available and described at http://web.maths.unsw.edu.au/
~fkuo/sobol/ translated to Python 3 by Carl Sandrock 2016-03-31.

References

[1], [2], [3], [4], [5]

Examples

First consider the problem of minimizing the Rosenbrock function, rosen:

>>> from scipy.optimize import rosen, shgo
>>> bounds = [(0,2), (0, 2), (0, 2), (0, 2), (0, 2)]
>>> result = shgo(rosen, bounds)
>>> result.x, result.fun
(array([ 1., 1., 1., 1., 1.]), 2.9203923741900809e-18)

Note that bounds determine the dimensionality of the objective function and is therefore a required input, however
you can specify empty bounds using None or objects like np.inf which will be converted to large float numbers.

>>> bounds = [(None, None), ]*4
>>> result = shgo(rosen, bounds)
>>> result.x
array([ 0.99999851, 0.99999704, 0.99999411, 0.9999882 ])

Next we consider the Eggholder function, a problem with several local minima and one global minimum. We will
demonstrate the use of arguments and the capabilities of shgo. (https://en.wikipedia.org/wiki/Test_functions_
for_optimization)

>>> def eggholder(x):
... return (-(x[1] + 47.0)
... * np.sin(np.sqrt(abs(x[0]/2.0 + (x[1] + 47.0))))
... - x[0] * np.sin(np.sqrt(abs(x[0] - (x[1] + 47.0))))

(continues on next page)
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(continued from previous page)
... )
...
>>> bounds = [(-512, 512), (-512, 512)]

shgo has two built-in low discrepancy sampling sequences. First we will input 30 initial sampling points of the
Sobol sequence:

>>> result = shgo(eggholder, bounds, n=30, sampling_method='sobol')
>>> result.x, result.fun
(array([ 512. , 404.23180542]), -959.64066272085051)

shgo also has a return for any other local minima that was found, these can be called using:

>>> result.xl
array([[ 512. , 404.23180542],

[ 283.07593402, -487.12566542],
[-294.66820039, -462.01964031],
[-105.87688985, 423.15324143],
[-242.97923629, 274.38032063],
[-506.25823477, 6.3131022 ],
[-408.71981195, -156.10117154],
[ 150.23210485, 301.31378508],
[ 91.00922754, -391.28375925],
[ 202.8966344 , -269.38042147],
[ 361.66625957, -106.96490692],
[-219.40615102, -244.06022436],
[ 151.59603137, -100.61082677]])

>>> result.funl
array([-959.64066272, -718.16745962, -704.80659592, -565.99778097,

-559.78685655, -557.36868733, -507.87385942, -493.9605115 ,
-426.48799655, -421.15571437, -419.31194957, -410.98477763,
-202.53912972])

These results are useful in applications where there are many global minima and the values of other global minima
are desired or where the local minima can provide insight into the system (for example morphologies in physical
chemistry [5]).
If we want to find a larger number of local minima, we can increase the number of sampling points or the number
of iterations. We’ll increase the number of sampling points to 60 and the number of iterations from the default of
1 to 5. This gives us 60 x 5 = 300 initial sampling points.

>>> result_2 = shgo(eggholder, bounds, n=60, iters=5, sampling_method=
↪→'sobol')
>>> len(result.xl), len(result_2.xl)
(13, 39)

Note the difference between, e.g., n=180, iters=1 and n=60, iters=3. In the first case the promising
points contained in the minimiser pool is processed only once. In the latter case it is processed every 60 sampling
points for a total of 3 times.
To demonstrate solving problems with non-linear constraints consider the following example from Hock and Schit-
tkowski problem 73 (cattle-feed) [4]:
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minimize: f = 24.55 * x_1 + 26.75 * x_2 + 39 * x_3 + 40.50 * x_4

subject to: 2.3 * x_1 + 5.6 * x_2 + 11.1 * x_3 + 1.3 * x_4 - 5 >= 0,

12 * x_1 + 11.9 * x_2 + 41.8 * x_3 + 52.1 * x_4 - 21
-1.645 * sqrt(0.28 * x_1**2 + 0.19 * x_2**2 +

20.5 * x_3**2 + 0.62 * x_4**2) >= 0,

x_1 + x_2 + x_3 + x_4 - 1 == 0,

1 >= x_i >= 0 for all i

The approximate answer given in [4] is:

f([0.6355216, -0.12e-11, 0.3127019, 0.05177655]) = 29.894378

>>> def f(x): # (cattle-feed)
... return 24.55*x[0] + 26.75*x[1] + 39*x[2] + 40.50*x[3]
...
>>> def g1(x):
... return 2.3*x[0] + 5.6*x[1] + 11.1*x[2] + 1.3*x[3] - 5 # >=0
...
>>> def g2(x):
... return (12*x[0] + 11.9*x[1] +41.8*x[2] + 52.1*x[3] - 21
... - 1.645 * np.sqrt(0.28*x[0]**2 + 0.19*x[1]**2
... + 20.5*x[2]**2 + 0.62*x[3]**2)
... ) # >=0
...
>>> def h1(x):
... return x[0] + x[1] + x[2] + x[3] - 1 # == 0
...
>>> cons = ({'type': 'ineq', 'fun': g1},
... {'type': 'ineq', 'fun': g2},
... {'type': 'eq', 'fun': h1})
>>> bounds = [(0, 1.0),]*4
>>> res = shgo(f, bounds, iters=3, constraints=cons)
>>> res

fun: 29.894378159142136
funl: array([29.89437816])

message: 'Optimization terminated successfully.'
nfev: 119
nit: 3

nlfev: 40
nlhev: 0
nljev: 5

success: True
x: array([6.35521569e-01, 1.13700270e-13, 3.12701881e-01, 5.

↪→17765506e-02])
xl: array([[6.35521569e-01, 1.13700270e-13, 3.12701881e-01, 5.

↪→17765506e-02]])

>>> g1(res.x), g2(res.x), h1(res.x)
(-5.0626169922907138e-14, -2.9594104944408173e-12, 0.0)
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scipy.optimize.dual_annealing
scipy.optimize.dual_annealing(func, bounds, args=(), maxiter=1000, local_search_options={}, ini-

tial_temp=5230.0, restart_temp_ratio=2e-05, visit=2.62, accept=-
5.0, maxfun=10000000.0, seed=None, no_local_search=False,
callback=None, x0=None)

Find the global minimum of a function using Dual Annealing.
Parameters

func [callable] The objective function to be minimized. Must be in the form f(x, *args),
where x is the argument in the form of a 1-D array and args is a tuple of any additional
fixed parameters needed to completely specify the function.

bounds [sequence, shape (n, 2)] Bounds for variables. (min, max) pairs for each element in x,
defining bounds for the objective function parameter.

args [tuple, optional] Any additional fixed parameters needed to completely specify the objective
function.

maxiter [int, optional] The maximum number of global search iterations. Default value is 1000.
local_search_options

[dict, optional] Extra keyword arguments to be passed to the local minimizer (minimize).
Some important options could be: method for the minimizer method to use and args for
objective function additional arguments.

initial_temp
[float, optional] The initial temperature, use higher values to facilitates a wider search of
the energy landscape, allowing dual_annealing to escape local minima that it is trapped in.
Default value is 5230. Range is (0.01, 5.e4].

restart_temp_ratio
[float, optional] During the annealing process, temperature is decreasing, when it reaches
initial_temp * restart_temp_ratio, the reannealing process is triggered. De-
fault value of the ratio is 2e-5. Range is (0, 1).

visit [float, optional] Parameter for visiting distribution. Default value is 2.62. Higher values give
the visiting distribution a heavier tail, this makes the algorithm jump to a more distant region.
The value range is (0, 3].

accept [float, optional] Parameter for acceptance distribution. It is used to control the probability of
acceptance. The lower the acceptance parameter, the smaller the probability of acceptance.
Default value is -5.0 with a range (-1e4, -5].

maxfun [int, optional] Soft limit for the number of objective function calls. If the algorithm is in the
middle of a local search, this number will be exceeded, the algorithm will stop just after the
local search is done. Default value is 1e7.

seed [{int or RandomState instance}, optional] If seed is not specified the RandomState
singleton is used. If seed is an int, a new RandomState instance is used, seeded with
seed. If seed is already a RandomState instance, then that instance is used. Specify seed
for repeatable minimizations. The random numbers generated with this seed only affect the
visiting distribution function and new coordinates generation.

no_local_search
[bool, optional] If no_local_search is set to True, a traditional Generalized Simulated An-
nealing will be performed with no local search strategy applied.

callback [callable, optional] A callback function with signature callback(x, f, context),
which will be called for all minima found. x and f are the coordinates and function value of
the latest minimum found, and context has value in [0, 1, 2], with the following meaning:
• 0: minimum detected in the annealing process.
• 1: detection occured in the local search process.
• 2: detection done in the dual annealing process.
If the callback implementation returns True, the algorithm will stop.

x0 [ndarray, shape(n,), optional] Coordinates of a single n-dimensional starting point.
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Returns

res [OptimizeResult] The optimization result represented as a OptimizeResult object. Im-
portant attributes are: x the solution array, fun the value of the function at the solution, and
message which describes the cause of the termination. See OptimizeResult for a
description of other attributes.

Notes

This function implements the Dual Annealing optimization. This stochastic approach derived from [3] combines
the generalization of CSA (Classical Simulated Annealing) and FSA (Fast Simulated Annealing) [1] [2] coupled
to a strategy for applying a local search on accepted locations [4]. An alternative implementation of this same
algorithm is described in [5] and benchmarks are presented in [6]. This approach introduces an advanced method
to refine the solution found by the generalized annealing process. This algorithm uses a distorted Cauchy-Lorentz
visiting distribution, with its shape controlled by the parameter qv

gqv (∆x(t)) ∝
[Tqv (t)]

− D
3−qv[

1 + (qv − 1) (∆x(t))2

[Tqv (t)]
2

3−qv

] 1
qv−1+

D−1
2

Where t is the artificial time. This visiting distribution is used to generate a trial jump distance ∆x(t) of variable
x(t) under artificial temperature Tqv (t).
From the starting point, after calling the visiting distribution function, the acceptance probability is computed as
follows:

pqa = min {1, [1− (1− qa)β∆E]
1

1−qa }

Where qa is a acceptance parameter. For qa < 1, zero acceptance probability is assigned to the cases where

[1− (1− qa)β∆E] < 0

The artificial temperature Tqv (t) is decreased according to

Tqv (t) = Tqv (1)
2qv−1 − 1

( 1 + t)
qv−1 − 1

Where qv is the visiting parameter.
New in version 1.2.0.

References

[1], [2], [3], [4], [5], [6]

Examples

The following example is a 10-dimensional problem, with many local minima. The function involved is called
Rastrigin (https://en.wikipedia.org/wiki/Rastrigin_function)
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>>> from scipy.optimize import dual_annealing
>>> func = lambda x: np.sum(x*x - 10*np.cos(2*np.pi*x)) + 10*np.size(x)
>>> lw = [-5.12] * 10
>>> up = [5.12] * 10
>>> ret = dual_annealing(func, bounds=list(zip(lw, up)), seed=1234)
>>> print("global minimum: xmin = {0}, f(xmin) = {1:.6f}".format(
... ret.x, ret.fun))
global minimum: xmin = [-4.26437714e-09 -3.91699361e-09 -1.86149218e-09 -
↪→3.97165720e-09
-6.29151648e-09 -6.53145322e-09 -3.93616815e-09 -6.55623025e-09
-6.05775280e-09 -5.00668935e-09], f(xmin) = 0.000000

6.18.5 Least-squares and Curve Fitting

Nonlinear Least-Squares

least_squares(fun, x0[, jac, bounds, …]) Solve a nonlinear least-squares problem with bounds on
the variables.

scipy.optimize.least_squares
scipy.optimize.least_squares(fun, x0, jac=’2-point’, bounds=(-inf, inf), method=’trf’, ftol=1e-

08, xtol=1e-08, gtol=1e-08, x_scale=1.0, loss=’linear’, f_scale=1.0,
diff_step=None, tr_solver=None, tr_options={}, jac_sparsity=None,
max_nfev=None, verbose=0, args=(), kwargs={})

Solve a nonlinear least-squares problem with bounds on the variables.
Given the residuals f(x) (an m-dimensional real function of n real variables) and the loss function rho(s) (a scalar
function), least_squares finds a local minimum of the cost function F(x):

minimize F(x) = 0.5 * sum(rho(f_i(x)**2), i = 0, ..., m - 1)
subject to lb <= x <= ub

The purpose of the loss function rho(s) is to reduce the influence of outliers on the solution.
Parameters

fun [callable] Function which computes the vector of residuals, with the signature fun(x,
*args, **kwargs), i.e., the minimization proceeds with respect to its first argument.
The argument x passed to this function is an ndarray of shape (n,) (never a scalar, even for
n=1). It must return a 1-d array_like of shape (m,) or a scalar. If the argument x is complex
or the function fun returns complex residuals, it must be wrapped in a real function of real
arguments, as shown at the end of the Examples section.

x0 [array_like with shape (n,) or float] Initial guess on independent variables. If float, it will be
treated as a 1-d array with one element.

jac [{‘2-point’, ‘3-point’, ‘cs’, callable}, optional] Method of computing the Jacobian matrix (an
m-by-n matrix, where element (i, j) is the partial derivative of f[i] with respect to x[j]). The
keywords select a finite difference scheme for numerical estimation. The scheme ‘3-point’ is
more accurate, but requires twice as many operations as ‘2-point’ (default). The scheme ‘cs’
uses complex steps, and while potentially the most accurate, it is applicable only when fun
correctly handles complex inputs and can be analytically continued to the complex plane.
Method ‘lm’ always uses the ‘2-point’ scheme. If callable, it is used as jac(x, *args,
**kwargs) and should return a good approximation (or the exact value) for the Jacobian as

1318 Chapter 6. API Reference



SciPy Reference Guide, Release 1.3.1

an array_like (np.atleast_2d is applied), a sparse matrix or a scipy.sparse.linalg.
LinearOperator.

bounds [2-tuple of array_like, optional] Lower and upper bounds on independent variables. Defaults
to no bounds. Each array must match the size of x0 or be a scalar, in the latter case a bound
will be the same for all variables. Use np.inf with an appropriate sign to disable bounds
on all or some variables.

method [{‘trf’, ‘dogbox’, ‘lm’}, optional] Algorithm to perform minimization.
• ‘trf’ : Trust Region Reflective algorithm, particularly suitable for large sparse problems
with bounds. Generally robust method.

• ‘dogbox’ : dogleg algorithm with rectangular trust regions, typical use case is small prob-
lems with bounds. Not recommended for problems with rank-deficient Jacobian.

• ‘lm’ : Levenberg-Marquardt algorithm as implemented in MINPACK. Doesn’t handle
bounds and sparse Jacobians. Usually the most efficient method for small unconstrained
problems.

Default is ‘trf’. See Notes for more information.
ftol [float or None, optional] Tolerance for termination by the change of the cost function. Default

is 1e-8. The optimization process is stopped when dF < ftol * F, and there was an
adequate agreement between a local quadratic model and the true model in the last step. If
None, the termination by this condition is disabled.

xtol [float or None, optional] Tolerance for termination by the change of the independent vari-
ables. Default is 1e-8. The exact condition depends on the method used:
• For ‘trf’ and ‘dogbox’ : norm(dx) < xtol * (xtol + norm(x))
• For ‘lm’ : Delta < xtol * norm(xs), where Delta is a trust-region radius and
xs is the value of x scaled according to x_scale parameter (see below).

If None, the termination by this condition is disabled.
gtol [float or None, optional] Tolerance for termination by the norm of the gradient. Default is

1e-8. The exact condition depends on a method used:
• For ‘trf’ : norm(g_scaled, ord=np.inf) < gtol, where g_scaled is the
value of the gradient scaled to account for the presence of the bounds [STIR].

• For ‘dogbox’ : norm(g_free, ord=np.inf) < gtol, where g_free is the gra-
dient with respect to the variables which are not in the optimal state on the boundary.

• For ‘lm’ : the maximum absolute value of the cosine of angles between columns of the
Jacobian and the residual vector is less than gtol, or the residual vector is zero.

If None, the termination by this condition is disabled.
x_scale [array_like or ‘jac’, optional] Characteristic scale of each variable. Setting x_scale is equiva-

lent to reformulating the problem in scaled variables xs = x / x_scale. An alternative
view is that the size of a trust region along j-th dimension is proportional to x_scale[j].
Improved convergence may be achieved by setting x_scale such that a step of a given size
along any of the scaled variables has a similar effect on the cost function. If set to ‘jac’, the
scale is iteratively updated using the inverse norms of the columns of the Jacobian matrix
(as described in [JJMore]).

loss [str or callable, optional] Determines the loss function. The following keyword values are
allowed:
• ‘linear’ (default) : rho(z) = z. Gives a standard least-squares problem.
• ‘soft_l1’ : rho(z) = 2 * ((1 + z)**0.5 - 1). The smooth approximation of
l1 (absolute value) loss. Usually a good choice for robust least squares.

• ‘huber’ : rho(z) = z if z <= 1 else 2*z**0.5 - 1. Works similarly to
‘soft_l1’.

• ‘cauchy’ : rho(z) = ln(1 + z). Severely weakens outliers influence, but may cause
difficulties in optimization process.

• ‘arctan’ : rho(z) = arctan(z). Limits a maximum loss on a single residual, has
properties similar to ‘cauchy’.
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If callable, it must take a 1-d ndarray z=f**2 and return an array_like with shape (3, m)
where row 0 contains function values, row 1 contains first derivatives and row 2 contains
second derivatives. Method ‘lm’ supports only ‘linear’ loss.

f_scale [float, optional] Value of soft margin between inlier and outlier residuals, default is 1.0. The
loss function is evaluated as follows rho_(f**2) = C**2 * rho(f**2 / C**2),
where C is f_scale, and rho is determined by loss parameter. This parameter has no effect
with loss='linear', but for other loss values it is of crucial importance.

max_nfev [None or int, optional] Maximum number of function evaluations before the termination. If
None (default), the value is chosen automatically:
• For ‘trf’ and ‘dogbox’ : 100 * n.
• For ‘lm’ : 100 * n if jac is callable and 100 * n * (n + 1) otherwise (because ‘lm’ counts
function calls in Jacobian estimation).

diff_step [None or array_like, optional] Determines the relative step size for the finite difference ap-
proximation of the Jacobian. The actual step is computed as x * diff_step. If None
(default), then diff_step is taken to be a conventional “optimal” power of machine epsilon for
the finite difference scheme used [NR].

tr_solver [{None, ‘exact’, ‘lsmr’}, optional] Method for solving trust-region subproblems, relevant only
for ‘trf’ and ‘dogbox’ methods.
• ‘exact’ is suitable for not very large problems with dense Jacobian matrices. The compu-
tational complexity per iteration is comparable to a singular value decomposition of the
Jacobian matrix.

• ‘lsmr’ is suitable for problems with sparse and large Jacobian matrices. It uses the it-
erative procedure scipy.sparse.linalg.lsmr for finding a solution of a linear
least-squares problem and only requires matrix-vector product evaluations.

If None (default) the solver is chosen based on the type of Jacobian returned on the first
iteration.

tr_options [dict, optional] Keyword options passed to trust-region solver.
• tr_solver='exact': tr_options are ignored.
• tr_solver='lsmr': options for scipy.sparse.linalg.lsmr. Additionally
method='trf' supports ‘regularize’ option (bool, default is True) which adds a reg-
ularization term to the normal equation, which improves convergence if the Jacobian is
rank-deficient [Byrd] (eq. 3.4).

jac_sparsity
[{None, array_like, sparse matrix}, optional] Defines the sparsity structure of the Jacobian
matrix for finite difference estimation, its shape must be (m, n). If the Jacobian has only
few non-zero elements in each row, providing the sparsity structure will greatly speed up the
computations [Curtis]. A zero entry means that a corresponding element in the Jacobian is
identically zero. If provided, forces the use of ‘lsmr’ trust-region solver. If None (default)
then dense differencing will be used. Has no effect for ‘lm’ method.

verbose [{0, 1, 2}, optional] Level of algorithm’s verbosity:
• 0 (default) : work silently.
• 1 : display a termination report.
• 2 : display progress during iterations (not supported by ‘lm’ method).

args, kwargs
[tuple and dict, optional] Additional arguments passed to fun and jac. Both empty by default.
The calling signature is fun(x, *args, **kwargs) and the same for jac.

Returns

‘OptimizeResult‘ with the following fields defined:
x [ndarray, shape (n,)] Solution found.
cost [float] Value of the cost function at the solution.
fun [ndarray, shape (m,)] Vector of residuals at the solution.
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jac [ndarray, sparse matrix or LinearOperator, shape (m, n)] Modified Jacobian matrix at the
solution, in the sense that J^T J is a Gauss-Newton approximation of the Hessian of the cost
function. The type is the same as the one used by the algorithm.

grad [ndarray, shape (m,)] Gradient of the cost function at the solution.
optimality [float] First-order optimality measure. In unconstrained problems, it is always the uniform

norm of the gradient. In constrained problems, it is the quantity which was compared with
gtol during iterations.

active_mask
[ndarray of int, shape (n,)] Each component shows whether a corresponding constraint is
active (that is, whether a variable is at the bound):
• 0 : a constraint is not active.
• -1 : a lower bound is active.
• 1 : an upper bound is active.
Might be somewhat arbitrary for ‘trf’ method as it generates a sequence of strictly feasible
iterates and active_mask is determined within a tolerance threshold.

nfev [int] Number of function evaluations done. Methods ‘trf’ and ‘dogbox’ do not count function
calls for numerical Jacobian approximation, as opposed to ‘lm’ method.

njev [int or None] Number of Jacobian evaluations done. If numerical Jacobian approximation is
used in ‘lm’ method, it is set to None.

status [int] The reason for algorithm termination:
• -1 : improper input parameters status returned from MINPACK.
• 0 : the maximum number of function evaluations is exceeded.
• 1 : gtol termination condition is satisfied.
• 2 : ftol termination condition is satisfied.
• 3 : xtol termination condition is satisfied.
• 4 : Both ftol and xtol termination conditions are satisfied.

message [str] Verbal description of the termination reason.
success [bool] True if one of the convergence criteria is satisfied (status > 0).

See also:

leastsq

A legacy wrapper for the MINPACK implementation of the Levenberg-Marquadt algorithm.
curve_fit

Least-squares minimization applied to a curve fitting problem.

Notes

Method ‘lm’ (Levenberg-Marquardt) calls a wrapper over least-squares algorithms implemented in MINPACK
(lmder, lmdif). It runs the Levenberg-Marquardt algorithm formulated as a trust-region type algorithm. The im-
plementation is based on paper [JJMore], it is very robust and efficient with a lot of smart tricks. It should be your
first choice for unconstrained problems. Note that it doesn’t support bounds. Also it doesn’t work when m < n.
Method ‘trf’ (Trust Region Reflective) is motivated by the process of solving a system of equations, which constitute
the first-order optimality condition for a bound-constrained minimization problem as formulated in [STIR]. The
algorithm iteratively solves trust-region subproblems augmented by a special diagonal quadratic term and with trust-
region shape determined by the distance from the bounds and the direction of the gradient. This enhancements help
to avoid making steps directly into bounds and efficiently explore the whole space of variables. To further improve
convergence, the algorithm considers search directions reflected from the bounds. To obey theoretical requirements,
the algorithm keeps iterates strictly feasible. With dense Jacobians trust-region subproblems are solved by an
exact method very similar to the one described in [JJMore] (and implemented in MINPACK). The difference
from the MINPACK implementation is that a singular value decomposition of a Jacobian matrix is done once per
iteration, instead of a QR decomposition and series of Givens rotation eliminations. For large sparse Jacobians a 2-d
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subspace approach of solving trust-region subproblems is used [STIR], [Byrd]. The subspace is spanned by a scaled
gradient and an approximate Gauss-Newton solution delivered by scipy.sparse.linalg.lsmr. When no
constraints are imposed the algorithm is very similar to MINPACK and has generally comparable performance.
The algorithm works quite robust in unbounded and bounded problems, thus it is chosen as a default algorithm.
Method ‘dogbox’ operates in a trust-region framework, but considers rectangular trust regions as opposed to con-
ventional ellipsoids [Voglis]. The intersection of a current trust region and initial bounds is again rectangular, so on
each iteration a quadratic minimization problem subject to bound constraints is solved approximately by Powell’s
dogleg method [NumOpt]. The required Gauss-Newton step can be computed exactly for dense Jacobians or ap-
proximately by scipy.sparse.linalg.lsmr for large sparse Jacobians. The algorithm is likely to exhibit
slow convergence when the rank of Jacobian is less than the number of variables. The algorithm often outperforms
‘trf’ in bounded problems with a small number of variables.
Robust loss functions are implemented as described in [BA]. The idea is to modify a residual vector and a Jacobian
matrix on each iteration such that computed gradient and Gauss-Newton Hessian approximation match the true
gradient and Hessian approximation of the cost function. Then the algorithm proceeds in a normal way, i.e. robust
loss functions are implemented as a simple wrapper over standard least-squares algorithms.
New in version 0.17.0.

References

[STIR], [NR], [Byrd], [Curtis], [JJMore], [Voglis], [NumOpt], [BA]

Examples

In this example we find a minimum of the Rosenbrock function without bounds on independent variables.

>>> def fun_rosenbrock(x):
... return np.array([10 * (x[1] - x[0]**2), (1 - x[0])])

Notice that we only provide the vector of the residuals. The algorithm constructs the cost function as a sum of
squares of the residuals, which gives the Rosenbrock function. The exact minimum is at x = [1.0, 1.0].

>>> from scipy.optimize import least_squares
>>> x0_rosenbrock = np.array([2, 2])
>>> res_1 = least_squares(fun_rosenbrock, x0_rosenbrock)
>>> res_1.x
array([ 1., 1.])
>>> res_1.cost
9.8669242910846867e-30
>>> res_1.optimality
8.8928864934219529e-14

We now constrain the variables, in such a way that the previous solution becomes infeasible. Specifically, we
require that x[1] >= 1.5, and x[0] left unconstrained. To this end, we specify the bounds parameter to
least_squares in the form bounds=([-np.inf, 1.5], np.inf).
We also provide the analytic Jacobian:

>>> def jac_rosenbrock(x):
... return np.array([
... [-20 * x[0], 10],
... [-1, 0]])
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Putting this all together, we see that the new solution lies on the bound:

>>> res_2 = least_squares(fun_rosenbrock, x0_rosenbrock, jac_rosenbrock,
... bounds=([-np.inf, 1.5], np.inf))
>>> res_2.x
array([ 1.22437075, 1.5 ])
>>> res_2.cost
0.025213093946805685
>>> res_2.optimality
1.5885401433157753e-07

Now we solve a system of equations (i.e., the cost function should be zero at a minimum) for a Broyden tridiagonal
vector-valued function of 100000 variables:

>>> def fun_broyden(x):
... f = (3 - x) * x + 1
... f[1:] -= x[:-1]
... f[:-1] -= 2 * x[1:]
... return f

The corresponding Jacobian matrix is sparse. We tell the algorithm to estimate it by finite differences and provide
the sparsity structure of Jacobian to significantly speed up this process.

>>> from scipy.sparse import lil_matrix
>>> def sparsity_broyden(n):
... sparsity = lil_matrix((n, n), dtype=int)
... i = np.arange(n)
... sparsity[i, i] = 1
... i = np.arange(1, n)
... sparsity[i, i - 1] = 1
... i = np.arange(n - 1)
... sparsity[i, i + 1] = 1
... return sparsity
...
>>> n = 100000
>>> x0_broyden = -np.ones(n)
...
>>> res_3 = least_squares(fun_broyden, x0_broyden,
... jac_sparsity=sparsity_broyden(n))
>>> res_3.cost
4.5687069299604613e-23
>>> res_3.optimality
1.1650454296851518e-11

Let’s also solve a curve fitting problem using robust loss function to take care of outliers in the data. Define the
model function as y = a + b * exp(c * t), where t is a predictor variable, y is an observation and a, b, c
are parameters to estimate.
First, define the function which generates the data with noise and outliers, define themodel parameters, and generate
data:

>>> def gen_data(t, a, b, c, noise=0, n_outliers=0, random_state=0):
... y = a + b * np.exp(t * c)
...
... rnd = np.random.RandomState(random_state)

(continues on next page)
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(continued from previous page)
... error = noise * rnd.randn(t.size)
... outliers = rnd.randint(0, t.size, n_outliers)
... error[outliers] *= 10
...
... return y + error
...
>>> a = 0.5
>>> b = 2.0
>>> c = -1
>>> t_min = 0
>>> t_max = 10
>>> n_points = 15
...
>>> t_train = np.linspace(t_min, t_max, n_points)
>>> y_train = gen_data(t_train, a, b, c, noise=0.1, n_outliers=3)

Define function for computing residuals and initial estimate of parameters.

>>> def fun(x, t, y):
... return x[0] + x[1] * np.exp(x[2] * t) - y
...
>>> x0 = np.array([1.0, 1.0, 0.0])

Compute a standard least-squares solution:

>>> res_lsq = least_squares(fun, x0, args=(t_train, y_train))

Now compute two solutions with two different robust loss functions. The parameter f_scale is set to 0.1, meaning
that inlier residuals should not significantly exceed 0.1 (the noise level used).

>>> res_soft_l1 = least_squares(fun, x0, loss='soft_l1', f_scale=0.1,
... args=(t_train, y_train))
>>> res_log = least_squares(fun, x0, loss='cauchy', f_scale=0.1,
... args=(t_train, y_train))

And finally plot all the curves. We see that by selecting an appropriate loss we can get estimates close to optimal
even in the presence of strong outliers. But keep in mind that generally it is recommended to try ‘soft_l1’ or ‘huber’
losses first (if at all necessary) as the other two options may cause difficulties in optimization process.

>>> t_test = np.linspace(t_min, t_max, n_points * 10)
>>> y_true = gen_data(t_test, a, b, c)
>>> y_lsq = gen_data(t_test, *res_lsq.x)
>>> y_soft_l1 = gen_data(t_test, *res_soft_l1.x)
>>> y_log = gen_data(t_test, *res_log.x)
...
>>> import matplotlib.pyplot as plt
>>> plt.plot(t_train, y_train, 'o')
>>> plt.plot(t_test, y_true, 'k', linewidth=2, label='true')
>>> plt.plot(t_test, y_lsq, label='linear loss')
>>> plt.plot(t_test, y_soft_l1, label='soft_l1 loss')
>>> plt.plot(t_test, y_log, label='cauchy loss')
>>> plt.xlabel("t")
>>> plt.ylabel("y")

(continues on next page)
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(continued from previous page)
>>> plt.legend()
>>> plt.show()
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In the next example, we show how complex-valued residual functions of complex variables can be optimized with
least_squares(). Consider the following function:

>>> def f(z):
... return z - (0.5 + 0.5j)

We wrap it into a function of real variables that returns real residuals by simply handling the real and imaginary
parts as independent variables:

>>> def f_wrap(x):
... fx = f(x[0] + 1j*x[1])
... return np.array([fx.real, fx.imag])

Thus, instead of the original m-dimensional complex function of n complex variables we optimize a 2m-dimensional
real function of 2n real variables:

>>> from scipy.optimize import least_squares
>>> res_wrapped = least_squares(f_wrap, (0.1, 0.1), bounds=([0, 0], [1,␣
↪→1]))
>>> z = res_wrapped.x[0] + res_wrapped.x[1]*1j
>>> z
(0.49999999999925893+0.49999999999925893j)

Linear Least-Squares

nnls(A, b[, maxiter]) Solve argmin_x || Ax - b ||_2 for x>=0.
lsq_linear(A, b[, bounds, method, tol, …]) Solve a linear least-squares problem with bounds on the

variables.
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scipy.optimize.nnls
scipy.optimize.nnls(A, b, maxiter=None)

Solve argmin_x || Ax - b ||_2 for x>=0. This is a wrapper for a FORTRAN non-negative least squares
solver.

Parameters

A [ndarray] Matrix A as shown above.
b [ndarray] Right-hand side vector.
maxiter: int, optional

Maximum number of iterations, optional. Default is 3 * A.shape[1].
Returns

x [ndarray] Solution vector.
rnorm [float] The residual, || Ax-b ||_2.

Notes

The FORTRAN code was published in the book below. The algorithm is an active set method. It solves the KKT
(Karush-Kuhn-Tucker) conditions for the non-negative least squares problem.

References

Lawson C., Hanson R.J., (1987) Solving Least Squares Problems, SIAM

scipy.optimize.lsq_linear
scipy.optimize.lsq_linear(A, b, bounds=(-inf, inf), method=’trf’, tol=1e-10, lsq_solver=None,

lsmr_tol=None, max_iter=None, verbose=0)
Solve a linear least-squares problem with bounds on the variables.
Given a m-by-n design matrix A and a target vector b with m elements, lsq_linear solves the following opti-
mization problem:

minimize 0.5 * ||A x - b||**2
subject to lb <= x <= ub

This optimization problem is convex, hence a found minimum (if iterations have converged) is guaranteed to be
global.

Parameters

A [array_like, sparse matrix of LinearOperator, shape (m, n)] Design matrix. Can be scipy.
sparse.linalg.LinearOperator.

b [array_like, shape (m,)] Target vector.
bounds [2-tuple of array_like, optional] Lower and upper bounds on independent variables. Defaults

to no bounds. Each array must have shape (n,) or be a scalar, in the latter case a bound will
be the same for all variables. Use np.inf with an appropriate sign to disable bounds on all
or some variables.

method [‘trf’ or ‘bvls’, optional] Method to perform minimization.
• ‘trf’ : Trust Region Reflective algorithm adapted for a linear least-squares problem. This
is an interior-point-like method and the required number of iterations is weakly correlated
with the number of variables.
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• ‘bvls’ : Bounded-Variable Least-Squares algorithm. This is an active set method, which
requires the number of iterations comparable to the number of variables. Can’t be used
when A is sparse or LinearOperator.

Default is ‘trf’.
tol [float, optional] Tolerance parameter. The algorithm terminates if a relative change of the

cost function is less than tol on the last iteration. Additionally the first-order optimality mea-
sure is considered:
• method='trf' terminates if the uniform norm of the gradient, scaled to account for
the presence of the bounds, is less than tol.

• method='bvls' terminates if Karush-Kuhn-Tucker conditions are satisfied within tol
tolerance.

lsq_solver [{None, ‘exact’, ‘lsmr’}, optional] Method of solving unbounded least-squares problems
throughout iterations:
• ‘exact’ : Use dense QR or SVD decomposition approach. Can’t be used when A is sparse
or LinearOperator.

• ‘lsmr’ : Use scipy.sparse.linalg.lsmr iterative procedure which requires only
matrix-vector product evaluations. Can’t be used with method='bvls'.

If None (default) the solver is chosen based on type of A.
lsmr_tol [None, float or ‘auto’, optional] Tolerance parameters ‘atol’ and ‘btol’ for scipy.sparse.

linalg.lsmr If None (default), it is set to 1e-2 * tol. If ‘auto’, the tolerance will be
adjusted based on the optimality of the current iterate, which can speed up the optimization
process, but is not always reliable.

max_iter [None or int, optional] Maximum number of iterations before termination. If None (default),
it is set to 100 for method='trf' or to the number of variables for method='bvls'
(not counting iterations for ‘bvls’ initialization).

verbose [{0, 1, 2}, optional] Level of algorithm’s verbosity:
• 0 : work silently (default).
• 1 : display a termination report.
• 2 : display progress during iterations.

Returns

OptimizeResult with the following fields defined:
x [ndarray, shape (n,)] Solution found.
cost [float] Value of the cost function at the solution.
fun [ndarray, shape (m,)] Vector of residuals at the solution.
optimality [float] First-order optimality measure. The exact meaning depends on method, refer to the

description of tol parameter.
active_mask

[ndarray of int, shape (n,)] Each component shows whether a corresponding constraint is
active (that is, whether a variable is at the bound):
• 0 : a constraint is not active.
• -1 : a lower bound is active.
• 1 : an upper bound is active.
Might be somewhat arbitrary for the trf method as it generates a sequence of strictly feasible
iterates and active_mask is determined within a tolerance threshold.

nit [int] Number of iterations. Zero if the unconstrained solution is optimal.
status [int] Reason for algorithm termination:

• -1 : the algorithm was not able to make progress on the last iteration.
• 0 : the maximum number of iterations is exceeded.
• 1 : the first-order optimality measure is less than tol.
• 2 : the relative change of the cost function is less than tol.
• 3 : the unconstrained solution is optimal.

message [str] Verbal description of the termination reason.
success [bool] True if one of the convergence criteria is satisfied (status > 0).
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See also:

nnls

Linear least squares with non-negativity constraint.
least_squares

Nonlinear least squares with bounds on the variables.

Notes

The algorithm first computes the unconstrained least-squares solution by numpy.linalg.lstsq or scipy.
sparse.linalg.lsmr depending on lsq_solver. This solution is returned as optimal if it lies within the bounds.
Method ‘trf’ runs the adaptation of the algorithm described in [STIR] for a linear least-squares problem. The
iterations are essentially the same as in the nonlinear least-squares algorithm, but as the quadratic function model
is always accurate, we don’t need to track or modify the radius of a trust region. The line search (backtracking) is
used as a safety net when a selected step does not decrease the cost function. Read more detailed description of
the algorithm in scipy.optimize.least_squares.
Method ‘bvls’ runs a Python implementation of the algorithm described in [BVLS]. The algorithm maintains active
and free sets of variables, on each iteration chooses a new variable to move from the active set to the free set
and then solves the unconstrained least-squares problem on free variables. This algorithm is guaranteed to give
an accurate solution eventually, but may require up to n iterations for a problem with n variables. Additionally,
an ad-hoc initialization procedure is implemented, that determines which variables to set free or active initially.
It takes some number of iterations before actual BVLS starts, but can significantly reduce the number of further
iterations.

References

[STIR], [BVLS]

Examples

In this example a problem with a large sparse matrix and bounds on the variables is solved.

>>> from scipy.sparse import rand
>>> from scipy.optimize import lsq_linear
...
>>> np.random.seed(0)
...
>>> m = 20000
>>> n = 10000
...
>>> A = rand(m, n, density=1e-4)
>>> b = np.random.randn(m)
...
>>> lb = np.random.randn(n)
>>> ub = lb + 1
...
>>> res = lsq_linear(A, b, bounds=(lb, ub), lsmr_tol='auto', verbose=1)
# may vary

(continues on next page)
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(continued from previous page)
The relative change of the cost function is less than `tol`.
Number of iterations 16, initial cost 1.5039e+04, final cost 1.1112e+04,
first-order optimality 4.66e-08.

Curve Fitting

curve_fit(f, xdata, ydata[, p0, sigma, …]) Use non-linear least squares to fit a function, f, to data.

scipy.optimize.curve_fit
scipy.optimize.curve_fit(f, xdata, ydata, p0=None, sigma=None, absolute_sigma=False,

check_finite=True, bounds=(-inf, inf), method=None, jac=None,
**kwargs)

Use non-linear least squares to fit a function, f, to data.
Assumes ydata = f(xdata, *params) + eps

Parameters

f [callable] The model function, f(x, …). It must take the independent variable as the first
argument and the parameters to fit as separate remaining arguments.

xdata [array_like or object] The independent variable where the data is measured. Should usually
be an M-length sequence or an (k,M)-shaped array for functions with k predictors, but can
actually be any object.

ydata [array_like] The dependent data, a length M array - nominally f(xdata, ...).
p0 [array_like, optional] Initial guess for the parameters (length N). If None, then the initial

values will all be 1 (if the number of parameters for the function can be determined using
introspection, otherwise a ValueError is raised).

sigma [None or M-length sequence or MxM array, optional] Determines the uncertainty in ydata.
If we define residuals as r = ydata - f(xdata, *popt), then the interpretation of
sigma depends on its number of dimensions:
• A 1-d sigma should contain values of standard deviations of errors in ydata. In this case,
the optimized function is chisq = sum((r / sigma) ** 2).

• A 2-d sigma should contain the covariance matrix of errors in ydata. In this case, the
optimized function is chisq = r.T @ inv(sigma) @ r.
New in version 0.19.

None (default) is equivalent of 1-d sigma filled with ones.
absolute_sigma

[bool, optional] If True, sigma is used in an absolute sense and the estimated parameter
covariance pcov reflects these absolute values.
If False, only the relative magnitudes of the sigma values matter. The returned parame-
ter covariance matrix pcov is based on scaling sigma by a constant factor. This constant
is set by demanding that the reduced chisq for the optimal parameters popt when using
the scaled sigma equals unity. In other words, sigma is scaled to match the sample vari-
ance of the residuals after the fit. Mathematically, pcov(absolute_sigma=False)
= pcov(absolute_sigma=True) * chisq(popt)/(M-N)

check_finite
[bool, optional] If True, check that the input arrays do not contain nans of infs, and raise
a ValueError if they do. Setting this parameter to False may silently produce nonsensical
results if the input arrays do contain nans. Default is True.

bounds [2-tuple of array_like, optional] Lower and upper bounds on parameters. Defaults to no
bounds. Each element of the tuple must be either an array with the length equal to the
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number of parameters, or a scalar (in which case the bound is taken to be the same for
all parameters.) Use np.inf with an appropriate sign to disable bounds on all or some
parameters.
New in version 0.17.

method [{‘lm’, ‘trf’, ‘dogbox’}, optional] Method to use for optimization. See least_squares
for more details. Default is ‘lm’ for unconstrained problems and ‘trf’ if bounds are provided.
The method ‘lm’ won’t work when the number of observations is less than the number of
variables, use ‘trf’ or ‘dogbox’ in this case.
New in version 0.17.

jac [callable, string or None, optional] Function with signature jac(x, ...)which computes
the Jacobian matrix of the model function with respect to parameters as a dense array_like
structure. It will be scaled according to provided sigma. If None (default), the Jacobian will
be estimated numerically. String keywords for ‘trf’ and ‘dogbox’ methods can be used to
select a finite difference scheme, see least_squares.
New in version 0.18.

kwargs Keyword arguments passed to leastsq for method='lm' or least_squares oth-
erwise.

Returns

popt [array] Optimal values for the parameters so that the sum of the squared residuals of
f(xdata, *popt) - ydata is minimized

pcov [2d array] The estimated covariance of popt. The diagonals provide the variance of the
parameter estimate. To compute one standard deviation errors on the parameters use perr
= np.sqrt(np.diag(pcov)).
How the sigma parameter affects the estimated covariance depends on absolute_sigma argu-
ment, as described above.
If the Jacobian matrix at the solution doesn’t have a full rank, then ‘lm’ method returns a
matrix filled with np.inf, on the other hand ‘trf’ and ‘dogbox’ methods use Moore-Penrose
pseudoinverse to compute the covariance matrix.

Raises

ValueError
if either ydata or xdata contain NaNs, or if incompatible options are used.

RuntimeError
if the least-squares minimization fails.

OptimizeWarning
if covariance of the parameters can not be estimated.

See also:

least_squares

Minimize the sum of squares of nonlinear functions.
scipy.stats.linregress

Calculate a linear least squares regression for two sets of measurements.

Notes

With method='lm', the algorithm uses the Levenberg-Marquardt algorithm through leastsq. Note that this
algorithm can only deal with unconstrained problems.
Box constraints can be handled by methods ‘trf’ and ‘dogbox’. Refer to the docstring of least_squares for
more information.
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Examples

>>> import matplotlib.pyplot as plt
>>> from scipy.optimize import curve_fit

>>> def func(x, a, b, c):
... return a * np.exp(-b * x) + c

Define the data to be fit with some noise:

>>> xdata = np.linspace(0, 4, 50)
>>> y = func(xdata, 2.5, 1.3, 0.5)
>>> np.random.seed(1729)
>>> y_noise = 0.2 * np.random.normal(size=xdata.size)
>>> ydata = y + y_noise
>>> plt.plot(xdata, ydata, 'b-', label='data')

Fit for the parameters a, b, c of the function func:

>>> popt, pcov = curve_fit(func, xdata, ydata)
>>> popt
array([ 2.55423706, 1.35190947, 0.47450618])
>>> plt.plot(xdata, func(xdata, *popt), 'r-',
... label='fit: a=%5.3f, b=%5.3f, c=%5.3f' % tuple(popt))

Constrain the optimization to the region of 0 <= a <= 3, 0 <= b <= 1 and 0 <= c <= 0.5:

>>> popt, pcov = curve_fit(func, xdata, ydata, bounds=(0, [3., 1., 0.5]))
>>> popt
array([ 2.43708906, 1. , 0.35015434])
>>> plt.plot(xdata, func(xdata, *popt), 'g--',
... label='fit: a=%5.3f, b=%5.3f, c=%5.3f' % tuple(popt))

>>> plt.xlabel('x')
>>> plt.ylabel('y')
>>> plt.legend()
>>> plt.show()

6.18.6 Root finding

Scalar functions

root_scalar(f[, args, method, bracket, …]) Find a root of a scalar function.
brentq(f, a, b[, args, xtol, rtol, maxiter, …]) Find a root of a function in a bracketing interval using

Brent’s method.
brenth(f, a, b[, args, xtol, rtol, maxiter, …]) Find a root of a function in a bracketing interval using

Brent’s method with hyperbolic extrapolation.
ridder(f, a, b[, args, xtol, rtol, maxiter, …]) Find a root of a function in an interval using Ridder’s

method.
bisect(f, a, b[, args, xtol, rtol, maxiter, …]) Find root of a function within an interval using bisection.

Continued on next page
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Table 125 – continued from previous page
newton(func, x0[, fprime, args, tol, …]) Find a zero of a real or complex function using the

Newton-Raphson (or secant or Halley’s) method.
toms748(f, a, b[, args, k, xtol, rtol, …]) Find a zero using TOMS Algorithm 748 method.
RootResults(root, iterations, …) Represents the root finding result.

scipy.optimize.root_scalar
scipy.optimize.root_scalar(f, args=(), method=None, bracket=None, fprime=None, fprime2=None,

x0=None, x1=None, xtol=None, rtol=None, maxiter=None, op-
tions=None)

Find a root of a scalar function.
Parameters

f [callable] A function to find a root of.
args [tuple, optional] Extra arguments passed to the objective function and its derivative(s).
method [str, optional] Type of solver. Should be one of

• ‘bisect’ (see here)
• ‘brentq’ (see here)
• ‘brenth’ (see here)
• ‘ridder’ (see here)
• ‘toms748’ (see here)
• ‘newton’ (see here)
• ‘secant’ (see here)
• ‘halley’ (see here)

bracket: A sequence of 2 floats, optional
An interval bracketing a root. f(x, *args) must have different signs at the two endpoints.

x0 [float, optional] Initial guess.
x1 [float, optional] A second guess.
fprime [bool or callable, optional] If fprime is a boolean and is True, f is assumed to return the value

of the objective function and of the derivative. fprime can also be a callable returning the
derivative of f. In this case, it must accept the same arguments as f.

fprime2 [bool or callable, optional] If fprime2 is a boolean and is True, f is assumed to return the
value of the objective function and of the first and second derivatives. fprime2 can also be a
callable returning the second derivative of f. In this case, it must accept the same arguments
as f.

xtol [float, optional] Tolerance (absolute) for termination.
rtol [float, optional] Tolerance (relative) for termination.
maxiter [int, optional] Maximum number of iterations.
options [dict, optional] A dictionary of solver options. E.g. k, see show_options() for details.

Returns

sol [RootResults] The solution represented as a RootResults object. Important attributes
are: root the solution , converged a boolean flag indicating if the algorithm exited suc-
cessfully and flag which describes the cause of the termination. See RootResults for
a description of other attributes.

See also:

show_options

Additional options accepted by the solvers
root

Find a root of a vector function.
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fit: a=2.554, b=1.352, c=0.475
fit: a=2.437, b=1.000, c=0.350

Notes

This section describes the available solvers that can be selected by the ‘method’ parameter.
The default is to use the best method available for the situation presented. If a bracket is provided, it may use one
of the bracketing methods. If a derivative and an initial value are specified, it may select one of the derivative-based
methods. If no method is judged applicable, it will raise an Exception.

Examples

Find the root of a simple cubic

>>> from scipy import optimize
>>> def f(x):
... return (x**3 - 1) # only one real root at x = 1

>>> def fprime(x):
... return 3*x**2

The brentq method takes as input a bracket

>>> sol = optimize.root_scalar(f, bracket=[0, 3], method='brentq')
>>> sol.root, sol.iterations, sol.function_calls
(1.0, 10, 11)

The newton method takes as input a single point and uses the derivative(s)

>>> sol = optimize.root_scalar(f, x0=0.2, fprime=fprime, method='newton')
>>> sol.root, sol.iterations, sol.function_calls
(1.0, 11, 22)

The function can provide the value and derivative(s) in a single call.
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>>> def f_p_pp(x):
... return (x**3 - 1), 3*x**2, 6*x

>>> sol = optimize.root_scalar(f_p_pp, x0=0.2, fprime=True, method='newton
↪→')
>>> sol.root, sol.iterations, sol.function_calls
(1.0, 11, 11)

>>> sol = optimize.root_scalar(f_p_pp, x0=0.2, fprime=True, fprime2=True,␣
↪→method='halley')
>>> sol.root, sol.iterations, sol.function_calls
(1.0, 7, 8)

scipy.optimize.brentq
scipy.optimize.brentq(f, a, b, args=(), xtol=2e-12, rtol=8.881784197001252e-16, maxiter=100,

full_output=False, disp=True)
Find a root of a function in a bracketing interval using Brent’s method.
Uses the classic Brent’s method to find a zero of the function f on the sign changing interval [a , b]. Generally
considered the best of the rootfinding routines here. It is a safe version of the secant method that uses inverse
quadratic extrapolation. Brent’s method combines root bracketing, interval bisection, and inverse quadratic inter-
polation. It is sometimes known as the van Wijngaarden-Dekker-Brent method. Brent (1973) claims convergence
is guaranteed for functions computable within [a,b].
[Brent1973] provides the classic description of the algorithm. Another description can be found in a recent edi-
tion of Numerical Recipes, including [PressEtal1992]. A third description is at http://mathworld.wolfram.com/
BrentsMethod.html. It should be easy to understand the algorithm just by reading our code. Our code diverges a
bit from standard presentations: we choose a different formula for the extrapolation step.

Parameters

f [function] Python function returning a number. The function f must be continuous, and
f(a) and f(b) must have opposite signs.

a [scalar] One end of the bracketing interval [a, b].
b [scalar] The other end of the bracketing interval [a, b].
xtol [number, optional] The computed root x0 will satisfy np.allclose(x, x0,

atol=xtol, rtol=rtol), where x is the exact root. The parameter must be nonnega-
tive. For nice functions, Brent’s method will often satisfy the above condition with xtol/2
and rtol/2. [Brent1973]

rtol [number, optional] The computed root x0 will satisfy np.allclose(x, x0,
atol=xtol, rtol=rtol), where x is the exact root. The parameter cannot be smaller
than its default value of 4*np.finfo(float).eps. For nice functions, Brent’s method
will often satisfy the above condition with xtol/2 and rtol/2. [Brent1973]

maxiter [int, optional] if convergence is not achieved in maxiter iterations, an error is raised. Must
be >= 0.

args [tuple, optional] containing extra arguments for the function f. f is called by apply(f,
(x)+args).

full_output
[bool, optional] If full_output is False, the root is returned. If full_output is True, the return
value is (x, r), where x is the root, and r is a RootResults object.

disp [bool, optional] If True, raise RuntimeError if the algorithm didn’t converge. Otherwise the
convergence status is recorded in any RootResults return object.

Returns
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x0 [float] Zero of f between a and b.
r [RootResults (present if full_output = True)] Object containing information

about the convergence. In particular, r.converged is True if the routine converged.

Notes

f must be continuous. f(a) and f(b) must have opposite signs.
Related functions fall into several classes:
multivariate local optimizers

fmin, fmin_powell, fmin_cg, fmin_bfgs, fmin_ncg
nonlinear least squares minimizer

leastsq

constrained multivariate optimizers

fmin_l_bfgs_b, fmin_tnc, fmin_cobyla
global optimizers

basinhopping, brute, differential_evolution
local scalar minimizers

fminbound, brent, golden, bracket
n-dimensional root-finding

fsolve

one-dimensional root-finding

brenth, ridder, bisect, newton
scalar fixed-point finder

fixed_point

References

[Brent1973], [PressEtal1992]

Examples

>>> def f(x):
... return (x**2 - 1)

>>> from scipy import optimize

>>> root = optimize.brentq(f, -2, 0)
>>> root
-1.0
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>>> root = optimize.brentq(f, 0, 2)
>>> root
1.0

scipy.optimize.brenth
scipy.optimize.brenth(f, a, b, args=(), xtol=2e-12, rtol=8.881784197001252e-16, maxiter=100,

full_output=False, disp=True)
Find a root of a function in a bracketing interval using Brent’s method with hyperbolic extrapolation.
A variation on the classic Brent routine to find a zero of the function f between the arguments a and b that uses
hyperbolic extrapolation instead of inverse quadratic extrapolation. There was a paper back in the 1980’s … f(a)
and f(b) cannot have the same signs. Generally on a par with the brent routine, but not as heavily tested. It is a safe
version of the secant method that uses hyperbolic extrapolation. The version here is by Chuck Harris.

Parameters

f [function] Python function returning a number. f must be continuous, and f(a) and f(b) must
have opposite signs.

a [scalar] One end of the bracketing interval [a,b].
b [scalar] The other end of the bracketing interval [a,b].
xtol [number, optional] The computed root x0 will satisfy np.allclose(x, x0,

atol=xtol, rtol=rtol), where x is the exact root. The parameter must be nonneg-
ative. As with brentq, for nice functions the method will often satisfy the above condition
with xtol/2 and rtol/2.

rtol [number, optional] The computed root x0 will satisfy np.allclose(x, x0,
atol=xtol, rtol=rtol), where x is the exact root. The parameter cannot be smaller
than its default value of 4*np.finfo(float).eps. As with brentq, for nice func-
tions the method will often satisfy the above condition with xtol/2 and rtol/2.

maxiter [int, optional] if convergence is not achieved in maxiter iterations, an error is raised. Must
be >= 0.

args [tuple, optional] containing extra arguments for the function f. f is called by apply(f,
(x)+args).

full_output
[bool, optional] If full_output is False, the root is returned. If full_output is True, the return
value is (x, r), where x is the root, and r is a RootResults object.

disp [bool, optional] If True, raise RuntimeError if the algorithm didn’t converge. Otherwise the
convergence status is recorded in any RootResults return object.

Returns

x0 [float] Zero of f between a and b.
r [RootResults (present if full_output = True)] Object containing information

about the convergence. In particular, r.converged is True if the routine converged.
See also:
fmin, fmin_powell, fmin_cg
leastsq

nonlinear least squares minimizer
fmin_l_bfgs_b, fmin_tnc, fmin_cobyla, basinhopping, differential_evolution,
brute, fminbound, brent, golden, bracket
fsolve

n-dimensional root-finding
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brentq, brenth, ridder, bisect, newton
fixed_point

scalar fixed-point finder

Examples

>>> def f(x):
... return (x**2 - 1)

>>> from scipy import optimize

>>> root = optimize.brenth(f, -2, 0)
>>> root
-1.0

>>> root = optimize.brenth(f, 0, 2)
>>> root
1.0

scipy.optimize.ridder
scipy.optimize.ridder(f, a, b, args=(), xtol=2e-12, rtol=8.881784197001252e-16, maxiter=100,

full_output=False, disp=True)
Find a root of a function in an interval using Ridder’s method.

Parameters

f [function] Python function returning a number. f must be continuous, and f(a) and f(b) must
have opposite signs.

a [scalar] One end of the bracketing interval [a,b].
b [scalar] The other end of the bracketing interval [a,b].
xtol [number, optional] The computed root x0 will satisfy np.allclose(x, x0,

atol=xtol, rtol=rtol), where x is the exact root. The parameter must be non-
negative.

rtol [number, optional] The computed root x0 will satisfy np.allclose(x, x0,
atol=xtol, rtol=rtol), where x is the exact root. The parameter cannot be smaller
than its default value of 4*np.finfo(float).eps.

maxiter [int, optional] if convergence is not achieved in maxiter iterations, an error is raised. Must
be >= 0.

args [tuple, optional] containing extra arguments for the function f. f is called by apply(f,
(x)+args).

full_output
[bool, optional] If full_output is False, the root is returned. If full_output is True, the return
value is (x, r), where x is the root, and r is a RootResults object.

disp [bool, optional] If True, raise RuntimeError if the algorithm didn’t converge. Otherwise the
convergence status is recorded in any RootResults return object.

Returns

x0 [float] Zero of f between a and b.
r [RootResults (present if full_output = True)] Object containing information

about the convergence. In particular, r.converged is True if the routine converged.
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See also:
brentq, brenth, bisect, newton
fixed_point

scalar fixed-point finder

Notes

Uses [Ridders1979] method to find a zero of the function f between the arguments a and b. Ridders’ method is
faster than bisection, but not generally as fast as the Brent routines. [Ridders1979] provides the classic description
and source of the algorithm. A description can also be found in any recent edition of Numerical Recipes.
The routine used here diverges slightly from standard presentations in order to be a bit more careful of tolerance.

References

[Ridders1979]

Examples

>>> def f(x):
... return (x**2 - 1)

>>> from scipy import optimize

>>> root = optimize.ridder(f, 0, 2)
>>> root
1.0

>>> root = optimize.ridder(f, -2, 0)
>>> root
-1.0

scipy.optimize.bisect
scipy.optimize.bisect(f, a, b, args=(), xtol=2e-12, rtol=8.881784197001252e-16, maxiter=100,

full_output=False, disp=True)
Find root of a function within an interval using bisection.
Basic bisection routine to find a zero of the function f between the arguments a and b. f(a) and f(b) cannot have
the same signs. Slow but sure.

Parameters

f [function] Python function returning a number. f must be continuous, and f(a) and f(b) must
have opposite signs.

a [scalar] One end of the bracketing interval [a,b].
b [scalar] The other end of the bracketing interval [a,b].
xtol [number, optional] The computed root x0 will satisfy np.allclose(x, x0,

atol=xtol, rtol=rtol), where x is the exact root. The parameter must be non-
negative.
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rtol [number, optional] The computed root x0 will satisfy np.allclose(x, x0,
atol=xtol, rtol=rtol), where x is the exact root. The parameter cannot be smaller
than its default value of 4*np.finfo(float).eps.

maxiter [int, optional] if convergence is not achieved in maxiter iterations, an error is raised. Must
be >= 0.

args [tuple, optional] containing extra arguments for the function f. f is called by apply(f,
(x)+args).

full_output
[bool, optional] If full_output is False, the root is returned. If full_output is True, the return
value is (x, r), where x is the root, and r is a RootResults object.

disp [bool, optional] If True, raise RuntimeError if the algorithm didn’t converge. Otherwise the
convergence status is recorded in a RootResults return object.

Returns

x0 [float] Zero of f between a and b.
r [RootResults (present if full_output = True)] Object containing information

about the convergence. In particular, r.converged is True if the routine converged.
See also:
brentq, brenth, bisect, newton
fixed_point

scalar fixed-point finder
fsolve

n-dimensional root-finding

Examples

>>> def f(x):
... return (x**2 - 1)

>>> from scipy import optimize

>>> root = optimize.bisect(f, 0, 2)
>>> root
1.0

>>> root = optimize.bisect(f, -2, 0)
>>> root
-1.0

scipy.optimize.newton
scipy.optimize.newton(func, x0, fprime=None, args=(), tol=1.48e-08, maxiter=50, fprime2=None,

x1=None, rtol=0.0, full_output=False, disp=True)
Find a zero of a real or complex function using the Newton-Raphson (or secant or Halley’s) method.
Find a zero of the function func given a nearby starting point x0. The Newton-Raphson method is used if the
derivative fprime of func is provided, otherwise the secant method is used. If the second order derivative fprime2
of func is also provided, then Halley’s method is used.
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If x0 is a sequence with more than one item, then newton returns an array, and funcmust be vectorized and return
a sequence or array of the same shape as its first argument. If fprime or fprime2 is given then its return must also
have the same shape.

Parameters

func [callable] The function whose zero is wanted. It must be a function of a single variable of
the form f(x,a,b,c...), where a,b,c... are extra arguments that can be passed in
the args parameter.

x0 [float, sequence, or ndarray] An initial estimate of the zero that should be somewhere near
the actual zero. If not scalar, then func must be vectorized and return a sequence or array of
the same shape as its first argument.

fprime [callable, optional] The derivative of the function when available and convenient. If it is
None (default), then the secant method is used.

args [tuple, optional] Extra arguments to be used in the function call.
tol [float, optional] The allowable error of the zero value. If func is complex-valued, a larger tol

is recommended as both the real and imaginary parts of x contribute to |x - x0|.
maxiter [int, optional] Maximum number of iterations.
fprime2 [callable, optional] The second order derivative of the function when available and conve-

nient. If it is None (default), then the normal Newton-Raphson or the secant method is used.
If it is not None, then Halley’s method is used.

x1 [float, optional] Another estimate of the zero that should be somewhere near the actual zero.
Used if fprime is not provided.

rtol [float, optional] Tolerance (relative) for termination.
full_output

[bool, optional] If full_output is False (default), the root is returned. If True and x0 is scalar,
the return value is (x, r), where x is the root and r is a RootResults object. If True
and x0 is non-scalar, the return value is (x, converged, zero_der) (see Returns
section for details).

disp [bool, optional] If True, raise a RuntimeError if the algorithm didn’t converge, with the
error message containing the number of iterations and current function value. Otherwise the
convergence status is recorded in a RootResults return object. Ignored if x0 is not scalar.
Note: this has little to do with displaying, however the ‘disp‘ keyword cannot be renamed for
backwards compatibility.

Returns

root [float, sequence, or ndarray] Estimated location where function is zero.
r [RootResults, optional] Present if full_output=True and x0 is scalar. Object

containing information about the convergence. In particular, r.converged is True if the
routine converged.

converged [ndarray of bool, optional] Present if full_output=True and x0 is non-scalar. For
vector functions, indicates which elements converged successfully.

zero_der [ndarray of bool, optional] Present if full_output=True and x0 is non-scalar. For
vector functions, indicates which elements had a zero derivative.

See also:
brentq, brenth, ridder, bisect
fsolve

find zeros in n dimensions.
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Notes

The convergence rate of the Newton-Raphson method is quadratic, the Halley method is cubic, and the secant
method is sub-quadratic. This means that if the function is well behaved the actual error in the estimated zero after
the n-th iteration is approximately the square (cube for Halley) of the error after the (n-1)-th step. However, the
stopping criterion used here is the step size and there is no guarantee that a zero has been found. Consequently the
result should be verified. Safer algorithms are brentq, brenth, ridder, and bisect, but they all require that the root
first be bracketed in an interval where the function changes sign. The brentq algorithm is recommended for general
use in one dimensional problems when such an interval has been found.
When newton is used with arrays, it is best suited for the following types of problems:

• The initial guesses, x0, are all relatively the same distance from the roots.
• Some or all of the extra arguments, args, are also arrays so that a class of similar problems can be solved
together.

• The size of the initial guesses, x0, is larger than O(100) elements. Otherwise, a naive loop may perform as
well or better than a vector.

Examples

>>> from scipy import optimize
>>> import matplotlib.pyplot as plt

>>> def f(x):
... return (x**3 - 1) # only one real root at x = 1

fprime is not provided, use the secant method:

>>> root = optimize.newton(f, 1.5)
>>> root
1.0000000000000016
>>> root = optimize.newton(f, 1.5, fprime2=lambda x: 6 * x)
>>> root
1.0000000000000016

Only fprime is provided, use the Newton-Raphson method:

>>> root = optimize.newton(f, 1.5, fprime=lambda x: 3 * x**2)
>>> root
1.0

Both fprime2 and fprime are provided, use Halley’s method:

>>> root = optimize.newton(f, 1.5, fprime=lambda x: 3 * x**2,
... fprime2=lambda x: 6 * x)
>>> root
1.0

When we want to find zeros for a set of related starting values and/or function parameters, we can provide both of
those as an array of inputs:
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>>> f = lambda x, a: x**3 - a
>>> fder = lambda x, a: 3 * x**2
>>> np.random.seed(4321)
>>> x = np.random.randn(100)
>>> a = np.arange(-50, 50)
>>> vec_res = optimize.newton(f, x, fprime=fder, args=(a, ))

The above is the equivalent of solving for each value in (x, a) separately in a for-loop, just faster:

>>> loop_res = [optimize.newton(f, x0, fprime=fder, args=(a0,))
... for x0, a0 in zip(x, a)]
>>> np.allclose(vec_res, loop_res)
True

Plot the results found for all values of a:

>>> analytical_result = np.sign(a) * np.abs(a)**(1/3)
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> ax.plot(a, analytical_result, 'o')
>>> ax.plot(a, vec_res, '.')
>>> ax.set_xlabel('$a$')
>>> ax.set_ylabel('$x$ where $f(x, a)=0$')
>>> plt.show()
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scipy.optimize.toms748
scipy.optimize.toms748(f, a, b, args=(), k=1, xtol=2e-12, rtol=8.881784197001252e-16,maxiter=100,

full_output=False, disp=True)
Find a zero using TOMS Algorithm 748 method.
Implements the Algorithm 748 method of Alefeld, Potro and Shi to find a zero of the function f on the interval [a
, b], where f(a) and f(b) must have opposite signs.
It uses a mixture of inverse cubic interpolation and “Newton-quadratic” steps. [APS1995].
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Parameters

f [function] Python function returning a scalar. The function f must be continuous, and f(a)
and f(b) have opposite signs.

a [scalar,] lower boundary of the search interval
b [scalar,] upper boundary of the search interval
args [tuple, optional] containing extra arguments for the function f. f is called by f(x,

*args).
k [int, optional] The number of Newton quadratic steps to perform each iteration. k>=1.
xtol [scalar, optional] The computed root x0 will satisfy np.allclose(x, x0,

atol=xtol, rtol=rtol), where x is the exact root. The parameter must be non-
negative.

rtol [scalar, optional] The computed root x0 will satisfy np.allclose(x, x0,
atol=xtol, rtol=rtol), where x is the exact root.

maxiter [int, optional] if convergence is not achieved in maxiter iterations, an error is raised. Must
be >= 0.

full_output
[bool, optional] If full_output is False, the root is returned. If full_output is True, the return
value is (x, r), where x is the root, and r is a RootResults object.

disp [bool, optional] If True, raise RuntimeError if the algorithm didn’t converge. Otherwise the
convergence status is recorded in the RootResults return object.

Returns

x0 [float] Approximate Zero of f
r [RootResults (present if full_output = True)] Object containing information

about the convergence. In particular, r.converged is True if the routine converged.
See also:
brentq, brenth, ridder, bisect, newton
fsolve

find zeroes in n dimensions.

Notes

f must be continuous. Algorithm 748 with k=2 is asymptotically the most efficient algorithm known for finding
roots of a four times continuously differentiable function. In contrast with Brent’s algorithm, which may only
decrease the length of the enclosing bracket on the last step, Algorithm 748 decreases it each iteration with the
same asymptotic efficiency as it finds the root.
For easy statement of efficiency indices, assume that f has 4 continuouous deriviatives. For k=1, the convergence
order is at least 2.7, and with about asymptotically 2 function evaluations per iteration, the efficiency index is
approximately 1.65. For k=2, the order is about 4.6 with asymptotically 3 function evaluations per iteration, and
the efficiency index 1.66. For higher values of k, the efficiency index approaches the k-th root of (3k-2), hence
k=1 or k=2 are usually appropriate.

References

[APS1995]
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Examples

>>> def f(x):
... return (x**3 - 1) # only one real root at x = 1

>>> from scipy import optimize
>>> root, results = optimize.toms748(f, 0, 2, full_output=True)
>>> root
1.0
>>> results

converged: True
flag: 'converged'

function_calls: 11
iterations: 5

root: 1.0

scipy.optimize.RootResults
class scipy.optimize.RootResults(root, iterations, function_calls, flag)

Represents the root finding result.
Attributes

root [float] Estimated root location.
iterations [int] Number of iterations needed to find the root.
function_calls

[int] Number of times the function was called.
converged [bool] True if the routine converged.
flag [str] Description of the cause of termination.

The root_scalar function supports the following methods:

root_scalar(method=’brentq’)
scipy.optimize.root_scalar(args=(), method=’brentq’, x0=None, options={})

See also:
For documentation for the rest of the parameters, see scipy.optimize.root_scalar

Options

args [tuple, optional] Extra arguments passed to the objective function.
xtol [float, optional] Tolerance (absolute) for termination.
rtol [float, optional] Tolerance (relative) for termination.
maxiter [int, optional] Maximum number of iterations.
options: dict, optional

Specifies any method-specific options not covered above

root_scalar(method=’brenth’)
scipy.optimize.root_scalar(args=(), method=’brenth’, x0=None, options={})

See also:
For documentation for the rest of the parameters, see scipy.optimize.root_scalar
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Options

args [tuple, optional] Extra arguments passed to the objective function.
xtol [float, optional] Tolerance (absolute) for termination.
rtol [float, optional] Tolerance (relative) for termination.
maxiter [int, optional] Maximum number of iterations.
options: dict, optional

Specifies any method-specific options not covered above

root_scalar(method=’bisect’)
scipy.optimize.root_scalar(args=(), method=’bisect’, x0=None, options={})

See also:
For documentation for the rest of the parameters, see scipy.optimize.root_scalar

Options

args [tuple, optional] Extra arguments passed to the objective function.
xtol [float, optional] Tolerance (absolute) for termination.
rtol [float, optional] Tolerance (relative) for termination.
maxiter [int, optional] Maximum number of iterations.
options: dict, optional

Specifies any method-specific options not covered above

root_scalar(method=’ridder’)
scipy.optimize.root_scalar(args=(), method=’ridder’, x0=None, options={})

See also:
For documentation for the rest of the parameters, see scipy.optimize.root_scalar

Options

args [tuple, optional] Extra arguments passed to the objective function.
xtol [float, optional] Tolerance (absolute) for termination.
rtol [float, optional] Tolerance (relative) for termination.
maxiter [int, optional] Maximum number of iterations.
options: dict, optional

Specifies any method-specific options not covered above

root_scalar(method=’newton’)
scipy.optimize.root_scalar(args=(), method=’newton’, x0=None, options={})

See also:
For documentation for the rest of the parameters, see scipy.optimize.root_scalar

Options

args [tuple, optional] Extra arguments passed to the objective function and its derivative.
xtol [float, optional] Tolerance (absolute) for termination.
rtol [float, optional] Tolerance (relative) for termination.
maxiter [int, optional] Maximum number of iterations.
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x0 [float, required] Initial guess.
fprime [bool or callable, optional] If fprime is a boolean and is True, f is assumed to return the value

of derivative along with the objective function. fprime can also be a callable returning the
derivative of f. In this case, it must accept the same arguments as f.

options: dict, optional
Specifies any method-specific options not covered above

root_scalar(method=’toms748’)
scipy.optimize.root_scalar(args=(), method=’toms748’, x0=None, options={})

See also:
For documentation for the rest of the parameters, see scipy.optimize.root_scalar

Options

args [tuple, optional] Extra arguments passed to the objective function.
xtol [float, optional] Tolerance (absolute) for termination.
rtol [float, optional] Tolerance (relative) for termination.
maxiter [int, optional] Maximum number of iterations.
options: dict, optional

Specifies any method-specific options not covered above

root_scalar(method=’secant’)
scipy.optimize.root_scalar(args=(), method=’secant’, x0=None, options={})

See also:
For documentation for the rest of the parameters, see scipy.optimize.root_scalar

Options

args [tuple, optional] Extra arguments passed to the objective function.
xtol [float, optional] Tolerance (absolute) for termination.
rtol [float, optional] Tolerance (relative) for termination.
maxiter [int, optional] Maximum number of iterations.
x0 [float, required] Initial guess.
x1 [float, required] A second guess.
options: dict, optional

Specifies any method-specific options not covered above

root_scalar(method=’halley’)
scipy.optimize.root_scalar(args=(), method=’halley’, x0=None, options={})

See also:
For documentation for the rest of the parameters, see scipy.optimize.root_scalar

Options

args [tuple, optional] Extra arguments passed to the objective function and its derivatives.
xtol [float, optional] Tolerance (absolute) for termination.
rtol [float, optional] Tolerance (relative) for termination.
maxiter [int, optional] Maximum number of iterations.
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x0 [float, required] Initial guess.
fprime [bool or callable, required] If fprime is a boolean and is True, f is assumed to return the

value of derivative along with the objective function. fprime can also be a callable returning
the derivative of f. In this case, it must accept the same arguments as f.

fprime2 [bool or callable, required] If fprime2 is a boolean and is True, f is assumed to return the
value of 1st and 2nd derivatives along with the objective function. fprime2 can also be a
callable returning the 2nd derivative of f. In this case, it must accept the same arguments as
f.

options: dict, optional
Specifies any method-specific options not covered above

The table below lists situations and appropriate methods, along with asymptotic convergence rates per iteration (and per
function evaluation) for successful convergence to a simple root(*). Bisection is the slowest of them all, adding one bit
of accuracy for each function evaluation, but is guaranteed to converge. The other bracketing methods all (eventually)
increase the number of accurate bits by about 50% for every function evaluation. The derivative-based methods, all built
on newton, can converge quite quickly if the initial value is close to the root. They can also be applied to functions
defined on (a subset of) the complex plane.

Domain of f Bracket? Derivatives? Solvers Convergence
fprime fprime2 Guaranteed? Rate(s)(*)

R Yes N/A N/A •
bisection

• brentq
• brenth
• ridder
•
toms748

• Yes
• Yes
• Yes
• Yes
• Yes

• 1 “Lin-
ear”

• >=1,
<=
1.62

• >=1,
<=
1.62

• 2.0
(1.41)

• 2.7
(1.65)

R or C No No No secant No 1.62 (1.62)
R or C No Yes No newton No 2.00 (1.41)
R or C No Yes Yes halley No 3.00 (1.44)

See also:
scipy.optimize.cython_optimize – Typed Cython versions of zeros functions
Fixed point finding:

fixed_point(func, x0[, args, xtol, maxiter, …]) Find a fixed point of the function.

scipy.optimize.fixed_point
scipy.optimize.fixed_point(func, x0, args=(), xtol=1e-08, maxiter=500, method=’del2’)

Find a fixed point of the function.
Given a function of one or more variables and a starting point, find a fixed-point of the function: i.e. where
func(x0) == x0.

Parameters
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func [function] Function to evaluate.
x0 [array_like] Fixed point of function.
args [tuple, optional] Extra arguments to func.
xtol [float, optional] Convergence tolerance, defaults to 1e-08.
maxiter [int, optional] Maximum number of iterations, defaults to 500.
method [{“del2”, “iteration”}, optional] Method of finding the fixed-point, defaults to “del2” which

uses Steffensen’s Method with Aitken’s Del^2 convergence acceleration [1]. The “itera-
tion” method simply iterates the function until convergence is detected, without attempting
to accelerate the convergence.

References

[1]

Examples

>>> from scipy import optimize
>>> def func(x, c1, c2):
... return np.sqrt(c1/(x+c2))
>>> c1 = np.array([10,12.])
>>> c2 = np.array([3, 5.])
>>> optimize.fixed_point(func, [1.2, 1.3], args=(c1,c2))
array([ 1.4920333 , 1.37228132])

Multidimensional

root(fun, x0[, args, method, jac, tol, …]) Find a root of a vector function.

scipy.optimize.root
scipy.optimize.root(fun, x0, args=(), method=’hybr’, jac=None, tol=None, callback=None, op-

tions=None)
Find a root of a vector function.

Parameters

fun [callable] A vector function to find a root of.
x0 [ndarray] Initial guess.
args [tuple, optional] Extra arguments passed to the objective function and its Jacobian.
method [str, optional] Type of solver. Should be one of

• ‘hybr’ (see here)
• ‘lm’ (see here)
• ‘broyden1’ (see here)
• ‘broyden2’ (see here)
• ‘anderson’ (see here)
• ‘linearmixing’ (see here)
• ‘diagbroyden’ (see here)
• ‘excitingmixing’ (see here)
• ‘krylov’ (see here)
• ‘df-sane’ (see here)
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jac [bool or callable, optional] If jac is a Boolean and is True, fun is assumed to return the
value of Jacobian along with the objective function. If False, the Jacobian will be estimated
numerically. jac can also be a callable returning the Jacobian of fun. In this case, it must
accept the same arguments as fun.

tol [float, optional] Tolerance for termination. For detailed control, use solver-specific options.
callback [function, optional] Optional callback function. It is called on every iteration as

callback(x, f) where x is the current solution and f the corresponding residual. For
all methods but ‘hybr’ and ‘lm’.

options [dict, optional] A dictionary of solver options. E.g. xtol ormaxiter, see show_options()
for details.

Returns

sol [OptimizeResult] The solution represented as a OptimizeResult object. Important
attributes are: x the solution array, success a Boolean flag indicating if the algorithm
exited successfully and message which describes the cause of the termination. See
OptimizeResult for a description of other attributes.

See also:

show_options

Additional options accepted by the solvers

Notes

This section describes the available solvers that can be selected by the ‘method’ parameter. The default method is
hybr.
Method hybr uses a modification of the Powell hybrid method as implemented in MINPACK [1].
Method lm solves the system of nonlinear equations in a least squares sense using a modification of the Levenberg-
Marquardt algorithm as implemented in MINPACK [1].
Method df-sane is a derivative-free spectral method. [3]
Methods broyden1, broyden2, anderson, linearmixing, diagbroyden, excitingmixing, krylov are inexact Newton
methods, with backtracking or full line searches [2]. Each method corresponds to a particular Jacobian approxi-
mations. See nonlin for details.

• Method broyden1 uses Broyden’s first Jacobian approximation, it is known as Broyden’s good method.
• Method broyden2 uses Broyden’s second Jacobian approximation, it is known as Broyden’s bad method.
• Method anderson uses (extended) Anderson mixing.
• Method Krylov uses Krylov approximation for inverse Jacobian. It is suitable for large-scale problem.
• Method diagbroyden uses diagonal Broyden Jacobian approximation.
• Method linearmixing uses a scalar Jacobian approximation.
• Method excitingmixing uses a tuned diagonal Jacobian approximation.

Warning: The algorithms implemented for methods diagbroyden, linearmixing and excitingmixing may be
useful for specific problems, but whether they will work may depend strongly on the problem.

New in version 0.11.0.
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References

[1], [2], [3]

Examples

The following functions define a system of nonlinear equations and its jacobian.

>>> def fun(x):
... return [x[0] + 0.5 * (x[0] - x[1])**3 - 1.0,
... 0.5 * (x[1] - x[0])**3 + x[1]]

>>> def jac(x):
... return np.array([[1 + 1.5 * (x[0] - x[1])**2,
... -1.5 * (x[0] - x[1])**2],
... [-1.5 * (x[1] - x[0])**2,
... 1 + 1.5 * (x[1] - x[0])**2]])

A solution can be obtained as follows.

>>> from scipy import optimize
>>> sol = optimize.root(fun, [0, 0], jac=jac, method='hybr')
>>> sol.x
array([ 0.8411639, 0.1588361])

The root function supports the following methods:

root(method=’hybr’)
scipy.optimize.root(fun, x0, args=(), method=’hybr’, jac=None, tol=None, callback=None, op-

tions={’func’: None, ’col_deriv’: 0, ’xtol’: 1.49012e-08, ’maxfev’: 0, ’band’: None,
’eps’: None, ’factor’: 100, ’diag’: None})

Find the roots of a multivariate function using MINPACK’s hybrd and hybrj routines (modified Powell method).
See also:
For documentation for the rest of the parameters, see scipy.optimize.root

Options

col_deriv [bool] Specify whether the Jacobian function computes derivatives down the columns (faster,
because there is no transpose operation).

xtol [float] The calculation will terminate if the relative error between two consecutive iterates is
at most xtol.

maxfev [int] The maximum number of calls to the function. If zero, then 100*(N+1) is the max-
imum where N is the number of elements in x0.

band [tuple] If set to a two-sequence containing the number of sub- and super-diagonals
within the band of the Jacobi matrix, the Jacobi matrix is considered banded (only for
fprime=None).

eps [float] A suitable step length for the forward-difference approximation of the Jacobian (for
fprime=None). If eps is less than the machine precision, it is assumed that the relative
errors in the functions are of the order of the machine precision.

factor [float] A parameter determining the initial step bound (factor * || diag * x||).
Should be in the interval (0.1, 100).

diag [sequence] N positive entries that serve as a scale factors for the variables.
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root(method=’lm’)
scipy.optimize.root(fun, x0, args=(), method=’lm’, jac=None, tol=None, callback=None, op-

tions={’func’: None, ’col_deriv’: 0, ’xtol’: 1.49012e-08, ’ftol’: 1.49012e-08, ’gtol’:
0.0, ’maxiter’: 0, ’eps’: 0.0, ’factor’: 100, ’diag’: None})

Solve for least squares with Levenberg-Marquardt
See also:
For documentation for the rest of the parameters, see scipy.optimize.root

Options

col_deriv [bool] non-zero to specify that the Jacobian function computes derivatives down the columns
(faster, because there is no transpose operation).

ftol [float] Relative error desired in the sum of squares.
xtol [float] Relative error desired in the approximate solution.
gtol [float] Orthogonality desired between the function vector and the columns of the Jacobian.
maxiter [int] Themaximum number of calls to the function. If zero, then 100*(N+1) is themaximum

where N is the number of elements in x0.
epsfcn [float] A suitable step length for the forward-difference approximation of the Jacobian (for

Dfun=None). If epsfcn is less than the machine precision, it is assumed that the relative
errors in the functions are of the order of the machine precision.

factor [float] A parameter determining the initial step bound (factor * || diag * x||).
Should be in interval (0.1, 100).

diag [sequence] N positive entries that serve as a scale factors for the variables.

root(method=’broyden1’)
scipy.optimize.root(fun, x0, args=(), method=’broyden1’, tol=None, callback=None, options={})

See also:
For documentation for the rest of the parameters, see scipy.optimize.root

Options

nit [int, optional] Number of iterations to make. If omitted (default), make as many as required
to meet tolerances.

disp [bool, optional] Print status to stdout on every iteration.
maxiter [int, optional] Maximum number of iterations to make. If more are needed to meet conver-

gence, NoConvergence is raised.
ftol [float, optional] Relative tolerance for the residual. If omitted, not used.
fatol [float, optional] Absolute tolerance (in max-norm) for the residual. If omitted, default is

6e-6.
xtol [float, optional] Relative minimum step size. If omitted, not used.
xatol [float, optional] Absolute minimum step size, as determined from the Jacobian approxima-

tion. If the step size is smaller than this, optimization is terminated as successful. If omitted,
not used.

tol_norm [function(vector) -> scalar, optional] Norm to use in convergence check. Default is the max-
imum norm.

line_search
[{None, ‘armijo’ (default), ‘wolfe’}, optional] Which type of a line search to use to determine
the step size in the direction given by the Jacobian approximation. Defaults to ‘armijo’.

jac_options
[dict, optional]
Options for the respective Jacobian approximation.
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alpha [float, optional] Initial guess for the Jacobian is (-1/alpha).
reduction_method

[str or tuple, optional] Method used in ensuring that the rank of the
Broyden matrix stays low. Can either be a string giving the name
of the method, or a tuple of the form (method, param1,
param2, ...) that gives the name of the method and values
for additional parameters.
Methods available:
• restart Drop all matrix columns. Has no extra parameters.
• simple Drop oldest matrix column. Has no extra parame-

ters.
• svd Keep only the most significant SVD components.

Extra parameters:
– to_retain

Number of SVD components to re-
tain when rank reduction is done.
Default is max_rank - 2.

max_rank [int, optional] Maximum rank for the Broyden matrix. Default is
infinity (ie., no rank reduction).

root(method=’broyden2’)
scipy.optimize.root(fun, x0, args=(), method=’broyden2’, tol=None, callback=None, options={})

See also:
For documentation for the rest of the parameters, see scipy.optimize.root

Options

nit [int, optional] Number of iterations to make. If omitted (default), make as many as required
to meet tolerances.

disp [bool, optional] Print status to stdout on every iteration.
maxiter [int, optional] Maximum number of iterations to make. If more are needed to meet conver-

gence, NoConvergence is raised.
ftol [float, optional] Relative tolerance for the residual. If omitted, not used.
fatol [float, optional] Absolute tolerance (in max-norm) for the residual. If omitted, default is

6e-6.
xtol [float, optional] Relative minimum step size. If omitted, not used.
xatol [float, optional] Absolute minimum step size, as determined from the Jacobian approxima-

tion. If the step size is smaller than this, optimization is terminated as successful. If omitted,
not used.

tol_norm [function(vector) -> scalar, optional] Norm to use in convergence check. Default is the max-
imum norm.

line_search
[{None, ‘armijo’ (default), ‘wolfe’}, optional] Which type of a line search to use to determine
the step size in the direction given by the Jacobian approximation. Defaults to ‘armijo’.

jac_options
[dict, optional] Options for the respective Jacobian approximation.
alpha [float, optional] Initial guess for the Jacobian is (-1/alpha).
reduction_method

[str or tuple, optional] Method used in ensuring that the rank of the Broyden
matrix stays low. Can either be a string giving the name of the method, or
a tuple of the form (method, param1, param2, ...) that gives the
name of the method and values for additional parameters.
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Methods available:
• restart Drop all matrix columns. Has no extra parameters.
• simple Drop oldest matrix column. Has no extra parameters.
• svd Keep only the most significant SVD components.

Extra parameters:
– to_retain

Number of SVD components to retain when
rank reduction is done. Default is max_rank
- 2.

max_rank [int, optional] Maximum rank for the Broyden matrix. Default is infinity (ie.,
no rank reduction).

root(method=’anderson’)
scipy.optimize.root(fun, x0, args=(), method=’anderson’, tol=None, callback=None, options={})

See also:
For documentation for the rest of the parameters, see scipy.optimize.root

Options

nit [int, optional] Number of iterations to make. If omitted (default), make as many as required
to meet tolerances.

disp [bool, optional] Print status to stdout on every iteration.
maxiter [int, optional] Maximum number of iterations to make. If more are needed to meet conver-

gence, NoConvergence is raised.
ftol [float, optional] Relative tolerance for the residual. If omitted, not used.
fatol [float, optional] Absolute tolerance (in max-norm) for the residual. If omitted, default is

6e-6.
xtol [float, optional] Relative minimum step size. If omitted, not used.
xatol [float, optional] Absolute minimum step size, as determined from the Jacobian approxima-

tion. If the step size is smaller than this, optimization is terminated as successful. If omitted,
not used.

tol_norm [function(vector) -> scalar, optional] Norm to use in convergence check. Default is the max-
imum norm.

line_search
[{None, ‘armijo’ (default), ‘wolfe’}, optional] Which type of a line search to use to determine
the step size in the direction given by the Jacobian approximation. Defaults to ‘armijo’.

jac_options
[dict, optional] Options for the respective Jacobian approximation.
alpha [float, optional] Initial guess for the Jacobian is (-1/alpha).
M [float, optional] Number of previous vectors to retain. Defaults to 5.
w0 [float, optional] Regularization parameter for numerical stability. Compared to

unity, good values of the order of 0.01.

root(method=’linearmixing’)
scipy.optimize.root(fun, x0, args=(), method=’linearmixing’, tol=None, callback=None, options={})

See also:
For documentation for the rest of the parameters, see scipy.optimize.root

Options
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nit [int, optional] Number of iterations to make. If omitted (default), make as many as required
to meet tolerances.

disp [bool, optional] Print status to stdout on every iteration.
maxiter [int, optional] Maximum number of iterations to make. If more are needed to meet conver-

gence, NoConvergence is raised.
ftol [float, optional] Relative tolerance for the residual. If omitted, not used.
fatol [float, optional] Absolute tolerance (in max-norm) for the residual. If omitted, default is

6e-6.
xtol [float, optional] Relative minimum step size. If omitted, not used.
xatol [float, optional] Absolute minimum step size, as determined from the Jacobian approxima-

tion. If the step size is smaller than this, optimization is terminated as successful. If omitted,
not used.

tol_norm [function(vector) -> scalar, optional] Norm to use in convergence check. Default is the max-
imum norm.

line_search
[{None, ‘armijo’ (default), ‘wolfe’}, optional] Which type of a line search to use to determine
the step size in the direction given by the Jacobian approximation. Defaults to ‘armijo’.

jac_options
[dict, optional] Options for the respective Jacobian approximation.
alpha [float, optional] initial guess for the jacobian is (-1/alpha).

root(method=’diagbroyden’)
scipy.optimize.root(fun, x0, args=(), method=’diagbroyden’, tol=None, callback=None, options={})

See also:
For documentation for the rest of the parameters, see scipy.optimize.root

Options

nit [int, optional] Number of iterations to make. If omitted (default), make as many as required
to meet tolerances.

disp [bool, optional] Print status to stdout on every iteration.
maxiter [int, optional] Maximum number of iterations to make. If more are needed to meet conver-

gence, NoConvergence is raised.
ftol [float, optional] Relative tolerance for the residual. If omitted, not used.
fatol [float, optional] Absolute tolerance (in max-norm) for the residual. If omitted, default is

6e-6.
xtol [float, optional] Relative minimum step size. If omitted, not used.
xatol [float, optional] Absolute minimum step size, as determined from the Jacobian approxima-

tion. If the step size is smaller than this, optimization is terminated as successful. If omitted,
not used.

tol_norm [function(vector) -> scalar, optional] Norm to use in convergence check. Default is the max-
imum norm.

line_search
[{None, ‘armijo’ (default), ‘wolfe’}, optional] Which type of a line search to use to determine
the step size in the direction given by the Jacobian approximation. Defaults to ‘armijo’.

jac_options
[dict, optional] Options for the respective Jacobian approximation.
alpha [float, optional] initial guess for the jacobian is (-1/alpha).
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root(method=’excitingmixing’)
scipy.optimize.root(fun, x0, args=(), method=’excitingmixing’, tol=None, callback=None, options={})

See also:
For documentation for the rest of the parameters, see scipy.optimize.root

Options

nit [int, optional] Number of iterations to make. If omitted (default), make as many as required
to meet tolerances.

disp [bool, optional] Print status to stdout on every iteration.
maxiter [int, optional] Maximum number of iterations to make. If more are needed to meet conver-

gence, NoConvergence is raised.
ftol [float, optional] Relative tolerance for the residual. If omitted, not used.
fatol [float, optional] Absolute tolerance (in max-norm) for the residual. If omitted, default is

6e-6.
xtol [float, optional] Relative minimum step size. If omitted, not used.
xatol [float, optional] Absolute minimum step size, as determined from the Jacobian approxima-

tion. If the step size is smaller than this, optimization is terminated as successful. If omitted,
not used.

tol_norm [function(vector) -> scalar, optional] Norm to use in convergence check. Default is the max-
imum norm.

line_search
[{None, ‘armijo’ (default), ‘wolfe’}, optional] Which type of a line search to use to determine
the step size in the direction given by the Jacobian approximation. Defaults to ‘armijo’.

jac_options
[dict, optional] Options for the respective Jacobian approximation.
alpha [float, optional] Initial Jacobian approximation is (-1/alpha).
alphamax [float, optional] The entries of the diagonal Jacobian are kept in the range

[alpha, alphamax].

root(method=’krylov’)
scipy.optimize.root(fun, x0, args=(), method=’krylov’, tol=None, callback=None, options={})

See also:
For documentation for the rest of the parameters, see scipy.optimize.root

Options

nit [int, optional] Number of iterations to make. If omitted (default), make as many as required
to meet tolerances.

disp [bool, optional] Print status to stdout on every iteration.
maxiter [int, optional] Maximum number of iterations to make. If more are needed to meet conver-

gence, NoConvergence is raised.
ftol [float, optional] Relative tolerance for the residual. If omitted, not used.
fatol [float, optional] Absolute tolerance (in max-norm) for the residual. If omitted, default is

6e-6.
xtol [float, optional] Relative minimum step size. If omitted, not used.
xatol [float, optional] Absolute minimum step size, as determined from the Jacobian approxima-

tion. If the step size is smaller than this, optimization is terminated as successful. If omitted,
not used.
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tol_norm [function(vector) -> scalar, optional] Norm to use in convergence check. Default is the max-
imum norm.

line_search
[{None, ‘armijo’ (default), ‘wolfe’}, optional] Which type of a line search to use to determine
the step size in the direction given by the Jacobian approximation. Defaults to ‘armijo’.

jac_options
[dict, optional] Options for the respective Jacobian approximation.
rdiff [float, optional] Relative step size to use in numerical differentiation.
method [{‘lgmres’, ‘gmres’, ‘bicgstab’, ‘cgs’, ‘minres’} or function] Krylov method to use

to approximate the Jacobian. Can be a string, or a function implementing the
same interface as the iterative solvers in scipy.sparse.linalg.
The default is scipy.sparse.linalg.lgmres.

inner_M [LinearOperator or InverseJacobian] Preconditioner for the inner Krylov itera-
tion. Note that you can use also inverse Jacobians as (adaptive) preconditioners.
For example,

>>> jac = BroydenFirst()
>>> kjac = KrylovJacobian(inner_M=jac.inverse).

If the preconditioner has a method named ‘update’, it will be called as
update(x, f) after each nonlinear step, with x giving the current point,
and f the current function value.

inner_tol, inner_maxiter, …
Parameters to pass on to the “inner” Krylov solver. See scipy.sparse.
linalg.gmres for details.

outer_k [int, optional] Size of the subspace kept across LGMRES nonlinear iterations.
See scipy.sparse.linalg.lgmres for details.

root(method=’df-sane’)
scipy.optimize.root(fun, x0, args=(), method=’df-sane’, tol=None, callback=None, options={’func’:

None, ’ftol’: 1e-08, ’fatol’: 1e-300, ’maxfev’: 1000, ’fnorm’: None, ’disp’: False, ’M’:
10, ’eta_strategy’: None, ’sigma_eps’: 1e-10, ’sigma_0’: 1.0, ’line_search’: ’cruz’})

Solve nonlinear equation with the DF-SANE method
See also:
For documentation for the rest of the parameters, see scipy.optimize.root

Options

ftol [float, optional] Relative norm tolerance.
fatol [float, optional] Absolute norm tolerance. Algorithm terminates when ||func(x)|| <

fatol + ftol ||func(x_0)||.
fnorm [callable, optional] Norm to use in the convergence check. If None, 2-norm is used.
maxfev [int, optional] Maximum number of function evaluations.
disp [bool, optional] Whether to print convergence process to stdout.
eta_strategy

[callable, optional] Choice of the eta_k parameter, which gives slack for growth of
||F||**2. Called as eta_k = eta_strategy(k, x, F) with k the iteration
number, x the current iterate and F the current residual. Should satisfy eta_k > 0 and
sum(eta, k=0..inf) < inf. Default: ||F||**2 / (1 + k)**2.

sigma_eps [float, optional] The spectral coefficient is constrained to sigma_eps < sigma < 1/
sigma_eps. Default: 1e-10

sigma_0 [float, optional] Initial spectral coefficient. Default: 1.0
M [int, optional] Number of iterates to include in the nonmonotonic line search. Default: 10
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line_search
[{‘cruz’, ‘cheng’}] Type of line search to employ. ‘cruz’ is the original one defined in [Mar-
tinez & Raydan. Math. Comp. 75, 1429 (2006)], ‘cheng’ is a modified search defined in
[Cheng & Li. IMA J. Numer. Anal. 29, 814 (2009)]. Default: ‘cruz’

References

[1], [2], [3]

6.18.7 Linear Programming

linprog(c[, A_ub, b_ub, A_eq, b_eq, bounds, …]) Linear programming: minimize a linear objective func-
tion subject to linear equality and inequality constraints.

scipy.optimize.linprog

scipy.optimize.linprog(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None, bounds=None,
method=’interior-point’, callback=None, options=None, x0=None)

Linear programming: minimize a linear objective function subject to linear equality and inequality constraints.
Linear programming solves problems of the following form:

min
x

cTx

such that Aubx ≤ bub,

Aeqx = beq,

l ≤ x ≤ u,

where x is a vector of decision variables; c, bub, beq , l, and u are vectors; and Aub and Aeq are matrices.
Informally, that’s:
minimize:

c @ x

such that:

A_ub @ x <= b_ub
A_eq @ x == b_eq
lb <= x <= ub

Note that by default lb = 0 and ub = None unless specified with bounds.
Parameters

c [1D array] The coefficients of the linear objective function to be minimized.
A_ub [2D array, optional] The inequality constraint matrix. Each row of A_ub specifies the coef-

ficients of a linear inequality constraint on x.
b_ub [1D array, optional] The inequality constraint vector. Each element represents an upper

bound on the corresponding value of A_ub @ x.
A_eq [2D array, optional] The equality constraint matrix. Each row of A_eq specifies the coeffi-

cients of a linear equality constraint on x.
b_eq [1D array, optional] The equality constraint vector. Each element of A_eq @ xmust equal

the corresponding element of b_eq.
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bounds [sequence, optional] A sequence of (min, max) pairs for each element in x, defining the
minimum and maximum values of that decision variable. Use None to indicate that there
is no bound. By default, bounds are (0, None) (all decision variables are non-negative).
If a single tuple (min, max) is provided, then min and max will serve as bounds for all
decision variables.

method [{‘interior-point’, ‘revised simplex’, ‘simplex’}, optional] The algorithm used to solve the
standard form problem. ‘interior-point’ (default), ‘revised simplex’ , and ‘simplex’ (legacy) are
supported.

callback [callable, optional] If a callback function is provided, it will be called at least once per iter-
ation of the algorithm. The callback function must accept a single scipy.optimize.
OptimizeResult consisting of the following fields:
x [1D array] The current solution vector.
fun [float] The current value of the objective function c @ x.
success [bool] True when the algorithm has completed successfully.
slack [1D array] The (nominally positive) values of the slack, b_ub - A_ub @

x.
con [1D array] The (nominally zero) residuals of the equality constraints, b_eq

- A_eq @ x.
phase [int] The phase of the algorithm being executed.
status [int] An integer representing the status of the algorithm.

0 : Optimization proceeding nominally.
1 : Iteration limit reached.
2 : Problem appears to be infeasible.
3 : Problem appears to be unbounded.
4 : Numerical difficulties encountered.

nit [int] The current iteration number.
message [str] A string descriptor of the algorithm status.

options [dict, optional] A dictionary of solver options. All methods accept the following options:
maxiter [int] Maximum number of iterations to perform.
disp [bool] Set to True to print convergence messages.

For method-specific options, see show_options('linprog').
x0 [1D array, optional] Guess values of the decision variables, which will be refined by the

optimization algorithm. This argument is currently used only by the ‘revised simplex’ method,
and can only be used if x0 represents a basic feasible solution.

Returns

res [OptimizeResult] A scipy.optimize.OptimizeResult consisting of the fields:
x [1D array] The values of the decision variables that minimizes the objective

function while satisfying the constraints.
fun [float] The optimal value of the objective function c @ x.
slack [1D array] The (nominally positive) values of the slack variables, b_ub -

A_ub @ x.
con [1D array] The (nominally zero) residuals of the equality constraints, b_eq

- A_eq @ x.
success [bool] True when the algorithm succeeds in finding an optimal solution.
status [int] An integer representing the exit status of the algorithm.

0 : Optimization terminated successfully.
1 : Iteration limit reached.
2 : Problem appears to be infeasible.
3 : Problem appears to be unbounded.
4 : Numerical difficulties encountered.

nit [int] The total number of iterations performed in all phases.
message [str] A string descriptor of the exit status of the algorithm.
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See also:

show_options

Additional options accepted by the solvers.

Notes

This section describes the available solvers that can be selected by the ‘method’ parameter.
‘interior-point’ is the default as it is typically the fastest andmost robust method. ‘revised simplex’ is more accurate for
the problems it solves. ‘simplex’ is the legacy method and is included for backwards compatibility and educational
purposes.
Method interior-point uses the primal-dual path following algorithm as outlined in [4]. This algorithm supports
sparse constraint matrices and is typically faster than the simplex methods, especially for large, sparse problems.
Note, however, that the solution returned may be slightly less accurate than those of the simplex methods and will
not, in general, correspond with a vertex of the polytope defined by the constraints.
New in version 1.0.0.
Method revised simplex uses the revised simplex method as decribed in [9], except that a factorization [11] of the
basis matrix, rather than its inverse, is efficiently maintained and used to solve the linear systems at each iteration
of the algorithm.
New in version 1.3.0.
Method simplex uses a traditional, full-tableau implementation of Dantzig’s simplex algorithm [1], [2] (not the
Nelder-Mead simplex). This algorithm is included for backwards compatibility and educational purposes.
New in version 0.15.0.
Before applying any method, a presolve procedure based on [8] attempts to identify trivial infeasibilities, trivial
unboundedness, and potential problem simplifications. Specifically, it checks for:

• rows of zeros in A_eq or A_ub, representing trivial constraints;
• columns of zeros in A_eq and A_ub, representing unconstrained variables;
• column singletons in A_eq, representing fixed variables; and
• column singletons in A_ub, representing simple bounds.

If presolve reveals that the problem is unbounded (e.g. an unconstrained and unbounded variable has negative
cost) or infeasible (e.g. a row of zeros in A_eq corresponds with a nonzero in b_eq), the solver terminates
with the appropriate status code. Note that presolve terminates as soon as any sign of unboundedness is detected;
consequently, a problem may be reported as unbounded when in reality the problem is infeasible (but infeasibility
has not been detected yet). Therefore, if it is important to know whether the problem is actually infeasible, solve
the problem again with option presolve=False.
If neither infeasibility nor unboundedness are detected in a single pass of the presolve, bounds are tightened where
possible and fixed variables are removed from the problem. Then, linearly dependent rows of the A_eqmatrix are
removed, (unless they represent an infeasibility) to avoid numerical difficulties in the primary solve routine. Note
that rows that are nearly linearly dependent (within a prescribed tolerance) may also be removed, which can change
the optimal solution in rare cases. If this is a concern, eliminate redundancy from your problem formulation and
run with option rr=False or presolve=False.
Several potential improvements can be made here: additional presolve checks outlined in [8] should be imple-
mented, the presolve routine should be run multiple times (until no further simplifications can be made), and more
of the efficiency improvements from [5] should be implemented in the redundancy removal routines.
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After presolve, the problem is transformed to standard form by converting the (tightened) simple bounds to upper
bound constraints, introducing non-negative slack variables for inequality constraints, and expressing unbounded
variables as the difference between two non-negative variables. The selected algorithm solves the standard form
problem, and a postprocessing routine converts this to a solution to the original problem.

References

[1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]

Examples

Consider the following problem:

min
x0,x1

−x0 + 4x1

such that − 3x0 + x1 ≤ 6,

−x0 − 2x1 ≥ −4,

x1 ≥ −3.

The problem is not presented in the form accepted by linprog. This is easily remedied by converting the “greater
than” inequality constraint to a “less than” inequality constraint by multiplying both sides by a factor of −1. Note
also that the last constraint is really the simple bound −3 ≤ x1 ≤ ∞. Finally, since there are no bounds on x0,
we must explicitly specify the bounds −∞ ≤ x0 ≤ ∞, as the default is for variables to be non-negative. After
collecting coeffecients into arrays and tuples, the input for this problem is:

>>> c = [-1, 4]
>>> A = [[-3, 1], [1, 2]]
>>> b = [6, 4]
>>> x0_bounds = (None, None)
>>> x1_bounds = (-3, None)
>>> from scipy.optimize import linprog
>>> res = linprog(c, A_ub=A, b_ub=b, bounds=[x0_bounds, x1_bounds])

Note that the default method for linprog is ‘interior-point’, which is approximate by nature.

>>> print(res)
con: array([], dtype=float64)
fun: -21.99999984082494 # may vary

message: 'Optimization terminated successfully.'
nit: 6 # may vary

slack: array([3.89999997e+01, 8.46872439e-08] # may vary
status: 0

success: True
x: array([ 9.99999989, -2.99999999]) # may vary

If you need greater accuracy, try ‘revised simplex’.

>>> res = linprog(c, A_ub=A, b_ub=b, bounds=[x0_bounds, x1_bounds],␣
↪→method='revised simplex')
>>> print(res)

con: array([], dtype=float64)
fun: -22.0 # may vary

message: 'Optimization terminated successfully.'
(continues on next page)
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(continued from previous page)
nit: 1 # may vary

slack: array([39., 0.]) # may vary
status: 0

success: True
x: array([10., -3.]) # may vary

The linprog function supports the following methods:

linprog(method=’simplex’)

scipy.optimize.linprog(c, method=’simplex’, callback=None, options={’c0’: None, ’A’: None, ’b’: None,
’maxiter’: 1000, ’disp’: False, ’tol’: 1e-12, ’bland’: False, ’_T_o’: None},
x0=None)

Minimize a linear objective function subject to linear equality and non-negativity constraints using the two phase
simplex method. Linear programming is intended to solve problems of the following form:
Minimize:

c @ x

Subject to:

A @ x == b
x >= 0

Parameters

c [1D array] Coefficients of the linear objective function to be minimized.
c0 [float] Constant term in objective function due to fixed (and eliminated) variables. (Purely

for display.)
A [2D array] 2D array such that A @ x, gives the values of the equality constraints at x.
b [1D array] 1D array of values representing the right hand side of each equality constraint

(row) in A.
callback [callable, optional] If a callback function is provided, it will be called within each itera-

tion of the algorithm. The callback function must accept a single scipy.optimize.
OptimizeResult consisting of the following fields:
x [1D array] Current solution vector
fun [float] Current value of the objective function
success [bool] True when an algorithm has completed successfully.
slack [1D array] The values of the slack variables. Each slack variable corresponds

to an inequality constraint. If the slack is zero, the corresponding constraint
is active.

con [1D array] The (nominally zero) residuals of the equality constraints, that is,
b - A_eq @ x

phase [int] The phase of the algorithm being executed.
status [int] An integer representing the status of the optimization:

0 : Algorithm proceeding nominally
1 : Iteration limit reached
2 : Problem appears to be infeasible
3 : Problem appears to be unbounded
4 : Serious numerical difficulties encountered

nit [int] The number of iterations performed.
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message [str] A string descriptor of the exit status of the optimization.
Returns

x [1D array] Solution vector.
status [int] An integer representing the exit status of the optimization:

0 : Optimization terminated successfully
1 : Iteration limit reached
2 : Problem appears to be infeasible
3 : Problem appears to be unbounded
4 : Serious numerical difficulties encountered

message [str] A string descriptor of the exit status of the optimization.
iteration [int] The number of iterations taken to solve the problem.

See also:
For documentation for the rest of the parameters, see scipy.optimize.linprog

Options

maxiter [int] The maximum number of iterations to perform.
disp [bool] If True, print exit status message to sys.stdout
tol [float] The tolerance which determines when a solution is “close enough” to zero in Phase 1

to be considered a basic feasible solution or close enough to positive to serve as an optimal
solution.

bland [bool] If True, use Bland’s anti-cycling rule [3] to choose pivots to prevent cycling. If False,
choose pivots which should lead to a converged solution more quickly. The latter method is
subject to cycling (non-convergence) in rare instances.

Notes

The expected problem formulation differs between the top level linprogmodule and the method specific solvers.
The method specific solvers expect a problem in standard form:
Minimize:

c @ x

Subject to:

A @ x == b
x >= 0

Whereas the top level linprog module expects a problem of form:
Minimize:

c @ x

Subject to:

A_ub @ x <= b_ub
A_eq @ x == b_eq
lb <= x <= ub
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where lb = 0 and ub = None unless set in bounds.
The original problem contains equality, upper-bound and variable constraints whereas the method specific solver
requires equality constraints and variable non-negativity.
linprogmodule converts the original problem to standard form by converting the simple bounds to upper bound
constraints, introducing non-negative slack variables for inequality constraints, and expressing unbounded variables
as the difference between two non-negative variables.

References

[1], [2], [3]

linprog(method=’interior-point’)

scipy.optimize.linprog(c, method=’interior-point’, callback=None, options={’c0’: 0, ’A’: None, ’b’:
None, ’_T_o’: [], ’alpha0’: 0.99995, ’beta’: 0.1, ’maxiter’: 1000, ’disp’: False,
’tol’: 1e-08, ’sparse’: False, ’lstsq’: False, ’sym_pos’: True, ’cholesky’: None, ’pc’:
True, ’ip’: False, ’permc_spec’: ’MMD_AT_PLUS_A’}, x0=None)

Minimize a linear objective function subject to linear equality and non-negativity constraints using the interior point
method of [4]. Linear programming is intended to solve problems of the following form:
Minimize:

c @ x

Subject to:

A @ x == b
x >= 0

Parameters

c [1D array] Coefficients of the linear objective function to be minimized.
c0 [float] Constant term in objective function due to fixed (and eliminated) variables. (Purely

for display.)
A [2D array] 2D array such that A @ x, gives the values of the equality constraints at x.
b [1D array] 1D array of values representing the right hand side of each equality constraint

(row) in A.
Returns

x [1D array] Solution vector.
status [int] An integer representing the exit status of the optimization:

0 : Optimization terminated successfully
1 : Iteration limit reached
2 : Problem appears to be infeasible
3 : Problem appears to be unbounded
4 : Serious numerical difficulties encountered

message [str] A string descriptor of the exit status of the optimization.
iteration [int] The number of iterations taken to solve the problem.

See also:
For documentation for the rest of the parameters, see scipy.optimize.linprog
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Options

maxiter [int (default = 1000)] The maximum number of iterations of the algorithm.
disp [bool (default = False)] Set to True if indicators of optimization status are to be printed to

the console each iteration.
tol [float (default = 1e-8)] Termination tolerance to be used for all termination criteria; see [4]

Section 4.5.
alpha0 [float (default = 0.99995)] The maximal step size for Mehrota’s predictor-corrector search

direction; see β3 of [4] Table 8.1.
beta [float (default = 0.1)] The desired reduction of the path parameter µ (see [6]) whenMehrota’s

predictor-corrector is not in use (uncommon).
sparse [bool (default = False)] Set to True if the problem is to be treated as sparse after presolve. If

either A_eq or A_ub is a sparse matrix, this option will automatically be set True, and the
problem will be treated as sparse even during presolve. If your constraint matrices contain
mostly zeros and the problem is not very small (less than about 100 constraints or variables),
consider setting True or providing A_eq and A_ub as sparse matrices.

lstsq [bool (default = False)] Set to True if the problem is expected to be very poorly conditioned.
This should always be left False unless severe numerical difficulties are encountered. Leave
this at the default unless you receive a warning message suggesting otherwise.

sym_pos [bool (default = True)] Leave True if the problem is expected to yield a well conditioned
symmetric positive definite normal equation matrix (almost always). Leave this at the default
unless you receive a warning message suggesting otherwise.

cholesky [bool (default = True)] Set to True if the normal equations are to be solved by explicit
Cholesky decomposition followed by explicit forward/backward substitution. This is typi-
cally faster for problems that are numerically well-behaved.

pc [bool (default = True)] Leave True if the predictor-corrector method of Mehrota is to be
used. This is almost always (if not always) beneficial.

ip [bool (default = False)] Set to True if the improved initial point suggestion due to [4] Section
4.3 is desired. Whether this is beneficial or not depends on the problem.

permc_spec
[str (default = ‘MMD_AT_PLUS_A’)] (Has effect only with sparse = True, lstsq =
False, sym_pos = True, and no SuiteSparse.) A matrix is factorized in each iteration
of the algorithm. This option specifies how to permute the columns of the matrix for sparsity
preservation. Acceptable values are:
• NATURAL: natural ordering.
• MMD_ATA: minimum degree ordering on the structure of A^T A.
• MMD_AT_PLUS_A: minimum degree ordering on the structure of A^T+A.
• COLAMD: approximate minimum degree column ordering.
This option can impact the convergence of the interior point algorithm; test different values
to determine which performs best for your problem. For more information, refer to scipy.
sparse.linalg.splu.

Notes

This method implements the algorithm outlined in [4] with ideas from [8] and a structure inspired by the simpler
methods of [6].
The primal-dual path following method begins with initial ‘guesses’ of the primal and dual variables of the standard
form problem and iteratively attempts to solve the (nonlinear) Karush-Kuhn-Tucker conditions for the problem
with a gradually reduced logarithmic barrier term added to the objective. This particular implementation uses a
homogeneous self-dual formulation, which provides certificates of infeasibility or unboundedness where applicable.
The default initial point for the primal and dual variables is that defined in [4] Section 4.4 Equation 8.22. Optionally
(by setting initial point option ip=True), an alternate (potentially improved) starting point can be calculated
according to the additional recommendations of [4] Section 4.4.
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A search direction is calculated using the predictor-corrector method (single correction) proposed by Mehrota and
detailed in [4] Section 4.1. (A potential improvement would be to implement the method of multiple corrections
described in [4] Section 4.2.) In practice, this is accomplished by solving the normal equations, [4] Section 5.1
Equations 8.31 and 8.32, derived from the Newton equations [4] Section 5 Equations 8.25 (compare to [4] Section
4 Equations 8.6-8.8). The advantage of solving the normal equations rather than 8.25 directly is that the matrices
involved are symmetric positive definite, so Cholesky decomposition can be used rather than the more expensive
LU factorization.
With default options, the solver used to perform the factorization depends on third-party software availability and
the conditioning of the problem.
For dense problems, solvers are tried in the following order:
1. scipy.linalg.cho_factor
2. scipy.linalg.solve with option sym_pos=True
3. scipy.linalg.solve with option sym_pos=False
4. scipy.linalg.lstsq

For sparse problems:
1. sksparse.cholmod.cholesky (if scikit-sparse and SuiteSparse are installed)
2. scipy.sparse.linalg.factorized (if scikit-umfpack and SuiteSparse are installed)
3. scipy.sparse.linalg.splu (which uses SuperLU distributed with SciPy)
4. scipy.sparse.linalg.lsqr

If the solver fails for any reason, successively more robust (but slower) solvers are attempted in the order indi-
cated. Attempting, failing, and re-starting factorization can be time consuming, so if the problem is numerically
challenging, options can be set to bypass solvers that are failing. Setting cholesky=False skips to solver 2,
sym_pos=False skips to solver 3, and lstsq=True skips to solver 4 for both sparse and dense problems.
Potential improvements for combatting issues associated with dense columns in otherwise sparse problems are
outlined in [4] Section 5.3 and [10] Section 4.1-4.2; the latter also discusses the alleviation of accuracy issues
associated with the substitution approach to free variables.
After calculating the search direction, the maximum possible step size that does not activate the non-negativity
constraints is calculated, and the smaller of this step size and unity is applied (as in [4] Section 4.1.) [4] Section
4.3 suggests improvements for choosing the step size.
The new point is tested according to the termination conditions of [4] Section 4.5. The same tolerance, which can
be set using the tol option, is used for all checks. (A potential improvement would be to expose the different
tolerances to be set independently.) If optimality, unboundedness, or infeasibility is detected, the solve procedure
terminates; otherwise it repeats.
The expected problem formulation differs between the top level linprogmodule and the method specific solvers.
The method specific solvers expect a problem in standard form:
Minimize:

c @ x

Subject to:

A @ x == b
x >= 0

Whereas the top level linprog module expects a problem of form:
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Minimize:

c @ x

Subject to:

A_ub @ x <= b_ub
A_eq @ x == b_eq
lb <= x <= ub

where lb = 0 and ub = None unless set in bounds.
The original problem contains equality, upper-bound and variable constraints whereas the method specific solver
requires equality constraints and variable non-negativity.
linprogmodule converts the original problem to standard form by converting the simple bounds to upper bound
constraints, introducing non-negative slack variables for inequality constraints, and expressing unbounded variables
as the difference between two non-negative variables.

References

[4], [6], [8], [9], [10]

linprog(method=’revised simplex’)

scipy.optimize.linprog(c, method=’revised_simplex’, callback=None, options={’c0’: None, ’A’: None,
’b’: None, ’maxiter’: 5000, ’tol’: 1e-12, ’maxupdate’: 10, ’mast’: False, ’pivot’:
’mrc’, ’_T_o’: [], ’disp’: False}, x0=None)

Solve the following linear programming problem via a two-phase revised simplex algorithm.:

minimize: c @ x

subject to: A @ x == b
0 <= x < oo

Parameters

c [1D array] Coefficients of the linear objective function to be minimized.
c0 [float] Constant term in objective function due to fixed (and eliminated) variables. (Currently

unused.)
A [2D array] 2D array which, when matrix-multiplied by x, gives the values of the equality

constraints at x.
b [1D array] 1D array of values representing the RHS of each equality constraint (row) in

A_eq.
x0 [1D array, optional] Starting values of the independent variables, which will be refined by

the optimization algorithm. For the revised simplex method, these must correspond with a
basic feasible solution.

callback [callable, optional] If a callback function is provided, it will be called within each itera-
tion of the algorithm. The callback function must accept a single scipy.optimize.
OptimizeResult consisting of the following fields:
x [1D array] Current solution vector.
fun [float] Current value of the objective function c @ x.
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success [bool] True only when an algorithm has completed successfully, so this is
always False as the callback function is called only while the algorithm is still
iterating.

slack [1D array] The values of the slack variables. Each slack variable corresponds
to an inequality constraint. If the slack is zero, the corresponding constraint
is active.

con [1D array] The (nominally zero) residuals of the equality constraints, that is,
b - A_eq @ x.

phase [int] The phase of the algorithm being executed.
status [int] For revised simplex, this is always 0 because if a different status is de-

tected, the algorithm terminates.
nit [int] The number of iterations performed.
message [str] A string descriptor of the exit status of the optimization.

Returns

x [1D array] Solution vector.
status [int] An integer representing the exit status of the optimization:

0 : Optimization terminated successfully
1 : Iteration limit reached
2 : Problem appears to be infeasible
3 : Problem appears to be unbounded
4 : Numerical difficulties encountered
5 : No constraints; turn presolve on
6 : Guess x0 cannot be converted to a basic feasible␣
↪→solution

message [str] A string descriptor of the exit status of the optimization.
iteration [int] The number of iterations taken to solve the problem.

See also:
For documentation for the rest of the parameters, see scipy.optimize.linprog

Options

maxiter [int] The maximum number of iterations to perform in either phase.
tol [float] The tolerance which determines when a solution is “close enough” to zero in Phase 1

to be considered a basic feasible solution or close enough to positive to serve as an optimal
solution.

maxupdate
[int] The maximum number of updates performed on the LU factorization. After this many
updates is reached, the basis matrix is factorized from scratch.

mast [bool] Minimize Amortized Solve Time. If enabled, the average time to solve a linear system
using the basis factorization is measured. Typically, the average solve time will decrease with
each successive solve after initial factorization, as factorization takes much more time than
the solve operation (and updates). Eventually, however, the updated factorization becomes
sufficiently complex that the average solve time begins to increase. When this is detected,
the basis is refactorized from scratch. Enable this option to maximize speed at the risk of
nondeterministic behavior. Ignored if maxupdate is 0.

pivot [“mrc” or “bland”] Pivot rule: Minimum Reduced Cost (default) or Bland’s rule. Choose
Bland’s rule if iteration limit is reached and cycling is suspected.

disp [bool] Set to True if indicators of optimization status are to be printed to the console each
iteration.
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The simplex method supports callback functions, such as:

linprog_verbose_callback(res) A sample callback function demonstrating the linprog
callback interface.

scipy.optimize.linprog_verbose_callback

scipy.optimize.linprog_verbose_callback(res)
A sample callback function demonstrating the linprog callback interface. This callback produces detailed output
to sys.stdout before each iteration and after the final iteration of the simplex algorithm.

Parameters

res [A scipy.optimize.OptimizeResult consisting of the following fields:]
x [1D array] The independent variable vector which optimizes the linear program-

ming problem.
fun [float] Value of the objective function.
success [bool] True if the algorithm succeeded in finding an optimal solution.
slack [1D array] The values of the slack variables. Each slack variable corresponds to

an inequality constraint. If the slack is zero, then the corresponding constraint
is active.

con [1D array] The (nominally zero) residuals of the equality constraints, that is, b
- A_eq @ x

phase [int] The phase of the optimization being executed. In phase 1 a basic feasi-
ble solution is sought and the T has an additional row representing an alternate
objective function.

status [int] An integer representing the exit status of the optimization:

0 : Optimization terminated successfully
1 : Iteration limit reached
2 : Problem appears to be infeasible
3 : Problem appears to be unbounded
4 : Serious numerical difficulties encountered

nit [int] The number of iterations performed.
message [str] A string descriptor of the exit status of the optimization.

Assignment problems:

linear_sum_assignment(cost_matrix) Solve the linear sum assignment problem.

scipy.optimize.linear_sum_assignment

scipy.optimize.linear_sum_assignment(cost_matrix)
Solve the linear sum assignment problem.
The linear sum assignment problem is also known as minimum weight matching in bipartite graphs. A problem
instance is described by a matrix C, where each C[i,j] is the cost of matching vertex i of the first partite set (a
“worker”) and vertex j of the second set (a “job”). The goal is to find a complete assignment of workers to jobs of
minimal cost.
Formally, let X be a booleanmatrix whereX[i, j] = 1 iff row i is assigned to column j. Then the optimal assignment
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has cost

min
∑
i

∑
j

Ci,jXi,j

s.t. each row is assignment to at most one column, and each column to at most one row.
This function can also solve a generalization of the classic assignment problem where the cost matrix is rectangular.
If it has more rows than columns, then not every row needs to be assigned to a column, and vice versa.
The method used is the Hungarian algorithm, also known as the Munkres or Kuhn-Munkres algorithm.

Parameters

cost_matrix
[array] The cost matrix of the bipartite graph.

Returns

row_ind, col_ind
[array] An array of row indices and one of corresponding column indices giving the optimal
assignment. The cost of the assignment can be computed as cost_matrix[row_ind,
col_ind].sum(). The row indices will be sorted; in the case of a square cost matrix
they will be equal to numpy.arange(cost_matrix.shape[0]).

Notes

New in version 0.17.0.

References

1. http://csclab.murraystate.edu/bob.pilgrim/445/munkres.html
2. Harold W. Kuhn. The Hungarian Method for the assignment problem. Naval Research Logistics Quarterly,

2:83-97, 1955.
3. Harold W. Kuhn. Variants of the Hungarian method for assignment problems. Naval Research Logistics

Quarterly, 3: 253-258, 1956.
4. Munkres, J. Algorithms for the Assignment and Transportation Problems. J. SIAM, 5(1):32-38, March, 1957.
5. https://en.wikipedia.org/wiki/Hungarian_algorithm

Examples

>>> cost = np.array([[4, 1, 3], [2, 0, 5], [3, 2, 2]])
>>> from scipy.optimize import linear_sum_assignment
>>> row_ind, col_ind = linear_sum_assignment(cost)
>>> col_ind
array([1, 0, 2])
>>> cost[row_ind, col_ind].sum()
5
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6.18.8 Utilities

Finite-Difference Approximation

approx_fprime(xk, f, epsilon, *args) Finite-difference approximation of the gradient of a scalar
function.

check_grad(func, grad, x0, *args, **kwargs) Check the correctness of a gradient function by compar-
ing it against a (forward) finite-difference approximation
of the gradient.

scipy.optimize.approx_fprime
scipy.optimize.approx_fprime(xk, f, epsilon, *args)

Finite-difference approximation of the gradient of a scalar function.
Parameters

xk [array_like] The coordinate vector at which to determine the gradient of f.
f [callable] The function of which to determine the gradient (partial derivatives). Should take

xk as first argument, other arguments to f can be supplied in *args. Should return a scalar,
the value of the function at xk.

epsilon [array_like] Increment to xk to use for determining the function gradient. If a scalar, uses the
same finite difference delta for all partial derivatives. If an array, should contain one value
per element of xk.

*args [args, optional] Any other arguments that are to be passed to f.
Returns

grad [ndarray] The partial derivatives of f to xk.
See also:

check_grad

Check correctness of gradient function against approx_fprime.

Notes

The function gradient is determined by the forward finite difference formula:

f(xk[i] + epsilon[i]) - f(xk[i])
f'[i] = ---------------------------------

epsilon[i]

The main use of approx_fprime is in scalar function optimizers like fmin_bfgs, to determine numerically
the Jacobian of a function.

Examples

>>> from scipy import optimize
>>> def func(x, c0, c1):
... "Coordinate vector `x` should be an array of size two."
... return c0 * x[0]**2 + c1*x[1]**2
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>>> x = np.ones(2)
>>> c0, c1 = (1, 200)
>>> eps = np.sqrt(np.finfo(float).eps)
>>> optimize.approx_fprime(x, func, [eps, np.sqrt(200) * eps], c0, c1)
array([ 2. , 400.00004198])

scipy.optimize.check_grad
scipy.optimize.check_grad(func, grad, x0, *args, **kwargs)

Check the correctness of a gradient function by comparing it against a (forward) finite-difference approximation of
the gradient.

Parameters

func [callable func(x0, *args)] Function whose derivative is to be checked.
grad [callable grad(x0, *args)] Gradient of func.
x0 [ndarray] Points to check grad against forward difference approximation of grad using func.
args [\*args, optional] Extra arguments passed to func and grad.
epsilon [float, optional] Step size used for the finite difference approximation. It defaults to

sqrt(numpy.finfo(float).eps), which is approximately 1.49e-08.
Returns

err [float] The square root of the sum of squares (i.e. the 2-norm) of the difference between
grad(x0, *args) and the finite difference approximation of grad using func at the
points x0.

See also:
approx_fprime

Examples

>>> def func(x):
... return x[0]**2 - 0.5 * x[1]**3
>>> def grad(x):
... return [2 * x[0], -1.5 * x[1]**2]
>>> from scipy.optimize import check_grad
>>> check_grad(func, grad, [1.5, -1.5])
2.9802322387695312e-08

Line Search

bracket(func[, xa, xb, args, grow_limit, …]) Bracket the minimum of the function.
line_search(f, myfprime, xk, pk[, gfk, …]) Find alpha that satisfies strong Wolfe conditions.

scipy.optimize.bracket
scipy.optimize.bracket(func, xa=0.0, xb=1.0, args=(), grow_limit=110.0, maxiter=1000)

Bracket the minimum of the function.
Given a function and distinct initial points, search in the downhill direction (as defined by the initital points) and
return new points xa, xb, xc that bracket the minimum of the function f(xa) > f(xb) < f(xc). It doesn’t always mean
that obtained solution will satisfy xa<=x<=xb
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Parameters

func [callable f(x,*args)] Objective function to minimize.
xa, xb [float, optional] Bracketing interval. Defaults xa to 0.0, and xb to 1.0.
args [tuple, optional] Additional arguments (if present), passed to func.
grow_limit

[float, optional] Maximum grow limit. Defaults to 110.0
maxiter [int, optional] Maximum number of iterations to perform. Defaults to 1000.

Returns

xa, xb, xc [float] Bracket.
fa, fb, fc [float] Objective function values in bracket.
funcalls [int] Number of function evaluations made.

scipy.optimize.line_search
scipy.optimize.line_search(f, myfprime, xk, pk, gfk=None, old_fval=None, old_old_fval=None,

args=(), c1=0.0001, c2=0.9, amax=None, extra_condition=None, max-
iter=10)

Find alpha that satisfies strong Wolfe conditions.
Parameters

f [callable f(x,*args)] Objective function.
myfprime [callable f’(x,*args)] Objective function gradient.
xk [ndarray] Starting point.
pk [ndarray] Search direction.
gfk [ndarray, optional] Gradient value for x=xk (xk being the current parameter estimate). Will

be recomputed if omitted.
old_fval [float, optional] Function value for x=xk. Will be recomputed if omitted.
old_old_fval

[float, optional] Function value for the point preceding x=xk
args [tuple, optional] Additional arguments passed to objective function.
c1 [float, optional] Parameter for Armijo condition rule.
c2 [float, optional] Parameter for curvature condition rule.
amax [float, optional] Maximum step size
extra_condition

[callable, optional] A callable of the form extra_condition(alpha, x, f, g)
returning a boolean. Arguments are the proposed step alpha and the corresponding x,
f and g values. The line search accepts the value of alpha only if this callable returns
True. If the callable returns False for the step length, the algorithm will continue with
new iterates. The callable is only called for iterates satisfying the strong Wolfe conditions.

maxiter [int, optional] Maximum number of iterations to perform
Returns

alpha [float or None] Alpha for which x_new = x0 + alpha * pk, or None if the line
search algorithm did not converge.

fc [int] Number of function evaluations made.
gc [int] Number of gradient evaluations made.
new_fval [float or None] New function value f(x_new)=f(x0+alpha*pk), or None if the line

search algorithm did not converge.
old_fval [float] Old function value f(x0).
new_slope [float or None] The local slope along the search direction at the new value

<myfprime(x_new), pk>, or None if the line search algorithm did not converge.
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Notes

Uses the line search algorithm to enforce strong Wolfe conditions. See Wright and Nocedal, ‘Numerical Optimiza-
tion’, 1999, pg. 59-60.
For the zoom phase it uses an algorithm by […].

Hessian Approximation

LbfgsInvHessProduct(sk, yk) Linear operator for the L-BFGS approximate inverse
Hessian.

HessianUpdateStrategy Interface for implementing Hessian update strategies.

scipy.optimize.LbfgsInvHessProduct
class scipy.optimize.LbfgsInvHessProduct(sk, yk)

Linear operator for the L-BFGS approximate inverse Hessian.
This operator computes the product of a vector with the approximate inverse of the Hessian of the objective
function, using the L-BFGS limited memory approximation to the inverse Hessian, accumulated during the opti-
mization.
Objects of this class implement the scipy.sparse.linalg.LinearOperator interface.

Parameters

sk [array_like, shape=(n_corr, n)] Array of n_corr most recent updates to the solution vector.
(See [1]).

yk [array_like, shape=(n_corr, n)] Array of n_corr most recent updates to the gradient. (See
[1]).

References

[1]
Attributes

H Hermitian adjoint.
T Transpose this linear operator.

Methods

__call__(x) Call self as a function.
adjoint() Hermitian adjoint.
dot(x) Matrix-matrix or matrix-vector multiplication.
matmat(X) Matrix-matrix multiplication.
matvec(x) Matrix-vector multiplication.
rmatvec(x) Adjoint matrix-vector multiplication.
todense() Return a dense array representation of this operator.
transpose() Transpose this linear operator.
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scipy.optimize.LbfgsInvHessProduct.__call__

LbfgsInvHessProduct.__call__(x)
Call self as a function.

scipy.optimize.LbfgsInvHessProduct.adjoint

LbfgsInvHessProduct.adjoint()
Hermitian adjoint.
Returns the Hermitian adjoint of self, aka the Hermitian conjugate or Hermitian transpose. For a complex
matrix, the Hermitian adjoint is equal to the conjugate transpose.
Can be abbreviated self.H instead of self.adjoint().

Returns

A_H [LinearOperator] Hermitian adjoint of self.

scipy.optimize.LbfgsInvHessProduct.dot

LbfgsInvHessProduct.dot(x)
Matrix-matrix or matrix-vector multiplication.

Parameters

x [array_like] 1-d or 2-d array, representing a vector or matrix.
Returns

Ax [array] 1-d or 2-d array (depending on the shape of x) that represents the result of ap-
plying this linear operator on x.

scipy.optimize.LbfgsInvHessProduct.matmat

LbfgsInvHessProduct.matmat(X)
Matrix-matrix multiplication.
Performs the operation y=A*X where A is an MxN linear operator and X dense N*K matrix or ndarray.

Parameters

X [{matrix, ndarray}] An array with shape (N,K).
Returns

Y [{matrix, ndarray}] A matrix or ndarray with shape (M,K) depending on the type of the
X argument.

Notes

This matmat wraps any user-specified matmat routine or overridden _matmat method to ensure that y has the
correct type.
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scipy.optimize.LbfgsInvHessProduct.matvec

LbfgsInvHessProduct.matvec(x)
Matrix-vector multiplication.
Performs the operation y=A*x where A is an MxN linear operator and x is a column vector or 1-d array.

Parameters

x [{matrix, ndarray}] An array with shape (N,) or (N,1).
Returns

y [{matrix, ndarray}] A matrix or ndarray with shape (M,) or (M,1) depending on the
type and shape of the x argument.

Notes

This matvec wraps the user-specified matvec routine or overridden _matvec method to ensure that y has the
correct shape and type.

scipy.optimize.LbfgsInvHessProduct.rmatvec

LbfgsInvHessProduct.rmatvec(x)
Adjoint matrix-vector multiplication.
Performs the operation y = A^H * x where A is an MxN linear operator and x is a column vector or 1-d array.

Parameters

x [{matrix, ndarray}] An array with shape (M,) or (M,1).
Returns

y [{matrix, ndarray}] A matrix or ndarray with shape (N,) or (N,1) depending on the type
and shape of the x argument.

Notes

This rmatvec wraps the user-specified rmatvec routine or overridden _rmatvec method to ensure that y has
the correct shape and type.

scipy.optimize.LbfgsInvHessProduct.todense

LbfgsInvHessProduct.todense()
Return a dense array representation of this operator.

Returns

arr [ndarray, shape=(n, n)] An array with the same shape and containing the same data
represented by this LinearOperator.
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scipy.optimize.LbfgsInvHessProduct.transpose

LbfgsInvHessProduct.transpose()
Transpose this linear operator.
Returns a LinearOperator that represents the transpose of this one. Can be abbreviated self.T instead of
self.transpose().

__mul__

scipy.optimize.HessianUpdateStrategy
class scipy.optimize.HessianUpdateStrategy

Interface for implementing Hessian update strategies.
Many optimization methods make use of Hessian (or inverse Hessian) approximations, such as the quasi-Newton
methods BFGS, SR1, L-BFGS. Some of these approximations, however, do not actually need to store the entire
matrix or can compute the internal matrix product with a given vector in a very efficiently manner. This class
serves as an abstract interface between the optimization algorithm and the quasi-Newton update strategies, giving
freedom of implementation to store and update the internal matrix as efficiently as possible. Different choices of
initialization and update procedure will result in different quasi-Newton strategies.
Four methods should be implemented in derived classes: initialize, update, dot and get_matrix.

Notes

Any instance of a class that implements this interface, can be accepted by the method minimize and used by the
compatible solvers to approximate the Hessian (or inverse Hessian) used by the optimization algorithms.

Methods

dot(p) Compute the product of the internal matrix with the
given vector.

get_matrix() Return current internal matrix.
initialize(n, approx_type) Initialize internal matrix.
update(delta_x, delta_grad) Update internal matrix.

scipy.optimize.HessianUpdateStrategy.dot

HessianUpdateStrategy.dot(p)
Compute the product of the internal matrix with the given vector.

Parameters

p [array_like] 1-d array representing a vector.
Returns

Hp [array] 1-d represents the result of multiplying the approximation matrix by vector p.
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scipy.optimize.HessianUpdateStrategy.get_matrix

HessianUpdateStrategy.get_matrix()
Return current internal matrix.

Returns

H [ndarray, shape (n, n)] Dense matrix containing either the Hessian or its inverse (de-
pending on how ‘approx_type’ is defined).

scipy.optimize.HessianUpdateStrategy.initialize

HessianUpdateStrategy.initialize(n, approx_type)
Initialize internal matrix.
Allocate internal memory for storing and updating the Hessian or its inverse.

Parameters

n [int] Problem dimension.
approx_type

[{‘hess’, ‘inv_hess’}] Selects either the Hessian or the inverse Hessian. When set to ‘hess’
the Hessian will be stored and updated. When set to ‘inv_hess’ its inverse will be used
instead.

scipy.optimize.HessianUpdateStrategy.update

HessianUpdateStrategy.update(delta_x, delta_grad)
Update internal matrix.
Update Hessian matrix or its inverse (depending on how ‘approx_type’ is defined) using information about
the last evaluated points.

Parameters

delta_x [ndarray] The difference between two points the gradient function have been evaluated
at: delta_x = x2 - x1.

delta_grad
[ndarray] The difference between the gradients: delta_grad = grad(x2) -
grad(x1).

Benchmark Problems

rosen(x) The Rosenbrock function.
rosen_der(x) The derivative (i.e.
rosen_hess(x) The Hessian matrix of the Rosenbrock function.
rosen_hess_prod(x, p) Product of the Hessian matrix of the Rosenbrock function

with a vector.

scipy.optimize.rosen
scipy.optimize.rosen(x)

The Rosenbrock function.
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The function computed is:

sum(100.0*(x[1:] - x[:-1]**2.0)**2.0 + (1 - x[:-1])**2.0)

Parameters

x [array_like] 1-D array of points at which the Rosenbrock function is to be computed.
Returns

f [float] The value of the Rosenbrock function.

See also:
rosen_der, rosen_hess, rosen_hess_prod

Examples

>>> from scipy.optimize import rosen
>>> X = 0.1 * np.arange(10)
>>> rosen(X)
76.56

scipy.optimize.rosen_der
scipy.optimize.rosen_der(x)

The derivative (i.e. gradient) of the Rosenbrock function.
Parameters

x [array_like] 1-D array of points at which the derivative is to be computed.
Returns

rosen_der [(N,) ndarray] The gradient of the Rosenbrock function at x.
See also:
rosen, rosen_hess, rosen_hess_prod

Examples

>>> from scipy.optimize import rosen_der
>>> X = 0.1 * np.arange(9)
>>> rosen_der(X)
array([ -2. , 10.6, 15.6, 13.4, 6.4, -3. , -12.4, -19.4, 62. ])

scipy.optimize.rosen_hess
scipy.optimize.rosen_hess(x)

The Hessian matrix of the Rosenbrock function.
Parameters

x [array_like] 1-D array of points at which the Hessian matrix is to be computed.
Returns
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rosen_hess
[ndarray] The Hessian matrix of the Rosenbrock function at x.

See also:
rosen, rosen_der, rosen_hess_prod

Examples

>>> from scipy.optimize import rosen_hess
>>> X = 0.1 * np.arange(4)
>>> rosen_hess(X)
array([[-38., 0., 0., 0.],

[ 0., 134., -40., 0.],
[ 0., -40., 130., -80.],
[ 0., 0., -80., 200.]])

scipy.optimize.rosen_hess_prod
scipy.optimize.rosen_hess_prod(x, p)

Product of the Hessian matrix of the Rosenbrock function with a vector.
Parameters

x [array_like] 1-D array of points at which the Hessian matrix is to be computed.
p [array_like] 1-D array, the vector to be multiplied by the Hessian matrix.

Returns

rosen_hess_prod
[ndarray] The Hessian matrix of the Rosenbrock function at x multiplied by the vector p.

See also:
rosen, rosen_der, rosen_hess

Examples

>>> from scipy.optimize import rosen_hess_prod
>>> X = 0.1 * np.arange(9)
>>> p = 0.5 * np.arange(9)
>>> rosen_hess_prod(X, p)
array([ -0., 27., -10., -95., -192., -265., -278., -195., -180.])

6.18.9 Legacy Functions

The functions below are not recommended for use in new scripts; all of these methods are accessible via a newer, more
consistent interfaces, provided by the interfaces above.

Optimization

General-purpose multivariate methods:
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fmin(func, x0[, args, xtol, ftol, maxiter, …]) Minimize a function using the downhill simplex algo-
rithm.

fmin_powell(func, x0[, args, xtol, ftol, …]) Minimize a function using modified Powell’s method.
fmin_cg(f, x0[, fprime, args, gtol, norm, …]) Minimize a function using a nonlinear conjugate gradient

algorithm.
fmin_bfgs(f, x0[, fprime, args, gtol, norm, …]) Minimize a function using the BFGS algorithm.
fmin_ncg(f, x0, fprime[, fhess_p, fhess, …]) Unconstrained minimization of a function using the

Newton-CG method.

scipy.optimize.fmin
scipy.optimize.fmin(func, x0, args=(), xtol=0.0001, ftol=0.0001, maxiter=None, maxfun=None,

full_output=0, disp=1, retall=0, callback=None, initial_simplex=None)
Minimize a function using the downhill simplex algorithm.
This algorithm only uses function values, not derivatives or second derivatives.

Parameters

func [callable func(x,*args)] The objective function to be minimized.
x0 [ndarray] Initial guess.
args [tuple, optional] Extra arguments passed to func, i.e. f(x,*args).
xtol [float, optional] Absolute error in xopt between iterations that is acceptable for convergence.
ftol [number, optional] Absolute error in func(xopt) between iterations that is acceptable for

convergence.
maxiter [int, optional] Maximum number of iterations to perform.
maxfun [number, optional] Maximum number of function evaluations to make.
full_output

[bool, optional] Set to True if fopt and warnflag outputs are desired.
disp [bool, optional] Set to True to print convergence messages.
retall [bool, optional] Set to True to return list of solutions at each iteration.
callback [callable, optional] Called after each iteration, as callback(xk), where xk is the current pa-

rameter vector.
initial_simplex

[array_like of shape (N + 1, N), optional] Initial simplex. If given, overrides x0.
initial_simplex[j,:] should contain the coordinates of the j-th vertex of the N+1
vertices in the simplex, where N is the dimension.

Returns

xopt [ndarray] Parameter that minimizes function.
fopt [float] Value of function at minimum: fopt = func(xopt).
iter [int] Number of iterations performed.
funcalls [int] Number of function calls made.
warnflag [int] 1 : Maximum number of function evaluations made. 2 : Maximum number of iterations

reached.
allvecs [list] Solution at each iteration.

See also:

minimize

Interface to minimization algorithms for multivariate functions. See the ‘Nelder-Mead’ method in particular.
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Notes

Uses a Nelder-Mead simplex algorithm to find the minimum of function of one or more variables.
This algorithm has a long history of successful use in applications. But it will usually be slower than an algorithm
that uses first or second derivative information. In practice it can have poor performance in high-dimensional
problems and is not robust to minimizing complicated functions. Additionally, there currently is no complete
theory describing when the algorithm will successfully converge to the minimum, or how fast it will if it does. Both
the ftol and xtol criteria must be met for convergence.

References

[1], [2]

Examples

>>> def f(x):
... return x**2

>>> from scipy import optimize

>>> minimum = optimize.fmin(f, 1)
Optimization terminated successfully.

Current function value: 0.000000
Iterations: 17
Function evaluations: 34

>>> minimum[0]
-8.8817841970012523e-16

scipy.optimize.fmin_powell
scipy.optimize.fmin_powell(func, x0, args=(), xtol=0.0001, ftol=0.0001, maxiter=None, max-

fun=None, full_output=0, disp=1, retall=0, callback=None, di-
rec=None)

Minimize a function using modified Powell’s method.
This method only uses function values, not derivatives.

Parameters

func [callable f(x,*args)] Objective function to be minimized.
x0 [ndarray] Initial guess.
args [tuple, optional] Extra arguments passed to func.
xtol [float, optional] Line-search error tolerance.
ftol [float, optional] Relative error in func(xopt) acceptable for convergence.
maxiter [int, optional] Maximum number of iterations to perform.
maxfun [int, optional] Maximum number of function evaluations to make.
full_output

[bool, optional] If True, fopt, xi, direc, iter, funcalls, and warnflag are re-
turned.

disp [bool, optional] If True, print convergence messages.
retall [bool, optional] If True, return a list of the solution at each iteration.
callback [callable, optional] An optional user-supplied function, called after each iteration. Called as

callback(xk), where xk is the current parameter vector.
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direc [ndarray, optional] Initial fitting step and parameter order set as an (N, N) array, where N
is the number of fitting parameters in x0. Defaults to step size 1.0 fitting all parameters
simultaneously (np.ones((N, N))). To prevent initial consideration of values in a step
or to change initial step size, set to 0 or desired step size in the Jth position in the Mth block,
where J is the position in x0 and M is the desired evaluation step, with steps being evaluated
in index order. Step size and ordering will change freely as minimization proceeds.

Returns

xopt [ndarray] Parameter which minimizes func.
fopt [number] Value of function at minimum: fopt = func(xopt).
direc [ndarray] Current direction set.
iter [int] Number of iterations.
funcalls [int] Number of function calls made.
warnflag [int]

Integer warning flag:
1 : Maximum number of function evaluations. 2 : Maximum number of itera-
tions.

allvecs [list] List of solutions at each iteration.
See also:

minimize

Interface to unconstrained minimization algorithms for multivariate functions. See the ‘Powell’ method in par-
ticular.

Notes

Uses a modification of Powell’s method to find the minimum of a function of N variables. Powell’s method is a
conjugate direction method.
The algorithm has two loops. The outer loop merely iterates over the inner loop. The inner loop minimizes over
each current direction in the direction set. At the end of the inner loop, if certain conditions are met, the direction
that gave the largest decrease is dropped and replaced with the difference between the current estimated x and the
estimated x from the beginning of the inner-loop.
The technical conditions for replacing the direction of greatest increase amount to checking that
1. No further gain can be made along the direction of greatest increase from that iteration.
2. The direction of greatest increase accounted for a large sufficient fraction of the decrease in the function value

from that iteration of the inner loop.

References

Powell M.J.D. (1964) An efficient method for finding the minimum of a function of several variables without
calculating derivatives, Computer Journal, 7 (2):155-162.
Press W., Teukolsky S.A., Vetterling W.T., and Flannery B.P.: Numerical Recipes (any edition), Cambridge Uni-
versity Press

Examples
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>>> def f(x):
... return x**2

>>> from scipy import optimize

>>> minimum = optimize.fmin_powell(f, -1)
Optimization terminated successfully.

Current function value: 0.000000
Iterations: 2
Function evaluations: 18

>>> minimum
array(0.0)

scipy.optimize.fmin_cg
scipy.optimize.fmin_cg(f, x0, fprime=None, args=(), gtol=1e-05, norm=inf,

epsilon=1.4901161193847656e-08, maxiter=None, full_output=0, disp=1,
retall=0, callback=None)

Minimize a function using a nonlinear conjugate gradient algorithm.
Parameters

f [callable, f(x, *args)] Objective function to be minimized. Here xmust be a 1-D array
of the variables that are to be changed in the search for a minimum, and args are the other
(fixed) parameters of f.

x0 [ndarray] A user-supplied initial estimate of xopt, the optimal value of x. It must be a 1-D
array of values.

fprime [callable, fprime(x, *args), optional] A function that returns the gradient of f at x.
Here x and args are as described above for f. The returned value must be a 1-D array. De-
faults to None, in which case the gradient is approximated numerically (see epsilon, below).

args [tuple, optional] Parameter values passed to f and fprime. Must be supplied whenever addi-
tional fixed parameters are needed to completely specify the functions f and fprime.

gtol [float, optional] Stop when the norm of the gradient is less than gtol.
norm [float, optional] Order to use for the norm of the gradient (-np.Inf is min, np.Inf is

max).
epsilon [float or ndarray, optional] Step size(s) to use when fprime is approximated numerically. Can

be a scalar or a 1-D array. Defaults to sqrt(eps), with eps the floating point machine
precision. Usually sqrt(eps) is about 1.5e-8.

maxiter [int, optional] Maximum number of iterations to perform. Default is 200 * len(x0).
full_output

[bool, optional] If True, return fopt, func_calls, grad_calls, and warnflag in addition to xopt.
See the Returns section below for additional information on optional return values.

disp [bool, optional] If True, return a convergence message, followed by xopt.
retall [bool, optional] If True, add to the returned values the results of each iteration.
callback [callable, optional] An optional user-supplied function, called after each iteration. Called as

callback(xk), where xk is the current value of x0.
Returns

xopt [ndarray] Parameters which minimize f, i.e. f(xopt) == fopt.
fopt [float, optional] Minimum value found, f(xopt). Only returned if full_output is True.
func_calls [int, optional] The number of function_calls made. Only returned if full_output is True.
grad_calls [int, optional] The number of gradient calls made. Only returned if full_output is True.
warnflag [int, optional] Integer value with warning status, only returned if full_output is True.

0 : Success.
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1 : The maximum number of iterations was exceeded.
2 [Gradient and/or function calls were not changing. May indicate] that precision

was lost, i.e., the routine did not converge.
allvecs [list of ndarray, optional] List of arrays, containing the results at each iteration. Only returned

if retall is True.
See also:

minimize

common interface to all scipy.optimize algorithms for unconstrained and constrained minimization of
multivariate functions. It provides an alternative way to call fmin_cg, by specifying method='CG'.

Notes

This conjugate gradient algorithm is based on that of Polak and Ribiere [1].
Conjugate gradient methods tend to work better when:
1. f has a unique global minimizing point, and no local minima or other stationary points,
2. f is, at least locally, reasonably well approximated by a quadratic function of the variables,
3. f is continuous and has a continuous gradient,
4. fprime is not too large, e.g., has a norm less than 1000,
5. The initial guess, x0, is reasonably close to f ‘s global minimizing point, xopt.

References

[1]

Examples

Example 1: seek the minimum value of the expression a*u**2 + b*u*v + c*v**2 + d*u + e*v +
f for given values of the parameters and an initial guess (u, v) = (0, 0).

>>> args = (2, 3, 7, 8, 9, 10) # parameter values
>>> def f(x, *args):
... u, v = x
... a, b, c, d, e, f = args
... return a*u**2 + b*u*v + c*v**2 + d*u + e*v + f
>>> def gradf(x, *args):
... u, v = x
... a, b, c, d, e, f = args
... gu = 2*a*u + b*v + d # u-component of the gradient
... gv = b*u + 2*c*v + e # v-component of the gradient
... return np.asarray((gu, gv))
>>> x0 = np.asarray((0, 0)) # Initial guess.
>>> from scipy import optimize
>>> res1 = optimize.fmin_cg(f, x0, fprime=gradf, args=args)
Optimization terminated successfully.

Current function value: 1.617021
Iterations: 4

(continues on next page)
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(continued from previous page)
Function evaluations: 8
Gradient evaluations: 8

>>> res1
array([-1.80851064, -0.25531915])

Example 2: solve the same problem using the minimize function. (This myopts dictionary shows all of the
available options, although in practice only non-default values would be needed. The returned value will be a
dictionary.)

>>> opts = {'maxiter' : None, # default value.
... 'disp' : True, # non-default value.
... 'gtol' : 1e-5, # default value.
... 'norm' : np.inf, # default value.
... 'eps' : 1.4901161193847656e-08} # default value.
>>> res2 = optimize.minimize(f, x0, jac=gradf, args=args,
... method='CG', options=opts)
Optimization terminated successfully.

Current function value: 1.617021
Iterations: 4
Function evaluations: 8
Gradient evaluations: 8

>>> res2.x # minimum found
array([-1.80851064, -0.25531915])

scipy.optimize.fmin_bfgs
scipy.optimize.fmin_bfgs(f, x0, fprime=None, args=(), gtol=1e-05, norm=inf,

epsilon=1.4901161193847656e-08, maxiter=None, full_output=0, disp=1,
retall=0, callback=None)

Minimize a function using the BFGS algorithm.
Parameters

f [callable f(x,*args)] Objective function to be minimized.
x0 [ndarray] Initial guess.
fprime [callable f’(x,*args), optional] Gradient of f.
args [tuple, optional] Extra arguments passed to f and fprime.
gtol [float, optional] Gradient norm must be less than gtol before successful termination.
norm [float, optional] Order of norm (Inf is max, -Inf is min)
epsilon [int or ndarray, optional] If fprime is approximated, use this value for the step size.
callback [callable, optional] An optional user-supplied function to call after each iteration. Called as

callback(xk), where xk is the current parameter vector.
maxiter [int, optional] Maximum number of iterations to perform.
full_output

[bool, optional] If True,return fopt, func_calls, grad_calls, and warnflag in addition to xopt.
disp [bool, optional] Print convergence message if True.
retall [bool, optional] Return a list of results at each iteration if True.

Returns

xopt [ndarray] Parameters which minimize f, i.e. f(xopt) == fopt.
fopt [float] Minimum value.
gopt [ndarray] Value of gradient at minimum, f’(xopt), which should be near 0.
Bopt [ndarray] Value of 1/f’‘(xopt), i.e. the inverse hessian matrix.
func_calls [int] Number of function_calls made.

6.18. Optimization and Root Finding (scipy.optimize) 1385



SciPy Reference Guide, Release 1.3.1

grad_calls [int] Number of gradient calls made.
warnflag [integer] 1 : Maximum number of iterations exceeded. 2 : Gradient and/or function calls

not changing.
allvecs [list] The value of xopt at each iteration. Only returned if retall is True.

See also:

minimize

Interface to minimization algorithms for multivariate functions. See the ‘BFGS’ method in particular.

Notes

Optimize the function, f, whose gradient is given by fprime using the quasi-Newton method of Broyden, Fletcher,
Goldfarb, and Shanno (BFGS)

References

Wright, and Nocedal ‘Numerical Optimization’, 1999, pg. 198.

scipy.optimize.fmin_ncg
scipy.optimize.fmin_ncg(f, x0, fprime, fhess_p=None, fhess=None, args=(), avextol=1e-05,

epsilon=1.4901161193847656e-08, maxiter=None, full_output=0, disp=1,
retall=0, callback=None)

Unconstrained minimization of a function using the Newton-CG method.
Parameters

f [callable f(x, *args)] Objective function to be minimized.
x0 [ndarray] Initial guess.
fprime [callable f'(x, *args)] Gradient of f.
fhess_p [callable fhess_p(x, p, *args), optional] Function which computes the Hessian of

f times an arbitrary vector, p.
fhess [callable fhess(x, *args), optional] Function to compute the Hessian matrix of f.
args [tuple, optional] Extra arguments passed to f, fprime, fhess_p, and fhess (the same set of

extra arguments is supplied to all of these functions).
epsilon [float or ndarray, optional] If fhess is approximated, use this value for the step size.
callback [callable, optional] An optional user-supplied function which is called after each iteration.

Called as callback(xk), where xk is the current parameter vector.
avextol [float, optional] Convergence is assumed when the average relative error in the minimizer

falls below this amount.
maxiter [int, optional] Maximum number of iterations to perform.
full_output

[bool, optional] If True, return the optional outputs.
disp [bool, optional] If True, print convergence message.
retall [bool, optional] If True, return a list of results at each iteration.

Returns

xopt [ndarray] Parameters which minimize f, i.e. f(xopt) == fopt.
fopt [float] Value of the function at xopt, i.e. fopt = f(xopt).
fcalls [int] Number of function calls made.
gcalls [int] Number of gradient calls made.
hcalls [int] Number of hessian calls made.
warnflag [int] Warnings generated by the algorithm. 1 : Maximum number of iterations exceeded.
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allvecs [list] The result at each iteration, if retall is True (see below).
See also:

minimize

Interface to minimization algorithms for multivariate functions. See the ‘Newton-CG’ method in particular.

Notes

Only one of fhess_p or fhess need to be given. If fhess is provided, then fhess_pwill be ignored. If neither fhess nor
fhess_p is provided, then the hessian product will be approximated using finite differences on fprime. fhess_pmust
compute the hessian times an arbitrary vector. If it is not given, finite-differences on fprime are used to compute it.
Newton-CG methods are also called truncated Newton methods. This function differs from
scipy.optimize.fmin_tnc because
1. scipy.optimize.fmin_ncg is written purely in python using numpy

and scipy while scipy.optimize.fmin_tnc calls a C function.
2. scipy.optimize.fmin_ncg is only for unconstrained minimization

while scipy.optimize.fmin_tnc is for unconstrained minimization or box constrained minimization. (Box
constraints give lower and upper bounds for each variable separately.)

References

Wright & Nocedal, ‘Numerical Optimization’, 1999, pg. 140.
Constrained multivariate methods:

fmin_l_bfgs_b(func, x0[, fprime, args, …]) Minimize a function func using the L-BFGS-B algorithm.
fmin_tnc(func, x0[, fprime, args, …]) Minimize a function with variables subject to bounds,

using gradient information in a truncated Newton algo-
rithm.

fmin_cobyla(func, x0, cons[, args, …]) Minimize a function using the Constrained Optimization
BY Linear Approximation (COBYLA) method.

fmin_slsqp(func, x0[, eqcons, f_eqcons, …]) Minimize a function using Sequential Least SQuares Pro-
gramming

differential_evolution(func, bounds[, args,
…])

Finds the global minimum of a multivariate function.

scipy.optimize.fmin_l_bfgs_b
scipy.optimize.fmin_l_bfgs_b(func, x0, fprime=None, args=(), approx_grad=0, bounds=None,

m=10, factr=10000000.0, pgtol=1e-05, epsilon=1e-08, iprint=-
1, maxfun=15000, maxiter=15000, disp=None, callback=None,
maxls=20)

Minimize a function func using the L-BFGS-B algorithm.
Parameters

func [callable f(x,*args)] Function to minimise.
x0 [ndarray] Initial guess.
fprime [callable fprime(x,*args), optional] The gradient of func. If None, then func returns the func-

tion value and the gradient (f, g = func(x, *args)), unless approx_grad is True in
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which case func returns only f.
args [sequence, optional] Arguments to pass to func and fprime.
approx_grad

[bool, optional]Whether to approximate the gradient numerically (in which case func returns
only the function value).

bounds [list, optional] (min, max) pairs for each element in x, defining the bounds on that pa-
rameter. Use None or +-inf for one of min or max when there is no bound in that direction.

m [int, optional] Themaximum number of variable metric corrections used to define the limited
memory matrix. (The limited memory BFGS method does not store the full hessian but uses
this many terms in an approximation to it.)

factr [float, optional] The iteration stops when (f^k - f^{k+1})/max{|f^k|,
|f^{k+1}|,1} <= factr * eps, where eps is the machine precision, which
is automatically generated by the code. Typical values for factr are: 1e12 for low accuracy;
1e7 for moderate accuracy; 10.0 for extremely high accuracy. See Notes for relationship to
ftol, which is exposed (instead of factr) by the scipy.optimize.minimize interface
to L-BFGS-B.

pgtol [float, optional] The iteration will stop when max{|proj g_i | i = 1, ..., n}
<= pgtol where pg_i is the i-th component of the projected gradient.

epsilon [float, optional] Step size used when approx_grad is True, for numerically calculating the
gradient

iprint [int, optional] Controls the frequency of output. iprint < 0 means no output; iprint
= 0 print only one line at the last iteration; 0 < iprint < 99 print also f and |proj
g| every iprint iterations; iprint = 99 print details of every iteration except n-vectors;
iprint = 100 print also the changes of active set and final x; iprint > 100 print
details of every iteration including x and g.

disp [int, optional] If zero, then no output. If a positive number, then this over-rides iprint (i.e.,
iprint gets the value of disp).

maxfun [int, optional] Maximum number of function evaluations.
maxiter [int, optional] Maximum number of iterations.
callback [callable, optional] Called after each iteration, as callback(xk), where xk is the current

parameter vector.
maxls [int, optional] Maximum number of line search steps (per iteration). Default is 20.

Returns

x [array_like] Estimated position of the minimum.
f [float] Value of func at the minimum.
d [dict] Information dictionary.

• d[‘warnflag’] is
– 0 if converged,
– 1 if too many function evaluations or too many iterations,
– 2 if stopped for another reason, given in d[‘task’]

• d[‘grad’] is the gradient at the minimum (should be 0 ish)
• d[‘funcalls’] is the number of function calls made.
• d[‘nit’] is the number of iterations.

See also:

minimize

Interface to minimization algorithms for multivariate functions. See the ‘L-BFGS-B’method in particular. Note
that the ftol option is made available via that interface, while factr is provided via this interface, where factr
is the factor multiplying the default machine floating-point precision to arrive at ftol: ftol = factr *
numpy.finfo(float).eps.
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Notes

License of L-BFGS-B (FORTRAN code):
The version included here (in fortran code) is 3.0 (released April 25, 2011). It was written by Ciyou Zhu, Richard
Byrd, and Jorge Nocedal <nocedal@ece.nwu.edu>. It carries the following condition for use:
This software is freely available, but we expect that all publications describing work using this software, or all
commercial products using it, quote at least one of the references given below. This software is released under the
BSD License.

References

• R. H. Byrd, P. Lu and J. Nocedal. A Limited Memory Algorithm for Bound Constrained Optimization,
(1995), SIAM Journal on Scientific and Statistical Computing, 16, 5, pp. 1190-1208.

• C. Zhu, R. H. Byrd and J. Nocedal. L-BFGS-B: Algorithm 778: L-BFGS-B, FORTRAN routines for large
scale bound constrained optimization (1997), ACM Transactions on Mathematical Software, 23, 4, pp. 550
- 560.

• J.L. Morales and J. Nocedal. L-BFGS-B: Remark on Algorithm 778: L-BFGS-B, FORTRAN routines for
large scale bound constrained optimization (2011), ACM Transactions on Mathematical Software, 38, 1.

scipy.optimize.fmin_tnc
scipy.optimize.fmin_tnc(func, x0, fprime=None, args=(), approx_grad=0, bounds=None, epsilon=1e-

08, scale=None, offset=None, messages=15, maxCGit=-1, maxfun=None,
eta=-1, stepmx=0, accuracy=0, fmin=0, ftol=-1, xtol=-1, pgtol=-1, rescale=-
1, disp=None, callback=None)

Minimize a function with variables subject to bounds, using gradient information in a truncated Newton algorithm.
This method wraps a C implementation of the algorithm.

Parameters

func [callable func(x, *args)] Function to minimize. Must do one of:
1. Return f and g, where f is the value of the function and g its gradient (a list of floats).
2. Return the function value but supply gradient function separately as fprime.
3. Return the function value and set approx_grad=True.
If the function returns None, the minimization is aborted.

x0 [array_like] Initial estimate of minimum.
fprime [callablefprime(x, *args), optional] Gradient of func. If None, then either funcmust

return the function value and the gradient (f,g = func(x, *args)) or approx_grad
must be True.

args [tuple, optional] Arguments to pass to function.
approx_grad

[bool, optional] If true, approximate the gradient numerically.
bounds [list, optional] (min, max) pairs for each element in x0, defining the bounds on that parameter.

Use None or +/-inf for one of min or max when there is no bound in that direction.
epsilon [float, optional] Used if approx_grad is True. The stepsize in a finite difference approxima-

tion for fprime.
scale [array_like, optional] Scaling factors to apply to each variable. If None, the factors are up-

low for interval bounded variables and 1+|x| for the others. Defaults to None.
offset [array_like, optional] Value to subtract from each variable. If None, the offsets are

(up+low)/2 for interval bounded variables and x for the others.
messages [int, optional] Bit mask used to select messages display during minimization values defined

in the MSGS dict. Defaults to MGS_ALL.
disp [int, optional] Integer interface to messages. 0 = no message, 5 = all messages
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maxCGit [int, optional] Maximum number of hessian*vector evaluations per main iteration. If
maxCGit == 0, the direction chosen is -gradient if maxCGit < 0, maxCGit is set to
max(1,min(50,n/2)). Defaults to -1.

maxfun [int, optional] Maximum number of function evaluation. if None, maxfun is set to max(100,
10*len(x0)). Defaults to None.

eta [float, optional] Severity of the line search. if < 0 or > 1, set to 0.25. Defaults to -1.
stepmx [float, optional] Maximum step for the line search. May be increased during call. If too

small, it will be set to 10.0. Defaults to 0.
accuracy [float, optional] Relative precision for finite difference calculations. If <=machine_precision,

set to sqrt(machine_precision). Defaults to 0.
fmin [float, optional] Minimum function value estimate. Defaults to 0.
ftol [float, optional] Precision goal for the value of f in the stopping criterion. If ftol < 0.0, ftol

is set to 0.0 defaults to -1.
xtol [float, optional] Precision goal for the value of x in the stopping criterion (after applying x

scaling factors). If xtol < 0.0, xtol is set to sqrt(machine_precision). Defaults to -1.
pgtol [float, optional] Precision goal for the value of the projected gradient in the stopping criterion

(after applying x scaling factors). If pgtol < 0.0, pgtol is set to 1e-2 * sqrt(accuracy). Setting
it to 0.0 is not recommended. Defaults to -1.

rescale [float, optional] Scaling factor (in log10) used to trigger f value rescaling. If 0, rescale at
each iteration. If a large value, never rescale. If < 0, rescale is set to 1.3.

callback [callable, optional] Called after each iteration, as callback(xk), where xk is the current pa-
rameter vector.

Returns

x [ndarray] The solution.
nfeval [int] The number of function evaluations.
rc [int] Return code, see below

See also:

minimize

Interface to minimization algorithms for multivariate functions. See the ‘TNC’ method in particular.

Notes

The underlying algorithm is truncated Newton, also called Newton Conjugate-Gradient. This method differs from
scipy.optimize.fmin_ncg in that
1. It wraps a C implementation of the algorithm
2. It allows each variable to be given an upper and lower bound.

The algorithm incorporates the bound constraints by determining the descent direction as in an unconstrained
truncated Newton, but never taking a step-size large enough to leave the space of feasible x’s. The algorithm keeps
track of a set of currently active constraints, and ignores them when computing the minimum allowable step size.
(The x’s associated with the active constraint are kept fixed.) If the maximum allowable step size is zero then a
new constraint is added. At the end of each iteration one of the constraints may be deemed no longer active and
removed. A constraint is considered no longer active is if it is currently active but the gradient for that variable
points inward from the constraint. The specific constraint removed is the one associated with the variable of largest
index whose constraint is no longer active.
Return codes are defined as follows:
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-1 : Infeasible (lower bound > upper bound)
0 : Local minimum reached (|pg| ~= 0)
1 : Converged (|f_n-f_(n-1)| ~= 0)
2 : Converged (|x_n-x_(n-1)| ~= 0)
3 : Max. number of function evaluations reached
4 : Linear search failed
5 : All lower bounds are equal to the upper bounds
6 : Unable to progress
7 : User requested end of minimization

References

Wright S., Nocedal J. (2006), ‘Numerical Optimization’
Nash S.G. (1984), “Newton-Type Minimization Via the Lanczos Method”, SIAM Journal of Numerical Analysis
21, pp. 770-778

scipy.optimize.fmin_cobyla
scipy.optimize.fmin_cobyla(func, x0, cons, args=(), consargs=None, rhobeg=1.0, rhoend=0.0001,

maxfun=1000, disp=None, catol=0.0002)
Minimize a function using the Constrained Optimization BY Linear Approximation (COBYLA) method. This
method wraps a FORTRAN implementation of the algorithm.

Parameters

func [callable] Function to minimize. In the form func(x, *args).
x0 [ndarray] Initial guess.
cons [sequence] Constraint functions; must all be >=0 (a single function if only 1 constraint).

Each function takes the parameters x as its first argument, and it can return either a single
number or an array or list of numbers.

args [tuple, optional] Extra arguments to pass to function.
consargs [tuple, optional] Extra arguments to pass to constraint functions (default of None means use

same extra arguments as those passed to func). Use () for no extra arguments.
rhobeg [float, optional] Reasonable initial changes to the variables.
rhoend [float, optional] Final accuracy in the optimization (not precisely guaranteed). This is a lower

bound on the size of the trust region.
disp [{0, 1, 2, 3}, optional] Controls the frequency of output; 0 implies no output.
maxfun [int, optional] Maximum number of function evaluations.
catol [float, optional] Absolute tolerance for constraint violations.

Returns

x [ndarray] The argument that minimises f.
See also:

minimize

Interface to minimization algorithms for multivariate functions. See the ‘COBYLA’ method in particular.

Notes

This algorithm is based on linear approximations to the objective function and each constraint. We briefly describe
the algorithm.
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Suppose the function is being minimized over k variables. At the jth iteration the algorithm has k+1 points v_1,
…, v_(k+1), an approximate solution x_j, and a radius RHO_j. (i.e. linear plus a constant) approximations to
the objective function and constraint functions such that their function values agree with the linear approximation
on the k+1 points v_1,.., v_(k+1). This gives a linear program to solve (where the linear approximations of the
constraint functions are constrained to be non-negative).
However the linear approximations are likely only good approximations near the current simplex, so the linear
program is given the further requirement that the solution, which will become x_(j+1), must be within RHO_j
from x_j. RHO_j only decreases, never increases. The initial RHO_j is rhobeg and the final RHO_j is rhoend. In
this way COBYLA’s iterations behave like a trust region algorithm.
Additionally, the linear program may be inconsistent, or the approximation may give poor improvement. For
details about how these issues are resolved, as well as how the points v_i are updated, refer to the source code or
the references below.

References

Powell M.J.D. (1994), “A direct search optimization method that models the objective and constraint functions
by linear interpolation.”, in Advances in Optimization and Numerical Analysis, eds. S. Gomez and J-P Hennart,
Kluwer Academic (Dordrecht), pp. 51-67
Powell M.J.D. (1998), “Direct search algorithms for optimization calculations”, Acta Numerica 7, 287-336
PowellM.J.D. (2007), “A view of algorithms for optimization without derivatives”, CambridgeUniversity Technical
Report DAMTP 2007/NA03

Examples

Minimize the objective function f(x,y) = x*y subject to the constraints x**2 + y**2 < 1 and y > 0:

>>> def objective(x):
... return x[0]*x[1]
...
>>> def constr1(x):
... return 1 - (x[0]**2 + x[1]**2)
...
>>> def constr2(x):
... return x[1]
...
>>> from scipy.optimize import fmin_cobyla
>>> fmin_cobyla(objective, [0.0, 0.1], [constr1, constr2], rhoend=1e-7)
array([-0.70710685, 0.70710671])

The exact solution is (-sqrt(2)/2, sqrt(2)/2).

scipy.optimize.fmin_slsqp
scipy.optimize.fmin_slsqp(func, x0, eqcons=(), f_eqcons=None, ieqcons=(), f_ieqcons=None,

bounds=(), fprime=None, fprime_eqcons=None, fprime_ieqcons=None,
args=(), iter=100, acc=1e-06, iprint=1, disp=None, full_output=0,
epsilon=1.4901161193847656e-08, callback=None)

Minimize a function using Sequential Least SQuares Programming
Python interface function for the SLSQP Optimization subroutine originally implemented by Dieter Kraft.

Parameters
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func [callable f(x,*args)] Objective function. Must return a scalar.
x0 [1-D ndarray of float] Initial guess for the independent variable(s).
eqcons [list, optional] A list of functions of length n such that eqcons[j](x,*args) == 0.0 in a suc-

cessfully optimized problem.
f_eqcons [callable f(x,*args), optional] Returns a 1-D array in which each element must equal 0.0 in

a successfully optimized problem. If f_eqcons is specified, eqcons is ignored.
ieqcons [list, optional] A list of functions of length n such that ieqcons[j](x,*args) >= 0.0 in a suc-

cessfully optimized problem.
f_ieqcons [callable f(x,*args), optional] Returns a 1-D ndarray in which each element must be greater

or equal to 0.0 in a successfully optimized problem. If f_ieqcons is specified, ieqcons is
ignored.

bounds [list, optional] A list of tuples specifying the lower and upper bound for each independent
variable [(xl0, xu0),(xl1, xu1),…] Infinite values will be interpreted as large floating values.

fprime [callable f(x,*args), optional] A function that evaluates the partial derivatives of func.
fprime_eqcons

[callable f(x,*args), optional] A function of the form f(x, *args) that returns the m by n array
of equality constraint normals. If not provided, the normals will be approximated. The array
returned by fprime_eqcons should be sized as ( len(eqcons), len(x0) ).

fprime_ieqcons
[callable f(x,*args), optional] A function of the form f(x, *args) that returns the m by n
array of inequality constraint normals. If not provided, the normals will be approximated.
The array returned by fprime_ieqcons should be sized as ( len(ieqcons), len(x0) ).

args [sequence, optional] Additional arguments passed to func and fprime.
iter [int, optional] The maximum number of iterations.
acc [float, optional] Requested accuracy.
iprint [int, optional] The verbosity of fmin_slsqp :

• iprint <= 0 : Silent operation
• iprint == 1 : Print summary upon completion (default)
• iprint >= 2 : Print status of each iterate and summary

disp [int, optional] Over-rides the iprint interface (preferred).
full_output

[bool, optional] If False, return only the minimizer of func (default). Otherwise, output final
objective function and summary information.

epsilon [float, optional] The step size for finite-difference derivative estimates.
callback [callable, optional] Called after each iteration, as callback(x), where x is the current

parameter vector.
Returns

out [ndarray of float] The final minimizer of func.
fx [ndarray of float, if full_output is true] The final value of the objective function.
its [int, if full_output is true] The number of iterations.
imode [int, if full_output is true] The exit mode from the optimizer (see below).
smode [string, if full_output is true] Message describing the exit mode from the optimizer.

See also:

minimize

Interface to minimization algorithms for multivariate functions. See the ‘SLSQP’ method in particular.

Notes

Exit modes are defined as follows
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-1 : Gradient evaluation required (g & a)
0 : Optimization terminated successfully.
1 : Function evaluation required (f & c)
2 : More equality constraints than independent variables
3 : More than 3*n iterations in LSQ subproblem
4 : Inequality constraints incompatible
5 : Singular matrix E in LSQ subproblem
6 : Singular matrix C in LSQ subproblem
7 : Rank-deficient equality constraint subproblem HFTI
8 : Positive directional derivative for linesearch
9 : Iteration limit exceeded

Examples

Examples are given in the tutorial.
Univariate (scalar) minimization methods:

fminbound(func, x1, x2[, args, xtol, …]) Bounded minimization for scalar functions.
brent(func[, args, brack, tol, full_output, …]) Given a function of one-variable and a possible bracket,

return the local minimum of the function isolated to a
fractional precision of tol.

golden(func[, args, brack, tol, …]) Return the minimum of a function of one variable using
golden section method.

scipy.optimize.fminbound
scipy.optimize.fminbound(func, x1, x2, args=(), xtol=1e-05, maxfun=500, full_output=0, disp=1)

Bounded minimization for scalar functions.
Parameters

func [callable f(x,*args)] Objective function to be minimized (must accept and return scalars).
x1, x2 [float or array scalar] The optimization bounds.
args [tuple, optional] Extra arguments passed to function.
xtol [float, optional] The convergence tolerance.
maxfun [int, optional] Maximum number of function evaluations allowed.
full_output

[bool, optional] If True, return optional outputs.
disp [int, optional]

If non-zero, print messages.
0 : no message printing. 1 : non-convergence notification messages only. 2 :
print a message on convergence too. 3 : print iteration results.

Returns

xopt [ndarray] Parameters (over given interval) which minimize the objective function.
fval [number] The function value at the minimum point.
ierr [int] An error flag (0 if converged, 1 if maximum number of function calls reached).
numfunc [int] The number of function calls made.

See also:

minimize_scalar
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Interface to minimization algorithms for scalar univariate functions. See the ‘Bounded’ method in particular.

Notes

Finds a local minimizer of the scalar function func in the interval x1 < xopt < x2 using Brent’s method. (See brent
for auto-bracketing).

Examples

fminbound finds the minimum of the function in the given range. The following examples illustrate the same

>>> def f(x):
... return x**2

>>> from scipy import optimize

>>> minimum = optimize.fminbound(f, -1, 2)
>>> minimum
0.0
>>> minimum = optimize.fminbound(f, 1, 2)
>>> minimum
1.0000059608609866

scipy.optimize.brent
scipy.optimize.brent(func, args=(), brack=None, tol=1.48e-08, full_output=0, maxiter=500)

Given a function of one-variable and a possible bracket, return the local minimum of the function isolated to a
fractional precision of tol.

Parameters

func [callable f(x,*args)] Objective function.
args [tuple, optional] Additional arguments (if present).
brack [tuple, optional] Either a triple (xa,xb,xc) where xa<xb<xc and func(xb) < func(xa), func(xc)

or a pair (xa,xb) which are used as a starting interval for a downhill bracket search (see
bracket). Providing the pair (xa,xb) does not always mean the obtained solution will
satisfy xa<=x<=xb.

tol [float, optional] Stop if between iteration change is less than tol.
full_output

[bool, optional] If True, return all output args (xmin, fval, iter, funcalls).
maxiter [int, optional] Maximum number of iterations in solution.

Returns

xmin [ndarray] Optimum point.
fval [float] Optimum value.
iter [int] Number of iterations.
funcalls [int] Number of objective function evaluations made.

See also:

minimize_scalar

Interface to minimization algorithms for scalar univariate functions. See the ‘Brent’ method in particular.
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Notes

Uses inverse parabolic interpolation when possible to speed up convergence of golden section method.
Does not ensure that the minimum lies in the range specified by brack. See fminbound.

Examples

We illustrate the behaviour of the function when brack is of size 2 and 3 respectively. In the case where brack is
of the form (xa,xb), we can see for the given values, the output need not necessarily lie in the range (xa,xb).

>>> def f(x):
... return x**2

>>> from scipy import optimize

>>> minimum = optimize.brent(f,brack=(1,2))
>>> minimum
0.0
>>> minimum = optimize.brent(f,brack=(-1,0.5,2))
>>> minimum
-2.7755575615628914e-17

scipy.optimize.golden
scipy.optimize.golden(func, args=(), brack=None, tol=1.4901161193847656e-08, full_output=0,max-

iter=5000)
Return the minimum of a function of one variable using golden section method.
Given a function of one variable and a possible bracketing interval, return the minimum of the function isolated to
a fractional precision of tol.

Parameters

func [callable func(x,*args)] Objective function to minimize.
args [tuple, optional] Additional arguments (if present), passed to func.
brack [tuple, optional] Triple (a,b,c), where (a<b<c) and func(b) < func(a),func(c). If bracket

consists of two numbers (a, c), then they are assumed to be a starting interval for a downhill
bracket search (see bracket); it doesn’t always mean that obtained solution will satisfy
a<=x<=c.

tol [float, optional] x tolerance stop criterion
full_output

[bool, optional] If True, return optional outputs.
maxiter [int] Maximum number of iterations to perform.

See also:

minimize_scalar

Interface to minimization algorithms for scalar univariate functions. See the ‘Golden’ method in particular.

Notes

Uses analog of bisection method to decrease the bracketed interval.
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Examples

We illustrate the behaviour of the function when brack is of size 2 and 3 respectively. In the case where brack is
of the form (xa,xb), we can see for the given values, the output need not necessarily lie in the range (xa, xb).

>>> def f(x):
... return x**2

>>> from scipy import optimize

>>> minimum = optimize.golden(f, brack=(1, 2))
>>> minimum
1.5717277788484873e-162
>>> minimum = optimize.golden(f, brack=(-1, 0.5, 2))
>>> minimum
-1.5717277788484873e-162

Least-Squares

leastsq(func, x0[, args, Dfun, full_output, …]) Minimize the sum of squares of a set of equations.

scipy.optimize.leastsq
scipy.optimize.leastsq(func, x0, args=(), Dfun=None, full_output=0, col_deriv=0, ftol=1.49012e-

08, xtol=1.49012e-08, gtol=0.0, maxfev=0, epsfcn=None, factor=100,
diag=None)

Minimize the sum of squares of a set of equations.

x = arg min(sum(func(y)**2,axis=0))
y

Parameters

func [callable] should take at least one (possibly length N vector) argument and returns M floating
point numbers. It must not return NaNs or fitting might fail.

x0 [ndarray] The starting estimate for the minimization.
args [tuple, optional] Any extra arguments to func are placed in this tuple.
Dfun [callable, optional] A function or method to compute the Jacobian of func with derivatives

across the rows. If this is None, the Jacobian will be estimated.
full_output

[bool, optional] non-zero to return all optional outputs.
col_deriv [bool, optional] non-zero to specify that the Jacobian function computes derivatives down

the columns (faster, because there is no transpose operation).
ftol [float, optional] Relative error desired in the sum of squares.
xtol [float, optional] Relative error desired in the approximate solution.
gtol [float, optional] Orthogonality desired between the function vector and the columns of the

Jacobian.
maxfev [int, optional] The maximum number of calls to the function. If Dfun is provided then the

default maxfev is 100*(N+1) where N is the number of elements in x0, otherwise the default
maxfev is 200*(N+1).

epsfcn [float, optional] A variable used in determining a suitable step length for the forward- differ-
ence approximation of the Jacobian (for Dfun=None). Normally the actual step length will
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be sqrt(epsfcn)*x If epsfcn is less than the machine precision, it is assumed that the relative
errors are of the order of the machine precision.

factor [float, optional] A parameter determining the initial step bound (factor * || diag *
x||). Should be in interval (0.1, 100).

diag [sequence, optional] N positive entries that serve as a scale factors for the variables.
Returns

x [ndarray] The solution (or the result of the last iteration for an unsuccessful call).
cov_x [ndarray] The inverse of the Hessian. fjac and ipvt are used to construct an estimate of

the Hessian. A value of None indicates a singular matrix, which means the curvature in
parameters x is numerically flat. To obtain the covariance matrix of the parameters x, cov_x
must be multiplied by the variance of the residuals – see curve_fit.

infodict [dict] a dictionary of optional outputs with the keys:
nfev The number of function calls
fvec The function evaluated at the output
fjac A permutation of the R matrix of a QR factorization of the final approximate

Jacobian matrix, stored column wise. Together with ipvt, the covariance of the
estimate can be approximated.

ipvt An integer array of length N which defines a permutation matrix, p, such that
fjac*p = q*r, where r is upper triangular with diagonal elements of nonincreas-
ing magnitude. Column j of p is column ipvt(j) of the identity matrix.

qtf The vector (transpose(q) * fvec).
mesg [str] A string message giving information about the cause of failure.
ier [int] An integer flag. If it is equal to 1, 2, 3 or 4, the solution was found. Otherwise, the

solution was not found. In either case, the optional output variable ‘mesg’ gives more infor-
mation.

Notes

“leastsq” is a wrapper around MINPACK’s lmdif and lmder algorithms.
cov_x is a Jacobian approximation to the Hessian of the least squares objective function. This approximation
assumes that the objective function is based on the difference between some observed target data (ydata) and a
(non-linear) function of the parameters f(xdata, params)

func(params) = ydata - f(xdata, params)

so that the objective function is

min sum((ydata - f(xdata, params))**2, axis=0)
params

The solution, x, is always a 1D array, regardless of the shape of x0, or whether x0 is a scalar.

Root Finding

General nonlinear solvers:

fsolve(func, x0[, args, fprime, …]) Find the roots of a function.
broyden1(F, xin[, iter, alpha, …]) Find a root of a function, using Broyden’s first Jacobian

approximation.
Continued on next page
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Table 141 – continued from previous page
broyden2(F, xin[, iter, alpha, …]) Find a root of a function, using Broyden’s second Jacobian

approximation.

scipy.optimize.fsolve
scipy.optimize.fsolve(func, x0, args=(), fprime=None, full_output=0, col_deriv=0, xtol=1.49012e-08,

maxfev=0, band=None, epsfcn=None, factor=100, diag=None)
Find the roots of a function.
Return the roots of the (non-linear) equations defined by func(x) = 0 given a starting estimate.

Parameters

func [callable f(x, *args)] A function that takes at least one (possibly vector) argument, and
returns a value of the same length.

x0 [ndarray] The starting estimate for the roots of func(x) = 0.
args [tuple, optional] Any extra arguments to func.
fprime [callable f(x, *args), optional] A function to compute the Jacobian of funcwith deriva-

tives across the rows. By default, the Jacobian will be estimated.
full_output

[bool, optional] If True, return optional outputs.
col_deriv [bool, optional] Specify whether the Jacobian function computes derivatives down the

columns (faster, because there is no transpose operation).
xtol [float, optional] The calculation will terminate if the relative error between two consecutive

iterates is at most xtol.
maxfev [int, optional] The maximum number of calls to the function. If zero, then 100*(N+1) is

the maximum where N is the number of elements in x0.
band [tuple, optional] If set to a two-sequence containing the number of sub- and super-diagonals

within the band of the Jacobi matrix, the Jacobi matrix is considered banded (only for
fprime=None).

epsfcn [float, optional] A suitable step length for the forward-difference approximation of the Jaco-
bian (for fprime=None). If epsfcn is less than the machine precision, it is assumed that
the relative errors in the functions are of the order of the machine precision.

factor [float, optional] A parameter determining the initial step bound (factor * || diag *
x||). Should be in the interval (0.1, 100).

diag [sequence, optional] N positive entries that serve as a scale factors for the variables.
Returns

x [ndarray] The solution (or the result of the last iteration for an unsuccessful call).
infodict [dict] A dictionary of optional outputs with the keys:

nfev number of function calls
njev number of Jacobian calls
fvec function evaluated at the output
fjac the orthogonal matrix, q, produced by the QR factorization of the final approx-

imate Jacobian matrix, stored column wise
r upper triangular matrix produced by QR factorization of the same matrix
qtf the vector (transpose(q) * fvec)

ier [int] An integer flag. Set to 1 if a solution was found, otherwise refer to mesg for more
information.

mesg [str] If no solution is found, mesg details the cause of failure.
See also:

root

Interface to root finding algorithms for multivariate functions. See the method=='hybr' in particular.
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Notes

fsolve is a wrapper around MINPACK’s hybrd and hybrj algorithms.

scipy.optimize.broyden1
scipy.optimize.broyden1(F, xin, iter=None, alpha=None, reduction_method=’restart’,max_rank=None,

verbose=False, maxiter=None, f_tol=None, f_rtol=None, x_tol=None,
x_rtol=None, tol_norm=None, line_search=’armijo’, callback=None, **kw)

Find a root of a function, using Broyden’s first Jacobian approximation.
This method is also known as “Broyden’s good method”.

Parameters

F [function(x) -> f] Function whose root to find; should take and return an array-like object.
xin [array_like] Initial guess for the solution
alpha [float, optional] Initial guess for the Jacobian is (-1/alpha).
reduction_method

[str or tuple, optional] Method used in ensuring that the rank of the Broyden matrix stays
low. Can either be a string giving the name of the method, or a tuple of the form (method,
param1, param2, ...) that gives the name of the method and values for additional
parameters.
Methods available:
• restart: drop all matrix columns. Has no extra parameters.
• simple: drop oldest matrix column. Has no extra parameters.
• svd: keep only the most significant SVD components. Takes an extra parameter,
to_retain, which determines the number of SVD components to retain when rank
reduction is done. Default is max_rank - 2.

max_rank [int, optional] Maximum rank for the Broyden matrix. Default is infinity (ie., no rank reduc-
tion).

iter [int, optional] Number of iterations to make. If omitted (default), make as many as required
to meet tolerances.

verbose [bool, optional] Print status to stdout on every iteration.
maxiter [int, optional] Maximum number of iterations to make. If more are needed to meet conver-

gence, NoConvergence is raised.
f_tol [float, optional] Absolute tolerance (in max-norm) for the residual. If omitted, default is

6e-6.
f_rtol [float, optional] Relative tolerance for the residual. If omitted, not used.
x_tol [float, optional] Absolute minimum step size, as determined from the Jacobian approxima-

tion. If the step size is smaller than this, optimization is terminated as successful. If omitted,
not used.

x_rtol [float, optional] Relative minimum step size. If omitted, not used.
tol_norm [function(vector) -> scalar, optional] Norm to use in convergence check. Default is the max-

imum norm.
line_search

[{None, ‘armijo’ (default), ‘wolfe’}, optional] Which type of a line search to use to determine
the step size in the direction given by the Jacobian approximation. Defaults to ‘armijo’.

callback [function, optional] Optional callback function. It is called on every iteration as
callback(x, f) where x is the current solution and f the corresponding residual.

Returns

sol [ndarray] An array (of similar array type as x0) containing the final solution.
Raises
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NoConvergence
When a solution was not found.

Notes

This algorithm implements the inverse Jacobian Quasi-Newton update

H+ = H + (dx−Hdf)dx†H/(dx†Hdf)

which corresponds to Broyden’s first Jacobian update

J+ = J + (df − Jdx)dx†/dx†dx

References

[1]

scipy.optimize.broyden2
scipy.optimize.broyden2(F, xin, iter=None, alpha=None, reduction_method=’restart’,max_rank=None,

verbose=False, maxiter=None, f_tol=None, f_rtol=None, x_tol=None,
x_rtol=None, tol_norm=None, line_search=’armijo’, callback=None, **kw)

Find a root of a function, using Broyden’s second Jacobian approximation.
This method is also known as “Broyden’s bad method”.

Parameters

F [function(x) -> f] Function whose root to find; should take and return an array-like object.
xin [array_like] Initial guess for the solution
alpha [float, optional] Initial guess for the Jacobian is (-1/alpha).
reduction_method

[str or tuple, optional] Method used in ensuring that the rank of the Broyden matrix stays
low. Can either be a string giving the name of the method, or a tuple of the form (method,
param1, param2, ...) that gives the name of the method and values for additional
parameters.
Methods available:
• restart: drop all matrix columns. Has no extra parameters.
• simple: drop oldest matrix column. Has no extra parameters.
• svd: keep only the most significant SVD components. Takes an extra parameter,
to_retain, which determines the number of SVD components to retain when rank
reduction is done. Default is max_rank - 2.

max_rank [int, optional] Maximum rank for the Broyden matrix. Default is infinity (ie., no rank reduc-
tion).

iter [int, optional] Number of iterations to make. If omitted (default), make as many as required
to meet tolerances.

verbose [bool, optional] Print status to stdout on every iteration.
maxiter [int, optional] Maximum number of iterations to make. If more are needed to meet conver-

gence, NoConvergence is raised.
f_tol [float, optional] Absolute tolerance (in max-norm) for the residual. If omitted, default is

6e-6.
f_rtol [float, optional] Relative tolerance for the residual. If omitted, not used.
x_tol [float, optional] Absolute minimum step size, as determined from the Jacobian approxima-

tion. If the step size is smaller than this, optimization is terminated as successful. If omitted,
not used.
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x_rtol [float, optional] Relative minimum step size. If omitted, not used.
tol_norm [function(vector) -> scalar, optional] Norm to use in convergence check. Default is the max-

imum norm.
line_search

[{None, ‘armijo’ (default), ‘wolfe’}, optional] Which type of a line search to use to determine
the step size in the direction given by the Jacobian approximation. Defaults to ‘armijo’.

callback [function, optional] Optional callback function. It is called on every iteration as
callback(x, f) where x is the current solution and f the corresponding residual.

Returns

sol [ndarray] An array (of similar array type as x0) containing the final solution.
Raises

NoConvergence
When a solution was not found.

Notes

This algorithm implements the inverse Jacobian Quasi-Newton update

H+ = H + (dx−Hdf)df†/(df†df)

corresponding to Broyden’s second method.

References

[1]
Large-scale nonlinear solvers:

newton_krylov(F, xin[, iter, rdiff, method, …]) Find a root of a function, using Krylov approximation for
inverse Jacobian.

anderson(F, xin[, iter, alpha, w0, M, …]) Find a root of a function, using (extended) Andersonmix-
ing.

scipy.optimize.newton_krylov
scipy.optimize.newton_krylov(F, xin, iter=None, rdiff=None, method=’lgmres’, inner_maxiter=20,

inner_M=None, outer_k=10, verbose=False, maxiter=None,
f_tol=None, f_rtol=None, x_tol=None, x_rtol=None,
tol_norm=None, line_search=’armijo’, callback=None, **kw)

Find a root of a function, using Krylov approximation for inverse Jacobian.
This method is suitable for solving large-scale problems.

Parameters

F [function(x) -> f] Function whose root to find; should take and return an array-like object.
xin [array_like] Initial guess for the solution
rdiff [float, optional] Relative step size to use in numerical differentiation.
method [{‘lgmres’, ‘gmres’, ‘bicgstab’, ‘cgs’, ‘minres’} or function] Krylov method to use to approx-

imate the Jacobian. Can be a string, or a function implementing the same interface as the
iterative solvers in scipy.sparse.linalg.
The default is scipy.sparse.linalg.lgmres.
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inner_M [LinearOperator or InverseJacobian] Preconditioner for the inner Krylov iteration. Note that
you can use also inverse Jacobians as (adaptive) preconditioners. For example,

>>> from scipy.optimize.nonlin import BroydenFirst,␣
↪→KrylovJacobian
>>> from scipy.optimize.nonlin import InverseJacobian
>>> jac = BroydenFirst()
>>> kjac = KrylovJacobian(inner_M=InverseJacobian(jac))

If the preconditioner has a method named ‘update’, it will be called as update(x, f)
after each nonlinear step, with x giving the current point, and f the current function value.

inner_tol, inner_maxiter, …
Parameters to pass on to the “inner” Krylov solver. See scipy.sparse.linalg.
gmres for details.

outer_k [int, optional] Size of the subspace kept across LGMRES nonlinear iterations. See scipy.
sparse.linalg.lgmres for details.

iter [int, optional] Number of iterations to make. If omitted (default), make as many as required
to meet tolerances.

verbose [bool, optional] Print status to stdout on every iteration.
maxiter [int, optional] Maximum number of iterations to make. If more are needed to meet conver-

gence, NoConvergence is raised.
f_tol [float, optional] Absolute tolerance (in max-norm) for the residual. If omitted, default is

6e-6.
f_rtol [float, optional] Relative tolerance for the residual. If omitted, not used.
x_tol [float, optional] Absolute minimum step size, as determined from the Jacobian approxima-

tion. If the step size is smaller than this, optimization is terminated as successful. If omitted,
not used.

x_rtol [float, optional] Relative minimum step size. If omitted, not used.
tol_norm [function(vector) -> scalar, optional] Norm to use in convergence check. Default is the max-

imum norm.
line_search

[{None, ‘armijo’ (default), ‘wolfe’}, optional] Which type of a line search to use to determine
the step size in the direction given by the Jacobian approximation. Defaults to ‘armijo’.

callback [function, optional] Optional callback function. It is called on every iteration as
callback(x, f) where x is the current solution and f the corresponding residual.

Returns

sol [ndarray] An array (of similar array type as x0) containing the final solution.
Raises

NoConvergence
When a solution was not found.

See also:
scipy.sparse.linalg.gmres, scipy.sparse.linalg.lgmres

Notes

This function implements a Newton-Krylov solver. The basic idea is to compute the inverse of the Jacobian with
an iterative Krylov method. These methods require only evaluating the Jacobian-vector products, which are con-
veniently approximated by a finite difference:

Jv ≈ (f(x+ ω ∗ v/|v|)− f(x))/ω
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Due to the use of iterative matrix inverses, these methods can deal with large nonlinear problems.
SciPy’s scipy.sparse.linalg module offers a selection of Krylov solvers to choose from. The default here
is lgmres, which is a variant of restarted GMRES iteration that reuses some of the information obtained in the
previous Newton steps to invert Jacobians in subsequent steps.
For a review on Newton-Krylov methods, see for example [1], and for the LGMRES sparse inverse method, see
[2].

References

[1], [2]

scipy.optimize.anderson
scipy.optimize.anderson(F, xin, iter=None, alpha=None, w0=0.01, M=5, verbose=False,

maxiter=None, f_tol=None, f_rtol=None, x_tol=None, x_rtol=None,
tol_norm=None, line_search=’armijo’, callback=None, **kw)

Find a root of a function, using (extended) Anderson mixing.
The Jacobian is formed by for a ‘best’ solution in the space spanned by last M vectors. As a result, only a MxM
matrix inversions and MxN multiplications are required. [Ey]

Parameters

F [function(x) -> f] Function whose root to find; should take and return an array-like object.
xin [array_like] Initial guess for the solution
alpha [float, optional] Initial guess for the Jacobian is (-1/alpha).
M [float, optional] Number of previous vectors to retain. Defaults to 5.
w0 [float, optional] Regularization parameter for numerical stability. Compared to unity, good

values of the order of 0.01.
iter [int, optional] Number of iterations to make. If omitted (default), make as many as required

to meet tolerances.
verbose [bool, optional] Print status to stdout on every iteration.
maxiter [int, optional] Maximum number of iterations to make. If more are needed to meet conver-

gence, NoConvergence is raised.
f_tol [float, optional] Absolute tolerance (in max-norm) for the residual. If omitted, default is

6e-6.
f_rtol [float, optional] Relative tolerance for the residual. If omitted, not used.
x_tol [float, optional] Absolute minimum step size, as determined from the Jacobian approxima-

tion. If the step size is smaller than this, optimization is terminated as successful. If omitted,
not used.

x_rtol [float, optional] Relative minimum step size. If omitted, not used.
tol_norm [function(vector) -> scalar, optional] Norm to use in convergence check. Default is the max-

imum norm.
line_search

[{None, ‘armijo’ (default), ‘wolfe’}, optional] Which type of a line search to use to determine
the step size in the direction given by the Jacobian approximation. Defaults to ‘armijo’.

callback [function, optional] Optional callback function. It is called on every iteration as
callback(x, f) where x is the current solution and f the corresponding residual.

Returns

sol [ndarray] An array (of similar array type as x0) containing the final solution.
Raises
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NoConvergence
When a solution was not found.

References

[Ey]
Simple iteration solvers:

excitingmixing(F, xin[, iter, alpha, …]) Find a root of a function, using a tuned diagonal Jacobian
approximation.

linearmixing(F, xin[, iter, alpha, verbose, …]) Find a root of a function, using a scalar Jacobian approx-
imation.

diagbroyden(F, xin[, iter, alpha, verbose, …]) Find a root of a function, using diagonal Broyden Jacobian
approximation.

scipy.optimize.excitingmixing
scipy.optimize.excitingmixing(F, xin, iter=None, alpha=None, alphamax=1.0, verbose=False,

maxiter=None, f_tol=None, f_rtol=None, x_tol=None,
x_rtol=None, tol_norm=None, line_search=’armijo’, call-
back=None, **kw)

Find a root of a function, using a tuned diagonal Jacobian approximation.
The Jacobian matrix is diagonal and is tuned on each iteration.

Warning: This algorithm may be useful for specific problems, but whether it will work may depend strongly
on the problem.

Parameters

F [function(x) -> f] Function whose root to find; should take and return an array-like object.
xin [array_like] Initial guess for the solution
alpha [float, optional] Initial Jacobian approximation is (-1/alpha).
alphamax [float, optional] The entries of the diagonal Jacobian are kept in the range [alpha,

alphamax].
iter [int, optional] Number of iterations to make. If omitted (default), make as many as required

to meet tolerances.
verbose [bool, optional] Print status to stdout on every iteration.
maxiter [int, optional] Maximum number of iterations to make. If more are needed to meet conver-

gence, NoConvergence is raised.
f_tol [float, optional] Absolute tolerance (in max-norm) for the residual. If omitted, default is

6e-6.
f_rtol [float, optional] Relative tolerance for the residual. If omitted, not used.
x_tol [float, optional] Absolute minimum step size, as determined from the Jacobian approxima-

tion. If the step size is smaller than this, optimization is terminated as successful. If omitted,
not used.

x_rtol [float, optional] Relative minimum step size. If omitted, not used.
tol_norm [function(vector) -> scalar, optional] Norm to use in convergence check. Default is the max-

imum norm.
line_search

[{None, ‘armijo’ (default), ‘wolfe’}, optional] Which type of a line search to use to determine
the step size in the direction given by the Jacobian approximation. Defaults to ‘armijo’.
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callback [function, optional] Optional callback function. It is called on every iteration as
callback(x, f) where x is the current solution and f the corresponding residual.

Returns

sol [ndarray] An array (of similar array type as x0) containing the final solution.
Raises

NoConvergence
When a solution was not found.

scipy.optimize.linearmixing
scipy.optimize.linearmixing(F, xin, iter=None, alpha=None, verbose=False, maxiter=None,

f_tol=None, f_rtol=None, x_tol=None, x_rtol=None, tol_norm=None,
line_search=’armijo’, callback=None, **kw)

Find a root of a function, using a scalar Jacobian approximation.

Warning: This algorithm may be useful for specific problems, but whether it will work may depend strongly
on the problem.

Parameters

F [function(x) -> f] Function whose root to find; should take and return an array-like object.
xin [array_like] Initial guess for the solution
alpha [float, optional] The Jacobian approximation is (-1/alpha).
iter [int, optional] Number of iterations to make. If omitted (default), make as many as required

to meet tolerances.
verbose [bool, optional] Print status to stdout on every iteration.
maxiter [int, optional] Maximum number of iterations to make. If more are needed to meet conver-

gence, NoConvergence is raised.
f_tol [float, optional] Absolute tolerance (in max-norm) for the residual. If omitted, default is

6e-6.
f_rtol [float, optional] Relative tolerance for the residual. If omitted, not used.
x_tol [float, optional] Absolute minimum step size, as determined from the Jacobian approxima-

tion. If the step size is smaller than this, optimization is terminated as successful. If omitted,
not used.

x_rtol [float, optional] Relative minimum step size. If omitted, not used.
tol_norm [function(vector) -> scalar, optional] Norm to use in convergence check. Default is the max-

imum norm.
line_search

[{None, ‘armijo’ (default), ‘wolfe’}, optional] Which type of a line search to use to determine
the step size in the direction given by the Jacobian approximation. Defaults to ‘armijo’.

callback [function, optional] Optional callback function. It is called on every iteration as
callback(x, f) where x is the current solution and f the corresponding residual.

Returns

sol [ndarray] An array (of similar array type as x0) containing the final solution.
Raises

NoConvergence
When a solution was not found.
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scipy.optimize.diagbroyden
scipy.optimize.diagbroyden(F, xin, iter=None, alpha=None, verbose=False, maxiter=None,

f_tol=None, f_rtol=None, x_tol=None, x_rtol=None, tol_norm=None,
line_search=’armijo’, callback=None, **kw)

Find a root of a function, using diagonal Broyden Jacobian approximation.
The Jacobian approximation is derived from previous iterations, by retaining only the diagonal of Broyden matrices.

Warning: This algorithm may be useful for specific problems, but whether it will work may depend strongly
on the problem.

Parameters

F [function(x) -> f] Function whose root to find; should take and return an array-like object.
xin [array_like] Initial guess for the solution
alpha [float, optional] Initial guess for the Jacobian is (-1/alpha).
iter [int, optional] Number of iterations to make. If omitted (default), make as many as required

to meet tolerances.
verbose [bool, optional] Print status to stdout on every iteration.
maxiter [int, optional] Maximum number of iterations to make. If more are needed to meet conver-

gence, NoConvergence is raised.
f_tol [float, optional] Absolute tolerance (in max-norm) for the residual. If omitted, default is

6e-6.
f_rtol [float, optional] Relative tolerance for the residual. If omitted, not used.
x_tol [float, optional] Absolute minimum step size, as determined from the Jacobian approxima-

tion. If the step size is smaller than this, optimization is terminated as successful. If omitted,
not used.

x_rtol [float, optional] Relative minimum step size. If omitted, not used.
tol_norm [function(vector) -> scalar, optional] Norm to use in convergence check. Default is the max-

imum norm.
line_search

[{None, ‘armijo’ (default), ‘wolfe’}, optional] Which type of a line search to use to determine
the step size in the direction given by the Jacobian approximation. Defaults to ‘armijo’.

callback [function, optional] Optional callback function. It is called on every iteration as
callback(x, f) where x is the current solution and f the corresponding residual.

Returns

sol [ndarray] An array (of similar array type as x0) containing the final solution.
Raises

NoConvergence
When a solution was not found.

Additional information on the nonlinear solvers

6.19 Nonlinear solvers

This is a collection of general-purpose nonlinear multidimensional solvers. These solvers find x for which F(x) = 0. Both
x and F can be multidimensional.
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6.19.1 Routines

Large-scale nonlinear solvers:

newton_krylov(F, xin[, iter, rdiff, method, …]) Find a root of a function, using Krylov approximation for
inverse Jacobian.

anderson(F, xin[, iter, alpha, w0, M, …]) Find a root of a function, using (extended) Andersonmix-
ing.

General nonlinear solvers:

broyden1(F, xin[, iter, alpha, …]) Find a root of a function, using Broyden’s first Jacobian
approximation.

broyden2(F, xin[, iter, alpha, …]) Find a root of a function, using Broyden’s second Jacobian
approximation.

Simple iterations:

excitingmixing(F, xin[, iter, alpha, …]) Find a root of a function, using a tuned diagonal Jacobian
approximation.

linearmixing(F, xin[, iter, alpha, verbose, …]) Find a root of a function, using a scalar Jacobian approx-
imation.

diagbroyden(F, xin[, iter, alpha, verbose, …]) Find a root of a function, using diagonal Broyden Jacobian
approximation.

6.19.2 Examples

Small problem

>>> def F(x):
... return np.cos(x) + x[::-1] - [1, 2, 3, 4]
>>> import scipy.optimize
>>> x = scipy.optimize.broyden1(F, [1,1,1,1], f_tol=1e-14)
>>> x
array([ 4.04674914, 3.91158389, 2.71791677, 1.61756251])
>>> np.cos(x) + x[::-1]
array([ 1., 2., 3., 4.])

Large problem
Suppose that we needed to solve the following integrodifferential equation on the square [0, 1]× [0, 1]:

∇2P = 10

(∫ 1

0

∫ 1

0

cosh(P ) dx dy

)2

with P (x, 1) = 1 and P = 0 elsewhere on the boundary of the square.
The solution can be found using the newton_krylov solver:

import numpy as np
from scipy.optimize import newton_krylov
from numpy import cosh, zeros_like, mgrid, zeros

(continues on next page)
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(continued from previous page)

# parameters
nx, ny = 75, 75
hx, hy = 1./(nx-1), 1./(ny-1)

P_left, P_right = 0, 0
P_top, P_bottom = 1, 0

def residual(P):
d2x = zeros_like(P)
d2y = zeros_like(P)

d2x[1:-1] = (P[2:] - 2*P[1:-1] + P[:-2]) / hx/hx
d2x[0] = (P[1] - 2*P[0] + P_left)/hx/hx
d2x[-1] = (P_right - 2*P[-1] + P[-2])/hx/hx

d2y[:,1:-1] = (P[:,2:] - 2*P[:,1:-1] + P[:,:-2])/hy/hy
d2y[:,0] = (P[:,1] - 2*P[:,0] + P_bottom)/hy/hy
d2y[:,-1] = (P_top - 2*P[:,-1] + P[:,-2])/hy/hy

return d2x + d2y - 10*cosh(P).mean()**2

# solve
guess = zeros((nx, ny), float)
sol = newton_krylov(residual, guess, method='lgmres', verbose=1)
print('Residual: %g' % abs(residual(sol)).max())

# visualize
import matplotlib.pyplot as plt
x, y = mgrid[0:1:(nx*1j), 0:1:(ny*1j)]
plt.pcolor(x, y, sol)
plt.colorbar()
plt.show()
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6.20 Cython Optimize Zeros API

The underlying C functions for the following root finders can be accessed directly using Cython:
• bisect

• ridder

• brenth

• brentq

The Cython API for the zeros functions is similar except there is no disp argument. Import the zeros functions using
cimport from scipy.optimize.cython_optimize.

from scipy.optimize.cython_optimize cimport bisect, ridder, brentq, brenth

6.20.1 Callback Signature

The zeros functions in cython_optimize expect a callback that takes a double for the scalar independent variable as
the 1st argument and a user defined struct with any extra parameters as the 2nd argument.

double (*callback_type)(double, void*)

6.20.2 Examples

Usage of cython_optimize requires Cython to write callbacks that are compiled into C. For more information on
compiling Cython see the Cython Documentation.
These are the basic steps:

1. Create a Cython .pyx file, for example: myexample.pyx.
2. Import the desired root finder from cython_optimize.
3. Write the callback function, and call the selected zeros function passing the callback, any extra arguments, and the

other solver parameters.

from scipy.optimize.cython_optimize cimport brentq

# import math from Cython
from libc cimport math

myargs = {'C0': 1.0, 'C1': 0.7} # a dictionary of extra arguments
XLO, XHI = 0.5, 1.0 # lower and upper search boundaries
XTOL, RTOL, MITR = 1e-3, 1e-3, 10 # other solver parameters

# user defined struct for extra parameters
ctypedef struct test_params:

double C0
double C1

# user defined callback
cdef double f(double x, void *args):

(continues on next page)
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(continued from previous page)
cdef test_params *myargs = <test_params *> args
return myargs.C0 - math.exp(-(x - myargs.C1))

# Cython wrapper function
cdef double brentq_wrapper_example(dict args, double xa, double xb,

double xtol, double rtol, int mitr):
# Cython automatically casts dictionary to struct
cdef test_params myargs = args
return brentq(

f, xa, xb, <test_params *> &myargs, xtol, rtol, mitr, NULL)

# Python function
def brentq_example(args=myargs, xa=XLO, xb=XHI, xtol=XTOL, rtol=RTOL,

mitr=MITR):
'''Calls Cython wrapper from Python.'''
return brentq_wrapper_example(args, xa, xb, xtol, rtol, mitr)

4. If you want to call your function from Python, create a Cython wrapper, and a Python function that calls the
wrapper, or use cpdef. Then in Python you can import and run the example.

from myexample import brentq_example

x = brentq_example()
# 0.6999942848231314

5. Create a Cython .pxd file if you need to export any Cython functions.

6.20.3 Full Output

The functions in cython_optimize can also copy the full output from the solver to a C struct that is passed
as its last argument. If you don’t want the full output just pass NULL. The full output struct must be type
zeros_full_output, which is defined in scipy.optimize.cython_optimize with the following fields:

• int funcalls: number of function calls
• int iterations: number of iterations
• int error_num: error number
• double root: root of function

The root is copied by cython_optimize to the full output struct. An error number of -1 means a sign error, -2
means a convergence error, and 0 means the solver converged. Continuing from the previous example:

from scipy.optimize.cython_optimize cimport zeros_full_output

# cython brentq solver with full output
cdef brent_full_output brentq_full_output_wrapper_example(

dict args, double xa, double xb, double xtol, double rtol,
int mitr):

cdef test_params myargs = args
(continues on next page)
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(continued from previous page)
cdef zeros_full_output my_full_output
# use my_full_output instead of NULL
brentq(f, xa, xb, &myargs, xtol, rtol, mitr, &my_full_output)
return my_full_output

# Python function
def brent_full_output_example(args=myargs, xa=XLO, xb=XHI, xtol=XTOL,

rtol=RTOL, mitr=MITR):
'''Returns full output'''
return brentq_full_output_wrapper_example(args, xa, xb, xtol, rtol,

mitr)

result = brent_full_output_example()
# {'error_num': 0,
# 'funcalls': 6,
# 'iterations': 5,
# 'root': 0.6999942848231314}

6.21 Signal processing (scipy.signal)

6.21.1 Convolution

convolve(in1, in2[, mode, method]) Convolve two N-dimensional arrays.
correlate(in1, in2[, mode, method]) Cross-correlate two N-dimensional arrays.
fftconvolve(in1, in2[, mode, axes]) Convolve two N-dimensional arrays using FFT.
convolve2d(in1, in2[, mode, boundary, fillvalue]) Convolve two 2-dimensional arrays.
correlate2d(in1, in2[, mode, boundary, …]) Cross-correlate two 2-dimensional arrays.
sepfir2d(input, hrow, hcol) Description:
choose_conv_method(in1, in2[, mode, measure]) Find the fastest convolution/correlation method.

scipy.signal.convolve

scipy.signal.convolve(in1, in2, mode=’full’, method=’auto’)
Convolve two N-dimensional arrays.
Convolve in1 and in2, with the output size determined by the mode argument.

Parameters

in1 [array_like] First input.
in2 [array_like] Second input. Should have the same number of dimensions as in1.
mode [str {‘full’, ‘valid’, ‘same’}, optional] A string indicating the size of the output:

full The output is the full discrete linear convolution of the inputs. (Default)
valid The output consists only of those elements that do not rely on the zero-padding.

In ‘valid’ mode, either in1 or in2 must be at least as large as the other in every
dimension.

same The output is the same size as in1, centered with respect to the ‘full’ output.
method [str {‘auto’, ‘direct’, ‘fft’}, optional] A string indicating which method to use to calculate the

convolution.
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direct The convolution is determined directly from sums, the definition of convolution.
fft The Fourier Transform is used to perform the convolution by calling

fftconvolve.
auto Automatically chooses direct or Fourier method based on an estimate of which

is faster (default). See Notes for more detail.
New in version 0.19.0.

Returns

convolve [array] An N-dimensional array containing a subset of the discrete linear convolution of in1
with in2.

See also:

numpy.polymul

performs polynomial multiplication (same operation, but also accepts poly1d objects)
choose_conv_method

chooses the fastest appropriate convolution method

fftconvolve

Notes

By default, convolve and correlate use method='auto', which calls choose_conv_method to
choose the fastest method using pre-computed values (choose_conv_method can also measure real-world
timing with a keyword argument). Because fftconvolve relies on floating point numbers, there are certain
constraints that may force method=direct (more detail in choose_conv_method docstring).

Examples

Smooth a square pulse using a Hann window:

>>> from scipy import signal
>>> sig = np.repeat([0., 1., 0.], 100)
>>> win = signal.hann(50)
>>> filtered = signal.convolve(sig, win, mode='same') / sum(win)

>>> import matplotlib.pyplot as plt
>>> fig, (ax_orig, ax_win, ax_filt) = plt.subplots(3, 1, sharex=True)
>>> ax_orig.plot(sig)
>>> ax_orig.set_title('Original pulse')
>>> ax_orig.margins(0, 0.1)
>>> ax_win.plot(win)
>>> ax_win.set_title('Filter impulse response')
>>> ax_win.margins(0, 0.1)
>>> ax_filt.plot(filtered)
>>> ax_filt.set_title('Filtered signal')
>>> ax_filt.margins(0, 0.1)
>>> fig.tight_layout()
>>> fig.show()
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scipy.signal.correlate

scipy.signal.correlate(in1, in2, mode=’full’, method=’auto’)
Cross-correlate two N-dimensional arrays.
Cross-correlate in1 and in2, with the output size determined by the mode argument.

Parameters

in1 [array_like] First input.
in2 [array_like] Second input. Should have the same number of dimensions as in1.
mode [str {‘full’, ‘valid’, ‘same’}, optional] A string indicating the size of the output:

full The output is the full discrete linear cross-correlation of the inputs. (Default)
valid The output consists only of those elements that do not rely on the zero-padding.

In ‘valid’ mode, either in1 or in2 must be at least as large as the other in every
dimension.

same The output is the same size as in1, centered with respect to the ‘full’ output.
method [str {‘auto’, ‘direct’, ‘fft’}, optional] A string indicating which method to use to calculate the

correlation.
direct The correlation is determined directly from sums, the definition of correlation.
fft The Fast Fourier Transform is used to perform the correlation more quickly

(only available for numerical arrays.)
auto Automatically chooses direct or Fourier method based on an estimate of which

is faster (default). See convolve Notes for more detail.
New in version 0.19.0.

Returns

correlate [array] An N-dimensional array containing a subset of the discrete linear cross-correlation
of in1 with in2.

See also:

choose_conv_method

contains more documentation on method.
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Notes

The correlation z of two d-dimensional arrays x and y is defined as:

z[...,k,...] = sum[..., i_l, ...] x[..., i_l,...] * conj(y[..., i_l - k,..
↪→.])

This way, if x and y are 1-D arrays and z = correlate(x, y, 'full') then

z[k] = (x ∗ y)(k −N + 1) =

||x||−1∑
l=0

xly
∗
l−k+N−1

for k = 0, 1, ..., ||x||+ ||y|| − 2

where ||x|| is the length of x, N = max(||x||, ||y||), and ym is 0 when m is outside the range of y.
method='fft' only works for numerical arrays as it relies on fftconvolve. In certain cases (i.e., arrays of
objects or when rounding integers can lose precision), method='direct' is always used.

Examples

Implement a matched filter using cross-correlation, to recover a signal that has passed through a noisy channel.

>>> from scipy import signal
>>> sig = np.repeat([0., 1., 1., 0., 1., 0., 0., 1.], 128)
>>> sig_noise = sig + np.random.randn(len(sig))
>>> corr = signal.correlate(sig_noise, np.ones(128), mode='same') / 128

>>> import matplotlib.pyplot as plt
>>> clock = np.arange(64, len(sig), 128)
>>> fig, (ax_orig, ax_noise, ax_corr) = plt.subplots(3, 1, sharex=True)
>>> ax_orig.plot(sig)
>>> ax_orig.plot(clock, sig[clock], 'ro')
>>> ax_orig.set_title('Original signal')
>>> ax_noise.plot(sig_noise)
>>> ax_noise.set_title('Signal with noise')
>>> ax_corr.plot(corr)
>>> ax_corr.plot(clock, corr[clock], 'ro')
>>> ax_corr.axhline(0.5, ls=':')
>>> ax_corr.set_title('Cross-correlated with rectangular pulse')
>>> ax_orig.margins(0, 0.1)
>>> fig.tight_layout()
>>> fig.show()

scipy.signal.fftconvolve

scipy.signal.fftconvolve(in1, in2, mode=’full’, axes=None)
Convolve two N-dimensional arrays using FFT.
Convolve in1 and in2 using the fast Fourier transform method, with the output size determined by the mode argu-
ment.
This is generally much faster than convolve for large arrays (n > ~500), but can be slower when only a few output
values are needed, and can only output float arrays (int or object array inputs will be cast to float).
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As of v0.19, convolve automatically chooses this method or the direct method based on an estimation of which
is faster.

Parameters

in1 [array_like] First input.
in2 [array_like] Second input. Should have the same number of dimensions as in1.
mode [str {‘full’, ‘valid’, ‘same’}, optional] A string indicating the size of the output:

full The output is the full discrete linear convolution of the inputs. (Default)
valid The output consists only of those elements that do not rely on the zero-padding.

In ‘valid’ mode, either in1 or in2 must be at least as large as the other in every
dimension.

same The output is the same size as in1, centered with respect to the ‘full’ output. axis
: tuple, optional

axes [int or array_like of ints or None, optional] Axes over which to compute the convolution.
The default is over all axes.

Returns

out [array] An N-dimensional array containing a subset of the discrete linear convolution of in1
with in2.

Examples

Autocorrelation of white noise is an impulse.

>>> from scipy import signal
>>> sig = np.random.randn(1000)
>>> autocorr = signal.fftconvolve(sig, sig[::-1], mode='full')

>>> import matplotlib.pyplot as plt
>>> fig, (ax_orig, ax_mag) = plt.subplots(2, 1)
>>> ax_orig.plot(sig)
>>> ax_orig.set_title('White noise')

(continues on next page)
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(continued from previous page)
>>> ax_mag.plot(np.arange(-len(sig)+1,len(sig)), autocorr)
>>> ax_mag.set_title('Autocorrelation')
>>> fig.tight_layout()
>>> fig.show()

Gaussian blur implemented using FFT convolution. Notice the dark borders around the image, due to the zero-
padding beyond its boundaries. The convolve2d function allows for other types of image boundaries, but is far
slower.

>>> from scipy import misc
>>> face = misc.face(gray=True)
>>> kernel = np.outer(signal.gaussian(70, 8), signal.gaussian(70, 8))
>>> blurred = signal.fftconvolve(face, kernel, mode='same')

>>> fig, (ax_orig, ax_kernel, ax_blurred) = plt.subplots(3, 1,
... figsize=(6, 15))
>>> ax_orig.imshow(face, cmap='gray')
>>> ax_orig.set_title('Original')
>>> ax_orig.set_axis_off()
>>> ax_kernel.imshow(kernel, cmap='gray')
>>> ax_kernel.set_title('Gaussian kernel')
>>> ax_kernel.set_axis_off()
>>> ax_blurred.imshow(blurred, cmap='gray')
>>> ax_blurred.set_title('Blurred')
>>> ax_blurred.set_axis_off()
>>> fig.show()

0 200 400 600 800 1000
2.5
0.0
2.5

White noise

1000 750 500 250 0 250 500 750 1000
0

500

1000
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scipy.signal.convolve2d

scipy.signal.convolve2d(in1, in2, mode=’full’, boundary=’fill’, fillvalue=0)
Convolve two 2-dimensional arrays.
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Convolve in1 and in2 with output size determined by mode, and boundary conditions determined by boundary and
fillvalue.

Parameters

in1 [array_like] First input.
in2 [array_like] Second input. Should have the same number of dimensions as in1.
mode [str {‘full’, ‘valid’, ‘same’}, optional] A string indicating the size of the output:

full The output is the full discrete linear convolution of the inputs. (Default)
valid The output consists only of those elements that do not rely on the zero-padding.

In ‘valid’ mode, either in1 or in2 must be at least as large as the other in every
dimension.

same The output is the same size as in1, centered with respect to the ‘full’ output.
boundary [str {‘fill’, ‘wrap’, ‘symm’}, optional] A flag indicating how to handle boundaries:

fill pad input arrays with fillvalue. (default)
wrap circular boundary conditions.
symm symmetrical boundary conditions.

fillvalue [scalar, optional] Value to fill pad input arrays with. Default is 0.
Returns

out [ndarray] A 2-dimensional array containing a subset of the discrete linear convolution of in1
with in2.

Examples

Compute the gradient of an image by 2D convolution with a complex Scharr operator. (Horizontal operator is real,
vertical is imaginary.) Use symmetric boundary condition to avoid creating edges at the image boundaries.

>>> from scipy import signal
>>> from scipy import misc
>>> ascent = misc.ascent()
>>> scharr = np.array([[ -3-3j, 0-10j, +3 -3j],
... [-10+0j, 0+ 0j, +10 +0j],
... [ -3+3j, 0+10j, +3 +3j]]) # Gx + j*Gy
>>> grad = signal.convolve2d(ascent, scharr, boundary='symm', mode='same')

>>> import matplotlib.pyplot as plt
>>> fig, (ax_orig, ax_mag, ax_ang) = plt.subplots(3, 1, figsize=(6, 15))
>>> ax_orig.imshow(ascent, cmap='gray')
>>> ax_orig.set_title('Original')
>>> ax_orig.set_axis_off()
>>> ax_mag.imshow(np.absolute(grad), cmap='gray')
>>> ax_mag.set_title('Gradient magnitude')
>>> ax_mag.set_axis_off()
>>> ax_ang.imshow(np.angle(grad), cmap='hsv') # hsv is cyclic, like angles
>>> ax_ang.set_title('Gradient orientation')
>>> ax_ang.set_axis_off()
>>> fig.show()

scipy.signal.correlate2d

scipy.signal.correlate2d(in1, in2, mode=’full’, boundary=’fill’, fillvalue=0)
Cross-correlate two 2-dimensional arrays.
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Cross correlate in1 and in2with output size determined bymode, and boundary conditions determined by boundary
and fillvalue.

Parameters

in1 [array_like] First input.
in2 [array_like] Second input. Should have the same number of dimensions as in1.
mode [str {‘full’, ‘valid’, ‘same’}, optional] A string indicating the size of the output:

full The output is the full discrete linear cross-correlation of the inputs. (Default)
valid The output consists only of those elements that do not rely on the zero-padding.

In ‘valid’ mode, either in1 or in2 must be at least as large as the other in every
dimension.

same The output is the same size as in1, centered with respect to the ‘full’ output.
boundary [str {‘fill’, ‘wrap’, ‘symm’}, optional] A flag indicating how to handle boundaries:

fill pad input arrays with fillvalue. (default)
wrap circular boundary conditions.
symm symmetrical boundary conditions.

fillvalue [scalar, optional] Value to fill pad input arrays with. Default is 0.
Returns

correlate2d
[ndarray] A 2-dimensional array containing a subset of the discrete linear cross-correlation
of in1 with in2.

Examples

Use 2D cross-correlation to find the location of a template in a noisy image:

>>> from scipy import signal
>>> from scipy import misc
>>> face = misc.face(gray=True) - misc.face(gray=True).mean()
>>> template = np.copy(face[300:365, 670:750]) # right eye
>>> template -= template.mean()
>>> face = face + np.random.randn(*face.shape) * 50 # add noise
>>> corr = signal.correlate2d(face, template, boundary='symm', mode='same
↪→')
>>> y, x = np.unravel_index(np.argmax(corr), corr.shape) # find the match

>>> import matplotlib.pyplot as plt
>>> fig, (ax_orig, ax_template, ax_corr) = plt.subplots(3, 1,
... figsize=(6, 15))
>>> ax_orig.imshow(face, cmap='gray')
>>> ax_orig.set_title('Original')
>>> ax_orig.set_axis_off()
>>> ax_template.imshow(template, cmap='gray')
>>> ax_template.set_title('Template')
>>> ax_template.set_axis_off()
>>> ax_corr.imshow(corr, cmap='gray')
>>> ax_corr.set_title('Cross-correlation')
>>> ax_corr.set_axis_off()
>>> ax_orig.plot(x, y, 'ro')
>>> fig.show()
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scipy.signal.sepfir2d

scipy.signal.sepfir2d(input, hrow, hcol)→ output
Description:

Convolve the rank-2 input array with the separable filter defined by the rank-1 arrays hrow, and hcol. Mirror
symmetric boundary conditions are assumed. This function can be used to find an image given its B-spline
representation.

scipy.signal.choose_conv_method

scipy.signal.choose_conv_method(in1, in2, mode=’full’, measure=False)
Find the fastest convolution/correlation method.
This primarily exists to be called during the method='auto' option in convolve and correlate, but can
also be used when performing many convolutions of the same input shapes and dtypes, determining which method
to use for all of them, either to avoid the overhead of the ‘auto’ option or to use accurate real-world measurements.

Parameters

in1 [array_like] The first argument passed into the convolution function.
in2 [array_like] The second argument passed into the convolution function.
mode [str {‘full’, ‘valid’, ‘same’}, optional] A string indicating the size of the output:

full The output is the full discrete linear convolution of the inputs. (Default)
valid The output consists only of those elements that do not rely on the zero-padding.
same The output is the same size as in1, centered with respect to the ‘full’ output.

measure [bool, optional] If True, run and time the convolution of in1 and in2 with both methods and
return the fastest. If False (default), predict the fastest method using precomputed values.

Returns

method [str] A string indicating which convolution method is fastest, either ‘direct’ or ‘fft’
times [dict, optional] A dictionary containing the times (in seconds) needed for each method. This

value is only returned if measure=True.
See also:
convolve, correlate

Notes

For large n, measure=False is accurate and can quickly determine the fastest method to perform the convolu-
tion. However, this is not as accurate for small n (when any dimension in the input or output is small).
In practice, we found that this function estimates the faster method up to a multiplicative factor of 5 (i.e., the
estimated method is at most 5 times slower than the fastest method). The estimation values were tuned on an
early 2015 MacBook Pro with 8GB RAM but we found that the prediction held fairly accurately across different
machines.
If measure=True, time the convolutions. Because this function uses fftconvolve, an error will be thrown if
it does not support the inputs. There are cases when fftconvolve supports the inputs but this function returns
direct (e.g., to protect against floating point integer precision).
New in version 0.19.
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Examples

Estimate the fastest method for a given input:

>>> from scipy import signal
>>> a = np.random.randn(1000)
>>> b = np.random.randn(1000000)
>>> method = signal.choose_conv_method(a, b, mode='same')
>>> method
'fft'

This can then be applied to other arrays of the same dtype and shape:

>>> c = np.random.randn(1000)
>>> d = np.random.randn(1000000)
>>> # `method` works with correlate and convolve
>>> corr1 = signal.correlate(a, b, mode='same', method=method)
>>> corr2 = signal.correlate(c, d, mode='same', method=method)
>>> conv1 = signal.convolve(a, b, mode='same', method=method)
>>> conv2 = signal.convolve(c, d, mode='same', method=method)

6.21.2 B-splines

bspline(x, n) B-spline basis function of order n.
cubic(x) A cubic B-spline.
quadratic(x) A quadratic B-spline.
gauss_spline(x, n) Gaussian approximation to B-spline basis function of or-

der n.
cspline1d(signal[, lamb]) Compute cubic spline coefficients for rank-1 array.
qspline1d(signal[, lamb]) Compute quadratic spline coefficients for rank-1 array.
cspline2d(input) Description:
qspline2d(input) Description:
cspline1d_eval(cj, newx[, dx, x0]) Evaluate a spline at the new set of points.
qspline1d_eval(cj, newx[, dx, x0]) Evaluate a quadratic spline at the new set of points.
spline_filter(Iin[, lmbda]) Smoothing spline (cubic) filtering of a rank-2 array.

scipy.signal.bspline

scipy.signal.bspline(x, n)
B-spline basis function of order n.

Notes

Uses numpy.piecewise and automatic function-generator.

scipy.signal.cubic

scipy.signal.cubic(x)
A cubic B-spline.
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This is a special case of bspline, and equivalent to bspline(x, 3).

scipy.signal.quadratic

scipy.signal.quadratic(x)
A quadratic B-spline.
This is a special case of bspline, and equivalent to bspline(x, 2).

scipy.signal.gauss_spline

scipy.signal.gauss_spline(x, n)
Gaussian approximation to B-spline basis function of order n.

Parameters

n [int] The order of the spline. Must be nonnegative, i.e. n >= 0

References

[1]

scipy.signal.cspline1d

scipy.signal.cspline1d(signal, lamb=0.0)
Compute cubic spline coefficients for rank-1 array.
Find the cubic spline coefficients for a 1-D signal assuming mirror-symmetric boundary conditions. To obtain the
signal back from the spline representationmirror-symmetric-convolve these coefficients with a length 3 FIRwindow
[1.0, 4.0, 1.0]/ 6.0 .

Parameters

signal [ndarray] A rank-1 array representing samples of a signal.
lamb [float, optional] Smoothing coefficient, default is 0.0.

Returns

c [ndarray] Cubic spline coefficients.

scipy.signal.qspline1d

scipy.signal.qspline1d(signal, lamb=0.0)
Compute quadratic spline coefficients for rank-1 array.
Find the quadratic spline coefficients for a 1-D signal assuming mirror-symmetric boundary conditions. To obtain
the signal back from the spline representation mirror-symmetric-convolve these coefficients with a length 3 FIR
window [1.0, 6.0, 1.0]/ 8.0 .

Parameters

signal [ndarray] A rank-1 array representing samples of a signal.
lamb [float, optional] Smoothing coefficient (must be zero for now).

Returns

c [ndarray] Cubic spline coefficients.
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scipy.signal.cspline2d

scipy.signal.cspline2d(input {, lambda, precision})→ ck
Description:

Return the third-order B-spline coefficients over a regularly spacedi input grid for the two-dimensional input
image. The lambda argument specifies the amount of smoothing. The precision argument allows specifying
the precision used when computing the infinite sum needed to apply mirror- symmetric boundary conditions.

scipy.signal.qspline2d

scipy.signal.qspline2d(input {, lambda, precision})→ qk
Description:

Return the second-order B-spline coefficients over a regularly spaced input grid for the two-dimensional input
image. The lambda argument specifies the amount of smoothing. The precision argument allows specifying
the precision used when computing the infinite sum needed to apply mirror- symmetric boundary conditions.

scipy.signal.cspline1d_eval

scipy.signal.cspline1d_eval(cj, newx, dx=1.0, x0=0)
Evaluate a spline at the new set of points.
dx is the old sample-spacing while x0 was the old origin. In other-words the old-sample points (knot-points) for
which the cj represent spline coefficients were at equally-spaced points of:

oldx = x0 + j*dx j=0…N-1, with N=len(cj)
Edges are handled using mirror-symmetric boundary conditions.

scipy.signal.qspline1d_eval

scipy.signal.qspline1d_eval(cj, newx, dx=1.0, x0=0)
Evaluate a quadratic spline at the new set of points.
dx is the old sample-spacing while x0 was the old origin. In other-words the old-sample points (knot-points) for
which the cj represent spline coefficients were at equally-spaced points of:

oldx = x0 + j*dx j=0...N-1, with N=len(cj)

Edges are handled using mirror-symmetric boundary conditions.

scipy.signal.spline_filter

scipy.signal.spline_filter(Iin, lmbda=5.0)
Smoothing spline (cubic) filtering of a rank-2 array.
Filter an input data set, Iin, using a (cubic) smoothing spline of fall-off lmbda.

6.21.3 Filtering
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order_filter(a, domain, rank) Perform an order filter on an N-dimensional array.
medfilt(volume[, kernel_size]) Perform a median filter on an N-dimensional array.
medfilt2d(input[, kernel_size]) Median filter a 2-dimensional array.
wiener(im[, mysize, noise]) Perform a Wiener filter on an N-dimensional array.
symiirorder1(input, c0, z1) Implement a smoothing IIR filter with mirror-symmetric

boundary conditions using a cascade of first-order sec-
tions.

symiirorder2(input, r, omega) Implement a smoothing IIR filter with mirror-symmetric
boundary conditions using a cascade of second-order sec-
tions.

lfilter(b, a, x[, axis, zi]) Filter data along one-dimension with an IIR or FIR filter.
lfiltic(b, a, y[, x]) Construct initial conditions for lfilter given input and out-

put vectors.
lfilter_zi(b, a) Construct initial conditions for lfilter for step response

steady-state.
filtfilt(b, a, x[, axis, padtype, padlen, …]) Apply a digital filter forward and backward to a signal.
savgol_filter(x, window_length, polyorder[, …]) Apply a Savitzky-Golay filter to an array.
deconvolve(signal, divisor) Deconvolves divisor out of signal using inverse fil-

tering.
sosfilt(sos, x[, axis, zi]) Filter data along one dimension using cascaded second-

order sections.
sosfilt_zi(sos) Construct initial conditions for sosfilt for step response

steady-state.
sosfiltfilt(sos, x[, axis, padtype, padlen]) A forward-backward digital filter using cascaded second-

order sections.
hilbert(x[, N, axis]) Compute the analytic signal, using the Hilbert transform.
hilbert2(x[, N]) Compute the ‘2-D’ analytic signal of x
decimate(x, q[, n, ftype, axis, zero_phase]) Downsample the signal after applying an anti-aliasing fil-

ter.
detrend(data[, axis, type, bp, overwrite_data]) Remove linear trend along axis from data.
resample(x, num[, t, axis, window]) Resample x to num samples using Fourier method along

the given axis.
resample_poly(x, up, down[, axis, window]) Resample x along the given axis using polyphase filtering.
upfirdn(h, x[, up, down, axis]) Upsample, FIR filter, and downsample

scipy.signal.order_filter

scipy.signal.order_filter(a, domain, rank)
Perform an order filter on an N-dimensional array.
Perform an order filter on the array in. The domain argument acts as a mask centered over each pixel. The non-zero
elements of domain are used to select elements surrounding each input pixel which are placed in a list. The list is
sorted, and the output for that pixel is the element corresponding to rank in the sorted list.

Parameters

a [ndarray] The N-dimensional input array.
domain [array_like] A mask array with the same number of dimensions as a. Each dimension should

have an odd number of elements.
rank [int] A non-negative integer which selects the element from the sorted list (0 corresponds to

the smallest element, 1 is the next smallest element, etc.).
Returns

out [ndarray] The results of the order filter in an array with the same shape as a.
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Examples

>>> from scipy import signal
>>> x = np.arange(25).reshape(5, 5)
>>> domain = np.identity(3)
>>> x
array([[ 0, 1, 2, 3, 4],

[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19],
[20, 21, 22, 23, 24]])

>>> signal.order_filter(x, domain, 0)
array([[ 0., 0., 0., 0., 0.],

[ 0., 0., 1., 2., 0.],
[ 0., 5., 6., 7., 0.],
[ 0., 10., 11., 12., 0.],
[ 0., 0., 0., 0., 0.]])

>>> signal.order_filter(x, domain, 2)
array([[ 6., 7., 8., 9., 4.],

[ 11., 12., 13., 14., 9.],
[ 16., 17., 18., 19., 14.],
[ 21., 22., 23., 24., 19.],
[ 20., 21., 22., 23., 24.]])

scipy.signal.medfilt

scipy.signal.medfilt(volume, kernel_size=None)
Perform a median filter on an N-dimensional array.
Apply a median filter to the input array using a local window-size given by kernel_size. The array will automatically
be zero-padded.

Parameters

volume [array_like] An N-dimensional input array.
kernel_size

[array_like, optional] A scalar or an N-length list giving the size of the median filter window
in each dimension. Elements of kernel_size should be odd. If kernel_size is a scalar, then this
scalar is used as the size in each dimension. Default size is 3 for each dimension.

Returns

out [ndarray] An array the same size as input containing the median filtered result.
See also:
scipy.ndimage.median_filter

Notes

The more general function scipy.ndimage.median_filter has a more efficient implementation of a me-
dian filter and therefore runs much faster.
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scipy.signal.medfilt2d

scipy.signal.medfilt2d(input, kernel_size=3)
Median filter a 2-dimensional array.
Apply a median filter to the input array using a local window-size given by kernel_size (must be odd). The array is
zero-padded automatically.

Parameters

input [array_like] A 2-dimensional input array.
kernel_size

[array_like, optional] A scalar or a list of length 2, giving the size of the median filter window
in each dimension. Elements of kernel_size should be odd. If kernel_size is a scalar, then this
scalar is used as the size in each dimension. Default is a kernel of size (3, 3).

Returns

out [ndarray] An array the same size as input containing the median filtered result.
See also:
scipy.ndimage.median_filter

Notes

The more general function scipy.ndimage.median_filter has a more efficient implementation of a me-
dian filter and therefore runs much faster.

scipy.signal.wiener

scipy.signal.wiener(im, mysize=None, noise=None)
Perform a Wiener filter on an N-dimensional array.
Apply a Wiener filter to the N-dimensional array im.

Parameters

im [ndarray] An N-dimensional array.
mysize [int or array_like, optional] A scalar or an N-length list giving the size of the Wiener filter

window in each dimension. Elements of mysize should be odd. If mysize is a scalar, then
this scalar is used as the size in each dimension.

noise [float, optional] The noise-power to use. If None, then noise is estimated as the average of
the local variance of the input.

Returns

out [ndarray] Wiener filtered result with the same shape as im.

scipy.signal.symiirorder1

scipy.signal.symiirorder1(input, c0, z1 {, precision})→ output
Implement a smoothing IIR filter withmirror-symmetric boundary conditions using a cascade of first-order sections.
The second section uses a reversed sequence. This implements a system with the following transfer function and
mirror-symmetric boundary conditions:
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c0
H(z) = ---------------------

(1-z1/z) (1 - z1 z)

The resulting signal will have mirror symmetric boundary conditions as well.
Parameters

input [ndarray] The input signal.
c0, z1 [scalar] Parameters in the transfer function.
precision : Specifies the precision for calculating initial conditions of the recursive filter based onmirror-

symmetric input.
Returns

output [ndarray] The filtered signal.

scipy.signal.symiirorder2

scipy.signal.symiirorder2(input, r, omega {, precision})→ output
Implement a smoothing IIR filter with mirror-symmetric boundary conditions using a cascade of second-order
sections. The second section uses a reversed sequence. This implements the following transfer function:

cs^2
H(z) = ---------------------------------------

(1 - a2/z - a3/z^2) (1 - a2 z - a3 z^2 )

where:

a2 = (2 r cos omega)
a3 = - r^2
cs = 1 - 2 r cos omega + r^2

Parameters

input [ndarray] The input signal.
r, omega [scalar] Parameters in the transfer function.
precision : Specifies the precision for calculating initial conditions of the recursive filter based onmirror-

symmetric input.
Returns

output [ndarray] The filtered signal.

scipy.signal.lfilter

scipy.signal.lfilter(b, a, x, axis=-1, zi=None)
Filter data along one-dimension with an IIR or FIR filter.
Filter a data sequence, x, using a digital filter. This works for many fundamental data types (including Object type).
The filter is a direct form II transposed implementation of the standard difference equation (see Notes).

Parameters

b [array_like] The numerator coefficient vector in a 1-D sequence.
a [array_like] The denominator coefficient vector in a 1-D sequence. If a[0] is not 1, then

both a and b are normalized by a[0].
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x [array_like] An N-dimensional input array.
axis [int, optional] The axis of the input data array along which to apply the linear filter. The filter

is applied to each subarray along this axis. Default is -1.
zi [array_like, optional] Initial conditions for the filter delays. It is a vector (or array of vectors

for an N-dimensional input) of length max(len(a), len(b)) - 1. If zi is None or
is not given then initial rest is assumed. See lfiltic for more information.

Returns

y [array] The output of the digital filter.
zf [array, optional] If zi is None, this is not returned, otherwise, zf holds the final filter delay

values.
See also:

lfiltic

Construct initial conditions for lfilter.
lfilter_zi

Compute initial state (steady state of step response) for lfilter.
filtfilt

A forward-backward filter, to obtain a filter with linear phase.
savgol_filter

A Savitzky-Golay filter.
sosfilt

Filter data using cascaded second-order sections.
sosfiltfilt

A forward-backward filter using second-order sections.

Notes

The filter function is implemented as a direct II transposed structure. This means that the filter implements:

a[0]*y[n] = b[0]*x[n] + b[1]*x[n-1] + ... + b[M]*x[n-M]
- a[1]*y[n-1] - ... - a[N]*y[n-N]

where M is the degree of the numerator, N is the degree of the denominator, and n is the sample number. It is
implemented using the following difference equations (assuming M = N):

a[0]*y[n] = b[0] * x[n] + d[0][n-1]
d[0][n] = b[1] * x[n] - a[1] * y[n] + d[1][n-1]
d[1][n] = b[2] * x[n] - a[2] * y[n] + d[2][n-1]

...
d[N-2][n] = b[N-1]*x[n] - a[N-1]*y[n] + d[N-1][n-1]
d[N-1][n] = b[N] * x[n] - a[N] * y[n]

where d are the state variables.
The rational transfer function describing this filter in the z-transform domain is:
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-1 -M
b[0] + b[1]z + ... + b[M] z

Y(z) = -------------------------------- X(z)
-1 -N

a[0] + a[1]z + ... + a[N] z

Examples

Generate a noisy signal to be filtered:

>>> from scipy import signal
>>> import matplotlib.pyplot as plt
>>> t = np.linspace(-1, 1, 201)
>>> x = (np.sin(2*np.pi*0.75*t*(1-t) + 2.1) +
... 0.1*np.sin(2*np.pi*1.25*t + 1) +
... 0.18*np.cos(2*np.pi*3.85*t))
>>> xn = x + np.random.randn(len(t)) * 0.08

Create an order 3 lowpass butterworth filter:

>>> b, a = signal.butter(3, 0.05)

Apply the filter to xn. Use lfilter_zi to choose the initial condition of the filter:

>>> zi = signal.lfilter_zi(b, a)
>>> z, _ = signal.lfilter(b, a, xn, zi=zi*xn[0])

Apply the filter again, to have a result filtered at an order the same as filtfilt:

>>> z2, _ = signal.lfilter(b, a, z, zi=zi*z[0])

Use filtfilt to apply the filter:

>>> y = signal.filtfilt(b, a, xn)

Plot the original signal and the various filtered versions:

>>> plt.figure
>>> plt.plot(t, xn, 'b', alpha=0.75)
>>> plt.plot(t, z, 'r--', t, z2, 'r', t, y, 'k')
>>> plt.legend(('noisy signal', 'lfilter, once', 'lfilter, twice',
... 'filtfilt'), loc='best')
>>> plt.grid(True)
>>> plt.show()

scipy.signal.lfiltic

scipy.signal.lfiltic(b, a, y, x=None)
Construct initial conditions for lfilter given input and output vectors.
Given a linear filter (b, a) and initial conditions on the output y and the input x, return the initial conditions on the
state vector zi which is used by lfilter to generate the output given the input.
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Parameters

b [array_like] Linear filter term.
a [array_like] Linear filter term.
y [array_like] Initial conditions.

If N = len(a) - 1, then y = {y[-1], y[-2], ..., y[-N]}.
If y is too short, it is padded with zeros.

x [array_like, optional] Initial conditions.
If M = len(b) - 1, then x = {x[-1], x[-2], ..., x[-M]}.
If x is not given, its initial conditions are assumed zero.
If x is too short, it is padded with zeros.

Returns

zi [ndarray] The state vector zi = {z_0[-1], z_1[-1], ..., z_K-1[-1]},
where K = max(M, N).

See also:
lfilter, lfilter_zi

scipy.signal.lfilter_zi

scipy.signal.lfilter_zi(b, a)
Construct initial conditions for lfilter for step response steady-state.
Compute an initial state zi for the lfilter function that corresponds to the steady state of the step response.
A typical use of this function is to set the initial state so that the output of the filter starts at the same value as the
first element of the signal to be filtered.

Parameters

b, a [array_like (1-D)] The IIR filter coefficients. See lfilter for more information.
Returns

zi [1-D ndarray] The initial state for the filter.
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See also:
lfilter, lfiltic, filtfilt

Notes

A linear filter with order m has a state space representation (A, B, C, D), for which the output y of the filter can be
expressed as:

z(n+1) = A*z(n) + B*x(n)
y(n) = C*z(n) + D*x(n)

where z(n) is a vector of length m, A has shape (m, m), B has shape (m, 1), C has shape (1, m) and D has shape
(1, 1) (assuming x(n) is a scalar). lfilter_zi solves:

zi = A*zi + B

In other words, it finds the initial condition for which the response to an input of all ones is a constant.
Given the filter coefficients a and b, the state space matrices for the transposed direct form II implementation of
the linear filter, which is the implementation used by scipy.signal.lfilter, are:

A = scipy.linalg.companion(a).T
B = b[1:] - a[1:]*b[0]

assuming a[0] is 1.0; if a[0] is not 1, a and b are first divided by a[0].

Examples

The following code creates a lowpass Butterworth filter. Then it applies that filter to an array whose values are all
1.0; the output is also all 1.0, as expected for a lowpass filter. If the zi argument of lfilter had not been given,
the output would have shown the transient signal.

>>> from numpy import array, ones
>>> from scipy.signal import lfilter, lfilter_zi, butter
>>> b, a = butter(5, 0.25)
>>> zi = lfilter_zi(b, a)
>>> y, zo = lfilter(b, a, ones(10), zi=zi)
>>> y
array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])

Another example:

>>> x = array([0.5, 0.5, 0.5, 0.0, 0.0, 0.0, 0.0])
>>> y, zf = lfilter(b, a, x, zi=zi*x[0])
>>> y
array([ 0.5 , 0.5 , 0.5 , 0.49836039, 0.48610528,

0.44399389, 0.35505241])

Note that the zi argument to lfilter was computed using lfilter_zi and scaled by x[0]. Then the output
y has no transient until the input drops from 0.5 to 0.0.
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scipy.signal.filtfilt

scipy.signal.filtfilt(b, a, x, axis=-1, padtype=’odd’, padlen=None, method=’pad’, irlen=None)
Apply a digital filter forward and backward to a signal.
This function applies a linear digital filter twice, once forward and once backwards. The combined filter has zero
phase and a filter order twice that of the original.
The function provides options for handling the edges of the signal.

Parameters

b [(N,) array_like] The numerator coefficient vector of the filter.
a [(N,) array_like] The denominator coefficient vector of the filter. If a[0] is not 1, then both

a and b are normalized by a[0].
x [array_like] The array of data to be filtered.
axis [int, optional] The axis of x to which the filter is applied. Default is -1.
padtype [str or None, optional] Must be ‘odd’, ‘even’, ‘constant’, or None. This determines the type

of extension to use for the padded signal to which the filter is applied. If padtype is None,
no padding is used. The default is ‘odd’.

padlen [int or None, optional] The number of elements by which to extend x at both ends of axis be-
fore applying the filter. This value must be less than x.shape[axis] - 1. padlen=0
implies no padding. The default value is 3 * max(len(a), len(b)).

method [str, optional] Determines the method for handling the edges of the signal, either “pad” or
“gust”. When method is “pad”, the signal is padded; the type of padding is determined by
padtype and padlen, and irlen is ignored. When method is “gust”, Gustafsson’s method is
used, and padtype and padlen are ignored.

irlen [int or None, optional] When method is “gust”, irlen specifies the length of the impulse re-
sponse of the filter. If irlen is None, no part of the impulse response is ignored. For a long
signal, specifying irlen can significantly improve the performance of the filter.

Returns

y [ndarray] The filtered output with the same shape as x.
See also:
sosfiltfilt, lfilter_zi, lfilter, lfiltic, savgol_filter, sosfilt

Notes

When method is “pad”, the function pads the data along the given axis in one of three ways: odd, even or constant.
The odd and even extensions have the corresponding symmetry about the end point of the data. The constant
extension extends the data with the values at the end points. On both the forward and backward passes, the initial
condition of the filter is found by using lfilter_zi and scaling it by the end point of the extended data.
Whenmethod is “gust”, Gustafsson’s method [1] is used. Initial conditions are chosen for the forward and backward
passes so that the forward-backward filter gives the same result as the backward-forward filter.
The option to use Gustaffson’s method was added in scipy version 0.16.0.

References

[1]
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Examples

The examples will use several functions from scipy.signal.

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

First we create a one second signal that is the sum of two pure sine waves, with frequencies 5 Hz and 250 Hz,
sampled at 2000 Hz.

>>> t = np.linspace(0, 1.0, 2001)
>>> xlow = np.sin(2 * np.pi * 5 * t)
>>> xhigh = np.sin(2 * np.pi * 250 * t)
>>> x = xlow + xhigh

Now create a lowpass Butterworth filter with a cutoff of 0.125 times the Nyquist frequency, or 125 Hz, and apply
it to x with filtfilt. The result should be approximately xlow, with no phase shift.

>>> b, a = signal.butter(8, 0.125)
>>> y = signal.filtfilt(b, a, x, padlen=150)
>>> np.abs(y - xlow).max()
9.1086182074789912e-06

We get a fairly clean result for this artificial example because the odd extension is exact, and with the moderately
long padding, the filter’s transients have dissipated by the time the actual data is reached. In general, transient
effects at the edges are unavoidable.
The following example demonstrates the option method="gust".
First, create a filter.

>>> b, a = signal.ellip(4, 0.01, 120, 0.125) # Filter to be applied.
>>> np.random.seed(123456)

sig is a random input signal to be filtered.

>>> n = 60
>>> sig = np.random.randn(n)**3 + 3*np.random.randn(n).cumsum()

Apply filtfilt to sig, once using the Gustafsson method, and once using padding, and plot the results for
comparison.

>>> fgust = signal.filtfilt(b, a, sig, method="gust")
>>> fpad = signal.filtfilt(b, a, sig, padlen=50)
>>> plt.plot(sig, 'k-', label='input')
>>> plt.plot(fgust, 'b-', linewidth=4, label='gust')
>>> plt.plot(fpad, 'c-', linewidth=1.5, label='pad')
>>> plt.legend(loc='best')
>>> plt.show()

The irlen argument can be used to improve the performance of Gustafsson’s method.
Estimate the impulse response length of the filter.

>>> z, p, k = signal.tf2zpk(b, a)
>>> eps = 1e-9

(continues on next page)
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(continued from previous page)
>>> r = np.max(np.abs(p))
>>> approx_impulse_len = int(np.ceil(np.log(eps) / np.log(r)))
>>> approx_impulse_len
137

Apply the filter to a longer signal, with and without the irlen argument. The difference between y1 and y2 is small.
For long signals, using irlen gives a significant performance improvement.

>>> x = np.random.randn(5000)
>>> y1 = signal.filtfilt(b, a, x, method='gust')
>>> y2 = signal.filtfilt(b, a, x, method='gust', irlen=approx_impulse_len)
>>> print(np.max(np.abs(y1 - y2)))
1.80056858312e-10

scipy.signal.savgol_filter

scipy.signal.savgol_filter(x,window_length, polyorder, deriv=0, delta=1.0, axis=-1,mode=’interp’,
cval=0.0)

Apply a Savitzky-Golay filter to an array.
This is a 1-d filter. If x has dimension greater than 1, axis determines the axis along which the filter is applied.

Parameters

x [array_like] The data to be filtered. If x is not a single or double precision floating point
array, it will be converted to type numpy.float64 before filtering.

window_length
[int] The length of the filter window (i.e. the number of coefficients). window_length must
be a positive odd integer. If mode is ‘interp’, window_length must be less than or equal to
the size of x.

polyorder [int] The order of the polynomial used to fit the samples. polyorder must be less than win-
dow_length.

deriv [int, optional] The order of the derivative to compute. This must be a nonnegative integer.
The default is 0, which means to filter the data without differentiating.
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delta [float, optional] The spacing of the samples to which the filter will be applied. This is only
used if deriv > 0. Default is 1.0.

axis [int, optional] The axis of the array x along which the filter is to be applied. Default is -1.
mode [str, optional] Must be ‘mirror’, ‘constant’, ‘nearest’, ‘wrap’ or ‘interp’. This determines the

type of extension to use for the padded signal to which the filter is applied. When mode
is ‘constant’, the padding value is given by cval. See the Notes for more details on ‘mirror’,
‘constant’, ‘wrap’, and ‘nearest’. When the ‘interp’ mode is selected (the default), no extension
is used. Instead, a degree polyorder polynomial is fit to the last window_length values of the
edges, and this polynomial is used to evaluate the last window_length // 2 output values.

cval [scalar, optional] Value to fill past the edges of the input if mode is ‘constant’. Default is 0.0.
Returns

y [ndarray, same shape as x] The filtered data.
See also:
savgol_coeffs

Notes

Details on the mode options:
‘mirror’:

Repeats the values at the edges in reverse order. The value closest to the edge is not included.
‘nearest’:

The extension contains the nearest input value.
‘constant’:

The extension contains the value given by the cval argument.
‘wrap’:

The extension contains the values from the other end of the array.
For example, if the input is [1, 2, 3, 4, 5, 6, 7, 8], and window_length is 7, the following shows the extended data
for the various mode options (assuming cval is 0):

mode | Ext | Input | Ext
-----------+---------+------------------------+---------
'mirror' | 4 3 2 | 1 2 3 4 5 6 7 8 | 7 6 5
'nearest' | 1 1 1 | 1 2 3 4 5 6 7 8 | 8 8 8
'constant' | 0 0 0 | 1 2 3 4 5 6 7 8 | 0 0 0
'wrap' | 6 7 8 | 1 2 3 4 5 6 7 8 | 1 2 3

New in version 0.14.0.

Examples

>>> from scipy.signal import savgol_filter
>>> np.set_printoptions(precision=2) # For compact display.
>>> x = np.array([2, 2, 5, 2, 1, 0, 1, 4, 9])

Filter with a window length of 5 and a degree 2 polynomial. Use the defaults for all other parameters.

>>> savgol_filter(x, 5, 2)
array([1.66, 3.17, 3.54, 2.86, 0.66, 0.17, 1. , 4. , 9. ])
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Note that the last five values in x are samples of a parabola, so when mode=’interp’ (the default) is used with
polyorder=2, the last three values are unchanged. Compare that to, for example, mode=’nearest’ :

>>> savgol_filter(x, 5, 2, mode='nearest')
array([1.74, 3.03, 3.54, 2.86, 0.66, 0.17, 1. , 4.6 , 7.97])

scipy.signal.deconvolve

scipy.signal.deconvolve(signal, divisor)
Deconvolves divisor out of signal using inverse filtering.
Returns the quotient and remainder such that signal = convolve(divisor, quotient) +
remainder

Parameters

signal [array_like] Signal data, typically a recorded signal
divisor [array_like] Divisor data, typically an impulse response or filter that was applied to the orig-

inal signal
Returns

quotient [ndarray] Quotient, typically the recovered original signal
remainder [ndarray] Remainder

See also:

numpy.polydiv

performs polynomial division (same operation, but also accepts poly1d objects)

Examples

Deconvolve a signal that’s been filtered:

>>> from scipy import signal
>>> original = [0, 1, 0, 0, 1, 1, 0, 0]
>>> impulse_response = [2, 1]
>>> recorded = signal.convolve(impulse_response, original)
>>> recorded
array([0, 2, 1, 0, 2, 3, 1, 0, 0])
>>> recovered, remainder = signal.deconvolve(recorded, impulse_response)
>>> recovered
array([ 0., 1., 0., 0., 1., 1., 0., 0.])

scipy.signal.sosfilt

scipy.signal.sosfilt(sos, x, axis=-1, zi=None)
Filter data along one dimension using cascaded second-order sections.
Filter a data sequence, x, using a digital IIR filter defined by sos. This is implemented by performing lfilter
for each second-order section. See lfilter for details.

Parameters
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sos [array_like] Array of second-order filter coefficients, must have shape (n_sections,
6). Each row corresponds to a second-order section, with the first three columns providing
the numerator coefficients and the last three providing the denominator coefficients.

x [array_like] An N-dimensional input array.
axis [int, optional] The axis of the input data array along which to apply the linear filter. The filter

is applied to each subarray along this axis. Default is -1.
zi [array_like, optional] Initial conditions for the cascaded filter delays. It is a (at least 2D)

vector of shape (n_sections, ..., 2, ...), where ..., 2, ... denotes the
shape of x, but with x.shape[axis] replaced by 2. If zi is None or is not given then
initial rest (i.e. all zeros) is assumed. Note that these initial conditions are not the same as
the initial conditions given by lfiltic or lfilter_zi.

Returns

y [ndarray] The output of the digital filter.
zf [ndarray, optional] If zi is None, this is not returned, otherwise, zf holds the final filter delay

values.
See also:
zpk2sos, sos2zpk, sosfilt_zi, sosfiltfilt, sosfreqz

Notes

The filter function is implemented as a series of second-order filters with direct-form II transposed structure. It is
designed to minimize numerical precision errors for high-order filters.
New in version 0.16.0.

Examples

Plot a 13th-order filter’s impulse response using both lfilter and sosfilt, showing the instability that results
from trying to do a 13th-order filter in a single stage (the numerical error pushes some poles outside of the unit
circle):

>>> import matplotlib.pyplot as plt
>>> from scipy import signal
>>> b, a = signal.ellip(13, 0.009, 80, 0.05, output='ba')
>>> sos = signal.ellip(13, 0.009, 80, 0.05, output='sos')
>>> x = signal.unit_impulse(700)
>>> y_tf = signal.lfilter(b, a, x)
>>> y_sos = signal.sosfilt(sos, x)
>>> plt.plot(y_tf, 'r', label='TF')
>>> plt.plot(y_sos, 'k', label='SOS')
>>> plt.legend(loc='best')
>>> plt.show()

scipy.signal.sosfilt_zi

scipy.signal.sosfilt_zi(sos)
Construct initial conditions for sosfilt for step response steady-state.
Compute an initial state zi for the sosfilt function that corresponds to the steady state of the step response.
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A typical use of this function is to set the initial state so that the output of the filter starts at the same value as the
first element of the signal to be filtered.

Parameters

sos [array_like] Array of second-order filter coefficients, must have shape (n_sections,
6). See sosfilt for the SOS filter format specification.

Returns

zi [ndarray] Initial conditions suitable for use with sosfilt, shape (n_sections, 2).
See also:
sosfilt, zpk2sos

Notes

New in version 0.16.0.

Examples

Filter a rectangular pulse that begins at time 0, with and without the use of the zi argument of scipy.signal.
sosfilt.

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> sos = signal.butter(9, 0.125, output='sos')
>>> zi = signal.sosfilt_zi(sos)
>>> x = (np.arange(250) < 100).astype(int)
>>> f1 = signal.sosfilt(sos, x)
>>> f2, zo = signal.sosfilt(sos, x, zi=zi)
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>>> plt.plot(x, 'k--', label='x')
>>> plt.plot(f1, 'b', alpha=0.5, linewidth=2, label='filtered')
>>> plt.plot(f2, 'g', alpha=0.25, linewidth=4, label='filtered with zi')
>>> plt.legend(loc='best')
>>> plt.show()
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scipy.signal.sosfiltfilt

scipy.signal.sosfiltfilt(sos, x, axis=-1, padtype=’odd’, padlen=None)
A forward-backward digital filter using cascaded second-order sections.
See filtfilt for more complete information about this method.

Parameters

sos [array_like] Array of second-order filter coefficients, must have shape (n_sections,
6). Each row corresponds to a second-order section, with the first three columns providing
the numerator coefficients and the last three providing the denominator coefficients.

x [array_like] The array of data to be filtered.
axis [int, optional] The axis of x to which the filter is applied. Default is -1.
padtype [str or None, optional] Must be ‘odd’, ‘even’, ‘constant’, or None. This determines the type

of extension to use for the padded signal to which the filter is applied. If padtype is None,
no padding is used. The default is ‘odd’.

padlen [int or None, optional] The number of elements by which to extend x at both ends of axis be-
fore applying the filter. This value must be less than x.shape[axis] - 1. padlen=0
implies no padding. The default value is:

3 * (2 * len(sos) + 1 - min((sos[:, 2] == 0).sum(),
(sos[:, 5] == 0).sum()))

The extra subtraction at the end attempts to compensate for poles and zeros at the origin
(e.g. for odd-order filters) to yield equivalent estimates of padlen to those of filtfilt for
second-order section filters built with scipy.signal functions.

Returns
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y [ndarray] The filtered output with the same shape as x.
See also:
filtfilt, sosfilt, sosfilt_zi, sosfreqz

Notes

New in version 0.18.0.

Examples

>>> from scipy.signal import sosfiltfilt, butter
>>> import matplotlib.pyplot as plt

Create an interesting signal to filter.

>>> n = 201
>>> t = np.linspace(0, 1, n)
>>> np.random.seed(123)
>>> x = 1 + (t < 0.5) - 0.25*t**2 + 0.05*np.random.randn(n)

Create a lowpass Butterworth filter, and use it to filter x.

>>> sos = butter(4, 0.125, output='sos')
>>> y = sosfiltfilt(sos, x)

For comparison, apply an 8th order filter using sosfilt. The filter is initialized using the mean of the first four
values of x.

>>> from scipy.signal import sosfilt, sosfilt_zi
>>> sos8 = butter(8, 0.125, output='sos')
>>> zi = x[:4].mean() * sosfilt_zi(sos8)
>>> y2, zo = sosfilt(sos8, x, zi=zi)

Plot the results. Note that the phase of y matches the input, while y2 has a significant phase delay.

>>> plt.plot(t, x, alpha=0.5, label='x(t)')
>>> plt.plot(t, y, label='y(t)')
>>> plt.plot(t, y2, label='y2(t)')
>>> plt.legend(framealpha=1, shadow=True)
>>> plt.grid(alpha=0.25)
>>> plt.xlabel('t')
>>> plt.show()

scipy.signal.hilbert

scipy.signal.hilbert(x, N=None, axis=-1)
Compute the analytic signal, using the Hilbert transform.
The transformation is done along the last axis by default.

Parameters
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x [array_like] Signal data. Must be real.
N [int, optional] Number of Fourier components. Default: x.shape[axis]
axis [int, optional] Axis along which to do the transformation. Default: -1.

Returns

xa [ndarray] Analytic signal of x, of each 1-D array along axis

See also:

scipy.fftpack.hilbert

Return Hilbert transform of a periodic sequence x.

Notes

The analytic signal x_a(t) of signal x(t) is:

xa = F−1(F (x)2U) = x+ iy

where F is the Fourier transform, U the unit step function, and y the Hilbert transform of x. [1]
In other words, the negative half of the frequency spectrum is zeroed out, turning the real-valued signal into a
complex signal. The Hilbert transformed signal can be obtained fromnp.imag(hilbert(x)), and the original
signal from np.real(hilbert(x)).

References

[1], [2], [3]

Examples

In this example we use the Hilbert transform to determine the amplitude envelope and instantaneous frequency of
an amplitude-modulated signal.
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>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from scipy.signal import hilbert, chirp

>>> duration = 1.0
>>> fs = 400.0
>>> samples = int(fs*duration)
>>> t = np.arange(samples) / fs

We create a chirp of which the frequency increases from 20 Hz to 100 Hz and apply an amplitude modulation.

>>> signal = chirp(t, 20.0, t[-1], 100.0)
>>> signal *= (1.0 + 0.5 * np.sin(2.0*np.pi*3.0*t) )

The amplitude envelope is given by magnitude of the analytic signal. The instantaneous frequency can be obtained
by differentiating the instantaneous phase in respect to time. The instantaneous phase corresponds to the phase
angle of the analytic signal.

>>> analytic_signal = hilbert(signal)
>>> amplitude_envelope = np.abs(analytic_signal)
>>> instantaneous_phase = np.unwrap(np.angle(analytic_signal))
>>> instantaneous_frequency = (np.diff(instantaneous_phase) /
... (2.0*np.pi) * fs)

>>> fig = plt.figure()
>>> ax0 = fig.add_subplot(211)
>>> ax0.plot(t, signal, label='signal')
>>> ax0.plot(t, amplitude_envelope, label='envelope')
>>> ax0.set_xlabel("time in seconds")
>>> ax0.legend()
>>> ax1 = fig.add_subplot(212)
>>> ax1.plot(t[1:], instantaneous_frequency)
>>> ax1.set_xlabel("time in seconds")
>>> ax1.set_ylim(0.0, 120.0)

scipy.signal.hilbert2

scipy.signal.hilbert2(x, N=None)
Compute the ‘2-D’ analytic signal of x

Parameters

x [array_like] 2-D signal data.
N [int or tuple of two ints, optional] Number of Fourier components. Default is x.shape

Returns

xa [ndarray] Analytic signal of x taken along axes (0,1).

References

[1]
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scipy.signal.decimate

scipy.signal.decimate(x, q, n=None, ftype=’iir’, axis=-1, zero_phase=True)
Downsample the signal after applying an anti-aliasing filter.
By default, an order 8 Chebyshev type I filter is used. A 30 point FIR filter with Hamming window is used if ftype
is ‘fir’.

Parameters

x [array_like] The signal to be downsampled, as an N-dimensional array.
q [int] The downsampling factor. When using IIR downsampling, it is recommended to call

decimate multiple times for downsampling factors higher than 13.
n [int, optional] The order of the filter (1 less than the length for ‘fir’). Defaults to 8 for ‘iir’ and

20 times the downsampling factor for ‘fir’.
ftype [str {‘iir’, ‘fir’} or dlti instance, optional] If ‘iir’ or ‘fir’, specifies the type of lowpass filter.

If an instance of an dlti object, uses that object to filter before downsampling.
axis [int, optional] The axis along which to decimate.
zero_phase

[bool, optional] Prevent phase shift by filtering with filtfilt instead of lfilter when
using an IIR filter, and shifting the outputs back by the filter’s group delay when using an
FIR filter. The default value of True is recommended, since a phase shift is generally not
desired.
New in version 0.18.0.

Returns

y [ndarray] The down-sampled signal.
See also:

resample

Resample up or down using the FFT method.
resample_poly

Resample using polyphase filtering and an FIR filter.
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Notes

The zero_phase keyword was added in 0.18.0. The possibility to use instances of dlti as ftype was added
in 0.18.0.

scipy.signal.detrend

scipy.signal.detrend(data, axis=-1, type=’linear’, bp=0, overwrite_data=False)
Remove linear trend along axis from data.

Parameters

data [array_like] The input data.
axis [int, optional] The axis along which to detrend the data. By default this is the last axis (-1).
type [{‘linear’, ‘constant’}, optional] The type of detrending. If type == 'linear' (de-

fault), the result of a linear least-squares fit to data is subtracted from data. If type ==
'constant', only the mean of data is subtracted.

bp [array_like of ints, optional] A sequence of break points. If given, an individual linear fit
is performed for each part of data between two break points. Break points are specified as
indices into data.

overwrite_data
[bool, optional] If True, perform in place detrending and avoid a copy. Default is False

Returns

ret [ndarray] The detrended input data.

Examples

>>> from scipy import signal
>>> randgen = np.random.RandomState(9)
>>> npoints = 1000
>>> noise = randgen.randn(npoints)
>>> x = 3 + 2*np.linspace(0, 1, npoints) + noise
>>> (signal.detrend(x) - noise).max() < 0.01
True

scipy.signal.resample

scipy.signal.resample(x, num, t=None, axis=0, window=None)
Resample x to num samples using Fourier method along the given axis.
The resampled signal starts at the same value as x but is sampled with a spacing of len(x) / num *
(spacing of x). Because a Fourier method is used, the signal is assumed to be periodic.

Parameters

x [array_like] The data to be resampled.
num [int] The number of samples in the resampled signal.
t [array_like, optional] If t is given, it is assumed to be the sample positions associated with

the signal data in x.
axis [int, optional] The axis of x that is resampled. Default is 0.
window [array_like, callable, string, float, or tuple, optional] Specifies the window applied to the

signal in the Fourier domain. See below for details.
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Returns

resampled_x or (resampled_x, resampled_t)
Either the resampled array, or, if t was given, a tuple containing the resampled array and the
corresponding resampled positions.

See also:

decimate

Downsample the signal after applying an FIR or IIR filter.
resample_poly

Resample using polyphase filtering and an FIR filter.

Notes

The argument window controls a Fourier-domain window that tapers the Fourier spectrum before zero-padding to
alleviate ringing in the resampled values for sampled signals you didn’t intend to be interpreted as band-limited.
If window is a function, then it is called with a vector of inputs indicating the frequency bins (i.e. fft-
freq(x.shape[axis]) ).
If window is an array of the same length as x.shape[axis] it is assumed to be the window to be applied directly in
the Fourier domain (with dc and low-frequency first).
For any other type of window, the function scipy.signal.get_window is called to generate the window.
The first sample of the returned vector is the same as the first sample of the input vector. The spacing between
samples is changed from dx to dx * len(x) / num.
If t is not None, then it represents the old sample positions, and the new sample positions will be returned as well
as the new samples.
As noted, resample uses FFT transformations, which can be very slow if the number of input or output samples
is large and prime; see scipy.fftpack.fft.

Examples

Note that the end of the resampled data rises to meet the first sample of the next cycle:

>>> from scipy import signal

>>> x = np.linspace(0, 10, 20, endpoint=False)
>>> y = np.cos(-x**2/6.0)
>>> f = signal.resample(y, 100)
>>> xnew = np.linspace(0, 10, 100, endpoint=False)

>>> import matplotlib.pyplot as plt
>>> plt.plot(x, y, 'go-', xnew, f, '.-', 10, y[0], 'ro')
>>> plt.legend(['data', 'resampled'], loc='best')
>>> plt.show()
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scipy.signal.resample_poly

scipy.signal.resample_poly(x, up, down, axis=0, window=(’kaiser’, 5.0))
Resample x along the given axis using polyphase filtering.
The signal x is upsampled by the factor up, a zero-phase low-pass FIR filter is applied, and then it is downsampled
by the factor down. The resulting sample rate is up / down times the original sample rate. Values beyond the
boundary of the signal are assumed to be zero during the filtering step.

Parameters

x [array_like] The data to be resampled.
up [int] The upsampling factor.
down [int] The downsampling factor.
axis [int, optional] The axis of x that is resampled. Default is 0.
window [string, tuple, or array_like, optional] Desired window to use to design the low-pass filter, or

the FIR filter coefficients to employ. See below for details.
Returns

resampled_x
[array] The resampled array.

See also:

decimate

Downsample the signal after applying an FIR or IIR filter.
resample

Resample up or down using the FFT method.

Notes

This polyphase method will likely be faster than the Fourier method in scipy.signal.resample when the
number of samples is large and prime, or when the number of samples is large and up and down share a large great-
est common denominator. The length of the FIR filter used will depend on max(up, down) // gcd(up,
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down), and the number of operations during polyphase filtering will depend on the filter length and down (see
scipy.signal.upfirdn for details).
The argument window specifies the FIR low-pass filter design.
If window is an array_like it is assumed to be the FIR filter coefficients. Note that the FIR filter is applied after the
upsampling step, so it should be designed to operate on a signal at a sampling frequency higher than the original by
a factor of up//gcd(up, down). This function’s output will be centered with respect to this array, so it is best to pass
a symmetric filter with an odd number of samples if, as is usually the case, a zero-phase filter is desired.
For any other type of window, the functions scipy.signal.get_window and scipy.signal.firwin
are called to generate the appropriate filter coefficients.
The first sample of the returned vector is the same as the first sample of the input vector. The spacing between
samples is changed from dx to dx * down / float(up).

Examples

Note that the end of the resampled data rises to meet the first sample of the next cycle for the FFT method, and
gets closer to zero for the polyphase method:

>>> from scipy import signal

>>> x = np.linspace(0, 10, 20, endpoint=False)
>>> y = np.cos(-x**2/6.0)
>>> f_fft = signal.resample(y, 100)
>>> f_poly = signal.resample_poly(y, 100, 20)
>>> xnew = np.linspace(0, 10, 100, endpoint=False)

>>> import matplotlib.pyplot as plt
>>> plt.plot(xnew, f_fft, 'b.-', xnew, f_poly, 'r.-')
>>> plt.plot(x, y, 'ko-')
>>> plt.plot(10, y[0], 'bo', 10, 0., 'ro') # boundaries
>>> plt.legend(['resample', 'resamp_poly', 'data'], loc='best')
>>> plt.show()
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scipy.signal.upfirdn

scipy.signal.upfirdn(h, x, up=1, down=1, axis=-1)
Upsample, FIR filter, and downsample

Parameters

h [array_like] 1-dimensional FIR (finite-impulse response) filter coefficients.
x [array_like] Input signal array.
up [int, optional] Upsampling rate. Default is 1.
down [int, optional] Downsampling rate. Default is 1.
axis [int, optional] The axis of the input data array along which to apply the linear filter. The filter

is applied to each subarray along this axis. Default is -1.
Returns

y [ndarray] The output signal array. Dimensions will be the same as x except for along axis,
which will change size according to the h, up, and down parameters.

Notes

The algorithm is an implementation of the block diagram shown on page 129 of the Vaidyanathan text [1] (Figure
4.3-8d).
The direct approach of upsampling by factor of P with zero insertion, FIR filtering of length N, and downsampling
by factor of Q is O(N*Q) per output sample. The polyphase implementation used here is O(N/P).
New in version 0.18.

Examples

Simple operations:

>>> from scipy.signal import upfirdn
>>> upfirdn([1, 1, 1], [1, 1, 1]) # FIR filter
array([ 1., 2., 3., 2., 1.])
>>> upfirdn([1], [1, 2, 3], 3) # upsampling with zeros insertion
array([ 1., 0., 0., 2., 0., 0., 3., 0., 0.])
>>> upfirdn([1, 1, 1], [1, 2, 3], 3) # upsampling with sample-and-hold
array([ 1., 1., 1., 2., 2., 2., 3., 3., 3.])
>>> upfirdn([.5, 1, .5], [1, 1, 1], 2) # linear interpolation
array([ 0.5, 1. , 1. , 1. , 1. , 1. , 0.5, 0. ])
>>> upfirdn([1], np.arange(10), 1, 3) # decimation by 3
array([ 0., 3., 6., 9.])
>>> upfirdn([.5, 1, .5], np.arange(10), 2, 3) # linear interp, rate 2/3
array([ 0. , 1. , 2.5, 4. , 5.5, 7. , 8.5, 0. ])

Apply a single filter to multiple signals:

>>> x = np.reshape(np.arange(8), (4, 2))
>>> x
array([[0, 1],

[2, 3],
[4, 5],
[6, 7]])
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Apply along the last dimension of x:

>>> h = [1, 1]
>>> upfirdn(h, x, 2)
array([[ 0., 0., 1., 1.],

[ 2., 2., 3., 3.],
[ 4., 4., 5., 5.],
[ 6., 6., 7., 7.]])

Apply along the 0th dimension of x:

>>> upfirdn(h, x, 2, axis=0)
array([[ 0., 1.],

[ 0., 1.],
[ 2., 3.],
[ 2., 3.],
[ 4., 5.],
[ 4., 5.],
[ 6., 7.],
[ 6., 7.]])

6.21.4 Filter design

bilinear(b, a[, fs]) Return a digital IIR filter from an analog one using a bi-
linear transform.

bilinear_zpk(z, p, k, fs) Return a digital IIR filter from an analog one using a bi-
linear transform.

findfreqs(num, den, N[, kind]) Find array of frequencies for computing the response of
an analog filter.

firls(numtaps, bands, desired[, weight, nyq, fs]) FIR filter design using least-squares error minimization.
firwin(numtaps, cutoff[, width, window, …]) FIR filter design using the window method.
firwin2(numtaps, freq, gain[, nfreqs, …]) FIR filter design using the window method.
freqs(b, a[, worN, plot]) Compute frequency response of analog filter.
freqs_zpk(z, p, k[, worN]) Compute frequency response of analog filter.
freqz(b[, a, worN, whole, plot, fs]) Compute the frequency response of a digital filter.
freqz_zpk(z, p, k[, worN, whole, fs]) Compute the frequency response of a digital filter in ZPK

form.
sosfreqz(sos[, worN, whole, fs]) Compute the frequency response of a digital filter in SOS

format.
group_delay(system[, w, whole, fs]) Compute the group delay of a digital filter.
iirdesign(wp, ws, gpass, gstop[, analog, …]) Complete IIR digital and analog filter design.
iirfilter(N, Wn[, rp, rs, btype, analog, …]) IIR digital and analog filter design given order and critical

points.
kaiser_atten(numtaps, width) Compute the attenuation of a Kaiser FIR filter.
kaiser_beta(a) Compute the Kaiser parameter beta, given the attenuation

a.
kaiserord(ripple, width) Determine the filter window parameters for the Kaiser

window method.
minimum_phase(h[, method, n_fft]) Convert a linear-phase FIR filter to minimum phase
savgol_coeffs(window_length, polyorder[, …]) Compute the coefficients for a 1-d Savitzky-Golay FIR

filter.
Continued on next page
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Table 150 – continued from previous page
remez(numtaps, bands, desired[, weight, Hz, …]) Calculate the minimax optimal filter using the Remez ex-

change algorithm.
unique_roots(p[, tol, rtype]) Determine unique roots and their multiplicities from a list

of roots.
residue(b, a[, tol, rtype]) Compute partial-fraction expansion of b(s) / a(s).
residuez(b, a[, tol, rtype]) Compute partial-fraction expansion of b(z) / a(z).
invres(r, p, k[, tol, rtype]) Compute b(s) and a(s) from partial fraction expansion.
invresz(r, p, k[, tol, rtype]) Compute b(z) and a(z) from partial fraction expansion.
BadCoefficients Warning about badly conditioned filter coefficients

scipy.signal.bilinear

scipy.signal.bilinear(b, a, fs=1.0)
Return a digital IIR filter from an analog one using a bilinear transform.
Transform a set of poles and zeros from the analog s-plane to the digital z-plane using Tustin’s method, which
substitutes (z-1) / (z+1) for s, maintaining the shape of the frequency response.

Parameters

b [array_like] Numerator of the analog filter transfer function.
a [array_like] Denominator of the analog filter transfer function.
fs [float] Sample rate, as ordinary frequency (e.g. hertz). No prewarping is done in this function.

Returns

z [ndarray] Numerator of the transformed digital filter transfer function.
p [ndarray] Denominator of the transformed digital filter transfer function.

See also:
lp2lp, lp2hp, lp2bp, lp2bs, bilinear_zpk

Examples

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> fs = 100
>>> bf = 2 * np.pi * np.array([7, 13])
>>> filts = signal.lti(*signal.butter(4, bf, btype='bandpass',␣
↪→analog=True))
>>> filtz = signal.lti(*signal.bilinear(filts.num, filts.den, fs))
>>> wz, hz = signal.freqz(filtz.num, filtz.den)
>>> ws, hs = signal.freqs(filts.num, filts.den, worN=fs*wz)

>>> plt.semilogx(wz*fs/(2*np.pi), 20*np.log10(np.abs(hz).clip(1e-15)),␣
↪→label=r'$|H(j \omega)|$')
>>> plt.semilogx(wz*fs/(2*np.pi), 20*np.log10(np.abs(hs).clip(1e-15)),␣
↪→label=r'$|H_z(e^{j \omega})|$')
>>> plt.legend()
>>> plt.xlabel('Frequency [Hz]')
>>> plt.ylabel('Magnitude [dB]')
>>> plt.grid()
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scipy.signal.bilinear_zpk

scipy.signal.bilinear_zpk(z, p, k, fs)
Return a digital IIR filter from an analog one using a bilinear transform.
Transform a set of poles and zeros from the analog s-plane to the digital z-plane using Tustin’s method, which
substitutes (z-1) / (z+1) for s, maintaining the shape of the frequency response.

Parameters

z [array_like] Zeros of the analog filter transfer function.
p [array_like] Poles of the analog filter transfer function.
k [float] System gain of the analog filter transfer function.
fs [float] Sample rate, as ordinary frequency (e.g. hertz). No prewarping is done in this function.

Returns

z [ndarray] Zeros of the transformed digital filter transfer function.
p [ndarray] Poles of the transformed digital filter transfer function.
k [float] System gain of the transformed digital filter.

See also:
lp2lp_zpk, lp2hp_zpk, lp2bp_zpk, lp2bs_zpk, bilinear

Notes

New in version 1.1.0.

Examples

>>> from scipy import signal
>>> import matplotlib.pyplot as plt
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>>> fs = 100
>>> bf = 2 * np.pi * np.array([7, 13])
>>> filts = signal.lti(*signal.butter(4, bf, btype='bandpass',␣
↪→analog=True, output='zpk'))
>>> filtz = signal.lti(*signal.bilinear_zpk(filts.zeros, filts.poles,␣
↪→filts.gain, fs))
>>> wz, hz = signal.freqz_zpk(filtz.zeros, filtz.poles, filtz.gain)
>>> ws, hs = signal.freqs_zpk(filts.zeros, filts.poles, filts.gain,␣
↪→worN=fs*wz)
>>> plt.semilogx(wz*fs/(2*np.pi), 20*np.log10(np.abs(hz).clip(1e-15)),␣
↪→label=r'$|H(j \omega)|$')
>>> plt.semilogx(wz*fs/(2*np.pi), 20*np.log10(np.abs(hs).clip(1e-15)),␣
↪→label=r'$|H_z(e^{j \omega})|$')
>>> plt.legend()
>>> plt.xlabel('Frequency [Hz]')
>>> plt.ylabel('Magnitude [dB]')
>>> plt.grid()
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scipy.signal.findfreqs

scipy.signal.findfreqs(num, den, N, kind=’ba’)
Find array of frequencies for computing the response of an analog filter.

Parameters

num, den [array_like, 1-D] The polynomial coefficients of the numerator and denominator of the trans-
fer function of the filter or LTI system, where the coefficients are ordered from highest to
lowest degree. Or, the roots of the transfer function numerator and denominator (i.e. zeroes
and poles).

N [int] The length of the array to be computed.
kind [str {‘ba’, ‘zp’}, optional] Specifies whether the numerator and denominator are specified by

their polynomial coefficients (‘ba’), or their roots (‘zp’).
Returns
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w [(N,) ndarray] A 1-D array of frequencies, logarithmically spaced.

Examples

Find a set of nine frequencies that span the “interesting part” of the frequency response for the filter with the transfer
function

H(s) = s / (s^2 + 8s + 25)

>>> from scipy import signal
>>> signal.findfreqs([1, 0], [1, 8, 25], N=9)
array([ 1.00000000e-02, 3.16227766e-02, 1.00000000e-01,

3.16227766e-01, 1.00000000e+00, 3.16227766e+00,
1.00000000e+01, 3.16227766e+01, 1.00000000e+02])

scipy.signal.firls

scipy.signal.firls(numtaps, bands, desired, weight=None, nyq=None, fs=None)
FIR filter design using least-squares error minimization.
Calculate the filter coefficients for the linear-phase finite impulse response (FIR) filter which has the best approxi-
mation to the desired frequency response described by bands and desired in the least squares sense (i.e., the integral
of the weighted mean-squared error within the specified bands is minimized).

Parameters

numtaps [int] The number of taps in the FIR filter. numtaps must be odd.
bands [array_like] A monotonic nondecreasing sequence containing the band edges in Hz. All

elements must be non-negative and less than or equal to the Nyquist frequency given by nyq.
desired [array_like] A sequence the same size as bands containing the desired gain at the start and

end point of each band.
weight [array_like, optional] A relative weighting to give to each band region when solving the least

squares problem. weight has to be half the size of bands.
nyq [float, optional] Deprecated. Use ‘fs‘ instead. Nyquist frequency. Each frequency in bands

must be between 0 and nyq (inclusive). Default is 1.
fs [float, optional] The sampling frequency of the signal. Each frequency in bands must be

between 0 and fs/2 (inclusive). Default is 2.
Returns

coeffs [ndarray] Coefficients of the optimal (in a least squares sense) FIR filter.
See also:
firwin, firwin2, minimum_phase, remez

Notes

This implementation follows the algorithm given in [1]. As noted there, least squares design hasmultiple advantages:
1. Optimal in a least-squares sense.
2. Simple, non-iterative method.
3. The general solution can obtained by solving a linear system of equations.
4. Allows the use of a frequency dependent weighting function.
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This function constructs a Type I linear phase FIR filter, which contains an odd number of coeffs satisfying for
n < numtaps:

coeffs(n) = coeffs(numtaps− 1− n)

The odd number of coefficients and filter symmetry avoid boundary conditions that could otherwise occur at the
Nyquist and 0 frequencies (e.g., for Type II, III, or IV variants).
New in version 0.18.

References

[1]

Examples

We want to construct a band-pass filter. Note that the behavior in the frequency ranges between our stop bands and
pass bands is unspecified, and thus may overshoot depending on the parameters of our filter:

>>> from scipy import signal
>>> import matplotlib.pyplot as plt
>>> fig, axs = plt.subplots(2)
>>> fs = 10.0 # Hz
>>> desired = (0, 0, 1, 1, 0, 0)
>>> for bi, bands in enumerate(((0, 1, 2, 3, 4, 5), (0, 1, 2, 4, 4.5,␣
↪→5))):
... fir_firls = signal.firls(73, bands, desired, fs=fs)
... fir_remez = signal.remez(73, bands, desired[::2], fs=fs)
... fir_firwin2 = signal.firwin2(73, bands, desired, fs=fs)
... hs = list()
... ax = axs[bi]
... for fir in (fir_firls, fir_remez, fir_firwin2):
... freq, response = signal.freqz(fir)
... hs.append(ax.semilogy(0.5*fs*freq/np.pi, np.abs(response))[0])
... for band, gains in zip(zip(bands[::2], bands[1::2]),
... zip(desired[::2], desired[1::2])):
... ax.semilogy(band, np.maximum(gains, 1e-7), 'k--', linewidth=2)
... if bi == 0:
... ax.legend(hs, ('firls', 'remez', 'firwin2'),
... loc='lower center', frameon=False)
... else:
... ax.set_xlabel('Frequency (Hz)')
... ax.grid(True)
... ax.set(title='Band-pass %d-%d Hz' % bands[2:4], ylabel='Magnitude
↪→')
...
>>> fig.tight_layout()
>>> plt.show()
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scipy.signal.firwin

scipy.signal.firwin(numtaps, cutoff, width=None, window=’hamming’, pass_zero=True, scale=True,
nyq=None, fs=None)

FIR filter design using the window method.
This function computes the coefficients of a finite impulse response filter. The filter will have linear phase; it will
be Type I if numtaps is odd and Type II if numtaps is even.
Type II filters always have zero response at the Nyquist frequency, so a ValueError exception is raised if firwin is
called with numtaps even and having a passband whose right end is at the Nyquist frequency.

Parameters

numtaps [int] Length of the filter (number of coefficients, i.e. the filter order + 1). numtaps must be
odd if a passband includes the Nyquist frequency.

cutoff [float or 1D array_like] Cutoff frequency of filter (expressed in the same units as fs) OR an
array of cutoff frequencies (that is, band edges). In the latter case, the frequencies in cutoff
should be positive and monotonically increasing between 0 and fs/2. The values 0 and fs/2
must not be included in cutoff.

width [float or None, optional] If width is not None, then assume it is the approximate width of the
transition region (expressed in the same units as fs) for use in Kaiser FIR filter design. In
this case, the window argument is ignored.

window [string or tuple of string and parameter values, optional] Desired window to use. See
scipy.signal.get_window for a list of windows and required parameters.

pass_zero [{True, False, ‘bandpass’, ‘lowpass’, ‘highpass’, ‘bandstop’}, optional] If True, the gain at the
frequency 0 (i.e. the “DC gain”) is 1. If False, the DC gain is 0. Can also be a string argument
for the desired filter type (equivalent to btype in IIR design functions).
New in version 1.3.0: Support for string arguments.

scale [bool, optional] Set to True to scale the coefficients so that the frequency response is exactly
unity at a certain frequency. That frequency is either:
• 0 (DC) if the first passband starts at 0 (i.e. pass_zero is True)
• fs/2 (the Nyquist frequency) if the first passband ends at fs/2 (i.e the filter is a single band
highpass filter); center of first passband otherwise

nyq [float, optional] Deprecated. Use ‘fs‘ instead. This is the Nyquist frequency. Each frequency
in cutoff must be between 0 and nyq. Default is 1.
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fs [float, optional] The sampling frequency of the signal. Each frequency in cutoff must be
between 0 and fs/2. Default is 2.

Returns

h [(numtaps,) ndarray] Coefficients of length numtaps FIR filter.
Raises

ValueError
If any value in cutoff is less than or equal to 0 or greater than or equal to fs/2, if the values in
cutoff are not strictly monotonically increasing, or if numtaps is even but a passband includes
the Nyquist frequency.

See also:
firwin2, firls, minimum_phase, remez

Examples

Low-pass from 0 to f:

>>> from scipy import signal
>>> numtaps = 3
>>> f = 0.1
>>> signal.firwin(numtaps, f)
array([ 0.06799017, 0.86401967, 0.06799017])

Use a specific window function:

>>> signal.firwin(numtaps, f, window='nuttall')
array([ 3.56607041e-04, 9.99286786e-01, 3.56607041e-04])

High-pass (‘stop’ from 0 to f):

>>> signal.firwin(numtaps, f, pass_zero=False)
array([-0.00859313, 0.98281375, -0.00859313])

Band-pass:

>>> f1, f2 = 0.1, 0.2
>>> signal.firwin(numtaps, [f1, f2], pass_zero=False)
array([ 0.06301614, 0.88770441, 0.06301614])

Band-stop:

>>> signal.firwin(numtaps, [f1, f2])
array([-0.00801395, 1.0160279 , -0.00801395])

Multi-band (passbands are [0, f1], [f2, f3] and [f4, 1]):

>>> f3, f4 = 0.3, 0.4
>>> signal.firwin(numtaps, [f1, f2, f3, f4])
array([-0.01376344, 1.02752689, -0.01376344])

Multi-band (passbands are [f1, f2] and [f3,f4]):
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>>> signal.firwin(numtaps, [f1, f2, f3, f4], pass_zero=False)
array([ 0.04890915, 0.91284326, 0.04890915])

scipy.signal.firwin2

scipy.signal.firwin2(numtaps, freq, gain, nfreqs=None, window=’hamming’, nyq=None, antisymmet-
ric=False, fs=None)

FIR filter design using the window method.
From the given frequencies freq and corresponding gains gain, this function constructs an FIR filter with linear
phase and (approximately) the given frequency response.

Parameters

numtaps [int] The number of taps in the FIR filter. numtaps must be less than nfreqs.
freq [array_like, 1D] The frequency sampling points. Typically 0.0 to 1.0 with 1.0 being Nyquist.

The Nyquist frequency is half fs. The values in freq must be nondecreasing. A value can be
repeated once to implement a discontinuity. The first value in freq must be 0, and the last
value must be fs/2.

gain [array_like] The filter gains at the frequency sampling points. Certain constraints to gain
values, depending on the filter type, are applied, see Notes for details.

nfreqs [int, optional] The size of the interpolationmesh used to construct the filter. Formost efficient
behavior, this should be a power of 2 plus 1 (e.g, 129, 257, etc). The default is one more than
the smallest power of 2 that is not less than numtaps. nfreqs must be greater than numtaps.

window [string or (string, float) or float, or None, optional] Window function to use. Default is “ham-
ming”. See scipy.signal.get_window for the complete list of possible values. If
None, no window function is applied.

nyq [float, optional] Deprecated. Use ‘fs‘ instead. This is the Nyquist frequency. Each frequency
in freq must be between 0 and nyq. Default is 1.

antisymmetric
[bool, optional] Whether resulting impulse response is symmetric/antisymmetric. See Notes
for more details.

fs [float, optional] The sampling frequency of the signal. Each frequency in cutoff must be
between 0 and fs/2. Default is 2.

Returns

taps [ndarray] The filter coefficients of the FIR filter, as a 1-D array of length numtaps.
See also:
firls, firwin, minimum_phase, remez

Notes

From the given set of frequencies and gains, the desired response is constructed in the frequency domain. The
inverse FFT is applied to the desired response to create the associated convolution kernel, and the first numtaps
coefficients of this kernel, scaled by window, are returned.
The FIR filter will have linear phase. The type of filter is determined by the value of ‘numtaps‘ and antisymmetric
flag. There are four possible combinations:

• odd numtaps, antisymmetric is False, type I filter is produced
• even numtaps, antisymmetric is False, type II filter is produced
• odd numtaps, antisymmetric is True, type III filter is produced
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• even numtaps, antisymmetric is True, type IV filter is produced
Magnitude response of all but type I filters are subjects to following constraints:

• type II – zero at the Nyquist frequency
• type III – zero at zero and Nyquist frequencies
• type IV – zero at zero frequency

New in version 0.9.0.

References

[1], [2]

Examples

A lowpass FIR filter with a response that is 1 on [0.0, 0.5], and that decreases linearly on [0.5, 1.0] from 1 to 0:

>>> from scipy import signal
>>> taps = signal.firwin2(150, [0.0, 0.5, 1.0], [1.0, 1.0, 0.0])
>>> print(taps[72:78])
[-0.02286961 -0.06362756 0.57310236 0.57310236 -0.06362756 -0.02286961]

scipy.signal.freqs

scipy.signal.freqs(b, a, worN=200, plot=None)
Compute frequency response of analog filter.
Given the M-order numerator b and N-order denominator a of an analog filter, compute its frequency response:

b[0]*(jw)**M + b[1]*(jw)**(M-1) + ... + b[M]
H(w) = ----------------------------------------------

a[0]*(jw)**N + a[1]*(jw)**(N-1) + ... + a[N]

Parameters

b [array_like] Numerator of a linear filter.
a [array_like] Denominator of a linear filter.
worN [{None, int, array_like}, optional] If None, then compute at 200 frequencies around the

interesting parts of the response curve (determined by pole-zero locations). If a single integer,
then compute at that many frequencies. Otherwise, compute the response at the angular
frequencies (e.g. rad/s) given in worN.

plot [callable, optional] A callable that takes two arguments. If given, the return parameters w
and h are passed to plot. Useful for plotting the frequency response inside freqs.

Returns

w [ndarray] The angular frequencies at which h was computed.
h [ndarray] The frequency response.

See also:
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freqz

Compute the frequency response of a digital filter.

Notes

Using Matplotlib’s “plot” function as the callable for plot produces unexpected results, this plots the real part of the
complex transfer function, not the magnitude. Try lambda w, h: plot(w, abs(h)).

Examples

>>> from scipy.signal import freqs, iirfilter

>>> b, a = iirfilter(4, [1, 10], 1, 60, analog=True, ftype='cheby1')

>>> w, h = freqs(b, a, worN=np.logspace(-1, 2, 1000))

>>> import matplotlib.pyplot as plt
>>> plt.semilogx(w, 20 * np.log10(abs(h)))
>>> plt.xlabel('Frequency')
>>> plt.ylabel('Amplitude response [dB]')
>>> plt.grid()
>>> plt.show()
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scipy.signal.freqs_zpk

scipy.signal.freqs_zpk(z, p, k, worN=200)
Compute frequency response of analog filter.
Given the zeros z, poles p, and gain k of a filter, compute its frequency response:
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(jw-z[0]) * (jw-z[1]) * ... * (jw-z[-1])
H(w) = k * ----------------------------------------

(jw-p[0]) * (jw-p[1]) * ... * (jw-p[-1])

Parameters

z [array_like] Zeroes of a linear filter
p [array_like] Poles of a linear filter
k [scalar] Gain of a linear filter
worN [{None, int, array_like}, optional] If None, then compute at 200 frequencies around the

interesting parts of the response curve (determined by pole-zero locations). If a single integer,
then compute at that many frequencies. Otherwise, compute the response at the angular
frequencies (e.g. rad/s) given in worN.

Returns

w [ndarray] The angular frequencies at which h was computed.
h [ndarray] The frequency response.

See also:

freqs

Compute the frequency response of an analog filter in TF form
freqz

Compute the frequency response of a digital filter in TF form
freqz_zpk

Compute the frequency response of a digital filter in ZPK form

Notes

New in version 0.19.0.

Examples

>>> from scipy.signal import freqs_zpk, iirfilter

>>> z, p, k = iirfilter(4, [1, 10], 1, 60, analog=True, ftype='cheby1',
... output='zpk')

>>> w, h = freqs_zpk(z, p, k, worN=np.logspace(-1, 2, 1000))

>>> import matplotlib.pyplot as plt
>>> plt.semilogx(w, 20 * np.log10(abs(h)))
>>> plt.xlabel('Frequency')
>>> plt.ylabel('Amplitude response [dB]')
>>> plt.grid()
>>> plt.show()
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scipy.signal.freqz

scipy.signal.freqz(b, a=1, worN=512, whole=False, plot=None, fs=6.283185307179586)
Compute the frequency response of a digital filter.
Given the M-order numerator b and N-order denominator a of a digital filter, compute its frequency response:

jw -jw -jwM
jw B(e ) b[0] + b[1]e + ... + b[M]e

H(e ) = ------ = -----------------------------------
jw -jw -jwN

A(e ) a[0] + a[1]e + ... + a[N]e

Parameters

b [array_like] Numerator of a linear filter. If b has dimension greater than 1, it is assumed that
the coefficients are stored in the first dimension, and b.shape[1:], a.shape[1:], and
the shape of the frequencies array must be compatible for broadcasting.

a [array_like] Denominator of a linear filter. If b has dimension greater than 1, it is assumed
that the coefficients are stored in the first dimension, and b.shape[1:], a.shape[1:],
and the shape of the frequencies array must be compatible for broadcasting.

worN [{None, int, array_like}, optional] If a single integer, then compute at that many frequencies
(default is N=512). This is a convenient alternative to:

np.linspace(0, fs if whole else fs/2, N, endpoint=False)

Using a number that is fast for FFT computations can result in faster computations (see
Notes).
If an array_like, compute the response at the frequencies given. These are in the same units
as fs.

whole [bool, optional] Normally, frequencies are computed from 0 to the Nyquist frequency, fs/2
(upper-half of unit-circle). If whole is True, compute frequencies from 0 to fs. Ignored if w
is array_like.

plot [callable] A callable that takes two arguments. If given, the return parameters w and h are
passed to plot. Useful for plotting the frequency response inside freqz.
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fs [float, optional] The sampling frequency of the digital system. Defaults to 2*pi radi-
ans/sample (so w is from 0 to pi).
New in version 1.2.0.

Returns

w [ndarray] The frequencies at which h was computed, in the same units as fs. By default, w is
normalized to the range [0, pi) (radians/sample).

h [ndarray] The frequency response, as complex numbers.

See also:
freqz_zpk, sosfreqz

Notes

Using Matplotlib’s matplotlib.pyplot.plot function as the callable for plot produces unexpected results,
as this plots the real part of the complex transfer function, not the magnitude. Try lambda w, h: plot(w,
np.abs(h)).
A direct computation via (R)FFT is used to compute the frequency response when the following conditions are
met:
1. An integer value is given for worN.
2. worN is fast to compute via FFT (i.e., next_fast_len(worN) equals worN).
3. The denominator coefficients are a single value (a.shape[0] == 1).
4. worN is at least as long as the numerator coefficients (worN >= b.shape[0]).
5. If b.ndim > 1, then b.shape[-1] == 1.

For long FIR filters, the FFT approach can have lower error and bemuch faster than the equivalent direct polynomial
calculation.

Examples

>>> from scipy import signal
>>> b = signal.firwin(80, 0.5, window=('kaiser', 8))
>>> w, h = signal.freqz(b)

>>> import matplotlib.pyplot as plt
>>> fig, ax1 = plt.subplots()
>>> ax1.set_title('Digital filter frequency response')

>>> ax1.plot(w, 20 * np.log10(abs(h)), 'b')
>>> ax1.set_ylabel('Amplitude [dB]', color='b')
>>> ax1.set_xlabel('Frequency [rad/sample]')

>>> ax2 = ax1.twinx()
>>> angles = np.unwrap(np.angle(h))
>>> ax2.plot(w, angles, 'g')
>>> ax2.set_ylabel('Angle (radians)', color='g')
>>> ax2.grid()

(continues on next page)
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(continued from previous page)
>>> ax2.axis('tight')
>>> plt.show()
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Broadcasting Examples
Suppose we have two FIR filters whose coefficients are stored in the rows of an array with shape (2, 25). For this
demonstration we’ll use random data:

>>> np.random.seed(42)
>>> b = np.random.rand(2, 25)

To compute the frequency response for these two filters with one call to freqz, we must pass in b.T, because
freqz expects the first axis to hold the coefficients. We must then extend the shape with a trivial dimension of
length 1 to allow broadcasting with the array of frequencies. That is, we pass in b.T[..., np.newaxis],
which has shape (25, 2, 1):

>>> w, h = signal.freqz(b.T[..., np.newaxis], worN=1024)
>>> w.shape
(1024,)
>>> h.shape
(2, 1024)

Now suppose we have two transfer functions, with the same numerator coefficients b = [0.5, 0.5]. The
coefficients for the two denominators are stored in the first dimension of the two-dimensional array a:

a = [ 1 1 ]
[ -0.25, -0.5 ]

>>> b = np.array([0.5, 0.5])
>>> a = np.array([[1, 1], [-0.25, -0.5]])

Only a is more than one-dimensional. To make it compatible for broadcasting with the frequencies, we extend it
with a trivial dimension in the call to freqz:
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>>> w, h = signal.freqz(b, a[..., np.newaxis], worN=1024)
>>> w.shape
(1024,)
>>> h.shape
(2, 1024)

scipy.signal.freqz_zpk

scipy.signal.freqz_zpk(z, p, k, worN=512, whole=False, fs=6.283185307179586)
Compute the frequency response of a digital filter in ZPK form.
Given the Zeros, Poles and Gain of a digital filter, compute its frequency response:
H(z) = k

∏
i(z − Z[i])/

∏
j(z − P [j])

where k is the gain, Z are the zeros and P are the poles.
Parameters

z [array_like] Zeroes of a linear filter
p [array_like] Poles of a linear filter
k [scalar] Gain of a linear filter
worN [{None, int, array_like}, optional] If a single integer, then compute at that many frequencies

(default is N=512).
If an array_like, compute the response at the frequencies given. These are in the same units
as fs.

whole [bool, optional] Normally, frequencies are computed from 0 to the Nyquist frequency, fs/2
(upper-half of unit-circle). If whole is True, compute frequencies from 0 to fs. Ignored if w
is array_like.

fs [float, optional] The sampling frequency of the digital system. Defaults to 2*pi radi-
ans/sample (so w is from 0 to pi).
New in version 1.2.0.

Returns

w [ndarray] The frequencies at which h was computed, in the same units as fs. By default, w is
normalized to the range [0, pi) (radians/sample).

h [ndarray] The frequency response, as complex numbers.
See also:

freqs

Compute the frequency response of an analog filter in TF form
freqs_zpk

Compute the frequency response of an analog filter in ZPK form
freqz

Compute the frequency response of a digital filter in TF form

Notes

New in version 0.19.0.
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Examples

Design a 4th-order digital Butterworth filter with cut-off of 100 Hz in a system with sample rate of 1000 Hz, and
plot the frequency response:

>>> from scipy import signal
>>> z, p, k = signal.butter(4, 100, output='zpk', fs=1000)
>>> w, h = signal.freqz_zpk(z, p, k, fs=1000)

>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> ax1 = fig.add_subplot(1, 1, 1)
>>> ax1.set_title('Digital filter frequency response')

>>> ax1.plot(w, 20 * np.log10(abs(h)), 'b')
>>> ax1.set_ylabel('Amplitude [dB]', color='b')
>>> ax1.set_xlabel('Frequency [Hz]')
>>> ax1.grid()

>>> ax2 = ax1.twinx()
>>> angles = np.unwrap(np.angle(h))
>>> ax2.plot(w, angles, 'g')
>>> ax2.set_ylabel('Angle [radians]', color='g')

>>> plt.axis('tight')
>>> plt.show()
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scipy.signal.sosfreqz

scipy.signal.sosfreqz(sos, worN=512, whole=False, fs=6.283185307179586)
Compute the frequency response of a digital filter in SOS format.
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Given sos, an array with shape (n, 6) of second order sections of a digital filter, compute the frequency response of
the system function:

B0(z) B1(z) B{n-1}(z)
H(z) = ----- * ----- * ... * ---------

A0(z) A1(z) A{n-1}(z)

for z = exp(omega*1j), where B{k}(z) and A{k}(z) are numerator and denominator of the transfer function of the
k-th second order section.

Parameters

sos [array_like] Array of second-order filter coefficients, must have shape (n_sections,
6). Each row corresponds to a second-order section, with the first three columns providing
the numerator coefficients and the last three providing the denominator coefficients.

worN [{None, int, array_like}, optional] If a single integer, then compute at that many frequencies
(default is N=512). Using a number that is fast for FFT computations can result in faster
computations (see Notes of freqz).
If an array_like, compute the response at the frequencies given (must be 1D). These are in
the same units as fs.

whole [bool, optional] Normally, frequencies are computed from 0 to the Nyquist frequency, fs/2
(upper-half of unit-circle). If whole is True, compute frequencies from 0 to fs.

fs [float, optional] The sampling frequency of the digital system. Defaults to 2*pi radi-
ans/sample (so w is from 0 to pi).
New in version 1.2.0.

Returns

w [ndarray] The frequencies at which h was computed, in the same units as fs. By default, w is
normalized to the range [0, pi) (radians/sample).

h [ndarray] The frequency response, as complex numbers.
See also:
freqz, sosfilt

Notes

New in version 0.19.0.

Examples

Design a 15th-order bandpass filter in SOS format.

>>> from scipy import signal
>>> sos = signal.ellip(15, 0.5, 60, (0.2, 0.4), btype='bandpass',
... output='sos')

Compute the frequency response at 1500 points from DC to Nyquist.

>>> w, h = signal.sosfreqz(sos, worN=1500)

Plot the response.
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>>> import matplotlib.pyplot as plt
>>> plt.subplot(2, 1, 1)
>>> db = 20*np.log10(np.maximum(np.abs(h), 1e-5))
>>> plt.plot(w/np.pi, db)
>>> plt.ylim(-75, 5)
>>> plt.grid(True)
>>> plt.yticks([0, -20, -40, -60])
>>> plt.ylabel('Gain [dB]')
>>> plt.title('Frequency Response')
>>> plt.subplot(2, 1, 2)
>>> plt.plot(w/np.pi, np.angle(h))
>>> plt.grid(True)
>>> plt.yticks([-np.pi, -0.5*np.pi, 0, 0.5*np.pi, np.pi],
... [r'$-\pi$', r'$-\pi/2$', '0', r'$\pi/2$', r'$\pi$'])
>>> plt.ylabel('Phase [rad]')
>>> plt.xlabel('Normalized frequency (1.0 = Nyquist)')
>>> plt.show()

0.0 0.2 0.4 0.6 0.8 1.0

0
20
40
60Ga

in
 [d

B]

Frequency Response

0.0 0.2 0.4 0.6 0.8 1.0
Normalized frequency (1.0 = Nyquist)

/2
0

/2

Ph
as

e 
[ra

d]

If the same filter is implemented as a single transfer function, numerical error corrupts the frequency response:

>>> b, a = signal.ellip(15, 0.5, 60, (0.2, 0.4), btype='bandpass',
... output='ba')
>>> w, h = signal.freqz(b, a, worN=1500)
>>> plt.subplot(2, 1, 1)
>>> db = 20*np.log10(np.maximum(np.abs(h), 1e-5))
>>> plt.plot(w/np.pi, db)
>>> plt.ylim(-75, 5)
>>> plt.grid(True)
>>> plt.yticks([0, -20, -40, -60])
>>> plt.ylabel('Gain [dB]')
>>> plt.title('Frequency Response')
>>> plt.subplot(2, 1, 2)
>>> plt.plot(w/np.pi, np.angle(h))

(continues on next page)
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(continued from previous page)
>>> plt.grid(True)
>>> plt.yticks([-np.pi, -0.5*np.pi, 0, 0.5*np.pi, np.pi],
... [r'$-\pi$', r'$-\pi/2$', '0', r'$\pi/2$', r'$\pi$'])
>>> plt.ylabel('Phase [rad]')
>>> plt.xlabel('Normalized frequency (1.0 = Nyquist)')
>>> plt.show()
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scipy.signal.group_delay

scipy.signal.group_delay(system, w=512, whole=False, fs=6.283185307179586)
Compute the group delay of a digital filter.
The group delay measures by how many samples amplitude envelopes of various spectral components of a signal
are delayed by a filter. It is formally defined as the derivative of continuous (unwrapped) phase:

d jw
D(w) = - -- arg H(e)

dw

Parameters

system [tuple of array_like (b, a)] Numerator and denominator coefficients of a filter transfer func-
tion.

w [{None, int, array_like}, optional] If a single integer, then compute at that many frequencies
(default is N=512).
If an array_like, compute the delay at the frequencies given. These are in the same units as
fs.

whole [bool, optional] Normally, frequencies are computed from 0 to the Nyquist frequency, fs/2
(upper-half of unit-circle). If whole is True, compute frequencies from 0 to fs. Ignored if w
is array_like.

fs [float, optional] The sampling frequency of the digital system. Defaults to 2*pi radi-
ans/sample (so w is from 0 to pi).
New in version 1.2.0.
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Returns

w [ndarray] The frequencies at which group delay was computed, in the same units as fs. By
default, w is normalized to the range [0, pi) (radians/sample).

gd [ndarray] The group delay.

See also:

freqz

Frequency response of a digital filter

Notes

The similar function in MATLAB is called grpdelay.
If the transfer function H(z) has zeros or poles on the unit circle, the group delay at corresponding frequencies is
undefined. When such a case arises the warning is raised and the group delay is set to 0 at those frequencies.
For the details of numerical computation of the group delay refer to [1].
New in version 0.16.0.

References

[1]

Examples

>>> from scipy import signal
>>> b, a = signal.iirdesign(0.1, 0.3, 5, 50, ftype='cheby1')
>>> w, gd = signal.group_delay((b, a))

>>> import matplotlib.pyplot as plt
>>> plt.title('Digital filter group delay')
>>> plt.plot(w, gd)
>>> plt.ylabel('Group delay [samples]')
>>> plt.xlabel('Frequency [rad/sample]')
>>> plt.show()

scipy.signal.iirdesign

scipy.signal.iirdesign(wp, ws, gpass, gstop, analog=False, ftype=’ellip’, output=’ba’, fs=None)
Complete IIR digital and analog filter design.
Given passband and stopband frequencies and gains, construct an analog or digital IIR filter of minimum order for
a given basic type. Return the output in numerator, denominator (‘ba’), pole-zero (‘zpk’) or second order sections
(‘sos’) form.

Parameters

wp, ws [float] Passband and stopband edge frequencies. For digital filters, these are in the same units
as fs. By default, fs is 2 half-cycles/sample, so these are normalized from 0 to 1, where 1 is
the Nyquist frequency. For example:
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Digital filter group delay

• Lowpass: wp = 0.2, ws = 0.3
• Highpass: wp = 0.3, ws = 0.2
• Bandpass: wp = [0.2, 0.5], ws = [0.1, 0.6]
• Bandstop: wp = [0.1, 0.6], ws = [0.2, 0.5]
For analog filters, wp and ws are angular frequencies (e.g. rad/s).

gpass [float] The maximum loss in the passband (dB).
gstop [float] The minimum attenuation in the stopband (dB).
analog [bool, optional] When True, return an analog filter, otherwise a digital filter is returned.
ftype [str, optional] The type of IIR filter to design:

• Butterworth : ‘butter’
• Chebyshev I : ‘cheby1’
• Chebyshev II : ‘cheby2’
• Cauer/elliptic: ‘ellip’
• Bessel/Thomson: ‘bessel’

output [{‘ba’, ‘zpk’, ‘sos’}, optional] Type of output: numerator/denominator (‘ba’), pole-zero
(‘zpk’), or second-order sections (‘sos’). Default is ‘ba’.

fs [float, optional] The sampling frequency of the digital system.
New in version 1.2.0.

Returns

b, a [ndarray, ndarray] Numerator (b) and denominator (a) polynomials of the IIR filter. Only
returned if output='ba'.

z, p, k [ndarray, ndarray, float] Zeros, poles, and system gain of the IIR filter transfer function. Only
returned if output='zpk'.

sos [ndarray] Second-order sections representation of the IIR filter. Only returned if
output=='sos'.

See also:

butter

Filter design using order and critical points

cheby1, cheby2, ellip, bessel
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buttord

Find order and critical points from passband and stopband spec
cheb1ord, cheb2ord, ellipord
iirfilter

General filter design using order and critical frequencies

Notes

The 'sos' output parameter was added in 0.16.0.

Examples

>>> from scipy import signal
>>> import matplotlib.pyplot as plt
>>> import matplotlib.ticker

>>> wp = 0.2
>>> ws = 0.3
>>> gpass = 1
>>> gstop = 40

>>> system = signal.iirdesign(wp, ws, gpass, gstop)
>>> w, h = signal.freqz(*system)

>>> fig, ax1 = plt.subplots()
>>> ax1.set_title('Digital filter frequency response')
>>> ax1.plot(w, 20 * np.log10(abs(h)), 'b')
>>> ax1.set_ylabel('Amplitude [dB]', color='b')
>>> ax1.set_xlabel('Frequency [rad/sample]')
>>> ax1.grid()
>>> ax1.set_ylim([-120, 20])
>>> ax2 = ax1.twinx()
>>> angles = np.unwrap(np.angle(h))
>>> ax2.plot(w, angles, 'g')
>>> ax2.set_ylabel('Angle (radians)', color='g')
>>> ax2.grid()
>>> ax2.axis('tight')
>>> ax2.set_ylim([-6, 1])
>>> nticks = 8
>>> ax1.yaxis.set_major_locator(matplotlib.ticker.LinearLocator(nticks))
>>> ax2.yaxis.set_major_locator(matplotlib.ticker.LinearLocator(nticks))

scipy.signal.iirfilter

scipy.signal.iirfilter(N, Wn, rp=None, rs=None, btype=’band’, analog=False, ftype=’butter’, out-
put=’ba’, fs=None)

IIR digital and analog filter design given order and critical points.
Design an Nth-order digital or analog filter and return the filter coefficients.
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Parameters

N [int] The order of the filter.
Wn [array_like] A scalar or length-2 sequence giving the critical frequencies.

For digital filters, Wn are in the same units as fs. By default, fs is 2 half-cycles/sample, so
these are normalized from 0 to 1, where 1 is the Nyquist frequency. (Wn is thus in half-cycles
/ sample.)
For analog filters,Wn is an angular frequency (e.g. rad/s).

rp [float, optional] For Chebyshev and elliptic filters, provides the maximum ripple in the pass-
band. (dB)

rs [float, optional] For Chebyshev and elliptic filters, provides the minimum attenuation in the
stop band. (dB)

btype [{‘bandpass’, ‘lowpass’, ‘highpass’, ‘bandstop’}, optional] The type of filter. Default is ‘band-
pass’.

analog [bool, optional] When True, return an analog filter, otherwise a digital filter is returned.
ftype [str, optional] The type of IIR filter to design:

• Butterworth : ‘butter’
• Chebyshev I : ‘cheby1’
• Chebyshev II : ‘cheby2’
• Cauer/elliptic: ‘ellip’
• Bessel/Thomson: ‘bessel’

output [{‘ba’, ‘zpk’, ‘sos’}, optional] Type of output: numerator/denominator (‘ba’), pole-zero
(‘zpk’), or second-order sections (‘sos’). Default is ‘ba’.

fs [float, optional] The sampling frequency of the digital system.
New in version 1.2.0.

Returns

b, a [ndarray, ndarray] Numerator (b) and denominator (a) polynomials of the IIR filter. Only
returned if output='ba'.

z, p, k [ndarray, ndarray, float] Zeros, poles, and system gain of the IIR filter transfer function. Only
returned if output='zpk'.

sos [ndarray] Second-order sections representation of the IIR filter. Only returned if
output=='sos'.

See also:
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butter

Filter design using order and critical points

cheby1, cheby2, ellip, bessel
buttord

Find order and critical points from passband and stopband spec
cheb1ord, cheb2ord, ellipord
iirdesign

General filter design using passband and stopband spec

Notes

The 'sos' output parameter was added in 0.16.0.

Examples

Generate a 17th-order Chebyshev II analog bandpass filter from 50 Hz to 200 Hz and plot the frequency response:

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> b, a = signal.iirfilter(17, [2*np.pi*50, 2*np.pi*200], rs=60,
... btype='band', analog=True, ftype='cheby2')
>>> w, h = signal.freqs(b, a, 1000)
>>> fig = plt.figure()
>>> ax = fig.add_subplot(1, 1, 1)
>>> ax.semilogx(w / (2*np.pi), 20 * np.log10(np.maximum(abs(h), 1e-5)))
>>> ax.set_title('Chebyshev Type II bandpass frequency response')
>>> ax.set_xlabel('Frequency [Hz]')
>>> ax.set_ylabel('Amplitude [dB]')
>>> ax.axis((10, 1000, -100, 10))
>>> ax.grid(which='both', axis='both')
>>> plt.show()

Create a digital filter with the same properties, in a system with sampling rate of 2000 Hz, and plot the frequency
response. (Second-order sections implementation is required to ensure stability of a filter of this order):

>>> sos = signal.iirfilter(17, [50, 200], rs=60, btype='band',
... analog=False, ftype='cheby2', fs=2000,
... output='sos')
>>> w, h = signal.sosfreqz(sos, 2000, fs=2000)
>>> fig = plt.figure()
>>> ax = fig.add_subplot(1, 1, 1)
>>> ax.semilogx(w, 20 * np.log10(np.maximum(abs(h), 1e-5)))
>>> ax.set_title('Chebyshev Type II bandpass frequency response')
>>> ax.set_xlabel('Frequency [Hz]')
>>> ax.set_ylabel('Amplitude [dB]')
>>> ax.axis((10, 1000, -100, 10))

(continues on next page)
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(continued from previous page)
>>> ax.grid(which='both', axis='both')
>>> plt.show()
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scipy.signal.kaiser_atten

scipy.signal.kaiser_atten(numtaps, width)
Compute the attenuation of a Kaiser FIR filter.
Given the number of taps N and the transition width width, compute the attenuation a in dB, given by Kaiser’s
formula:

a = 2.285 * (N - 1) * pi * width + 7.95
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Parameters

numtaps [int] The number of taps in the FIR filter.
width [float] The desired width of the transition region between passband and stopband (or, in

general, at any discontinuity) for the filter, expressed as a fraction of the Nyquist frequency.
Returns

a [float] The attenuation of the ripple, in dB.

See also:
kaiserord, kaiser_beta

Examples

Suppose we want to design a FIR filter using the Kaiser window method that will have 211 taps and a transition
width of 9 Hz for a signal that is sampled at 480 Hz. Expressed as a fraction of the Nyquist frequency, the width
is 9/(0.5*480) = 0.0375. The approximate attenuation (in dB) is computed as follows:

>>> from scipy.signal import kaiser_atten
>>> kaiser_atten(211, 0.0375)
64.48099630593983

scipy.signal.kaiser_beta

scipy.signal.kaiser_beta(a)
Compute the Kaiser parameter beta, given the attenuation a.

Parameters

a [float] The desired attenuation in the stopband and maximum ripple in the passband, in dB.
This should be a positive number.

Returns

beta [float] The beta parameter to be used in the formula for a Kaiser window.

References

Oppenheim, Schafer, “Discrete-Time Signal Processing”, p.475-476.

Examples

Suppose we want to design a lowpass filter, with 65 dB attenuation in the stop band. The Kaiser window parameter
to be used in the window method is computed by kaiser_beta(65):

>>> from scipy.signal import kaiser_beta
>>> kaiser_beta(65)
6.20426
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scipy.signal.kaiserord

scipy.signal.kaiserord(ripple, width)
Determine the filter window parameters for the Kaiser window method.
The parameters returned by this function are generally used to create a finite impulse response filter using the
window method, with either firwin or firwin2.

Parameters

ripple [float] Upper bound for the deviation (in dB) of the magnitude of the filter’s frequency re-
sponse from that of the desired filter (not including frequencies in any transition intervals).
That is, if w is the frequency expressed as a fraction of the Nyquist frequency, A(w) is the
actual frequency response of the filter and D(w) is the desired frequency response, the design
requirement is that:

abs(A(w) - D(w))) < 10**(-ripple/20)

for 0 <= w <= 1 and w not in a transition interval.
width [float] Width of transition region, normalized so that 1 corresponds to pi radians / sample.

That is, the frequency is expressed as a fraction of the Nyquist frequency.
Returns

numtaps [int] The length of the Kaiser window.
beta [float] The beta parameter for the Kaiser window.

See also:
kaiser_beta, kaiser_atten

Notes

There are several ways to obtain the Kaiser window:
• signal.kaiser(numtaps, beta, sym=True)

• signal.get_window(beta, numtaps)

• signal.get_window(('kaiser', beta), numtaps)

The empirical equations discovered by Kaiser are used.

References

Oppenheim, Schafer, “Discrete-Time Signal Processing”, p.475-476.

Examples

We will use the Kaiser window method to design a lowpass FIR filter for a signal that is sampled at 1000 Hz.
We want at least 65 dB rejection in the stop band, and in the pass band the gain should vary no more than 0.5%.
We want a cutoff frequency of 175 Hz, with a transition between the pass band and the stop band of 24 Hz. That
is, in the band [0, 163], the gain varies no more than 0.5%, and in the band [187, 500], the signal is attenuated by
at least 65 dB.
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>>> from scipy.signal import kaiserord, firwin, freqz
>>> import matplotlib.pyplot as plt
>>> fs = 1000.0
>>> cutoff = 175
>>> width = 24

The Kaiser method accepts just a single parameter to control the pass band ripple and the stop band rejection, so
we use the more restrictive of the two. In this case, the pass band ripple is 0.005, or 46.02 dB, so we will use 65
dB as the design parameter.
Use kaiserord to determine the length of the filter and the parameter for the Kaiser window.

>>> numtaps, beta = kaiserord(65, width/(0.5*fs))
>>> numtaps
167
>>> beta
6.20426

Use firwin to create the FIR filter.

>>> taps = firwin(numtaps, cutoff, window=('kaiser', beta),
... scale=False, nyq=0.5*fs)

Compute the frequency response of the filter. w is the array of frequencies, and h is the corresponding complex
array of frequency responses.

>>> w, h = freqz(taps, worN=8000)
>>> w *= 0.5*fs/np.pi # Convert w to Hz.

Compute the deviation of the magnitude of the filter’s response from that of the ideal lowpass filter. Values in the
transition region are set to nan, so they won’t appear in the plot.

>>> ideal = w < cutoff # The "ideal" frequency response.
>>> deviation = np.abs(np.abs(h) - ideal)
>>> deviation[(w > cutoff - 0.5*width) & (w < cutoff + 0.5*width)] = np.
↪→nan

Plot the deviation. A close look at the left end of the stop band shows that the requirement for 65 dB attenuation
is violated in the first lobe by about 0.125 dB. This is not unusual for the Kaiser window method.

>>> plt.plot(w, 20*np.log10(np.abs(deviation)))
>>> plt.xlim(0, 0.5*fs)
>>> plt.ylim(-90, -60)
>>> plt.grid(alpha=0.25)
>>> plt.axhline(-65, color='r', ls='--', alpha=0.3)
>>> plt.xlabel('Frequency (Hz)')
>>> plt.ylabel('Deviation from ideal (dB)')
>>> plt.title('Lowpass Filter Frequency Response')
>>> plt.show()

scipy.signal.minimum_phase

scipy.signal.minimum_phase(h, method=’homomorphic’, n_fft=None)
Convert a linear-phase FIR filter to minimum phase
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Parameters

h [array] Linear-phase FIR filter coefficients.
method [{‘hilbert’, ‘homomorphic’}] The method to use:

‘homomorphic’ (default)
This method [4] [5] works best with filters with an odd number of taps, and
the resulting minimum phase filter will have a magnitude response that ap-
proximates the square root of the the original filter’s magnitude response.

‘hilbert’ This method [1] is designed to be used with equiripple filters (e.g., from
remez) with unity or zero gain regions.

n_fft [int] The number of points to use for the FFT. Should be at least a few times larger than the
signal length (see Notes).

Returns

h_minimum
[array] The minimum-phase version of the filter, with length (length(h) + 1) // 2.

See also:
firwin, firwin2, remez

Notes

Both the Hilbert [1] or homomorphic [4] [5] methods require selection of an FFT length to estimate the complex
cepstrum of the filter.
In the case of the Hilbert method, the deviation from the ideal spectrum epsilon is related to the number of
stopband zeros n_stop and FFT length n_fft as:

epsilon = 2. * n_stop / n_fft

For example, with 100 stopband zeros and a FFT length of 2048, epsilon = 0.0976. If we conservatively
assume that the number of stopband zeros is one less than the filter length, we can take the FFT length to be the
next power of 2 that satisfies epsilon=0.01 as:
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n_fft = 2 ** int(np.ceil(np.log2(2 * (len(h) - 1) / 0.01)))

This gives reasonable results for both the Hilbert and homomorphic methods, and gives the value used when
n_fft=None.
Alternative implementations exist for creating minimum-phase filters, including zero inversion [2] and spectral
factorization [3] [4]. For more information, see:

http://dspguru.com/dsp/howtos/how-to-design-minimum-phase-fir-filters

References

[1], [2], [3], [4], [5]

Examples

Create an optimal linear-phase filter, then convert it to minimum phase:

>>> from scipy.signal import remez, minimum_phase, freqz, group_delay
>>> import matplotlib.pyplot as plt
>>> freq = [0, 0.2, 0.3, 1.0]
>>> desired = [1, 0]
>>> h_linear = remez(151, freq, desired, Hz=2.)

Convert it to minimum phase:

>>> h_min_hom = minimum_phase(h_linear, method='homomorphic')
>>> h_min_hil = minimum_phase(h_linear, method='hilbert')

Compare the three filters:

>>> fig, axs = plt.subplots(4, figsize=(4, 8))
>>> for h, style, color in zip((h_linear, h_min_hom, h_min_hil),
... ('-', '-', '--'), ('k', 'r', 'c')):
... w, H = freqz(h)
... w, gd = group_delay((h, 1))
... w /= np.pi
... axs[0].plot(h, color=color, linestyle=style)
... axs[1].plot(w, np.abs(H), color=color, linestyle=style)
... axs[2].plot(w, 20 * np.log10(np.abs(H)), color=color,␣
↪→linestyle=style)
... axs[3].plot(w, gd, color=color, linestyle=style)
>>> for ax in axs:
... ax.grid(True, color='0.5')
... ax.fill_between(freq[1:3], *ax.get_ylim(), color='#ffeeaa',␣
↪→zorder=1)
>>> axs[0].set(xlim=[0, len(h_linear) - 1], ylabel='Amplitude', xlabel=
↪→'Samples')
>>> axs[1].legend(['Linear', 'Min-Hom', 'Min-Hil'], title='Phase')
>>> for ax, ylim in zip(axs[1:], ([0, 1.1], [-150, 10], [-60, 60])):
... ax.set(xlim=[0, 1], ylim=ylim, xlabel='Frequency')
>>> axs[1].set(ylabel='Magnitude')
>>> axs[2].set(ylabel='Magnitude (dB)')

(continues on next page)
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(continued from previous page)
>>> axs[3].set(ylabel='Group delay')
>>> plt.tight_layout()

scipy.signal.savgol_coeffs

scipy.signal.savgol_coeffs(window_length, polyorder, deriv=0, delta=1.0, pos=None, use=’conv’)
Compute the coefficients for a 1-d Savitzky-Golay FIR filter.

Parameters

window_length
[int] The length of the filter window (i.e. the number of coefficients). window_length must
be an odd positive integer.

polyorder [int] The order of the polynomial used to fit the samples. polyorder must be less than win-
dow_length.

deriv [int, optional] The order of the derivative to compute. This must be a nonnegative integer.
The default is 0, which means to filter the data without differentiating.

delta [float, optional] The spacing of the samples to which the filter will be applied. This is only
used if deriv > 0.

pos [int or None, optional] If pos is not None, it specifies evaluation position within the window.
The default is the middle of the window.

use [str, optional] Either ‘conv’ or ‘dot’. This argument chooses the order of the coefficients. The
default is ‘conv’, which means that the coefficients are ordered to be used in a convolution.
With use=’dot’, the order is reversed, so the filter is applied by dotting the coefficients with
the data set.

Returns

coeffs [1-d ndarray] The filter coefficients.
See also:
savgol_filter

Notes

New in version 0.14.0.

References

A. Savitzky, M. J. E. Golay, Smoothing and Differentiation of Data by Simplified Least Squares Procedures. An-
alytical Chemistry, 1964, 36 (8), pp 1627-1639.

Examples

>>> from scipy.signal import savgol_coeffs
>>> savgol_coeffs(5, 2)
array([-0.08571429, 0.34285714, 0.48571429, 0.34285714, -0.08571429])
>>> savgol_coeffs(5, 2, deriv=1)
array([ 2.00000000e-01, 1.00000000e-01, 2.07548111e-16, -1.00000000e-01,

-2.00000000e-01])
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Note that use=’dot’ simply reverses the coefficients.

>>> savgol_coeffs(5, 2, pos=3)
array([ 0.25714286, 0.37142857, 0.34285714, 0.17142857, -0.14285714])
>>> savgol_coeffs(5, 2, pos=3, use='dot')
array([-0.14285714, 0.17142857, 0.34285714, 0.37142857, 0.25714286])

x contains data from the parabola x = t**2, sampled at t = -1, 0, 1, 2, 3. c holds the coefficients that will compute
the derivative at the last position. When dotted with x the result should be 6.

>>> x = np.array([1, 0, 1, 4, 9])
>>> c = savgol_coeffs(5, 2, pos=4, deriv=1, use='dot')
>>> c.dot(x)
6.0

scipy.signal.remez

scipy.signal.remez(numtaps, bands, desired, weight=None, Hz=None, type=’bandpass’, maxiter=25,
grid_density=16, fs=None)

Calculate the minimax optimal filter using the Remez exchange algorithm.
Calculate the filter-coefficients for the finite impulse response (FIR) filter whose transfer function minimizes the
maximum error between the desired gain and the realized gain in the specified frequency bands using the Remez
exchange algorithm.

Parameters

numtaps [int] The desired number of taps in the filter. The number of taps is the number of terms in
the filter, or the filter order plus one.

bands [array_like] A monotonic sequence containing the band edges. All elements must be non-
negative and less than half the sampling frequency as given by fs.

desired [array_like] A sequence half the size of bands containing the desired gain in each of the
specified bands.

weight [array_like, optional] A relative weighting to give to each band region. The length of weight
has to be half the length of bands.

Hz [scalar, optional] Deprecated. Use ‘fs‘ instead. The sampling frequency in Hz. Default is 1.
type [{‘bandpass’, ‘differentiator’, ‘hilbert’}, optional] The type of filter:

• ‘bandpass’ : flat response in bands. This is the default.
• ‘differentiator’ : frequency proportional response in bands.
• ‘hilbert’ [filter with odd symmetry, that is, type III] (for even order) or type IV (for

odd order) linear phase filters.
maxiter [int, optional] Maximum number of iterations of the algorithm. Default is 25.
grid_density

[int, optional] Grid density. The dense grid used in remez is of size (numtaps + 1) *
grid_density. Default is 16.

fs [float, optional] The sampling frequency of the signal. Default is 1.
Returns

out [ndarray] A rank-1 array containing the coefficients of the optimal (in a minimax sense)
filter.

See also:
firls, firwin, firwin2, minimum_phase
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References

[1], [2]

Examples

In these examplesremez gets used creating a bandpass, bandstop, lowpass and highpass filter. The used parameters
are the filter order, an array with according frequency boundaries, the desired attenuation values and the sampling
frequency. Using freqz the corresponding frequency response gets calculated and plotted.

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> def plot_response(fs, w, h, title):
... "Utility function to plot response functions"
... fig = plt.figure()
... ax = fig.add_subplot(111)
... ax.plot(0.5*fs*w/np.pi, 20*np.log10(np.abs(h)))
... ax.set_ylim(-40, 5)
... ax.set_xlim(0, 0.5*fs)
... ax.grid(True)
... ax.set_xlabel('Frequency (Hz)')
... ax.set_ylabel('Gain (dB)')
... ax.set_title(title)

This example shows a steep low pass transition according to the small transition width and high filter order:

>>> fs = 22050.0 # Sample rate, Hz
>>> cutoff = 8000.0 # Desired cutoff frequency, Hz
>>> trans_width = 100 # Width of transition from pass band to stop band,␣
↪→Hz
>>> numtaps = 400 # Size of the FIR filter.
>>> taps = signal.remez(numtaps, [0, cutoff, cutoff + trans_width, 0.
↪→5*fs], [1, 0], Hz=fs)
>>> w, h = signal.freqz(taps, [1], worN=2000)
>>> plot_response(fs, w, h, "Low-pass Filter")

This example shows a high pass filter:

>>> fs = 22050.0 # Sample rate, Hz
>>> cutoff = 2000.0 # Desired cutoff frequency, Hz
>>> trans_width = 250 # Width of transition from pass band to stop band,␣
↪→Hz
>>> numtaps = 125 # Size of the FIR filter.
>>> taps = signal.remez(numtaps, [0, cutoff - trans_width, cutoff, 0.
↪→5*fs],
... [0, 1], Hz=fs)
>>> w, h = signal.freqz(taps, [1], worN=2000)
>>> plot_response(fs, w, h, "High-pass Filter")

For a signal sampled with 22 kHz a bandpass filter with a pass band of 2-5 kHz gets calculated using the Remez
algorithm. The transition width is 260 Hz and the filter order 10:
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>>> fs = 22000.0 # Sample rate, Hz
>>> band = [2000, 5000] # Desired pass band, Hz
>>> trans_width = 260 # Width of transition from pass band to stop␣
↪→band, Hz
>>> numtaps = 10 # Size of the FIR filter.
>>> edges = [0, band[0] - trans_width, band[0], band[1],
... band[1] + trans_width, 0.5*fs]
>>> taps = signal.remez(numtaps, edges, [0, 1, 0], Hz=fs)
>>> w, h = signal.freqz(taps, [1], worN=2000)
>>> plot_response(fs, w, h, "Band-pass Filter")

It can be seen that for this bandpass filter, the low order leads to higher ripple and less steep transitions. There is
very low attenuation in the stop band and little overshoot in the pass band. Of course the desired gain can be better
approximated with a higher filter order.
The next example shows a bandstop filter. Because of the high filter order the transition is quite steep:

>>> fs = 20000.0 # Sample rate, Hz
>>> band = [6000, 8000] # Desired stop band, Hz
>>> trans_width = 200 # Width of transition from pass band to stop␣
↪→band, Hz
>>> numtaps = 175 # Size of the FIR filter.
>>> edges = [0, band[0] - trans_width, band[0], band[1], band[1] + trans_
↪→width, 0.5*fs]
>>> taps = signal.remez(numtaps, edges, [1, 0, 1], Hz=fs)
>>> w, h = signal.freqz(taps, [1], worN=2000)
>>> plot_response(fs, w, h, "Band-stop Filter")

>>> plt.show()
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scipy.signal.unique_roots

scipy.signal.unique_roots(p, tol=0.001, rtype=’min’)
Determine unique roots and their multiplicities from a list of roots.

Parameters

p [array_like] The list of roots.
tol [float, optional] The tolerance for two roots to be considered equal. Default is 1e-3.
rtype [{‘max’, ‘min, ‘avg’}, optional] How to determine the returned root if multiple roots are

within tol of each other.
• ‘max’: pick the maximum of those roots.
• ‘min’: pick the minimum of those roots.
• ‘avg’: take the average of those roots.

Returns

pout [ndarray] The list of unique roots, sorted from low to high.
mult [ndarray] The multiplicity of each root.

Notes

This utility function is not specific to roots but can be used for any sequence of values for which uniqueness and
multiplicity has to be determined. For a more general routine, see numpy.unique.

Examples

>>> from scipy import signal
>>> vals = [0, 1.3, 1.31, 2.8, 1.25, 2.2, 10.3]
>>> uniq, mult = signal.unique_roots(vals, tol=2e-2, rtype='avg')

Check which roots have multiplicity larger than 1:
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>>> uniq[mult > 1]
array([ 1.305])

scipy.signal.residue

scipy.signal.residue(b, a, tol=0.001, rtype=’avg’)
Compute partial-fraction expansion of b(s) / a(s).
If M is the degree of numerator b and N the degree of denominator a:

b(s) b[0] s**(M) + b[1] s**(M-1) + ... + b[M]
H(s) = ------ = ------------------------------------------

a(s) a[0] s**(N) + a[1] s**(N-1) + ... + a[N]

then the partial-fraction expansion H(s) is defined as:

r[0] r[1] r[-1]
= -------- + -------- + ... + --------- + k(s)

(s-p[0]) (s-p[1]) (s-p[-1])

If there are any repeated roots (closer together than tol), then H(s) has terms like:

r[i] r[i+1] r[i+n-1]
-------- + ----------- + ... + -----------
(s-p[i]) (s-p[i])**2 (s-p[i])**n

This function is used for polynomials in positive powers of s or z, such as analog filters or digital filters in controls
engineering. For negative powers of z (typical for digital filters in DSP), use residuez.

Parameters

b [array_like] Numerator polynomial coefficients.
a [array_like] Denominator polynomial coefficients.

Returns

r [ndarray] Residues.
p [ndarray] Poles.
k [ndarray] Coefficients of the direct polynomial term.

See also:
invres, residuez, numpy.poly, unique_roots

scipy.signal.residuez

scipy.signal.residuez(b, a, tol=0.001, rtype=’avg’)
Compute partial-fraction expansion of b(z) / a(z).
If M is the degree of numerator b and N the degree of denominator a:

b(z) b[0] + b[1] z**(-1) + ... + b[M] z**(-M)
H(z) = ------ = ------------------------------------------

a(z) a[0] + a[1] z**(-1) + ... + a[N] z**(-N)

then the partial-fraction expansion H(z) is defined as:
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r[0] r[-1]
= --------------- + ... + ---------------- + k[0] + k[1]z**(-1) ...

(1-p[0]z**(-1)) (1-p[-1]z**(-1))

If there are any repeated roots (closer than tol), then the partial fraction expansion has terms like:

r[i] r[i+1] r[i+n-1]
-------------- + ------------------ + ... + ------------------
(1-p[i]z**(-1)) (1-p[i]z**(-1))**2 (1-p[i]z**(-1))**n

This function is used for polynomials in negative powers of z, such as digital filters in DSP. For positive powers,
use residue.

Parameters

b [array_like] Numerator polynomial coefficients.
a [array_like] Denominator polynomial coefficients.

Returns

r [ndarray] Residues.
p [ndarray] Poles.
k [ndarray] Coefficients of the direct polynomial term.

See also:
invresz, residue, unique_roots

scipy.signal.invres

scipy.signal.invres(r, p, k, tol=0.001, rtype=’avg’)
Compute b(s) and a(s) from partial fraction expansion.
If M is the degree of numerator b and N the degree of denominator a:

b(s) b[0] s**(M) + b[1] s**(M-1) + ... + b[M]
H(s) = ------ = ------------------------------------------

a(s) a[0] s**(N) + a[1] s**(N-1) + ... + a[N]

then the partial-fraction expansion H(s) is defined as:

r[0] r[1] r[-1]
= -------- + -------- + ... + --------- + k(s)

(s-p[0]) (s-p[1]) (s-p[-1])

If there are any repeated roots (closer together than tol), then H(s) has terms like:

r[i] r[i+1] r[i+n-1]
-------- + ----------- + ... + -----------
(s-p[i]) (s-p[i])**2 (s-p[i])**n

This function is used for polynomials in positive powers of s or z, such as analog filters or digital filters in controls
engineering. For negative powers of z (typical for digital filters in DSP), use invresz.

Parameters

r [array_like] Residues.
p [array_like] Poles.
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k [array_like] Coefficients of the direct polynomial term.
tol [float, optional] The tolerance for two roots to be considered equal. Default is 1e-3.
rtype [{‘max’, ‘min, ‘avg’}, optional] How to determine the returned root if multiple roots are

within tol of each other.
• ‘max’: pick the maximum of those roots.
• ‘min’: pick the minimum of those roots.
• ‘avg’: take the average of those roots.

Returns

b [ndarray] Numerator polynomial coefficients.
a [ndarray] Denominator polynomial coefficients.

See also:
residue, invresz, unique_roots

scipy.signal.invresz

scipy.signal.invresz(r, p, k, tol=0.001, rtype=’avg’)
Compute b(z) and a(z) from partial fraction expansion.
If M is the degree of numerator b and N the degree of denominator a:

b(z) b[0] + b[1] z**(-1) + ... + b[M] z**(-M)
H(z) = ------ = ------------------------------------------

a(z) a[0] + a[1] z**(-1) + ... + a[N] z**(-N)

then the partial-fraction expansion H(z) is defined as:

r[0] r[-1]
= --------------- + ... + ---------------- + k[0] + k[1]z**(-1) ...

(1-p[0]z**(-1)) (1-p[-1]z**(-1))

If there are any repeated roots (closer than tol), then the partial fraction expansion has terms like:

r[i] r[i+1] r[i+n-1]
-------------- + ------------------ + ... + ------------------
(1-p[i]z**(-1)) (1-p[i]z**(-1))**2 (1-p[i]z**(-1))**n

This function is used for polynomials in negative powers of z, such as digital filters in DSP. For positive powers,
use invres.

Parameters

r [array_like] Residues.
p [array_like] Poles.
k [array_like] Coefficients of the direct polynomial term.
tol [float, optional] The tolerance for two roots to be considered equal. Default is 1e-3.
rtype [{‘max’, ‘min, ‘avg’}, optional] How to determine the returned root if multiple roots are

within tol of each other.
• ‘max’: pick the maximum of those roots.
• ‘min’: pick the minimum of those roots.
• ‘avg’: take the average of those roots.

Returns

b [ndarray] Numerator polynomial coefficients.
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a [ndarray] Denominator polynomial coefficients.
See also:
residuez, unique_roots, invres

scipy.signal.BadCoefficients

exception scipy.signal.BadCoefficients
Warning about badly conditioned filter coefficients
with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.
Lower-level filter design functions:

abcd_normalize([A, B, C, D]) Check state-space matrices and ensure they are two-
dimensional.

band_stop_obj(wp, ind, passb, stopb, gpass, …) Band Stop Objective Function for order minimization.
besselap(N[, norm]) Return (z,p,k) for analog prototype of an Nth-order

Bessel filter.
buttap(N) Return (z,p,k) for analog prototype of Nth-order Butter-

worth filter.
cheb1ap(N, rp) Return (z,p,k) for Nth-order Chebyshev type I analog low-

pass filter.
cheb2ap(N, rs) Return (z,p,k) for Nth-order Chebyshev type I analog low-

pass filter.
cmplx_sort(p) Sort roots based on magnitude.
ellipap(N, rp, rs) Return (z,p,k) of Nth-order elliptic analog lowpass filter.
lp2bp(b, a[, wo, bw]) Transform a lowpass filter prototype to a bandpass filter.
lp2bp_zpk(z, p, k[, wo, bw]) Transform a lowpass filter prototype to a bandpass filter.
lp2bs(b, a[, wo, bw]) Transform a lowpass filter prototype to a bandstop filter.
lp2bs_zpk(z, p, k[, wo, bw]) Transform a lowpass filter prototype to a bandstop filter.
lp2hp(b, a[, wo]) Transform a lowpass filter prototype to a highpass filter.
lp2hp_zpk(z, p, k[, wo]) Transform a lowpass filter prototype to a highpass filter.
lp2lp(b, a[, wo]) Transform a lowpass filter prototype to a different fre-

quency.
lp2lp_zpk(z, p, k[, wo]) Transform a lowpass filter prototype to a different fre-

quency.
normalize(b, a) Normalize numerator/denominator of a continuous-time

transfer function.

scipy.signal.abcd_normalize

scipy.signal.abcd_normalize(A=None, B=None, C=None, D=None)
Check state-space matrices and ensure they are two-dimensional.
If enough information on the system is provided, that is, enough properly-shaped arrays are passed to the function,
the missing ones are built from this information, ensuring the correct number of rows and columns. Otherwise a
ValueError is raised.

Parameters

A, B, C, D [array_like, optional] State-space matrices. All of them are None (missing) by default. See
ss2tf for format.
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Returns

A, B, C, D [array] Properly shaped state-space matrices.
Raises

ValueError
If not enough information on the system was provided.

scipy.signal.band_stop_obj

scipy.signal.band_stop_obj(wp, ind, passb, stopb, gpass, gstop, type)
Band Stop Objective Function for order minimization.
Returns the non-integer order for an analog band stop filter.

Parameters

wp [scalar] Edge of passband passb.
ind [int, {0, 1}] Index specifying which passb edge to vary (0 or 1).
passb [ndarray] Two element sequence of fixed passband edges.
stopb [ndarray] Two element sequence of fixed stopband edges.
gstop [float] Amount of attenuation in stopband in dB.
gpass [float] Amount of ripple in the passband in dB.
type [{‘butter’, ‘cheby’, ‘ellip’}] Type of filter.

Returns

n [scalar] Filter order (possibly non-integer).

scipy.signal.besselap

scipy.signal.besselap(N, norm=’phase’)
Return (z,p,k) for analog prototype of an Nth-order Bessel filter.

Parameters

N [int] The order of the filter.
norm [{‘phase’, ‘delay’, ‘mag’}, optional] Frequency normalization:

phase The filter is normalized such that the phase response reaches its midpoint at an
angular (e.g. rad/s) cutoff frequency of 1. This happens for both low-pass and
high-pass filters, so this is the “phase-matched” case. [6]
The magnitude response asymptotes are the same as a Butterworth filter of the
same order with a cutoff ofWn.
This is the default, and matches MATLAB’s implementation.

delay The filter is normalized such that the group delay in the passband is 1 (e.g. 1
second). This is the “natural” type obtained by solving Bessel polynomials

mag The filter is normalized such that the gain magnitude is -3 dB at angular fre-
quency 1. This is called “frequency normalization” by Bond. [1]

New in version 0.18.0.
Returns

z [ndarray] Zeros of the transfer function. Is always an empty array.
p [ndarray] Poles of the transfer function.
k [scalar] Gain of the transfer function. For phase-normalized, this is always 1.

See also:
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bessel

Filter design function using this prototype

Notes

To find the pole locations, approximate starting points are generated [2] for the zeros of the ordinary Bessel poly-
nomial [3], then the Aberth-Ehrlich method [4] [5] is used on the Kv(x) Bessel function to calculate more accurate
zeros, and these locations are then inverted about the unit circle.

References

[1], [2], [3], [4], [5], [6]

scipy.signal.buttap

scipy.signal.buttap(N)
Return (z,p,k) for analog prototype of Nth-order Butterworth filter.
The filter will have an angular (e.g. rad/s) cutoff frequency of 1.
See also:

butter

Filter design function using this prototype

scipy.signal.cheb1ap

scipy.signal.cheb1ap(N, rp)
Return (z,p,k) for Nth-order Chebyshev type I analog lowpass filter.
The returned filter prototype has rp decibels of ripple in the passband.
The filter’s angular (e.g. rad/s) cutoff frequency is normalized to 1, defined as the point at which the gain first drops
below -rp.
See also:

cheby1

Filter design function using this prototype

scipy.signal.cheb2ap

scipy.signal.cheb2ap(N, rs)
Return (z,p,k) for Nth-order Chebyshev type I analog lowpass filter.
The returned filter prototype has rs decibels of ripple in the stopband.
The filter’s angular (e.g. rad/s) cutoff frequency is normalized to 1, defined as the point at which the gain first
reaches -rs.
See also:
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cheby2

Filter design function using this prototype

scipy.signal.cmplx_sort

scipy.signal.cmplx_sort(p)
Sort roots based on magnitude.

Parameters

p [array_like] The roots to sort, as a 1-D array.
Returns

p_sorted [ndarray] Sorted roots.
indx [ndarray] Array of indices needed to sort the input p.

Examples

>>> from scipy import signal
>>> vals = [1, 4, 1+1.j, 3]
>>> p_sorted, indx = signal.cmplx_sort(vals)
>>> p_sorted
array([1.+0.j, 1.+1.j, 3.+0.j, 4.+0.j])
>>> indx
array([0, 2, 3, 1])

scipy.signal.ellipap

scipy.signal.ellipap(N, rp, rs)
Return (z,p,k) of Nth-order elliptic analog lowpass filter.
The filter is a normalized prototype that has rp decibels of ripple in the passband and a stopband rs decibels down.
The filter’s angular (e.g. rad/s) cutoff frequency is normalized to 1, defined as the point at which the gain first drops
below -rp.
See also:

ellip

Filter design function using this prototype

References

[1]
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scipy.signal.lp2bp

scipy.signal.lp2bp(b, a, wo=1.0, bw=1.0)
Transform a lowpass filter prototype to a bandpass filter.
Return an analog band-pass filter with center frequency wo and bandwidth bw from an analog low-pass filter pro-
totype with unity cutoff frequency, in transfer function (‘ba’) representation.

Parameters

b [array_like] Numerator polynomial coefficients.
a [array_like] Denominator polynomial coefficients.
wo [float] Desired passband center, as angular frequency (e.g. rad/s). Defaults to no change.
bw [float] Desired passband width, as angular frequency (e.g. rad/s). Defaults to 1.

Returns

b [array_like] Numerator polynomial coefficients of the transformed band-pass filter.
a [array_like] Denominator polynomial coefficients of the transformed band-pass filter.

See also:
lp2lp, lp2hp, lp2bs, bilinear, lp2bp_zpk

Notes

This is derived from the s-plane substitution

s→ s2 + ω0
2

s · BW

This is the “wideband” transformation, producing a passband with geometric (log frequency) symmetry about wo.

Examples

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> lp = signal.lti([1.0], [1.0, 1.0])
>>> bp = signal.lti(*signal.lp2bp(lp.num, lp.den))
>>> w, mag_lp, p_lp = lp.bode()
>>> w, mag_bp, p_bp = bp.bode(w)

>>> plt.plot(w, mag_lp, label='Lowpass')
>>> plt.plot(w, mag_bp, label='Bandpass')
>>> plt.semilogx()
>>> plt.grid()
>>> plt.xlabel('Frequency [rad/s]')
>>> plt.ylabel('Magnitude [dB]')
>>> plt.legend()
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scipy.signal.lp2bp_zpk

scipy.signal.lp2bp_zpk(z, p, k, wo=1.0, bw=1.0)
Transform a lowpass filter prototype to a bandpass filter.
Return an analog band-pass filter with center frequency wo and bandwidth bw from an analog low-pass filter pro-
totype with unity cutoff frequency, using zeros, poles, and gain (‘zpk’) representation.

Parameters

z [array_like] Zeros of the analog filter transfer function.
p [array_like] Poles of the analog filter transfer function.
k [float] System gain of the analog filter transfer function.
wo [float] Desired passband center, as angular frequency (e.g. rad/s). Defaults to no change.
bw [float] Desired passband width, as angular frequency (e.g. rad/s). Defaults to 1.

Returns

z [ndarray] Zeros of the transformed band-pass filter transfer function.
p [ndarray] Poles of the transformed band-pass filter transfer function.
k [float] System gain of the transformed band-pass filter.

See also:
lp2lp_zpk, lp2hp_zpk, lp2bs_zpk, bilinear, lp2bp

Notes

This is derived from the s-plane substitution

s→ s2 + ω0
2

s · BW

This is the “wideband” transformation, producing a passband with geometric (log frequency) symmetry about wo.
New in version 1.1.0.
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scipy.signal.lp2bs

scipy.signal.lp2bs(b, a, wo=1.0, bw=1.0)
Transform a lowpass filter prototype to a bandstop filter.
Return an analog band-stop filter with center frequency wo and bandwidth bw from an analog low-pass filter pro-
totype with unity cutoff frequency, in transfer function (‘ba’) representation.

Parameters

b [array_like] Numerator polynomial coefficients.
a [array_like] Denominator polynomial coefficients.
wo [float] Desired stopband center, as angular frequency (e.g. rad/s). Defaults to no change.
bw [float] Desired stopband width, as angular frequency (e.g. rad/s). Defaults to 1.

Returns

b [array_like] Numerator polynomial coefficients of the transformed band-stop filter.
a [array_like] Denominator polynomial coefficients of the transformed band-stop filter.

See also:
lp2lp, lp2hp, lp2bp, bilinear, lp2bs_zpk

Notes

This is derived from the s-plane substitution

s→ s · BW
s2 + ω0

2

This is the “wideband” transformation, producing a stopband with geometric (log frequency) symmetry about wo.

Examples

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> lp = signal.lti([1.0], [1.0, 1.5])
>>> bs = signal.lti(*signal.lp2bs(lp.num, lp.den))
>>> w, mag_lp, p_lp = lp.bode()
>>> w, mag_bs, p_bs = bs.bode(w)
>>> plt.plot(w, mag_lp, label='Lowpass')
>>> plt.plot(w, mag_bs, label='Bandstop')
>>> plt.semilogx()
>>> plt.grid()
>>> plt.xlabel('Frequency [rad/s]')
>>> plt.ylabel('Magnitude [dB]')
>>> plt.legend()

scipy.signal.lp2bs_zpk

scipy.signal.lp2bs_zpk(z, p, k, wo=1.0, bw=1.0)
Transform a lowpass filter prototype to a bandstop filter.
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Return an analog band-stop filter with center frequency wo and stopband width bw from an analog low-pass filter
prototype with unity cutoff frequency, using zeros, poles, and gain (‘zpk’) representation.

Parameters

z [array_like] Zeros of the analog filter transfer function.
p [array_like] Poles of the analog filter transfer function.
k [float] System gain of the analog filter transfer function.
wo [float] Desired stopband center, as angular frequency (e.g. rad/s). Defaults to no change.
bw [float] Desired stopband width, as angular frequency (e.g. rad/s). Defaults to 1.

Returns

z [ndarray] Zeros of the transformed band-stop filter transfer function.
p [ndarray] Poles of the transformed band-stop filter transfer function.
k [float] System gain of the transformed band-stop filter.

See also:
lp2lp_zpk, lp2hp_zpk, lp2bp_zpk, bilinear, lp2bs

Notes

This is derived from the s-plane substitution

s→ s · BW
s2 + ω0

2

This is the “wideband” transformation, producing a stopband with geometric (log frequency) symmetry about wo.
New in version 1.1.0.

scipy.signal.lp2hp

scipy.signal.lp2hp(b, a, wo=1.0)
Transform a lowpass filter prototype to a highpass filter.
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Return an analog high-pass filter with cutoff frequencywo from an analog low-pass filter prototype with unity cutoff
frequency, in transfer function (‘ba’) representation.

Parameters

b [array_like] Numerator polynomial coefficients.
a [array_like] Denominator polynomial coefficients.
wo [float] Desired cutoff, as angular frequency (e.g. rad/s). Defaults to no change.

Returns

b [array_like] Numerator polynomial coefficients of the transformed high-pass filter.
a [array_like] Denominator polynomial coefficients of the transformed high-pass filter.

See also:
lp2lp, lp2bp, lp2bs, bilinear, lp2hp_zpk

Notes

This is derived from the s-plane substitution

s→ ω0

s

This maintains symmetry of the lowpass and highpass responses on a logarithmic scale.

Examples

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> lp = signal.lti([1.0], [1.0, 1.0])
>>> hp = signal.lti(*signal.lp2hp(lp.num, lp.den))
>>> w, mag_lp, p_lp = lp.bode()
>>> w, mag_hp, p_hp = hp.bode(w)

>>> plt.plot(w, mag_lp, label='Lowpass')
>>> plt.plot(w, mag_hp, label='Highpass')
>>> plt.semilogx()
>>> plt.grid()
>>> plt.xlabel('Frequency [rad/s]')
>>> plt.ylabel('Magnitude [dB]')
>>> plt.legend()

scipy.signal.lp2hp_zpk

scipy.signal.lp2hp_zpk(z, p, k, wo=1.0)
Transform a lowpass filter prototype to a highpass filter.
Return an analog high-pass filter with cutoff frequencywo from an analog low-pass filter prototype with unity cutoff
frequency, using zeros, poles, and gain (‘zpk’) representation.

Parameters

z [array_like] Zeros of the analog filter transfer function.
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p [array_like] Poles of the analog filter transfer function.
k [float] System gain of the analog filter transfer function.
wo [float] Desired cutoff, as angular frequency (e.g. rad/s). Defaults to no change.

Returns

z [ndarray] Zeros of the transformed high-pass filter transfer function.
p [ndarray] Poles of the transformed high-pass filter transfer function.
k [float] System gain of the transformed high-pass filter.

See also:
lp2lp_zpk, lp2bp_zpk, lp2bs_zpk, bilinear, lp2hp

Notes

This is derived from the s-plane substitution

s→ ω0

s

This maintains symmetry of the lowpass and highpass responses on a logarithmic scale.
New in version 1.1.0.

scipy.signal.lp2lp

scipy.signal.lp2lp(b, a, wo=1.0)
Transform a lowpass filter prototype to a different frequency.
Return an analog low-pass filter with cutoff frequency wo from an analog low-pass filter prototype with unity cutoff
frequency, in transfer function (‘ba’) representation.

Parameters

b [array_like] Numerator polynomial coefficients.
a [array_like] Denominator polynomial coefficients.
wo [float] Desired cutoff, as angular frequency (e.g. rad/s). Defaults to no change.
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Returns

b [array_like] Numerator polynomial coefficients of the transformed low-pass filter.
a [array_like] Denominator polynomial coefficients of the transformed low-pass filter.

See also:
lp2hp, lp2bp, lp2bs, bilinear, lp2lp_zpk

Notes

This is derived from the s-plane substitution

s→ s

ω0

Examples

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> lp = signal.lti([1.0], [1.0, 1.0])
>>> lp2 = signal.lti(*signal.lp2lp(lp.num, lp.den, 2))
>>> w, mag_lp, p_lp = lp.bode()
>>> w, mag_lp2, p_lp2 = lp2.bode(w)

>>> plt.plot(w, mag_lp, label='Lowpass')
>>> plt.plot(w, mag_lp2, label='Transformed Lowpass')
>>> plt.semilogx()
>>> plt.grid()
>>> plt.xlabel('Frequency [rad/s]')
>>> plt.ylabel('Magnitude [dB]')
>>> plt.legend()

10 2 10 1 100 101

Frequency [rad/s]

20

15

10

5

0

M
ag

ni
tu

de
 [d

B]

Lowpass
Transformed Lowpass

6.21. Signal processing (scipy.signal) 1503



SciPy Reference Guide, Release 1.3.1

scipy.signal.lp2lp_zpk

scipy.signal.lp2lp_zpk(z, p, k, wo=1.0)
Transform a lowpass filter prototype to a different frequency.
Return an analog low-pass filter with cutoff frequency wo from an analog low-pass filter prototype with unity cutoff
frequency, using zeros, poles, and gain (‘zpk’) representation.

Parameters

z [array_like] Zeros of the analog filter transfer function.
p [array_like] Poles of the analog filter transfer function.
k [float] System gain of the analog filter transfer function.
wo [float] Desired cutoff, as angular frequency (e.g. rad/s). Defaults to no change.

Returns

z [ndarray] Zeros of the transformed low-pass filter transfer function.
p [ndarray] Poles of the transformed low-pass filter transfer function.
k [float] System gain of the transformed low-pass filter.

See also:
lp2hp_zpk, lp2bp_zpk, lp2bs_zpk, bilinear, lp2lp

Notes

This is derived from the s-plane substitution

s→ s

ω0

New in version 1.1.0.

scipy.signal.normalize

scipy.signal.normalize(b, a)
Normalize numerator/denominator of a continuous-time transfer function.
If values of b are too close to 0, they are removed. In that case, a BadCoefficients warning is emitted.

Parameters

b: array_like
Numerator of the transfer function. Can be a 2d array to normalize multiple transfer func-
tions.

a: array_like
Denominator of the transfer function. At most 1d.

Returns

num: array
The numerator of the normalized transfer function. At least a 1d array. A 2d-array if the
input num is a 2d array.

den: 1d-array
The denominator of the normalized transfer function.
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Notes

Coefficients for both the numerator and denominator should be specified in descending exponent order (e.g., s^2
+ 3s + 5 would be represented as [1, 3, 5]).

6.21.5 Matlab-style IIR filter design

butter(N, Wn[, btype, analog, output, fs]) Butterworth digital and analog filter design.
buttord(wp, ws, gpass, gstop[, analog, fs]) Butterworth filter order selection.
cheby1(N, rp, Wn[, btype, analog, output, fs]) Chebyshev type I digital and analog filter design.
cheb1ord(wp, ws, gpass, gstop[, analog, fs]) Chebyshev type I filter order selection.
cheby2(N, rs, Wn[, btype, analog, output, fs]) Chebyshev type II digital and analog filter design.
cheb2ord(wp, ws, gpass, gstop[, analog, fs]) Chebyshev type II filter order selection.
ellip(N, rp, rs, Wn[, btype, analog, output, fs]) Elliptic (Cauer) digital and analog filter design.
ellipord(wp, ws, gpass, gstop[, analog, fs]) Elliptic (Cauer) filter order selection.
bessel(N, Wn[, btype, analog, output, norm, fs]) Bessel/Thomson digital and analog filter design.
iirnotch(w0, Q[, fs]) Design second-order IIR notch digital filter.
iirpeak(w0, Q[, fs]) Design second-order IIR peak (resonant) digital filter.

scipy.signal.butter

scipy.signal.butter(N,Wn, btype=’low’, analog=False, output=’ba’, fs=None)
Butterworth digital and analog filter design.
Design an Nth-order digital or analog Butterworth filter and return the filter coefficients.

Parameters

N [int] The order of the filter.
Wn [array_like] A scalar or length-2 sequence giving the critical frequencies. For a Butterworth

filter, this is the point at which the gain drops to 1/sqrt(2) that of the passband (the “-3 dB
point”).
For digital filters, Wn are in the same units as fs. By default, fs is 2 half-cycles/sample, so
these are normalized from 0 to 1, where 1 is the Nyquist frequency. (Wn is thus in half-cycles
/ sample.)
For analog filters,Wn is an angular frequency (e.g. rad/s).

btype [{‘lowpass’, ‘highpass’, ‘bandpass’, ‘bandstop’}, optional] The type of filter. Default is ‘low-
pass’.

analog [bool, optional] When True, return an analog filter, otherwise a digital filter is returned.
output [{‘ba’, ‘zpk’, ‘sos’}, optional] Type of output: numerator/denominator (‘ba’), pole-zero

(‘zpk’), or second-order sections (‘sos’). Default is ‘ba’.
fs [float, optional] The sampling frequency of the digital system.

New in version 1.2.0.
Returns

b, a [ndarray, ndarray] Numerator (b) and denominator (a) polynomials of the IIR filter. Only
returned if output='ba'.

z, p, k [ndarray, ndarray, float] Zeros, poles, and system gain of the IIR filter transfer function. Only
returned if output='zpk'.

sos [ndarray] Second-order sections representation of the IIR filter. Only returned if
output=='sos'.
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See also:
buttord, buttap

Notes

The Butterworth filter has maximally flat frequency response in the passband.
The 'sos' output parameter was added in 0.16.0.

Examples

Design an analog filter and plot its frequency response, showing the critical points:

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> b, a = signal.butter(4, 100, 'low', analog=True)
>>> w, h = signal.freqs(b, a)
>>> plt.semilogx(w, 20 * np.log10(abs(h)))
>>> plt.title('Butterworth filter frequency response')
>>> plt.xlabel('Frequency [radians / second]')
>>> plt.ylabel('Amplitude [dB]')
>>> plt.margins(0, 0.1)
>>> plt.grid(which='both', axis='both')
>>> plt.axvline(100, color='green') # cutoff frequency
>>> plt.show()
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Generate a signal made up of 10 Hz and 20 Hz, sampled at 1 kHz

>>> t = np.linspace(0, 1, 1000, False) # 1 second
>>> sig = np.sin(2*np.pi*10*t) + np.sin(2*np.pi*20*t)
>>> fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True)

(continues on next page)
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(continued from previous page)
>>> ax1.plot(t, sig)
>>> ax1.set_title('10 Hz and 20 Hz sinusoids')
>>> ax1.axis([0, 1, -2, 2])

Design a digital high-pass filter at 15 Hz to remove the 10 Hz tone, and apply it to the signal. (It’s recommended to
use second-order sections format when filtering, to avoid numerical error with transfer function (ba) format):

>>> sos = signal.butter(10, 15, 'hp', fs=1000, output='sos')
>>> filtered = signal.sosfilt(sos, sig)
>>> ax2.plot(t, filtered)
>>> ax2.set_title('After 15 Hz high-pass filter')
>>> ax2.axis([0, 1, -2, 2])
>>> ax2.set_xlabel('Time [seconds]')
>>> plt.tight_layout()
>>> plt.show()
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scipy.signal.buttord

scipy.signal.buttord(wp, ws, gpass, gstop, analog=False, fs=None)
Butterworth filter order selection.
Return the order of the lowest order digital or analog Butterworth filter that loses no more than gpass dB in the
passband and has at least gstop dB attenuation in the stopband.

Parameters

wp, ws [float] Passband and stopband edge frequencies.
For digital filters, these are in the same units as fs. By default, fs is 2 half-cycles/sample, so
these are normalized from 0 to 1, where 1 is the Nyquist frequency. (wp and ws are thus in
half-cycles / sample.) For example:
• Lowpass: wp = 0.2, ws = 0.3
• Highpass: wp = 0.3, ws = 0.2
• Bandpass: wp = [0.2, 0.5], ws = [0.1, 0.6]
• Bandstop: wp = [0.1, 0.6], ws = [0.2, 0.5]
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For analog filters, wp and ws are angular frequencies (e.g. rad/s).
gpass [float] The maximum loss in the passband (dB).
gstop [float] The minimum attenuation in the stopband (dB).
analog [bool, optional] When True, return an analog filter, otherwise a digital filter is returned.
fs [float, optional] The sampling frequency of the digital system.

New in version 1.2.0.
Returns

ord [int] The lowest order for a Butterworth filter which meets specs.
wn [ndarray or float] The Butterworth natural frequency (i.e. the “3dB frequency”). Should be

used with butter to give filter results. If fs is specified, this is in the same units, and fs
must also be passed to butter.

See also:

butter

Filter design using order and critical points
cheb1ord

Find order and critical points from passband and stopband spec

cheb2ord, ellipord
iirfilter

General filter design using order and critical frequencies
iirdesign

General filter design using passband and stopband spec

Examples

Design an analog bandpass filter with passband within 3 dB from 20 to 50 rad/s, while rejecting at least -40 dB
below 14 and above 60 rad/s. Plot its frequency response, showing the passband and stopband constraints in gray.

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> N, Wn = signal.buttord([20, 50], [14, 60], 3, 40, True)
>>> b, a = signal.butter(N, Wn, 'band', True)
>>> w, h = signal.freqs(b, a, np.logspace(1, 2, 500))
>>> plt.semilogx(w, 20 * np.log10(abs(h)))
>>> plt.title('Butterworth bandpass filter fit to constraints')
>>> plt.xlabel('Frequency [radians / second]')
>>> plt.ylabel('Amplitude [dB]')
>>> plt.grid(which='both', axis='both')
>>> plt.fill([1, 14, 14, 1], [-40, -40, 99, 99], '0.9', lw=0) # stop
>>> plt.fill([20, 20, 50, 50], [-99, -3, -3, -99], '0.9', lw=0) # pass
>>> plt.fill([60, 60, 1e9, 1e9], [99, -40, -40, 99], '0.9', lw=0) # stop
>>> plt.axis([10, 100, -60, 3])
>>> plt.show()

1508 Chapter 6. API Reference



SciPy Reference Guide, Release 1.3.1

101 1022 × 101 3 × 1014 × 101 6 × 101

Frequency [radians / second]

60

50

40

30

20

10

0

Am
pl

itu
de

 [d
B]

Butterworth bandpass filter fit to constraints

scipy.signal.cheby1

scipy.signal.cheby1(N, rp,Wn, btype=’low’, analog=False, output=’ba’, fs=None)
Chebyshev type I digital and analog filter design.
Design an Nth-order digital or analog Chebyshev type I filter and return the filter coefficients.

Parameters

N [int] The order of the filter.
rp [float] The maximum ripple allowed below unity gain in the passband. Specified in decibels,

as a positive number.
Wn [array_like] A scalar or length-2 sequence giving the critical frequencies. For Type I filters,

this is the point in the transition band at which the gain first drops below -rp.
For digital filters, Wn are in the same units as fs. By default, fs is 2 half-cycles/sample, so
these are normalized from 0 to 1, where 1 is the Nyquist frequency. (Wn is thus in half-cycles
/ sample.)
For analog filters,Wn is an angular frequency (e.g. rad/s).

btype [{‘lowpass’, ‘highpass’, ‘bandpass’, ‘bandstop’}, optional] The type of filter. Default is ‘low-
pass’.

analog [bool, optional] When True, return an analog filter, otherwise a digital filter is returned.
output [{‘ba’, ‘zpk’, ‘sos’}, optional] Type of output: numerator/denominator (‘ba’), pole-zero

(‘zpk’), or second-order sections (‘sos’). Default is ‘ba’.
fs [float, optional] The sampling frequency of the digital system.

New in version 1.2.0.
Returns

b, a [ndarray, ndarray] Numerator (b) and denominator (a) polynomials of the IIR filter. Only
returned if output='ba'.

z, p, k [ndarray, ndarray, float] Zeros, poles, and system gain of the IIR filter transfer function. Only
returned if output='zpk'.

sos [ndarray] Second-order sections representation of the IIR filter. Only returned if
output=='sos'.

See also:
cheb1ord, cheb1ap
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Notes

The Chebyshev type I filter maximizes the rate of cutoff between the frequency response’s passband and stopband,
at the expense of ripple in the passband and increased ringing in the step response.
Type I filters roll off faster than Type II (cheby2), but Type II filters do not have any ripple in the passband.
The equiripple passband has N maxima or minima (for example, a 5th-order filter has 3 maxima and 2 minima).
Consequently, the DC gain is unity for odd-order filters, or -rp dB for even-order filters.
The 'sos' output parameter was added in 0.16.0.

Examples

Design an analog filter and plot its frequency response, showing the critical points:

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> b, a = signal.cheby1(4, 5, 100, 'low', analog=True)
>>> w, h = signal.freqs(b, a)
>>> plt.semilogx(w, 20 * np.log10(abs(h)))
>>> plt.title('Chebyshev Type I frequency response (rp=5)')
>>> plt.xlabel('Frequency [radians / second]')
>>> plt.ylabel('Amplitude [dB]')
>>> plt.margins(0, 0.1)
>>> plt.grid(which='both', axis='both')
>>> plt.axvline(100, color='green') # cutoff frequency
>>> plt.axhline(-5, color='green') # rp
>>> plt.show()
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Generate a signal made up of 10 Hz and 20 Hz, sampled at 1 kHz
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>>> t = np.linspace(0, 1, 1000, False) # 1 second
>>> sig = np.sin(2*np.pi*10*t) + np.sin(2*np.pi*20*t)
>>> fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True)
>>> ax1.plot(t, sig)
>>> ax1.set_title('10 Hz and 20 Hz sinusoids')
>>> ax1.axis([0, 1, -2, 2])

Design a digital high-pass filter at 15 Hz to remove the 10 Hz tone, and apply it to the signal. (It’s recommended to
use second-order sections format when filtering, to avoid numerical error with transfer function (ba) format):

>>> sos = signal.cheby1(10, 1, 15, 'hp', fs=1000, output='sos')
>>> filtered = signal.sosfilt(sos, sig)
>>> ax2.plot(t, filtered)
>>> ax2.set_title('After 15 Hz high-pass filter')
>>> ax2.axis([0, 1, -2, 2])
>>> ax2.set_xlabel('Time [seconds]')
>>> plt.tight_layout()
>>> plt.show()
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scipy.signal.cheb1ord

scipy.signal.cheb1ord(wp, ws, gpass, gstop, analog=False, fs=None)
Chebyshev type I filter order selection.
Return the order of the lowest order digital or analog Chebyshev Type I filter that loses no more than gpass dB in
the passband and has at least gstop dB attenuation in the stopband.

Parameters

wp, ws [float] Passband and stopband edge frequencies.
For digital filters, these are in the same units as fs. By default, fs is 2 half-cycles/sample, so
these are normalized from 0 to 1, where 1 is the Nyquist frequency. (wp and ws are thus in
half-cycles / sample.) For example:
• Lowpass: wp = 0.2, ws = 0.3
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• Highpass: wp = 0.3, ws = 0.2
• Bandpass: wp = [0.2, 0.5], ws = [0.1, 0.6]
• Bandstop: wp = [0.1, 0.6], ws = [0.2, 0.5]
For analog filters, wp and ws are angular frequencies (e.g. rad/s).

gpass [float] The maximum loss in the passband (dB).
gstop [float] The minimum attenuation in the stopband (dB).
analog [bool, optional] When True, return an analog filter, otherwise a digital filter is returned.
fs [float, optional] The sampling frequency of the digital system.

New in version 1.2.0.
Returns

ord [int] The lowest order for a Chebyshev type I filter that meets specs.
wn [ndarray or float] The Chebyshev natural frequency (the “3dB frequency”) for use with

cheby1 to give filter results. If fs is specified, this is in the same units, and fs must also be
passed to cheby1.

See also:

cheby1

Filter design using order and critical points
buttord

Find order and critical points from passband and stopband spec

cheb2ord, ellipord
iirfilter

General filter design using order and critical frequencies
iirdesign

General filter design using passband and stopband spec

Examples

Design a digital lowpass filter such that the passband is within 3 dB up to 0.2*(fs/2), while rejecting at least -40 dB
above 0.3*(fs/2). Plot its frequency response, showing the passband and stopband constraints in gray.

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> N, Wn = signal.cheb1ord(0.2, 0.3, 3, 40)
>>> b, a = signal.cheby1(N, 3, Wn, 'low')
>>> w, h = signal.freqz(b, a)
>>> plt.semilogx(w / np.pi, 20 * np.log10(abs(h)))
>>> plt.title('Chebyshev I lowpass filter fit to constraints')
>>> plt.xlabel('Normalized frequency')
>>> plt.ylabel('Amplitude [dB]')
>>> plt.grid(which='both', axis='both')
>>> plt.fill([.01, 0.2, 0.2, .01], [-3, -3, -99, -99], '0.9', lw=0) # stop
>>> plt.fill([0.3, 0.3, 2, 2], [ 9, -40, -40, 9], '0.9', lw=0) # pass
>>> plt.axis([0.08, 1, -60, 3])
>>> plt.show()
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scipy.signal.cheby2

scipy.signal.cheby2(N, rs,Wn, btype=’low’, analog=False, output=’ba’, fs=None)
Chebyshev type II digital and analog filter design.
Design an Nth-order digital or analog Chebyshev type II filter and return the filter coefficients.

Parameters

N [int] The order of the filter.
rs [float] Theminimum attenuation required in the stop band. Specified in decibels, as a positive

number.
Wn [array_like] A scalar or length-2 sequence giving the critical frequencies. For Type II filters,

this is the point in the transition band at which the gain first reaches -rs.
For digital filters, Wn are in the same units as fs. By default, fs is 2 half-cycles/sample, so
these are normalized from 0 to 1, where 1 is the Nyquist frequency. (Wn is thus in half-cycles
/ sample.)
For analog filters,Wn is an angular frequency (e.g. rad/s).

btype [{‘lowpass’, ‘highpass’, ‘bandpass’, ‘bandstop’}, optional] The type of filter. Default is ‘low-
pass’.

analog [bool, optional] When True, return an analog filter, otherwise a digital filter is returned.
output [{‘ba’, ‘zpk’, ‘sos’}, optional] Type of output: numerator/denominator (‘ba’), pole-zero

(‘zpk’), or second-order sections (‘sos’). Default is ‘ba’.
fs [float, optional] The sampling frequency of the digital system.

New in version 1.2.0.
Returns

b, a [ndarray, ndarray] Numerator (b) and denominator (a) polynomials of the IIR filter. Only
returned if output='ba'.

z, p, k [ndarray, ndarray, float] Zeros, poles, and system gain of the IIR filter transfer function. Only
returned if output='zpk'.

sos [ndarray] Second-order sections representation of the IIR filter. Only returned if
output=='sos'.

See also:
cheb2ord, cheb2ap
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Notes

The Chebyshev type II filter maximizes the rate of cutoff between the frequency response’s passband and stopband,
at the expense of ripple in the stopband and increased ringing in the step response.
Type II filters do not roll off as fast as Type I (cheby1).
The 'sos' output parameter was added in 0.16.0.

Examples

Design an analog filter and plot its frequency response, showing the critical points:

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> b, a = signal.cheby2(4, 40, 100, 'low', analog=True)
>>> w, h = signal.freqs(b, a)
>>> plt.semilogx(w, 20 * np.log10(abs(h)))
>>> plt.title('Chebyshev Type II frequency response (rs=40)')
>>> plt.xlabel('Frequency [radians / second]')
>>> plt.ylabel('Amplitude [dB]')
>>> plt.margins(0, 0.1)
>>> plt.grid(which='both', axis='both')
>>> plt.axvline(100, color='green') # cutoff frequency
>>> plt.axhline(-40, color='green') # rs
>>> plt.show()
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Generate a signal made up of 10 Hz and 20 Hz, sampled at 1 kHz

>>> t = np.linspace(0, 1, 1000, False) # 1 second
>>> sig = np.sin(2*np.pi*10*t) + np.sin(2*np.pi*20*t)
>>> fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True)
>>> ax1.plot(t, sig)

(continues on next page)
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(continued from previous page)
>>> ax1.set_title('10 Hz and 20 Hz sinusoids')
>>> ax1.axis([0, 1, -2, 2])

Design a digital high-pass filter at 17 Hz to remove the 10 Hz tone, and apply it to the signal. (It’s recommended to
use second-order sections format when filtering, to avoid numerical error with transfer function (ba) format):

>>> sos = signal.cheby2(12, 20, 17, 'hp', fs=1000, output='sos')
>>> filtered = signal.sosfilt(sos, sig)
>>> ax2.plot(t, filtered)
>>> ax2.set_title('After 17 Hz high-pass filter')
>>> ax2.axis([0, 1, -2, 2])
>>> ax2.set_xlabel('Time [seconds]')
>>> plt.show()
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scipy.signal.cheb2ord

scipy.signal.cheb2ord(wp, ws, gpass, gstop, analog=False, fs=None)
Chebyshev type II filter order selection.
Return the order of the lowest order digital or analog Chebyshev Type II filter that loses no more than gpass dB in
the passband and has at least gstop dB attenuation in the stopband.

Parameters

wp, ws [float] Passband and stopband edge frequencies.
For digital filters, these are in the same units as fs. By default, fs is 2 half-cycles/sample, so
these are normalized from 0 to 1, where 1 is the Nyquist frequency. (wp and ws are thus in
half-cycles / sample.) For example:
• Lowpass: wp = 0.2, ws = 0.3
• Highpass: wp = 0.3, ws = 0.2
• Bandpass: wp = [0.2, 0.5], ws = [0.1, 0.6]
• Bandstop: wp = [0.1, 0.6], ws = [0.2, 0.5]
For analog filters, wp and ws are angular frequencies (e.g. rad/s).

gpass [float] The maximum loss in the passband (dB).
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gstop [float] The minimum attenuation in the stopband (dB).
analog [bool, optional] When True, return an analog filter, otherwise a digital filter is returned.
fs [float, optional] The sampling frequency of the digital system.

New in version 1.2.0.
Returns

ord [int] The lowest order for a Chebyshev type II filter that meets specs.
wn [ndarray or float] The Chebyshev natural frequency (the “3dB frequency”) for use with

cheby2 to give filter results. If fs is specified, this is in the same units, and fs must also be
passed to cheby2.

See also:

cheby2

Filter design using order and critical points
buttord

Find order and critical points from passband and stopband spec

cheb1ord, ellipord
iirfilter

General filter design using order and critical frequencies
iirdesign

General filter design using passband and stopband spec

Examples

Design a digital bandstop filter which rejects -60 dB from 0.2*(fs/2) to 0.5*(fs/2), while staying within 3 dB below
0.1*(fs/2) or above 0.6*(fs/2). Plot its frequency response, showing the passband and stopband constraints in gray.

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> N, Wn = signal.cheb2ord([0.1, 0.6], [0.2, 0.5], 3, 60)
>>> b, a = signal.cheby2(N, 60, Wn, 'stop')
>>> w, h = signal.freqz(b, a)
>>> plt.semilogx(w / np.pi, 20 * np.log10(abs(h)))
>>> plt.title('Chebyshev II bandstop filter fit to constraints')
>>> plt.xlabel('Normalized frequency')
>>> plt.ylabel('Amplitude [dB]')
>>> plt.grid(which='both', axis='both')
>>> plt.fill([.01, .1, .1, .01], [-3, -3, -99, -99], '0.9', lw=0) # stop
>>> plt.fill([.2, .2, .5, .5], [ 9, -60, -60, 9], '0.9', lw=0) # pass
>>> plt.fill([.6, .6, 2, 2], [-99, -3, -3, -99], '0.9', lw=0) # stop
>>> plt.axis([0.06, 1, -80, 3])
>>> plt.show()
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scipy.signal.ellip

scipy.signal.ellip(N, rp, rs,Wn, btype=’low’, analog=False, output=’ba’, fs=None)
Elliptic (Cauer) digital and analog filter design.
Design an Nth-order digital or analog elliptic filter and return the filter coefficients.

Parameters

N [int] The order of the filter.
rp [float] The maximum ripple allowed below unity gain in the passband. Specified in decibels,

as a positive number.
rs [float] Theminimum attenuation required in the stop band. Specified in decibels, as a positive

number.
Wn [array_like] A scalar or length-2 sequence giving the critical frequencies. For elliptic filters,

this is the point in the transition band at which the gain first drops below -rp.
For digital filters, Wn are in the same units as fs. By default, fs is 2 half-cycles/sample, so
these are normalized from 0 to 1, where 1 is the Nyquist frequency. (Wn is thus in half-cycles
/ sample.)
For analog filters,Wn is an angular frequency (e.g. rad/s).

btype [{‘lowpass’, ‘highpass’, ‘bandpass’, ‘bandstop’}, optional] The type of filter. Default is ‘low-
pass’.

analog [bool, optional] When True, return an analog filter, otherwise a digital filter is returned.
output [{‘ba’, ‘zpk’, ‘sos’}, optional] Type of output: numerator/denominator (‘ba’), pole-zero

(‘zpk’), or second-order sections (‘sos’). Default is ‘ba’.
fs [float, optional] The sampling frequency of the digital system.

New in version 1.2.0.
Returns

b, a [ndarray, ndarray] Numerator (b) and denominator (a) polynomials of the IIR filter. Only
returned if output='ba'.

z, p, k [ndarray, ndarray, float] Zeros, poles, and system gain of the IIR filter transfer function. Only
returned if output='zpk'.

sos [ndarray] Second-order sections representation of the IIR filter. Only returned if
output=='sos'.
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See also:
ellipord, ellipap

Notes

Also known as Cauer or Zolotarev filters, the elliptical filter maximizes the rate of transition between the frequency
response’s passband and stopband, at the expense of ripple in both, and increased ringing in the step response.
As rp approaches 0, the elliptical filter becomes a Chebyshev type II filter (cheby2). As rs approaches 0, it
becomes a Chebyshev type I filter (cheby1). As both approach 0, it becomes a Butterworth filter (butter).
The equiripple passband has N maxima or minima (for example, a 5th-order filter has 3 maxima and 2 minima).
Consequently, the DC gain is unity for odd-order filters, or -rp dB for even-order filters.
The 'sos' output parameter was added in 0.16.0.

Examples

Design an analog filter and plot its frequency response, showing the critical points:

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> b, a = signal.ellip(4, 5, 40, 100, 'low', analog=True)
>>> w, h = signal.freqs(b, a)
>>> plt.semilogx(w, 20 * np.log10(abs(h)))
>>> plt.title('Elliptic filter frequency response (rp=5, rs=40)')
>>> plt.xlabel('Frequency [radians / second]')
>>> plt.ylabel('Amplitude [dB]')
>>> plt.margins(0, 0.1)
>>> plt.grid(which='both', axis='both')
>>> plt.axvline(100, color='green') # cutoff frequency
>>> plt.axhline(-40, color='green') # rs
>>> plt.axhline(-5, color='green') # rp
>>> plt.show()

Generate a signal made up of 10 Hz and 20 Hz, sampled at 1 kHz

>>> t = np.linspace(0, 1, 1000, False) # 1 second
>>> sig = np.sin(2*np.pi*10*t) + np.sin(2*np.pi*20*t)
>>> fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True)
>>> ax1.plot(t, sig)
>>> ax1.set_title('10 Hz and 20 Hz sinusoids')
>>> ax1.axis([0, 1, -2, 2])

Design a digital high-pass filter at 17 Hz to remove the 10 Hz tone, and apply it to the signal. (It’s recommended to
use second-order sections format when filtering, to avoid numerical error with transfer function (ba) format):

>>> sos = signal.ellip(8, 1, 100, 17, 'hp', fs=1000, output='sos')
>>> filtered = signal.sosfilt(sos, sig)
>>> ax2.plot(t, filtered)
>>> ax2.set_title('After 17 Hz high-pass filter')
>>> ax2.axis([0, 1, -2, 2])

(continues on next page)
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(continued from previous page)
>>> ax2.set_xlabel('Time [seconds]')
>>> plt.tight_layout()
>>> plt.show()
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scipy.signal.ellipord

scipy.signal.ellipord(wp, ws, gpass, gstop, analog=False, fs=None)
Elliptic (Cauer) filter order selection.
Return the order of the lowest order digital or analog elliptic filter that loses no more than gpass dB in the passband
and has at least gstop dB attenuation in the stopband.

Parameters
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wp, ws [float] Passband and stopband edge frequencies.
For digital filters, these are in the same units as fs. By default, fs is 2 half-cycles/sample, so
these are normalized from 0 to 1, where 1 is the Nyquist frequency. (wp and ws are thus in
half-cycles / sample.) For example:
• Lowpass: wp = 0.2, ws = 0.3
• Highpass: wp = 0.3, ws = 0.2
• Bandpass: wp = [0.2, 0.5], ws = [0.1, 0.6]
• Bandstop: wp = [0.1, 0.6], ws = [0.2, 0.5]
For analog filters, wp and ws are angular frequencies (e.g. rad/s).

gpass [float] The maximum loss in the passband (dB).
gstop [float] The minimum attenuation in the stopband (dB).
analog [bool, optional] When True, return an analog filter, otherwise a digital filter is returned.
fs [float, optional] The sampling frequency of the digital system.

New in version 1.2.0.
Returns

ord [int] The lowest order for an Elliptic (Cauer) filter that meets specs.
wn [ndarray or float] The Chebyshev natural frequency (the “3dB frequency”) for use with

ellip to give filter results. If fs is specified, this is in the same units, and fs must also
be passed to ellip.

See also:

ellip

Filter design using order and critical points
buttord

Find order and critical points from passband and stopband spec

cheb1ord, cheb2ord
iirfilter

General filter design using order and critical frequencies
iirdesign

General filter design using passband and stopband spec

Examples

Design an analog highpass filter such that the passband is within 3 dB above 30 rad/s, while rejecting -60 dB at 10
rad/s. Plot its frequency response, showing the passband and stopband constraints in gray.

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> N, Wn = signal.ellipord(30, 10, 3, 60, True)
>>> b, a = signal.ellip(N, 3, 60, Wn, 'high', True)
>>> w, h = signal.freqs(b, a, np.logspace(0, 3, 500))
>>> plt.semilogx(w, 20 * np.log10(abs(h)))
>>> plt.title('Elliptical highpass filter fit to constraints')
>>> plt.xlabel('Frequency [radians / second]')
>>> plt.ylabel('Amplitude [dB]')

(continues on next page)
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(continued from previous page)
>>> plt.grid(which='both', axis='both')
>>> plt.fill([.1, 10, 10, .1], [1e4, 1e4, -60, -60], '0.9', lw=0) # stop
>>> plt.fill([30, 30, 1e9, 1e9], [-99, -3, -3, -99], '0.9', lw=0) # pass
>>> plt.axis([1, 300, -80, 3])
>>> plt.show()
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scipy.signal.bessel

scipy.signal.bessel(N,Wn, btype=’low’, analog=False, output=’ba’, norm=’phase’, fs=None)
Bessel/Thomson digital and analog filter design.
Design an Nth-order digital or analog Bessel filter and return the filter coefficients.

Parameters

N [int] The order of the filter.
Wn [array_like] A scalar or length-2 sequence giving the critical frequencies (defined by the norm

parameter). For analog filters,Wn is an angular frequency (e.g. rad/s).
For digital filters, Wn are in the same units as fs. By default, fs is 2 half-cycles/sample, so
these are normalized from 0 to 1, where 1 is the Nyquist frequency. (Wn is thus in half-cycles
/ sample.)

btype [{‘lowpass’, ‘highpass’, ‘bandpass’, ‘bandstop’}, optional] The type of filter. Default is ‘low-
pass’.

analog [bool, optional] When True, return an analog filter, otherwise a digital filter is returned. (See
Notes.)

output [{‘ba’, ‘zpk’, ‘sos’}, optional] Type of output: numerator/denominator (‘ba’), pole-zero
(‘zpk’), or second-order sections (‘sos’). Default is ‘ba’.

norm [{‘phase’, ‘delay’, ‘mag’}, optional] Critical frequency normalization:
phase The filter is normalized such that the phase response reaches its midpoint at

angular (e.g. rad/s) frequency Wn. This happens for both low-pass and high-
pass filters, so this is the “phase-matched” case.
The magnitude response asymptotes are the same as a Butterworth filter of the
same order with a cutoff ofWn.
This is the default, and matches MATLAB’s implementation.
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delay The filter is normalized such that the group delay in the passband is 1/Wn (e.g.
seconds). This is the “natural” type obtained by solving Bessel polynomials.

mag The filter is normalized such that the gain magnitude is -3 dB at angular fre-
quencyWn.

New in version 0.18.0.
fs [float, optional] The sampling frequency of the digital system.

New in version 1.2.0.
Returns

b, a [ndarray, ndarray] Numerator (b) and denominator (a) polynomials of the IIR filter. Only
returned if output='ba'.

z, p, k [ndarray, ndarray, float] Zeros, poles, and system gain of the IIR filter transfer function. Only
returned if output='zpk'.

sos [ndarray] Second-order sections representation of the IIR filter. Only returned if
output=='sos'.

Notes

Also known as a Thomson filter, the analog Bessel filter has maximally flat group delay and maximally linear phase
response, with very little ringing in the step response. [1]
The Bessel is inherently an analog filter. This function generates digital Bessel filters using the bilinear transform,
which does not preserve the phase response of the analog filter. As such, it is only approximately correct at fre-
quencies below about fs/4. To get maximally-flat group delay at higher frequencies, the analog Bessel filter must
be transformed using phase-preserving techniques.
See besselap for implementation details and references.
The 'sos' output parameter was added in 0.16.0.

References

[1]

Examples

Plot the phase-normalized frequency response, showing the relationship to the Butterworth’s cutoff frequency
(green):

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> b, a = signal.butter(4, 100, 'low', analog=True)
>>> w, h = signal.freqs(b, a)
>>> plt.semilogx(w, 20 * np.log10(np.abs(h)), color='silver', ls='dashed')
>>> b, a = signal.bessel(4, 100, 'low', analog=True, norm='phase')
>>> w, h = signal.freqs(b, a)
>>> plt.semilogx(w, 20 * np.log10(np.abs(h)))
>>> plt.title('Bessel filter magnitude response (with Butterworth)')
>>> plt.xlabel('Frequency [radians / second]')
>>> plt.ylabel('Amplitude [dB]')
>>> plt.margins(0, 0.1)

(continues on next page)
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(continued from previous page)
>>> plt.grid(which='both', axis='both')
>>> plt.axvline(100, color='green') # cutoff frequency
>>> plt.show()
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and the phase midpoint:

>>> plt.figure()
>>> plt.semilogx(w, np.unwrap(np.angle(h)))
>>> plt.axvline(100, color='green') # cutoff frequency
>>> plt.axhline(-np.pi, color='red') # phase midpoint
>>> plt.title('Bessel filter phase response')
>>> plt.xlabel('Frequency [radians / second]')
>>> plt.ylabel('Phase [radians]')
>>> plt.margins(0, 0.1)
>>> plt.grid(which='both', axis='both')
>>> plt.show()

Plot the magnitude-normalized frequency response, showing the -3 dB cutoff:

>>> b, a = signal.bessel(3, 10, 'low', analog=True, norm='mag')
>>> w, h = signal.freqs(b, a)
>>> plt.semilogx(w, 20 * np.log10(np.abs(h)))
>>> plt.axhline(-3, color='red') # -3 dB magnitude
>>> plt.axvline(10, color='green') # cutoff frequency
>>> plt.title('Magnitude-normalized Bessel filter frequency response')
>>> plt.xlabel('Frequency [radians / second]')
>>> plt.ylabel('Amplitude [dB]')
>>> plt.margins(0, 0.1)
>>> plt.grid(which='both', axis='both')
>>> plt.show()

Plot the delay-normalized filter, showing the maximally-flat group delay at 0.1 seconds:
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>>> b, a = signal.bessel(5, 1/0.1, 'low', analog=True, norm='delay')
>>> w, h = signal.freqs(b, a)
>>> plt.figure()
>>> plt.semilogx(w[1:], -np.diff(np.unwrap(np.angle(h)))/np.diff(w))
>>> plt.axhline(0.1, color='red') # 0.1 seconds group delay
>>> plt.title('Bessel filter group delay')
>>> plt.xlabel('Frequency [radians / second]')
>>> plt.ylabel('Group delay [seconds]')
>>> plt.margins(0, 0.1)
>>> plt.grid(which='both', axis='both')
>>> plt.show()
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scipy.signal.iirnotch

scipy.signal.iirnotch(w0, Q, fs=2.0)
Design second-order IIR notch digital filter.
A notch filter is a band-stop filter with a narrow bandwidth (high quality factor). It rejects a narrow frequency band
and leaves the rest of the spectrum little changed.

Parameters

w0 [float] Frequency to remove from a signal. If fs is specified, this is in the same units as
fs. By default, it is a normalized scalar that must satisfy 0 < w0 < 1, with w0 = 1
corresponding to half of the sampling frequency.

Q [float] Quality factor. Dimensionless parameter that characterizes notch filter -3 dB band-
width bw relative to its center frequency, Q = w0/bw.

fs [float, optional] The sampling frequency of the digital system.
New in version 1.2.0.

Returns

b, a [ndarray, ndarray] Numerator (b) and denominator (a) polynomials of the IIR filter.
See also:
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iirpeak

Notes

New in version 0.19.0.

References

[1]

Examples

Design and plot filter to remove the 60 Hz component from a signal sampled at 200 Hz, using a quality factor Q =
30

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> fs = 200.0 # Sample frequency (Hz)
>>> f0 = 60.0 # Frequency to be removed from signal (Hz)
>>> Q = 30.0 # Quality factor
>>> # Design notch filter
>>> b, a = signal.iirnotch(f0, Q, fs)

>>> # Frequency response
>>> freq, h = signal.freqz(b, a, fs=fs)
>>> # Plot
>>> fig, ax = plt.subplots(2, 1, figsize=(8, 6))
>>> ax[0].plot(freq, 20*np.log10(abs(h)), color='blue')
>>> ax[0].set_title("Frequency Response")
>>> ax[0].set_ylabel("Amplitude (dB)", color='blue')
>>> ax[0].set_xlim([0, 100])
>>> ax[0].set_ylim([-25, 10])
>>> ax[0].grid()
>>> ax[1].plot(freq, np.unwrap(np.angle(h))*180/np.pi, color='green')
>>> ax[1].set_ylabel("Angle (degrees)", color='green')
>>> ax[1].set_xlabel("Frequency (Hz)")
>>> ax[1].set_xlim([0, 100])
>>> ax[1].set_yticks([-90, -60, -30, 0, 30, 60, 90])
>>> ax[1].set_ylim([-90, 90])
>>> ax[1].grid()
>>> plt.show()

scipy.signal.iirpeak

scipy.signal.iirpeak(w0, Q, fs=2.0)
Design second-order IIR peak (resonant) digital filter.
A peak filter is a band-pass filter with a narrow bandwidth (high quality factor). It rejects components outside a
narrow frequency band.
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Parameters

w0 [float] Frequency to be retained in a signal. If fs is specified, this is in the same units as
fs. By default, it is a normalized scalar that must satisfy 0 < w0 < 1, with w0 = 1
corresponding to half of the sampling frequency.

Q [float] Quality factor. Dimensionless parameter that characterizes peak filter -3 dB bandwidth
bw relative to its center frequency, Q = w0/bw.

fs [float, optional] The sampling frequency of the digital system.
New in version 1.2.0.

Returns

b, a [ndarray, ndarray] Numerator (b) and denominator (a) polynomials of the IIR filter.
See also:
iirnotch

Notes

New in version 0.19.0.

References

[1]

Examples

Design and plot filter to remove the frequencies other than the 300 Hz component from a signal sampled at 1000
Hz, using a quality factor Q = 30

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> fs = 1000.0 # Sample frequency (Hz)
>>> f0 = 300.0 # Frequency to be retained (Hz)
>>> Q = 30.0 # Quality factor
>>> # Design peak filter
>>> b, a = signal.iirpeak(f0, Q, fs)

>>> # Frequency response
>>> freq, h = signal.freqz(b, a, fs=fs)
>>> # Plot
>>> fig, ax = plt.subplots(2, 1, figsize=(8, 6))
>>> ax[0].plot(freq, 20*np.log10(np.maximum(abs(h), 1e-5)), color='blue')
>>> ax[0].set_title("Frequency Response")
>>> ax[0].set_ylabel("Amplitude (dB)", color='blue')
>>> ax[0].set_xlim([0, 500])
>>> ax[0].set_ylim([-50, 10])
>>> ax[0].grid()
>>> ax[1].plot(freq, np.unwrap(np.angle(h))*180/np.pi, color='green')
>>> ax[1].set_ylabel("Angle (degrees)", color='green')
>>> ax[1].set_xlabel("Frequency (Hz)")

(continues on next page)
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(continued from previous page)
>>> ax[1].set_xlim([0, 500])
>>> ax[1].set_yticks([-90, -60, -30, 0, 30, 60, 90])
>>> ax[1].set_ylim([-90, 90])
>>> ax[1].grid()
>>> plt.show()
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6.21.6 Continuous-Time Linear Systems

lti(*system) Continuous-time linear time invariant system base class.
StateSpace(*system, **kwargs) Linear Time Invariant system in state-space form.
TransferFunction(*system, **kwargs) Linear Time Invariant system class in transfer function

form.
ZerosPolesGain(*system, **kwargs) Linear Time Invariant system class in zeros, poles, gain

form.
lsim(system, U, T[, X0, interp]) Simulate output of a continuous-time linear system.
lsim2(system[, U, T, X0]) Simulate output of a continuous-time linear system, by

using the ODE solver scipy.integrate.odeint.
impulse(system[, X0, T, N]) Impulse response of continuous-time system.

Continued on next page
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Table 153 – continued from previous page
impulse2(system[, X0, T, N]) Impulse response of a single-input, continuous-time lin-

ear system.
step(system[, X0, T, N]) Step response of continuous-time system.
step2(system[, X0, T, N]) Step response of continuous-time system.
freqresp(system[, w, n]) Calculate the frequency response of a continuous-time

system.
bode(system[, w, n]) Calculate Bode magnitude and phase data of a

continuous-time system.

scipy.signal.lti

class scipy.signal.lti(*system)
Continuous-time linear time invariant system base class.

Parameters

*system [arguments] The lti class can be instantiated with either 2, 3 or 4 arguments. The follow-
ing gives the number of arguments and the corresponding continuous-time subclass that is
created:
• 2: TransferFunction: (numerator, denominator)
• 3: ZerosPolesGain: (zeros, poles, gain)
• 4: StateSpace: (A, B, C, D)
Each argument can be an array or a sequence.

See also:
ZerosPolesGain, StateSpace, TransferFunction, dlti

Notes

lti instances do not exist directly. Instead, lti creates an instance of one of its subclasses: StateSpace,
TransferFunction or ZerosPolesGain.
If (numerator, denominator) is passed in for *system, coefficients for both the numerator and denominator should
be specified in descending exponent order (e.g., s^2 + 3s + 5 would be represented as [1, 3, 5]).
Changing the value of properties that are not directly part of the current system representation (such as the zeros
of a StateSpace system) is very inefficient and may lead to numerical inaccuracies. It is better to convert to the
specific system representation first. For example, call sys = sys.to_zpk() before accessing/changing the
zeros, poles or gain.

Examples

>>> from scipy import signal

>>> signal.lti(1, 2, 3, 4)
StateSpaceContinuous(
array([[1]]),
array([[2]]),
array([[3]]),
array([[4]]),
dt: None
)
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>>> signal.lti([1, 2], [3, 4], 5)
ZerosPolesGainContinuous(
array([1, 2]),
array([3, 4]),
5,
dt: None
)

>>> signal.lti([3, 4], [1, 2])
TransferFunctionContinuous(
array([3., 4.]),
array([1., 2.]),
dt: None
)

Attributes

dt Return the sampling time of the system, None for lti systems.
poles Poles of the system.
zeros Zeros of the system.

Methods

bode([w, n]) Calculate Bode magnitude and phase data of a
continuous-time system.

freqresp([w, n]) Calculate the frequency response of a continuous-time
system.

impulse([X0, T, N]) Return the impulse response of a continuous-time sys-
tem.

output(U, T[, X0]) Return the response of a continuous-time system to
input U.

step([X0, T, N]) Return the step response of a continuous-time system.
to_discrete(dt[, method, alpha]) Return a discretized version of the current system.

scipy.signal.lti.bode
lti.bode(w=None, n=100)

Calculate Bode magnitude and phase data of a continuous-time system.
Returns a 3-tuple containing arrays of frequencies [rad/s], magnitude [dB] and phase [deg]. See bode for
details.

Examples

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> sys = signal.TransferFunction([1], [1, 1])
>>> w, mag, phase = sys.bode()
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>>> plt.figure()
>>> plt.semilogx(w, mag) # Bode magnitude plot
>>> plt.figure()
>>> plt.semilogx(w, phase) # Bode phase plot
>>> plt.show()
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scipy.signal.lti.freqresp
lti.freqresp(w=None, n=10000)

Calculate the frequency response of a continuous-time system.
Returns a 2-tuple containing arrays of frequencies [rad/s] and complex magnitude. See freqresp for
details.
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scipy.signal.lti.impulse
lti.impulse(X0=None, T=None, N=None)

Return the impulse response of a continuous-time system. See impulse for details.

scipy.signal.lti.output
lti.output(U, T, X0=None)

Return the response of a continuous-time system to input U. See lsim for details.

scipy.signal.lti.step
lti.step(X0=None, T=None, N=None)

Return the step response of a continuous-time system. See step for details.

scipy.signal.lti.to_discrete
lti.to_discrete(dt, method=’zoh’, alpha=None)

Return a discretized version of the current system.
Parameters: See cont2discrete for details.

Returns

sys: instance of ‘dlti‘

scipy.signal.StateSpace

class scipy.signal.StateSpace(*system, **kwargs)
Linear Time Invariant system in state-space form.
Represents the system as the continuous-time, first order differential equation ẋ = Ax+ Bu or the discrete-time
difference equation x[k + 1] = Ax[k] + Bu[k]. StateSpace systems inherit additional functionality from the
lti, respectively the dlti classes, depending on which system representation is used.

Parameters

*system: arguments
The StateSpace class can be instantiated with 1 or 3 arguments. The following gives the
number of input arguments and their interpretation:
• 1: lti or dlti system: (StateSpace, TransferFunction or
ZerosPolesGain)

• 4: array_like: (A, B, C, D)
dt: float, optional

Sampling time [s] of the discrete-time systems. Defaults to None (continuous-time). Must
be specified as a keyword argument, for example, dt=0.1.

See also:
TransferFunction, ZerosPolesGain, lti, dlti, ss2zpk, ss2tf, zpk2sos

Notes

Changing the value of properties that are not part of the StateSpace system representation (such as zeros or
poles) is very inefficient and may lead to numerical inaccuracies. It is better to convert to the specific system
representation first. For example, call sys = sys.to_zpk() before accessing/changing the zeros, poles or
gain.
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Examples

>>> from scipy import signal

>>> a = np.array([[0, 1], [0, 0]])
>>> b = np.array([[0], [1]])
>>> c = np.array([[1, 0]])
>>> d = np.array([[0]])

>>> sys = signal.StateSpace(a, b, c, d)
>>> print(sys)
StateSpaceContinuous(
array([[0, 1],

[0, 0]]),
array([[0],

[1]]),
array([[1, 0]]),
array([[0]]),
dt: None
)

>>> sys.to_discrete(0.1)
StateSpaceDiscrete(
array([[1. , 0.1],

[0. , 1. ]]),
array([[0.005],

[0.1 ]]),
array([[1, 0]]),
array([[0]]),
dt: 0.1
)

>>> a = np.array([[1, 0.1], [0, 1]])
>>> b = np.array([[0.005], [0.1]])

>>> signal.StateSpace(a, b, c, d, dt=0.1)
StateSpaceDiscrete(
array([[1. , 0.1],

[0. , 1. ]]),
array([[0.005],

[0.1 ]]),
array([[1, 0]]),
array([[0]]),
dt: 0.1
)

Attributes

A State matrix of the StateSpace system.
B Input matrix of the StateSpace system.
C Output matrix of the StateSpace system.
D Feedthrough matrix of the StateSpace system.
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dt Return the sampling time of the system, None for lti systems.
poles Poles of the system.
zeros Zeros of the system.

Methods

__mul__(other) Post-multiply another system or a scalar
to_ss() Return a copy of the current StateSpace system.
to_tf(**kwargs) Convert system representation to

TransferFunction.
to_zpk(**kwargs) Convert system representation to

ZerosPolesGain.

scipy.signal.StateSpace.__mul__
StateSpace.__mul__(other)

Post-multiply another system or a scalar
Handles multiplication of systems in the sense of a frequency domain multiplication. That means, given
two systems E1(s) and E2(s), their multiplication, H(s) = E1(s) * E2(s), means that applying H(s) to U(s) is
equivalent to first applying E2(s), and then E1(s).

Notes

For SISO systems the order of system application does not matter. However, for MIMO systems, where the
two systems are matrices, the order above ensures standard Matrix multiplication rules apply.

scipy.signal.StateSpace.to_ss
StateSpace.to_ss()

Return a copy of the current StateSpace system.
Returns

sys [instance of StateSpace] The current system (copy)

scipy.signal.StateSpace.to_tf
StateSpace.to_tf(**kwargs)

Convert system representation to TransferFunction.
Parameters

kwargs [dict, optional] Additional keywords passed to ss2zpk
Returns

sys [instance of TransferFunction] Transfer function of the current system

scipy.signal.StateSpace.to_zpk
StateSpace.to_zpk(**kwargs)

Convert system representation to ZerosPolesGain.
Parameters

kwargs [dict, optional] Additional keywords passed to ss2zpk
Returns
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sys [instance of ZerosPolesGain] Zeros, poles, gain representation of the current sys-
tem

scipy.signal.TransferFunction

class scipy.signal.TransferFunction(*system, **kwargs)
Linear Time Invariant system class in transfer function form.
Represents the system as the continuous-time transfer function H(s) =

∑N
i=0 b[N − i]si/

∑M
j=0 a[M − j]sj

or the discrete-time transfer function H(s) =
∑N

i=0 b[N − i]zi/
∑M

j=0 a[M − j]zj , where b are elements of
the numerator num, a are elements of the denominator den, and N == len(b) - 1, M == len(a) -
1. TransferFunction systems inherit additional functionality from the lti, respectively the dlti classes,
depending on which system representation is used.

Parameters

*system: arguments
The TransferFunction class can be instantiated with 1 or 2 arguments. The following
gives the number of input arguments and their interpretation:
• 1: lti or dlti system: (StateSpace, TransferFunction or
ZerosPolesGain)

• 2: array_like: (numerator, denominator)
dt: float, optional

Sampling time [s] of the discrete-time systems. Defaults to None (continuous-time). Must
be specified as a keyword argument, for example, dt=0.1.

See also:
ZerosPolesGain, StateSpace, lti, dlti, tf2ss, tf2zpk, tf2sos

Notes

Changing the value of properties that are not part of the TransferFunction system representation (such as
the A, B, C,D state-space matrices) is very inefficient and may lead to numerical inaccuracies. It is better to convert
to the specific system representation first. For example, call sys = sys.to_ss() before accessing/changing
the A, B, C, D system matrices.
If (numerator, denominator) is passed in for *system, coefficients for both the numerator and denominator should
be specified in descending exponent order (e.g. s^2 + 3s + 5 or z^2 + 3z + 5 would be represented as
[1, 3, 5])

Examples

Construct the transfer function:

H(s) =
s2 + 3s+ 3

s2 + 2s+ 1

>>> from scipy import signal

>>> num = [1, 3, 3]
>>> den = [1, 2, 1]
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>>> signal.TransferFunction(num, den)
TransferFunctionContinuous(
array([1., 3., 3.]),
array([1., 2., 1.]),
dt: None
)

Construct the transfer function with a sampling time of 0.1 seconds:

H(z) =
z2 + 3z + 3

z2 + 2z + 1

>>> signal.TransferFunction(num, den, dt=0.1)
TransferFunctionDiscrete(
array([1., 3., 3.]),
array([1., 2., 1.]),
dt: 0.1
)

Attributes

den Denominator of the TransferFunction system.
dt Return the sampling time of the system, None for lti systems.
num Numerator of the TransferFunction system.
poles Poles of the system.
zeros Zeros of the system.

Methods

to_ss() Convert system representation to StateSpace.
to_tf() Return a copy of the current TransferFunction

system.
to_zpk() Convert system representation to

ZerosPolesGain.

scipy.signal.TransferFunction.to_ss
TransferFunction.to_ss()

Convert system representation to StateSpace.
Returns

sys [instance of StateSpace] State space model of the current system

scipy.signal.TransferFunction.to_tf
TransferFunction.to_tf()

Return a copy of the current TransferFunction system.
Returns

sys [instance of TransferFunction] The current system (copy)
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scipy.signal.TransferFunction.to_zpk
TransferFunction.to_zpk()

Convert system representation to ZerosPolesGain.
Returns

sys [instance of ZerosPolesGain] Zeros, poles, gain representation of the current sys-
tem

scipy.signal.ZerosPolesGain

class scipy.signal.ZerosPolesGain(*system, **kwargs)
Linear Time Invariant system class in zeros, poles, gain form.
Represents the system as the continuous- or discrete-time transfer functionH(s) = k

∏
i(s−z[i])/

∏
j(s−p[j]),

where k is the gain, z are the zeros and p are the poles. ZerosPolesGain systems inherit additional
functionality from the lti, respectively the dlti classes, depending on which system representation is used.

Parameters

*system [arguments] The ZerosPolesGain class can be instantiated with 1 or 3 arguments. The
following gives the number of input arguments and their interpretation:
• 1: lti or dlti system: (StateSpace, TransferFunction or
ZerosPolesGain)

• 3: array_like: (zeros, poles, gain)
dt: float, optional

Sampling time [s] of the discrete-time systems. Defaults to None (continuous-time). Must
be specified as a keyword argument, for example, dt=0.1.

See also:
TransferFunction, StateSpace, lti, dlti, zpk2ss, zpk2tf, zpk2sos

Notes

Changing the value of properties that are not part of the ZerosPolesGain system representation (such as the
A, B, C, D state-space matrices) is very inefficient and may lead to numerical inaccuracies. It is better to convert to
the specific system representation first. For example, call sys = sys.to_ss() before accessing/changing the
A, B, C, D system matrices.

Examples

>>> from scipy import signal

Transfer function: H(s) = 5(s - 1)(s - 2) / (s - 3)(s - 4)

>>> signal.ZerosPolesGain([1, 2], [3, 4], 5)
ZerosPolesGainContinuous(
array([1, 2]),
array([3, 4]),
5,
dt: None
)

Transfer function: H(z) = 5(z - 1)(z - 2) / (z - 3)(z - 4)
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>>> signal.ZerosPolesGain([1, 2], [3, 4], 5, dt=0.1)
ZerosPolesGainDiscrete(
array([1, 2]),
array([3, 4]),
5,
dt: 0.1
)

Attributes

dt Return the sampling time of the system, None for lti systems.
gain Gain of the ZerosPolesGain system.
poles Poles of the ZerosPolesGain system.
zeros Zeros of the ZerosPolesGain system.

Methods

to_ss() Convert system representation to StateSpace.
to_tf() Convert system representation to

TransferFunction.
to_zpk() Return a copy of the current ‘ZerosPolesGain’ system.

scipy.signal.ZerosPolesGain.to_ss
ZerosPolesGain.to_ss()

Convert system representation to StateSpace.
Returns

sys [instance of StateSpace] State space model of the current system

scipy.signal.ZerosPolesGain.to_tf
ZerosPolesGain.to_tf()

Convert system representation to TransferFunction.
Returns

sys [instance of TransferFunction] Transfer function of the current system

scipy.signal.ZerosPolesGain.to_zpk
ZerosPolesGain.to_zpk()

Return a copy of the current ‘ZerosPolesGain’ system.
Returns

sys [instance of ZerosPolesGain] The current system (copy)

scipy.signal.lsim

scipy.signal.lsim(system, U, T, X0=None, interp=True)
Simulate output of a continuous-time linear system.

Parameters
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system [an instance of the LTI class or a tuple describing the system.] The following gives the
number of elements in the tuple and the interpretation:
• 1: (instance of lti)
• 2: (num, den)
• 3: (zeros, poles, gain)
• 4: (A, B, C, D)

U [array_like] An input array describing the input at each time T (interpolation is assumed
between given times). If there are multiple inputs, then each column of the rank-2 array
represents an input. If U = 0 or None, a zero input is used.

T [array_like] The time steps at which the input is defined and at which the output is desired.
Must be nonnegative, increasing, and equally spaced.

X0 [array_like, optional] The initial conditions on the state vector (zero by default).
interp [bool, optional] Whether to use linear (True, the default) or zero-order-hold (False) interpo-

lation for the input array.
Returns

T [1D ndarray] Time values for the output.
yout [1D ndarray] System response.
xout [ndarray] Time evolution of the state vector.

Notes

If (num, den) is passed in for system, coefficients for both the numerator and denominator should be specified in
descending exponent order (e.g. s^2 + 3s + 5 would be represented as [1, 3, 5]).

Examples

Simulate a double integrator y’’ = u, with a constant input u = 1

>>> from scipy import signal
>>> system = signal.lti([[0., 1.], [0., 0.]], [[0.], [1.]], [[1., 0.]], 0.
↪→)
>>> t = np.linspace(0, 5)
>>> u = np.ones_like(t)
>>> tout, y, x = signal.lsim(system, u, t)
>>> import matplotlib.pyplot as plt
>>> plt.plot(t, y)

scipy.signal.lsim2

scipy.signal.lsim2(system, U=None, T=None, X0=None, **kwargs)
Simulate output of a continuous-time linear system, by using the ODE solver scipy.integrate.odeint.

Parameters

system [an instance of the lti class or a tuple describing the system.] The following gives the
number of elements in the tuple and the interpretation:
• 1: (instance of lti)
• 2: (num, den)
• 3: (zeros, poles, gain)
• 4: (A, B, C, D)
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U [array_like (1D or 2D), optional] An input array describing the input at each time T. Linear
interpolation is used between given times. If there are multiple inputs, then each column of
the rank-2 array represents an input. If U is not given, the input is assumed to be zero.

T [array_like (1D or 2D), optional] The time steps at which the input is defined and at which
the output is desired. The default is 101 evenly spaced points on the interval [0,10.0].

X0 [array_like (1D), optional] The initial condition of the state vector. If X0 is not given, the
initial conditions are assumed to be 0.

kwargs [dict] Additional keyword arguments are passed on to the function odeint. See the notes
below for more details.

Returns

T [1D ndarray] The time values for the output.
yout [ndarray] The response of the system.
xout [ndarray] The time-evolution of the state-vector.

Notes

This function uses scipy.integrate.odeint to solve the system’s differential equations. Additional key-
word arguments given to lsim2 are passed on to odeint. See the documentation for scipy.integrate.
odeint for the full list of arguments.
If (num, den) is passed in for system, coefficients for both the numerator and denominator should be specified in
descending exponent order (e.g. s^2 + 3s + 5 would be represented as [1, 3, 5]).

scipy.signal.impulse

scipy.signal.impulse(system, X0=None, T=None, N=None)
Impulse response of continuous-time system.

Parameters

system [an instance of the LTI class or a tuple of array_like] describing the system. The following
gives the number of elements in the tuple and the interpretation:
• 1 (instance of lti)
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• 2 (num, den)
• 3 (zeros, poles, gain)
• 4 (A, B, C, D)

X0 [array_like, optional] Initial state-vector. Defaults to zero.
T [array_like, optional] Time points. Computed if not given.
N [int, optional] The number of time points to compute (if T is not given).

Returns

T [ndarray] A 1-D array of time points.
yout [ndarray] A 1-D array containing the impulse response of the system (except for singularities

at zero).

Notes

If (num, den) is passed in for system, coefficients for both the numerator and denominator should be specified in
descending exponent order (e.g. s^2 + 3s + 5 would be represented as [1, 3, 5]).

Examples

Second order system with a repeated root: x’‘(t) + 2*x(t) + x(t) = u(t)

>>> from scipy import signal
>>> system = ([1.0], [1.0, 2.0, 1.0])
>>> t, y = signal.impulse2(system)
>>> import matplotlib.pyplot as plt
>>> plt.plot(t, y)
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scipy.signal.impulse2

scipy.signal.impulse2(system, X0=None, T=None, N=None, **kwargs)
Impulse response of a single-input, continuous-time linear system.
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Parameters

system [an instance of the LTI class or a tuple of array_like] describing the system. The following
gives the number of elements in the tuple and the interpretation:
• 1 (instance of lti)
• 2 (num, den)
• 3 (zeros, poles, gain)
• 4 (A, B, C, D)

X0 [1-D array_like, optional] The initial condition of the state vector. Default: 0 (the zero
vector).

T [1-D array_like, optional] The time steps at which the input is defined and at which the output
is desired. If T is not given, the function will generate a set of time samples automatically.

N [int, optional] Number of time points to compute. Default: 100.
kwargs [various types] Additional keyword arguments are passed on to the function scipy.

signal.lsim2, which in turn passes them on to scipy.integrate.odeint; see
the latter’s documentation for information about these arguments.

Returns

T [ndarray] The time values for the output.
yout [ndarray] The output response of the system.

See also:
impulse, lsim2, scipy.integrate.odeint

Notes

The solution is generated by calling scipy.signal.lsim2, which uses the differential equation solver
scipy.integrate.odeint.
If (num, den) is passed in for system, coefficients for both the numerator and denominator should be specified in
descending exponent order (e.g. s^2 + 3s + 5 would be represented as [1, 3, 5]).
New in version 0.8.0.

Examples

Second order system with a repeated root: x’‘(t) + 2*x(t) + x(t) = u(t)

>>> from scipy import signal
>>> system = ([1.0], [1.0, 2.0, 1.0])
>>> t, y = signal.impulse2(system)
>>> import matplotlib.pyplot as plt
>>> plt.plot(t, y)

scipy.signal.step

scipy.signal.step(system, X0=None, T=None, N=None)
Step response of continuous-time system.

Parameters

system [an instance of the LTI class or a tuple of array_like] describing the system. The following
gives the number of elements in the tuple and the interpretation:
• 1 (instance of lti)
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• 2 (num, den)
• 3 (zeros, poles, gain)
• 4 (A, B, C, D)

X0 [array_like, optional] Initial state-vector (default is zero).
T [array_like, optional] Time points (computed if not given).
N [int, optional] Number of time points to compute if T is not given.

Returns

T [1D ndarray] Output time points.
yout [1D ndarray] Step response of system.

See also:
scipy.signal.step2

Notes

If (num, den) is passed in for system, coefficients for both the numerator and denominator should be specified in
descending exponent order (e.g. s^2 + 3s + 5 would be represented as [1, 3, 5]).

Examples

>>> from scipy import signal
>>> import matplotlib.pyplot as plt
>>> lti = signal.lti([1.0], [1.0, 1.0])
>>> t, y = signal.step(lti)
>>> plt.plot(t, y)
>>> plt.xlabel('Time [s]')
>>> plt.ylabel('Amplitude')
>>> plt.title('Step response for 1. Order Lowpass')
>>> plt.grid()
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scipy.signal.step2

scipy.signal.step2(system, X0=None, T=None, N=None, **kwargs)
Step response of continuous-time system.
This function is functionally the same as scipy.signal.step, but it uses the function scipy.signal.
lsim2 to compute the step response.

Parameters

system [an instance of the LTI class or a tuple of array_like] describing the system. The following
gives the number of elements in the tuple and the interpretation:
• 1 (instance of lti)
• 2 (num, den)
• 3 (zeros, poles, gain)
• 4 (A, B, C, D)

X0 [array_like, optional] Initial state-vector (default is zero).
T [array_like, optional] Time points (computed if not given).
N [int, optional] Number of time points to compute if T is not given.
kwargs [various types] Additional keyword arguments are passed on the function scipy.

signal.lsim2, which in turn passes them on to scipy.integrate.odeint. See
the documentation for scipy.integrate.odeint for information about these argu-
ments.

Returns

T [1D ndarray] Output time points.
yout [1D ndarray] Step response of system.

See also:
scipy.signal.step

Notes

If (num, den) is passed in for system, coefficients for both the numerator and denominator should be specified in
descending exponent order (e.g. s^2 + 3s + 5 would be represented as [1, 3, 5]).
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New in version 0.8.0.

Examples

>>> from scipy import signal
>>> import matplotlib.pyplot as plt
>>> lti = signal.lti([1.0], [1.0, 1.0])
>>> t, y = signal.step2(lti)
>>> plt.plot(t, y)
>>> plt.xlabel('Time [s]')
>>> plt.ylabel('Amplitude')
>>> plt.title('Step response for 1. Order Lowpass')
>>> plt.grid()
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scipy.signal.freqresp

scipy.signal.freqresp(system, w=None, n=10000)
Calculate the frequency response of a continuous-time system.

Parameters

system [an instance of the lti class or a tuple describing the system.] The following gives the
number of elements in the tuple and the interpretation:
• 1 (instance of lti)
• 2 (num, den)
• 3 (zeros, poles, gain)
• 4 (A, B, C, D)

w [array_like, optional] Array of frequencies (in rad/s). Magnitude and phase data is calculated
for every value in this array. If not given, a reasonable set will be calculated.

n [int, optional] Number of frequency points to compute if w is not given. The n frequencies
are logarithmically spaced in an interval chosen to include the influence of the poles and
zeros of the system.

Returns
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w [1D ndarray] Frequency array [rad/s]
H [1D ndarray] Array of complex magnitude values

Notes

If (num, den) is passed in for system, coefficients for both the numerator and denominator should be specified in
descending exponent order (e.g. s^2 + 3s + 5 would be represented as [1, 3, 5]).

Examples

Generating the Nyquist plot of a transfer function

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

Transfer function: H(s) = 5 / (s-1)^3

>>> s1 = signal.ZerosPolesGain([], [1, 1, 1], [5])

>>> w, H = signal.freqresp(s1)

>>> plt.figure()
>>> plt.plot(H.real, H.imag, "b")
>>> plt.plot(H.real, -H.imag, "r")
>>> plt.show()
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scipy.signal.bode

scipy.signal.bode(system, w=None, n=100)
Calculate Bode magnitude and phase data of a continuous-time system.

Parameters
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system [an instance of the LTI class or a tuple describing the system.] The following gives the
number of elements in the tuple and the interpretation:
• 1 (instance of lti)
• 2 (num, den)
• 3 (zeros, poles, gain)
• 4 (A, B, C, D)

w [array_like, optional] Array of frequencies (in rad/s). Magnitude and phase data is calculated
for every value in this array. If not given a reasonable set will be calculated.

n [int, optional] Number of frequency points to compute if w is not given. The n frequencies
are logarithmically spaced in an interval chosen to include the influence of the poles and
zeros of the system.

Returns

w [1D ndarray] Frequency array [rad/s]
mag [1D ndarray] Magnitude array [dB]
phase [1D ndarray] Phase array [deg]

Notes

If (num, den) is passed in for system, coefficients for both the numerator and denominator should be specified in
descending exponent order (e.g. s^2 + 3s + 5 would be represented as [1, 3, 5]).
New in version 0.11.0.

Examples

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> sys = signal.TransferFunction([1], [1, 1])
>>> w, mag, phase = signal.bode(sys)

>>> plt.figure()
>>> plt.semilogx(w, mag) # Bode magnitude plot
>>> plt.figure()
>>> plt.semilogx(w, phase) # Bode phase plot
>>> plt.show()

6.21.7 Discrete-Time Linear Systems

dlti(*system, **kwargs) Discrete-time linear time invariant system base class.
StateSpace(*system, **kwargs) Linear Time Invariant system in state-space form.
TransferFunction(*system, **kwargs) Linear Time Invariant system class in transfer function

form.
ZerosPolesGain(*system, **kwargs) Linear Time Invariant system class in zeros, poles, gain

form.
dlsim(system, u[, t, x0]) Simulate output of a discrete-time linear system.
dimpulse(system[, x0, t, n]) Impulse response of discrete-time system.
dstep(system[, x0, t, n]) Step response of discrete-time system.

Continued on next page
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Table 158 – continued from previous page
dfreqresp(system[, w, n, whole]) Calculate the frequency response of a discrete-time sys-

tem.
dbode(system[, w, n]) Calculate Bode magnitude and phase data of a discrete-

time system.

scipy.signal.dlti

class scipy.signal.dlti(*system, **kwargs)
Discrete-time linear time invariant system base class.

Parameters

*system: arguments
The dlti class can be instantiated with either 2, 3 or 4 arguments. The following gives the
number of arguments and the corresponding discrete-time subclass that is created:
• 2: TransferFunction: (numerator, denominator)
• 3: ZerosPolesGain: (zeros, poles, gain)
• 4: StateSpace: (A, B, C, D)
Each argument can be an array or a sequence.

dt: float, optional
Sampling time [s] of the discrete-time systems. Defaults to True (unspecified sampling
time). Must be specified as a keyword argument, for example, dt=0.1.

See also:
ZerosPolesGain, StateSpace, TransferFunction, lti

Notes

dlti instances do not exist directly. Instead, dlti creates an instance of one of its subclasses: StateSpace,
TransferFunction or ZerosPolesGain.
Changing the value of properties that are not directly part of the current system representation (such as the zeros
of a StateSpace system) is very inefficient and may lead to numerical inaccuracies. It is better to convert to the
specific system representation first. For example, call sys = sys.to_zpk() before accessing/changing the
zeros, poles or gain.
If (numerator, denominator) is passed in for *system, coefficients for both the numerator and denominator should
be specified in descending exponent order (e.g., z^2 + 3z + 5 would be represented as [1, 3, 5]).
New in version 0.18.0.

Examples

>>> from scipy import signal

>>> signal.dlti(1, 2, 3, 4)
StateSpaceDiscrete(
array([[1]]),
array([[2]]),
array([[3]]),
array([[4]]),
dt: True
)

6.21. Signal processing (scipy.signal) 1549



SciPy Reference Guide, Release 1.3.1

10 2 10 1 100 101
20

15

10

5

0

10 2 10 1 100 101

80

60

40

20

0

1550 Chapter 6. API Reference



SciPy Reference Guide, Release 1.3.1

>>> signal.dlti(1, 2, 3, 4, dt=0.1)
StateSpaceDiscrete(
array([[1]]),
array([[2]]),
array([[3]]),
array([[4]]),
dt: 0.1
)

>>> signal.dlti([1, 2], [3, 4], 5, dt=0.1)
ZerosPolesGainDiscrete(
array([1, 2]),
array([3, 4]),
5,
dt: 0.1
)

>>> signal.dlti([3, 4], [1, 2], dt=0.1)
TransferFunctionDiscrete(
array([3., 4.]),
array([1., 2.]),
dt: 0.1
)

Attributes

dt Return the sampling time of the system.
poles Poles of the system.
zeros Zeros of the system.

Methods

bode([w, n]) Calculate Bode magnitude and phase data of a
discrete-time system.

freqresp([w, n, whole]) Calculate the frequency response of a discrete-time
system.

impulse([x0, t, n]) Return the impulse response of the discrete-time
dlti system.

output(u, t[, x0]) Return the response of the discrete-time system to in-
put u.

step([x0, t, n]) Return the step response of the discrete-time dlti
system.

scipy.signal.dlti.bode
dlti.bode(w=None, n=100)

Calculate Bode magnitude and phase data of a discrete-time system.
Returns a 3-tuple containing arrays of frequencies [rad/s], magnitude [dB] and phase [deg]. See dbode for
details.
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Examples

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

Transfer function: H(z) = 1 / (z^2 + 2z + 3) with sampling time 0.5s

>>> sys = signal.TransferFunction([1], [1, 2, 3], dt=0.5)

Equivalent: signal.dbode(sys)

>>> w, mag, phase = sys.bode()

>>> plt.figure()
>>> plt.semilogx(w, mag) # Bode magnitude plot
>>> plt.figure()
>>> plt.semilogx(w, phase) # Bode phase plot
>>> plt.show()
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scipy.signal.dlti.freqresp
dlti.freqresp(w=None, n=10000, whole=False)

Calculate the frequency response of a discrete-time system.
Returns a 2-tuple containing arrays of frequencies [rad/s] and complex magnitude. See dfreqresp for
details.

scipy.signal.dlti.impulse
dlti.impulse(x0=None, t=None, n=None)

Return the impulse response of the discrete-time dlti system. See dimpulse for details.

scipy.signal.dlti.output
dlti.output(u, t, x0=None)

Return the response of the discrete-time system to input u. See dlsim for details.
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scipy.signal.dlti.step
dlti.step(x0=None, t=None, n=None)

Return the step response of the discrete-time dlti system. See dstep for details.

scipy.signal.dlsim

scipy.signal.dlsim(system, u, t=None, x0=None)
Simulate output of a discrete-time linear system.

Parameters

system [tuple of array_like or instance of dlti] A tuple describing the system. The following gives
the number of elements in the tuple and the interpretation:
• 1: (instance of dlti)
• 3: (num, den, dt)
• 4: (zeros, poles, gain, dt)
• 5: (A, B, C, D, dt)

u [array_like] An input array describing the input at each time t (interpolation is assumed
between given times). If there are multiple inputs, then each column of the rank-2 array
represents an input.

t [array_like, optional] The time steps at which the input is defined. If t is given, it must be
the same length as u, and the final value in t determines the number of steps returned in the
output.

x0 [array_like, optional] The initial conditions on the state vector (zero by default).
Returns

tout [ndarray] Time values for the output, as a 1-D array.
yout [ndarray] System response, as a 1-D array.
xout [ndarray, optional] Time-evolution of the state-vector. Only generated if the input is a

StateSpace system.
See also:
lsim, dstep, dimpulse, cont2discrete
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Examples

A simple integrator transfer function with a discrete time step of 1.0 could be implemented as:

>>> from scipy import signal
>>> tf = ([1.0,], [1.0, -1.0], 1.0)
>>> t_in = [0.0, 1.0, 2.0, 3.0]
>>> u = np.asarray([0.0, 0.0, 1.0, 1.0])
>>> t_out, y = signal.dlsim(tf, u, t=t_in)
>>> y.T
array([[ 0., 0., 0., 1.]])

scipy.signal.dimpulse

scipy.signal.dimpulse(system, x0=None, t=None, n=None)
Impulse response of discrete-time system.

Parameters

system [tuple of array_like or instance of dlti] A tuple describing the system. The following gives
the number of elements in the tuple and the interpretation:
• 1: (instance of dlti)
• 3: (num, den, dt)
• 4: (zeros, poles, gain, dt)
• 5: (A, B, C, D, dt)

x0 [array_like, optional] Initial state-vector. Defaults to zero.
t [array_like, optional] Time points. Computed if not given.
n [int, optional] The number of time points to compute (if t is not given).

Returns

tout [ndarray] Time values for the output, as a 1-D array.
yout [tuple of ndarray] Impulse response of system. Each element of the tuple represents the

output of the system based on an impulse in each input.
See also:
impulse, dstep, dlsim, cont2discrete

Examples

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> butter = signal.dlti(*signal.butter(3, 0.5))
>>> t, y = signal.dimpulse(butter, n=25)
>>> plt.step(t, np.squeeze(y))
>>> plt.grid()
>>> plt.xlabel('n [samples]')
>>> plt.ylabel('Amplitude')
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scipy.signal.dstep

scipy.signal.dstep(system, x0=None, t=None, n=None)
Step response of discrete-time system.

Parameters

system [tuple of array_like] A tuple describing the system. The following gives the number of ele-
ments in the tuple and the interpretation:
• 1: (instance of dlti)
• 3: (num, den, dt)
• 4: (zeros, poles, gain, dt)
• 5: (A, B, C, D, dt)

x0 [array_like, optional] Initial state-vector. Defaults to zero.
t [array_like, optional] Time points. Computed if not given.
n [int, optional] The number of time points to compute (if t is not given).

Returns

tout [ndarray] Output time points, as a 1-D array.
yout [tuple of ndarray] Step response of system. Each element of the tuple represents the output

of the system based on a step response to each input.
See also:
step, dimpulse, dlsim, cont2discrete

Examples

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> butter = signal.dlti(*signal.butter(3, 0.5))
>>> t, y = signal.dstep(butter, n=25)
>>> plt.step(t, np.squeeze(y))

(continues on next page)
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(continued from previous page)
>>> plt.grid()
>>> plt.xlabel('n [samples]')
>>> plt.ylabel('Amplitude')

0 5 10 15 20 25
n [samples]

0.2

0.4

0.6

0.8

1.0

Am
pl

itu
de

scipy.signal.dfreqresp

scipy.signal.dfreqresp(system, w=None, n=10000, whole=False)
Calculate the frequency response of a discrete-time system.

Parameters

system [an instance of the dlti class or a tuple describing the system.] The following gives the
number of elements in the tuple and the interpretation:
• 1 (instance of dlti)
• 2 (numerator, denominator, dt)
• 3 (zeros, poles, gain, dt)
• 4 (A, B, C, D, dt)

w [array_like, optional] Array of frequencies (in radians/sample). Magnitude and phase data
is calculated for every value in this array. If not given a reasonable set will be calculated.

n [int, optional] Number of frequency points to compute if w is not given. The n frequencies
are logarithmically spaced in an interval chosen to include the influence of the poles and
zeros of the system.

whole [bool, optional] Normally, if ‘w’ is not given, frequencies are computed from 0 to the Nyquist
frequency, pi radians/sample (upper-half of unit-circle). If whole is True, compute frequen-
cies from 0 to 2*pi radians/sample.

Returns

w [1D ndarray] Frequency array [radians/sample]
H [1D ndarray] Array of complex magnitude values
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Notes

If (num, den) is passed in for system, coefficients for both the numerator and denominator should be specified in
descending exponent order (e.g. z^2 + 3z + 5 would be represented as [1, 3, 5]).
New in version 0.18.0.

Examples

Generating the Nyquist plot of a transfer function

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

Transfer function: H(z) = 1 / (z^2 + 2z + 3)

>>> sys = signal.TransferFunction([1], [1, 2, 3], dt=0.05)

>>> w, H = signal.dfreqresp(sys)

>>> plt.figure()
>>> plt.plot(H.real, H.imag, "b")
>>> plt.plot(H.real, -H.imag, "r")
>>> plt.show()
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scipy.signal.dbode

scipy.signal.dbode(system, w=None, n=100)
Calculate Bode magnitude and phase data of a discrete-time system.

Parameters

system [an instance of the LTI class or a tuple describing the system.] The following gives the
number of elements in the tuple and the interpretation:
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• 1 (instance of dlti)
• 2 (num, den, dt)
• 3 (zeros, poles, gain, dt)
• 4 (A, B, C, D, dt)

w [array_like, optional] Array of frequencies (in radians/sample). Magnitude and phase data
is calculated for every value in this array. If not given a reasonable set will be calculated.

n [int, optional] Number of frequency points to compute if w is not given. The n frequencies
are logarithmically spaced in an interval chosen to include the influence of the poles and
zeros of the system.

Returns

w [1D ndarray] Frequency array [rad/time_unit]
mag [1D ndarray] Magnitude array [dB]
phase [1D ndarray] Phase array [deg]

Notes

If (num, den) is passed in for system, coefficients for both the numerator and denominator should be specified in
descending exponent order (e.g. z^2 + 3z + 5 would be represented as [1, 3, 5]).
New in version 0.18.0.

Examples

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

Transfer function: H(z) = 1 / (z^2 + 2z + 3)

>>> sys = signal.TransferFunction([1], [1, 2, 3], dt=0.05)

Equivalent: sys.bode()

>>> w, mag, phase = signal.dbode(sys)

>>> plt.figure()
>>> plt.semilogx(w, mag) # Bode magnitude plot
>>> plt.figure()
>>> plt.semilogx(w, phase) # Bode phase plot
>>> plt.show()

6.21.8 LTI Representations

tf2zpk(b, a) Return zero, pole, gain (z, p, k) representation from a nu-
merator, denominator representation of a linear filter.

tf2sos(b, a[, pairing]) Return second-order sections from transfer function rep-
resentation

tf2ss(num, den) Transfer function to state-space representation.
Continued on next page
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Table 160 – continued from previous page
zpk2tf(z, p, k) Return polynomial transfer function representation from

zeros and poles
zpk2sos(z, p, k[, pairing]) Return second-order sections from zeros, poles, and gain

of a system
zpk2ss(z, p, k) Zero-pole-gain representation to state-space representa-

tion
ss2tf(A, B, C, D[, input]) State-space to transfer function.
ss2zpk(A, B, C, D[, input]) State-space representation to zero-pole-gain representa-

tion.
sos2zpk(sos) Return zeros, poles, and gain of a series of second-order

sections
sos2tf(sos) Return a single transfer function from a series of second-

order sections
cont2discrete(system, dt[, method, alpha]) Transform a continuous to a discrete state-space system.
place_poles(A, B, poles[, method, rtol, maxiter]) Compute K such that eigenvalues (A - dot(B, K))=poles.

scipy.signal.tf2zpk

scipy.signal.tf2zpk(b, a)
Return zero, pole, gain (z, p, k) representation from a numerator, denominator representation of a linear filter.

Parameters

b [array_like] Numerator polynomial coefficients.
a [array_like] Denominator polynomial coefficients.

Returns

z [ndarray] Zeros of the transfer function.
p [ndarray] Poles of the transfer function.
k [float] System gain.

Notes

If some values of b are too close to 0, they are removed. In that case, a BadCoefficients warning is emitted.
The b and a arrays are interpreted as coefficients for positive, descending powers of the transfer function variable.
So the inputs b = [b0, b1, ..., bM ] and a = [a0, a1, ..., aN ] can represent an analog filter of the form:

H(s) =
b0s

M + b1s
(M−1) + · · ·+ bM

a0sN + a1s(N−1) + · · ·+ aN

or a discrete-time filter of the form:

H(z) =
b0z

M + b1z
(M−1) + · · ·+ bM

a0zN + a1z(N−1) + · · ·+ aN

This “positive powers” form is found more commonly in controls engineering. If M and N are equal (which is
true for all filters generated by the bilinear transform), then this happens to be equivalent to the “negative powers”
discrete-time form preferred in DSP:

H(z) =
b0 + b1z

−1 + · · ·+ bMz
−M

a0 + a1z−1 + · · ·+ aNz−N

Although this is true for common filters, remember that this is not true in the general case. If M and N are not
equal, the discrete-time transfer function coefficients must first be converted to the “positive powers” form before
finding the poles and zeros.
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scipy.signal.tf2sos

scipy.signal.tf2sos(b, a, pairing=’nearest’)
Return second-order sections from transfer function representation

Parameters

b [array_like] Numerator polynomial coefficients.
a [array_like] Denominator polynomial coefficients.
pairing [{‘nearest’, ‘keep_odd’}, optional] The method to use to combine pairs of poles and zeros

into sections. See zpk2sos.
Returns

sos [ndarray] Array of second-order filter coefficients, with shape (n_sections, 6). See
sosfilt for the SOS filter format specification.

See also:
zpk2sos, sosfilt

Notes

It is generally discouraged to convert from TF to SOS format, since doing so usually will not improve numerical
precision errors. Instead, consider designing filters in ZPK format and converting directly to SOS. TF is converted
to SOS by first converting to ZPK format, then converting ZPK to SOS.
New in version 0.16.0.

scipy.signal.tf2ss

scipy.signal.tf2ss(num, den)
Transfer function to state-space representation.

Parameters

num, den [array_like] Sequences representing the coefficients of the numerator and denominator poly-
nomials, in order of descending degree. The denominator needs to be at least as long as the
numerator.

Returns

A, B, C, D [ndarray] State space representation of the system, in controller canonical form.

Examples

Convert the transfer function:

H(s) =
s2 + 3s+ 3

s2 + 2s+ 1

>>> num = [1, 3, 3]
>>> den = [1, 2, 1]
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to the state-space representation:

ẋ(t) =
[
−2 −1
1 0

]
x(t) +

[
1
0

]
u(t)

y(t) =
[
1 2

]
x(t) +

[
1
]
u(t)

>>> from scipy.signal import tf2ss
>>> A, B, C, D = tf2ss(num, den)
>>> A
array([[-2., -1.],

[ 1., 0.]])
>>> B
array([[ 1.],

[ 0.]])
>>> C
array([[ 1., 2.]])
>>> D
array([[ 1.]])

scipy.signal.zpk2tf

scipy.signal.zpk2tf(z, p, k)
Return polynomial transfer function representation from zeros and poles

Parameters

z [array_like] Zeros of the transfer function.
p [array_like] Poles of the transfer function.
k [float] System gain.

Returns

b [ndarray] Numerator polynomial coefficients.
a [ndarray] Denominator polynomial coefficients.

scipy.signal.zpk2sos

scipy.signal.zpk2sos(z, p, k, pairing=’nearest’)
Return second-order sections from zeros, poles, and gain of a system

Parameters

z [array_like] Zeros of the transfer function.
p [array_like] Poles of the transfer function.
k [float] System gain.
pairing [{‘nearest’, ‘keep_odd’}, optional] The method to use to combine pairs of poles and zeros

into sections. See Notes below.
Returns

sos [ndarray] Array of second-order filter coefficients, with shape (n_sections, 6). See
sosfilt for the SOS filter format specification.

See also:
sosfilt
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Notes

The algorithm used to convert ZPK to SOS format is designed to minimize errors due to numerical precision issues.
The pairing algorithm attempts to minimize the peak gain of each biquadratic section. This is done by pairing poles
with the nearest zeros, starting with the poles closest to the unit circle.
Algorithms

The current algorithms are designed specifically for use with digital filters. (The output coefficients are not correct
for analog filters.)
The steps in the pairing='nearest' and pairing='keep_odd' algorithms are mostly shared. The
nearest algorithm attempts to minimize the peak gain, while 'keep_odd' minimizes peak gain under the
constraint that odd-order systems should retain one section as first order. The algorithm steps and are as follows:
As a pre-processing step, add poles or zeros to the origin as necessary to obtain the same number of poles and zeros
for pairing. If pairing == 'nearest' and there are an odd number of poles, add an additional pole and a
zero at the origin.
The following steps are then iterated over until no more poles or zeros remain:
1. Take the (next remaining) pole (complex or real) closest to the unit circle to begin a new filter section.
2. If the pole is real and there are no other remaining real poles1, add the closest real zero to the section and

leave it as a first order section. Note that after this step we are guaranteed to be left with an even number of
real poles, complex poles, real zeros, and complex zeros for subsequent pairing iterations.

3. Else:
1. If the pole is complex and the zero is the only remaining real zero*, then pair the pole with the next closest

zero (guaranteed to be complex). This is necessary to ensure that there will be a real zero remaining to
eventually create a first-order section (thus keeping the odd order).

2. Else pair the pole with the closest remaining zero (complex or real).
3. Proceed to complete the second-order section by adding another pole and zero to the current pole and

zero in the section:
1. If the current pole and zero are both complex, add their conjugates.
2. Else if the pole is complex and the zero is real, add the conjugate pole and the next closest real zero.
3. Else if the pole is real and the zero is complex, add the conjugate zero and the real pole closest to

those zeros.
4. Else (we must have a real pole and real zero) add the next real pole closest to the unit circle, and

then add the real zero closest to that pole.
New in version 0.16.0.

Examples

Design a 6th order low-pass elliptic digital filter for a system with a sampling rate of 8000 Hz that has a pass-band
corner frequency of 1000 Hz. The ripple in the pass-band should not exceed 0.087 dB, and the attenuation in the
stop-band should be at least 90 dB.
In the following call to signal.ellip, we could use output='sos', but for this example, we’ll use
output='zpk', and then convert to SOS format with zpk2sos:

1 This conditional can only be met for specific odd-order inputs with the pairing == 'keep_odd' method.
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>>> from scipy import signal
>>> z, p, k = signal.ellip(6, 0.087, 90, 1000/(0.5*8000), output='zpk')

Now convert to SOS format.

>>> sos = signal.zpk2sos(z, p, k)

The coefficients of the numerators of the sections:

>>> sos[:, :3]
array([[ 0.0014154 , 0.00248707, 0.0014154 ],

[ 1. , 0.72965193, 1. ],
[ 1. , 0.17594966, 1. ]])

The symmetry in the coefficients occurs because all the zeros are on the unit circle.
The coefficients of the denominators of the sections:

>>> sos[:, 3:]
array([[ 1. , -1.32543251, 0.46989499],

[ 1. , -1.26117915, 0.6262586 ],
[ 1. , -1.25707217, 0.86199667]])

The next example shows the effect of the pairing option. We have a system with three poles and three zeros, so the
SOS array will have shape (2, 6). The means there is, in effect, an extra pole and an extra zero at the origin in the
SOS representation.

>>> z1 = np.array([-1, -0.5-0.5j, -0.5+0.5j])
>>> p1 = np.array([0.75, 0.8+0.1j, 0.8-0.1j])

With pairing='nearest' (the default), we obtain

>>> signal.zpk2sos(z1, p1, 1)
array([[ 1. , 1. , 0.5 , 1. , -0.75, 0. ],

[ 1. , 1. , 0. , 1. , -1.6 , 0.65]])

The first section has the zeros {-0.5-0.05j, -0.5+0.5j} and the poles {0, 0.75}, and the second section has the
zeros {-1, 0} and poles {0.8+0.1j, 0.8-0.1j}. Note that the extra pole and zero at the origin have been assigned to
different sections.
With pairing='keep_odd', we obtain:

>>> signal.zpk2sos(z1, p1, 1, pairing='keep_odd')
array([[ 1. , 1. , 0. , 1. , -0.75, 0. ],

[ 1. , 1. , 0.5 , 1. , -1.6 , 0.65]])

The extra pole and zero at the origin are in the same section. The first section is, in effect, a first-order section.

scipy.signal.zpk2ss

scipy.signal.zpk2ss(z, p, k)
Zero-pole-gain representation to state-space representation

Parameters

z, p [sequence] Zeros and poles.
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k [float] System gain.
Returns

A, B, C, D [ndarray] State space representation of the system, in controller canonical form.

scipy.signal.ss2tf

scipy.signal.ss2tf(A, B, C, D, input=0)
State-space to transfer function.
A, B, C, D defines a linear state-space system with p inputs, q outputs, and n state variables.

Parameters

A [array_like] State (or system) matrix of shape (n, n)
B [array_like] Input matrix of shape (n, p)
C [array_like] Output matrix of shape (q, n)
D [array_like] Feedthrough (or feedforward) matrix of shape (q, p)
input [int, optional] For multiple-input systems, the index of the input to use.

Returns

num [2-D ndarray] Numerator(s) of the resulting transfer function(s). num has one row for each
of the system’s outputs. Each row is a sequence representation of the numerator polynomial.

den [1-D ndarray] Denominator of the resulting transfer function(s). den is a sequence represen-
tation of the denominator polynomial.

Examples

Convert the state-space representation:

ẋ(t) =
[
−2 −1
1 0

]
x(t) +

[
1
0

]
u(t)

y(t) =
[
1 2

]
x(t) +

[
1
]
u(t)

>>> A = [[-2, -1], [1, 0]]
>>> B = [[1], [0]] # 2-dimensional column vector
>>> C = [[1, 2]] # 2-dimensional row vector
>>> D = 1

to the transfer function:

H(s) =
s2 + 3s+ 3

s2 + 2s+ 1

>>> from scipy.signal import ss2tf
>>> ss2tf(A, B, C, D)
(array([[1, 3, 3]]), array([ 1., 2., 1.]))
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scipy.signal.ss2zpk

scipy.signal.ss2zpk(A, B, C, D, input=0)
State-space representation to zero-pole-gain representation.
A, B, C, D defines a linear state-space system with p inputs, q outputs, and n state variables.

Parameters

A [array_like] State (or system) matrix of shape (n, n)
B [array_like] Input matrix of shape (n, p)
C [array_like] Output matrix of shape (q, n)
D [array_like] Feedthrough (or feedforward) matrix of shape (q, p)
input [int, optional] For multiple-input systems, the index of the input to use.

Returns

z, p [sequence] Zeros and poles.
k [float] System gain.

scipy.signal.sos2zpk

scipy.signal.sos2zpk(sos)
Return zeros, poles, and gain of a series of second-order sections

Parameters

sos [array_like] Array of second-order filter coefficients, must have shape (n_sections,
6). See sosfilt for the SOS filter format specification.

Returns

z [ndarray] Zeros of the transfer function.
p [ndarray] Poles of the transfer function.
k [float] System gain.

Notes

New in version 0.16.0.

scipy.signal.sos2tf

scipy.signal.sos2tf(sos)
Return a single transfer function from a series of second-order sections

Parameters

sos [array_like] Array of second-order filter coefficients, must have shape (n_sections,
6). See sosfilt for the SOS filter format specification.

Returns

b [ndarray] Numerator polynomial coefficients.
a [ndarray] Denominator polynomial coefficients.

1566 Chapter 6. API Reference



SciPy Reference Guide, Release 1.3.1

Notes

New in version 0.16.0.

scipy.signal.cont2discrete

scipy.signal.cont2discrete(system, dt, method=’zoh’, alpha=None)
Transform a continuous to a discrete state-space system.

Parameters

system [a tuple describing the system or an instance of lti] The following gives the number of
elements in the tuple and the interpretation:
• 1: (instance of lti)
• 2: (num, den)
• 3: (zeros, poles, gain)
• 4: (A, B, C, D)

dt [float] The discretization time step.
method [str, optional] Which method to use:

• gbt: generalized bilinear transformation
• bilinear: Tustin’s approximation (“gbt” with alpha=0.5)
• euler: Euler (or forward differencing) method (“gbt” with alpha=0)
• backward_diff: Backwards differencing (“gbt” with alpha=1.0)
• zoh: zero-order hold (default)
• foh: first-order hold (versionadded: 1.3.0)
• impulse: equivalent impulse response (versionadded: 1.3.0)

alpha [float within [0, 1], optional] The generalized bilinear transformation weighting parameter,
which should only be specified with method=”gbt”, and is ignored otherwise

Returns

sysd [tuple containing the discrete system] Based on the input type, the output will be of the form
• (num, den, dt) for transfer function input
• (zeros, poles, gain, dt) for zeros-poles-gain input
• (A, B, C, D, dt) for state-space system input

Notes

By default, the routine uses a Zero-Order Hold (zoh) method to perform the transformation. Alternatively, a
generalized bilinear transformation may be used, which includes the common Tustin’s bilinear approximation, an
Euler’s method technique, or a backwards differencing technique.
The Zero-Order Hold (zoh) method is based on [1], the generalized bilinear approximation is based on [2] and [3],
the First-Order Hold (foh) method is based on [4].

References

[1], [2], [3], [4]
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scipy.signal.place_poles

scipy.signal.place_poles(A, B, poles, method=’YT’, rtol=0.001, maxiter=30)
Compute K such that eigenvalues (A - dot(B, K))=poles.
K is the gain matrix such as the plant described by the linear system AX+BU will have its closed-loop poles, i.e the
eigenvalues A - B*K, as close as possible to those asked for in poles.
SISO, MISO and MIMO systems are supported.

Parameters

A, B [ndarray] State-space representation of linear system AX + BU.
poles [array_like] Desired real poles and/or complex conjugates poles. Complex poles are only

supported with method="YT" (default).
method: {‘YT’, ‘KNV0’}, optional

Which method to choose to find the gain matrix K. One of:
• ‘YT’: Yang Tits
• ‘KNV0’: Kautsky, Nichols, Van Dooren update method 0
See References and Notes for details on the algorithms.

rtol: float, optional
After each iteration the determinant of the eigenvectors of A - B*K is compared to its
previous value, when the relative error between these two values becomes lower than rtol the
algorithm stops. Default is 1e-3.

maxiter: int, optional
Maximum number of iterations to compute the gain matrix. Default is 30.

Returns

full_state_feedback
[Bunch object]
full_state_feedback is composed of:

gain_matrix
[1-D ndarray] The closed loop matrix K such as the eigenvalues of
A-BK are as close as possible to the requested poles.

computed_poles
[1-D ndarray] The poles corresponding to A-BK sorted as first the
real poles in increasing order, then the complex congugates in lex-
icographic order.

requested_poles
[1-D ndarray] The poles the algorithm was asked to place sorted
as above, they may differ from what was achieved.

X [2-D ndarray] The transfer matrix such as X * diag(poles)
= (A - B*K)*X (see Notes)

rtol [float] The relative tolerance achieved ondet(X) (seeNotes). rtol
will be NaN if it is possible to solve the system diag(poles)
= (A - B*K), or 0 when the optimization algorithms can’t do
anything i.e when B.shape[1] == 1.

nb_iter [int] The number of iterations performed before converging.
nb_iter will be NaN if it is possible to solve the system
diag(poles) = (A - B*K), or 0 when the optimization al-
gorithms can’t do anything i.e when B.shape[1] == 1.
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Notes

The Tits and Yang (YT), [2] paper is an update of the original Kautsky et al. (KNV) paper [1]. KNV relies on
rank-1 updates to find the transfer matrix X such that X * diag(poles) = (A - B*K)*X, whereas YT
uses rank-2 updates. This yields on average more robust solutions (see [2] pp 21-22), furthermore the YT algorithm
supports complex poles whereas KNV does not in its original version. Only update method 0 proposed by KNV
has been implemented here, hence the name 'KNV0'.
KNV extended to complex poles is used in Matlab’s place function, YT is distributed under a non-free licence
by Slicot under the name robpole. It is unclear and undocumented how KNV0 has been extended to complex
poles (Tits and Yang claim on page 14 of their paper that their method can not be used to extend KNV to complex
poles), therefore only YT supports them in this implementation.
As the solution to the problem of pole placement is not unique for MIMO systems, both methods start with a
tentative transfer matrix which is altered in various way to increase its determinant. Both methods have been
proven to converge to a stable solution, however depending on the way the initial transfer matrix is chosen they will
converge to different solutions and therefore there is absolutely no guarantee that using 'KNV0' will yield results
similar to Matlab’s or any other implementation of these algorithms.
Using the default method 'YT' should be fine in most cases; 'KNV0' is only provided because it is needed
by 'YT' in some specific cases. Furthermore 'YT' gives on average more robust results than 'KNV0' when
abs(det(X)) is used as a robustness indicator.
[2] is available as a technical report on the following URL: https://hdl.handle.net/1903/5598

References

[1], [2]

Examples

A simple example demonstrating real pole placement using both KNV and YT algorithms. This is example number
1 from section 4 of the reference KNV publication ([1]):

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> A = np.array([[ 1.380, -0.2077, 6.715, -5.676 ],
... [-0.5814, -4.290, 0, 0.6750 ],
... [ 1.067, 4.273, -6.654, 5.893 ],
... [ 0.0480, 4.273, 1.343, -2.104 ]])
>>> B = np.array([[ 0, 5.679 ],
... [ 1.136, 1.136 ],
... [ 0, 0, ],
... [-3.146, 0 ]])
>>> P = np.array([-0.2, -0.5, -5.0566, -8.6659])

Now compute K with KNV method 0, with the default YT method and with the YT method while forcing 100
iterations of the algorithm and print some results after each call.

>>> fsf1 = signal.place_poles(A, B, P, method='KNV0')
>>> fsf1.gain_matrix
array([[ 0.20071427, -0.96665799, 0.24066128, -0.10279785],

[ 0.50587268, 0.57779091, 0.51795763, -0.41991442]])
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>>> fsf2 = signal.place_poles(A, B, P) # uses YT method
>>> fsf2.computed_poles
array([-8.6659, -5.0566, -0.5 , -0.2 ])

>>> fsf3 = signal.place_poles(A, B, P, rtol=-1, maxiter=100)
>>> fsf3.X
array([[ 0.52072442+0.j, -0.08409372+0.j, -0.56847937+0.j, 0.74823657+0.
↪→j],

[-0.04977751+0.j, -0.80872954+0.j, 0.13566234+0.j, -0.29322906+0.
↪→j],

[-0.82266932+0.j, -0.19168026+0.j, -0.56348322+0.j, -0.43815060+0.
↪→j],

[ 0.22267347+0.j, 0.54967577+0.j, -0.58387806+0.j, -0.40271926+0.
↪→j]])

The absolute value of the determinant of X is a good indicator to check the robustness of the results, both 'KNV0'
and 'YT' aim at maximizing it. Below a comparison of the robustness of the results above:

>>> abs(np.linalg.det(fsf1.X)) < abs(np.linalg.det(fsf2.X))
True
>>> abs(np.linalg.det(fsf2.X)) < abs(np.linalg.det(fsf3.X))
True

Now a simple example for complex poles:

>>> A = np.array([[ 0, 7/3., 0, 0 ],
... [ 0, 0, 0, 7/9. ],
... [ 0, 0, 0, 0 ],
... [ 0, 0, 0, 0 ]])
>>> B = np.array([[ 0, 0 ],
... [ 0, 0 ],
... [ 1, 0 ],
... [ 0, 1 ]])
>>> P = np.array([-3, -1, -2-1j, -2+1j]) / 3.
>>> fsf = signal.place_poles(A, B, P, method='YT')

We can plot the desired and computed poles in the complex plane:

>>> t = np.linspace(0, 2*np.pi, 401)
>>> plt.plot(np.cos(t), np.sin(t), 'k--') # unit circle
>>> plt.plot(fsf.requested_poles.real, fsf.requested_poles.imag,
... 'wo', label='Desired')
>>> plt.plot(fsf.computed_poles.real, fsf.computed_poles.imag, 'bx',
... label='Placed')
>>> plt.grid()
>>> plt.axis('image')
>>> plt.axis([-1.1, 1.1, -1.1, 1.1])
>>> plt.legend(bbox_to_anchor=(1.05, 1), loc=2, numpoints=1)

6.21.9 Waveforms
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chirp(t, f0, t1, f1[, method, phi, vertex_zero]) Frequency-swept cosine generator.
gausspulse(t[, fc, bw, bwr, tpr, retquad, …]) Return a Gaussian modulated sinusoid:
max_len_seq(nbits[, state, length, taps]) Maximum length sequence (MLS) generator.
sawtooth(t[, width]) Return a periodic sawtooth or triangle waveform.
square(t[, duty]) Return a periodic square-wave waveform.
sweep_poly(t, poly[, phi]) Frequency-swept cosine generator, with a time-dependent

frequency.
unit_impulse(shape[, idx, dtype]) Unit impulse signal (discrete delta function) or unit basis

vector.

scipy.signal.chirp

scipy.signal.chirp(t, f0, t1, f1, method=’linear’, phi=0, vertex_zero=True)
Frequency-swept cosine generator.
In the following, ‘Hz’ should be interpreted as ‘cycles per unit’; there is no requirement here that the unit is one
second. The important distinction is that the units of rotation are cycles, not radians. Likewise, t could be a
measurement of space instead of time.

Parameters

t [array_like] Times at which to evaluate the waveform.
f0 [float] Frequency (e.g. Hz) at time t=0.
t1 [float] Time at which f1 is specified.
f1 [float] Frequency (e.g. Hz) of the waveform at time t1.
method [{‘linear’, ‘quadratic’, ‘logarithmic’, ‘hyperbolic’}, optional] Kind of frequency sweep. If not

given, linear is assumed. See Notes below for more details.
phi [float, optional] Phase offset, in degrees. Default is 0.
vertex_zero

[bool, optional] This parameter is only used when method is ‘quadratic’. It determines
whether the vertex of the parabola that is the graph of the frequency is at t=0 or t=t1.

Returns

y [ndarray] A numpy array containing the signal evaluated at t with the requested time-varying
frequency. More precisely, the function returns cos(phase + (pi/180)*phi)
where phase is the integral (from 0 to t) of 2*pi*f(t). f(t) is defined below.

See also:
sweep_poly

Notes

There are four options for the method. The following formulas give the instantaneous frequency (in Hz) of the
signal generated by chirp(). For convenience, the shorter names shown below may also be used.
linear, lin, li:

f(t) = f0 + (f1 - f0) * t / t1

quadratic, quad, q:
The graph of the frequency f(t) is a parabola through (0, f0) and (t1, f1). By default, the vertex of the parabola
is at (0, f0). If vertex_zero is False, then the vertex is at (t1, f1). The formula is:
if vertex_zero is True:

f(t) = f0 + (f1 - f0) * t**2 / t1**2
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else:
f(t) = f1 - (f1 - f0) * (t1 - t)**2 / t1**2

To use a more general quadratic function, or an arbitrary polynomial, use the function scipy.signal.
sweep_poly.

logarithmic, log, lo:
f(t) = f0 * (f1/f0)**(t/t1)
f0 and f1 must be nonzero and have the same sign.
This signal is also known as a geometric or exponential chirp.

hyperbolic, hyp:
f(t) = f0*f1*t1 / ((f0 - f1)*t + f1*t1)
f0 and f1 must be nonzero.

Examples

The following will be used in the examples:

>>> from scipy.signal import chirp, spectrogram
>>> import matplotlib.pyplot as plt

For the first example, we’ll plot the waveform for a linear chirp from 6 Hz to 1 Hz over 10 seconds:

>>> t = np.linspace(0, 10, 5001)
>>> w = chirp(t, f0=6, f1=1, t1=10, method='linear')
>>> plt.plot(t, w)
>>> plt.title("Linear Chirp, f(0)=6, f(10)=1")
>>> plt.xlabel('t (sec)')
>>> plt.show()

0 2 4 6 8 10
t (sec)

1.0

0.5

0.0

0.5

1.0
Linear Chirp, f(0)=6, f(10)=1

For the remaining examples, we’ll use higher frequency ranges, and demonstrate the result usingscipy.signal.
spectrogram. We’ll use a 10 second interval sampled at 8000 Hz.
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>>> fs = 8000
>>> T = 10
>>> t = np.linspace(0, T, T*fs, endpoint=False)

Quadratic chirp from 1500 Hz to 250 Hz over 10 seconds (vertex of the parabolic curve of the frequency is at t=0):

>>> w = chirp(t, f0=1500, f1=250, t1=10, method='quadratic')
>>> ff, tt, Sxx = spectrogram(w, fs=fs, noverlap=256, nperseg=512,
... nfft=2048)
>>> plt.pcolormesh(tt, ff[:513], Sxx[:513], cmap='gray_r')
>>> plt.title('Quadratic Chirp, f(0)=1500, f(10)=250')
>>> plt.xlabel('t (sec)')
>>> plt.ylabel('Frequency (Hz)')
>>> plt.grid()
>>> plt.show()
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Quadratic Chirp, f(0)=1500, f(10)=250

Quadratic chirp from 1500 Hz to 250 Hz over 10 seconds (vertex of the parabolic curve of the frequency is at
t=10):

>>> w = chirp(t, f0=1500, f1=250, t1=10, method='quadratic',
... vertex_zero=False)
>>> ff, tt, Sxx = spectrogram(w, fs=fs, noverlap=256, nperseg=512,
... nfft=2048)
>>> plt.pcolormesh(tt, ff[:513], Sxx[:513], cmap='gray_r')
>>> plt.title('Quadratic Chirp, f(0)=1500, f(10)=250\n' +
... '(vertex_zero=False)')
>>> plt.xlabel('t (sec)')
>>> plt.ylabel('Frequency (Hz)')
>>> plt.grid()
>>> plt.show()

Logarithmic chirp from 1500 Hz to 250 Hz over 10 seconds:
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Quadratic Chirp, f(0)=1500, f(10)=250
(vertex_zero=False)

>>> w = chirp(t, f0=1500, f1=250, t1=10, method='logarithmic')
>>> ff, tt, Sxx = spectrogram(w, fs=fs, noverlap=256, nperseg=512,
... nfft=2048)
>>> plt.pcolormesh(tt, ff[:513], Sxx[:513], cmap='gray_r')
>>> plt.title('Logarithmic Chirp, f(0)=1500, f(10)=250')
>>> plt.xlabel('t (sec)')
>>> plt.ylabel('Frequency (Hz)')
>>> plt.grid()
>>> plt.show()
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Logarithmic Chirp, f(0)=1500, f(10)=250

Hyperbolic chirp from 1500 Hz to 250 Hz over 10 seconds:

>>> w = chirp(t, f0=1500, f1=250, t1=10, method='hyperbolic')
>>> ff, tt, Sxx = spectrogram(w, fs=fs, noverlap=256, nperseg=512,

(continues on next page)
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(continued from previous page)
... nfft=2048)
>>> plt.pcolormesh(tt, ff[:513], Sxx[:513], cmap='gray_r')
>>> plt.title('Hyperbolic Chirp, f(0)=1500, f(10)=250')
>>> plt.xlabel('t (sec)')
>>> plt.ylabel('Frequency (Hz)')
>>> plt.grid()
>>> plt.show()
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Hyperbolic Chirp, f(0)=1500, f(10)=250

scipy.signal.gausspulse

scipy.signal.gausspulse(t, fc=1000, bw=0.5, bwr=-6, tpr=-60, retquad=False, retenv=False)
Return a Gaussian modulated sinusoid:

exp(-a t^2) exp(1j*2*pi*fc*t).

If retquad is True, then return the real and imaginary parts (in-phase and quadrature). If retenv is True, then return
the envelope (unmodulated signal). Otherwise, return the real part of the modulated sinusoid.

Parameters

t [ndarray or the string ‘cutoff’] Input array.
fc [int, optional] Center frequency (e.g. Hz). Default is 1000.
bw [float, optional] Fractional bandwidth in frequency domain of pulse (e.g. Hz). Default is 0.5.
bwr [float, optional] Reference level at which fractional bandwidth is calculated (dB). Default is

-6.
tpr [float, optional] If t is ‘cutoff’, then the function returns the cutoff time for when the pulse

amplitude falls below tpr (in dB). Default is -60.
retquad [bool, optional] If True, return the quadrature (imaginary) as well as the real part of the

signal. Default is False.
retenv [bool, optional] If True, return the envelope of the signal. Default is False.

Returns

yI [ndarray] Real part of signal. Always returned.
yQ [ndarray] Imaginary part of signal. Only returned if retquad is True.
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yenv [ndarray] Envelope of signal. Only returned if retenv is True.
See also:
scipy.signal.morlet

Examples

Plot real component, imaginary component, and envelope for a 5 Hz pulse, sampled at 100 Hz for 2 seconds:

>>> from scipy import signal
>>> import matplotlib.pyplot as plt
>>> t = np.linspace(-1, 1, 2 * 100, endpoint=False)
>>> i, q, e = signal.gausspulse(t, fc=5, retquad=True, retenv=True)
>>> plt.plot(t, i, t, q, t, e, '--')
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scipy.signal.max_len_seq

scipy.signal.max_len_seq(nbits, state=None, length=None, taps=None)
Maximum length sequence (MLS) generator.

Parameters

nbits [int] Number of bits to use. Length of the resulting sequence will be (2**nbits) - 1.
Note that generating long sequences (e.g., greater than nbits == 16) can take a long
time.

state [array_like, optional] If array, must be of length nbits, and will be cast to binary (bool)
representation. If None, a seed of ones will be used, producing a repeatable representation.
If state is all zeros, an error is raised as this is invalid. Default: None.

length [int, optional] Number of samples to compute. If None, the entire length (2**nbits) -
1 is computed.

taps [array_like, optional] Polynomial taps to use (e.g., [7, 6, 1] for an 8-bit sequence). If
None, taps will be automatically selected (for up to nbits == 32).

Returns
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seq [array] Resulting MLS sequence of 0’s and 1’s.
state [array] The final state of the shift register.

Notes

The algorithm for MLS generation is generically described in:
https://en.wikipedia.org/wiki/Maximum_length_sequence

The default values for taps are specifically taken from the first option listed for each value of nbits in:
http://www.newwaveinstruments.com/resources/articles/m_sequence_linear_feedback_shift_register_lfsr.
htm

New in version 0.15.0.

Examples

MLS uses binary convention:

>>> from scipy.signal import max_len_seq
>>> max_len_seq(4)[0]
array([1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0], dtype=int8)

MLS has a white spectrum (except for DC):

>>> import matplotlib.pyplot as plt
>>> from numpy.fft import fft, ifft, fftshift, fftfreq
>>> seq = max_len_seq(6)[0]*2-1 # +1 and -1
>>> spec = fft(seq)
>>> N = len(seq)
>>> plt.plot(fftshift(fftfreq(N)), fftshift(np.abs(spec)), '.-')
>>> plt.margins(0.1, 0.1)
>>> plt.grid(True)
>>> plt.show()
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Circular autocorrelation of MLS is an impulse:

>>> acorrcirc = ifft(spec * np.conj(spec)).real
>>> plt.figure()
>>> plt.plot(np.arange(-N/2+1, N/2+1), fftshift(acorrcirc), '.-')
>>> plt.margins(0.1, 0.1)
>>> plt.grid(True)
>>> plt.show()
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Linear autocorrelation of MLS is approximately an impulse:

>>> acorr = np.correlate(seq, seq, 'full')
>>> plt.figure()
>>> plt.plot(np.arange(-N+1, N), acorr, '.-')
>>> plt.margins(0.1, 0.1)
>>> plt.grid(True)
>>> plt.show()

scipy.signal.sawtooth

scipy.signal.sawtooth(t, width=1)
Return a periodic sawtooth or triangle waveform.
The sawtooth waveform has a period 2*pi, rises from -1 to 1 on the interval 0 to width*2*pi, then drops from
1 to -1 on the interval width*2*pi to 2*pi. width must be in the interval [0, 1].
Note that this is not band-limited. It produces an infinite number of harmonics, which are aliased back and forth
across the frequency spectrum.

Parameters

t [array_like] Time.
width [array_like, optional] Width of the rising ramp as a proportion of the total cycle. Default is

1, producing a rising ramp, while 0 produces a falling ramp. width = 0.5 produces a triangle
wave. If an array, causes wave shape to change over time, and must be the same length as t.
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Returns

y [ndarray] Output array containing the sawtooth waveform.

Examples

A 5 Hz waveform sampled at 500 Hz for 1 second:

>>> from scipy import signal
>>> import matplotlib.pyplot as plt
>>> t = np.linspace(0, 1, 500)
>>> plt.plot(t, signal.sawtooth(2 * np.pi * 5 * t))
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scipy.signal.square

scipy.signal.square(t, duty=0.5)
Return a periodic square-wave waveform.
The square wave has a period 2*pi, has value +1 from 0 to 2*pi*duty and -1 from 2*pi*duty to 2*pi.
duty must be in the interval [0,1].
Note that this is not band-limited. It produces an infinite number of harmonics, which are aliased back and forth
across the frequency spectrum.

Parameters

t [array_like] The input time array.
duty [array_like, optional] Duty cycle. Default is 0.5 (50% duty cycle). If an array, causes wave

shape to change over time, and must be the same length as t.
Returns

y [ndarray] Output array containing the square waveform.

Examples

A 5 Hz waveform sampled at 500 Hz for 1 second:

>>> from scipy import signal
>>> import matplotlib.pyplot as plt
>>> t = np.linspace(0, 1, 500, endpoint=False)
>>> plt.plot(t, signal.square(2 * np.pi * 5 * t))
>>> plt.ylim(-2, 2)

A pulse-width modulated sine wave:

>>> plt.figure()
>>> sig = np.sin(2 * np.pi * t)
>>> pwm = signal.square(2 * np.pi * 30 * t, duty=(sig + 1)/2)
>>> plt.subplot(2, 1, 1)
>>> plt.plot(t, sig)
>>> plt.subplot(2, 1, 2)
>>> plt.plot(t, pwm)
>>> plt.ylim(-1.5, 1.5)

scipy.signal.sweep_poly

scipy.signal.sweep_poly(t, poly, phi=0)
Frequency-swept cosine generator, with a time-dependent frequency.
This function generates a sinusoidal function whose instantaneous frequency varies with time. The frequency at
time t is given by the polynomial poly.

Parameters

t [ndarray] Times at which to evaluate the waveform.
poly [1-D array_like or instance of numpy.poly1d] The desired frequency expressed as a polyno-

mial. If poly is a list or ndarray of length n, then the elements of poly are the coefficients of
the polynomial, and the instantaneous frequency is
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f(t) = poly[0]*t**(n-1) + poly[1]*t**(n-2) + ... +
poly[n-1]

If poly is an instance of numpy.poly1d, then the instantaneous frequency is
f(t) = poly(t)

phi [float, optional] Phase offset, in degrees, Default: 0.
Returns

sweep_poly
[ndarray] A numpy array containing the signal evaluated at t with the requested time-varying
frequency. More precisely, the function returns cos(phase + (pi/180)*phi),
where phase is the integral (from 0 to t) of 2 * pi * f(t); f(t) is defined above.

See also:
chirp

Notes

New in version 0.8.0.
If poly is a list or ndarray of length n, then the elements of poly are the coefficients of the polynomial, and the
instantaneous frequency is:

f(t) = poly[0]*t**(n-1) + poly[1]*t**(n-2) + ... + poly[n-1]

If poly is an instance of numpy.poly1d, then the instantaneous frequency is:
f(t) = poly(t)

Finally, the output s is:
cos(phase + (pi/180)*phi)

where phase is the integral from 0 to t of 2 * pi * f(t), f(t) as defined above.

Examples

Compute the waveform with instantaneous frequency:

f(t) = 0.025*t**3 - 0.36*t**2 + 1.25*t + 2

over the interval 0 <= t <= 10.

>>> from scipy.signal import sweep_poly
>>> p = np.poly1d([0.025, -0.36, 1.25, 2.0])
>>> t = np.linspace(0, 10, 5001)
>>> w = sweep_poly(t, p)

Plot it:

>>> import matplotlib.pyplot as plt
>>> plt.subplot(2, 1, 1)
>>> plt.plot(t, w)
>>> plt.title("Sweep Poly\nwith frequency " +
... "$f(t) = 0.025t^3 - 0.36t^2 + 1.25t + 2$")
>>> plt.subplot(2, 1, 2)
>>> plt.plot(t, p(t), 'r', label='f(t)')

(continues on next page)
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(continued from previous page)
>>> plt.legend()
>>> plt.xlabel('t')
>>> plt.tight_layout()
>>> plt.show()
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scipy.signal.unit_impulse

scipy.signal.unit_impulse(shape, idx=None, dtype=<class ’float’>)
Unit impulse signal (discrete delta function) or unit basis vector.

Parameters

shape [int or tuple of int] Number of samples in the output (1-D), or a tuple that represents the
shape of the output (N-D).

idx [None or int or tuple of int or ‘mid’, optional] Index at which the value is 1. If None, defaults
to the 0th element. If idx='mid', the impulse will be centered at shape // 2 in all
dimensions. If an int, the impulse will be at idx in all dimensions.

dtype [data-type, optional] The desired data-type for the array, e.g., numpy.int8. Default is
numpy.float64.

Returns

y [ndarray] Output array containing an impulse signal.

Notes

The 1D case is also known as the Kronecker delta.
New in version 0.19.0.

Examples

An impulse at the 0th element (δ[n]):
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>>> from scipy import signal
>>> signal.unit_impulse(8)
array([ 1., 0., 0., 0., 0., 0., 0., 0.])

Impulse offset by 2 samples (δ[n− 2]):

>>> signal.unit_impulse(7, 2)
array([ 0., 0., 1., 0., 0., 0., 0.])

2-dimensional impulse, centered:

>>> signal.unit_impulse((3, 3), 'mid')
array([[ 0., 0., 0.],

[ 0., 1., 0.],
[ 0., 0., 0.]])

Impulse at (2, 2), using broadcasting:

>>> signal.unit_impulse((4, 4), 2)
array([[ 0., 0., 0., 0.],

[ 0., 0., 0., 0.],
[ 0., 0., 1., 0.],
[ 0., 0., 0., 0.]])

Plot the impulse response of a 4th-order Butterworth lowpass filter:

>>> imp = signal.unit_impulse(100, 'mid')
>>> b, a = signal.butter(4, 0.2)
>>> response = signal.lfilter(b, a, imp)

>>> import matplotlib.pyplot as plt
>>> plt.plot(np.arange(-50, 50), imp)
>>> plt.plot(np.arange(-50, 50), response)
>>> plt.margins(0.1, 0.1)
>>> plt.xlabel('Time [samples]')
>>> plt.ylabel('Amplitude')
>>> plt.grid(True)
>>> plt.show()

6.21.10 Window functions

For window functions, see the scipy.signal.windows namespace.
In the scipy.signal namespace, there is a convenience function to obtain these windows by name:

get_window(window, Nx[, fftbins]) Return a window of a given length and type.

scipy.signal.get_window

scipy.signal.get_window(window, Nx, fftbins=True)
Return a window of a given length and type.
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Parameters

window [string, float, or tuple] The type of window to create. See below for more details.
Nx [int] The number of samples in the window.
fftbins [bool, optional] If True (default), create a “periodic” window, ready to use with ifftshift and

be multiplied by the result of an FFT (see also fftpack.fftfreq). If False, create a “symmetric”
window, for use in filter design.

Returns

get_window
[ndarray] Returns a window of length Nx and type window

Notes

Window types:
• boxcar

• triang

• blackman

• hamming

• hann

• bartlett

• flattop

• parzen

• bohman

• blackmanharris

• nuttall

• barthann
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• kaiser (needs beta)
• gaussian (needs standard deviation)
• general_gaussian (needs power, width)
• slepian (needs width)
• dpss (needs normalized half-bandwidth)
• chebwin (needs attenuation)
• exponential (needs decay scale)
• tukey (needs taper fraction)

If the window requires no parameters, then window can be a string.
If the window requires parameters, then window must be a tuple with the first argument the string name of the
window, and the next arguments the needed parameters.
If window is a floating point number, it is interpreted as the beta parameter of the kaiser window.
Each of the window types listed above is also the name of a function that can be called directly to create a window
of that type.

Examples

>>> from scipy import signal
>>> signal.get_window('triang', 7)
array([ 0.125, 0.375, 0.625, 0.875, 0.875, 0.625, 0.375])
>>> signal.get_window(('kaiser', 4.0), 9)
array([ 0.08848053, 0.29425961, 0.56437221, 0.82160913, 0.97885093,

0.97885093, 0.82160913, 0.56437221, 0.29425961])
>>> signal.get_window(4.0, 9)
array([ 0.08848053, 0.29425961, 0.56437221, 0.82160913, 0.97885093,

0.97885093, 0.82160913, 0.56437221, 0.29425961])

6.21.11 Wavelets

cascade(hk[, J]) Return (x, phi, psi) at dyadic points K/2**J from filter
coefficients.

daub(p) The coefficients for the FIR low-pass filter producing
Daubechies wavelets.

morlet(M[, w, s, complete]) Complex Morlet wavelet.
qmf(hk) Return high-pass qmf filter from low-pass
ricker(points, a) Return a Ricker wavelet, also known as the “Mexican hat

wavelet”.
cwt(data, wavelet, widths) Continuous wavelet transform.

scipy.signal.cascade

scipy.signal.cascade(hk, J=7)
Return (x, phi, psi) at dyadic points K/2**J from filter coefficients.

Parameters
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hk [array_like] Coefficients of low-pass filter.
J [int, optional] Values will be computed at grid points K/2**J. Default is 7.

Returns

x [ndarray] The dyadic points K/2**J for K=0...N * (2**J)-1 where len(hk) =
len(gk) = N+1.

phi [ndarray] The scaling function phi(x) at x: phi(x) = sum(hk * phi(2x-k)),
where k is from 0 to N.

psi [ndarray, optional] The wavelet function psi(x) at x: phi(x) = sum(gk *
phi(2x-k)), where k is from 0 to N. psi is only returned if gk is not None.

Notes

The algorithm uses the vector cascade algorithm described by Strang and Nguyen in “Wavelets and Filter Banks”.
It builds a dictionary of values and slices for quick reuse. Then inserts vectors into final vector at the end.

scipy.signal.daub

scipy.signal.daub(p)
The coefficients for the FIR low-pass filter producing Daubechies wavelets.
p>=1 gives the order of the zero at f=1/2. There are 2p filter coefficients.

Parameters

p [int] Order of the zero at f=1/2, can have values from 1 to 34.
Returns

daub [ndarray] Return

scipy.signal.morlet

scipy.signal.morlet(M, w=5.0, s=1.0, complete=True)
Complex Morlet wavelet.

Parameters

M [int] Length of the wavelet.
w [float, optional] Omega0. Default is 5
s [float, optional] Scaling factor, windowed from -s*2*pi to +s*2*pi. Default is 1.
complete [bool, optional] Whether to use the complete or the standard version.

Returns

morlet [(M,) ndarray]
See also:
scipy.signal.gausspulse

Notes

The standard version:
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pi**-0.25 * exp(1j*w*x) * exp(-0.5*(x**2))

This commonly used wavelet is often referred to simply as the Morlet wavelet. Note that this simplified version can
cause admissibility problems at low values of w.
The complete version:

pi**-0.25 * (exp(1j*w*x) - exp(-0.5*(w**2))) * exp(-0.5*(x**2))

This version has a correction term to improve admissibility. For w greater than 5, the correction term is negligible.
Note that the energy of the return wavelet is not normalised according to s.
The fundamental frequency of this wavelet in Hz is given by f = 2*s*w*r / M where r is the sampling rate.
Note: This function was created before cwt and is not compatible with it.

scipy.signal.qmf

scipy.signal.qmf(hk)
Return high-pass qmf filter from low-pass

Parameters

hk [array_like] Coefficients of high-pass filter.

scipy.signal.ricker

scipy.signal.ricker(points, a)
Return a Ricker wavelet, also known as the “Mexican hat wavelet”.
It models the function:

A (1 - x^2/a^2) exp(-x^2/2 a^2),
where A = 2/sqrt(3a)pi^1/4.

Parameters

points [int] Number of points in vector. Will be centered around 0.
a [scalar] Width parameter of the wavelet.

Returns

vector [(N,) ndarray] Array of length points in shape of ricker curve.

Examples

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> points = 100
>>> a = 4.0
>>> vec2 = signal.ricker(points, a)
>>> print(len(vec2))
100

(continues on next page)
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(continued from previous page)
>>> plt.plot(vec2)
>>> plt.show()
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scipy.signal.cwt

scipy.signal.cwt(data, wavelet, widths)
Continuous wavelet transform.
Performs a continuous wavelet transform on data, using the wavelet function. A CWT performs a convolution with
data using the wavelet function, which is characterized by a width parameter and length parameter.

Parameters

data [(N,) ndarray] data on which to perform the transform.
wavelet [function] Wavelet function, which should take 2 arguments. The first argument is the num-

ber of points that the returned vector will have (len(wavelet(length,width)) == length). The
second is a width parameter, defining the size of the wavelet (e.g. standard deviation of a
gaussian). See ricker, which satisfies these requirements.

widths [(M,) sequence] Widths to use for transform.
Returns

cwt: (M, N) ndarray
Will have shape of (len(widths), len(data)).

Notes

length = min(10 * width[ii], len(data))
cwt[ii,:] = signal.convolve(data, wavelet(length,

width[ii]), mode='same')
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Examples

>>> from scipy import signal
>>> import matplotlib.pyplot as plt
>>> t = np.linspace(-1, 1, 200, endpoint=False)
>>> sig = np.cos(2 * np.pi * 7 * t) + signal.gausspulse(t - 0.4, fc=2)
>>> widths = np.arange(1, 31)
>>> cwtmatr = signal.cwt(sig, signal.ricker, widths)
>>> plt.imshow(cwtmatr, extent=[-1, 1, 31, 1], cmap='PRGn', aspect='auto',
... vmax=abs(cwtmatr).max(), vmin=-abs(cwtmatr).max())
>>> plt.show()
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6.21.12 Peak finding

argrelmin(data[, axis, order, mode]) Calculate the relative minima of data.
argrelmax(data[, axis, order, mode]) Calculate the relative maxima of data.
argrelextrema(data, comparator[, axis, …]) Calculate the relative extrema of data.
find_peaks(x[, height, threshold, distance, …]) Find peaks inside a signal based on peak properties.
find_peaks_cwt(vector, widths[, wavelet, …]) Find peaks in a 1-D array with wavelet transformation.
peak_prominences(x, peaks[, wlen]) Calculate the prominence of each peak in a signal.
peak_widths(x, peaks[, rel_height, …]) Calculate the width of each peak in a signal.

scipy.signal.argrelmin

scipy.signal.argrelmin(data, axis=0, order=1, mode=’clip’)
Calculate the relative minima of data.

Parameters

data [ndarray] Array in which to find the relative minima.
axis [int, optional] Axis over which to select from data. Default is 0.
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order [int, optional] How many points on each side to use for the comparison to consider
comparator(n, n+x) to be True.

mode [str, optional] How the edges of the vector are treated. Available options are ‘wrap’ (wrap
around) or ‘clip’ (treat overflow as the same as the last (or first) element). Default ‘clip’. See
numpy.take

Returns

extrema [tuple of ndarrays] Indices of the minima in arrays of integers. extrema[k] is the array
of indices of axis k of data. Note that the return value is a tuple even when data is one-
dimensional.

See also:
argrelextrema, argrelmax, find_peaks

Notes

This function uses argrelextrema with np.less as comparator. Therefore it requires a strict inequality on both
sides of a value to consider it a minimum. This means flat minima (more than one sample wide) are not detected. In
case of one-dimensional data find_peaks can be used to detect all local minima, including flat ones, by calling
it with negated data.
New in version 0.11.0.

Examples

>>> from scipy.signal import argrelmin
>>> x = np.array([2, 1, 2, 3, 2, 0, 1, 0])
>>> argrelmin(x)
(array([1, 5]),)
>>> y = np.array([[1, 2, 1, 2],
... [2, 2, 0, 0],
... [5, 3, 4, 4]])
...
>>> argrelmin(y, axis=1)
(array([0, 2]), array([2, 1]))

scipy.signal.argrelmax

scipy.signal.argrelmax(data, axis=0, order=1, mode=’clip’)
Calculate the relative maxima of data.

Parameters

data [ndarray] Array in which to find the relative maxima.
axis [int, optional] Axis over which to select from data. Default is 0.
order [int, optional] How many points on each side to use for the comparison to consider

comparator(n, n+x) to be True.
mode [str, optional] How the edges of the vector are treated. Available options are ‘wrap’ (wrap

around) or ‘clip’ (treat overflow as the same as the last (or first) element). Default ‘clip’. See
numpy.take.

Returns
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extrema [tuple of ndarrays] Indices of the maxima in arrays of integers. extrema[k] is the array
of indices of axis k of data. Note that the return value is a tuple even when data is one-
dimensional.

See also:
argrelextrema, argrelmin, find_peaks

Notes

This function uses argrelextrema with np.greater as comparator. Therefore it requires a strict inequality on
both sides of a value to consider it a maximum. This means flat maxima (more than one sample wide) are not
detected. In case of one-dimensional data find_peaks can be used to detect all local maxima, including flat
ones.
New in version 0.11.0.

Examples

>>> from scipy.signal import argrelmax
>>> x = np.array([2, 1, 2, 3, 2, 0, 1, 0])
>>> argrelmax(x)
(array([3, 6]),)
>>> y = np.array([[1, 2, 1, 2],
... [2, 2, 0, 0],
... [5, 3, 4, 4]])
...
>>> argrelmax(y, axis=1)
(array([0]), array([1]))

scipy.signal.argrelextrema

scipy.signal.argrelextrema(data, comparator, axis=0, order=1, mode=’clip’)
Calculate the relative extrema of data.

Parameters

data [ndarray] Array in which to find the relative extrema.
comparator

[callable] Function to use to compare two data points. Should take two arrays as arguments.
axis [int, optional] Axis over which to select from data. Default is 0.
order [int, optional] How many points on each side to use for the comparison to consider

comparator(n, n+x) to be True.
mode [str, optional] How the edges of the vector are treated. ‘wrap’ (wrap around) or ‘clip’ (treat

overflow as the same as the last (or first) element). Default is ‘clip’. See numpy.take.
Returns

extrema [tuple of ndarrays] Indices of the maxima in arrays of integers. extrema[k] is the array
of indices of axis k of data. Note that the return value is a tuple even when data is one-
dimensional.

See also:
argrelmin, argrelmax
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Notes

New in version 0.11.0.

Examples

>>> from scipy.signal import argrelextrema
>>> x = np.array([2, 1, 2, 3, 2, 0, 1, 0])
>>> argrelextrema(x, np.greater)
(array([3, 6]),)
>>> y = np.array([[1, 2, 1, 2],
... [2, 2, 0, 0],
... [5, 3, 4, 4]])
...
>>> argrelextrema(y, np.less, axis=1)
(array([0, 2]), array([2, 1]))

scipy.signal.find_peaks

scipy.signal.find_peaks(x, height=None, threshold=None, distance=None, prominence=None,
width=None, wlen=None, rel_height=0.5, plateau_size=None)

Find peaks inside a signal based on peak properties.
This function takes a one-dimensional array and finds all local maxima by simple comparison of neighbouring
values. Optionally, a subset of these peaks can be selected by specifying conditions for a peak’s properties.

Parameters

x [sequence] A signal with peaks.
height [number or ndarray or sequence, optional] Required height of peaks. Either a number, None,

an array matching x or a 2-element sequence of the former. The first element is always
interpreted as the minimal and the second, if supplied, as the maximal required height.

threshold [number or ndarray or sequence, optional] Required threshold of peaks, the vertical distance
to its neighbouring samples. Either a number, None, an array matching x or a 2-element
sequence of the former. The first element is always interpreted as theminimal and the second,
if supplied, as the maximal required threshold.

distance [number, optional] Required minimal horizontal distance (>= 1) in samples between neigh-
bouring peaks. Smaller peaks are removed first until the condition is fulfilled for all remaining
peaks.

prominence
[number or ndarray or sequence, optional] Required prominence of peaks. Either a number,
None, an arraymatching x or a 2-element sequence of the former. The first element is always
interpreted as the minimal and the second, if supplied, as the maximal required prominence.

width [number or ndarray or sequence, optional] Required width of peaks in samples. Either a
number, None, an array matching x or a 2-element sequence of the former. The first element
is always interpreted as the minimal and the second, if supplied, as the maximal required
width.

wlen [int, optional] Used for calculation of the peaks prominences, thus it is only used if one of
the arguments prominence or width is given. See argument wlen in peak_prominences
for a full description of its effects.

rel_height [float, optional] Used for calculation of the peaks width, thus it is only used if width is given.
See argument rel_height in peak_widths for a full description of its effects.

6.21. Signal processing (scipy.signal) 1593



SciPy Reference Guide, Release 1.3.1

plateau_size
[number or ndarray or sequence, optional] Required size of the flat top of peaks in samples.
Either a number, None, an array matching x or a 2-element sequence of the former. The
first element is always interpreted as the minimal and the second, if supplied as the maximal
required plateau size.
New in version 1.2.0.

Returns

peaks [ndarray] Indices of peaks in x that satisfy all given conditions.
properties [dict] A dictionary containing properties of the returned peaks which were calculated as

intermediate results during evaluation of the specified conditions:
• ‘peak_heights’

If height is given, the height of each peak in x.
• ‘left_thresholds’, ‘right_thresholds’

If threshold is given, these keys contain a peaks vertical distance to its neigh-
bouring samples.

• ‘prominences’, ‘right_bases’, ‘left_bases’
If prominence is given, these keys are accessible. See
peak_prominences for a description of their content.

• ‘width_heights’, ‘left_ips’, ‘right_ips’
If width is given, these keys are accessible. See peak_widths for a de-
scription of their content.

• ‘plateau_sizes’, left_edges’, ‘right_edges’
If plateau_size is given, these keys are accessible and contain the indices of
a peak’s edges (edges are still part of the plateau) and the calculated plateau
sizes.
New in version 1.2.0.

To calculate and return properties without excluding peaks, provide the open interval
(None, None) as a value to the appropriate argument (excluding distance).

Warns

PeakPropertyWarning
Raised if a peak’s properties have unexpected values (see peak_prominences and
peak_widths).

Warning: This function may return unexpected results for data containing NaNs. To avoid this, NaNs should
either be removed or replaced.

See also:

find_peaks_cwt

Find peaks using the wavelet transformation.
peak_prominences

Directly calculate the prominence of peaks.
peak_widths

Directly calculate the width of peaks.
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Notes

In the context of this function, a peak or local maximum is defined as any sample whose two direct neighbours
have a smaller amplitude. For flat peaks (more than one sample of equal amplitude wide) the index of the middle
sample is returned (rounded down in case the number of samples is even). For noisy signals the peak locations can
be off because the noise might change the position of local maxima. In those cases consider smoothing the signal
before searching for peaks or use other peak finding and fitting methods (like find_peaks_cwt).
Some additional comments on specifying conditions:

• Almost all conditions (excluding distance) can be given as half-open or closed intervals, e.g 1 or (1, None)
defines the half-open interval [1,∞] while (None, 1) defines the interval [−∞, 1]. The open interval
(None, None) can be specified as well, which returns the matching properties without exclusion of peaks.

• The border is always included in the interval used to select valid peaks.
• For several conditions the interval borders can be specified with arrays matching x in shape which enables
dynamic constrains based on the sample position.

• The conditions are evaluated in the following order: plateau_size, height, threshold, distance, prominence,
width. In most cases this order is the fastest one because faster operations are applied first to reduce the
number of peaks that need to be evaluated later.

• While indices in peaks are guaranteed to be at least distance samples apart, edges of flat peaks may be closer
than the allowed distance.

• Use wlen to reduce the time it takes to evaluate the conditions for prominence or width if x is large or has
many local maxima (see peak_prominences).

New in version 1.1.0.

Examples

To demonstrate this function’s usage we use a signal x supplied with SciPy (see scipy.misc.
electrocardiogram). Let’s find all peaks (local maxima) in x whose amplitude lies above 0.

>>> import matplotlib.pyplot as plt
>>> from scipy.misc import electrocardiogram
>>> from scipy.signal import find_peaks
>>> x = electrocardiogram()[2000:4000]
>>> peaks, _ = find_peaks(x, height=0)
>>> plt.plot(x)
>>> plt.plot(peaks, x[peaks], "x")
>>> plt.plot(np.zeros_like(x), "--", color="gray")
>>> plt.show()

We can select peaks below 0 with height=(None, 0) or use arrays matching x in size to reflect a changing
condition for different parts of the signal.

>>> border = np.sin(np.linspace(0, 3 * np.pi, x.size))
>>> peaks, _ = find_peaks(x, height=(-border, border))
>>> plt.plot(x)
>>> plt.plot(-border, "--", color="gray")
>>> plt.plot(border, ":", color="gray")
>>> plt.plot(peaks, x[peaks], "x")
>>> plt.show()
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Another useful condition for periodic signals can be given with the distance argument. In this case we can easily
select the positions of QRS complexes within the electrocardiogram (ECG) by demanding a distance of at least
150 samples.

>>> peaks, _ = find_peaks(x, distance=150)
>>> np.diff(peaks)
array([186, 180, 177, 171, 177, 169, 167, 164, 158, 162, 172])
>>> plt.plot(x)
>>> plt.plot(peaks, x[peaks], "x")
>>> plt.show()
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Especially for noisy signals peaks can be easily grouped by their prominence (see peak_prominences). E.g.
we can select all peaks except for the mentioned QRS complexes by limiting the allowed prominenence to 0.6.

>>> peaks, properties = find_peaks(x, prominence=(None, 0.6))
>>> properties["prominences"].max()
0.5049999999999999
>>> plt.plot(x)
>>> plt.plot(peaks, x[peaks], "x")
>>> plt.show()

And finally let’s examine a different section of the ECGwhich contains beat forms of different shape. To select only
the atypical heart beats we combine two conditions: a minimal prominence of 1 and width of at least 20 samples.

>>> x = electrocardiogram()[17000:18000]
>>> peaks, properties = find_peaks(x, prominence=1, width=20)
>>> properties["prominences"], properties["widths"]
(array([1.495, 2.3 ]), array([36.93773946, 39.32723577]))
>>> plt.plot(x)
>>> plt.plot(peaks, x[peaks], "x")
>>> plt.vlines(x=peaks, ymin=x[peaks] - properties["prominences"],
... ymax = x[peaks], color = "C1")
>>> plt.hlines(y=properties["width_heights"], xmin=properties["left_ips"],
... xmax=properties["right_ips"], color = "C1")
>>> plt.show()
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scipy.signal.find_peaks_cwt

scipy.signal.find_peaks_cwt(vector,widths,wavelet=None,max_distances=None, gap_thresh=None,
min_length=None, min_snr=1, noise_perc=10)

Find peaks in a 1-D array with wavelet transformation.
The general approach is to smooth vector by convolving it with wavelet(width) for each width in widths. Relative
maxima which appear at enough length scales, and with sufficiently high SNR, are accepted.

Parameters

vector [ndarray] 1-D array in which to find the peaks.
widths [sequence] 1-D array of widths to use for calculating the CWTmatrix. In general, this range

should cover the expected width of peaks of interest.
wavelet [callable, optional] Should take two parameters and return a 1-D array to convolve with

vector. The first parameter determines the number of points of the returned wavelet array, the
second parameter is the scale (width) of the wavelet. Should be normalized and symmetric.
Default is the ricker wavelet.

max_distances
[ndarray, optional] At each row, a ridge line is only connected if the relative max at row[n]
is within max_distances[n] from the relative max at row[n+1]. Default value is
widths/4.

gap_thresh
[float, optional] If a relative maximum is not found withinmax_distances, there will be a gap.
A ridge line is discontinued if there are more than gap_thresh points without connecting a
new relative maximum. Default is the first value of the widths array i.e. widths[0].

min_length
[int, optional] Minimum length a ridge line needs to be acceptable. Default is cwt.
shape[0] / 4, ie 1/4-th the number of widths.

min_snr [float, optional] Minimum SNR ratio. Default 1. The signal is the value of the cwt matrix
at the shortest length scale (cwt[0, loc]), the noise is the noise_perc‘th percentile of
datapoints contained within a window of ‘window_size around cwt[0, loc].

noise_perc
[float, optional] When calculating the noise floor, percentile of data points examined below
which to consider noise. Calculated using stats.scoreatpercentile. Default is 10.

Returns

peaks_indices
[ndarray] Indices of the locations in the vector where peaks were found. The list is sorted.

See also:

cwt

Continuous wavelet transform.
find_peaks

Find peaks inside a signal based on peak properties.

Notes

This approach was designed for finding sharp peaks among noisy data, however with proper parameter selection it
should function well for different peak shapes.
The algorithm is as follows:

6.21. Signal processing (scipy.signal) 1599



SciPy Reference Guide, Release 1.3.1

1. Perform a continuous wavelet transform on vector, for the supplied widths. This is a convolution of vector
with wavelet(width) for each width in widths. See cwt

2. Identify “ridge lines” in the cwt matrix. These are relative maxima at each row, connected across adjacent
rows. See identify_ridge_lines

3. Filter the ridge_lines using filter_ridge_lines.

New in version 0.11.0.

References

[1]

Examples

>>> from scipy import signal
>>> xs = np.arange(0, np.pi, 0.05)
>>> data = np.sin(xs)
>>> peakind = signal.find_peaks_cwt(data, np.arange(1,10))
>>> peakind, xs[peakind], data[peakind]
([32], array([ 1.6]), array([ 0.9995736]))

scipy.signal.peak_prominences

scipy.signal.peak_prominences(x, peaks, wlen=None)
Calculate the prominence of each peak in a signal.
The prominence of a peak measures how much a peak stands out from the surrounding baseline of the signal and
is defined as the vertical distance between the peak and its lowest contour line.

Parameters

x [sequence] A signal with peaks.
peaks [sequence] Indices of peaks in x.
wlen [int, optional] A window length in samples that optionally limits the evaluated area for each

peak to a subset of x. The peak is always placed in the middle of the window therefore
the given length is rounded up to the next odd integer. This parameter can speed up the
calculation (see Notes).

Returns

prominences
[ndarray] The calculated prominences for each peak in peaks.

left_bases, right_bases
[ndarray] The peaks’ bases as indices in x to the left and right of each peak. The higher base
of each pair is a peak’s lowest contour line.

Raises

ValueError
If a value in peaks is an invalid index for x.

Warns

1600 Chapter 6. API Reference



SciPy Reference Guide, Release 1.3.1

PeakPropertyWarning
For indices in peaks that don’t point to valid local maxima in x the returned prominence will
be 0 and this warning is raised. This also happens if wlen is smaller than the plateau size of
a peak.

Warning: This function may return unexpected results for data containing NaNs. To avoid this, NaNs should
either be removed or replaced.

See also:

find_peaks

Find peaks inside a signal based on peak properties.
peak_widths

Calculate the width of peaks.

Notes

Strategy to compute a peak’s prominence:
1. Extend a horizontal line from the current peak to the left and right until the line either reaches the window

border (see wlen) or intersects the signal again at the slope of a higher peak. An intersection with a peak of
the same height is ignored.

2. On each side find the minimal signal value within the interval defined above. These points are the peak’s
bases.

3. The higher one of the two bases marks the peak’s lowest contour line. The prominence can then be calculated
as the vertical difference between the peaks height itself and its lowest contour line.

Searching for the peak’s bases can be slow for large x with periodic behavior because large chunks or even the full
signal need to be evaluated for the first algorithmic step. This evaluation area can be limited with the parameter
wlen which restricts the algorithm to a window around the current peak and can shorten the calculation time if the
window length is short in relation to x. However this may stop the algorithm from finding the true global contour
line if the peak’s true bases are outside this window. Instead a higher contour line is found within the restricted
window leading to a smaller calculated prominence. In practice this is only relevant for the highest set of peaks in
x. This behavior may even be used intentionally to calculate “local” prominences.
New in version 1.1.0.

References

[1]

Examples

>>> from scipy.signal import find_peaks, peak_prominences
>>> import matplotlib.pyplot as plt

Create a test signal with two overlayed harmonics
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>>> x = np.linspace(0, 6 * np.pi, 1000)
>>> x = np.sin(x) + 0.6 * np.sin(2.6 * x)

Find all peaks and calculate prominences

>>> peaks, _ = find_peaks(x)
>>> prominences = peak_prominences(x, peaks)[0]
>>> prominences
array([1.24159486, 0.47840168, 0.28470524, 3.10716793, 0.284603 ,

0.47822491, 2.48340261, 0.47822491])

Calculate the height of each peak’s contour line and plot the results

>>> contour_heights = x[peaks] - prominences
>>> plt.plot(x)
>>> plt.plot(peaks, x[peaks], "x")
>>> plt.vlines(x=peaks, ymin=contour_heights, ymax=x[peaks])
>>> plt.show()
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Let’s evaluate a second example that demonstrates several edge cases for one peak at index 5.

>>> x = np.array([0, 1, 0, 3, 1, 3, 0, 4, 0])
>>> peaks = np.array([5])
>>> plt.plot(x)
>>> plt.plot(peaks, x[peaks], "x")
>>> plt.show()

>>> peak_prominences(x, peaks) # -> (prominences, left_bases, right_
↪→bases)
(array([3.]), array([2]), array([6]))

Note how the peak at index 3 of the same height is not considered as a border while searching for the left base.
Instead two minima at 0 and 2 are found in which case the one closer to the evaluated peak is always chosen. On the
right side however the base must be placed at 6 because the higher peak represents the right border to the evaluated
area.
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>>> peak_prominences(x, peaks, wlen=3.1)
(array([2.]), array([4]), array([6]))

Here we restricted the algorithm to a window from 3 to 7 (the length is 5 samples because wlen was rounded up to
the next odd integer). Thus the only two candidates in the evaluated area are the two neighbouring samples and a
smaller prominence is calculated.

scipy.signal.peak_widths

scipy.signal.peak_widths(x, peaks, rel_height=0.5, prominence_data=None, wlen=None)
Calculate the width of each peak in a signal.
This function calculates the width of a peak in samples at a relative distance to the peak’s height and prominence.

Parameters

x [sequence] A signal with peaks.
peaks [sequence] Indices of peaks in x.
rel_height [float, optional] Chooses the relative height at which the peak width is measured as a per-

centage of its prominence. 1.0 calculates the width of the peak at its lowest contour line
while 0.5 evaluates at half the prominence height. Must be at least 0. See notes for further
explanation.

prominence_data
[tuple, optional] A tuple of three arrays matching the output of peak_prominences
when called with the same arguments x and peaks. This data is calculated internally if not
provided.

wlen [int, optional] A window length in samples passed to peak_prominences as an optional
argument for internal calculation of prominence_data. This argument is ignored if promi-
nence_data is given.

Returns

widths [ndarray] The widths for each peak in samples.
width_heights

[ndarray] The height of the contour lines at which the widths where evaluated.
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left_ips, right_ips
[ndarray] Interpolated positions of left and right intersection points of a horizontal line at the
respective evaluation height.

Raises

ValueError
If prominence_data is supplied but doesn’t satisfy the condition 0 <= left_base <=
peak <= right_base < x.shape[0] for each peak, has the wrong dtype, is not
C-contiguous or does not have the same shape.

Warns

PeakPropertyWarning
Raised if any calculated width is 0. This may stem from the supplied prominence_data or if
rel_height is set to 0.

Warning: This function may return unexpected results for data containing NaNs. To avoid this, NaNs should
either be removed or replaced.

See also:

find_peaks

Find peaks inside a signal based on peak properties.
peak_prominences

Calculate the prominence of peaks.

Notes

The basic algorithm to calculate a peak’s width is as follows:
• Calculate the evaluation height heval with the formula heval = hPeak − P ·R, where hPeak is the height of
the peak itself, P is the peak’s prominence and R a positive ratio specified with the argument rel_height.

• Draw a horizontal line at the evaluation height to both sides, starting at the peak’s current vertical position
until the lines either intersect a slope, the signal border or cross the vertical position of the peak’s base (see
peak_prominences for an definition). For the first case, intersection with the signal, the true intersection
point is estimated with linear interpolation.

• Calculate the width as the horizontal distance between the chosen endpoints on both sides. As a consequence
of this the maximal possible width for each peak is the horizontal distance between its bases.

As shown above to calculate a peak’s width its prominence and bases must be known. You can supply these yourself
with the argument prominence_data. Otherwise they are internally calculated (see peak_prominences).
New in version 1.1.0.

Examples

>>> from scipy.signal import chirp, find_peaks, peak_widths
>>> import matplotlib.pyplot as plt

Create a test signal with two overlayed harmonics
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>>> x = np.linspace(0, 6 * np.pi, 1000)
>>> x = np.sin(x) + 0.6 * np.sin(2.6 * x)

Find all peaks and calculate their widths at the relative height of 0.5 (contour line at half the prominence height)
and 1 (at the lowest contour line at full prominence height).

>>> peaks, _ = find_peaks(x)
>>> results_half = peak_widths(x, peaks, rel_height=0.5)
>>> results_half[0] # widths
array([ 64.25172825, 41.29465463, 35.46943289, 104.71586081,

35.46729324, 41.30429622, 181.93835853, 45.37078546])
>>> results_full = peak_widths(x, peaks, rel_height=1)
>>> results_full[0] # widths
array([181.9396084 , 72.99284945, 61.28657872, 373.84622694,

61.78404617, 72.48822812, 253.09161876, 79.36860878])

Plot signal, peaks and contour lines at which the widths where calculated

>>> plt.plot(x)
>>> plt.plot(peaks, x[peaks], "x")
>>> plt.hlines(*results_half[1:], color="C2")
>>> plt.hlines(*results_full[1:], color="C3")
>>> plt.show()
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6.21.13 Spectral Analysis

periodogram(x[, fs, window, nfft, detrend, …]) Estimate power spectral density using a periodogram.
welch(x[, fs, window, nperseg, noverlap, …]) Estimate power spectral density using Welch’s method.
csd(x, y[, fs, window, nperseg, noverlap, …]) Estimate the cross power spectral density, Pxy, using

Welch’s method.
Continued on next page
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Table 165 – continued from previous page
coherence(x, y[, fs, window, nperseg, …]) Estimate themagnitude squared coherence estimate, Cxy,

of discrete-time signals X and Y using Welch’s method.
spectrogram(x[, fs, window, nperseg, …]) Compute a spectrogram with consecutive Fourier trans-

forms.
lombscargle(x, y, freqs) Computes the Lomb-Scargle periodogram.
vectorstrength(events, period) Determine the vector strength of the events corresponding

to the given period.
stft(x[, fs, window, nperseg, noverlap, …]) Compute the Short Time Fourier Transform (STFT).
istft(Zxx[, fs, window, nperseg, noverlap, …]) Perform the inverse Short Time Fourier transform

(iSTFT).
check_COLA(window, nperseg, noverlap[, tol]) Check whether the Constant OverLap Add (COLA) con-

straint is met
check_NOLA(window, nperseg, noverlap[, tol]) Check whether the Nonzero Overlap Add (NOLA) con-

straint is met

scipy.signal.periodogram

scipy.signal.periodogram(x, fs=1.0, window=’boxcar’, nfft=None, detrend=’constant’, re-
turn_onesided=True, scaling=’density’, axis=-1)

Estimate power spectral density using a periodogram.
Parameters

x [array_like] Time series of measurement values
fs [float, optional] Sampling frequency of the x time series. Defaults to 1.0.
window [str or tuple or array_like, optional] Desired window to use. If window is a string or tuple, it

is passed to get_window to generate the window values, which are DFT-even by default.
See get_window for a list of windows and required parameters. If window is array_like
it will be used directly as the window and its length must be nperseg. Defaults to ‘boxcar’.

nfft [int, optional] Length of the FFT used. If None the length of x will be used.
detrend [str or function or False, optional] Specifies how to detrend each segment. If detrend is a

string, it is passed as the type argument to the detrend function. If it is a function, it takes
a segment and returns a detrended segment. If detrend is False, no detrending is done.
Defaults to ‘constant’.

return_onesided
[bool, optional] If True, return a one-sided spectrum for real data. If False return a two-sided
spectrum. Defaults to True, but for complex data, a two-sided spectrum is always returned.

scaling [{ ‘density’, ‘spectrum’ }, optional] Selects between computing the power spectral density
(‘density’) where Pxx has units of V**2/Hz and computing the power spectrum (‘spectrum’)
where Pxx has units of V**2, if x is measured in V and fs is measured in Hz. Defaults to
‘density’

axis [int, optional] Axis along which the periodogram is computed; the default is over the last
axis (i.e. axis=-1).

Returns

f [ndarray] Array of sample frequencies.
Pxx [ndarray] Power spectral density or power spectrum of x.

See also:

welch

Estimate power spectral density using Welch’s method
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lombscargle

Lomb-Scargle periodogram for unevenly sampled data

Notes

New in version 0.12.0.

Examples

>>> from scipy import signal
>>> import matplotlib.pyplot as plt
>>> np.random.seed(1234)

Generate a test signal, a 2 Vrms sine wave at 1234 Hz, corrupted by 0.001 V**2/Hz of white noise sampled at 10
kHz.

>>> fs = 10e3
>>> N = 1e5
>>> amp = 2*np.sqrt(2)
>>> freq = 1234.0
>>> noise_power = 0.001 * fs / 2
>>> time = np.arange(N) / fs
>>> x = amp*np.sin(2*np.pi*freq*time)
>>> x += np.random.normal(scale=np.sqrt(noise_power), size=time.shape)

Compute and plot the power spectral density.

>>> f, Pxx_den = signal.periodogram(x, fs)
>>> plt.semilogy(f, Pxx_den)
>>> plt.ylim([1e-7, 1e2])
>>> plt.xlabel('frequency [Hz]')
>>> plt.ylabel('PSD [V**2/Hz]')
>>> plt.show()

If we average the last half of the spectral density, to exclude the peak, we can recover the noise power on the signal.

>>> np.mean(Pxx_den[25000:])
0.00099728892368242854

Now compute and plot the power spectrum.

>>> f, Pxx_spec = signal.periodogram(x, fs, 'flattop', scaling='spectrum')
>>> plt.figure()
>>> plt.semilogy(f, np.sqrt(Pxx_spec))
>>> plt.ylim([1e-4, 1e1])
>>> plt.xlabel('frequency [Hz]')
>>> plt.ylabel('Linear spectrum [V RMS]')
>>> plt.show()

The peak height in the power spectrum is an estimate of the RMS amplitude.
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>>> np.sqrt(Pxx_spec.max())
2.0077340678640727

scipy.signal.welch

scipy.signal.welch(x, fs=1.0, window=’hann’, nperseg=None, noverlap=None, nfft=None, de-
trend=’constant’, return_onesided=True, scaling=’density’, axis=-1, average=’mean’)

Estimate power spectral density using Welch’s method.
Welch’s method [1] computes an estimate of the power spectral density by dividing the data into overlapping
segments, computing a modified periodogram for each segment and averaging the periodograms.

Parameters

x [array_like] Time series of measurement values
fs [float, optional] Sampling frequency of the x time series. Defaults to 1.0.
window [str or tuple or array_like, optional] Desired window to use. If window is a string or tuple, it

is passed to get_window to generate the window values, which are DFT-even by default.
See get_window for a list of windows and required parameters. If window is array_like
it will be used directly as the window and its length must be nperseg. Defaults to a Hann
window.

nperseg [int, optional] Length of each segment. Defaults to None, but if window is str or tuple, is set
to 256, and if window is array_like, is set to the length of the window.

noverlap [int, optional] Number of points to overlap between segments. If None, noverlap =
nperseg // 2. Defaults to None.

nfft [int, optional] Length of the FFT used, if a zero padded FFT is desired. If None, the FFT
length is nperseg. Defaults to None.

detrend [str or function or False, optional] Specifies how to detrend each segment. If detrend is a
string, it is passed as the type argument to the detrend function. If it is a function, it takes
a segment and returns a detrended segment. If detrend is False, no detrending is done.
Defaults to ‘constant’.

return_onesided
[bool, optional] If True, return a one-sided spectrum for real data. If False return a two-sided
spectrum. Defaults to True, but for complex data, a two-sided spectrum is always returned.

scaling [{ ‘density’, ‘spectrum’ }, optional] Selects between computing the power spectral density
(‘density’) where Pxx has units of V**2/Hz and computing the power spectrum (‘spectrum’)
where Pxx has units of V**2, if x is measured in V and fs is measured in Hz. Defaults to
‘density’

axis [int, optional] Axis along which the periodogram is computed; the default is over the last
axis (i.e. axis=-1).

average [{ ‘mean’, ‘median’ }, optional] Method to use when averaging periodograms. Defaults to
‘mean’.
New in version 1.2.0.

Returns

f [ndarray] Array of sample frequencies.
Pxx [ndarray] Power spectral density or power spectrum of x.

See also:

periodogram

Simple, optionally modified periodogram
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lombscargle

Lomb-Scargle periodogram for unevenly sampled data

Notes

An appropriate amount of overlap will depend on the choice of window and on your requirements. For the default
Hann window an overlap of 50% is a reasonable trade off between accurately estimating the signal power, while
not over counting any of the data. Narrower windows may require a larger overlap.
If noverlap is 0, this method is equivalent to Bartlett’s method [2].
New in version 0.12.0.

References

[1], [2]

Examples

>>> from scipy import signal
>>> import matplotlib.pyplot as plt
>>> np.random.seed(1234)

Generate a test signal, a 2 Vrms sine wave at 1234 Hz, corrupted by 0.001 V**2/Hz of white noise sampled at 10
kHz.

>>> fs = 10e3
>>> N = 1e5
>>> amp = 2*np.sqrt(2)
>>> freq = 1234.0
>>> noise_power = 0.001 * fs / 2
>>> time = np.arange(N) / fs
>>> x = amp*np.sin(2*np.pi*freq*time)
>>> x += np.random.normal(scale=np.sqrt(noise_power), size=time.shape)

Compute and plot the power spectral density.

>>> f, Pxx_den = signal.welch(x, fs, nperseg=1024)
>>> plt.semilogy(f, Pxx_den)
>>> plt.ylim([0.5e-3, 1])
>>> plt.xlabel('frequency [Hz]')
>>> plt.ylabel('PSD [V**2/Hz]')
>>> plt.show()

If we average the last half of the spectral density, to exclude the peak, we can recover the noise power on the signal.

>>> np.mean(Pxx_den[256:])
0.0009924865443739191

Now compute and plot the power spectrum.
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>>> f, Pxx_spec = signal.welch(x, fs, 'flattop', 1024, scaling='spectrum')
>>> plt.figure()
>>> plt.semilogy(f, np.sqrt(Pxx_spec))
>>> plt.xlabel('frequency [Hz]')
>>> plt.ylabel('Linear spectrum [V RMS]')
>>> plt.show()

0 1000 2000 3000 4000 5000
frequency [Hz]

10 1

100

Lin
ea

r s
pe

ct
ru

m
 [V

 R
M

S]

The peak height in the power spectrum is an estimate of the RMS amplitude.

>>> np.sqrt(Pxx_spec.max())
2.0077340678640727

If we now introduce a discontinuity in the signal, by increasing the amplitude of a small portion of the signal by 50,
we can see the corruption of the mean average power spectral density, but using a median average better estimates
the normal behaviour.
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>>> x[int(N//2):int(N//2)+10] *= 50.
>>> f, Pxx_den = signal.welch(x, fs, nperseg=1024)
>>> f_med, Pxx_den_med = signal.welch(x, fs, nperseg=1024, average='median
↪→')
>>> plt.semilogy(f, Pxx_den, label='mean')
>>> plt.semilogy(f_med, Pxx_den_med, label='median')
>>> plt.ylim([0.5e-3, 1])
>>> plt.xlabel('frequency [Hz]')
>>> plt.ylabel('PSD [V**2/Hz]')
>>> plt.legend()
>>> plt.show()
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scipy.signal.csd

scipy.signal.csd(x, y, fs=1.0, window=’hann’, nperseg=None, noverlap=None, nfft=None, de-
trend=’constant’, return_onesided=True, scaling=’density’, axis=-1, average=’mean’)

Estimate the cross power spectral density, Pxy, using Welch’s method.
Parameters

x [array_like] Time series of measurement values
y [array_like] Time series of measurement values
fs [float, optional] Sampling frequency of the x and y time series. Defaults to 1.0.
window [str or tuple or array_like, optional] Desired window to use. If window is a string or tuple, it

is passed to get_window to generate the window values, which are DFT-even by default.
See get_window for a list of windows and required parameters. If window is array_like
it will be used directly as the window and its length must be nperseg. Defaults to a Hann
window.

nperseg [int, optional] Length of each segment. Defaults to None, but if window is str or tuple, is set
to 256, and if window is array_like, is set to the length of the window.

noverlap: int, optional
Number of points to overlap between segments. If None, noverlap = nperseg //
2. Defaults to None.
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nfft [int, optional] Length of the FFT used, if a zero padded FFT is desired. If None, the FFT
length is nperseg. Defaults to None.

detrend [str or function or False, optional] Specifies how to detrend each segment. If detrend is a
string, it is passed as the type argument to the detrend function. If it is a function, it takes
a segment and returns a detrended segment. If detrend is False, no detrending is done.
Defaults to ‘constant’.

return_onesided
[bool, optional] If True, return a one-sided spectrum for real data. If False return a two-sided
spectrum. Defaults to True, but for complex data, a two-sided spectrum is always returned.

scaling [{ ‘density’, ‘spectrum’ }, optional] Selects between computing the cross spectral density
(‘density’) where Pxy has units of V**2/Hz and computing the cross spectrum (‘spectrum’)
where Pxy has units of V**2, if x and y are measured in V and fs is measured in Hz. Defaults
to ‘density’

axis [int, optional] Axis along which the CSD is computed for both inputs; the default is over the
last axis (i.e. axis=-1).

average [{ ‘mean’, ‘median’ }, optional] Method to use when averaging periodograms. Defaults to
‘mean’.
New in version 1.2.0.

Returns

f [ndarray] Array of sample frequencies.
Pxy [ndarray] Cross spectral density or cross power spectrum of x,y.

See also:

periodogram

Simple, optionally modified periodogram
lombscargle

Lomb-Scargle periodogram for unevenly sampled data
welch

Power spectral density by Welch’s method. [Equivalent to csd(x,x)]
coherence

Magnitude squared coherence by Welch’s method.

Notes

By convention, Pxy is computed with the conjugate FFT of X multiplied by the FFT of Y.
If the input series differ in length, the shorter series will be zero-padded to match.
An appropriate amount of overlap will depend on the choice of window and on your requirements. For the default
Hann window an overlap of 50% is a reasonable trade off between accurately estimating the signal power, while
not over counting any of the data. Narrower windows may require a larger overlap.
New in version 0.16.0.

References

[1], [2]
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Examples

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

Generate two test signals with some common features.

>>> fs = 10e3
>>> N = 1e5
>>> amp = 20
>>> freq = 1234.0
>>> noise_power = 0.001 * fs / 2
>>> time = np.arange(N) / fs
>>> b, a = signal.butter(2, 0.25, 'low')
>>> x = np.random.normal(scale=np.sqrt(noise_power), size=time.shape)
>>> y = signal.lfilter(b, a, x)
>>> x += amp*np.sin(2*np.pi*freq*time)
>>> y += np.random.normal(scale=0.1*np.sqrt(noise_power), size=time.shape)

Compute and plot the magnitude of the cross spectral density.

>>> f, Pxy = signal.csd(x, y, fs, nperseg=1024)
>>> plt.semilogy(f, np.abs(Pxy))
>>> plt.xlabel('frequency [Hz]')
>>> plt.ylabel('CSD [V**2/Hz]')
>>> plt.show()
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scipy.signal.coherence

scipy.signal.coherence(x, y, fs=1.0, window=’hann’, nperseg=None, noverlap=None, nfft=None, de-
trend=’constant’, axis=-1)

Estimate the magnitude squared coherence estimate, Cxy, of discrete-time signals X and Y using Welch’s method.
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Cxy = abs(Pxy)**2/(Pxx*Pyy), where Pxx and Pyy are power spectral density estimates of X and Y, and
Pxy is the cross spectral density estimate of X and Y.

Parameters

x [array_like] Time series of measurement values
y [array_like] Time series of measurement values
fs [float, optional] Sampling frequency of the x and y time series. Defaults to 1.0.
window [str or tuple or array_like, optional] Desired window to use. If window is a string or tuple, it

is passed to get_window to generate the window values, which are DFT-even by default.
See get_window for a list of windows and required parameters. If window is array_like
it will be used directly as the window and its length must be nperseg. Defaults to a Hann
window.

nperseg [int, optional] Length of each segment. Defaults to None, but if window is str or tuple, is set
to 256, and if window is array_like, is set to the length of the window.

noverlap: int, optional
Number of points to overlap between segments. If None, noverlap = nperseg //
2. Defaults to None.

nfft [int, optional] Length of the FFT used, if a zero padded FFT is desired. If None, the FFT
length is nperseg. Defaults to None.

detrend [str or function or False, optional] Specifies how to detrend each segment. If detrend is a
string, it is passed as the type argument to the detrend function. If it is a function, it takes
a segment and returns a detrended segment. If detrend is False, no detrending is done.
Defaults to ‘constant’.

axis [int, optional] Axis along which the coherence is computed for both inputs; the default is
over the last axis (i.e. axis=-1).

Returns

f [ndarray] Array of sample frequencies.
Cxy [ndarray] Magnitude squared coherence of x and y.

See also:

periodogram

Simple, optionally modified periodogram
lombscargle

Lomb-Scargle periodogram for unevenly sampled data
welch

Power spectral density by Welch’s method.
csd

Cross spectral density by Welch’s method.

Notes

An appropriate amount of overlap will depend on the choice of window and on your requirements. For the default
Hann window an overlap of 50% is a reasonable trade off between accurately estimating the signal power, while
not over counting any of the data. Narrower windows may require a larger overlap.
New in version 0.16.0.
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References

[1], [2]

Examples

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

Generate two test signals with some common features.

>>> fs = 10e3
>>> N = 1e5
>>> amp = 20
>>> freq = 1234.0
>>> noise_power = 0.001 * fs / 2
>>> time = np.arange(N) / fs
>>> b, a = signal.butter(2, 0.25, 'low')
>>> x = np.random.normal(scale=np.sqrt(noise_power), size=time.shape)
>>> y = signal.lfilter(b, a, x)
>>> x += amp*np.sin(2*np.pi*freq*time)
>>> y += np.random.normal(scale=0.1*np.sqrt(noise_power), size=time.shape)

Compute and plot the coherence.

>>> f, Cxy = signal.coherence(x, y, fs, nperseg=1024)
>>> plt.semilogy(f, Cxy)
>>> plt.xlabel('frequency [Hz]')
>>> plt.ylabel('Coherence')
>>> plt.show()
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scipy.signal.spectrogram

scipy.signal.spectrogram(x, fs=1.0, window=(’tukey’, 0.25), nperseg=None, noverlap=None,
nfft=None, detrend=’constant’, return_onesided=True, scaling=’density’,
axis=-1, mode=’psd’)

Compute a spectrogram with consecutive Fourier transforms.
Spectrograms can be used as a way of visualizing the change of a nonstationary signal’s frequency content over
time.

Parameters

x [array_like] Time series of measurement values
fs [float, optional] Sampling frequency of the x time series. Defaults to 1.0.
window [str or tuple or array_like, optional] Desired window to use. If window is a string or tuple, it

is passed to get_window to generate the window values, which are DFT-even by default.
See get_window for a list of windows and required parameters. If window is array_like
it will be used directly as the window and its length must be nperseg. Defaults to a Tukey
window with shape parameter of 0.25.

nperseg [int, optional] Length of each segment. Defaults to None, but if window is str or tuple, is set
to 256, and if window is array_like, is set to the length of the window.

noverlap [int, optional] Number of points to overlap between segments. If None, noverlap =
nperseg // 8. Defaults to None.

nfft [int, optional] Length of the FFT used, if a zero padded FFT is desired. If None, the FFT
length is nperseg. Defaults to None.

detrend [str or function or False, optional] Specifies how to detrend each segment. If detrend is a
string, it is passed as the type argument to the detrend function. If it is a function, it takes
a segment and returns a detrended segment. If detrend is False, no detrending is done.
Defaults to ‘constant’.

return_onesided
[bool, optional] If True, return a one-sided spectrum for real data. If False return a two-sided
spectrum. Defaults to True, but for complex data, a two-sided spectrum is always returned.

scaling [{ ‘density’, ‘spectrum’ }, optional] Selects between computing the power spectral density
(‘density’) where Sxx has units of V**2/Hz and computing the power spectrum (‘spectrum’)
where Sxx has units of V**2, if x is measured in V and fs is measured in Hz. Defaults to
‘density’.

axis [int, optional] Axis along which the spectrogram is computed; the default is over the last axis
(i.e. axis=-1).

mode [str, optional] Defines what kind of return values are expected. Options are [‘psd’, ‘complex’,
‘magnitude’, ‘angle’, ‘phase’]. ‘complex’ is equivalent to the output of stft with no padding
or boundary extension. ‘magnitude’ returns the absolute magnitude of the STFT. ‘angle’ and
‘phase’ return the complex angle of the STFT, with and without unwrapping, respectively.

Returns

f [ndarray] Array of sample frequencies.
t [ndarray] Array of segment times.
Sxx [ndarray] Spectrogram of x. By default, the last axis of Sxx corresponds to the segment

times.
See also:

periodogram

Simple, optionally modified periodogram
lombscargle
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Lomb-Scargle periodogram for unevenly sampled data
welch

Power spectral density by Welch’s method.
csd

Cross spectral density by Welch’s method.

Notes

An appropriate amount of overlap will depend on the choice of window and on your requirements. In contrast to
welch’s method, where the entire data stream is averaged over, one may wish to use a smaller overlap (or perhaps
none at all) when computing a spectrogram, to maintain some statistical independence between individual segments.
It is for this reason that the default window is a Tukey window with 1/8th of a window’s length overlap at each end.
New in version 0.16.0.

References

[1]

Examples

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

Generate a test signal, a 2 Vrms sine wave whose frequency is slowly modulated around 3kHz, corrupted by white
noise of exponentially decreasing magnitude sampled at 10 kHz.

>>> fs = 10e3
>>> N = 1e5
>>> amp = 2 * np.sqrt(2)
>>> noise_power = 0.01 * fs / 2
>>> time = np.arange(N) / float(fs)
>>> mod = 500*np.cos(2*np.pi*0.25*time)
>>> carrier = amp * np.sin(2*np.pi*3e3*time + mod)
>>> noise = np.random.normal(scale=np.sqrt(noise_power), size=time.shape)
>>> noise *= np.exp(-time/5)
>>> x = carrier + noise

Compute and plot the spectrogram.

>>> f, t, Sxx = signal.spectrogram(x, fs)
>>> plt.pcolormesh(t, f, Sxx)
>>> plt.ylabel('Frequency [Hz]')
>>> plt.xlabel('Time [sec]')
>>> plt.show()

Note, if using output that is not one sided, then use the following:
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>>> f, t, Sxx = signal.spectrogram(x, fs, return_onesided=False)
>>> plt.pcolormesh(t, np.fft.fftshift(f), np.fft.fftshift(Sxx, axes=0))
>>> plt.ylabel('Frequency [Hz]')
>>> plt.xlabel('Time [sec]')
>>> plt.show()
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scipy.signal.lombscargle

scipy.signal.lombscargle(x, y, freqs)
Computes the Lomb-Scargle periodogram.
The Lomb-Scargle periodogram was developed by Lomb [1] and further extended by Scargle [2] to find, and test
the significance of weak periodic signals with uneven temporal sampling.
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When normalize is False (default) the computed periodogram is unnormalized, it takes the value (A**2) * N/4
for a harmonic signal with amplitude A for sufficiently large N.
When normalize is True the computed periodogram is normalized by the residuals of the data around a constant
reference model (at zero).
Input arrays should be one-dimensional and will be cast to float64.

Parameters

x [array_like] Sample times.
y [array_like] Measurement values.
freqs [array_like] Angular frequencies for output periodogram.
precenter [bool, optional] Pre-center amplitudes by subtracting the mean.
normalize [bool, optional] Compute normalized periodogram.

Returns

pgram [array_like] Lomb-Scargle periodogram.
Raises

ValueError
If the input arrays x and y do not have the same shape.

See also:

istft

Inverse Short Time Fourier Transform
check_COLA

Check whether the Constant OverLap Add (COLA) constraint is met
welch

Power spectral density by Welch’s method
spectrogram

Spectrogram by Welch’s method
csd

Cross spectral density by Welch’s method

Notes

This subroutine calculates the periodogram using a slightly modified algorithm due to Townsend [3] which allows
the periodogram to be calculated using only a single pass through the input arrays for each frequency.
The algorithm running time scales roughly as O(x * freqs) or O(N^2) for a large number of samples and frequencies.

References

[1], [2], [3]
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Examples

>>> import matplotlib.pyplot as plt

First define some input parameters for the signal:

>>> A = 2.
>>> w = 1.
>>> phi = 0.5 * np.pi
>>> nin = 1000
>>> nout = 100000
>>> frac_points = 0.9 # Fraction of points to select

Randomly select a fraction of an array with timesteps:

>>> r = np.random.rand(nin)
>>> x = np.linspace(0.01, 10*np.pi, nin)
>>> x = x[r >= frac_points]

Plot a sine wave for the selected times:

>>> y = A * np.sin(w*x+phi)

Define the array of frequencies for which to compute the periodogram:

>>> f = np.linspace(0.01, 10, nout)

Calculate Lomb-Scargle periodogram:

>>> import scipy.signal as signal
>>> pgram = signal.lombscargle(x, y, f, normalize=True)

Now make a plot of the input data:

>>> plt.subplot(2, 1, 1)
>>> plt.plot(x, y, 'b+')

Then plot the normalized periodogram:

>>> plt.subplot(2, 1, 2)
>>> plt.plot(f, pgram)
>>> plt.show()

scipy.signal.vectorstrength

scipy.signal.vectorstrength(events, period)
Determine the vector strength of the events corresponding to the given period.
The vector strength is a measure of phase synchrony, how well the timing of the events is synchronized to a single
period of a periodic signal.
If multiple periods are used, calculate the vector strength of each. This is called the “resonating vector strength”.

Parameters

events [1D array_like] An array of time points containing the timing of the events.

6.21. Signal processing (scipy.signal) 1621



SciPy Reference Guide, Release 1.3.1

0 5 10 15 20 25 30
2

0

2

0 2 4 6 8 10
0.0

0.5

1.0

period [float or array_like] The period of the signal that the events should synchronize to. The period
is in the same units as events. It can also be an array of periods, in which case the outputs
are arrays of the same length.

Returns

strength [float or 1D array] The strength of the synchronization. 1.0 is perfect synchronization and 0.0
is no synchronization. If period is an array, this is also an array with each element containing
the vector strength at the corresponding period.

phase [float or array] The phase that the events are most strongly synchronized to in radians. If
period is an array, this is also an array with each element containing the phase for the corre-
sponding period.

References

van Hemmen, JL, Longtin, A, and Vollmayr, AN. Testing resonating vector

strength: Auditory system, electric fish, and noise. Chaos 21, 047508 (2011); DOI:10.1063/1.3670512.
van Hemmen, JL. Vector strength after Goldberg, Brown, and von Mises:

biological and mathematical perspectives. Biol Cybern. 2013 Aug;107(4):385-96. DOI:10.1007/s00422-013-
0561-7.

van Hemmen, JL and Vollmayr, AN. Resonating vector strength: what happens

when we vary the “probing” frequency while keeping the spike times fixed. Biol Cybern. 2013 Aug;107(4):491-
94. DOI:10.1007/s00422-013-0560-8.

scipy.signal.stft

scipy.signal.stft(x, fs=1.0, window=’hann’, nperseg=256, noverlap=None, nfft=None, detrend=False,
return_onesided=True, boundary=’zeros’, padded=True, axis=-1)

Compute the Short Time Fourier Transform (STFT).
STFTs can be used as a way of quantifying the change of a nonstationary signal’s frequency and phase content over
time.

1622 Chapter 6. API Reference

https://doi.org/10.1063/1.3670512
https://doi.org/10.1007/s00422-013-0561-7
https://doi.org/10.1007/s00422-013-0561-7
https://doi.org/10.1007/s00422-013-0560-8


SciPy Reference Guide, Release 1.3.1

Parameters

x [array_like] Time series of measurement values
fs [float, optional] Sampling frequency of the x time series. Defaults to 1.0.
window [str or tuple or array_like, optional] Desired window to use. If window is a string or tuple, it

is passed to get_window to generate the window values, which are DFT-even by default.
See get_window for a list of windows and required parameters. If window is array_like
it will be used directly as the window and its length must be nperseg. Defaults to a Hann
window.

nperseg [int, optional] Length of each segment. Defaults to 256.
noverlap [int, optional] Number of points to overlap between segments. If None, noverlap =

nperseg // 2. Defaults to None. When specified, the COLA constraint must be met
(see Notes below).

nfft [int, optional] Length of the FFT used, if a zero padded FFT is desired. If None, the FFT
length is nperseg. Defaults to None.

detrend [str or function or False, optional] Specifies how to detrend each segment. If detrend is a
string, it is passed as the type argument to the detrend function. If it is a function, it takes
a segment and returns a detrended segment. If detrend is False, no detrending is done.
Defaults to False.

return_onesided
[bool, optional] If True, return a one-sided spectrum for real data. If False return a two-sided
spectrum. Defaults to True, but for complex data, a two-sided spectrum is always returned.

boundary [str or None, optional] Specifies whether the input signal is extended at both ends, and how to
generate the new values, in order to center the first windowed segment on the first input point.
This has the benefit of enabling reconstruction of the first input point when the employed
window function starts at zero. Valid options are ['even', 'odd', 'constant',
'zeros', None]. Defaults to ‘zeros’, for zero padding extension. I.e. [1, 2, 3,
4] is extended to [0, 1, 2, 3, 4, 0] for nperseg=3.

padded [bool, optional] Specifies whether the input signal is zero-padded at the end tomake the signal
fit exactly into an integer number of window segments, so that all of the signal is included in
the output. Defaults to True. Padding occurs after boundary extension, if boundary is not
None, and padded is True, as is the default.

axis [int, optional] Axis along which the STFT is computed; the default is over the last axis (i.e.
axis=-1).

Returns

f [ndarray] Array of sample frequencies.
t [ndarray] Array of segment times.
Zxx [ndarray] STFT of x. By default, the last axis of Zxx corresponds to the segment times.

See also:

istft

Inverse Short Time Fourier Transform
check_COLA

Check whether the Constant OverLap Add (COLA) constraint is met
check_NOLA

Check whether the Nonzero Overlap Add (NOLA) constraint is met
welch

Power spectral density by Welch’s method.
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spectrogram

Spectrogram by Welch’s method.
csd

Cross spectral density by Welch’s method.
lombscargle

Lomb-Scargle periodogram for unevenly sampled data

Notes

In order to enable inversion of an STFT via the inverse STFT in istft, the signal windowing must obey the
constraint of “Nonzero OverLap Add” (NOLA), and the input signal must have complete windowing coverage
(i.e. (x.shape[axis] - nperseg) % (nperseg-noverlap) == 0). The padded argument may
be used to accomplish this.
Given a time-domain signal x[n], a window w[n], and a hop size H = nperseg - noverlap, the windowed frame at
time index t is given by

xt[n] = x[n]w[n− tH]

The overlap-add (OLA) reconstruction equation is given by

x[n] =

∑
t xt[n]w[n− tH]∑

t w
2[n− tH]

The NOLA constraint ensures that every normalization term that appears in the denomimator of the OLA recon-
struction equation is nonzero. Whether a choice of window, nperseg, and noverlap satisfy this constraint can be
tested with check_NOLA.
New in version 0.19.0.

References

[1], [2]

Examples

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

Generate a test signal, a 2 Vrms sine wave whose frequency is slowly modulated around 3kHz, corrupted by white
noise of exponentially decreasing magnitude sampled at 10 kHz.

>>> fs = 10e3
>>> N = 1e5
>>> amp = 2 * np.sqrt(2)
>>> noise_power = 0.01 * fs / 2
>>> time = np.arange(N) / float(fs)
>>> mod = 500*np.cos(2*np.pi*0.25*time)
>>> carrier = amp * np.sin(2*np.pi*3e3*time + mod)
>>> noise = np.random.normal(scale=np.sqrt(noise_power),

(continues on next page)
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(continued from previous page)
... size=time.shape)
>>> noise *= np.exp(-time/5)
>>> x = carrier + noise

Compute and plot the STFT’s magnitude.

>>> f, t, Zxx = signal.stft(x, fs, nperseg=1000)
>>> plt.pcolormesh(t, f, np.abs(Zxx), vmin=0, vmax=amp)
>>> plt.title('STFT Magnitude')
>>> plt.ylabel('Frequency [Hz]')
>>> plt.xlabel('Time [sec]')
>>> plt.show()
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scipy.signal.istft

scipy.signal.istft(Zxx, fs=1.0, window=’hann’, nperseg=None, noverlap=None, nfft=None, in-
put_onesided=True, boundary=True, time_axis=-1, freq_axis=-2)

Perform the inverse Short Time Fourier transform (iSTFT).
Parameters

Zxx [array_like] STFT of the signal to be reconstructed. If a purely real array is passed, it will
be cast to a complex data type.

fs [float, optional] Sampling frequency of the time series. Defaults to 1.0.
window [str or tuple or array_like, optional] Desired window to use. If window is a string or tuple, it

is passed to get_window to generate the window values, which are DFT-even by default.
See get_window for a list of windows and required parameters. If window is array_like
it will be used directly as the window and its length must be nperseg. Defaults to a Hann
window. Must match the window used to generate the STFT for faithful inversion.

nperseg [int, optional] Number of data points corresponding to each STFT segment. This parame-
ter must be specified if the number of data points per segment is odd, or if the STFT was
padded via nfft > nperseg. If None, the value depends on the shape of Zxx and in-
put_onesided. If input_onesided is True, nperseg=2*(Zxx.shape[freq_axis] -
1). Otherwise, nperseg=Zxx.shape[freq_axis]. Defaults to None.
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noverlap [int, optional] Number of points to overlap between segments. If None, half of the segment
length. Defaults to None. When specified, the COLA constraint must be met (see Notes
below), and should match the parameter used to generate the STFT. Defaults to None.

nfft [int, optional] Number of FFT points corresponding to each STFT segment. This parameter
must be specified if the STFT was padded via nfft > nperseg. If None, the default
values are the same as for nperseg, detailed above, with one exception: if input_onesided is
True and nperseg==2*Zxx.shape[freq_axis] - 1, nfft also takes on that value.
This case allows the proper inversion of an odd-length unpadded STFT using nfft=None.
Defaults to None.

input_onesided
[bool, optional] If True, interpret the input array as one-sided FFTs, such as is returned by
stft with return_onesided=True and numpy.fft.rfft. If False, interpret the
input as a a two-sided FFT. Defaults to True.

boundary [bool, optional] Specifies whether the input signal was extended at its boundaries by supplying
a non-None boundary argument to stft. Defaults to True.

time_axis [int, optional] Where the time segments of the STFT is located; the default is the last axis
(i.e. axis=-1).

freq_axis [int, optional] Where the frequency axis of the STFT is located; the default is the penultimate
axis (i.e. axis=-2).

Returns

t [ndarray] Array of output data times.
x [ndarray] iSTFT of Zxx.

See also:

stft

Short Time Fourier Transform
check_COLA

Check whether the Constant OverLap Add (COLA) constraint is met
check_NOLA

Check whether the Nonzero Overlap Add (NOLA) constraint is met

Notes

In order to enable inversion of an STFT via the inverse STFT with istft, the signal windowing must obey the
constraint of “nonzero overlap add” (NOLA):∑

t

w2[n− tH] ̸= 0

This ensures that the normalization factors that appear in the denominator of the overlap-add reconstruction equa-
tion

x[n] =

∑
t xt[n]w[n− tH]∑

t w
2[n− tH]

are not zero. The NOLA constraint can be checked with the check_NOLA function.
An STFT which has been modified (via masking or otherwise) is not guaranteed to correspond to a exactly realiz-
ible signal. This function implements the iSTFT via the least-squares estimation algorithm detailed in [2], which
produces a signal that minimizes the mean squared error between the STFT of the returned signal and the modified
STFT.
New in version 0.19.0.
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References

[1], [2]

Examples

>>> from scipy import signal
>>> import matplotlib.pyplot as plt

Generate a test signal, a 2 Vrms sine wave at 50Hz corrupted by 0.001 V**2/Hz of white noise sampled at 1024
Hz.

>>> fs = 1024
>>> N = 10*fs
>>> nperseg = 512
>>> amp = 2 * np.sqrt(2)
>>> noise_power = 0.001 * fs / 2
>>> time = np.arange(N) / float(fs)
>>> carrier = amp * np.sin(2*np.pi*50*time)
>>> noise = np.random.normal(scale=np.sqrt(noise_power),
... size=time.shape)
>>> x = carrier + noise

Compute the STFT, and plot its magnitude

>>> f, t, Zxx = signal.stft(x, fs=fs, nperseg=nperseg)
>>> plt.figure()
>>> plt.pcolormesh(t, f, np.abs(Zxx), vmin=0, vmax=amp)
>>> plt.ylim([f[1], f[-1]])
>>> plt.title('STFT Magnitude')
>>> plt.ylabel('Frequency [Hz]')
>>> plt.xlabel('Time [sec]')
>>> plt.yscale('log')
>>> plt.show()
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Zero the components that are 10% or less of the carrier magnitude, then convert back to a time series via inverse
STFT

>>> Zxx = np.where(np.abs(Zxx) >= amp/10, Zxx, 0)
>>> _, xrec = signal.istft(Zxx, fs)

Compare the cleaned signal with the original and true carrier signals.

>>> plt.figure()
>>> plt.plot(time, x, time, xrec, time, carrier)
>>> plt.xlim([2, 2.1])
>>> plt.xlabel('Time [sec]')
>>> plt.ylabel('Signal')
>>> plt.legend(['Carrier + Noise', 'Filtered via STFT', 'True Carrier'])
>>> plt.show()
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Note that the cleaned signal does not start as abruptly as the original, since some of the coefficients of the transient
were also removed:

>>> plt.figure()
>>> plt.plot(time, x, time, xrec, time, carrier)
>>> plt.xlim([0, 0.1])
>>> plt.xlabel('Time [sec]')
>>> plt.ylabel('Signal')
>>> plt.legend(['Carrier + Noise', 'Filtered via STFT', 'True Carrier'])
>>> plt.show()

scipy.signal.check_COLA

scipy.signal.check_COLA(window, nperseg, noverlap, tol=1e-10)
Check whether the Constant OverLap Add (COLA) constraint is met

Parameters
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window [str or tuple or array_like] Desired window to use. If window is a string or tuple, it is
passed to get_window to generate the window values, which are DFT-even by default.
See get_window for a list of windows and required parameters. If window is array_like
it will be used directly as the window and its length must be nperseg.

nperseg [int] Length of each segment.
noverlap [int] Number of points to overlap between segments.
tol [float, optional] The allowed variance of a bin’s weighted sum from the median bin sum.

Returns

verdict [bool] True if chosen combination satisfies COLA within tol, False otherwise
See also:

check_NOLA

Check whether the Nonzero Overlap Add (NOLA) constraint is met
stft

Short Time Fourier Transform
istft

Inverse Short Time Fourier Transform

Notes

In order to enable inversion of an STFT via the inverse STFT in istft, it is sufficient that the signal windowing
obeys the constraint of “Constant OverLap Add” (COLA). This ensures that every point in the input data is equally
weighted, thereby avoiding aliasing and allowing full reconstruction.
Some examples of windows that satisfy COLA:

• Rectangular window at overlap of 0, 1/2, 2/3, 3/4, …
• Bartlett window at overlap of 1/2, 3/4, 5/6, …
• Hann window at 1/2, 2/3, 3/4, …
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• Any Blackman family window at 2/3 overlap
• Any window with noverlap = nperseg-1

A very comprehensive list of other windows may be found in [2], wherein the COLA condition is satisfied when
the “Amplitude Flatness” is unity.
New in version 0.19.0.

References

[1], [2]

Examples

>>> from scipy import signal

Confirm COLA condition for rectangular window of 75% (3/4) overlap:

>>> signal.check_COLA(signal.boxcar(100), 100, 75)
True

COLA is not true for 25% (1/4) overlap, though:

>>> signal.check_COLA(signal.boxcar(100), 100, 25)
False

“Symmetrical” Hann window (for filter design) is not COLA:

>>> signal.check_COLA(signal.hann(120, sym=True), 120, 60)
False

“Periodic” or “DFT-even” Hann window (for FFT analysis) is COLA for overlap of 1/2, 2/3, 3/4, etc.:

>>> signal.check_COLA(signal.hann(120, sym=False), 120, 60)
True

>>> signal.check_COLA(signal.hann(120, sym=False), 120, 80)
True

>>> signal.check_COLA(signal.hann(120, sym=False), 120, 90)
True

scipy.signal.check_NOLA

scipy.signal.check_NOLA(window, nperseg, noverlap, tol=1e-10)
Check whether the Nonzero Overlap Add (NOLA) constraint is met

Parameters

window [str or tuple or array_like] Desired window to use. If window is a string or tuple, it is
passed to get_window to generate the window values, which are DFT-even by default.
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See get_window for a list of windows and required parameters. If window is array_like
it will be used directly as the window and its length must be nperseg.

nperseg [int] Length of each segment.
noverlap [int] Number of points to overlap between segments.
tol [float, optional] The allowed variance of a bin’s weighted sum from the median bin sum.

Returns

verdict [bool] True if chosen combination satisfies the NOLA constraint within tol, False otherwise
See also:

check_COLA

Check whether the Constant OverLap Add (COLA) constraint is met
stft

Short Time Fourier Transform
istft

Inverse Short Time Fourier Transform

Notes

In order to enable inversion of an STFT via the inverse STFT in istft, the signal windowing must obey the
constraint of “nonzero overlap add” (NOLA):∑

t

w2[n− tH] ̸= 0

for all n, where w is the window function, t is the frame index, and H is the hop size (H = nperseg - noverlap).
This ensures that the normalization factors in the denominator of the overlap-add inversion equation are not zero.
Only very pathological windows will fail the NOLA constraint.
New in version 1.2.0.

References

[1], [2]

Examples

>>> from scipy import signal

Confirm NOLA condition for rectangular window of 75% (3/4) overlap:

>>> signal.check_NOLA(signal.boxcar(100), 100, 75)
True

NOLA is also true for 25% (1/4) overlap:

>>> signal.check_NOLA(signal.boxcar(100), 100, 25)
True
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“Symmetrical” Hann window (for filter design) is also NOLA:

>>> signal.check_NOLA(signal.hann(120, sym=True), 120, 60)
True

As long as there is overlap, it takes quite a pathological window to fail NOLA:

>>> w = np.ones(64, dtype="float")
>>> w[::2] = 0
>>> signal.check_NOLA(w, 64, 32)
False

If there is not enough overlap, a window with zeros at the ends will not work:

>>> signal.check_NOLA(signal.hann(64), 64, 0)
False
>>> signal.check_NOLA(signal.hann(64), 64, 1)
False
>>> signal.check_NOLA(signal.hann(64), 64, 2)
True

6.22 Sparse matrices (scipy.sparse)

SciPy 2-D sparse matrix package for numeric data.

6.22.1 Contents

Sparse matrix classes

bsr_matrix(arg1[, shape, dtype, copy, blocksize]) Block Sparse Row matrix
coo_matrix(arg1[, shape, dtype, copy]) A sparse matrix in COOrdinate format.
csc_matrix(arg1[, shape, dtype, copy]) Compressed Sparse Column matrix
csr_matrix(arg1[, shape, dtype, copy]) Compressed Sparse Row matrix
dia_matrix(arg1[, shape, dtype, copy]) Sparse matrix with DIAgonal storage
dok_matrix(arg1[, shape, dtype, copy]) Dictionary Of Keys based sparse matrix.
lil_matrix(arg1[, shape, dtype, copy]) Row-based linked list sparse matrix
spmatrix([maxprint]) This class provides a base class for all sparse matrices.

scipy.sparse.bsr_matrix
class scipy.sparse.bsr_matrix(arg1, shape=None, dtype=None, copy=False, blocksize=None)

Block Sparse Row matrix
This can be instantiated in several ways:

bsr_matrix(D, [blocksize=(R,C)])
where D is a dense matrix or 2-D ndarray.

bsr_matrix(S, [blocksize=(R,C)])
with another sparse matrix S (equivalent to S.tobsr())
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bsr_matrix((M, N), [blocksize=(R,C), dtype])
to construct an empty matrix with shape (M, N) dtype is optional, defaulting to dtype=’d’.

bsr_matrix((data, ij), [blocksize=(R,C), shape=(M, N)])
where data and ij satisfy a[ij[0, k], ij[1, k]] = data[k]

bsr_matrix((data, indices, indptr), [shape=(M, N)])
is the standard BSR representation where the block column indices for row i are stored in
indices[indptr[i]:indptr[i+1]] and their corresponding block values are stored in
data[ indptr[i]: indptr[i+1] ]. If the shape parameter is not supplied, the matrix
dimensions are inferred from the index arrays.

Notes

Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division,
and matrix power.
Summary of BSR format
The Block Compressed Row (BSR) format is very similar to the Compressed Sparse Row (CSR) format. BSR is
appropriate for sparse matrices with dense sub matrices like the last example below. Block matrices often arise in
vector-valued finite element discretizations. In such cases, BSR is considerably more efficient than CSR and CSC
for many sparse arithmetic operations.
Blocksize
The blocksize (R,C) must evenly divide the shape of the matrix (M,N). That is, R and Cmust satisfy the relationship
M % R = 0 and N % C = 0.
If no blocksize is specified, a simple heuristic is applied to determine an appropriate blocksize.

Examples

>>> from scipy.sparse import bsr_matrix
>>> bsr_matrix((3, 4), dtype=np.int8).toarray()
array([[0, 0, 0, 0],

[0, 0, 0, 0],
[0, 0, 0, 0]], dtype=int8)

>>> row = np.array([0, 0, 1, 2, 2, 2])
>>> col = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3 ,4, 5, 6])
>>> bsr_matrix((data, (row, col)), shape=(3, 3)).toarray()
array([[1, 0, 2],

[0, 0, 3],
[4, 5, 6]])

>>> indptr = np.array([0, 2, 3, 6])
>>> indices = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6]).repeat(4).reshape(6, 2, 2)
>>> bsr_matrix((data,indices,indptr), shape=(6, 6)).toarray()
array([[1, 1, 0, 0, 2, 2],

[1, 1, 0, 0, 2, 2],
(continues on next page)
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(continued from previous page)
[0, 0, 0, 0, 3, 3],
[0, 0, 0, 0, 3, 3],
[4, 4, 5, 5, 6, 6],
[4, 4, 5, 5, 6, 6]])

Attributes

dtype [dtype] Data type of the matrix
shape [2-tuple] Get shape of a matrix.
ndim [int] Number of dimensions (this is always 2)
nnz Number of stored values, including explicit zeros.
data Data array of the matrix
indices BSR format index array
indptr BSR format index pointer array
blocksize Block size of the matrix
has_sorted_indices

Determine whether the matrix has sorted indices

Methods

__len__()
__mul__(other) interpret other and call one of the following
arcsin() Element-wise arcsin.
arcsinh() Element-wise arcsinh.
arctan() Element-wise arctan.
arctanh() Element-wise arctanh.
argmax([axis, out]) Return indices of maximum elements along an axis.
argmin([axis, out]) Return indices of minimum elements along an axis.
asformat(format[, copy]) Return this matrix in the passed format.
asfptype() Upcast matrix to a floating point format (if necessary)
astype(dtype[, casting, copy]) Cast the matrix elements to a specified type.
ceil() Element-wise ceil.
check_format([full_check]) check whether the matrix format is valid
conj([copy]) Element-wise complex conjugation.
conjugate([copy]) Element-wise complex conjugation.
copy() Returns a copy of this matrix.
count_nonzero() Number of non-zero entries, equivalent to
deg2rad() Element-wise deg2rad.
diagonal([k]) Returns the k-th diagonal of the matrix.
dot(other) Ordinary dot product
eliminate_zeros() Remove zero elements in-place.
expm1() Element-wise expm1.
floor() Element-wise floor.
getH() Return the Hermitian transpose of this matrix.
get_shape() Get shape of a matrix.
getcol(j) Returns a copy of column j of the matrix, as an (m x

1) sparse matrix (column vector).
getformat() Format of a matrix representation as a string.

Continued on next page
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Table 167 – continued from previous page
getmaxprint() Maximum number of elements to display when

printed.
getnnz([axis]) Number of stored values, including explicit zeros.
getrow(i) Returns a copy of row i of the matrix, as a (1 x n)

sparse matrix (row vector).
log1p() Element-wise log1p.
matmat(**kwds) matmat is deprecated! BSR matmat is deprecated in

scipy 0.19.0.
matvec(**kwds) matvec is deprecated! BSR matvec is deprecated in

scipy 0.19.0.
max([axis, out]) Return the maximum of the matrix or maximum along

an axis.
maximum(other) Element-wisemaximum between this and anotherma-

trix.
mean([axis, dtype, out]) Compute the arithmetic mean along the specified axis.
min([axis, out]) Return the minimum of the matrix or maximum along

an axis.
minimum(other) Element-wise minimum between this and another ma-

trix.
multiply(other) Point-wise multiplication by another matrix, vector, or

scalar.
nonzero() nonzero indices
power(n[, dtype]) This function performs element-wise power.
prune() Remove empty space after all non-zero elements.
rad2deg() Element-wise rad2deg.
reshape(self, shape[, order, copy]) Gives a new shape to a sparse matrix without changing

its data.
resize(*shape) Resize the matrix in-place to dimensions given by

shape
rint() Element-wise rint.
set_shape(shape) See reshape.
setdiag(values[, k]) Set diagonal or off-diagonal elements of the array.
sign() Element-wise sign.
sin() Element-wise sin.
sinh() Element-wise sinh.
sort_indices() Sort the indices of this matrix in place
sorted_indices() Return a copy of this matrix with sorted indices
sqrt() Element-wise sqrt.
sum([axis, dtype, out]) Sum the matrix elements over a given axis.
sum_duplicates() Eliminate duplicate matrix entries by adding them to-

gether
tan() Element-wise tan.
tanh() Element-wise tanh.
toarray([order, out]) Return a dense ndarray representation of this matrix.
tobsr([blocksize, copy]) Convert this matrix into Block Sparse Row Format.
tocoo([copy]) Convert this matrix to COOrdinate format.
tocsc([copy]) Convert this matrix to Compressed Sparse Column

format.
tocsr([copy]) Convert this matrix to Compressed Sparse Row for-

mat.
todense([order, out]) Return a dense matrix representation of this matrix.

Continued on next page
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Table 167 – continued from previous page
todia([copy]) Convert this matrix to sparse DIAgonal format.
todok([copy]) Convert this matrix to Dictionary Of Keys format.
tolil([copy]) Convert this matrix to LInked List format.
transpose([axes, copy]) Reverses the dimensions of the sparse matrix.
trunc() Element-wise trunc.

scipy.sparse.bsr_matrix.__len__

bsr_matrix.__len__()

scipy.sparse.bsr_matrix.__mul__

bsr_matrix.__mul__(other)
interpret other and call one of the following
self._mul_scalar() self._mul_vector() self._mul_multivector() self._mul_sparse_matrix()

scipy.sparse.bsr_matrix.arcsin

bsr_matrix.arcsin()
Element-wise arcsin.
See numpy.arcsin for more information.

scipy.sparse.bsr_matrix.arcsinh

bsr_matrix.arcsinh()
Element-wise arcsinh.
See numpy.arcsinh for more information.

scipy.sparse.bsr_matrix.arctan

bsr_matrix.arctan()
Element-wise arctan.
See numpy.arctan for more information.

scipy.sparse.bsr_matrix.arctanh

bsr_matrix.arctanh()
Element-wise arctanh.
See numpy.arctanh for more information.
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scipy.sparse.bsr_matrix.argmax

bsr_matrix.argmax(axis=None, out=None)
Return indices of maximum elements along an axis.
Implicit zero elements are also taken into account. If there are several maximum values, the index of the first
occurrence is returned.

Parameters

axis [{-2, -1, 0, 1, None}, optional] Axis along which the argmax is computed. If None
(default), index of the maximum element in the flatten data is returned.

out [None, optional] This argument is in the signature solely for NumPy compatibility rea-
sons. Do not pass in anything except for the default value, as this argument is not used.

Returns

ind [numpy.matrix or int] Indices of maximum elements. If matrix, its size along axis is 1.

scipy.sparse.bsr_matrix.argmin

bsr_matrix.argmin(axis=None, out=None)
Return indices of minimum elements along an axis.
Implicit zero elements are also taken into account. If there are several minimum values, the index of the first
occurrence is returned.

Parameters

axis [{-2, -1, 0, 1, None}, optional] Axis along which the argmin is computed. If None
(default), index of the minimum element in the flatten data is returned.

out [None, optional] This argument is in the signature solely for NumPy compatibility rea-
sons. Do not pass in anything except for the default value, as this argument is not used.

Returns

ind [numpy.matrix or int] Indices of minimum elements. If matrix, its size along axis is 1.

scipy.sparse.bsr_matrix.asformat

bsr_matrix.asformat(format, copy=False)
Return this matrix in the passed format.

Parameters

format [{str, None}] The desired matrix format (“csr”, “csc”, “lil”, “dok”, “array”, …) or None
for no conversion.

copy [bool, optional] If True, the result is guaranteed to not share data with self.
Returns

A [This matrix in the passed format.]

scipy.sparse.bsr_matrix.asfptype

bsr_matrix.asfptype()
Upcast matrix to a floating point format (if necessary)
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scipy.sparse.bsr_matrix.astype

bsr_matrix.astype(dtype, casting=’unsafe’, copy=True)
Cast the matrix elements to a specified type.

Parameters

dtype [string or numpy dtype] Typecode or data-type to which to cast the data.
casting [{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data casting

may occur. Defaults to ‘unsafe’ for backwards compatibility. ‘no’ means the data types
should not be cast at all. ‘equiv’ means only byte-order changes are allowed. ‘safe’
means only casts which can preserve values are allowed. ‘same_kind’ means only safe
casts or casts within a kind, like float64 to float32, are allowed. ‘unsafe’ means any data
conversions may be done.

copy [bool, optional] If copy is False, the result might share some memory with this matrix.
If copy is True, it is guaranteed that the result and this matrix do not share anymemory.

scipy.sparse.bsr_matrix.ceil

bsr_matrix.ceil()
Element-wise ceil.
See numpy.ceil for more information.

scipy.sparse.bsr_matrix.check_format

bsr_matrix.check_format(full_check=True)
check whether the matrix format is valid
Parameters:

full_check:
True - rigorous check, O(N) operations : default False - basic check, O(1) operations

scipy.sparse.bsr_matrix.conj

bsr_matrix.conj(copy=True)
Element-wise complex conjugation.
If the matrix is of non-complex data type and copy is False, this method does nothing and the data is not
copied.

Parameters

copy [bool, optional] If True, the result is guaranteed to not share data with self.
Returns

A [The element-wise complex conjugate.]
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scipy.sparse.bsr_matrix.conjugate

bsr_matrix.conjugate(copy=True)
Element-wise complex conjugation.
If the matrix is of non-complex data type and copy is False, this method does nothing and the data is not
copied.

Parameters

copy [bool, optional] If True, the result is guaranteed to not share data with self.
Returns

A [The element-wise complex conjugate.]

scipy.sparse.bsr_matrix.copy

bsr_matrix.copy()
Returns a copy of this matrix.
No data/indices will be shared between the returned value and current matrix.

scipy.sparse.bsr_matrix.count_nonzero

bsr_matrix.count_nonzero()
Number of non-zero entries, equivalent to
np.count_nonzero(a.toarray())
Unlike getnnz() and the nnz property, which return the number of stored entries (the length of the data
attribute), this method counts the actual number of non-zero entries in data.

scipy.sparse.bsr_matrix.deg2rad

bsr_matrix.deg2rad()
Element-wise deg2rad.
See numpy.deg2rad for more information.

scipy.sparse.bsr_matrix.diagonal

bsr_matrix.diagonal(k=0)
Returns the k-th diagonal of the matrix.

Parameters

k [int, optional] Which diagonal to set, corresponding to elements a[i, i+k]. Default: 0
(the main diagonal).
New in version 1.0.

See also:

numpy.diagonal

Equivalent numpy function.
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Examples

>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> A.diagonal()
array([1, 0, 5])
>>> A.diagonal(k=1)
array([2, 3])

scipy.sparse.bsr_matrix.dot

bsr_matrix.dot(other)
Ordinary dot product

Examples

>>> import numpy as np
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> v = np.array([1, 0, -1])
>>> A.dot(v)
array([ 1, -3, -1], dtype=int64)

scipy.sparse.bsr_matrix.eliminate_zeros

bsr_matrix.eliminate_zeros()
Remove zero elements in-place.

scipy.sparse.bsr_matrix.expm1

bsr_matrix.expm1()
Element-wise expm1.
See numpy.expm1 for more information.

scipy.sparse.bsr_matrix.floor

bsr_matrix.floor()
Element-wise floor.
See numpy.floor for more information.

scipy.sparse.bsr_matrix.getH

bsr_matrix.getH()
Return the Hermitian transpose of this matrix.
See also:
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numpy.matrix.getH

NumPy’s implementation of getH for matrices

scipy.sparse.bsr_matrix.get_shape

bsr_matrix.get_shape()
Get shape of a matrix.

scipy.sparse.bsr_matrix.getcol

bsr_matrix.getcol(j)
Returns a copy of column j of the matrix, as an (m x 1) sparse matrix (column vector).

scipy.sparse.bsr_matrix.getformat

bsr_matrix.getformat()
Format of a matrix representation as a string.

scipy.sparse.bsr_matrix.getmaxprint

bsr_matrix.getmaxprint()
Maximum number of elements to display when printed.

scipy.sparse.bsr_matrix.getnnz

bsr_matrix.getnnz(axis=None)
Number of stored values, including explicit zeros.

Parameters

axis [None, 0, or 1] Select between the number of values across the whole matrix, in each
column, or in each row.

See also:

count_nonzero

Number of non-zero entries

scipy.sparse.bsr_matrix.getrow

bsr_matrix.getrow(i)
Returns a copy of row i of the matrix, as a (1 x n) sparse matrix (row vector).
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scipy.sparse.bsr_matrix.log1p

bsr_matrix.log1p()
Element-wise log1p.
See numpy.log1p for more information.

scipy.sparse.bsr_matrix.matmat

bsr_matrix.matmat(*args, **kwds)
matmat is deprecated! BSR matmat is deprecated in scipy 0.19.0. Use * operator instead.
Multiply this sparse matrix by other matrix.

scipy.sparse.bsr_matrix.matvec

bsr_matrix.matvec(*args, **kwds)
matvec is deprecated! BSR matvec is deprecated in scipy 0.19.0. Use * operator instead.
Multiply matrix by vector.

scipy.sparse.bsr_matrix.max

bsr_matrix.max(axis=None, out=None)
Return the maximum of the matrix or maximum along an axis. This takes all elements into account, not just
the non-zero ones.

Parameters

axis [{-2, -1, 0, 1, None} optional] Axis along which the sum is computed. The default is
to compute the maximum over all the matrix elements, returning a scalar (i.e. axis =
None).

out [None, optional] This argument is in the signature solely for NumPy compatibility rea-
sons. Do not pass in anything except for the default value, as this argument is not used.

Returns

amax [coo_matrix or scalar] Maximum of a. If axis is None, the result is a scalar value. If
axis is given, the result is a sparse.coo_matrix of dimension a.ndim - 1.

See also:

min

The minimum value of a sparse matrix along a given axis.
numpy.matrix.max

NumPy’s implementation of ‘max’ for matrices

scipy.sparse.bsr_matrix.maximum

bsr_matrix.maximum(other)
Element-wise maximum between this and another matrix.
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scipy.sparse.bsr_matrix.mean

bsr_matrix.mean(axis=None, dtype=None, out=None)
Compute the arithmetic mean along the specified axis.
Returns the average of the matrix elements. The average is taken over all elements in the matrix by default,
otherwise over the specified axis. float64 intermediate and return values are used for integer inputs.

Parameters

axis [{-2, -1, 0, 1, None} optional] Axis along which the mean is computed. The default is
to compute the mean of all elements in the matrix (i.e. axis = None).

dtype [data-type, optional] Type to use in computing the mean. For integer inputs, the default
is float64; for floating point inputs, it is the same as the input dtype.
New in version 0.18.0.

out [np.matrix, optional] Alternative output matrix in which to place the result. It must have
the same shape as the expected output, but the type of the output values will be cast if
necessary.
New in version 0.18.0.

Returns

m [np.matrix]
See also:

numpy.matrix.mean

NumPy’s implementation of ‘mean’ for matrices

scipy.sparse.bsr_matrix.min

bsr_matrix.min(axis=None, out=None)
Return the minimum of the matrix or maximum along an axis. This takes all elements into account, not just
the non-zero ones.

Parameters

axis [{-2, -1, 0, 1, None} optional] Axis along which the sum is computed. The default is
to compute the minimum over all the matrix elements, returning a scalar (i.e. axis =
None).

out [None, optional] This argument is in the signature solely for NumPy compatibility rea-
sons. Do not pass in anything except for the default value, as this argument is not used.

Returns

amin [coo_matrix or scalar] Minimum of a. If axis is None, the result is a scalar value. If
axis is given, the result is a sparse.coo_matrix of dimension a.ndim - 1.

See also:

max

The maximum value of a sparse matrix along a given axis.
numpy.matrix.min

NumPy’s implementation of ‘min’ for matrices
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scipy.sparse.bsr_matrix.minimum

bsr_matrix.minimum(other)
Element-wise minimum between this and another matrix.

scipy.sparse.bsr_matrix.multiply

bsr_matrix.multiply(other)
Point-wise multiplication by another matrix, vector, or scalar.

scipy.sparse.bsr_matrix.nonzero

bsr_matrix.nonzero()
nonzero indices
Returns a tuple of arrays (row,col) containing the indices of the non-zero elements of the matrix.

Examples

>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1,2,0],[0,0,3],[4,0,5]])
>>> A.nonzero()
(array([0, 0, 1, 2, 2]), array([0, 1, 2, 0, 2]))

scipy.sparse.bsr_matrix.power

bsr_matrix.power(n, dtype=None)
This function performs element-wise power.

Parameters

n [n is a scalar]
dtype [If dtype is not specified, the current dtype will be preserved.]

scipy.sparse.bsr_matrix.prune

bsr_matrix.prune()
Remove empty space after all non-zero elements.

scipy.sparse.bsr_matrix.rad2deg

bsr_matrix.rad2deg()
Element-wise rad2deg.
See numpy.rad2deg for more information.
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scipy.sparse.bsr_matrix.reshape

bsr_matrix.reshape(self, shape, order=’C’, copy=False)
Gives a new shape to a sparse matrix without changing its data.

Parameters

shape [length-2 tuple of ints] The new shape should be compatible with the original shape.
order [{‘C’, ‘F’}, optional] Read the elements using this index order. ‘C’ means to read and

write the elements using C-like index order; e.g. read entire first row, then second row,
etc. ‘F’ means to read and write the elements using Fortran-like index order; e.g. read
entire first column, then second column, etc.

copy [bool, optional] Indicates whether or not attributes of self should be copied whenever
possible. The degree to which attributes are copied varies depending on the type of
sparse matrix being used.

Returns

reshaped_matrix
[sparse matrix] A sparse matrix with the given shape, not necessarily of the same
format as the current object.

See also:

numpy.matrix.reshape

NumPy’s implementation of ‘reshape’ for matrices

scipy.sparse.bsr_matrix.resize

bsr_matrix.resize(*shape)
Resize the matrix in-place to dimensions given by shape
Any elements that lie within the new shape will remain at the same indices, while non-zero elements lying
outside the new shape are removed.

Parameters

shape [(int, int)] number of rows and columns in the new matrix

Notes

The semantics are not identical to numpy.ndarray.resize or numpy.resize. Here, the same data
will be maintained at each index before and after reshape, if that index is within the new bounds. In numpy,
resizing maintains contiguity of the array, moving elements around in the logical matrix but not within a
flattened representation.
We give no guarantees about whether the underlying data attributes (arrays, etc.) will be modified in place or
replaced with new objects.

scipy.sparse.bsr_matrix.rint

bsr_matrix.rint()
Element-wise rint.
See numpy.rint for more information.
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scipy.sparse.bsr_matrix.set_shape

bsr_matrix.set_shape(shape)
See reshape.

scipy.sparse.bsr_matrix.setdiag

bsr_matrix.setdiag(values, k=0)
Set diagonal or off-diagonal elements of the array.

Parameters

values [array_like] New values of the diagonal elements.
Values may have any length. If the diagonal is longer than values, then the remaining
diagonal entries will not be set. If values if longer than the diagonal, then the remaining
values are ignored.
If a scalar value is given, all of the diagonal is set to it.

k [int, optional] Which off-diagonal to set, corresponding to elements a[i,i+k]. Default: 0
(the main diagonal).

scipy.sparse.bsr_matrix.sign

bsr_matrix.sign()
Element-wise sign.
See numpy.sign for more information.

scipy.sparse.bsr_matrix.sin

bsr_matrix.sin()
Element-wise sin.
See numpy.sin for more information.

scipy.sparse.bsr_matrix.sinh

bsr_matrix.sinh()
Element-wise sinh.
See numpy.sinh for more information.

scipy.sparse.bsr_matrix.sort_indices

bsr_matrix.sort_indices()
Sort the indices of this matrix in place

scipy.sparse.bsr_matrix.sorted_indices

bsr_matrix.sorted_indices()
Return a copy of this matrix with sorted indices
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scipy.sparse.bsr_matrix.sqrt

bsr_matrix.sqrt()
Element-wise sqrt.
See numpy.sqrt for more information.

scipy.sparse.bsr_matrix.sum

bsr_matrix.sum(axis=None, dtype=None, out=None)
Sum the matrix elements over a given axis.

Parameters

axis [{-2, -1, 0, 1, None} optional] Axis along which the sum is computed. The default is to
compute the sum of all the matrix elements, returning a scalar (i.e. axis = None).

dtype [dtype, optional] The type of the returned matrix and of the accumulator in which the
elements are summed. The dtype of a is used by default unless a has an integer dtype
of less precision than the default platform integer. In that case, if a is signed then the
platform integer is used while if a is unsigned then an unsigned integer of the same
precision as the platform integer is used.
New in version 0.18.0.

out [np.matrix, optional] Alternative output matrix in which to place the result. It must have
the same shape as the expected output, but the type of the output values will be cast if
necessary.
New in version 0.18.0.

Returns

sum_along_axis
[np.matrix] A matrix with the same shape as self, with the specified axis removed.

See also:

numpy.matrix.sum

NumPy’s implementation of ‘sum’ for matrices

scipy.sparse.bsr_matrix.sum_duplicates

bsr_matrix.sum_duplicates()
Eliminate duplicate matrix entries by adding them together
The is an in place operation

scipy.sparse.bsr_matrix.tan

bsr_matrix.tan()
Element-wise tan.
See numpy.tan for more information.
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scipy.sparse.bsr_matrix.tanh

bsr_matrix.tanh()
Element-wise tanh.
See numpy.tanh for more information.

scipy.sparse.bsr_matrix.toarray

bsr_matrix.toarray(order=None, out=None)
Return a dense ndarray representation of this matrix.

Parameters

order [{‘C’, ‘F’}, optional] Whether to store multi-dimensional data in C (row-major) or For-
tran (column-major) order in memory. The default is ‘None’, indicating the NumPy
default of C-ordered. Cannot be specified in conjunction with the out argument.

out [ndarray, 2-dimensional, optional] If specified, uses this array as the output buffer in-
stead of allocating a new array to return. The provided array must have the same shape
and dtype as the sparse matrix on which you are calling the method. For most sparse
types, out is required to be memory contiguous (either C or Fortran ordered).

Returns

arr [ndarray, 2-dimensional] An array with the same shape and containing the same data
represented by the sparse matrix, with the requested memory order. If out was passed,
the same object is returned after being modified in-place to contain the appropriate
values.

scipy.sparse.bsr_matrix.tobsr

bsr_matrix.tobsr(blocksize=None, copy=False)
Convert this matrix into Block Sparse Row Format.
With copy=False, the data/indices may be shared between this matrix and the resultant bsr_matrix.
If blocksize=(R, C) is provided, it will be used for determining block size of the bsr_matrix.

scipy.sparse.bsr_matrix.tocoo

bsr_matrix.tocoo(copy=True)
Convert this matrix to COOrdinate format.
When copy=False the data array will be shared between this matrix and the resultant coo_matrix.

scipy.sparse.bsr_matrix.tocsc

bsr_matrix.tocsc(copy=False)
Convert this matrix to Compressed Sparse Column format.
With copy=False, the data/indices may be shared between this matrix and the resultant csc_matrix.
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scipy.sparse.bsr_matrix.tocsr

bsr_matrix.tocsr(copy=False)
Convert this matrix to Compressed Sparse Row format.
With copy=False, the data/indices may be shared between this matrix and the resultant csr_matrix.

scipy.sparse.bsr_matrix.todense

bsr_matrix.todense(order=None, out=None)
Return a dense matrix representation of this matrix.

Parameters

order [{‘C’, ‘F’}, optional] Whether to store multi-dimensional data in C (row-major) or For-
tran (column-major) order in memory. The default is ‘None’, indicating the NumPy
default of C-ordered. Cannot be specified in conjunction with the out argument.

out [ndarray, 2-dimensional, optional] If specified, uses this array (or numpy.matrix)
as the output buffer instead of allocating a new array to return. The provided array must
have the same shape and dtype as the sparse matrix on which you are calling the method.

Returns

arr [numpy.matrix, 2-dimensional] A NumPy matrix object with the same shape and con-
taining the same data represented by the sparse matrix, with the requested memory
order. If out was passed and was an array (rather than a numpy.matrix), it will be
filled with the appropriate values and returned wrapped in a numpy.matrix object
that shares the same memory.

scipy.sparse.bsr_matrix.todia

bsr_matrix.todia(copy=False)
Convert this matrix to sparse DIAgonal format.
With copy=False, the data/indices may be shared between this matrix and the resultant dia_matrix.

scipy.sparse.bsr_matrix.todok

bsr_matrix.todok(copy=False)
Convert this matrix to Dictionary Of Keys format.
With copy=False, the data/indices may be shared between this matrix and the resultant dok_matrix.

scipy.sparse.bsr_matrix.tolil

bsr_matrix.tolil(copy=False)
Convert this matrix to LInked List format.
With copy=False, the data/indices may be shared between this matrix and the resultant lil_matrix.
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scipy.sparse.bsr_matrix.transpose

bsr_matrix.transpose(axes=None, copy=False)
Reverses the dimensions of the sparse matrix.

Parameters

axes [None, optional] This argument is in the signature solely for NumPy compatibility rea-
sons. Do not pass in anything except for the default value.

copy [bool, optional] Indicates whether or not attributes of self should be copied whenever
possible. The degree to which attributes are copied varies depending on the type of
sparse matrix being used.

Returns

p [self with the dimensions reversed.]
See also:

numpy.matrix.transpose

NumPy’s implementation of ‘transpose’ for matrices

scipy.sparse.bsr_matrix.trunc

bsr_matrix.trunc()
Element-wise trunc.
See numpy.trunc for more information.

__getitem__

scipy.sparse.coo_matrix
class scipy.sparse.coo_matrix(arg1, shape=None, dtype=None, copy=False)

A sparse matrix in COOrdinate format.
Also known as the ‘ijv’ or ‘triplet’ format.
This can be instantiated in several ways:

coo_matrix(D)
with a dense matrix D

coo_matrix(S)
with another sparse matrix S (equivalent to S.tocoo())

coo_matrix((M, N), [dtype])
to construct an empty matrix with shape (M, N) dtype is optional, defaulting to dtype=’d’.

coo_matrix((data, (i, j)), [shape=(M, N)])

to construct from three arrays:

1. data[:] the entries of the matrix, in any order
2. i[:] the row indices of the matrix entries
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3. j[:] the column indices of the matrix entries

Where A[i[k], j[k]] = data[k]. When shape is not specified, it is inferred from the
index arrays

Notes

Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division,
and matrix power.
Advantages of the COO format

• facilitates fast conversion among sparse formats
• permits duplicate entries (see example)
• very fast conversion to and from CSR/CSC formats

Disadvantages of the COO format

• does not directly support:

– arithmetic operations
– slicing

Intended Usage

• COO is a fast format for constructing sparse matrices
• Once a matrix has been constructed, convert to CSR or CSC format for fast arithmetic and matrix vector
operations

• By default when converting to CSR or CSC format, duplicate (i,j) entries will be summed together. This
facilitates efficient construction of finite element matrices and the like. (see example)

Examples

>>> # Constructing an empty matrix
>>> from scipy.sparse import coo_matrix
>>> coo_matrix((3, 4), dtype=np.int8).toarray()
array([[0, 0, 0, 0],

[0, 0, 0, 0],
[0, 0, 0, 0]], dtype=int8)

>>> # Constructing a matrix using ijv format
>>> row = np.array([0, 3, 1, 0])
>>> col = np.array([0, 3, 1, 2])
>>> data = np.array([4, 5, 7, 9])
>>> coo_matrix((data, (row, col)), shape=(4, 4)).toarray()
array([[4, 0, 9, 0],

[0, 7, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 5]])
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>>> # Constructing a matrix with duplicate indices
>>> row = np.array([0, 0, 1, 3, 1, 0, 0])
>>> col = np.array([0, 2, 1, 3, 1, 0, 0])
>>> data = np.array([1, 1, 1, 1, 1, 1, 1])
>>> coo = coo_matrix((data, (row, col)), shape=(4, 4))
>>> # Duplicate indices are maintained until implicitly or explicitly␣
↪→summed
>>> np.max(coo.data)
1
>>> coo.toarray()
array([[3, 0, 1, 0],

[0, 2, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 1]])

Attributes

dtype [dtype] Data type of the matrix
shape [2-tuple] Get shape of a matrix.
ndim [int] Number of dimensions (this is always 2)
nnz Number of stored values, including explicit zeros.
data COO format data array of the matrix
row COO format row index array of the matrix
col COO format column index array of the matrix

Methods

__len__()
__mul__(other) interpret other and call one of the following
arcsin() Element-wise arcsin.
arcsinh() Element-wise arcsinh.
arctan() Element-wise arctan.
arctanh() Element-wise arctanh.
argmax([axis, out]) Return indices of maximum elements along an axis.
argmin([axis, out]) Return indices of minimum elements along an axis.
asformat(format[, copy]) Return this matrix in the passed format.
asfptype() Upcast matrix to a floating point format (if necessary)
astype(dtype[, casting, copy]) Cast the matrix elements to a specified type.
ceil() Element-wise ceil.
conj([copy]) Element-wise complex conjugation.
conjugate([copy]) Element-wise complex conjugation.
copy() Returns a copy of this matrix.
count_nonzero() Number of non-zero entries, equivalent to
deg2rad() Element-wise deg2rad.
diagonal([k]) Returns the k-th diagonal of the matrix.
dot(other) Ordinary dot product
eliminate_zeros() Remove zero entries from the matrix
expm1() Element-wise expm1.
floor() Element-wise floor.
getH() Return the Hermitian transpose of this matrix.

Continued on next page
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Table 168 – continued from previous page
get_shape() Get shape of a matrix.
getcol(j) Returns a copy of column j of the matrix, as an (m x

1) sparse matrix (column vector).
getformat() Format of a matrix representation as a string.
getmaxprint() Maximum number of elements to display when

printed.
getnnz([axis]) Number of stored values, including explicit zeros.
getrow(i) Returns a copy of row i of the matrix, as a (1 x n)

sparse matrix (row vector).
log1p() Element-wise log1p.
max([axis, out]) Return the maximum of the matrix or maximum along

an axis.
maximum(other) Element-wisemaximum between this and anotherma-

trix.
mean([axis, dtype, out]) Compute the arithmetic mean along the specified axis.
min([axis, out]) Return the minimum of the matrix or maximum along

an axis.
minimum(other) Element-wise minimum between this and another ma-

trix.
multiply(other) Point-wise multiplication by another matrix
nonzero() nonzero indices
power(n[, dtype]) This function performs element-wise power.
rad2deg() Element-wise rad2deg.
reshape(self, shape[, order, copy]) Gives a new shape to a sparse matrix without changing

its data.
resize(*shape) Resize the matrix in-place to dimensions given by

shape
rint() Element-wise rint.
set_shape(shape) See reshape.
setdiag(values[, k]) Set diagonal or off-diagonal elements of the array.
sign() Element-wise sign.
sin() Element-wise sin.
sinh() Element-wise sinh.
sqrt() Element-wise sqrt.
sum([axis, dtype, out]) Sum the matrix elements over a given axis.
sum_duplicates() Eliminate duplicate matrix entries by adding them to-

gether
tan() Element-wise tan.
tanh() Element-wise tanh.
toarray([order, out]) See the docstring for spmatrix.toarray.
tobsr([blocksize, copy]) Convert this matrix to Block Sparse Row format.
tocoo([copy]) Convert this matrix to COOrdinate format.
tocsc([copy]) Convert this matrix to Compressed Sparse Column

format
tocsr([copy]) Convert this matrix to Compressed Sparse Row for-

mat
todense([order, out]) Return a dense matrix representation of this matrix.
todia([copy]) Convert this matrix to sparse DIAgonal format.
todok([copy]) Convert this matrix to Dictionary Of Keys format.
tolil([copy]) Convert this matrix to LInked List format.
transpose([axes, copy]) Reverses the dimensions of the sparse matrix.

Continued on next page
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Table 168 – continued from previous page
trunc() Element-wise trunc.

scipy.sparse.coo_matrix.__len__

coo_matrix.__len__()

scipy.sparse.coo_matrix.__mul__

coo_matrix.__mul__(other)
interpret other and call one of the following
self._mul_scalar() self._mul_vector() self._mul_multivector() self._mul_sparse_matrix()

scipy.sparse.coo_matrix.arcsin

coo_matrix.arcsin()
Element-wise arcsin.
See numpy.arcsin for more information.

scipy.sparse.coo_matrix.arcsinh

coo_matrix.arcsinh()
Element-wise arcsinh.
See numpy.arcsinh for more information.

scipy.sparse.coo_matrix.arctan

coo_matrix.arctan()
Element-wise arctan.
See numpy.arctan for more information.

scipy.sparse.coo_matrix.arctanh

coo_matrix.arctanh()
Element-wise arctanh.
See numpy.arctanh for more information.

scipy.sparse.coo_matrix.argmax

coo_matrix.argmax(axis=None, out=None)
Return indices of maximum elements along an axis.
Implicit zero elements are also taken into account. If there are several maximum values, the index of the first
occurrence is returned.

Parameters
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axis [{-2, -1, 0, 1, None}, optional] Axis along which the argmax is computed. If None
(default), index of the maximum element in the flatten data is returned.

out [None, optional] This argument is in the signature solely for NumPy compatibility rea-
sons. Do not pass in anything except for the default value, as this argument is not used.

Returns

ind [numpy.matrix or int] Indices of maximum elements. If matrix, its size along axis is 1.

scipy.sparse.coo_matrix.argmin

coo_matrix.argmin(axis=None, out=None)
Return indices of minimum elements along an axis.
Implicit zero elements are also taken into account. If there are several minimum values, the index of the first
occurrence is returned.

Parameters

axis [{-2, -1, 0, 1, None}, optional] Axis along which the argmin is computed. If None
(default), index of the minimum element in the flatten data is returned.

out [None, optional] This argument is in the signature solely for NumPy compatibility rea-
sons. Do not pass in anything except for the default value, as this argument is not used.

Returns

ind [numpy.matrix or int] Indices of minimum elements. If matrix, its size along axis is 1.

scipy.sparse.coo_matrix.asformat

coo_matrix.asformat(format, copy=False)
Return this matrix in the passed format.

Parameters

format [{str, None}] The desired matrix format (“csr”, “csc”, “lil”, “dok”, “array”, …) or None
for no conversion.

copy [bool, optional] If True, the result is guaranteed to not share data with self.
Returns

A [This matrix in the passed format.]

scipy.sparse.coo_matrix.asfptype

coo_matrix.asfptype()
Upcast matrix to a floating point format (if necessary)

scipy.sparse.coo_matrix.astype

coo_matrix.astype(dtype, casting=’unsafe’, copy=True)
Cast the matrix elements to a specified type.

Parameters

dtype [string or numpy dtype] Typecode or data-type to which to cast the data.
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casting [{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data casting
may occur. Defaults to ‘unsafe’ for backwards compatibility. ‘no’ means the data types
should not be cast at all. ‘equiv’ means only byte-order changes are allowed. ‘safe’
means only casts which can preserve values are allowed. ‘same_kind’ means only safe
casts or casts within a kind, like float64 to float32, are allowed. ‘unsafe’ means any data
conversions may be done.

copy [bool, optional] If copy is False, the result might share some memory with this matrix.
If copy is True, it is guaranteed that the result and this matrix do not share anymemory.

scipy.sparse.coo_matrix.ceil

coo_matrix.ceil()
Element-wise ceil.
See numpy.ceil for more information.

scipy.sparse.coo_matrix.conj

coo_matrix.conj(copy=True)
Element-wise complex conjugation.
If the matrix is of non-complex data type and copy is False, this method does nothing and the data is not
copied.

Parameters

copy [bool, optional] If True, the result is guaranteed to not share data with self.
Returns

A [The element-wise complex conjugate.]

scipy.sparse.coo_matrix.conjugate

coo_matrix.conjugate(copy=True)
Element-wise complex conjugation.
If the matrix is of non-complex data type and copy is False, this method does nothing and the data is not
copied.

Parameters

copy [bool, optional] If True, the result is guaranteed to not share data with self.
Returns

A [The element-wise complex conjugate.]

scipy.sparse.coo_matrix.copy

coo_matrix.copy()
Returns a copy of this matrix.
No data/indices will be shared between the returned value and current matrix.
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scipy.sparse.coo_matrix.count_nonzero

coo_matrix.count_nonzero()
Number of non-zero entries, equivalent to
np.count_nonzero(a.toarray())
Unlike getnnz() and the nnz property, which return the number of stored entries (the length of the data
attribute), this method counts the actual number of non-zero entries in data.

scipy.sparse.coo_matrix.deg2rad

coo_matrix.deg2rad()
Element-wise deg2rad.
See numpy.deg2rad for more information.

scipy.sparse.coo_matrix.diagonal

coo_matrix.diagonal(k=0)
Returns the k-th diagonal of the matrix.

Parameters

k [int, optional] Which diagonal to set, corresponding to elements a[i, i+k]. Default: 0
(the main diagonal).
New in version 1.0.

See also:

numpy.diagonal

Equivalent numpy function.

Examples

>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> A.diagonal()
array([1, 0, 5])
>>> A.diagonal(k=1)
array([2, 3])

scipy.sparse.coo_matrix.dot

coo_matrix.dot(other)
Ordinary dot product
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Examples

>>> import numpy as np
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> v = np.array([1, 0, -1])
>>> A.dot(v)
array([ 1, -3, -1], dtype=int64)

scipy.sparse.coo_matrix.eliminate_zeros

coo_matrix.eliminate_zeros()
Remove zero entries from the matrix
This is an in place operation

scipy.sparse.coo_matrix.expm1

coo_matrix.expm1()
Element-wise expm1.
See numpy.expm1 for more information.

scipy.sparse.coo_matrix.floor

coo_matrix.floor()
Element-wise floor.
See numpy.floor for more information.

scipy.sparse.coo_matrix.getH

coo_matrix.getH()
Return the Hermitian transpose of this matrix.
See also:

numpy.matrix.getH

NumPy’s implementation of getH for matrices

scipy.sparse.coo_matrix.get_shape

coo_matrix.get_shape()
Get shape of a matrix.

scipy.sparse.coo_matrix.getcol

coo_matrix.getcol(j)
Returns a copy of column j of the matrix, as an (m x 1) sparse matrix (column vector).
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scipy.sparse.coo_matrix.getformat

coo_matrix.getformat()
Format of a matrix representation as a string.

scipy.sparse.coo_matrix.getmaxprint

coo_matrix.getmaxprint()
Maximum number of elements to display when printed.

scipy.sparse.coo_matrix.getnnz

coo_matrix.getnnz(axis=None)
Number of stored values, including explicit zeros.

Parameters

axis [None, 0, or 1] Select between the number of values across the whole matrix, in each
column, or in each row.

See also:

count_nonzero

Number of non-zero entries

scipy.sparse.coo_matrix.getrow

coo_matrix.getrow(i)
Returns a copy of row i of the matrix, as a (1 x n) sparse matrix (row vector).

scipy.sparse.coo_matrix.log1p

coo_matrix.log1p()
Element-wise log1p.
See numpy.log1p for more information.

scipy.sparse.coo_matrix.max

coo_matrix.max(axis=None, out=None)
Return the maximum of the matrix or maximum along an axis. This takes all elements into account, not just
the non-zero ones.

Parameters

axis [{-2, -1, 0, 1, None} optional] Axis along which the sum is computed. The default is
to compute the maximum over all the matrix elements, returning a scalar (i.e. axis =
None).

out [None, optional] This argument is in the signature solely for NumPy compatibility rea-
sons. Do not pass in anything except for the default value, as this argument is not used.
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Returns

amax [coo_matrix or scalar] Maximum of a. If axis is None, the result is a scalar value. If
axis is given, the result is a sparse.coo_matrix of dimension a.ndim - 1.

See also:

min

The minimum value of a sparse matrix along a given axis.
numpy.matrix.max

NumPy’s implementation of ‘max’ for matrices

scipy.sparse.coo_matrix.maximum

coo_matrix.maximum(other)
Element-wise maximum between this and another matrix.

scipy.sparse.coo_matrix.mean

coo_matrix.mean(axis=None, dtype=None, out=None)
Compute the arithmetic mean along the specified axis.
Returns the average of the matrix elements. The average is taken over all elements in the matrix by default,
otherwise over the specified axis. float64 intermediate and return values are used for integer inputs.

Parameters

axis [{-2, -1, 0, 1, None} optional] Axis along which the mean is computed. The default is
to compute the mean of all elements in the matrix (i.e. axis = None).

dtype [data-type, optional] Type to use in computing the mean. For integer inputs, the default
is float64; for floating point inputs, it is the same as the input dtype.
New in version 0.18.0.

out [np.matrix, optional] Alternative output matrix in which to place the result. It must have
the same shape as the expected output, but the type of the output values will be cast if
necessary.
New in version 0.18.0.

Returns

m [np.matrix]
See also:

numpy.matrix.mean

NumPy’s implementation of ‘mean’ for matrices

scipy.sparse.coo_matrix.min

coo_matrix.min(axis=None, out=None)
Return the minimum of the matrix or maximum along an axis. This takes all elements into account, not just
the non-zero ones.

Parameters
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axis [{-2, -1, 0, 1, None} optional] Axis along which the sum is computed. The default is
to compute the minimum over all the matrix elements, returning a scalar (i.e. axis =
None).

out [None, optional] This argument is in the signature solely for NumPy compatibility rea-
sons. Do not pass in anything except for the default value, as this argument is not used.

Returns

amin [coo_matrix or scalar] Minimum of a. If axis is None, the result is a scalar value. If
axis is given, the result is a sparse.coo_matrix of dimension a.ndim - 1.

See also:

max

The maximum value of a sparse matrix along a given axis.
numpy.matrix.min

NumPy’s implementation of ‘min’ for matrices

scipy.sparse.coo_matrix.minimum

coo_matrix.minimum(other)
Element-wise minimum between this and another matrix.

scipy.sparse.coo_matrix.multiply

coo_matrix.multiply(other)
Point-wise multiplication by another matrix

scipy.sparse.coo_matrix.nonzero

coo_matrix.nonzero()
nonzero indices
Returns a tuple of arrays (row,col) containing the indices of the non-zero elements of the matrix.

Examples

>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1,2,0],[0,0,3],[4,0,5]])
>>> A.nonzero()
(array([0, 0, 1, 2, 2]), array([0, 1, 2, 0, 2]))

scipy.sparse.coo_matrix.power

coo_matrix.power(n, dtype=None)
This function performs element-wise power.

Parameters

n [n is a scalar]
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dtype [If dtype is not specified, the current dtype will be preserved.]

scipy.sparse.coo_matrix.rad2deg

coo_matrix.rad2deg()
Element-wise rad2deg.
See numpy.rad2deg for more information.

scipy.sparse.coo_matrix.reshape

coo_matrix.reshape(self, shape, order=’C’, copy=False)
Gives a new shape to a sparse matrix without changing its data.

Parameters

shape [length-2 tuple of ints] The new shape should be compatible with the original shape.
order [{‘C’, ‘F’}, optional] Read the elements using this index order. ‘C’ means to read and

write the elements using C-like index order; e.g. read entire first row, then second row,
etc. ‘F’ means to read and write the elements using Fortran-like index order; e.g. read
entire first column, then second column, etc.

copy [bool, optional] Indicates whether or not attributes of self should be copied whenever
possible. The degree to which attributes are copied varies depending on the type of
sparse matrix being used.

Returns

reshaped_matrix
[sparse matrix] A sparse matrix with the given shape, not necessarily of the same
format as the current object.

See also:

numpy.matrix.reshape

NumPy’s implementation of ‘reshape’ for matrices

scipy.sparse.coo_matrix.resize

coo_matrix.resize(*shape)
Resize the matrix in-place to dimensions given by shape
Any elements that lie within the new shape will remain at the same indices, while non-zero elements lying
outside the new shape are removed.

Parameters

shape [(int, int)] number of rows and columns in the new matrix

Notes

The semantics are not identical to numpy.ndarray.resize or numpy.resize. Here, the same data
will be maintained at each index before and after reshape, if that index is within the new bounds. In numpy,
resizing maintains contiguity of the array, moving elements around in the logical matrix but not within a
flattened representation.

1662 Chapter 6. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.matrix.reshape.html#numpy.matrix.reshape
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.resize.html#numpy.ndarray.resize
https://docs.scipy.org/doc/numpy/reference/generated/numpy.resize.html#numpy.resize


SciPy Reference Guide, Release 1.3.1

We give no guarantees about whether the underlying data attributes (arrays, etc.) will be modified in place or
replaced with new objects.

scipy.sparse.coo_matrix.rint

coo_matrix.rint()
Element-wise rint.
See numpy.rint for more information.

scipy.sparse.coo_matrix.set_shape

coo_matrix.set_shape(shape)
See reshape.

scipy.sparse.coo_matrix.setdiag

coo_matrix.setdiag(values, k=0)
Set diagonal or off-diagonal elements of the array.

Parameters

values [array_like] New values of the diagonal elements.
Values may have any length. If the diagonal is longer than values, then the remaining
diagonal entries will not be set. If values if longer than the diagonal, then the remaining
values are ignored.
If a scalar value is given, all of the diagonal is set to it.

k [int, optional] Which off-diagonal to set, corresponding to elements a[i,i+k]. Default: 0
(the main diagonal).

scipy.sparse.coo_matrix.sign

coo_matrix.sign()
Element-wise sign.
See numpy.sign for more information.

scipy.sparse.coo_matrix.sin

coo_matrix.sin()
Element-wise sin.
See numpy.sin for more information.

scipy.sparse.coo_matrix.sinh

coo_matrix.sinh()
Element-wise sinh.
See numpy.sinh for more information.
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scipy.sparse.coo_matrix.sqrt

coo_matrix.sqrt()
Element-wise sqrt.
See numpy.sqrt for more information.

scipy.sparse.coo_matrix.sum

coo_matrix.sum(axis=None, dtype=None, out=None)
Sum the matrix elements over a given axis.

Parameters

axis [{-2, -1, 0, 1, None} optional] Axis along which the sum is computed. The default is to
compute the sum of all the matrix elements, returning a scalar (i.e. axis = None).

dtype [dtype, optional] The type of the returned matrix and of the accumulator in which the
elements are summed. The dtype of a is used by default unless a has an integer dtype
of less precision than the default platform integer. In that case, if a is signed then the
platform integer is used while if a is unsigned then an unsigned integer of the same
precision as the platform integer is used.
New in version 0.18.0.

out [np.matrix, optional] Alternative output matrix in which to place the result. It must have
the same shape as the expected output, but the type of the output values will be cast if
necessary.
New in version 0.18.0.

Returns

sum_along_axis
[np.matrix] A matrix with the same shape as self, with the specified axis removed.

See also:

numpy.matrix.sum

NumPy’s implementation of ‘sum’ for matrices

scipy.sparse.coo_matrix.sum_duplicates

coo_matrix.sum_duplicates()
Eliminate duplicate matrix entries by adding them together
This is an in place operation

scipy.sparse.coo_matrix.tan

coo_matrix.tan()
Element-wise tan.
See numpy.tan for more information.
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scipy.sparse.coo_matrix.tanh

coo_matrix.tanh()
Element-wise tanh.
See numpy.tanh for more information.

scipy.sparse.coo_matrix.toarray

coo_matrix.toarray(order=None, out=None)
See the docstring for spmatrix.toarray.

scipy.sparse.coo_matrix.tobsr

coo_matrix.tobsr(blocksize=None, copy=False)
Convert this matrix to Block Sparse Row format.
With copy=False, the data/indices may be shared between this matrix and the resultant bsr_matrix.
When blocksize=(R, C) is provided, it will be used for construction of the bsr_matrix.

scipy.sparse.coo_matrix.tocoo

coo_matrix.tocoo(copy=False)
Convert this matrix to COOrdinate format.
With copy=False, the data/indices may be shared between this matrix and the resultant coo_matrix.

scipy.sparse.coo_matrix.tocsc

coo_matrix.tocsc(copy=False)
Convert this matrix to Compressed Sparse Column format
Duplicate entries will be summed together.

Examples

>>> from numpy import array
>>> from scipy.sparse import coo_matrix
>>> row = array([0, 0, 1, 3, 1, 0, 0])
>>> col = array([0, 2, 1, 3, 1, 0, 0])
>>> data = array([1, 1, 1, 1, 1, 1, 1])
>>> A = coo_matrix((data, (row, col)), shape=(4, 4)).tocsc()
>>> A.toarray()
array([[3, 0, 1, 0],

[0, 2, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 1]])
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scipy.sparse.coo_matrix.tocsr

coo_matrix.tocsr(copy=False)
Convert this matrix to Compressed Sparse Row format
Duplicate entries will be summed together.

Examples

>>> from numpy import array
>>> from scipy.sparse import coo_matrix
>>> row = array([0, 0, 1, 3, 1, 0, 0])
>>> col = array([0, 2, 1, 3, 1, 0, 0])
>>> data = array([1, 1, 1, 1, 1, 1, 1])
>>> A = coo_matrix((data, (row, col)), shape=(4, 4)).tocsr()
>>> A.toarray()
array([[3, 0, 1, 0],

[0, 2, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 1]])

scipy.sparse.coo_matrix.todense

coo_matrix.todense(order=None, out=None)
Return a dense matrix representation of this matrix.

Parameters

order [{‘C’, ‘F’}, optional] Whether to store multi-dimensional data in C (row-major) or For-
tran (column-major) order in memory. The default is ‘None’, indicating the NumPy
default of C-ordered. Cannot be specified in conjunction with the out argument.

out [ndarray, 2-dimensional, optional] If specified, uses this array (or numpy.matrix)
as the output buffer instead of allocating a new array to return. The provided array must
have the same shape and dtype as the sparse matrix on which you are calling the method.

Returns

arr [numpy.matrix, 2-dimensional] A NumPy matrix object with the same shape and con-
taining the same data represented by the sparse matrix, with the requested memory
order. If out was passed and was an array (rather than a numpy.matrix), it will be
filled with the appropriate values and returned wrapped in a numpy.matrix object
that shares the same memory.

scipy.sparse.coo_matrix.todia

coo_matrix.todia(copy=False)
Convert this matrix to sparse DIAgonal format.
With copy=False, the data/indices may be shared between this matrix and the resultant dia_matrix.
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scipy.sparse.coo_matrix.todok

coo_matrix.todok(copy=False)
Convert this matrix to Dictionary Of Keys format.
With copy=False, the data/indices may be shared between this matrix and the resultant dok_matrix.

scipy.sparse.coo_matrix.tolil

coo_matrix.tolil(copy=False)
Convert this matrix to LInked List format.
With copy=False, the data/indices may be shared between this matrix and the resultant lil_matrix.

scipy.sparse.coo_matrix.transpose

coo_matrix.transpose(axes=None, copy=False)
Reverses the dimensions of the sparse matrix.

Parameters

axes [None, optional] This argument is in the signature solely for NumPy compatibility rea-
sons. Do not pass in anything except for the default value.

copy [bool, optional] Indicates whether or not attributes of self should be copied whenever
possible. The degree to which attributes are copied varies depending on the type of
sparse matrix being used.

Returns

p [self with the dimensions reversed.]
See also:

numpy.matrix.transpose

NumPy’s implementation of ‘transpose’ for matrices

scipy.sparse.coo_matrix.trunc

coo_matrix.trunc()
Element-wise trunc.
See numpy.trunc for more information.

scipy.sparse.csc_matrix
class scipy.sparse.csc_matrix(arg1, shape=None, dtype=None, copy=False)

Compressed Sparse Column matrix
This can be instantiated in several ways:

csc_matrix(D)
with a dense matrix or rank-2 ndarray D

csc_matrix(S)
with another sparse matrix S (equivalent to S.tocsc())

csc_matrix((M, N), [dtype])
to construct an empty matrix with shape (M, N) dtype is optional, defaulting to dtype=’d’.
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csc_matrix((data, (row_ind, col_ind)), [shape=(M, N)])
where data, row_ind and col_ind satisfy the relationship a[row_ind[k], col_ind[k]]
= data[k].

csc_matrix((data, indices, indptr), [shape=(M, N)])
is the standard CSC representation where the row indices for column i are stored in
indices[indptr[i]:indptr[i+1]] and their corresponding values are stored in
data[indptr[i]:indptr[i+1]]. If the shape parameter is not supplied, the matrix di-
mensions are inferred from the index arrays.

Notes

Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division,
and matrix power.
Advantages of the CSC format

• efficient arithmetic operations CSC + CSC, CSC * CSC, etc.
• efficient column slicing
• fast matrix vector products (CSR, BSR may be faster)

Disadvantages of the CSC format

• slow row slicing operations (consider CSR)
• changes to the sparsity structure are expensive (consider LIL or DOK)

Examples

>>> import numpy as np
>>> from scipy.sparse import csc_matrix
>>> csc_matrix((3, 4), dtype=np.int8).toarray()
array([[0, 0, 0, 0],

[0, 0, 0, 0],
[0, 0, 0, 0]], dtype=int8)

>>> row = np.array([0, 2, 2, 0, 1, 2])
>>> col = np.array([0, 0, 1, 2, 2, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csc_matrix((data, (row, col)), shape=(3, 3)).toarray()
array([[1, 0, 4],

[0, 0, 5],
[2, 3, 6]])

>>> indptr = np.array([0, 2, 3, 6])
>>> indices = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csc_matrix((data, indices, indptr), shape=(3, 3)).toarray()
array([[1, 0, 4],

[0, 0, 5],
[2, 3, 6]])
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Attributes

dtype [dtype] Data type of the matrix
shape [2-tuple] Get shape of a matrix.
ndim [int] Number of dimensions (this is always 2)
nnz Number of stored values, including explicit zeros.
data Data array of the matrix
indices CSC format index array
indptr CSC format index pointer array
has_sorted_indices

Determine whether the matrix has sorted indices

Methods

__len__()
__mul__(other) interpret other and call one of the following
arcsin() Element-wise arcsin.
arcsinh() Element-wise arcsinh.
arctan() Element-wise arctan.
arctanh() Element-wise arctanh.
argmax([axis, out]) Return indices of maximum elements along an axis.
argmin([axis, out]) Return indices of minimum elements along an axis.
asformat(format[, copy]) Return this matrix in the passed format.
asfptype() Upcast matrix to a floating point format (if necessary)
astype(dtype[, casting, copy]) Cast the matrix elements to a specified type.
ceil() Element-wise ceil.
check_format([full_check]) check whether the matrix format is valid
conj([copy]) Element-wise complex conjugation.
conjugate([copy]) Element-wise complex conjugation.
copy() Returns a copy of this matrix.
count_nonzero() Number of non-zero entries, equivalent to
deg2rad() Element-wise deg2rad.
diagonal([k]) Returns the k-th diagonal of the matrix.
dot(other) Ordinary dot product
eliminate_zeros() Remove zero entries from the matrix
expm1() Element-wise expm1.
floor() Element-wise floor.
getH() Return the Hermitian transpose of this matrix.
get_shape() Get shape of a matrix.
getcol(i) Returns a copy of column i of the matrix, as a (m x 1)

CSC matrix (column vector).
getformat() Format of a matrix representation as a string.
getmaxprint() Maximum number of elements to display when

printed.
getnnz([axis]) Number of stored values, including explicit zeros.
getrow(i) Returns a copy of row i of the matrix, as a (1 x n) CSR

matrix (row vector).
log1p() Element-wise log1p.
max([axis, out]) Return the maximum of the matrix or maximum along

an axis.
Continued on next page
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Table 169 – continued from previous page
maximum(other) Element-wisemaximum between this and anotherma-

trix.
mean([axis, dtype, out]) Compute the arithmetic mean along the specified axis.
min([axis, out]) Return the minimum of the matrix or maximum along

an axis.
minimum(other) Element-wise minimum between this and another ma-

trix.
multiply(other) Point-wise multiplication by another matrix, vector, or

scalar.
nonzero() nonzero indices
power(n[, dtype]) This function performs element-wise power.
prune() Remove empty space after all non-zero elements.
rad2deg() Element-wise rad2deg.
reshape(self, shape[, order, copy]) Gives a new shape to a sparse matrix without changing

its data.
resize(*shape) Resize the matrix in-place to dimensions given by

shape
rint() Element-wise rint.
set_shape(shape) See reshape.
setdiag(values[, k]) Set diagonal or off-diagonal elements of the array.
sign() Element-wise sign.
sin() Element-wise sin.
sinh() Element-wise sinh.
sort_indices() Sort the indices of this matrix in place
sorted_indices() Return a copy of this matrix with sorted indices
sqrt() Element-wise sqrt.
sum([axis, dtype, out]) Sum the matrix elements over a given axis.
sum_duplicates() Eliminate duplicate matrix entries by adding them to-

gether
tan() Element-wise tan.
tanh() Element-wise tanh.
toarray([order, out]) Return a dense ndarray representation of this matrix.
tobsr([blocksize, copy]) Convert this matrix to Block Sparse Row format.
tocoo([copy]) Convert this matrix to COOrdinate format.
tocsc([copy]) Convert this matrix to Compressed Sparse Column

format.
tocsr([copy]) Convert this matrix to Compressed Sparse Row for-

mat.
todense([order, out]) Return a dense matrix representation of this matrix.
todia([copy]) Convert this matrix to sparse DIAgonal format.
todok([copy]) Convert this matrix to Dictionary Of Keys format.
tolil([copy]) Convert this matrix to LInked List format.
transpose([axes, copy]) Reverses the dimensions of the sparse matrix.
trunc() Element-wise trunc.

scipy.sparse.csc_matrix.__len__

csc_matrix.__len__()
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scipy.sparse.csc_matrix.__mul__

csc_matrix.__mul__(other)
interpret other and call one of the following
self._mul_scalar() self._mul_vector() self._mul_multivector() self._mul_sparse_matrix()

scipy.sparse.csc_matrix.arcsin

csc_matrix.arcsin()
Element-wise arcsin.
See numpy.arcsin for more information.

scipy.sparse.csc_matrix.arcsinh

csc_matrix.arcsinh()
Element-wise arcsinh.
See numpy.arcsinh for more information.

scipy.sparse.csc_matrix.arctan

csc_matrix.arctan()
Element-wise arctan.
See numpy.arctan for more information.

scipy.sparse.csc_matrix.arctanh

csc_matrix.arctanh()
Element-wise arctanh.
See numpy.arctanh for more information.

scipy.sparse.csc_matrix.argmax

csc_matrix.argmax(axis=None, out=None)
Return indices of maximum elements along an axis.
Implicit zero elements are also taken into account. If there are several maximum values, the index of the first
occurrence is returned.

Parameters

axis [{-2, -1, 0, 1, None}, optional] Axis along which the argmax is computed. If None
(default), index of the maximum element in the flatten data is returned.

out [None, optional] This argument is in the signature solely for NumPy compatibility rea-
sons. Do not pass in anything except for the default value, as this argument is not used.

Returns

ind [numpy.matrix or int] Indices of maximum elements. If matrix, its size along axis is 1.
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scipy.sparse.csc_matrix.argmin

csc_matrix.argmin(axis=None, out=None)
Return indices of minimum elements along an axis.
Implicit zero elements are also taken into account. If there are several minimum values, the index of the first
occurrence is returned.

Parameters

axis [{-2, -1, 0, 1, None}, optional] Axis along which the argmin is computed. If None
(default), index of the minimum element in the flatten data is returned.

out [None, optional] This argument is in the signature solely for NumPy compatibility rea-
sons. Do not pass in anything except for the default value, as this argument is not used.

Returns

ind [numpy.matrix or int] Indices of minimum elements. If matrix, its size along axis is 1.

scipy.sparse.csc_matrix.asformat

csc_matrix.asformat(format, copy=False)
Return this matrix in the passed format.

Parameters

format [{str, None}] The desired matrix format (“csr”, “csc”, “lil”, “dok”, “array”, …) or None
for no conversion.

copy [bool, optional] If True, the result is guaranteed to not share data with self.
Returns

A [This matrix in the passed format.]

scipy.sparse.csc_matrix.asfptype

csc_matrix.asfptype()
Upcast matrix to a floating point format (if necessary)

scipy.sparse.csc_matrix.astype

csc_matrix.astype(dtype, casting=’unsafe’, copy=True)
Cast the matrix elements to a specified type.

Parameters

dtype [string or numpy dtype] Typecode or data-type to which to cast the data.
casting [{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data casting

may occur. Defaults to ‘unsafe’ for backwards compatibility. ‘no’ means the data types
should not be cast at all. ‘equiv’ means only byte-order changes are allowed. ‘safe’
means only casts which can preserve values are allowed. ‘same_kind’ means only safe
casts or casts within a kind, like float64 to float32, are allowed. ‘unsafe’ means any data
conversions may be done.

copy [bool, optional] If copy is False, the result might share some memory with this matrix.
If copy is True, it is guaranteed that the result and this matrix do not share anymemory.
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scipy.sparse.csc_matrix.ceil

csc_matrix.ceil()
Element-wise ceil.
See numpy.ceil for more information.

scipy.sparse.csc_matrix.check_format

csc_matrix.check_format(full_check=True)
check whether the matrix format is valid

Parameters

full_check [bool, optional] If True, rigorous check, O(N) operations. Otherwise basic check, O(1)
operations (default True).

scipy.sparse.csc_matrix.conj

csc_matrix.conj(copy=True)
Element-wise complex conjugation.
If the matrix is of non-complex data type and copy is False, this method does nothing and the data is not
copied.

Parameters

copy [bool, optional] If True, the result is guaranteed to not share data with self.
Returns

A [The element-wise complex conjugate.]

scipy.sparse.csc_matrix.conjugate

csc_matrix.conjugate(copy=True)
Element-wise complex conjugation.
If the matrix is of non-complex data type and copy is False, this method does nothing and the data is not
copied.

Parameters

copy [bool, optional] If True, the result is guaranteed to not share data with self.
Returns

A [The element-wise complex conjugate.]

scipy.sparse.csc_matrix.copy

csc_matrix.copy()
Returns a copy of this matrix.
No data/indices will be shared between the returned value and current matrix.
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scipy.sparse.csc_matrix.count_nonzero

csc_matrix.count_nonzero()
Number of non-zero entries, equivalent to
np.count_nonzero(a.toarray())
Unlike getnnz() and the nnz property, which return the number of stored entries (the length of the data
attribute), this method counts the actual number of non-zero entries in data.

scipy.sparse.csc_matrix.deg2rad

csc_matrix.deg2rad()
Element-wise deg2rad.
See numpy.deg2rad for more information.

scipy.sparse.csc_matrix.diagonal

csc_matrix.diagonal(k=0)
Returns the k-th diagonal of the matrix.

Parameters

k [int, optional] Which diagonal to set, corresponding to elements a[i, i+k]. Default: 0
(the main diagonal).
New in version 1.0.

See also:

numpy.diagonal

Equivalent numpy function.

Examples

>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> A.diagonal()
array([1, 0, 5])
>>> A.diagonal(k=1)
array([2, 3])

scipy.sparse.csc_matrix.dot

csc_matrix.dot(other)
Ordinary dot product
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Examples

>>> import numpy as np
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> v = np.array([1, 0, -1])
>>> A.dot(v)
array([ 1, -3, -1], dtype=int64)

scipy.sparse.csc_matrix.eliminate_zeros

csc_matrix.eliminate_zeros()
Remove zero entries from the matrix
This is an in place operation

scipy.sparse.csc_matrix.expm1

csc_matrix.expm1()
Element-wise expm1.
See numpy.expm1 for more information.

scipy.sparse.csc_matrix.floor

csc_matrix.floor()
Element-wise floor.
See numpy.floor for more information.

scipy.sparse.csc_matrix.getH

csc_matrix.getH()
Return the Hermitian transpose of this matrix.
See also:

numpy.matrix.getH

NumPy’s implementation of getH for matrices

scipy.sparse.csc_matrix.get_shape

csc_matrix.get_shape()
Get shape of a matrix.

scipy.sparse.csc_matrix.getcol

csc_matrix.getcol(i)
Returns a copy of column i of the matrix, as a (m x 1) CSC matrix (column vector).
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scipy.sparse.csc_matrix.getformat

csc_matrix.getformat()
Format of a matrix representation as a string.

scipy.sparse.csc_matrix.getmaxprint

csc_matrix.getmaxprint()
Maximum number of elements to display when printed.

scipy.sparse.csc_matrix.getnnz

csc_matrix.getnnz(axis=None)
Number of stored values, including explicit zeros.

Parameters

axis [None, 0, or 1] Select between the number of values across the whole matrix, in each
column, or in each row.

See also:

count_nonzero

Number of non-zero entries

scipy.sparse.csc_matrix.getrow

csc_matrix.getrow(i)
Returns a copy of row i of the matrix, as a (1 x n) CSR matrix (row vector).

scipy.sparse.csc_matrix.log1p

csc_matrix.log1p()
Element-wise log1p.
See numpy.log1p for more information.

scipy.sparse.csc_matrix.max

csc_matrix.max(axis=None, out=None)
Return the maximum of the matrix or maximum along an axis. This takes all elements into account, not just
the non-zero ones.

Parameters

axis [{-2, -1, 0, 1, None} optional] Axis along which the sum is computed. The default is
to compute the maximum over all the matrix elements, returning a scalar (i.e. axis =
None).

out [None, optional] This argument is in the signature solely for NumPy compatibility rea-
sons. Do not pass in anything except for the default value, as this argument is not used.
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Returns

amax [coo_matrix or scalar] Maximum of a. If axis is None, the result is a scalar value. If
axis is given, the result is a sparse.coo_matrix of dimension a.ndim - 1.

See also:

min

The minimum value of a sparse matrix along a given axis.
numpy.matrix.max

NumPy’s implementation of ‘max’ for matrices

scipy.sparse.csc_matrix.maximum

csc_matrix.maximum(other)
Element-wise maximum between this and another matrix.

scipy.sparse.csc_matrix.mean

csc_matrix.mean(axis=None, dtype=None, out=None)
Compute the arithmetic mean along the specified axis.
Returns the average of the matrix elements. The average is taken over all elements in the matrix by default,
otherwise over the specified axis. float64 intermediate and return values are used for integer inputs.

Parameters

axis [{-2, -1, 0, 1, None} optional] Axis along which the mean is computed. The default is
to compute the mean of all elements in the matrix (i.e. axis = None).

dtype [data-type, optional] Type to use in computing the mean. For integer inputs, the default
is float64; for floating point inputs, it is the same as the input dtype.
New in version 0.18.0.

out [np.matrix, optional] Alternative output matrix in which to place the result. It must have
the same shape as the expected output, but the type of the output values will be cast if
necessary.
New in version 0.18.0.

Returns

m [np.matrix]
See also:

numpy.matrix.mean

NumPy’s implementation of ‘mean’ for matrices

scipy.sparse.csc_matrix.min

csc_matrix.min(axis=None, out=None)
Return the minimum of the matrix or maximum along an axis. This takes all elements into account, not just
the non-zero ones.

Parameters

6.22. Sparse matrices (scipy.sparse) 1677

https://docs.scipy.org/doc/numpy/reference/generated/numpy.matrix.max.html#numpy.matrix.max
https://docs.scipy.org/doc/numpy/reference/generated/numpy.matrix.mean.html#numpy.matrix.mean


SciPy Reference Guide, Release 1.3.1

axis [{-2, -1, 0, 1, None} optional] Axis along which the sum is computed. The default is
to compute the minimum over all the matrix elements, returning a scalar (i.e. axis =
None).

out [None, optional] This argument is in the signature solely for NumPy compatibility rea-
sons. Do not pass in anything except for the default value, as this argument is not used.

Returns

amin [coo_matrix or scalar] Minimum of a. If axis is None, the result is a scalar value. If
axis is given, the result is a sparse.coo_matrix of dimension a.ndim - 1.

See also:

max

The maximum value of a sparse matrix along a given axis.
numpy.matrix.min

NumPy’s implementation of ‘min’ for matrices

scipy.sparse.csc_matrix.minimum

csc_matrix.minimum(other)
Element-wise minimum between this and another matrix.

scipy.sparse.csc_matrix.multiply

csc_matrix.multiply(other)
Point-wise multiplication by another matrix, vector, or scalar.

scipy.sparse.csc_matrix.nonzero

csc_matrix.nonzero()
nonzero indices
Returns a tuple of arrays (row,col) containing the indices of the non-zero elements of the matrix.

Examples

>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1,2,0],[0,0,3],[4,0,5]])
>>> A.nonzero()
(array([0, 0, 1, 2, 2]), array([0, 1, 2, 0, 2]))

scipy.sparse.csc_matrix.power

csc_matrix.power(n, dtype=None)
This function performs element-wise power.

Parameters

n [n is a scalar]
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dtype [If dtype is not specified, the current dtype will be preserved.]

scipy.sparse.csc_matrix.prune

csc_matrix.prune()
Remove empty space after all non-zero elements.

scipy.sparse.csc_matrix.rad2deg

csc_matrix.rad2deg()
Element-wise rad2deg.
See numpy.rad2deg for more information.

scipy.sparse.csc_matrix.reshape

csc_matrix.reshape(self, shape, order=’C’, copy=False)
Gives a new shape to a sparse matrix without changing its data.

Parameters

shape [length-2 tuple of ints] The new shape should be compatible with the original shape.
order [{‘C’, ‘F’}, optional] Read the elements using this index order. ‘C’ means to read and

write the elements using C-like index order; e.g. read entire first row, then second row,
etc. ‘F’ means to read and write the elements using Fortran-like index order; e.g. read
entire first column, then second column, etc.

copy [bool, optional] Indicates whether or not attributes of self should be copied whenever
possible. The degree to which attributes are copied varies depending on the type of
sparse matrix being used.

Returns

reshaped_matrix
[sparse matrix] A sparse matrix with the given shape, not necessarily of the same
format as the current object.

See also:

numpy.matrix.reshape

NumPy’s implementation of ‘reshape’ for matrices

scipy.sparse.csc_matrix.resize

csc_matrix.resize(*shape)
Resize the matrix in-place to dimensions given by shape
Any elements that lie within the new shape will remain at the same indices, while non-zero elements lying
outside the new shape are removed.

Parameters

shape [(int, int)] number of rows and columns in the new matrix
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Notes

The semantics are not identical to numpy.ndarray.resize or numpy.resize. Here, the same data
will be maintained at each index before and after reshape, if that index is within the new bounds. In numpy,
resizing maintains contiguity of the array, moving elements around in the logical matrix but not within a
flattened representation.
We give no guarantees about whether the underlying data attributes (arrays, etc.) will be modified in place or
replaced with new objects.

scipy.sparse.csc_matrix.rint

csc_matrix.rint()
Element-wise rint.
See numpy.rint for more information.

scipy.sparse.csc_matrix.set_shape

csc_matrix.set_shape(shape)
See reshape.

scipy.sparse.csc_matrix.setdiag

csc_matrix.setdiag(values, k=0)
Set diagonal or off-diagonal elements of the array.

Parameters

values [array_like] New values of the diagonal elements.
Values may have any length. If the diagonal is longer than values, then the remaining
diagonal entries will not be set. If values if longer than the diagonal, then the remaining
values are ignored.
If a scalar value is given, all of the diagonal is set to it.

k [int, optional] Which off-diagonal to set, corresponding to elements a[i,i+k]. Default: 0
(the main diagonal).

scipy.sparse.csc_matrix.sign

csc_matrix.sign()
Element-wise sign.
See numpy.sign for more information.

scipy.sparse.csc_matrix.sin

csc_matrix.sin()
Element-wise sin.
See numpy.sin for more information.
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scipy.sparse.csc_matrix.sinh

csc_matrix.sinh()
Element-wise sinh.
See numpy.sinh for more information.

scipy.sparse.csc_matrix.sort_indices

csc_matrix.sort_indices()
Sort the indices of this matrix in place

scipy.sparse.csc_matrix.sorted_indices

csc_matrix.sorted_indices()
Return a copy of this matrix with sorted indices

scipy.sparse.csc_matrix.sqrt

csc_matrix.sqrt()
Element-wise sqrt.
See numpy.sqrt for more information.

scipy.sparse.csc_matrix.sum

csc_matrix.sum(axis=None, dtype=None, out=None)
Sum the matrix elements over a given axis.

Parameters

axis [{-2, -1, 0, 1, None} optional] Axis along which the sum is computed. The default is to
compute the sum of all the matrix elements, returning a scalar (i.e. axis = None).

dtype [dtype, optional] The type of the returned matrix and of the accumulator in which the
elements are summed. The dtype of a is used by default unless a has an integer dtype
of less precision than the default platform integer. In that case, if a is signed then the
platform integer is used while if a is unsigned then an unsigned integer of the same
precision as the platform integer is used.
New in version 0.18.0.

out [np.matrix, optional] Alternative output matrix in which to place the result. It must have
the same shape as the expected output, but the type of the output values will be cast if
necessary.
New in version 0.18.0.

Returns

sum_along_axis
[np.matrix] A matrix with the same shape as self, with the specified axis removed.

See also:

numpy.matrix.sum

NumPy’s implementation of ‘sum’ for matrices
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scipy.sparse.csc_matrix.sum_duplicates

csc_matrix.sum_duplicates()
Eliminate duplicate matrix entries by adding them together
The is an in place operation

scipy.sparse.csc_matrix.tan

csc_matrix.tan()
Element-wise tan.
See numpy.tan for more information.

scipy.sparse.csc_matrix.tanh

csc_matrix.tanh()
Element-wise tanh.
See numpy.tanh for more information.

scipy.sparse.csc_matrix.toarray

csc_matrix.toarray(order=None, out=None)
Return a dense ndarray representation of this matrix.

Parameters

order [{‘C’, ‘F’}, optional] Whether to store multi-dimensional data in C (row-major) or For-
tran (column-major) order in memory. The default is ‘None’, indicating the NumPy
default of C-ordered. Cannot be specified in conjunction with the out argument.

out [ndarray, 2-dimensional, optional] If specified, uses this array as the output buffer in-
stead of allocating a new array to return. The provided array must have the same shape
and dtype as the sparse matrix on which you are calling the method. For most sparse
types, out is required to be memory contiguous (either C or Fortran ordered).

Returns

arr [ndarray, 2-dimensional] An array with the same shape and containing the same data
represented by the sparse matrix, with the requested memory order. If out was passed,
the same object is returned after being modified in-place to contain the appropriate
values.

scipy.sparse.csc_matrix.tobsr

csc_matrix.tobsr(blocksize=None, copy=False)
Convert this matrix to Block Sparse Row format.
With copy=False, the data/indices may be shared between this matrix and the resultant bsr_matrix.
When blocksize=(R, C) is provided, it will be used for construction of the bsr_matrix.
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scipy.sparse.csc_matrix.tocoo

csc_matrix.tocoo(copy=True)
Convert this matrix to COOrdinate format.
With copy=False, the data/indices may be shared between this matrix and the resultant coo_matrix.

scipy.sparse.csc_matrix.tocsc

csc_matrix.tocsc(copy=False)
Convert this matrix to Compressed Sparse Column format.
With copy=False, the data/indices may be shared between this matrix and the resultant csc_matrix.

scipy.sparse.csc_matrix.tocsr

csc_matrix.tocsr(copy=False)
Convert this matrix to Compressed Sparse Row format.
With copy=False, the data/indices may be shared between this matrix and the resultant csr_matrix.

scipy.sparse.csc_matrix.todense

csc_matrix.todense(order=None, out=None)
Return a dense matrix representation of this matrix.

Parameters

order [{‘C’, ‘F’}, optional] Whether to store multi-dimensional data in C (row-major) or For-
tran (column-major) order in memory. The default is ‘None’, indicating the NumPy
default of C-ordered. Cannot be specified in conjunction with the out argument.

out [ndarray, 2-dimensional, optional] If specified, uses this array (or numpy.matrix)
as the output buffer instead of allocating a new array to return. The provided array must
have the same shape and dtype as the sparse matrix on which you are calling the method.

Returns

arr [numpy.matrix, 2-dimensional] A NumPy matrix object with the same shape and con-
taining the same data represented by the sparse matrix, with the requested memory
order. If out was passed and was an array (rather than a numpy.matrix), it will be
filled with the appropriate values and returned wrapped in a numpy.matrix object
that shares the same memory.

scipy.sparse.csc_matrix.todia

csc_matrix.todia(copy=False)
Convert this matrix to sparse DIAgonal format.
With copy=False, the data/indices may be shared between this matrix and the resultant dia_matrix.
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scipy.sparse.csc_matrix.todok

csc_matrix.todok(copy=False)
Convert this matrix to Dictionary Of Keys format.
With copy=False, the data/indices may be shared between this matrix and the resultant dok_matrix.

scipy.sparse.csc_matrix.tolil

csc_matrix.tolil(copy=False)
Convert this matrix to LInked List format.
With copy=False, the data/indices may be shared between this matrix and the resultant lil_matrix.

scipy.sparse.csc_matrix.transpose

csc_matrix.transpose(axes=None, copy=False)
Reverses the dimensions of the sparse matrix.

Parameters

axes [None, optional] This argument is in the signature solely for NumPy compatibility rea-
sons. Do not pass in anything except for the default value.

copy [bool, optional] Indicates whether or not attributes of self should be copied whenever
possible. The degree to which attributes are copied varies depending on the type of
sparse matrix being used.

Returns

p [self with the dimensions reversed.]
See also:

numpy.matrix.transpose

NumPy’s implementation of ‘transpose’ for matrices

scipy.sparse.csc_matrix.trunc

csc_matrix.trunc()
Element-wise trunc.
See numpy.trunc for more information.

__getitem__

scipy.sparse.csr_matrix
class scipy.sparse.csr_matrix(arg1, shape=None, dtype=None, copy=False)

Compressed Sparse Row matrix
This can be instantiated in several ways:

csr_matrix(D)
with a dense matrix or rank-2 ndarray D
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csr_matrix(S)
with another sparse matrix S (equivalent to S.tocsr())

csr_matrix((M, N), [dtype])
to construct an empty matrix with shape (M, N) dtype is optional, defaulting to dtype=’d’.

csr_matrix((data, (row_ind, col_ind)), [shape=(M, N)])
where data, row_ind and col_ind satisfy the relationship a[row_ind[k],
col_ind[k]] = data[k].

csr_matrix((data, indices, indptr), [shape=(M, N)])
is the standard CSR representation where the column indices for row i are stored in
indices[indptr[i]:indptr[i+1]] and their corresponding values are stored in
data[indptr[i]:indptr[i+1]]. If the shape parameter is not supplied, the matrix di-
mensions are inferred from the index arrays.

Notes

Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division,
and matrix power.
Advantages of the CSR format

• efficient arithmetic operations CSR + CSR, CSR * CSR, etc.
• efficient row slicing
• fast matrix vector products

Disadvantages of the CSR format

• slow column slicing operations (consider CSC)
• changes to the sparsity structure are expensive (consider LIL or DOK)

Examples

>>> import numpy as np
>>> from scipy.sparse import csr_matrix
>>> csr_matrix((3, 4), dtype=np.int8).toarray()
array([[0, 0, 0, 0],

[0, 0, 0, 0],
[0, 0, 0, 0]], dtype=int8)

>>> row = np.array([0, 0, 1, 2, 2, 2])
>>> col = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csr_matrix((data, (row, col)), shape=(3, 3)).toarray()
array([[1, 0, 2],

[0, 0, 3],
[4, 5, 6]])
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>>> indptr = np.array([0, 2, 3, 6])
>>> indices = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csr_matrix((data, indices, indptr), shape=(3, 3)).toarray()
array([[1, 0, 2],

[0, 0, 3],
[4, 5, 6]])

As an example of how to construct a CSR matrix incrementally, the following snippet builds a term-document
matrix from texts:

>>> docs = [["hello", "world", "hello"], ["goodbye", "cruel", "world"]]
>>> indptr = [0]
>>> indices = []
>>> data = []
>>> vocabulary = {}
>>> for d in docs:
... for term in d:
... index = vocabulary.setdefault(term, len(vocabulary))
... indices.append(index)
... data.append(1)
... indptr.append(len(indices))
...
>>> csr_matrix((data, indices, indptr), dtype=int).toarray()
array([[2, 1, 0, 0],

[0, 1, 1, 1]])

Attributes

dtype [dtype] Data type of the matrix
shape [2-tuple] Get shape of a matrix.
ndim [int] Number of dimensions (this is always 2)
nnz Number of stored values, including explicit zeros.
data CSR format data array of the matrix
indices CSR format index array of the matrix
indptr CSR format index pointer array of the matrix
has_sorted_indices

Determine whether the matrix has sorted indices

Methods

__len__()
__mul__(other) interpret other and call one of the following
arcsin() Element-wise arcsin.
arcsinh() Element-wise arcsinh.
arctan() Element-wise arctan.
arctanh() Element-wise arctanh.
argmax([axis, out]) Return indices of maximum elements along an axis.
argmin([axis, out]) Return indices of minimum elements along an axis.
asformat(format[, copy]) Return this matrix in the passed format.
asfptype() Upcast matrix to a floating point format (if necessary)

Continued on next page
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Table 170 – continued from previous page
astype(dtype[, casting, copy]) Cast the matrix elements to a specified type.
ceil() Element-wise ceil.
check_format([full_check]) check whether the matrix format is valid
conj([copy]) Element-wise complex conjugation.
conjugate([copy]) Element-wise complex conjugation.
copy() Returns a copy of this matrix.
count_nonzero() Number of non-zero entries, equivalent to
deg2rad() Element-wise deg2rad.
diagonal([k]) Returns the k-th diagonal of the matrix.
dot(other) Ordinary dot product
eliminate_zeros() Remove zero entries from the matrix
expm1() Element-wise expm1.
floor() Element-wise floor.
getH() Return the Hermitian transpose of this matrix.
get_shape() Get shape of a matrix.
getcol(i) Returns a copy of column i of the matrix, as a (m x 1)

CSR matrix (column vector).
getformat() Format of a matrix representation as a string.
getmaxprint() Maximum number of elements to display when

printed.
getnnz([axis]) Number of stored values, including explicit zeros.
getrow(i) Returns a copy of row i of the matrix, as a (1 x n) CSR

matrix (row vector).
log1p() Element-wise log1p.
max([axis, out]) Return the maximum of the matrix or maximum along

an axis.
maximum(other) Element-wisemaximum between this and anotherma-

trix.
mean([axis, dtype, out]) Compute the arithmetic mean along the specified axis.
min([axis, out]) Return the minimum of the matrix or maximum along

an axis.
minimum(other) Element-wise minimum between this and another ma-

trix.
multiply(other) Point-wise multiplication by another matrix, vector, or

scalar.
nonzero() nonzero indices
power(n[, dtype]) This function performs element-wise power.
prune() Remove empty space after all non-zero elements.
rad2deg() Element-wise rad2deg.
reshape(self, shape[, order, copy]) Gives a new shape to a sparse matrix without changing

its data.
resize(*shape) Resize the matrix in-place to dimensions given by

shape
rint() Element-wise rint.
set_shape(shape) See reshape.
setdiag(values[, k]) Set diagonal or off-diagonal elements of the array.
sign() Element-wise sign.
sin() Element-wise sin.
sinh() Element-wise sinh.
sort_indices() Sort the indices of this matrix in place
sorted_indices() Return a copy of this matrix with sorted indices

Continued on next page
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Table 170 – continued from previous page
sqrt() Element-wise sqrt.
sum([axis, dtype, out]) Sum the matrix elements over a given axis.
sum_duplicates() Eliminate duplicate matrix entries by adding them to-

gether
tan() Element-wise tan.
tanh() Element-wise tanh.
toarray([order, out]) Return a dense ndarray representation of this matrix.
tobsr([blocksize, copy]) Convert this matrix to Block Sparse Row format.
tocoo([copy]) Convert this matrix to COOrdinate format.
tocsc([copy]) Convert this matrix to Compressed Sparse Column

format.
tocsr([copy]) Convert this matrix to Compressed Sparse Row for-

mat.
todense([order, out]) Return a dense matrix representation of this matrix.
todia([copy]) Convert this matrix to sparse DIAgonal format.
todok([copy]) Convert this matrix to Dictionary Of Keys format.
tolil([copy]) Convert this matrix to LInked List format.
transpose([axes, copy]) Reverses the dimensions of the sparse matrix.
trunc() Element-wise trunc.

scipy.sparse.csr_matrix.__len__

csr_matrix.__len__()

scipy.sparse.csr_matrix.__mul__

csr_matrix.__mul__(other)
interpret other and call one of the following
self._mul_scalar() self._mul_vector() self._mul_multivector() self._mul_sparse_matrix()

scipy.sparse.csr_matrix.arcsin

csr_matrix.arcsin()
Element-wise arcsin.
See numpy.arcsin for more information.

scipy.sparse.csr_matrix.arcsinh

csr_matrix.arcsinh()
Element-wise arcsinh.
See numpy.arcsinh for more information.

scipy.sparse.csr_matrix.arctan

csr_matrix.arctan()
Element-wise arctan.
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See numpy.arctan for more information.

scipy.sparse.csr_matrix.arctanh

csr_matrix.arctanh()
Element-wise arctanh.
See numpy.arctanh for more information.

scipy.sparse.csr_matrix.argmax

csr_matrix.argmax(axis=None, out=None)
Return indices of maximum elements along an axis.
Implicit zero elements are also taken into account. If there are several maximum values, the index of the first
occurrence is returned.

Parameters

axis [{-2, -1, 0, 1, None}, optional] Axis along which the argmax is computed. If None
(default), index of the maximum element in the flatten data is returned.

out [None, optional] This argument is in the signature solely for NumPy compatibility rea-
sons. Do not pass in anything except for the default value, as this argument is not used.

Returns

ind [numpy.matrix or int] Indices of maximum elements. If matrix, its size along axis is 1.

scipy.sparse.csr_matrix.argmin

csr_matrix.argmin(axis=None, out=None)
Return indices of minimum elements along an axis.
Implicit zero elements are also taken into account. If there are several minimum values, the index of the first
occurrence is returned.

Parameters

axis [{-2, -1, 0, 1, None}, optional] Axis along which the argmin is computed. If None
(default), index of the minimum element in the flatten data is returned.

out [None, optional] This argument is in the signature solely for NumPy compatibility rea-
sons. Do not pass in anything except for the default value, as this argument is not used.

Returns

ind [numpy.matrix or int] Indices of minimum elements. If matrix, its size along axis is 1.

scipy.sparse.csr_matrix.asformat

csr_matrix.asformat(format, copy=False)
Return this matrix in the passed format.

Parameters

format [{str, None}] The desired matrix format (“csr”, “csc”, “lil”, “dok”, “array”, …) or None
for no conversion.
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copy [bool, optional] If True, the result is guaranteed to not share data with self.
Returns

A [This matrix in the passed format.]

scipy.sparse.csr_matrix.asfptype

csr_matrix.asfptype()
Upcast matrix to a floating point format (if necessary)

scipy.sparse.csr_matrix.astype

csr_matrix.astype(dtype, casting=’unsafe’, copy=True)
Cast the matrix elements to a specified type.

Parameters

dtype [string or numpy dtype] Typecode or data-type to which to cast the data.
casting [{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data casting

may occur. Defaults to ‘unsafe’ for backwards compatibility. ‘no’ means the data types
should not be cast at all. ‘equiv’ means only byte-order changes are allowed. ‘safe’
means only casts which can preserve values are allowed. ‘same_kind’ means only safe
casts or casts within a kind, like float64 to float32, are allowed. ‘unsafe’ means any data
conversions may be done.

copy [bool, optional] If copy is False, the result might share some memory with this matrix.
If copy is True, it is guaranteed that the result and this matrix do not share anymemory.

scipy.sparse.csr_matrix.ceil

csr_matrix.ceil()
Element-wise ceil.
See numpy.ceil for more information.

scipy.sparse.csr_matrix.check_format

csr_matrix.check_format(full_check=True)
check whether the matrix format is valid

Parameters

full_check [bool, optional] If True, rigorous check, O(N) operations. Otherwise basic check, O(1)
operations (default True).

scipy.sparse.csr_matrix.conj

csr_matrix.conj(copy=True)
Element-wise complex conjugation.
If the matrix is of non-complex data type and copy is False, this method does nothing and the data is not
copied.
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Parameters

copy [bool, optional] If True, the result is guaranteed to not share data with self.
Returns

A [The element-wise complex conjugate.]

scipy.sparse.csr_matrix.conjugate

csr_matrix.conjugate(copy=True)
Element-wise complex conjugation.
If the matrix is of non-complex data type and copy is False, this method does nothing and the data is not
copied.

Parameters

copy [bool, optional] If True, the result is guaranteed to not share data with self.
Returns

A [The element-wise complex conjugate.]

scipy.sparse.csr_matrix.copy

csr_matrix.copy()
Returns a copy of this matrix.
No data/indices will be shared between the returned value and current matrix.

scipy.sparse.csr_matrix.count_nonzero

csr_matrix.count_nonzero()
Number of non-zero entries, equivalent to
np.count_nonzero(a.toarray())
Unlike getnnz() and the nnz property, which return the number of stored entries (the length of the data
attribute), this method counts the actual number of non-zero entries in data.

scipy.sparse.csr_matrix.deg2rad

csr_matrix.deg2rad()
Element-wise deg2rad.
See numpy.deg2rad for more information.

scipy.sparse.csr_matrix.diagonal

csr_matrix.diagonal(k=0)
Returns the k-th diagonal of the matrix.

Parameters
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k [int, optional] Which diagonal to set, corresponding to elements a[i, i+k]. Default: 0
(the main diagonal).
New in version 1.0.

See also:

numpy.diagonal

Equivalent numpy function.

Examples

>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> A.diagonal()
array([1, 0, 5])
>>> A.diagonal(k=1)
array([2, 3])

scipy.sparse.csr_matrix.dot

csr_matrix.dot(other)
Ordinary dot product

Examples

>>> import numpy as np
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> v = np.array([1, 0, -1])
>>> A.dot(v)
array([ 1, -3, -1], dtype=int64)

scipy.sparse.csr_matrix.eliminate_zeros

csr_matrix.eliminate_zeros()
Remove zero entries from the matrix
This is an in place operation

scipy.sparse.csr_matrix.expm1

csr_matrix.expm1()
Element-wise expm1.
See numpy.expm1 for more information.
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scipy.sparse.csr_matrix.floor

csr_matrix.floor()
Element-wise floor.
See numpy.floor for more information.

scipy.sparse.csr_matrix.getH

csr_matrix.getH()
Return the Hermitian transpose of this matrix.
See also:

numpy.matrix.getH

NumPy’s implementation of getH for matrices

scipy.sparse.csr_matrix.get_shape

csr_matrix.get_shape()
Get shape of a matrix.

scipy.sparse.csr_matrix.getcol

csr_matrix.getcol(i)
Returns a copy of column i of the matrix, as a (m x 1) CSR matrix (column vector).

scipy.sparse.csr_matrix.getformat

csr_matrix.getformat()
Format of a matrix representation as a string.

scipy.sparse.csr_matrix.getmaxprint

csr_matrix.getmaxprint()
Maximum number of elements to display when printed.

scipy.sparse.csr_matrix.getnnz

csr_matrix.getnnz(axis=None)
Number of stored values, including explicit zeros.

Parameters

axis [None, 0, or 1] Select between the number of values across the whole matrix, in each
column, or in each row.

See also:
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count_nonzero

Number of non-zero entries

scipy.sparse.csr_matrix.getrow

csr_matrix.getrow(i)
Returns a copy of row i of the matrix, as a (1 x n) CSR matrix (row vector).

scipy.sparse.csr_matrix.log1p

csr_matrix.log1p()
Element-wise log1p.
See numpy.log1p for more information.

scipy.sparse.csr_matrix.max

csr_matrix.max(axis=None, out=None)
Return the maximum of the matrix or maximum along an axis. This takes all elements into account, not just
the non-zero ones.

Parameters

axis [{-2, -1, 0, 1, None} optional] Axis along which the sum is computed. The default is
to compute the maximum over all the matrix elements, returning a scalar (i.e. axis =
None).

out [None, optional] This argument is in the signature solely for NumPy compatibility rea-
sons. Do not pass in anything except for the default value, as this argument is not used.

Returns

amax [coo_matrix or scalar] Maximum of a. If axis is None, the result is a scalar value. If
axis is given, the result is a sparse.coo_matrix of dimension a.ndim - 1.

See also:

min

The minimum value of a sparse matrix along a given axis.
numpy.matrix.max

NumPy’s implementation of ‘max’ for matrices

scipy.sparse.csr_matrix.maximum

csr_matrix.maximum(other)
Element-wise maximum between this and another matrix.
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scipy.sparse.csr_matrix.mean

csr_matrix.mean(axis=None, dtype=None, out=None)
Compute the arithmetic mean along the specified axis.
Returns the average of the matrix elements. The average is taken over all elements in the matrix by default,
otherwise over the specified axis. float64 intermediate and return values are used for integer inputs.

Parameters

axis [{-2, -1, 0, 1, None} optional] Axis along which the mean is computed. The default is
to compute the mean of all elements in the matrix (i.e. axis = None).

dtype [data-type, optional] Type to use in computing the mean. For integer inputs, the default
is float64; for floating point inputs, it is the same as the input dtype.
New in version 0.18.0.

out [np.matrix, optional] Alternative output matrix in which to place the result. It must have
the same shape as the expected output, but the type of the output values will be cast if
necessary.
New in version 0.18.0.

Returns

m [np.matrix]
See also:

numpy.matrix.mean

NumPy’s implementation of ‘mean’ for matrices

scipy.sparse.csr_matrix.min

csr_matrix.min(axis=None, out=None)
Return the minimum of the matrix or maximum along an axis. This takes all elements into account, not just
the non-zero ones.

Parameters

axis [{-2, -1, 0, 1, None} optional] Axis along which the sum is computed. The default is
to compute the minimum over all the matrix elements, returning a scalar (i.e. axis =
None).

out [None, optional] This argument is in the signature solely for NumPy compatibility rea-
sons. Do not pass in anything except for the default value, as this argument is not used.

Returns

amin [coo_matrix or scalar] Minimum of a. If axis is None, the result is a scalar value. If
axis is given, the result is a sparse.coo_matrix of dimension a.ndim - 1.

See also:

max

The maximum value of a sparse matrix along a given axis.
numpy.matrix.min

NumPy’s implementation of ‘min’ for matrices
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scipy.sparse.csr_matrix.minimum

csr_matrix.minimum(other)
Element-wise minimum between this and another matrix.

scipy.sparse.csr_matrix.multiply

csr_matrix.multiply(other)
Point-wise multiplication by another matrix, vector, or scalar.

scipy.sparse.csr_matrix.nonzero

csr_matrix.nonzero()
nonzero indices
Returns a tuple of arrays (row,col) containing the indices of the non-zero elements of the matrix.

Examples

>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1,2,0],[0,0,3],[4,0,5]])
>>> A.nonzero()
(array([0, 0, 1, 2, 2]), array([0, 1, 2, 0, 2]))

scipy.sparse.csr_matrix.power

csr_matrix.power(n, dtype=None)
This function performs element-wise power.

Parameters

n [n is a scalar]
dtype [If dtype is not specified, the current dtype will be preserved.]

scipy.sparse.csr_matrix.prune

csr_matrix.prune()
Remove empty space after all non-zero elements.

scipy.sparse.csr_matrix.rad2deg

csr_matrix.rad2deg()
Element-wise rad2deg.
See numpy.rad2deg for more information.
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scipy.sparse.csr_matrix.reshape

csr_matrix.reshape(self, shape, order=’C’, copy=False)
Gives a new shape to a sparse matrix without changing its data.

Parameters

shape [length-2 tuple of ints] The new shape should be compatible with the original shape.
order [{‘C’, ‘F’}, optional] Read the elements using this index order. ‘C’ means to read and

write the elements using C-like index order; e.g. read entire first row, then second row,
etc. ‘F’ means to read and write the elements using Fortran-like index order; e.g. read
entire first column, then second column, etc.

copy [bool, optional] Indicates whether or not attributes of self should be copied whenever
possible. The degree to which attributes are copied varies depending on the type of
sparse matrix being used.

Returns

reshaped_matrix
[sparse matrix] A sparse matrix with the given shape, not necessarily of the same
format as the current object.

See also:

numpy.matrix.reshape

NumPy’s implementation of ‘reshape’ for matrices

scipy.sparse.csr_matrix.resize

csr_matrix.resize(*shape)
Resize the matrix in-place to dimensions given by shape
Any elements that lie within the new shape will remain at the same indices, while non-zero elements lying
outside the new shape are removed.

Parameters

shape [(int, int)] number of rows and columns in the new matrix

Notes

The semantics are not identical to numpy.ndarray.resize or numpy.resize. Here, the same data
will be maintained at each index before and after reshape, if that index is within the new bounds. In numpy,
resizing maintains contiguity of the array, moving elements around in the logical matrix but not within a
flattened representation.
We give no guarantees about whether the underlying data attributes (arrays, etc.) will be modified in place or
replaced with new objects.

scipy.sparse.csr_matrix.rint

csr_matrix.rint()
Element-wise rint.
See numpy.rint for more information.
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scipy.sparse.csr_matrix.set_shape

csr_matrix.set_shape(shape)
See reshape.

scipy.sparse.csr_matrix.setdiag

csr_matrix.setdiag(values, k=0)
Set diagonal or off-diagonal elements of the array.

Parameters

values [array_like] New values of the diagonal elements.
Values may have any length. If the diagonal is longer than values, then the remaining
diagonal entries will not be set. If values if longer than the diagonal, then the remaining
values are ignored.
If a scalar value is given, all of the diagonal is set to it.

k [int, optional] Which off-diagonal to set, corresponding to elements a[i,i+k]. Default: 0
(the main diagonal).

scipy.sparse.csr_matrix.sign

csr_matrix.sign()
Element-wise sign.
See numpy.sign for more information.

scipy.sparse.csr_matrix.sin

csr_matrix.sin()
Element-wise sin.
See numpy.sin for more information.

scipy.sparse.csr_matrix.sinh

csr_matrix.sinh()
Element-wise sinh.
See numpy.sinh for more information.

scipy.sparse.csr_matrix.sort_indices

csr_matrix.sort_indices()
Sort the indices of this matrix in place

scipy.sparse.csr_matrix.sorted_indices

csr_matrix.sorted_indices()
Return a copy of this matrix with sorted indices
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scipy.sparse.csr_matrix.sqrt

csr_matrix.sqrt()
Element-wise sqrt.
See numpy.sqrt for more information.

scipy.sparse.csr_matrix.sum

csr_matrix.sum(axis=None, dtype=None, out=None)
Sum the matrix elements over a given axis.

Parameters

axis [{-2, -1, 0, 1, None} optional] Axis along which the sum is computed. The default is to
compute the sum of all the matrix elements, returning a scalar (i.e. axis = None).

dtype [dtype, optional] The type of the returned matrix and of the accumulator in which the
elements are summed. The dtype of a is used by default unless a has an integer dtype
of less precision than the default platform integer. In that case, if a is signed then the
platform integer is used while if a is unsigned then an unsigned integer of the same
precision as the platform integer is used.
New in version 0.18.0.

out [np.matrix, optional] Alternative output matrix in which to place the result. It must have
the same shape as the expected output, but the type of the output values will be cast if
necessary.
New in version 0.18.0.

Returns

sum_along_axis
[np.matrix] A matrix with the same shape as self, with the specified axis removed.

See also:

numpy.matrix.sum

NumPy’s implementation of ‘sum’ for matrices

scipy.sparse.csr_matrix.sum_duplicates

csr_matrix.sum_duplicates()
Eliminate duplicate matrix entries by adding them together
The is an in place operation

scipy.sparse.csr_matrix.tan

csr_matrix.tan()
Element-wise tan.
See numpy.tan for more information.
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scipy.sparse.csr_matrix.tanh

csr_matrix.tanh()
Element-wise tanh.
See numpy.tanh for more information.

scipy.sparse.csr_matrix.toarray

csr_matrix.toarray(order=None, out=None)
Return a dense ndarray representation of this matrix.

Parameters

order [{‘C’, ‘F’}, optional] Whether to store multi-dimensional data in C (row-major) or For-
tran (column-major) order in memory. The default is ‘None’, indicating the NumPy
default of C-ordered. Cannot be specified in conjunction with the out argument.

out [ndarray, 2-dimensional, optional] If specified, uses this array as the output buffer in-
stead of allocating a new array to return. The provided array must have the same shape
and dtype as the sparse matrix on which you are calling the method. For most sparse
types, out is required to be memory contiguous (either C or Fortran ordered).

Returns

arr [ndarray, 2-dimensional] An array with the same shape and containing the same data
represented by the sparse matrix, with the requested memory order. If out was passed,
the same object is returned after being modified in-place to contain the appropriate
values.

scipy.sparse.csr_matrix.tobsr

csr_matrix.tobsr(blocksize=None, copy=True)
Convert this matrix to Block Sparse Row format.
With copy=False, the data/indices may be shared between this matrix and the resultant bsr_matrix.
When blocksize=(R, C) is provided, it will be used for construction of the bsr_matrix.

scipy.sparse.csr_matrix.tocoo

csr_matrix.tocoo(copy=True)
Convert this matrix to COOrdinate format.
With copy=False, the data/indices may be shared between this matrix and the resultant coo_matrix.

scipy.sparse.csr_matrix.tocsc

csr_matrix.tocsc(copy=False)
Convert this matrix to Compressed Sparse Column format.
With copy=False, the data/indices may be shared between this matrix and the resultant csc_matrix.
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scipy.sparse.csr_matrix.tocsr

csr_matrix.tocsr(copy=False)
Convert this matrix to Compressed Sparse Row format.
With copy=False, the data/indices may be shared between this matrix and the resultant csr_matrix.

scipy.sparse.csr_matrix.todense

csr_matrix.todense(order=None, out=None)
Return a dense matrix representation of this matrix.

Parameters

order [{‘C’, ‘F’}, optional] Whether to store multi-dimensional data in C (row-major) or For-
tran (column-major) order in memory. The default is ‘None’, indicating the NumPy
default of C-ordered. Cannot be specified in conjunction with the out argument.

out [ndarray, 2-dimensional, optional] If specified, uses this array (or numpy.matrix)
as the output buffer instead of allocating a new array to return. The provided array must
have the same shape and dtype as the sparse matrix on which you are calling the method.

Returns

arr [numpy.matrix, 2-dimensional] A NumPy matrix object with the same shape and con-
taining the same data represented by the sparse matrix, with the requested memory
order. If out was passed and was an array (rather than a numpy.matrix), it will be
filled with the appropriate values and returned wrapped in a numpy.matrix object
that shares the same memory.

scipy.sparse.csr_matrix.todia

csr_matrix.todia(copy=False)
Convert this matrix to sparse DIAgonal format.
With copy=False, the data/indices may be shared between this matrix and the resultant dia_matrix.

scipy.sparse.csr_matrix.todok

csr_matrix.todok(copy=False)
Convert this matrix to Dictionary Of Keys format.
With copy=False, the data/indices may be shared between this matrix and the resultant dok_matrix.

scipy.sparse.csr_matrix.tolil

csr_matrix.tolil(copy=False)
Convert this matrix to LInked List format.
With copy=False, the data/indices may be shared between this matrix and the resultant lil_matrix.
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scipy.sparse.csr_matrix.transpose

csr_matrix.transpose(axes=None, copy=False)
Reverses the dimensions of the sparse matrix.

Parameters

axes [None, optional] This argument is in the signature solely for NumPy compatibility rea-
sons. Do not pass in anything except for the default value.

copy [bool, optional] Indicates whether or not attributes of self should be copied whenever
possible. The degree to which attributes are copied varies depending on the type of
sparse matrix being used.

Returns

p [self with the dimensions reversed.]
See also:

numpy.matrix.transpose

NumPy’s implementation of ‘transpose’ for matrices

scipy.sparse.csr_matrix.trunc

csr_matrix.trunc()
Element-wise trunc.
See numpy.trunc for more information.

__getitem__

scipy.sparse.dia_matrix
class scipy.sparse.dia_matrix(arg1, shape=None, dtype=None, copy=False)

Sparse matrix with DIAgonal storage
This can be instantiated in several ways:

dia_matrix(D)
with a dense matrix

dia_matrix(S)
with another sparse matrix S (equivalent to S.todia())

dia_matrix((M, N), [dtype])
to construct an empty matrix with shape (M, N), dtype is optional, defaulting to dtype=’d’.

dia_matrix((data, offsets), shape=(M, N))
where the data[k,:] stores the diagonal entries for diagonal offsets[k] (See example
below)
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Notes

Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division,
and matrix power.

Examples

>>> import numpy as np
>>> from scipy.sparse import dia_matrix
>>> dia_matrix((3, 4), dtype=np.int8).toarray()
array([[0, 0, 0, 0],

[0, 0, 0, 0],
[0, 0, 0, 0]], dtype=int8)

>>> data = np.array([[1, 2, 3, 4]]).repeat(3, axis=0)
>>> offsets = np.array([0, -1, 2])
>>> dia_matrix((data, offsets), shape=(4, 4)).toarray()
array([[1, 0, 3, 0],

[1, 2, 0, 4],
[0, 2, 3, 0],
[0, 0, 3, 4]])

Attributes

dtype [dtype] Data type of the matrix
shape [2-tuple] Get shape of a matrix.
ndim [int] Number of dimensions (this is always 2)
nnz Number of stored values, including explicit zeros.
data DIA format data array of the matrix
offsets DIA format offset array of the matrix

Methods

__len__()
__mul__(other) interpret other and call one of the following
arcsin() Element-wise arcsin.
arcsinh() Element-wise arcsinh.
arctan() Element-wise arctan.
arctanh() Element-wise arctanh.
asformat(format[, copy]) Return this matrix in the passed format.
asfptype() Upcast matrix to a floating point format (if necessary)
astype(dtype[, casting, copy]) Cast the matrix elements to a specified type.
ceil() Element-wise ceil.
conj([copy]) Element-wise complex conjugation.
conjugate([copy]) Element-wise complex conjugation.
copy() Returns a copy of this matrix.
count_nonzero() Number of non-zero entries, equivalent to
deg2rad() Element-wise deg2rad.
diagonal([k]) Returns the k-th diagonal of the matrix.

Continued on next page
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Table 171 – continued from previous page
dot(other) Ordinary dot product
expm1() Element-wise expm1.
floor() Element-wise floor.
getH() Return the Hermitian transpose of this matrix.
get_shape() Get shape of a matrix.
getcol(j) Returns a copy of column j of the matrix, as an (m x

1) sparse matrix (column vector).
getformat() Format of a matrix representation as a string.
getmaxprint() Maximum number of elements to display when

printed.
getnnz([axis]) Number of stored values, including explicit zeros.
getrow(i) Returns a copy of row i of the matrix, as a (1 x n)

sparse matrix (row vector).
log1p() Element-wise log1p.
maximum(other) Element-wisemaximum between this and anotherma-

trix.
mean([axis, dtype, out]) Compute the arithmetic mean along the specified axis.
minimum(other) Element-wise minimum between this and another ma-

trix.
multiply(other) Point-wise multiplication by another matrix
nonzero() nonzero indices
power(n[, dtype]) This function performs element-wise power.
rad2deg() Element-wise rad2deg.
reshape(self, shape[, order, copy]) Gives a new shape to a sparse matrix without changing

its data.
resize(*shape) Resize the matrix in-place to dimensions given by

shape
rint() Element-wise rint.
set_shape(shape) See reshape.
setdiag(values[, k]) Set diagonal or off-diagonal elements of the array.
sign() Element-wise sign.
sin() Element-wise sin.
sinh() Element-wise sinh.
sqrt() Element-wise sqrt.
sum([axis, dtype, out]) Sum the matrix elements over a given axis.
tan() Element-wise tan.
tanh() Element-wise tanh.
toarray([order, out]) Return a dense ndarray representation of this matrix.
tobsr([blocksize, copy]) Convert this matrix to Block Sparse Row format.
tocoo([copy]) Convert this matrix to COOrdinate format.
tocsc([copy]) Convert this matrix to Compressed Sparse Column

format.
tocsr([copy]) Convert this matrix to Compressed Sparse Row for-

mat.
todense([order, out]) Return a dense matrix representation of this matrix.
todia([copy]) Convert this matrix to sparse DIAgonal format.
todok([copy]) Convert this matrix to Dictionary Of Keys format.
tolil([copy]) Convert this matrix to LInked List format.
transpose([axes, copy]) Reverses the dimensions of the sparse matrix.
trunc() Element-wise trunc.
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scipy.sparse.dia_matrix.__len__

dia_matrix.__len__()

scipy.sparse.dia_matrix.__mul__

dia_matrix.__mul__(other)
interpret other and call one of the following
self._mul_scalar() self._mul_vector() self._mul_multivector() self._mul_sparse_matrix()

scipy.sparse.dia_matrix.arcsin

dia_matrix.arcsin()
Element-wise arcsin.
See numpy.arcsin for more information.

scipy.sparse.dia_matrix.arcsinh

dia_matrix.arcsinh()
Element-wise arcsinh.
See numpy.arcsinh for more information.

scipy.sparse.dia_matrix.arctan

dia_matrix.arctan()
Element-wise arctan.
See numpy.arctan for more information.

scipy.sparse.dia_matrix.arctanh

dia_matrix.arctanh()
Element-wise arctanh.
See numpy.arctanh for more information.

scipy.sparse.dia_matrix.asformat

dia_matrix.asformat(format, copy=False)
Return this matrix in the passed format.

Parameters

format [{str, None}] The desired matrix format (“csr”, “csc”, “lil”, “dok”, “array”, …) or None
for no conversion.

copy [bool, optional] If True, the result is guaranteed to not share data with self.
Returns
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A [This matrix in the passed format.]

scipy.sparse.dia_matrix.asfptype

dia_matrix.asfptype()
Upcast matrix to a floating point format (if necessary)

scipy.sparse.dia_matrix.astype

dia_matrix.astype(dtype, casting=’unsafe’, copy=True)
Cast the matrix elements to a specified type.

Parameters

dtype [string or numpy dtype] Typecode or data-type to which to cast the data.
casting [{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data casting

may occur. Defaults to ‘unsafe’ for backwards compatibility. ‘no’ means the data types
should not be cast at all. ‘equiv’ means only byte-order changes are allowed. ‘safe’
means only casts which can preserve values are allowed. ‘same_kind’ means only safe
casts or casts within a kind, like float64 to float32, are allowed. ‘unsafe’ means any data
conversions may be done.

copy [bool, optional] If copy is False, the result might share some memory with this matrix.
If copy is True, it is guaranteed that the result and this matrix do not share anymemory.

scipy.sparse.dia_matrix.ceil

dia_matrix.ceil()
Element-wise ceil.
See numpy.ceil for more information.

scipy.sparse.dia_matrix.conj

dia_matrix.conj(copy=True)
Element-wise complex conjugation.
If the matrix is of non-complex data type and copy is False, this method does nothing and the data is not
copied.

Parameters

copy [bool, optional] If True, the result is guaranteed to not share data with self.
Returns

A [The element-wise complex conjugate.]

scipy.sparse.dia_matrix.conjugate

dia_matrix.conjugate(copy=True)
Element-wise complex conjugation.
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If the matrix is of non-complex data type and copy is False, this method does nothing and the data is not
copied.

Parameters

copy [bool, optional] If True, the result is guaranteed to not share data with self.
Returns

A [The element-wise complex conjugate.]

scipy.sparse.dia_matrix.copy

dia_matrix.copy()
Returns a copy of this matrix.
No data/indices will be shared between the returned value and current matrix.

scipy.sparse.dia_matrix.count_nonzero

dia_matrix.count_nonzero()
Number of non-zero entries, equivalent to
np.count_nonzero(a.toarray())
Unlike getnnz() and the nnz property, which return the number of stored entries (the length of the data
attribute), this method counts the actual number of non-zero entries in data.

scipy.sparse.dia_matrix.deg2rad

dia_matrix.deg2rad()
Element-wise deg2rad.
See numpy.deg2rad for more information.

scipy.sparse.dia_matrix.diagonal

dia_matrix.diagonal(k=0)
Returns the k-th diagonal of the matrix.

Parameters

k [int, optional] Which diagonal to set, corresponding to elements a[i, i+k]. Default: 0
(the main diagonal).
New in version 1.0.

See also:

numpy.diagonal

Equivalent numpy function.
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Examples

>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> A.diagonal()
array([1, 0, 5])
>>> A.diagonal(k=1)
array([2, 3])

scipy.sparse.dia_matrix.dot

dia_matrix.dot(other)
Ordinary dot product

Examples

>>> import numpy as np
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> v = np.array([1, 0, -1])
>>> A.dot(v)
array([ 1, -3, -1], dtype=int64)

scipy.sparse.dia_matrix.expm1

dia_matrix.expm1()
Element-wise expm1.
See numpy.expm1 for more information.

scipy.sparse.dia_matrix.floor

dia_matrix.floor()
Element-wise floor.
See numpy.floor for more information.

scipy.sparse.dia_matrix.getH

dia_matrix.getH()
Return the Hermitian transpose of this matrix.
See also:

numpy.matrix.getH

NumPy’s implementation of getH for matrices
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scipy.sparse.dia_matrix.get_shape

dia_matrix.get_shape()
Get shape of a matrix.

scipy.sparse.dia_matrix.getcol

dia_matrix.getcol(j)
Returns a copy of column j of the matrix, as an (m x 1) sparse matrix (column vector).

scipy.sparse.dia_matrix.getformat

dia_matrix.getformat()
Format of a matrix representation as a string.

scipy.sparse.dia_matrix.getmaxprint

dia_matrix.getmaxprint()
Maximum number of elements to display when printed.

scipy.sparse.dia_matrix.getnnz

dia_matrix.getnnz(axis=None)
Number of stored values, including explicit zeros.

Parameters

axis [None, 0, or 1] Select between the number of values across the whole matrix, in each
column, or in each row.

See also:

count_nonzero

Number of non-zero entries

scipy.sparse.dia_matrix.getrow

dia_matrix.getrow(i)
Returns a copy of row i of the matrix, as a (1 x n) sparse matrix (row vector).

scipy.sparse.dia_matrix.log1p

dia_matrix.log1p()
Element-wise log1p.
See numpy.log1p for more information.
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scipy.sparse.dia_matrix.maximum

dia_matrix.maximum(other)
Element-wise maximum between this and another matrix.

scipy.sparse.dia_matrix.mean

dia_matrix.mean(axis=None, dtype=None, out=None)
Compute the arithmetic mean along the specified axis.
Returns the average of the matrix elements. The average is taken over all elements in the matrix by default,
otherwise over the specified axis. float64 intermediate and return values are used for integer inputs.

Parameters

axis [{-2, -1, 0, 1, None} optional] Axis along which the mean is computed. The default is
to compute the mean of all elements in the matrix (i.e. axis = None).

dtype [data-type, optional] Type to use in computing the mean. For integer inputs, the default
is float64; for floating point inputs, it is the same as the input dtype.
New in version 0.18.0.

out [np.matrix, optional] Alternative output matrix in which to place the result. It must have
the same shape as the expected output, but the type of the output values will be cast if
necessary.
New in version 0.18.0.

Returns

m [np.matrix]
See also:

numpy.matrix.mean

NumPy’s implementation of ‘mean’ for matrices

scipy.sparse.dia_matrix.minimum

dia_matrix.minimum(other)
Element-wise minimum between this and another matrix.

scipy.sparse.dia_matrix.multiply

dia_matrix.multiply(other)
Point-wise multiplication by another matrix

scipy.sparse.dia_matrix.nonzero

dia_matrix.nonzero()
nonzero indices
Returns a tuple of arrays (row,col) containing the indices of the non-zero elements of the matrix.
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Examples

>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1,2,0],[0,0,3],[4,0,5]])
>>> A.nonzero()
(array([0, 0, 1, 2, 2]), array([0, 1, 2, 0, 2]))

scipy.sparse.dia_matrix.power

dia_matrix.power(n, dtype=None)
This function performs element-wise power.

Parameters

n [n is a scalar]
dtype [If dtype is not specified, the current dtype will be preserved.]

scipy.sparse.dia_matrix.rad2deg

dia_matrix.rad2deg()
Element-wise rad2deg.
See numpy.rad2deg for more information.

scipy.sparse.dia_matrix.reshape

dia_matrix.reshape(self, shape, order=’C’, copy=False)
Gives a new shape to a sparse matrix without changing its data.

Parameters

shape [length-2 tuple of ints] The new shape should be compatible with the original shape.
order [{‘C’, ‘F’}, optional] Read the elements using this index order. ‘C’ means to read and

write the elements using C-like index order; e.g. read entire first row, then second row,
etc. ‘F’ means to read and write the elements using Fortran-like index order; e.g. read
entire first column, then second column, etc.

copy [bool, optional] Indicates whether or not attributes of self should be copied whenever
possible. The degree to which attributes are copied varies depending on the type of
sparse matrix being used.

Returns

reshaped_matrix
[sparse matrix] A sparse matrix with the given shape, not necessarily of the same
format as the current object.

See also:

numpy.matrix.reshape

NumPy’s implementation of ‘reshape’ for matrices
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scipy.sparse.dia_matrix.resize

dia_matrix.resize(*shape)
Resize the matrix in-place to dimensions given by shape
Any elements that lie within the new shape will remain at the same indices, while non-zero elements lying
outside the new shape are removed.

Parameters

shape [(int, int)] number of rows and columns in the new matrix

Notes

The semantics are not identical to numpy.ndarray.resize or numpy.resize. Here, the same data
will be maintained at each index before and after reshape, if that index is within the new bounds. In numpy,
resizing maintains contiguity of the array, moving elements around in the logical matrix but not within a
flattened representation.
We give no guarantees about whether the underlying data attributes (arrays, etc.) will be modified in place or
replaced with new objects.

scipy.sparse.dia_matrix.rint

dia_matrix.rint()
Element-wise rint.
See numpy.rint for more information.

scipy.sparse.dia_matrix.set_shape

dia_matrix.set_shape(shape)
See reshape.

scipy.sparse.dia_matrix.setdiag

dia_matrix.setdiag(values, k=0)
Set diagonal or off-diagonal elements of the array.

Parameters

values [array_like] New values of the diagonal elements.
Values may have any length. If the diagonal is longer than values, then the remaining
diagonal entries will not be set. If values if longer than the diagonal, then the remaining
values are ignored.
If a scalar value is given, all of the diagonal is set to it.

k [int, optional] Which off-diagonal to set, corresponding to elements a[i,i+k]. Default: 0
(the main diagonal).
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scipy.sparse.dia_matrix.sign

dia_matrix.sign()
Element-wise sign.
See numpy.sign for more information.

scipy.sparse.dia_matrix.sin

dia_matrix.sin()
Element-wise sin.
See numpy.sin for more information.

scipy.sparse.dia_matrix.sinh

dia_matrix.sinh()
Element-wise sinh.
See numpy.sinh for more information.

scipy.sparse.dia_matrix.sqrt

dia_matrix.sqrt()
Element-wise sqrt.
See numpy.sqrt for more information.

scipy.sparse.dia_matrix.sum

dia_matrix.sum(axis=None, dtype=None, out=None)
Sum the matrix elements over a given axis.

Parameters

axis [{-2, -1, 0, 1, None} optional] Axis along which the sum is computed. The default is to
compute the sum of all the matrix elements, returning a scalar (i.e. axis = None).

dtype [dtype, optional] The type of the returned matrix and of the accumulator in which the
elements are summed. The dtype of a is used by default unless a has an integer dtype
of less precision than the default platform integer. In that case, if a is signed then the
platform integer is used while if a is unsigned then an unsigned integer of the same
precision as the platform integer is used.
New in version 0.18.0.

out [np.matrix, optional] Alternative output matrix in which to place the result. It must have
the same shape as the expected output, but the type of the output values will be cast if
necessary.
New in version 0.18.0.

Returns

sum_along_axis
[np.matrix] A matrix with the same shape as self, with the specified axis removed.

See also:
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numpy.matrix.sum

NumPy’s implementation of ‘sum’ for matrices

scipy.sparse.dia_matrix.tan

dia_matrix.tan()
Element-wise tan.
See numpy.tan for more information.

scipy.sparse.dia_matrix.tanh

dia_matrix.tanh()
Element-wise tanh.
See numpy.tanh for more information.

scipy.sparse.dia_matrix.toarray

dia_matrix.toarray(order=None, out=None)
Return a dense ndarray representation of this matrix.

Parameters

order [{‘C’, ‘F’}, optional] Whether to store multi-dimensional data in C (row-major) or For-
tran (column-major) order in memory. The default is ‘None’, indicating the NumPy
default of C-ordered. Cannot be specified in conjunction with the out argument.

out [ndarray, 2-dimensional, optional] If specified, uses this array as the output buffer in-
stead of allocating a new array to return. The provided array must have the same shape
and dtype as the sparse matrix on which you are calling the method. For most sparse
types, out is required to be memory contiguous (either C or Fortran ordered).

Returns

arr [ndarray, 2-dimensional] An array with the same shape and containing the same data
represented by the sparse matrix, with the requested memory order. If out was passed,
the same object is returned after being modified in-place to contain the appropriate
values.

scipy.sparse.dia_matrix.tobsr

dia_matrix.tobsr(blocksize=None, copy=False)
Convert this matrix to Block Sparse Row format.
With copy=False, the data/indices may be shared between this matrix and the resultant bsr_matrix.
When blocksize=(R, C) is provided, it will be used for construction of the bsr_matrix.
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scipy.sparse.dia_matrix.tocoo

dia_matrix.tocoo(copy=False)
Convert this matrix to COOrdinate format.
With copy=False, the data/indices may be shared between this matrix and the resultant coo_matrix.

scipy.sparse.dia_matrix.tocsc

dia_matrix.tocsc(copy=False)
Convert this matrix to Compressed Sparse Column format.
With copy=False, the data/indices may be shared between this matrix and the resultant csc_matrix.

scipy.sparse.dia_matrix.tocsr

dia_matrix.tocsr(copy=False)
Convert this matrix to Compressed Sparse Row format.
With copy=False, the data/indices may be shared between this matrix and the resultant csr_matrix.

scipy.sparse.dia_matrix.todense

dia_matrix.todense(order=None, out=None)
Return a dense matrix representation of this matrix.

Parameters

order [{‘C’, ‘F’}, optional] Whether to store multi-dimensional data in C (row-major) or For-
tran (column-major) order in memory. The default is ‘None’, indicating the NumPy
default of C-ordered. Cannot be specified in conjunction with the out argument.

out [ndarray, 2-dimensional, optional] If specified, uses this array (or numpy.matrix)
as the output buffer instead of allocating a new array to return. The provided array must
have the same shape and dtype as the sparse matrix on which you are calling the method.

Returns

arr [numpy.matrix, 2-dimensional] A NumPy matrix object with the same shape and con-
taining the same data represented by the sparse matrix, with the requested memory
order. If out was passed and was an array (rather than a numpy.matrix), it will be
filled with the appropriate values and returned wrapped in a numpy.matrix object
that shares the same memory.

scipy.sparse.dia_matrix.todia

dia_matrix.todia(copy=False)
Convert this matrix to sparse DIAgonal format.
With copy=False, the data/indices may be shared between this matrix and the resultant dia_matrix.
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scipy.sparse.dia_matrix.todok

dia_matrix.todok(copy=False)
Convert this matrix to Dictionary Of Keys format.
With copy=False, the data/indices may be shared between this matrix and the resultant dok_matrix.

scipy.sparse.dia_matrix.tolil

dia_matrix.tolil(copy=False)
Convert this matrix to LInked List format.
With copy=False, the data/indices may be shared between this matrix and the resultant lil_matrix.

scipy.sparse.dia_matrix.transpose

dia_matrix.transpose(axes=None, copy=False)
Reverses the dimensions of the sparse matrix.

Parameters

axes [None, optional] This argument is in the signature solely for NumPy compatibility rea-
sons. Do not pass in anything except for the default value.

copy [bool, optional] Indicates whether or not attributes of self should be copied whenever
possible. The degree to which attributes are copied varies depending on the type of
sparse matrix being used.

Returns

p [self with the dimensions reversed.]
See also:

numpy.matrix.transpose

NumPy’s implementation of ‘transpose’ for matrices

scipy.sparse.dia_matrix.trunc

dia_matrix.trunc()
Element-wise trunc.
See numpy.trunc for more information.

scipy.sparse.dok_matrix
class scipy.sparse.dok_matrix(arg1, shape=None, dtype=None, copy=False)

Dictionary Of Keys based sparse matrix.
This is an efficient structure for constructing sparse matrices incrementally.
This can be instantiated in several ways:

dok_matrix(D)
with a dense matrix, D
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dok_matrix(S)
with a sparse matrix, S

dok_matrix((M,N), [dtype])
create the matrix with initial shape (M,N) dtype is optional, defaulting to dtype=’d’

Notes

Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division,
and matrix power.
Allows for efficient O(1) access of individual elements. Duplicates are not allowed. Can be efficiently converted to
a coo_matrix once constructed.

Examples

>>> import numpy as np
>>> from scipy.sparse import dok_matrix
>>> S = dok_matrix((5, 5), dtype=np.float32)
>>> for i in range(5):
... for j in range(5):
... S[i, j] = i + j # Update element

Attributes

dtype [dtype] Data type of the matrix
shape [2-tuple] Get shape of a matrix.
ndim [int] Number of dimensions (this is always 2)
nnz Number of stored values, including explicit zeros.

Methods

__len__() Return len(self).
__mul__(other) interpret other and call one of the following
asformat(format[, copy]) Return this matrix in the passed format.
asfptype() Upcast matrix to a floating point format (if necessary)
astype(dtype[, casting, copy]) Cast the matrix elements to a specified type.
clear()
conj([copy]) Element-wise complex conjugation.
conjtransp() Return the conjugate transpose.
conjugate([copy]) Element-wise complex conjugation.
copy() Returns a copy of this matrix.
count_nonzero() Number of non-zero entries, equivalent to
diagonal([k]) Returns the k-th diagonal of the matrix.
dot(other) Ordinary dot product
fromkeys($type, iterable[, value]) Returns a new dict with keys from iterable and values

equal to value.
get(key[, default]) This overrides the dict.get method, providing type

checking but otherwise equivalent functionality.
Continued on next page
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Table 172 – continued from previous page
getH() Return the Hermitian transpose of this matrix.
get_shape() Get shape of a matrix.
getcol(j) Returns a copy of column j of the matrix, as an (m x

1) sparse matrix (column vector).
getformat() Format of a matrix representation as a string.
getmaxprint() Maximum number of elements to display when

printed.
getnnz([axis]) Number of stored values, including explicit zeros.
getrow(i) Returns a copy of row i of the matrix, as a (1 x n)

sparse matrix (row vector).
items()
keys()
maximum(other) Element-wisemaximum between this and anotherma-

trix.
mean([axis, dtype, out]) Compute the arithmetic mean along the specified axis.
minimum(other) Element-wise minimum between this and another ma-

trix.
multiply(other) Point-wise multiplication by another matrix
nonzero() nonzero indices
pop(k[,d]) If key is not found, d is returned if given, otherwise

KeyError is raised
popitem() 2-tuple; but raise KeyError if D is empty.
power(n[, dtype]) Element-wise power.
reshape(self, shape[, order, copy]) Gives a new shape to a sparse matrix without changing

its data.
resize(*shape) Resize the matrix in-place to dimensions given by

shape
set_shape(shape) See reshape.
setdefault(k[,d])
setdiag(values[, k]) Set diagonal or off-diagonal elements of the array.
sum([axis, dtype, out]) Sum the matrix elements over a given axis.
toarray([order, out]) Return a dense ndarray representation of this matrix.
tobsr([blocksize, copy]) Convert this matrix to Block Sparse Row format.
tocoo([copy]) Convert this matrix to COOrdinate format.
tocsc([copy]) Convert this matrix to Compressed Sparse Column

format.
tocsr([copy]) Convert this matrix to Compressed Sparse Row for-

mat.
todense([order, out]) Return a dense matrix representation of this matrix.
todia([copy]) Convert this matrix to sparse DIAgonal format.
todok([copy]) Convert this matrix to Dictionary Of Keys format.
tolil([copy]) Convert this matrix to LInked List format.
transpose([axes, copy]) Reverses the dimensions of the sparse matrix.
update([E, ]**F) If E is present and has a .keys() method, then does: for

k in E: D[k] = E[k] If E is present and lacks a .keys()
method, then does: for k, v in E: D[k] = v In either
case, this is followed by: for k in F: D[k] = F[k]

values()
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scipy.sparse.dok_matrix.__len__

dok_matrix.__len__()
Return len(self).

scipy.sparse.dok_matrix.__mul__

dok_matrix.__mul__(other)
interpret other and call one of the following
self._mul_scalar() self._mul_vector() self._mul_multivector() self._mul_sparse_matrix()

scipy.sparse.dok_matrix.asformat

dok_matrix.asformat(format, copy=False)
Return this matrix in the passed format.

Parameters

format [{str, None}] The desired matrix format (“csr”, “csc”, “lil”, “dok”, “array”, …) or None
for no conversion.

copy [bool, optional] If True, the result is guaranteed to not share data with self.
Returns

A [This matrix in the passed format.]

scipy.sparse.dok_matrix.asfptype

dok_matrix.asfptype()
Upcast matrix to a floating point format (if necessary)

scipy.sparse.dok_matrix.astype

dok_matrix.astype(dtype, casting=’unsafe’, copy=True)
Cast the matrix elements to a specified type.

Parameters

dtype [string or numpy dtype] Typecode or data-type to which to cast the data.
casting [{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data casting

may occur. Defaults to ‘unsafe’ for backwards compatibility. ‘no’ means the data types
should not be cast at all. ‘equiv’ means only byte-order changes are allowed. ‘safe’
means only casts which can preserve values are allowed. ‘same_kind’ means only safe
casts or casts within a kind, like float64 to float32, are allowed. ‘unsafe’ means any data
conversions may be done.

copy [bool, optional] If copy is False, the result might share some memory with this matrix.
If copy is True, it is guaranteed that the result and this matrix do not share anymemory.

scipy.sparse.dok_matrix.clear

dok_matrix.clear()→ None. Remove all items from D.
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scipy.sparse.dok_matrix.conj

dok_matrix.conj(copy=True)
Element-wise complex conjugation.
If the matrix is of non-complex data type and copy is False, this method does nothing and the data is not
copied.

Parameters

copy [bool, optional] If True, the result is guaranteed to not share data with self.
Returns

A [The element-wise complex conjugate.]

scipy.sparse.dok_matrix.conjtransp

dok_matrix.conjtransp()
Return the conjugate transpose.

scipy.sparse.dok_matrix.conjugate

dok_matrix.conjugate(copy=True)
Element-wise complex conjugation.
If the matrix is of non-complex data type and copy is False, this method does nothing and the data is not
copied.

Parameters

copy [bool, optional] If True, the result is guaranteed to not share data with self.
Returns

A [The element-wise complex conjugate.]

scipy.sparse.dok_matrix.copy

dok_matrix.copy()
Returns a copy of this matrix.
No data/indices will be shared between the returned value and current matrix.

scipy.sparse.dok_matrix.count_nonzero

dok_matrix.count_nonzero()
Number of non-zero entries, equivalent to
np.count_nonzero(a.toarray())
Unlike getnnz() and the nnz property, which return the number of stored entries (the length of the data
attribute), this method counts the actual number of non-zero entries in data.
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scipy.sparse.dok_matrix.diagonal

dok_matrix.diagonal(k=0)
Returns the k-th diagonal of the matrix.

Parameters

k [int, optional] Which diagonal to set, corresponding to elements a[i, i+k]. Default: 0
(the main diagonal).
New in version 1.0.

See also:

numpy.diagonal

Equivalent numpy function.

Examples

>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> A.diagonal()
array([1, 0, 5])
>>> A.diagonal(k=1)
array([2, 3])

scipy.sparse.dok_matrix.dot

dok_matrix.dot(other)
Ordinary dot product

Examples

>>> import numpy as np
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> v = np.array([1, 0, -1])
>>> A.dot(v)
array([ 1, -3, -1], dtype=int64)

scipy.sparse.dok_matrix.fromkeys

dok_matrix.fromkeys($type, iterable, value=None, /)
Returns a new dict with keys from iterable and values equal to value.

scipy.sparse.dok_matrix.get

dok_matrix.get(key, default=0.0)
This overrides the dict.get method, providing type checking but otherwise equivalent functionality.
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scipy.sparse.dok_matrix.getH

dok_matrix.getH()
Return the Hermitian transpose of this matrix.
See also:

numpy.matrix.getH

NumPy’s implementation of getH for matrices

scipy.sparse.dok_matrix.get_shape

dok_matrix.get_shape()
Get shape of a matrix.

scipy.sparse.dok_matrix.getcol

dok_matrix.getcol(j)
Returns a copy of column j of the matrix, as an (m x 1) sparse matrix (column vector).

scipy.sparse.dok_matrix.getformat

dok_matrix.getformat()
Format of a matrix representation as a string.

scipy.sparse.dok_matrix.getmaxprint

dok_matrix.getmaxprint()
Maximum number of elements to display when printed.

scipy.sparse.dok_matrix.getnnz

dok_matrix.getnnz(axis=None)
Number of stored values, including explicit zeros.

Parameters

axis [None, 0, or 1] Select between the number of values across the whole matrix, in each
column, or in each row.

See also:

count_nonzero

Number of non-zero entries
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scipy.sparse.dok_matrix.getrow

dok_matrix.getrow(i)
Returns a copy of row i of the matrix, as a (1 x n) sparse matrix (row vector).

scipy.sparse.dok_matrix.items

dok_matrix.items()→ a set-like object providing a view on D’s items

scipy.sparse.dok_matrix.keys

dok_matrix.keys()→ a set-like object providing a view on D’s keys

scipy.sparse.dok_matrix.maximum

dok_matrix.maximum(other)
Element-wise maximum between this and another matrix.

scipy.sparse.dok_matrix.mean

dok_matrix.mean(axis=None, dtype=None, out=None)
Compute the arithmetic mean along the specified axis.
Returns the average of the matrix elements. The average is taken over all elements in the matrix by default,
otherwise over the specified axis. float64 intermediate and return values are used for integer inputs.

Parameters

axis [{-2, -1, 0, 1, None} optional] Axis along which the mean is computed. The default is
to compute the mean of all elements in the matrix (i.e. axis = None).

dtype [data-type, optional] Type to use in computing the mean. For integer inputs, the default
is float64; for floating point inputs, it is the same as the input dtype.
New in version 0.18.0.

out [np.matrix, optional] Alternative output matrix in which to place the result. It must have
the same shape as the expected output, but the type of the output values will be cast if
necessary.
New in version 0.18.0.

Returns

m [np.matrix]
See also:

numpy.matrix.mean

NumPy’s implementation of ‘mean’ for matrices

scipy.sparse.dok_matrix.minimum

dok_matrix.minimum(other)
Element-wise minimum between this and another matrix.
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scipy.sparse.dok_matrix.multiply

dok_matrix.multiply(other)
Point-wise multiplication by another matrix

scipy.sparse.dok_matrix.nonzero

dok_matrix.nonzero()
nonzero indices
Returns a tuple of arrays (row,col) containing the indices of the non-zero elements of the matrix.

Examples

>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1,2,0],[0,0,3],[4,0,5]])
>>> A.nonzero()
(array([0, 0, 1, 2, 2]), array([0, 1, 2, 0, 2]))

scipy.sparse.dok_matrix.pop

dok_matrix.pop(k[, d ])→ v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised

scipy.sparse.dok_matrix.popitem

dok_matrix.popitem()→ (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if D is empty.

scipy.sparse.dok_matrix.power

dok_matrix.power(n, dtype=None)
Element-wise power.

scipy.sparse.dok_matrix.reshape

dok_matrix.reshape(self, shape, order=’C’, copy=False)
Gives a new shape to a sparse matrix without changing its data.

Parameters

shape [length-2 tuple of ints] The new shape should be compatible with the original shape.
order [{‘C’, ‘F’}, optional] Read the elements using this index order. ‘C’ means to read and

write the elements using C-like index order; e.g. read entire first row, then second row,
etc. ‘F’ means to read and write the elements using Fortran-like index order; e.g. read
entire first column, then second column, etc.
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copy [bool, optional] Indicates whether or not attributes of self should be copied whenever
possible. The degree to which attributes are copied varies depending on the type of
sparse matrix being used.

Returns

reshaped_matrix
[sparse matrix] A sparse matrix with the given shape, not necessarily of the same
format as the current object.

See also:

numpy.matrix.reshape

NumPy’s implementation of ‘reshape’ for matrices

scipy.sparse.dok_matrix.resize

dok_matrix.resize(*shape)
Resize the matrix in-place to dimensions given by shape
Any elements that lie within the new shape will remain at the same indices, while non-zero elements lying
outside the new shape are removed.

Parameters

shape [(int, int)] number of rows and columns in the new matrix

Notes

The semantics are not identical to numpy.ndarray.resize or numpy.resize. Here, the same data
will be maintained at each index before and after reshape, if that index is within the new bounds. In numpy,
resizing maintains contiguity of the array, moving elements around in the logical matrix but not within a
flattened representation.
We give no guarantees about whether the underlying data attributes (arrays, etc.) will be modified in place or
replaced with new objects.

scipy.sparse.dok_matrix.set_shape

dok_matrix.set_shape(shape)
See reshape.

scipy.sparse.dok_matrix.setdefault

dok_matrix.setdefault(k[, d ])→ D.get(k,d), also set D[k]=d if k not in D

scipy.sparse.dok_matrix.setdiag

dok_matrix.setdiag(values, k=0)
Set diagonal or off-diagonal elements of the array.

Parameters
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values [array_like] New values of the diagonal elements.
Values may have any length. If the diagonal is longer than values, then the remaining
diagonal entries will not be set. If values if longer than the diagonal, then the remaining
values are ignored.
If a scalar value is given, all of the diagonal is set to it.

k [int, optional] Which off-diagonal to set, corresponding to elements a[i,i+k]. Default: 0
(the main diagonal).

scipy.sparse.dok_matrix.sum

dok_matrix.sum(axis=None, dtype=None, out=None)
Sum the matrix elements over a given axis.

Parameters

axis [{-2, -1, 0, 1, None} optional] Axis along which the sum is computed. The default is to
compute the sum of all the matrix elements, returning a scalar (i.e. axis = None).

dtype [dtype, optional] The type of the returned matrix and of the accumulator in which the
elements are summed. The dtype of a is used by default unless a has an integer dtype
of less precision than the default platform integer. In that case, if a is signed then the
platform integer is used while if a is unsigned then an unsigned integer of the same
precision as the platform integer is used.
New in version 0.18.0.

out [np.matrix, optional] Alternative output matrix in which to place the result. It must have
the same shape as the expected output, but the type of the output values will be cast if
necessary.
New in version 0.18.0.

Returns

sum_along_axis
[np.matrix] A matrix with the same shape as self, with the specified axis removed.

See also:

numpy.matrix.sum

NumPy’s implementation of ‘sum’ for matrices

scipy.sparse.dok_matrix.toarray

dok_matrix.toarray(order=None, out=None)
Return a dense ndarray representation of this matrix.

Parameters

order [{‘C’, ‘F’}, optional] Whether to store multi-dimensional data in C (row-major) or For-
tran (column-major) order in memory. The default is ‘None’, indicating the NumPy
default of C-ordered. Cannot be specified in conjunction with the out argument.

out [ndarray, 2-dimensional, optional] If specified, uses this array as the output buffer in-
stead of allocating a new array to return. The provided array must have the same shape
and dtype as the sparse matrix on which you are calling the method. For most sparse
types, out is required to be memory contiguous (either C or Fortran ordered).

Returns
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arr [ndarray, 2-dimensional] An array with the same shape and containing the same data
represented by the sparse matrix, with the requested memory order. If out was passed,
the same object is returned after being modified in-place to contain the appropriate
values.

scipy.sparse.dok_matrix.tobsr

dok_matrix.tobsr(blocksize=None, copy=False)
Convert this matrix to Block Sparse Row format.
With copy=False, the data/indices may be shared between this matrix and the resultant bsr_matrix.
When blocksize=(R, C) is provided, it will be used for construction of the bsr_matrix.

scipy.sparse.dok_matrix.tocoo

dok_matrix.tocoo(copy=False)
Convert this matrix to COOrdinate format.
With copy=False, the data/indices may be shared between this matrix and the resultant coo_matrix.

scipy.sparse.dok_matrix.tocsc

dok_matrix.tocsc(copy=False)
Convert this matrix to Compressed Sparse Column format.
With copy=False, the data/indices may be shared between this matrix and the resultant csc_matrix.

scipy.sparse.dok_matrix.tocsr

dok_matrix.tocsr(copy=False)
Convert this matrix to Compressed Sparse Row format.
With copy=False, the data/indices may be shared between this matrix and the resultant csr_matrix.

scipy.sparse.dok_matrix.todense

dok_matrix.todense(order=None, out=None)
Return a dense matrix representation of this matrix.

Parameters

order [{‘C’, ‘F’}, optional] Whether to store multi-dimensional data in C (row-major) or For-
tran (column-major) order in memory. The default is ‘None’, indicating the NumPy
default of C-ordered. Cannot be specified in conjunction with the out argument.

out [ndarray, 2-dimensional, optional] If specified, uses this array (or numpy.matrix)
as the output buffer instead of allocating a new array to return. The provided array must
have the same shape and dtype as the sparse matrix on which you are calling the method.

Returns
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arr [numpy.matrix, 2-dimensional] A NumPy matrix object with the same shape and con-
taining the same data represented by the sparse matrix, with the requested memory
order. If out was passed and was an array (rather than a numpy.matrix), it will be
filled with the appropriate values and returned wrapped in a numpy.matrix object
that shares the same memory.

scipy.sparse.dok_matrix.todia

dok_matrix.todia(copy=False)
Convert this matrix to sparse DIAgonal format.
With copy=False, the data/indices may be shared between this matrix and the resultant dia_matrix.

scipy.sparse.dok_matrix.todok

dok_matrix.todok(copy=False)
Convert this matrix to Dictionary Of Keys format.
With copy=False, the data/indices may be shared between this matrix and the resultant dok_matrix.

scipy.sparse.dok_matrix.tolil

dok_matrix.tolil(copy=False)
Convert this matrix to LInked List format.
With copy=False, the data/indices may be shared between this matrix and the resultant lil_matrix.

scipy.sparse.dok_matrix.transpose

dok_matrix.transpose(axes=None, copy=False)
Reverses the dimensions of the sparse matrix.

Parameters

axes [None, optional] This argument is in the signature solely for NumPy compatibility rea-
sons. Do not pass in anything except for the default value.

copy [bool, optional] Indicates whether or not attributes of self should be copied whenever
possible. The degree to which attributes are copied varies depending on the type of
sparse matrix being used.

Returns

p [self with the dimensions reversed.]
See also:

numpy.matrix.transpose

NumPy’s implementation of ‘transpose’ for matrices
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scipy.sparse.dok_matrix.update

dok_matrix.update([E ], **F)→ None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys()
method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

scipy.sparse.dok_matrix.values

dok_matrix.values()→ an object providing a view on D’s values

__getitem__

scipy.sparse.lil_matrix
class scipy.sparse.lil_matrix(arg1, shape=None, dtype=None, copy=False)

Row-based linked list sparse matrix
This is a structure for constructing sparse matrices incrementally. Note that inserting a single item can take linear
time in the worst case; to construct a matrix efficiently, make sure the items are pre-sorted by index, per row.
This can be instantiated in several ways:

lil_matrix(D)
with a dense matrix or rank-2 ndarray D

lil_matrix(S)
with another sparse matrix S (equivalent to S.tolil())

lil_matrix((M, N), [dtype])
to construct an empty matrix with shape (M, N) dtype is optional, defaulting to dtype=’d’.

Notes

Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division,
and matrix power.
Advantages of the LIL format

• supports flexible slicing
• changes to the matrix sparsity structure are efficient

Disadvantages of the LIL format

• arithmetic operations LIL + LIL are slow (consider CSR or CSC)
• slow column slicing (consider CSC)
• slow matrix vector products (consider CSR or CSC)

Intended Usage

• LIL is a convenient format for constructing sparse matrices
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• once a matrix has been constructed, convert to CSR or CSC format for fast arithmetic and matrix vector
operations

• consider using the COO format when constructing large matrices

Data Structure

• An array (self.rows) of rows, each of which is a sorted list of column indices of non-zero elements.
• The corresponding nonzero values are stored in similar fashion in self.data.

Attributes

dtype [dtype] Data type of the matrix
shape [2-tuple] Get shape of a matrix.
ndim [int] Number of dimensions (this is always 2)
nnz Number of stored values, including explicit zeros.
data LIL format data array of the matrix
rows LIL format row index array of the matrix

Methods

__len__()
__mul__(other) interpret other and call one of the following
asformat(format[, copy]) Return this matrix in the passed format.
asfptype() Upcast matrix to a floating point format (if necessary)
astype(dtype[, casting, copy]) Cast the matrix elements to a specified type.
conj([copy]) Element-wise complex conjugation.
conjugate([copy]) Element-wise complex conjugation.
copy() Returns a copy of this matrix.
count_nonzero() Number of non-zero entries, equivalent to
diagonal([k]) Returns the k-th diagonal of the matrix.
dot(other) Ordinary dot product
getH() Return the Hermitian transpose of this matrix.
get_shape() Get shape of a matrix.
getcol(j) Returns a copy of column j of the matrix, as an (m x

1) sparse matrix (column vector).
getformat() Format of a matrix representation as a string.
getmaxprint() Maximum number of elements to display when

printed.
getnnz([axis]) Number of stored values, including explicit zeros.
getrow(i) Returns a copy of the ‘i’th row.
getrowview(i) Returns a view of the ‘i’th row (without copying).
maximum(other) Element-wisemaximum between this and anotherma-

trix.
mean([axis, dtype, out]) Compute the arithmetic mean along the specified axis.
minimum(other) Element-wise minimum between this and another ma-

trix.
multiply(other) Point-wise multiplication by another matrix
nonzero() nonzero indices
power(n[, dtype]) Element-wise power.

Continued on next page
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Table 173 – continued from previous page
reshape(self, shape[, order, copy]) Gives a new shape to a sparse matrix without changing

its data.
resize(*shape) Resize the matrix in-place to dimensions given by

shape
set_shape(shape) See reshape.
setdiag(values[, k]) Set diagonal or off-diagonal elements of the array.
sum([axis, dtype, out]) Sum the matrix elements over a given axis.
toarray([order, out]) Return a dense ndarray representation of this matrix.
tobsr([blocksize, copy]) Convert this matrix to Block Sparse Row format.
tocoo([copy]) Convert this matrix to COOrdinate format.
tocsc([copy]) Convert this matrix to Compressed Sparse Column

format.
tocsr([copy]) Convert this matrix to Compressed Sparse Row for-

mat.
todense([order, out]) Return a dense matrix representation of this matrix.
todia([copy]) Convert this matrix to sparse DIAgonal format.
todok([copy]) Convert this matrix to Dictionary Of Keys format.
tolil([copy]) Convert this matrix to LInked List format.
transpose([axes, copy]) Reverses the dimensions of the sparse matrix.

scipy.sparse.lil_matrix.__len__

lil_matrix.__len__()

scipy.sparse.lil_matrix.__mul__

lil_matrix.__mul__(other)
interpret other and call one of the following
self._mul_scalar() self._mul_vector() self._mul_multivector() self._mul_sparse_matrix()

scipy.sparse.lil_matrix.asformat

lil_matrix.asformat(format, copy=False)
Return this matrix in the passed format.

Parameters

format [{str, None}] The desired matrix format (“csr”, “csc”, “lil”, “dok”, “array”, …) or None
for no conversion.

copy [bool, optional] If True, the result is guaranteed to not share data with self.
Returns

A [This matrix in the passed format.]

scipy.sparse.lil_matrix.asfptype

lil_matrix.asfptype()
Upcast matrix to a floating point format (if necessary)
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scipy.sparse.lil_matrix.astype

lil_matrix.astype(dtype, casting=’unsafe’, copy=True)
Cast the matrix elements to a specified type.

Parameters

dtype [string or numpy dtype] Typecode or data-type to which to cast the data.
casting [{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data casting

may occur. Defaults to ‘unsafe’ for backwards compatibility. ‘no’ means the data types
should not be cast at all. ‘equiv’ means only byte-order changes are allowed. ‘safe’
means only casts which can preserve values are allowed. ‘same_kind’ means only safe
casts or casts within a kind, like float64 to float32, are allowed. ‘unsafe’ means any data
conversions may be done.

copy [bool, optional] If copy is False, the result might share some memory with this matrix.
If copy is True, it is guaranteed that the result and this matrix do not share anymemory.

scipy.sparse.lil_matrix.conj

lil_matrix.conj(copy=True)
Element-wise complex conjugation.
If the matrix is of non-complex data type and copy is False, this method does nothing and the data is not
copied.

Parameters

copy [bool, optional] If True, the result is guaranteed to not share data with self.
Returns

A [The element-wise complex conjugate.]

scipy.sparse.lil_matrix.conjugate

lil_matrix.conjugate(copy=True)
Element-wise complex conjugation.
If the matrix is of non-complex data type and copy is False, this method does nothing and the data is not
copied.

Parameters

copy [bool, optional] If True, the result is guaranteed to not share data with self.
Returns

A [The element-wise complex conjugate.]

scipy.sparse.lil_matrix.copy

lil_matrix.copy()
Returns a copy of this matrix.
No data/indices will be shared between the returned value and current matrix.
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scipy.sparse.lil_matrix.count_nonzero

lil_matrix.count_nonzero()
Number of non-zero entries, equivalent to
np.count_nonzero(a.toarray())
Unlike getnnz() and the nnz property, which return the number of stored entries (the length of the data
attribute), this method counts the actual number of non-zero entries in data.

scipy.sparse.lil_matrix.diagonal

lil_matrix.diagonal(k=0)
Returns the k-th diagonal of the matrix.

Parameters

k [int, optional] Which diagonal to set, corresponding to elements a[i, i+k]. Default: 0
(the main diagonal).
New in version 1.0.

See also:

numpy.diagonal

Equivalent numpy function.

Examples

>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> A.diagonal()
array([1, 0, 5])
>>> A.diagonal(k=1)
array([2, 3])

scipy.sparse.lil_matrix.dot

lil_matrix.dot(other)
Ordinary dot product

Examples

>>> import numpy as np
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> v = np.array([1, 0, -1])
>>> A.dot(v)
array([ 1, -3, -1], dtype=int64)
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scipy.sparse.lil_matrix.getH

lil_matrix.getH()
Return the Hermitian transpose of this matrix.
See also:

numpy.matrix.getH

NumPy’s implementation of getH for matrices

scipy.sparse.lil_matrix.get_shape

lil_matrix.get_shape()
Get shape of a matrix.

scipy.sparse.lil_matrix.getcol

lil_matrix.getcol(j)
Returns a copy of column j of the matrix, as an (m x 1) sparse matrix (column vector).

scipy.sparse.lil_matrix.getformat

lil_matrix.getformat()
Format of a matrix representation as a string.

scipy.sparse.lil_matrix.getmaxprint

lil_matrix.getmaxprint()
Maximum number of elements to display when printed.

scipy.sparse.lil_matrix.getnnz

lil_matrix.getnnz(axis=None)
Number of stored values, including explicit zeros.

Parameters

axis [None, 0, or 1] Select between the number of values across the whole matrix, in each
column, or in each row.

See also:

count_nonzero

Number of non-zero entries
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scipy.sparse.lil_matrix.getrow

lil_matrix.getrow(i)
Returns a copy of the ‘i’th row.

scipy.sparse.lil_matrix.getrowview

lil_matrix.getrowview(i)
Returns a view of the ‘i’th row (without copying).

scipy.sparse.lil_matrix.maximum

lil_matrix.maximum(other)
Element-wise maximum between this and another matrix.

scipy.sparse.lil_matrix.mean

lil_matrix.mean(axis=None, dtype=None, out=None)
Compute the arithmetic mean along the specified axis.
Returns the average of the matrix elements. The average is taken over all elements in the matrix by default,
otherwise over the specified axis. float64 intermediate and return values are used for integer inputs.

Parameters

axis [{-2, -1, 0, 1, None} optional] Axis along which the mean is computed. The default is
to compute the mean of all elements in the matrix (i.e. axis = None).

dtype [data-type, optional] Type to use in computing the mean. For integer inputs, the default
is float64; for floating point inputs, it is the same as the input dtype.
New in version 0.18.0.

out [np.matrix, optional] Alternative output matrix in which to place the result. It must have
the same shape as the expected output, but the type of the output values will be cast if
necessary.
New in version 0.18.0.

Returns

m [np.matrix]
See also:

numpy.matrix.mean

NumPy’s implementation of ‘mean’ for matrices

scipy.sparse.lil_matrix.minimum

lil_matrix.minimum(other)
Element-wise minimum between this and another matrix.
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scipy.sparse.lil_matrix.multiply

lil_matrix.multiply(other)
Point-wise multiplication by another matrix

scipy.sparse.lil_matrix.nonzero

lil_matrix.nonzero()
nonzero indices
Returns a tuple of arrays (row,col) containing the indices of the non-zero elements of the matrix.

Examples

>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1,2,0],[0,0,3],[4,0,5]])
>>> A.nonzero()
(array([0, 0, 1, 2, 2]), array([0, 1, 2, 0, 2]))

scipy.sparse.lil_matrix.power

lil_matrix.power(n, dtype=None)
Element-wise power.

scipy.sparse.lil_matrix.reshape

lil_matrix.reshape(self, shape, order=’C’, copy=False)
Gives a new shape to a sparse matrix without changing its data.

Parameters

shape [length-2 tuple of ints] The new shape should be compatible with the original shape.
order [{‘C’, ‘F’}, optional] Read the elements using this index order. ‘C’ means to read and

write the elements using C-like index order; e.g. read entire first row, then second row,
etc. ‘F’ means to read and write the elements using Fortran-like index order; e.g. read
entire first column, then second column, etc.

copy [bool, optional] Indicates whether or not attributes of self should be copied whenever
possible. The degree to which attributes are copied varies depending on the type of
sparse matrix being used.

Returns

reshaped_matrix
[sparse matrix] A sparse matrix with the given shape, not necessarily of the same
format as the current object.

See also:

numpy.matrix.reshape

NumPy’s implementation of ‘reshape’ for matrices
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scipy.sparse.lil_matrix.resize

lil_matrix.resize(*shape)
Resize the matrix in-place to dimensions given by shape
Any elements that lie within the new shape will remain at the same indices, while non-zero elements lying
outside the new shape are removed.

Parameters

shape [(int, int)] number of rows and columns in the new matrix

Notes

The semantics are not identical to numpy.ndarray.resize or numpy.resize. Here, the same data
will be maintained at each index before and after reshape, if that index is within the new bounds. In numpy,
resizing maintains contiguity of the array, moving elements around in the logical matrix but not within a
flattened representation.
We give no guarantees about whether the underlying data attributes (arrays, etc.) will be modified in place or
replaced with new objects.

scipy.sparse.lil_matrix.set_shape

lil_matrix.set_shape(shape)
See reshape.

scipy.sparse.lil_matrix.setdiag

lil_matrix.setdiag(values, k=0)
Set diagonal or off-diagonal elements of the array.

Parameters

values [array_like] New values of the diagonal elements.
Values may have any length. If the diagonal is longer than values, then the remaining
diagonal entries will not be set. If values if longer than the diagonal, then the remaining
values are ignored.
If a scalar value is given, all of the diagonal is set to it.

k [int, optional] Which off-diagonal to set, corresponding to elements a[i,i+k]. Default: 0
(the main diagonal).

scipy.sparse.lil_matrix.sum

lil_matrix.sum(axis=None, dtype=None, out=None)
Sum the matrix elements over a given axis.

Parameters

axis [{-2, -1, 0, 1, None} optional] Axis along which the sum is computed. The default is to
compute the sum of all the matrix elements, returning a scalar (i.e. axis = None).
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dtype [dtype, optional] The type of the returned matrix and of the accumulator in which the
elements are summed. The dtype of a is used by default unless a has an integer dtype
of less precision than the default platform integer. In that case, if a is signed then the
platform integer is used while if a is unsigned then an unsigned integer of the same
precision as the platform integer is used.
New in version 0.18.0.

out [np.matrix, optional] Alternative output matrix in which to place the result. It must have
the same shape as the expected output, but the type of the output values will be cast if
necessary.
New in version 0.18.0.

Returns

sum_along_axis
[np.matrix] A matrix with the same shape as self, with the specified axis removed.

See also:

numpy.matrix.sum

NumPy’s implementation of ‘sum’ for matrices

scipy.sparse.lil_matrix.toarray

lil_matrix.toarray(order=None, out=None)
Return a dense ndarray representation of this matrix.

Parameters

order [{‘C’, ‘F’}, optional] Whether to store multi-dimensional data in C (row-major) or For-
tran (column-major) order in memory. The default is ‘None’, indicating the NumPy
default of C-ordered. Cannot be specified in conjunction with the out argument.

out [ndarray, 2-dimensional, optional] If specified, uses this array as the output buffer in-
stead of allocating a new array to return. The provided array must have the same shape
and dtype as the sparse matrix on which you are calling the method. For most sparse
types, out is required to be memory contiguous (either C or Fortran ordered).

Returns

arr [ndarray, 2-dimensional] An array with the same shape and containing the same data
represented by the sparse matrix, with the requested memory order. If out was passed,
the same object is returned after being modified in-place to contain the appropriate
values.

scipy.sparse.lil_matrix.tobsr

lil_matrix.tobsr(blocksize=None, copy=False)
Convert this matrix to Block Sparse Row format.
With copy=False, the data/indices may be shared between this matrix and the resultant bsr_matrix.
When blocksize=(R, C) is provided, it will be used for construction of the bsr_matrix.
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scipy.sparse.lil_matrix.tocoo

lil_matrix.tocoo(copy=False)
Convert this matrix to COOrdinate format.
With copy=False, the data/indices may be shared between this matrix and the resultant coo_matrix.

scipy.sparse.lil_matrix.tocsc

lil_matrix.tocsc(copy=False)
Convert this matrix to Compressed Sparse Column format.
With copy=False, the data/indices may be shared between this matrix and the resultant csc_matrix.

scipy.sparse.lil_matrix.tocsr

lil_matrix.tocsr(copy=False)
Convert this matrix to Compressed Sparse Row format.
With copy=False, the data/indices may be shared between this matrix and the resultant csr_matrix.

scipy.sparse.lil_matrix.todense

lil_matrix.todense(order=None, out=None)
Return a dense matrix representation of this matrix.

Parameters

order [{‘C’, ‘F’}, optional] Whether to store multi-dimensional data in C (row-major) or For-
tran (column-major) order in memory. The default is ‘None’, indicating the NumPy
default of C-ordered. Cannot be specified in conjunction with the out argument.

out [ndarray, 2-dimensional, optional] If specified, uses this array (or numpy.matrix)
as the output buffer instead of allocating a new array to return. The provided array must
have the same shape and dtype as the sparse matrix on which you are calling the method.

Returns

arr [numpy.matrix, 2-dimensional] A NumPy matrix object with the same shape and con-
taining the same data represented by the sparse matrix, with the requested memory
order. If out was passed and was an array (rather than a numpy.matrix), it will be
filled with the appropriate values and returned wrapped in a numpy.matrix object
that shares the same memory.

scipy.sparse.lil_matrix.todia

lil_matrix.todia(copy=False)
Convert this matrix to sparse DIAgonal format.
With copy=False, the data/indices may be shared between this matrix and the resultant dia_matrix.
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scipy.sparse.lil_matrix.todok

lil_matrix.todok(copy=False)
Convert this matrix to Dictionary Of Keys format.
With copy=False, the data/indices may be shared between this matrix and the resultant dok_matrix.

scipy.sparse.lil_matrix.tolil

lil_matrix.tolil(copy=False)
Convert this matrix to LInked List format.
With copy=False, the data/indices may be shared between this matrix and the resultant lil_matrix.

scipy.sparse.lil_matrix.transpose

lil_matrix.transpose(axes=None, copy=False)
Reverses the dimensions of the sparse matrix.

Parameters

axes [None, optional] This argument is in the signature solely for NumPy compatibility rea-
sons. Do not pass in anything except for the default value.

copy [bool, optional] Indicates whether or not attributes of self should be copied whenever
possible. The degree to which attributes are copied varies depending on the type of
sparse matrix being used.

Returns

p [self with the dimensions reversed.]
See also:

numpy.matrix.transpose

NumPy’s implementation of ‘transpose’ for matrices

__getitem__

scipy.sparse.spmatrix
class scipy.sparse.spmatrix(maxprint=50)

This class provides a base class for all sparse matrices. It cannot be instantiated. Most of the work is provided by
subclasses.

Attributes

nnz Number of stored values, including explicit zeros.
shape Get shape of a matrix.

Continued on next page
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Table 174 – continued from previous page

Methods

__len__()
__mul__(other) interpret other and call one of the following
asformat(format[, copy]) Return this matrix in the passed format.
asfptype() Upcast matrix to a floating point format (if necessary)
astype(dtype[, casting, copy]) Cast the matrix elements to a specified type.
conj([copy]) Element-wise complex conjugation.
conjugate([copy]) Element-wise complex conjugation.
copy() Returns a copy of this matrix.
count_nonzero() Number of non-zero entries, equivalent to
diagonal([k]) Returns the k-th diagonal of the matrix.
dot(other) Ordinary dot product
getH() Return the Hermitian transpose of this matrix.
get_shape() Get shape of a matrix.
getcol(j) Returns a copy of column j of the matrix, as an (m x

1) sparse matrix (column vector).
getformat() Format of a matrix representation as a string.
getmaxprint() Maximum number of elements to display when

printed.
getnnz([axis]) Number of stored values, including explicit zeros.
getrow(i) Returns a copy of row i of the matrix, as a (1 x n)

sparse matrix (row vector).
maximum(other) Element-wisemaximum between this and anotherma-

trix.
mean([axis, dtype, out]) Compute the arithmetic mean along the specified axis.
minimum(other) Element-wise minimum between this and another ma-

trix.
multiply(other) Point-wise multiplication by another matrix
nonzero() nonzero indices
power(n[, dtype]) Element-wise power.
reshape(self, shape[, order, copy]) Gives a new shape to a sparse matrix without changing

its data.
resize(shape) Resize the matrix in-place to dimensions given by

shape
set_shape(shape) See reshape.
setdiag(values[, k]) Set diagonal or off-diagonal elements of the array.
sum([axis, dtype, out]) Sum the matrix elements over a given axis.
toarray([order, out]) Return a dense ndarray representation of this matrix.
tobsr([blocksize, copy]) Convert this matrix to Block Sparse Row format.
tocoo([copy]) Convert this matrix to COOrdinate format.
tocsc([copy]) Convert this matrix to Compressed Sparse Column

format.
tocsr([copy]) Convert this matrix to Compressed Sparse Row for-

mat.
todense([order, out]) Return a dense matrix representation of this matrix.
todia([copy]) Convert this matrix to sparse DIAgonal format.
todok([copy]) Convert this matrix to Dictionary Of Keys format.

Continued on next page
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Table 174 – continued from previous page
tolil([copy]) Convert this matrix to LInked List format.
transpose([axes, copy]) Reverses the dimensions of the sparse matrix.

scipy.sparse.spmatrix.__len__

spmatrix.__len__()

scipy.sparse.spmatrix.__mul__

spmatrix.__mul__(other)
interpret other and call one of the following
self._mul_scalar() self._mul_vector() self._mul_multivector() self._mul_sparse_matrix()

scipy.sparse.spmatrix.asformat

spmatrix.asformat(format, copy=False)
Return this matrix in the passed format.

Parameters

format [{str, None}] The desired matrix format (“csr”, “csc”, “lil”, “dok”, “array”, …) or None
for no conversion.

copy [bool, optional] If True, the result is guaranteed to not share data with self.
Returns

A [This matrix in the passed format.]

scipy.sparse.spmatrix.asfptype

spmatrix.asfptype()
Upcast matrix to a floating point format (if necessary)

scipy.sparse.spmatrix.astype

spmatrix.astype(dtype, casting=’unsafe’, copy=True)
Cast the matrix elements to a specified type.

Parameters

dtype [string or numpy dtype] Typecode or data-type to which to cast the data.
casting [{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data casting

may occur. Defaults to ‘unsafe’ for backwards compatibility. ‘no’ means the data types
should not be cast at all. ‘equiv’ means only byte-order changes are allowed. ‘safe’
means only casts which can preserve values are allowed. ‘same_kind’ means only safe
casts or casts within a kind, like float64 to float32, are allowed. ‘unsafe’ means any data
conversions may be done.

copy [bool, optional] If copy is False, the result might share some memory with this matrix.
If copy is True, it is guaranteed that the result and this matrix do not share anymemory.
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scipy.sparse.spmatrix.conj

spmatrix.conj(copy=True)
Element-wise complex conjugation.
If the matrix is of non-complex data type and copy is False, this method does nothing and the data is not
copied.

Parameters

copy [bool, optional] If True, the result is guaranteed to not share data with self.
Returns

A [The element-wise complex conjugate.]

scipy.sparse.spmatrix.conjugate

spmatrix.conjugate(copy=True)
Element-wise complex conjugation.
If the matrix is of non-complex data type and copy is False, this method does nothing and the data is not
copied.

Parameters

copy [bool, optional] If True, the result is guaranteed to not share data with self.
Returns

A [The element-wise complex conjugate.]

scipy.sparse.spmatrix.copy

spmatrix.copy()
Returns a copy of this matrix.
No data/indices will be shared between the returned value and current matrix.

scipy.sparse.spmatrix.count_nonzero

spmatrix.count_nonzero()
Number of non-zero entries, equivalent to
np.count_nonzero(a.toarray())
Unlike getnnz() and the nnz property, which return the number of stored entries (the length of the data
attribute), this method counts the actual number of non-zero entries in data.

scipy.sparse.spmatrix.diagonal

spmatrix.diagonal(k=0)
Returns the k-th diagonal of the matrix.

Parameters
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k [int, optional] Which diagonal to set, corresponding to elements a[i, i+k]. Default: 0
(the main diagonal).
New in version 1.0.

See also:

numpy.diagonal

Equivalent numpy function.

Examples

>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> A.diagonal()
array([1, 0, 5])
>>> A.diagonal(k=1)
array([2, 3])

scipy.sparse.spmatrix.dot

spmatrix.dot(other)
Ordinary dot product

Examples

>>> import numpy as np
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> v = np.array([1, 0, -1])
>>> A.dot(v)
array([ 1, -3, -1], dtype=int64)

scipy.sparse.spmatrix.getH

spmatrix.getH()
Return the Hermitian transpose of this matrix.
See also:

numpy.matrix.getH

NumPy’s implementation of getH for matrices

scipy.sparse.spmatrix.get_shape

spmatrix.get_shape()
Get shape of a matrix.
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scipy.sparse.spmatrix.getcol

spmatrix.getcol(j)
Returns a copy of column j of the matrix, as an (m x 1) sparse matrix (column vector).

scipy.sparse.spmatrix.getformat

spmatrix.getformat()
Format of a matrix representation as a string.

scipy.sparse.spmatrix.getmaxprint

spmatrix.getmaxprint()
Maximum number of elements to display when printed.

scipy.sparse.spmatrix.getnnz

spmatrix.getnnz(axis=None)
Number of stored values, including explicit zeros.

Parameters

axis [None, 0, or 1] Select between the number of values across the whole matrix, in each
column, or in each row.

See also:

count_nonzero

Number of non-zero entries

scipy.sparse.spmatrix.getrow

spmatrix.getrow(i)
Returns a copy of row i of the matrix, as a (1 x n) sparse matrix (row vector).

scipy.sparse.spmatrix.maximum

spmatrix.maximum(other)
Element-wise maximum between this and another matrix.

scipy.sparse.spmatrix.mean

spmatrix.mean(axis=None, dtype=None, out=None)
Compute the arithmetic mean along the specified axis.
Returns the average of the matrix elements. The average is taken over all elements in the matrix by default,
otherwise over the specified axis. float64 intermediate and return values are used for integer inputs.

Parameters
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axis [{-2, -1, 0, 1, None} optional] Axis along which the mean is computed. The default is
to compute the mean of all elements in the matrix (i.e. axis = None).

dtype [data-type, optional] Type to use in computing the mean. For integer inputs, the default
is float64; for floating point inputs, it is the same as the input dtype.
New in version 0.18.0.

out [np.matrix, optional] Alternative output matrix in which to place the result. It must have
the same shape as the expected output, but the type of the output values will be cast if
necessary.
New in version 0.18.0.

Returns

m [np.matrix]
See also:

numpy.matrix.mean

NumPy’s implementation of ‘mean’ for matrices

scipy.sparse.spmatrix.minimum

spmatrix.minimum(other)
Element-wise minimum between this and another matrix.

scipy.sparse.spmatrix.multiply

spmatrix.multiply(other)
Point-wise multiplication by another matrix

scipy.sparse.spmatrix.nonzero

spmatrix.nonzero()
nonzero indices
Returns a tuple of arrays (row,col) containing the indices of the non-zero elements of the matrix.

Examples

>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1,2,0],[0,0,3],[4,0,5]])
>>> A.nonzero()
(array([0, 0, 1, 2, 2]), array([0, 1, 2, 0, 2]))

scipy.sparse.spmatrix.power

spmatrix.power(n, dtype=None)
Element-wise power.
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scipy.sparse.spmatrix.reshape

spmatrix.reshape(self, shape, order=’C’, copy=False)
Gives a new shape to a sparse matrix without changing its data.

Parameters

shape [length-2 tuple of ints] The new shape should be compatible with the original shape.
order [{‘C’, ‘F’}, optional] Read the elements using this index order. ‘C’ means to read and

write the elements using C-like index order; e.g. read entire first row, then second row,
etc. ‘F’ means to read and write the elements using Fortran-like index order; e.g. read
entire first column, then second column, etc.

copy [bool, optional] Indicates whether or not attributes of self should be copied whenever
possible. The degree to which attributes are copied varies depending on the type of
sparse matrix being used.

Returns

reshaped_matrix
[sparse matrix] A sparse matrix with the given shape, not necessarily of the same
format as the current object.

See also:

numpy.matrix.reshape

NumPy’s implementation of ‘reshape’ for matrices

scipy.sparse.spmatrix.resize

spmatrix.resize(shape)
Resize the matrix in-place to dimensions given by shape
Any elements that lie within the new shape will remain at the same indices, while non-zero elements lying
outside the new shape are removed.

Parameters

shape [(int, int)] number of rows and columns in the new matrix

Notes

The semantics are not identical to numpy.ndarray.resize or numpy.resize. Here, the same data
will be maintained at each index before and after reshape, if that index is within the new bounds. In numpy,
resizing maintains contiguity of the array, moving elements around in the logical matrix but not within a
flattened representation.
We give no guarantees about whether the underlying data attributes (arrays, etc.) will be modified in place or
replaced with new objects.

scipy.sparse.spmatrix.set_shape

spmatrix.set_shape(shape)
See reshape.
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scipy.sparse.spmatrix.setdiag

spmatrix.setdiag(values, k=0)
Set diagonal or off-diagonal elements of the array.

Parameters

values [array_like] New values of the diagonal elements.
Values may have any length. If the diagonal is longer than values, then the remaining
diagonal entries will not be set. If values if longer than the diagonal, then the remaining
values are ignored.
If a scalar value is given, all of the diagonal is set to it.

k [int, optional] Which off-diagonal to set, corresponding to elements a[i,i+k]. Default: 0
(the main diagonal).

scipy.sparse.spmatrix.sum

spmatrix.sum(axis=None, dtype=None, out=None)
Sum the matrix elements over a given axis.

Parameters

axis [{-2, -1, 0, 1, None} optional] Axis along which the sum is computed. The default is to
compute the sum of all the matrix elements, returning a scalar (i.e. axis = None).

dtype [dtype, optional] The type of the returned matrix and of the accumulator in which the
elements are summed. The dtype of a is used by default unless a has an integer dtype
of less precision than the default platform integer. In that case, if a is signed then the
platform integer is used while if a is unsigned then an unsigned integer of the same
precision as the platform integer is used.
New in version 0.18.0.

out [np.matrix, optional] Alternative output matrix in which to place the result. It must have
the same shape as the expected output, but the type of the output values will be cast if
necessary.
New in version 0.18.0.

Returns

sum_along_axis
[np.matrix] A matrix with the same shape as self, with the specified axis removed.

See also:

numpy.matrix.sum

NumPy’s implementation of ‘sum’ for matrices

scipy.sparse.spmatrix.toarray

spmatrix.toarray(order=None, out=None)
Return a dense ndarray representation of this matrix.

Parameters

order [{‘C’, ‘F’}, optional] Whether to store multi-dimensional data in C (row-major) or For-
tran (column-major) order in memory. The default is ‘None’, indicating the NumPy
default of C-ordered. Cannot be specified in conjunction with the out argument.
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out [ndarray, 2-dimensional, optional] If specified, uses this array as the output buffer in-
stead of allocating a new array to return. The provided array must have the same shape
and dtype as the sparse matrix on which you are calling the method. For most sparse
types, out is required to be memory contiguous (either C or Fortran ordered).

Returns

arr [ndarray, 2-dimensional] An array with the same shape and containing the same data
represented by the sparse matrix, with the requested memory order. If out was passed,
the same object is returned after being modified in-place to contain the appropriate
values.

scipy.sparse.spmatrix.tobsr

spmatrix.tobsr(blocksize=None, copy=False)
Convert this matrix to Block Sparse Row format.
With copy=False, the data/indices may be shared between this matrix and the resultant bsr_matrix.
When blocksize=(R, C) is provided, it will be used for construction of the bsr_matrix.

scipy.sparse.spmatrix.tocoo

spmatrix.tocoo(copy=False)
Convert this matrix to COOrdinate format.
With copy=False, the data/indices may be shared between this matrix and the resultant coo_matrix.

scipy.sparse.spmatrix.tocsc

spmatrix.tocsc(copy=False)
Convert this matrix to Compressed Sparse Column format.
With copy=False, the data/indices may be shared between this matrix and the resultant csc_matrix.

scipy.sparse.spmatrix.tocsr

spmatrix.tocsr(copy=False)
Convert this matrix to Compressed Sparse Row format.
With copy=False, the data/indices may be shared between this matrix and the resultant csr_matrix.

scipy.sparse.spmatrix.todense

spmatrix.todense(order=None, out=None)
Return a dense matrix representation of this matrix.

Parameters

order [{‘C’, ‘F’}, optional] Whether to store multi-dimensional data in C (row-major) or For-
tran (column-major) order in memory. The default is ‘None’, indicating the NumPy
default of C-ordered. Cannot be specified in conjunction with the out argument.
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out [ndarray, 2-dimensional, optional] If specified, uses this array (or numpy.matrix)
as the output buffer instead of allocating a new array to return. The provided array must
have the same shape and dtype as the sparse matrix on which you are calling the method.

Returns

arr [numpy.matrix, 2-dimensional] A NumPy matrix object with the same shape and con-
taining the same data represented by the sparse matrix, with the requested memory
order. If out was passed and was an array (rather than a numpy.matrix), it will be
filled with the appropriate values and returned wrapped in a numpy.matrix object
that shares the same memory.

scipy.sparse.spmatrix.todia

spmatrix.todia(copy=False)
Convert this matrix to sparse DIAgonal format.
With copy=False, the data/indices may be shared between this matrix and the resultant dia_matrix.

scipy.sparse.spmatrix.todok

spmatrix.todok(copy=False)
Convert this matrix to Dictionary Of Keys format.
With copy=False, the data/indices may be shared between this matrix and the resultant dok_matrix.

scipy.sparse.spmatrix.tolil

spmatrix.tolil(copy=False)
Convert this matrix to LInked List format.
With copy=False, the data/indices may be shared between this matrix and the resultant lil_matrix.

scipy.sparse.spmatrix.transpose

spmatrix.transpose(axes=None, copy=False)
Reverses the dimensions of the sparse matrix.

Parameters

axes [None, optional] This argument is in the signature solely for NumPy compatibility rea-
sons. Do not pass in anything except for the default value.

copy [bool, optional] Indicates whether or not attributes of self should be copied whenever
possible. The degree to which attributes are copied varies depending on the type of
sparse matrix being used.

Returns

p [self with the dimensions reversed.]
See also:

numpy.matrix.transpose

NumPy’s implementation of ‘transpose’ for matrices
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Functions

Building sparse matrices:

eye(m[, n, k, dtype, format]) Sparse matrix with ones on diagonal
identity(n[, dtype, format]) Identity matrix in sparse format
kron(A, B[, format]) kronecker product of sparse matrices A and B
kronsum(A, B[, format]) kronecker sum of sparse matrices A and B
diags(diagonals[, offsets, shape, format, dtype]) Construct a sparse matrix from diagonals.
spdiags(data, diags, m, n[, format]) Return a sparse matrix from diagonals.
block_diag(mats[, format, dtype]) Build a block diagonal sparse matrix from provided ma-

trices.
tril(A[, k, format]) Return the lower triangular portion of a matrix in sparse

format
triu(A[, k, format]) Return the upper triangular portion of a matrix in sparse

format
bmat(blocks[, format, dtype]) Build a sparse matrix from sparse sub-blocks
hstack(blocks[, format, dtype]) Stack sparse matrices horizontally (column wise)
vstack(blocks[, format, dtype]) Stack sparse matrices vertically (row wise)
rand(m, n[, density, format, dtype, …]) Generate a sparse matrix of the given shape and density

with uniformly distributed values.
random(m, n[, density, format, dtype, …]) Generate a sparse matrix of the given shape and density

with randomly distributed values.

scipy.sparse.eye
scipy.sparse.eye(m, n=None, k=0, dtype=<class ’float’>, format=None)

Sparse matrix with ones on diagonal
Returns a sparse (m x n) matrix where the k-th diagonal is all ones and everything else is zeros.

Parameters

m [int] Number of rows in the matrix.
n [int, optional] Number of columns. Default: m.
k [int, optional] Diagonal to place ones on. Default: 0 (main diagonal).
dtype [dtype, optional] Data type of the matrix.
format [str, optional] Sparse format of the result, e.g. format=”csr”, etc.

Examples

>>> from scipy import sparse
>>> sparse.eye(3).toarray()
array([[ 1., 0., 0.],

[ 0., 1., 0.],
[ 0., 0., 1.]])

>>> sparse.eye(3, dtype=np.int8)
<3x3 sparse matrix of type '<class 'numpy.int8'>'

with 3 stored elements (1 diagonals) in DIAgonal format>

scipy.sparse.identity
scipy.sparse.identity(n, dtype=’d’, format=None)

Identity matrix in sparse format
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Returns an identity matrix with shape (n,n) using a given sparse format and dtype.
Parameters

n [int] Shape of the identity matrix.
dtype [dtype, optional] Data type of the matrix
format [str, optional] Sparse format of the result, e.g. format=”csr”, etc.

Examples

>>> from scipy.sparse import identity
>>> identity(3).toarray()
array([[ 1., 0., 0.],

[ 0., 1., 0.],
[ 0., 0., 1.]])

>>> identity(3, dtype='int8', format='dia')
<3x3 sparse matrix of type '<class 'numpy.int8'>'

with 3 stored elements (1 diagonals) in DIAgonal format>

scipy.sparse.kron
scipy.sparse.kron(A, B, format=None)

kronecker product of sparse matrices A and B
Parameters

A [sparse or dense matrix] first matrix of the product
B [sparse or dense matrix] second matrix of the product
format [str, optional] format of the result (e.g. “csr”)

Returns

kronecker product in a sparse matrix format

Examples

>>> from scipy import sparse
>>> A = sparse.csr_matrix(np.array([[0, 2], [5, 0]]))
>>> B = sparse.csr_matrix(np.array([[1, 2], [3, 4]]))
>>> sparse.kron(A, B).toarray()
array([[ 0, 0, 2, 4],

[ 0, 0, 6, 8],
[ 5, 10, 0, 0],
[15, 20, 0, 0]])

>>> sparse.kron(A, [[1, 2], [3, 4]]).toarray()
array([[ 0, 0, 2, 4],

[ 0, 0, 6, 8],
[ 5, 10, 0, 0],
[15, 20, 0, 0]])
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scipy.sparse.kronsum
scipy.sparse.kronsum(A, B, format=None)

kronecker sum of sparse matrices A and B
Kronecker sum of two sparse matrices is a sum of two Kronecker products kron(I_n,A) + kron(B,I_m) where A
has shape (m,m) and B has shape (n,n) and I_m and I_n are identity matrices of shape (m,m) and (n,n) respectively.

Parameters

A square matrix
B square matrix
format [str] format of the result (e.g. “csr”)

Returns

kronecker sum in a sparse matrix format

scipy.sparse.diags
scipy.sparse.diags(diagonals, offsets=0, shape=None, format=None, dtype=None)

Construct a sparse matrix from diagonals.
Parameters

diagonals [sequence of array_like] Sequence of arrays containing the matrix diagonals, corresponding
to offsets.

offsets [sequence of int or an int, optional]
Diagonals to set:

• k = 0 the main diagonal (default)
• k > 0 the k-th upper diagonal
• k < 0 the k-th lower diagonal

shape [tuple of int, optional] Shape of the result. If omitted, a square matrix large enough to contain
the diagonals is returned.

format [{“dia”, “csr”, “csc”, “lil”, …}, optional] Matrix format of the result. By default (for-
mat=None) an appropriate sparse matrix format is returned. This choice is subject to change.

dtype [dtype, optional] Data type of the matrix.
See also:

spdiags

construct matrix from diagonals

Notes

This function differs from spdiags in the way it handles off-diagonals.
The result from diags is the sparse equivalent of:

np.diag(diagonals[0], offsets[0])
+ ...
+ np.diag(diagonals[k], offsets[k])

Repeated diagonal offsets are disallowed.
New in version 0.11.
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Examples

>>> from scipy.sparse import diags
>>> diagonals = [[1, 2, 3, 4], [1, 2, 3], [1, 2]]
>>> diags(diagonals, [0, -1, 2]).toarray()
array([[1, 0, 1, 0],

[1, 2, 0, 2],
[0, 2, 3, 0],
[0, 0, 3, 4]])

Broadcasting of scalars is supported (but shape needs to be specified):

>>> diags([1, -2, 1], [-1, 0, 1], shape=(4, 4)).toarray()
array([[-2., 1., 0., 0.],

[ 1., -2., 1., 0.],
[ 0., 1., -2., 1.],
[ 0., 0., 1., -2.]])

If only one diagonal is wanted (as in numpy.diag), the following works as well:

>>> diags([1, 2, 3], 1).toarray()
array([[ 0., 1., 0., 0.],

[ 0., 0., 2., 0.],
[ 0., 0., 0., 3.],
[ 0., 0., 0., 0.]])

scipy.sparse.spdiags
scipy.sparse.spdiags(data, diags, m, n, format=None)

Return a sparse matrix from diagonals.
Parameters

data [array_like] matrix diagonals stored row-wise
diags [diagonals to set]

• k = 0 the main diagonal
• k > 0 the k-th upper diagonal
• k < 0 the k-th lower diagonal

m, n [int] shape of the result
format [str, optional] Format of the result. By default (format=None) an appropriate sparse matrix

format is returned. This choice is subject to change.
See also:

diags

more convenient form of this function
dia_matrix

the sparse DIAgonal format.

Examples
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>>> from scipy.sparse import spdiags
>>> data = np.array([[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]])
>>> diags = np.array([0, -1, 2])
>>> spdiags(data, diags, 4, 4).toarray()
array([[1, 0, 3, 0],

[1, 2, 0, 4],
[0, 2, 3, 0],
[0, 0, 3, 4]])

scipy.sparse.block_diag
scipy.sparse.block_diag(mats, format=None, dtype=None)

Build a block diagonal sparse matrix from provided matrices.
Parameters

mats [sequence of matrices] Input matrices.
format [str, optional] The sparse format of the result (e.g. “csr”). If not given, the matrix is returned

in “coo” format.
dtype [dtype specifier, optional] The data-type of the output matrix. If not given, the dtype is

determined from that of blocks.
Returns

res [sparse matrix]
See also:
bmat, diags

Notes

New in version 0.11.0.

Examples

>>> from scipy.sparse import coo_matrix, block_diag
>>> A = coo_matrix([[1, 2], [3, 4]])
>>> B = coo_matrix([[5], [6]])
>>> C = coo_matrix([[7]])
>>> block_diag((A, B, C)).toarray()
array([[1, 2, 0, 0],

[3, 4, 0, 0],
[0, 0, 5, 0],
[0, 0, 6, 0],
[0, 0, 0, 7]])

scipy.sparse.tril
scipy.sparse.tril(A, k=0, format=None)

Return the lower triangular portion of a matrix in sparse format
Returns the elements on or below the k-th diagonal of the matrix A.

• k = 0 corresponds to the main diagonal
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• k > 0 is above the main diagonal
• k < 0 is below the main diagonal

Parameters

A [dense or sparse matrix] Matrix whose lower trianglar portion is desired.
k [integer] The top-most diagonal of the lower triangle.
format [string] Sparse format of the result, e.g. format=”csr”, etc.

Returns

L [sparse matrix] Lower triangular portion of A in sparse format.

See also:

triu

upper triangle in sparse format

Examples

>>> from scipy.sparse import csr_matrix, tril
>>> A = csr_matrix([[1, 2, 0, 0, 3], [4, 5, 0, 6, 7], [0, 0, 8, 9, 0]],
... dtype='int32')
>>> A.toarray()
array([[1, 2, 0, 0, 3],

[4, 5, 0, 6, 7],
[0, 0, 8, 9, 0]])

>>> tril(A).toarray()
array([[1, 0, 0, 0, 0],

[4, 5, 0, 0, 0],
[0, 0, 8, 0, 0]])

>>> tril(A).nnz
4
>>> tril(A, k=1).toarray()
array([[1, 2, 0, 0, 0],

[4, 5, 0, 0, 0],
[0, 0, 8, 9, 0]])

>>> tril(A, k=-1).toarray()
array([[0, 0, 0, 0, 0],

[4, 0, 0, 0, 0],
[0, 0, 0, 0, 0]])

>>> tril(A, format='csc')
<3x5 sparse matrix of type '<class 'numpy.int32'>'

with 4 stored elements in Compressed Sparse Column format>

scipy.sparse.triu
scipy.sparse.triu(A, k=0, format=None)

Return the upper triangular portion of a matrix in sparse format
Returns the elements on or above the k-th diagonal of the matrix A.

• k = 0 corresponds to the main diagonal
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• k > 0 is above the main diagonal
• k < 0 is below the main diagonal

Parameters

A [dense or sparse matrix] Matrix whose upper trianglar portion is desired.
k [integer] The bottom-most diagonal of the upper triangle.
format [string] Sparse format of the result, e.g. format=”csr”, etc.

Returns

L [sparse matrix] Upper triangular portion of A in sparse format.

See also:

tril

lower triangle in sparse format

Examples

>>> from scipy.sparse import csr_matrix, triu
>>> A = csr_matrix([[1, 2, 0, 0, 3], [4, 5, 0, 6, 7], [0, 0, 8, 9, 0]],
... dtype='int32')
>>> A.toarray()
array([[1, 2, 0, 0, 3],

[4, 5, 0, 6, 7],
[0, 0, 8, 9, 0]])

>>> triu(A).toarray()
array([[1, 2, 0, 0, 3],

[0, 5, 0, 6, 7],
[0, 0, 8, 9, 0]])

>>> triu(A).nnz
8
>>> triu(A, k=1).toarray()
array([[0, 2, 0, 0, 3],

[0, 0, 0, 6, 7],
[0, 0, 0, 9, 0]])

>>> triu(A, k=-1).toarray()
array([[1, 2, 0, 0, 3],

[4, 5, 0, 6, 7],
[0, 0, 8, 9, 0]])

>>> triu(A, format='csc')
<3x5 sparse matrix of type '<class 'numpy.int32'>'

with 8 stored elements in Compressed Sparse Column format>

scipy.sparse.bmat
scipy.sparse.bmat(blocks, format=None, dtype=None)

Build a sparse matrix from sparse sub-blocks
Parameters

blocks [array_like] Grid of sparse matrices with compatible shapes. An entry of None implies an
all-zero matrix.
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format [{‘bsr’, ‘coo’, ‘csc’, ‘csr’, ‘dia’, ‘dok’, ‘lil’}, optional] The sparse format of the result (e.g. “csr”).
By default an appropriate sparse matrix format is returned. This choice is subject to change.

dtype [dtype, optional] The data-type of the output matrix. If not given, the dtype is determined
from that of blocks.

Returns

bmat [sparse matrix]
See also:
block_diag, diags

Examples

>>> from scipy.sparse import coo_matrix, bmat
>>> A = coo_matrix([[1, 2], [3, 4]])
>>> B = coo_matrix([[5], [6]])
>>> C = coo_matrix([[7]])
>>> bmat([[A, B], [None, C]]).toarray()
array([[1, 2, 5],

[3, 4, 6],
[0, 0, 7]])

>>> bmat([[A, None], [None, C]]).toarray()
array([[1, 2, 0],

[3, 4, 0],
[0, 0, 7]])

scipy.sparse.hstack
scipy.sparse.hstack(blocks, format=None, dtype=None)

Stack sparse matrices horizontally (column wise)
Parameters

blocks sequence of sparse matrices with compatible shapes
format [str] sparse format of the result (e.g. “csr”) by default an appropriate sparse matrix format is

returned. This choice is subject to change.
dtype [dtype, optional] The data-type of the output matrix. If not given, the dtype is determined

from that of blocks.
See also:

vstack

stack sparse matrices vertically (row wise)

Examples

>>> from scipy.sparse import coo_matrix, hstack
>>> A = coo_matrix([[1, 2], [3, 4]])
>>> B = coo_matrix([[5], [6]])
>>> hstack([A,B]).toarray()

(continues on next page)
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(continued from previous page)
array([[1, 2, 5],

[3, 4, 6]])

scipy.sparse.vstack
scipy.sparse.vstack(blocks, format=None, dtype=None)

Stack sparse matrices vertically (row wise)
Parameters

blocks sequence of sparse matrices with compatible shapes
format [str, optional] sparse format of the result (e.g. “csr”) by default an appropriate sparse matrix

format is returned. This choice is subject to change.
dtype [dtype, optional] The data-type of the output matrix. If not given, the dtype is determined

from that of blocks.
See also:

hstack

stack sparse matrices horizontally (column wise)

Examples

>>> from scipy.sparse import coo_matrix, vstack
>>> A = coo_matrix([[1, 2], [3, 4]])
>>> B = coo_matrix([[5, 6]])
>>> vstack([A, B]).toarray()
array([[1, 2],

[3, 4],
[5, 6]])

scipy.sparse.rand
scipy.sparse.rand(m, n, density=0.01, format=’coo’, dtype=None, random_state=None)

Generate a sparse matrix of the given shape and density with uniformly distributed values.
Parameters

m, n [int] shape of the matrix
density [real, optional] density of the generated matrix: density equal to one means a full matrix,

density of 0 means a matrix with no non-zero items.
format [str, optional] sparse matrix format.
dtype [dtype, optional] type of the returned matrix values.
random_state

[{numpy.random.RandomState, int}, optional] Random number generator or random seed.
If not given, the singleton numpy.random will be used.

Returns

res [sparse matrix]
See also:

scipy.sparse.random

Similar function that allows a user-specified random data source.
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Notes

Only float types are supported for now.

Examples

>>> from scipy.sparse import rand
>>> matrix = rand(3, 4, density=0.25, format="csr", random_state=42)
>>> matrix
<3x4 sparse matrix of type '<class 'numpy.float64'>'

with 3 stored elements in Compressed Sparse Row format>
>>> matrix.todense()
matrix([[0.05641158, 0. , 0. , 0.65088847],

[0. , 0. , 0. , 0.14286682],
[0. , 0. , 0. , 0. ]])

scipy.sparse.random
scipy.sparse.random(m, n, density=0.01, format=’coo’, dtype=None, random_state=None,

data_rvs=None)
Generate a sparse matrix of the given shape and density with randomly distributed values.

Parameters

m, n [int] shape of the matrix
density [real, optional] density of the generated matrix: density equal to one means a full matrix,

density of 0 means a matrix with no non-zero items.
format [str, optional] sparse matrix format.
dtype [dtype, optional] type of the returned matrix values.
random_state

[{numpy.random.RandomState, int}, optional] Random number generator or random seed.
If not given, the singleton numpy.random will be used. This random state will be used for
sampling the sparsity structure, but not necessarily for sampling the values of the structurally
nonzero entries of the matrix.

data_rvs [callable, optional] Samples a requested number of random values. This function should take
a single argument specifying the length of the ndarray that it will return. The structurally
nonzero entries of the sparse random matrix will be taken from the array sampled by this
function. By default, uniform [0, 1) random values will be sampled using the same random
state as is used for sampling the sparsity structure.

Returns

res [sparse matrix]

Notes

Only float types are supported for now.

Examples

>>> from scipy.sparse import random
>>> from scipy import stats
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>>> class CustomRandomState(np.random.RandomState):
... def randint(self, k):
... i = np.random.randint(k)
... return i - i % 2
>>> np.random.seed(12345)
>>> rs = CustomRandomState()
>>> rvs = stats.poisson(25, loc=10).rvs
>>> S = random(3, 4, density=0.25, random_state=rs, data_rvs=rvs)
>>> S.A
array([[ 36., 0., 33., 0.], # random

[ 0., 0., 0., 0.],
[ 0., 0., 36., 0.]])

>>> from scipy.sparse import random
>>> from scipy.stats import rv_continuous
>>> class CustomDistribution(rv_continuous):
... def _rvs(self, *args, **kwargs):
... return self._random_state.randn(*self._size)
>>> X = CustomDistribution(seed=2906)
>>> Y = X() # get a frozen version of the distribution
>>> S = random(3, 4, density=0.25, random_state=2906, data_rvs=Y.rvs)
>>> S.A
array([[ 0. , 0. , 0. , 0. ],

[ 0.13569738, 1.9467163 , -0.81205367, 0. ],
[ 0. , 0. , 0. , 0. ]])

Save and load sparse matrices:

save_npz(file, matrix[, compressed]) Save a sparse matrix to a file using .npz format.
load_npz(file) Load a sparse matrix from a file using .npz format.

scipy.sparse.save_npz
scipy.sparse.save_npz(file, matrix, compressed=True)

Save a sparse matrix to a file using .npz format.
Parameters

file [str or file-like object] Either the file name (string) or an open file (file-like object) where the
data will be saved. If file is a string, the .npz extension will be appended to the file name
if it is not already there.

matrix: spmatrix (format: ‘‘csc‘‘, ‘‘csr‘‘, ‘‘bsr‘‘, ‘‘dia‘‘ or coo‘‘)
The sparse matrix to save.

compressed
[bool, optional] Allow compressing the file. Default: True

See also:

scipy.sparse.load_npz

Load a sparse matrix from a file using .npz format.
numpy.savez

Save several arrays into a .npz archive.
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numpy.savez_compressed

Save several arrays into a compressed .npz archive.

Examples

Store sparse matrix to disk, and load it again:

>>> import scipy.sparse
>>> sparse_matrix = scipy.sparse.csc_matrix(np.array([[0, 0, 3], [4, 0,␣
↪→0]]))
>>> sparse_matrix
<2x3 sparse matrix of type '<class 'numpy.int64'>'

with 2 stored elements in Compressed Sparse Column format>
>>> sparse_matrix.todense()
matrix([[0, 0, 3],

[4, 0, 0]], dtype=int64)

>>> scipy.sparse.save_npz('/tmp/sparse_matrix.npz', sparse_matrix)
>>> sparse_matrix = scipy.sparse.load_npz('/tmp/sparse_matrix.npz')

>>> sparse_matrix
<2x3 sparse matrix of type '<class 'numpy.int64'>'

with 2 stored elements in Compressed Sparse Column format>
>>> sparse_matrix.todense()
matrix([[0, 0, 3],

[4, 0, 0]], dtype=int64)

scipy.sparse.load_npz
scipy.sparse.load_npz(file)

Load a sparse matrix from a file using .npz format.
Parameters

file [str or file-like object] Either the file name (string) or an open file (file-like object) where the
data will be loaded.

Returns

result [csc_matrix, csr_matrix, bsr_matrix, dia_matrix or coo_matrix] A sparse matrix containing
the loaded data.

Raises

IOError If the input file does not exist or cannot be read.
See also:

scipy.sparse.save_npz

Save a sparse matrix to a file using .npz format.
numpy.load

Load several arrays from a .npz archive.
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Examples

Store sparse matrix to disk, and load it again:

>>> import scipy.sparse
>>> sparse_matrix = scipy.sparse.csc_matrix(np.array([[0, 0, 3], [4, 0,␣
↪→0]]))
>>> sparse_matrix
<2x3 sparse matrix of type '<class 'numpy.int64'>'

with 2 stored elements in Compressed Sparse Column format>
>>> sparse_matrix.todense()
matrix([[0, 0, 3],

[4, 0, 0]], dtype=int64)

>>> scipy.sparse.save_npz('/tmp/sparse_matrix.npz', sparse_matrix)
>>> sparse_matrix = scipy.sparse.load_npz('/tmp/sparse_matrix.npz')

>>> sparse_matrix
<2x3 sparse matrix of type '<class 'numpy.int64'>'

with 2 stored elements in Compressed Sparse Column format>
>>> sparse_matrix.todense()
matrix([[0, 0, 3],

[4, 0, 0]], dtype=int64)

Sparse matrix tools:

find(A) Return the indices and values of the nonzero elements of
a matrix

scipy.sparse.find
scipy.sparse.find(A)

Return the indices and values of the nonzero elements of a matrix
Parameters

A [dense or sparse matrix] Matrix whose nonzero elements are desired.
Returns

(I,J,V) [tuple of arrays] I,J, and V contain the row indices, column indices, and values of the nonzero
matrix entries.

Examples

>>> from scipy.sparse import csr_matrix, find
>>> A = csr_matrix([[7.0, 8.0, 0],[0, 0, 9.0]])
>>> find(A)
(array([0, 0, 1], dtype=int32), array([0, 1, 2], dtype=int32), array([ 7.,
↪→ 8., 9.]))

Identifying sparse matrices:
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issparse(x) Is x of a sparse matrix type?
isspmatrix(x) Is x of a sparse matrix type?
isspmatrix_csc(x) Is x of csc_matrix type?
isspmatrix_csr(x) Is x of csr_matrix type?
isspmatrix_bsr(x) Is x of a bsr_matrix type?
isspmatrix_lil(x) Is x of lil_matrix type?
isspmatrix_dok(x) Is x of dok_matrix type?
isspmatrix_coo(x) Is x of coo_matrix type?
isspmatrix_dia(x) Is x of dia_matrix type?

scipy.sparse.issparse
scipy.sparse.issparse(x)

Is x of a sparse matrix type?
Parameters

x object to check for being a sparse matrix
Returns

bool True if x is a sparse matrix, False otherwise

Notes

issparse and isspmatrix are aliases for the same function.

Examples

>>> from scipy.sparse import csr_matrix, isspmatrix
>>> isspmatrix(csr_matrix([[5]]))
True

>>> from scipy.sparse import isspmatrix
>>> isspmatrix(5)
False

scipy.sparse.isspmatrix
scipy.sparse.isspmatrix(x)

Is x of a sparse matrix type?
Parameters

x object to check for being a sparse matrix
Returns

bool True if x is a sparse matrix, False otherwise

Notes

issparse and isspmatrix are aliases for the same function.
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Examples

>>> from scipy.sparse import csr_matrix, isspmatrix
>>> isspmatrix(csr_matrix([[5]]))
True

>>> from scipy.sparse import isspmatrix
>>> isspmatrix(5)
False

scipy.sparse.isspmatrix_csc
scipy.sparse.isspmatrix_csc(x)

Is x of csc_matrix type?
Parameters

x object to check for being a csc matrix
Returns

bool True if x is a csc matrix, False otherwise

Examples

>>> from scipy.sparse import csc_matrix, isspmatrix_csc
>>> isspmatrix_csc(csc_matrix([[5]]))
True

>>> from scipy.sparse import csc_matrix, csr_matrix, isspmatrix_csc
>>> isspmatrix_csc(csr_matrix([[5]]))
False

scipy.sparse.isspmatrix_csr
scipy.sparse.isspmatrix_csr(x)

Is x of csr_matrix type?
Parameters

x object to check for being a csr matrix
Returns

bool True if x is a csr matrix, False otherwise

Examples

>>> from scipy.sparse import csr_matrix, isspmatrix_csr
>>> isspmatrix_csr(csr_matrix([[5]]))
True

>>> from scipy.sparse import csc_matrix, csr_matrix, isspmatrix_csc
>>> isspmatrix_csr(csc_matrix([[5]]))
False
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scipy.sparse.isspmatrix_bsr
scipy.sparse.isspmatrix_bsr(x)

Is x of a bsr_matrix type?
Parameters

x object to check for being a bsr matrix
Returns

bool True if x is a bsr matrix, False otherwise

Examples

>>> from scipy.sparse import bsr_matrix, isspmatrix_bsr
>>> isspmatrix_bsr(bsr_matrix([[5]]))
True

>>> from scipy.sparse import bsr_matrix, csr_matrix, isspmatrix_bsr
>>> isspmatrix_bsr(csr_matrix([[5]]))
False

scipy.sparse.isspmatrix_lil
scipy.sparse.isspmatrix_lil(x)

Is x of lil_matrix type?
Parameters

x object to check for being a lil matrix
Returns

bool True if x is a lil matrix, False otherwise

Examples

>>> from scipy.sparse import lil_matrix, isspmatrix_lil
>>> isspmatrix_lil(lil_matrix([[5]]))
True

>>> from scipy.sparse import lil_matrix, csr_matrix, isspmatrix_lil
>>> isspmatrix_lil(csr_matrix([[5]]))
False

scipy.sparse.isspmatrix_dok
scipy.sparse.isspmatrix_dok(x)

Is x of dok_matrix type?
Parameters

x object to check for being a dok matrix
Returns

bool True if x is a dok matrix, False otherwise
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Examples

>>> from scipy.sparse import dok_matrix, isspmatrix_dok
>>> isspmatrix_dok(dok_matrix([[5]]))
True

>>> from scipy.sparse import dok_matrix, csr_matrix, isspmatrix_dok
>>> isspmatrix_dok(csr_matrix([[5]]))
False

scipy.sparse.isspmatrix_coo
scipy.sparse.isspmatrix_coo(x)

Is x of coo_matrix type?
Parameters

x object to check for being a coo matrix
Returns

bool True if x is a coo matrix, False otherwise

Examples

>>> from scipy.sparse import coo_matrix, isspmatrix_coo
>>> isspmatrix_coo(coo_matrix([[5]]))
True

>>> from scipy.sparse import coo_matrix, csr_matrix, isspmatrix_coo
>>> isspmatrix_coo(csr_matrix([[5]]))
False

scipy.sparse.isspmatrix_dia
scipy.sparse.isspmatrix_dia(x)

Is x of dia_matrix type?
Parameters

x object to check for being a dia matrix
Returns

bool True if x is a dia matrix, False otherwise

Examples

>>> from scipy.sparse import dia_matrix, isspmatrix_dia
>>> isspmatrix_dia(dia_matrix([[5]]))
True

>>> from scipy.sparse import dia_matrix, csr_matrix, isspmatrix_dia
>>> isspmatrix_dia(csr_matrix([[5]]))
False
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Submodules

csgraph Compressed Sparse Graph Routines (scipy.
sparse.csgraph)

linalg Sparse linear algebra (scipy.sparse.linalg)

Exceptions

SparseEfficiencyWarning
SparseWarning

scipy.sparse.SparseEfficiencyWarning
exception scipy.sparse.SparseEfficiencyWarning

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

scipy.sparse.SparseWarning
exception scipy.sparse.SparseWarning

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

6.22.2 Usage information

There are seven available sparse matrix types:
1. csc_matrix: Compressed Sparse Column format
2. csr_matrix: Compressed Sparse Row format
3. bsr_matrix: Block Sparse Row format
4. lil_matrix: List of Lists format
5. dok_matrix: Dictionary of Keys format
6. coo_matrix: COOrdinate format (aka IJV, triplet format)
7. dia_matrix: DIAgonal format

To construct a matrix efficiently, use either dok_matrix or lil_matrix. The lil_matrix class supports basic slicing and fancy
indexing with a similar syntax to NumPy arrays. As illustrated below, the COO format may also be used to efficiently
construct matrices. Despite their similarity to NumPy arrays, it is strongly discouraged to use NumPy functions directly
on these matrices because NumPy may not properly convert them for computations, leading to unexpected (and incorrect)
results. If you do want to apply a NumPy function to these matrices, first check if SciPy has its own implementation for
the given sparse matrix class, or convert the sparse matrix to a NumPy array (e.g. using the toarray() method of the
class) first before applying the method.
To perform manipulations such as multiplication or inversion, first convert the matrix to either CSC or CSR format. The
lil_matrix format is row-based, so conversion to CSR is efficient, whereas conversion to CSC is less so.
All conversions among the CSR, CSC, and COO formats are efficient, linear-time operations.
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Matrix vector product

To do a vector product between a sparse matrix and a vector simply use the matrix dot method, as described in its
docstring:

>>> import numpy as np
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> v = np.array([1, 0, -1])
>>> A.dot(v)
array([ 1, -3, -1], dtype=int64)

Warning: As of NumPy 1.7, np.dot is not aware of sparse matrices, therefore using it will result on unexpected
results or errors. The corresponding dense array should be obtained first instead:
>>> np.dot(A.toarray(), v)
array([ 1, -3, -1], dtype=int64)

but then all the performance advantages would be lost.

The CSR format is specially suitable for fast matrix vector products.

Example 1

Construct a 1000x1000 lil_matrix and add some values to it:

>>> from scipy.sparse import lil_matrix
>>> from scipy.sparse.linalg import spsolve
>>> from numpy.linalg import solve, norm
>>> from numpy.random import rand

>>> A = lil_matrix((1000, 1000))
>>> A[0, :100] = rand(100)
>>> A[1, 100:200] = A[0, :100]
>>> A.setdiag(rand(1000))

Now convert it to CSR format and solve A x = b for x:

>>> A = A.tocsr()
>>> b = rand(1000)
>>> x = spsolve(A, b)

Convert it to a dense matrix and solve, and check that the result is the same:

>>> x_ = solve(A.toarray(), b)

Now we can compute norm of the error with:

>>> err = norm(x-x_)
>>> err < 1e-10
True

It should be small :)
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Example 2

Construct a matrix in COO format:

>>> from scipy import sparse
>>> from numpy import array
>>> I = array([0,3,1,0])
>>> J = array([0,3,1,2])
>>> V = array([4,5,7,9])
>>> A = sparse.coo_matrix((V,(I,J)),shape=(4,4))

Notice that the indices do not need to be sorted.
Duplicate (i,j) entries are summed when converting to CSR or CSC.

>>> I = array([0,0,1,3,1,0,0])
>>> J = array([0,2,1,3,1,0,0])
>>> V = array([1,1,1,1,1,1,1])
>>> B = sparse.coo_matrix((V,(I,J)),shape=(4,4)).tocsr()

This is useful for constructing finite-element stiffness and mass matrices.

Further Details

CSR column indices are not necessarily sorted. Likewise for CSC row indices. Use the .sorted_indices() and
.sort_indices() methods when sorted indices are required (e.g. when passing data to other libraries).

6.23 Sparse linear algebra (scipy.sparse.linalg)

6.23.1 Abstract linear operators

LinearOperator(dtype, shape) Common interface for performing matrix vector products
aslinearoperator(A) Return A as a LinearOperator.

scipy.sparse.linalg.LinearOperator

class scipy.sparse.linalg.LinearOperator(dtype, shape)
Common interface for performing matrix vector products
Many iterative methods (e.g. cg, gmres) do not need to know the individual entries of a matrix to solve a linear
systemA*x=b. Such solvers only require the computation of matrix vector products, A*v where v is a dense vector.
This class serves as an abstract interface between iterative solvers and matrix-like objects.
To construct a concrete LinearOperator, either pass appropriate callables to the constructor of this class, or subclass
it.
A subclass must implement either one of the methods _matvec and _matmat, and the attributes/properties
shape (pair of integers) and dtype (may be None). It may call the __init__ on this class to have these
attributes validated. Implementing _matvec automatically implements _matmat (using a naive algorithm) and
vice-versa.
Optionally, a subclass may implement _rmatvec or _adjoint to implement the Hermitian adjoint (conjugate
transpose). As with _matvec and _matmat, implementing either _rmatvec or _adjoint implements the
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other automatically. Implementing _adjoint is preferable; _rmatvec is mostly there for backwards compati-
bility.

Parameters

shape [tuple] Matrix dimensions (M,N).
matvec [callable f(v)] Returns returns A * v.
rmatvec [callable f(v)] Returns A^H * v, where A^H is the conjugate transpose of A.
matmat [callable f(V)] Returns A * V, where V is a dense matrix with dimensions (N,K).
dtype [dtype] Data type of the matrix.

See also:

aslinearoperator

Construct LinearOperators

Notes

The user-defined matvec() function must properly handle the case where v has shape (N,) as well as the (N,1) case.
The shape of the return type is handled internally by LinearOperator.
LinearOperator instances can also be multiplied, added with each other and exponentiated, all lazily: the result of
these operations is always a new, composite LinearOperator, that defers linear operations to the original operators
and combines the results.
More details regarding how to subclass a LinearOperator and several examples of concrete LinearOperator instances
can be found in the external project PyLops.

Examples

>>> import numpy as np
>>> from scipy.sparse.linalg import LinearOperator
>>> def mv(v):
... return np.array([2*v[0], 3*v[1]])
...
>>> A = LinearOperator((2,2), matvec=mv)
>>> A
<2x2 _CustomLinearOperator with dtype=float64>
>>> A.matvec(np.ones(2))
array([ 2., 3.])
>>> A * np.ones(2)
array([ 2., 3.])

Attributes

args [tuple] For linear operators describing products etc. of other linear operators, the operands
of the binary operation.

Methods

__call__(x) Call self as a function.
Continued on next page
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Table 182 – continued from previous page
adjoint() Hermitian adjoint.
dot(x) Matrix-matrix or matrix-vector multiplication.
matmat(X) Matrix-matrix multiplication.
matvec(x) Matrix-vector multiplication.
rmatvec(x) Adjoint matrix-vector multiplication.
transpose() Transpose this linear operator.

scipy.sparse.linalg.LinearOperator.__call__
LinearOperator.__call__(x)

Call self as a function.

scipy.sparse.linalg.LinearOperator.adjoint
LinearOperator.adjoint()

Hermitian adjoint.
Returns the Hermitian adjoint of self, aka the Hermitian conjugate or Hermitian transpose. For a complex
matrix, the Hermitian adjoint is equal to the conjugate transpose.
Can be abbreviated self.H instead of self.adjoint().

Returns

A_H [LinearOperator] Hermitian adjoint of self.

scipy.sparse.linalg.LinearOperator.dot
LinearOperator.dot(x)

Matrix-matrix or matrix-vector multiplication.
Parameters

x [array_like] 1-d or 2-d array, representing a vector or matrix.
Returns

Ax [array] 1-d or 2-d array (depending on the shape of x) that represents the result of ap-
plying this linear operator on x.

scipy.sparse.linalg.LinearOperator.matmat
LinearOperator.matmat(X)

Matrix-matrix multiplication.
Performs the operation y=A*X where A is an MxN linear operator and X dense N*K matrix or ndarray.

Parameters

X [{matrix, ndarray}] An array with shape (N,K).
Returns

Y [{matrix, ndarray}] A matrix or ndarray with shape (M,K) depending on the type of the
X argument.

Notes

This matmat wraps any user-specified matmat routine or overridden _matmat method to ensure that y has the
correct type.
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scipy.sparse.linalg.LinearOperator.matvec
LinearOperator.matvec(x)

Matrix-vector multiplication.
Performs the operation y=A*x where A is an MxN linear operator and x is a column vector or 1-d array.

Parameters

x [{matrix, ndarray}] An array with shape (N,) or (N,1).
Returns

y [{matrix, ndarray}] A matrix or ndarray with shape (M,) or (M,1) depending on the
type and shape of the x argument.

Notes

This matvec wraps the user-specified matvec routine or overridden _matvec method to ensure that y has the
correct shape and type.

scipy.sparse.linalg.LinearOperator.rmatvec
LinearOperator.rmatvec(x)

Adjoint matrix-vector multiplication.
Performs the operation y = A^H * x where A is an MxN linear operator and x is a column vector or 1-d array.

Parameters

x [{matrix, ndarray}] An array with shape (M,) or (M,1).
Returns

y [{matrix, ndarray}] A matrix or ndarray with shape (N,) or (N,1) depending on the type
and shape of the x argument.

Notes

This rmatvec wraps the user-specified rmatvec routine or overridden _rmatvec method to ensure that y has
the correct shape and type.

scipy.sparse.linalg.LinearOperator.transpose
LinearOperator.transpose()

Transpose this linear operator.
Returns a LinearOperator that represents the transpose of this one. Can be abbreviated self.T instead of
self.transpose().

__mul__

scipy.sparse.linalg.aslinearoperator

scipy.sparse.linalg.aslinearoperator(A)
Return A as a LinearOperator.
‘A’ may be any of the following types:
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• ndarray
• matrix
• sparse matrix (e.g. csr_matrix, lil_matrix, etc.)
• LinearOperator
• An object with .shape and .matvec attributes

See the LinearOperator documentation for additional information.

Notes

If ‘A’ has no .dtype attribute, the data type is determined by calling LinearOperator.matvec - set the .dtype
attribute to prevent this call upon the linear operator creation.

Examples

>>> from scipy.sparse.linalg import aslinearoperator
>>> M = np.array([[1,2,3],[4,5,6]], dtype=np.int32)
>>> aslinearoperator(M)
<2x3 MatrixLinearOperator with dtype=int32>

6.23.2 Matrix Operations

inv(A) Compute the inverse of a sparse matrix
expm(A) Compute the matrix exponential using Pade approxima-

tion.
expm_multiply(A, B[, start, stop, num, endpoint]) Compute the action of the matrix exponential of A on B.

scipy.sparse.linalg.inv

scipy.sparse.linalg.inv(A)
Compute the inverse of a sparse matrix

Parameters

A [(M,M) ndarray or sparse matrix] square matrix to be inverted
Returns

Ainv [(M,M) ndarray or sparse matrix] inverse of A

Notes

This computes the sparse inverse of A. If the inverse of A is expected to be non-sparse, it will likely be faster to
convert A to dense and use scipy.linalg.inv.
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Examples

>>> from scipy.sparse import csc_matrix
>>> from scipy.sparse.linalg import inv
>>> A = csc_matrix([[1., 0.], [1., 2.]])
>>> Ainv = inv(A)
>>> Ainv
<2x2 sparse matrix of type '<class 'numpy.float64'>'

with 3 stored elements in Compressed Sparse Column format>
>>> A.dot(Ainv)
<2x2 sparse matrix of type '<class 'numpy.float64'>'

with 2 stored elements in Compressed Sparse Column format>
>>> A.dot(Ainv).todense()
matrix([[ 1., 0.],

[ 0., 1.]])

New in version 0.12.0.

scipy.sparse.linalg.expm

scipy.sparse.linalg.expm(A)
Compute the matrix exponential using Pade approximation.

Parameters

A [(M,M) array_like or sparse matrix] 2D Array or Matrix (sparse or dense) to be exponenti-
ated

Returns

expA [(M,M) ndarray] Matrix exponential of A

Notes

This is algorithm (6.1) which is a simplification of algorithm (5.1).
New in version 0.12.0.

References

[1]

Examples

>>> from scipy.sparse import csc_matrix
>>> from scipy.sparse.linalg import expm
>>> A = csc_matrix([[1, 0, 0], [0, 2, 0], [0, 0, 3]])
>>> A.todense()
matrix([[1, 0, 0],

[0, 2, 0],
[0, 0, 3]], dtype=int64)

>>> Aexp = expm(A)
(continues on next page)
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(continued from previous page)
>>> Aexp
<3x3 sparse matrix of type '<class 'numpy.float64'>'

with 3 stored elements in Compressed Sparse Column format>
>>> Aexp.todense()
matrix([[ 2.71828183, 0. , 0. ],

[ 0. , 7.3890561 , 0. ],
[ 0. , 0. , 20.08553692]])

scipy.sparse.linalg.expm_multiply

scipy.sparse.linalg.expm_multiply(A, B, start=None, stop=None, num=None, endpoint=None)
Compute the action of the matrix exponential of A on B.

Parameters

A [transposable linear operator] The operator whose exponential is of interest.
B [ndarray] The matrix or vector to be multiplied by the matrix exponential of A.
start [scalar, optional] The starting time point of the sequence.
stop [scalar, optional] The end time point of the sequence, unless endpoint is set to False. In that

case, the sequence consists of all but the last of num + 1 evenly spaced time points, so that
stop is excluded. Note that the step size changes when endpoint is False.

num [int, optional] Number of time points to use.
endpoint [bool, optional] If True, stop is the last time point. Otherwise, it is not included.

Returns

expm_A_B
[ndarray] The result of the action etkAB.

Notes

The optional arguments defining the sequence of evenly spaced time points are compatible with the arguments of
numpy.linspace.
The output ndarray shape is somewhat complicated so I explain it here. The ndim of the output could be either
1, 2, or 3. It would be 1 if you are computing the expm action on a single vector at a single time point. It would
be 2 if you are computing the expm action on a vector at multiple time points, or if you are computing the expm
action on a matrix at a single time point. It would be 3 if you want the action on a matrix with multiple columns at
multiple time points. If multiple time points are requested, expm_A_B[0] will always be the action of the expm at
the first time point, regardless of whether the action is on a vector or a matrix.

References

[1], [2]

Examples

>>> from scipy.sparse import csc_matrix
>>> from scipy.sparse.linalg import expm, expm_multiply
>>> A = csc_matrix([[1, 0], [0, 1]])

(continues on next page)
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(continued from previous page)
>>> A.todense()
matrix([[1, 0],

[0, 1]], dtype=int64)
>>> B = np.array([np.exp(-1.), np.exp(-2.)])
>>> B
array([ 0.36787944, 0.13533528])
>>> expm_multiply(A, B, start=1, stop=2, num=3, endpoint=True)
array([[ 1. , 0.36787944],

[ 1.64872127, 0.60653066],
[ 2.71828183, 1. ]])

>>> expm(A).dot(B) # Verify 1st timestep
array([ 1. , 0.36787944])
>>> expm(1.5*A).dot(B) # Verify 2nd timestep
array([ 1.64872127, 0.60653066])
>>> expm(2*A).dot(B) # Verify 3rd timestep
array([ 2.71828183, 1. ])

6.23.3 Matrix norms

norm(x[, ord, axis]) Norm of a sparse matrix
onenormest(A[, t, itmax, compute_v, compute_w]) Compute a lower bound of the 1-norm of a sparse matrix.

scipy.sparse.linalg.norm

scipy.sparse.linalg.norm(x, ord=None, axis=None)
Norm of a sparse matrix
This function is able to return one of seven different matrix norms, depending on the value of the ord parameter.

Parameters

x [a sparse matrix] Input sparse matrix.
ord [{non-zero int, inf, -inf, ‘fro’}, optional] Order of the norm (see table under Notes). inf

means numpy’s inf object.
axis [{int, 2-tuple of ints, None}, optional] If axis is an integer, it specifies the axis of x along

which to compute the vector norms. If axis is a 2-tuple, it specifies the axes that hold 2-D
matrices, and the matrix norms of these matrices are computed. If axis is None then either
a vector norm (when x is 1-D) or a matrix norm (when x is 2-D) is returned.

Returns

n [float or ndarray]

Notes

Some of the ord are not implemented because some associated functions like, _multi_svd_norm, are not yet avail-
able for sparse matrix.
This docstring is modified based on numpy.linalg.norm. https://github.com/numpy/numpy/blob/master/numpy/
linalg/linalg.py
The following norms can be calculated:
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ord norm for sparse matrices
None Frobenius norm
‘fro’ Frobenius norm
inf max(sum(abs(x), axis=1))
-inf min(sum(abs(x), axis=1))
0 abs(x).sum(axis=axis)
1 max(sum(abs(x), axis=0))
-1 min(sum(abs(x), axis=0))
2 Not implemented
-2 Not implemented
other Not implemented

The Frobenius norm is given by [1]:
||A||F = [

∑
i,j abs(ai,j)

2]1/2

References

[1]

Examples

>>> from scipy.sparse import *
>>> import numpy as np
>>> from scipy.sparse.linalg import norm
>>> a = np.arange(9) - 4
>>> a
array([-4, -3, -2, -1, 0, 1, 2, 3, 4])
>>> b = a.reshape((3, 3))
>>> b
array([[-4, -3, -2],

[-1, 0, 1],
[ 2, 3, 4]])

>>> b = csr_matrix(b)
>>> norm(b)
7.745966692414834
>>> norm(b, 'fro')
7.745966692414834
>>> norm(b, np.inf)
9
>>> norm(b, -np.inf)
2
>>> norm(b, 1)
7
>>> norm(b, -1)
6
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scipy.sparse.linalg.onenormest

scipy.sparse.linalg.onenormest(A, t=2, itmax=5, compute_v=False, compute_w=False)
Compute a lower bound of the 1-norm of a sparse matrix.

Parameters

A [ndarray or other linear operator] A linear operator that can be transposed and that can pro-
duce matrix products.

t [int, optional] A positive parameter controlling the tradeoff between accuracy versus time
and memory usage. Larger values take longer and use more memory but give more accurate
output.

itmax [int, optional] Use at most this many iterations.
compute_v

[bool, optional] Request a norm-maximizing linear operator input vector if True.
compute_w

[bool, optional] Request a norm-maximizing linear operator output vector if True.
Returns

est [float] An underestimate of the 1-norm of the sparse matrix.
v [ndarray, optional] The vector such that ||Av||_1 == est*||v||_1. It can be thought of as an

input to the linear operator that gives an output with particularly large norm.
w [ndarray, optional] The vector Av which has relatively large 1-norm. It can be thought of as

an output of the linear operator that is relatively large in norm compared to the input.

Notes

This is algorithm 2.4 of [1].
In [2] it is described as follows. “This algorithm typically requires the evaluation of about 4t matrix-vector products
and almost invariably produces a norm estimate (which is, in fact, a lower bound on the norm) correct to within a
factor 3.”
New in version 0.13.0.

References

[1], [2]

Examples

>>> from scipy.sparse import csc_matrix
>>> from scipy.sparse.linalg import onenormest
>>> A = csc_matrix([[1., 0., 0.], [5., 8., 2.], [0., -1., 0.]],␣
↪→dtype=float)
>>> A.todense()
matrix([[ 1., 0., 0.],

[ 5., 8., 2.],
[ 0., -1., 0.]])

>>> onenormest(A)
9.0
>>> np.linalg.norm(A.todense(), ord=1)
9.0
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6.23.4 Solving linear problems

Direct methods for linear equation systems:

spsolve(A, b[, permc_spec, use_umfpack]) Solve the sparse linear system Ax=b, where b may be a
vector or a matrix.

spsolve_triangular(A, b[, lower, …]) Solve the equationA x= b for x, assumingA is a triangular
matrix.

factorized(A) Return a function for solving a sparse linear system, with
A pre-factorized.

MatrixRankWarning
use_solver(**kwargs) Select default sparse direct solver to be used.

scipy.sparse.linalg.spsolve

scipy.sparse.linalg.spsolve(A, b, permc_spec=None, use_umfpack=True)
Solve the sparse linear system Ax=b, where b may be a vector or a matrix.

Parameters

A [ndarray or sparse matrix] The square matrix A will be converted into CSC or CSR form
b [ndarray or sparse matrix] The matrix or vector representing the right hand side of the equa-

tion. If a vector, b.shape must be (n,) or (n, 1).
permc_spec

[str, optional] How to permute the columns of the matrix for sparsity preservation. (default:
‘COLAMD’)
• NATURAL: natural ordering.
• MMD_ATA: minimum degree ordering on the structure of A^T A.
• MMD_AT_PLUS_A: minimum degree ordering on the structure of A^T+A.
• COLAMD: approximate minimum degree column ordering

use_umfpack
[bool, optional] if True (default) then use umfpack for the solution. This is only referenced
if b is a vector and scikit-umfpack is installed.

Returns

x [ndarray or sparse matrix] the solution of the sparse linear equation. If b is a vector, then x is
a vector of size A.shape[1] If b is a matrix, then x is a matrix of size (A.shape[1], b.shape[1])

Notes

For solving the matrix expression AX = B, this solver assumes the resulting matrix X is sparse, as is often the case
for very sparse inputs. If the resulting X is dense, the construction of this sparse result will be relatively expensive.
In that case, consider converting A to a dense matrix and using scipy.linalg.solve or its variants.

Examples

>>> from scipy.sparse import csc_matrix
>>> from scipy.sparse.linalg import spsolve
>>> A = csc_matrix([[3, 2, 0], [1, -1, 0], [0, 5, 1]], dtype=float)
>>> B = csc_matrix([[2, 0], [-1, 0], [2, 0]], dtype=float)
>>> x = spsolve(A, B)

(continues on next page)
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(continued from previous page)
>>> np.allclose(A.dot(x).todense(), B.todense())
True

scipy.sparse.linalg.spsolve_triangular

scipy.sparse.linalg.spsolve_triangular(A, b, lower=True, overwrite_A=False, over-
write_b=False)

Solve the equation A x = b for x, assuming A is a triangular matrix.
Parameters

A [(M, M) sparse matrix] A sparse square triangular matrix. Should be in CSR format.
b [(M,) or (M, N) array_like] Right-hand side matrix in A x = b
lower [bool, optional] Whether A is a lower or upper triangular matrix. Default is lower triangular

matrix.
overwrite_A

[bool, optional] Allow changing A. The indices of A are going to be sorted and zero entries
are going to be removed. Enabling gives a performance gain. Default is False.

overwrite_b
[bool, optional] Allow overwriting data in b. Enabling gives a performance gain. Default is
False. If overwrite_b is True, it should be ensured that b has an appropriate dtype to be able
to store the result.

Returns

x [(M,) or (M, N) ndarray] Solution to the system A x = b. Shape of return matches shape of
b.

Raises

LinAlgError
If A is singular or not triangular.

ValueError
If shape of A or shape of b do not match the requirements.

Notes

New in version 0.19.0.

Examples

>>> from scipy.sparse import csr_matrix
>>> from scipy.sparse.linalg import spsolve_triangular
>>> A = csr_matrix([[3, 0, 0], [1, -1, 0], [2, 0, 1]], dtype=float)
>>> B = np.array([[2, 0], [-1, 0], [2, 0]], dtype=float)
>>> x = spsolve_triangular(A, B)
>>> np.allclose(A.dot(x), B)
True
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scipy.sparse.linalg.factorized

scipy.sparse.linalg.factorized(A)
Return a function for solving a sparse linear system, with A pre-factorized.

Parameters

A [(N, N) array_like] Input.
Returns

solve [callable] To solve the linear system of equations given in A, the solve callable should be
passed an ndarray of shape (N,).

Examples

>>> from scipy.sparse.linalg import factorized
>>> A = np.array([[ 3. , 2. , -1. ],
... [ 2. , -2. , 4. ],
... [-1. , 0.5, -1. ]])
>>> solve = factorized(A) # Makes LU decomposition.
>>> rhs1 = np.array([1, -2, 0])
>>> solve(rhs1) # Uses the LU factors.
array([ 1., -2., -2.])

scipy.sparse.linalg.MatrixRankWarning

exception scipy.sparse.linalg.MatrixRankWarning

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

scipy.sparse.linalg.use_solver

scipy.sparse.linalg.use_solver(**kwargs)
Select default sparse direct solver to be used.

Parameters

useUmfpack
[bool, optional] Use UMFPACK over SuperLU. Has effect only if scikits.umfpack is in-
stalled. Default: True

assumeSortedIndices
[bool, optional] Allow UMFPACK to skip the step of sorting indices for a CSR/CSCmatrix.
Has effect only if useUmfpack is True and scikits.umfpack is installed. Default: False

Notes

The default sparse solver is umfpack when available (scikits.umfpack is installed). This can be changed by passing
useUmfpack = False, which then causes the always present SuperLU based solver to be used.
Umfpack requires a CSR/CSC matrix to have sorted column/row indices. If sure that the matrix fulfills this, pass
assumeSortedIndices=True to gain some speed.
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Iterative methods for linear equation systems:

bicg(A, b[, x0, tol, maxiter, M, callback, atol]) Use BIConjugate Gradient iteration to solve Ax = b.
bicgstab(A, b[, x0, tol, maxiter, M, …]) Use BIConjugate Gradient STABilized iteration to solve

Ax = b.
cg(A, b[, x0, tol, maxiter, M, callback, atol]) Use Conjugate Gradient iteration to solve Ax = b.
cgs(A, b[, x0, tol, maxiter, M, callback, atol]) Use Conjugate Gradient Squared iteration to solve Ax =

b.
gmres(A, b[, x0, tol, restart, maxiter, M, …]) Use Generalized Minimal RESidual iteration to solve Ax

= b.
lgmres(A, b[, x0, tol, maxiter, M, …]) Solve a matrix equation using the LGMRES algorithm.
minres(A, b[, x0, shift, tol, maxiter, M, …]) Use MINimum RESidual iteration to solve Ax=b
qmr(A, b[, x0, tol, maxiter, M1, M2, …]) Use Quasi-Minimal Residual iteration to solve Ax = b.
gcrotmk(A, b[, x0, tol, maxiter, M, …]) Solve a matrix equation using flexible GCROT(m,k) al-

gorithm.

scipy.sparse.linalg.bicg

scipy.sparse.linalg.bicg(A, b, x0=None, tol=1e-05, maxiter=None, M=None, callback=None,
atol=None)

Use BIConjugate Gradient iteration to solve Ax = b.
Parameters

A [{sparse matrix, dense matrix, LinearOperator}] The real or complex N-by-N matrix of the
linear system. Alternatively, A can be a linear operator which can produce Ax and A^T x
using, e.g., scipy.sparse.linalg.LinearOperator.

b [{array, matrix}] Right hand side of the linear system. Has shape (N,) or (N,1).
Returns

x [{array, matrix}] The converged solution.
info [integer]

Provides convergence information:
0 : successful exit >0 : convergence to tolerance not achieved, number of iter-
ations <0 : illegal input or breakdown

Other Parameters

x0 [{array, matrix}] Starting guess for the solution.
tol, atol [float, optional] Tolerances for convergence, norm(residual) <=

max(tol*norm(b), atol). The default for atol is 'legacy', which emu-
lates a different legacy behavior.

Warning: The default value for atol will be changed in a future release. For future
compatibility, specify atol explicitly.

maxiter [integer] Maximum number of iterations. Iteration will stop after maxiter steps even if the
specified tolerance has not been achieved.

M [{sparse matrix, dense matrix, LinearOperator}] Preconditioner for A. The preconditioner
should approximate the inverse of A. Effective preconditioning dramatically improves the
rate of convergence, which implies that fewer iterations are needed to reach a given error
tolerance.

callback [function] User-supplied function to call after each iteration. It is called as callback(xk),
where xk is the current solution vector.
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scipy.sparse.linalg.bicgstab

scipy.sparse.linalg.bicgstab(A, b, x0=None, tol=1e-05, maxiter=None, M=None, callback=None,
atol=None)

Use BIConjugate Gradient STABilized iteration to solve Ax = b.
Parameters

A [{sparse matrix, dense matrix, LinearOperator}] The real or complex N-by-N matrix of the
linear system. Alternatively, A can be a linear operator which can produce Ax using, e.g.,
scipy.sparse.linalg.LinearOperator.

b [{array, matrix}] Right hand side of the linear system. Has shape (N,) or (N,1).
Returns

x [{array, matrix}] The converged solution.
info [integer]

Provides convergence information:
0 : successful exit >0 : convergence to tolerance not achieved, number of iter-
ations <0 : illegal input or breakdown

Other Parameters

x0 [{array, matrix}] Starting guess for the solution.
tol, atol [float, optional] Tolerances for convergence, norm(residual) <=

max(tol*norm(b), atol). The default for atol is 'legacy', which emu-
lates a different legacy behavior.

Warning: The default value for atol will be changed in a future release. For future
compatibility, specify atol explicitly.

maxiter [integer] Maximum number of iterations. Iteration will stop after maxiter steps even if the
specified tolerance has not been achieved.

M [{sparse matrix, dense matrix, LinearOperator}] Preconditioner for A. The preconditioner
should approximate the inverse of A. Effective preconditioning dramatically improves the
rate of convergence, which implies that fewer iterations are needed to reach a given error
tolerance.

callback [function] User-supplied function to call after each iteration. It is called as callback(xk),
where xk is the current solution vector.

scipy.sparse.linalg.cg

scipy.sparse.linalg.cg(A, b, x0=None, tol=1e-05, maxiter=None, M=None, callback=None,
atol=None)

Use Conjugate Gradient iteration to solve Ax = b.
Parameters

A [{sparse matrix, dense matrix, LinearOperator}] The real or complex N-by-N matrix of
the linear system. A must represent a hermitian, positive definite matrix. Alternatively, A
can be a linear operator which can produce Ax using, e.g., scipy.sparse.linalg.
LinearOperator.

b [{array, matrix}] Right hand side of the linear system. Has shape (N,) or (N,1).
Returns

x [{array, matrix}] The converged solution.
info [integer]
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Provides convergence information:
0 : successful exit >0 : convergence to tolerance not achieved, number of iter-
ations <0 : illegal input or breakdown

Other Parameters

x0 [{array, matrix}] Starting guess for the solution.
tol, atol [float, optional] Tolerances for convergence, norm(residual) <=

max(tol*norm(b), atol). The default for atol is 'legacy', which emu-
lates a different legacy behavior.

Warning: The default value for atol will be changed in a future release. For future
compatibility, specify atol explicitly.

maxiter [integer] Maximum number of iterations. Iteration will stop after maxiter steps even if the
specified tolerance has not been achieved.

M [{sparse matrix, dense matrix, LinearOperator}] Preconditioner for A. The preconditioner
should approximate the inverse of A. Effective preconditioning dramatically improves the
rate of convergence, which implies that fewer iterations are needed to reach a given error
tolerance.

callback [function] User-supplied function to call after each iteration. It is called as callback(xk),
where xk is the current solution vector.

scipy.sparse.linalg.cgs

scipy.sparse.linalg.cgs(A, b, x0=None, tol=1e-05, maxiter=None, M=None, callback=None,
atol=None)

Use Conjugate Gradient Squared iteration to solve Ax = b.
Parameters

A [{sparsematrix, densematrix, LinearOperator}] The real-valuedN-by-Nmatrix of the linear
system. Alternatively, A can be a linear operator which can produce Ax using, e.g., scipy.
sparse.linalg.LinearOperator.

b [{array, matrix}] Right hand side of the linear system. Has shape (N,) or (N,1).
Returns

x [{array, matrix}] The converged solution.
info [integer]

Provides convergence information:
0 : successful exit >0 : convergence to tolerance not achieved, number of iter-
ations <0 : illegal input or breakdown

Other Parameters

x0 [{array, matrix}] Starting guess for the solution.
tol, atol [float, optional] Tolerances for convergence, norm(residual) <=

max(tol*norm(b), atol). The default for atol is 'legacy', which emu-
lates a different legacy behavior.

Warning: The default value for atol will be changed in a future release. For future
compatibility, specify atol explicitly.

maxiter [integer] Maximum number of iterations. Iteration will stop after maxiter steps even if the
specified tolerance has not been achieved.
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M [{sparse matrix, dense matrix, LinearOperator}] Preconditioner for A. The preconditioner
should approximate the inverse of A. Effective preconditioning dramatically improves the
rate of convergence, which implies that fewer iterations are needed to reach a given error
tolerance.

callback [function] User-supplied function to call after each iteration. It is called as callback(xk),
where xk is the current solution vector.

scipy.sparse.linalg.gmres

scipy.sparse.linalg.gmres(A, b, x0=None, tol=1e-05, restart=None, maxiter=None, M=None, call-
back=None, restrt=None, atol=None)

Use Generalized Minimal RESidual iteration to solve Ax = b.
Parameters

A [{sparse matrix, dense matrix, LinearOperator}] The real or complex N-by-N matrix of the
linear system. Alternatively, A can be a linear operator which can produce Ax using, e.g.,
scipy.sparse.linalg.LinearOperator.

b [{array, matrix}] Right hand side of the linear system. Has shape (N,) or (N,1).
Returns

x [{array, matrix}] The converged solution.
info [int]

Provides convergence information:
• 0 : successful exit
• >0 : convergence to tolerance not achieved, number of iterations
• <0 : illegal input or breakdown

Other Parameters

x0 [{array, matrix}] Starting guess for the solution (a vector of zeros by default).
tol, atol [float, optional] Tolerances for convergence, norm(residual) <=

max(tol*norm(b), atol). The default for atol is 'legacy', which emu-
lates a different legacy behavior.

Warning: The default value for atol will be changed in a future release. For future
compatibility, specify atol explicitly.

restart [int, optional] Number of iterations between restarts. Larger values increase iteration cost,
but may be necessary for convergence. Default is 20.

maxiter [int, optional] Maximum number of iterations (restart cycles). Iteration will stop after max-
iter steps even if the specified tolerance has not been achieved.

M [{sparse matrix, dense matrix, LinearOperator}] Inverse of the preconditioner of A. M
should approximate the inverse of A and be easy to solve for (see Notes). Effective precon-
ditioning dramatically improves the rate of convergence, which implies that fewer iterations
are needed to reach a given error tolerance. By default, no preconditioner is used.

callback [function] User-supplied function to call after each iteration. It is called as callback(rk),
where rk is the current residual vector.

restrt [int, optional] DEPRECATED - use restart instead.
See also:
LinearOperator
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Notes

A preconditioner, P, is chosen such that P is close to A but easy to solve for. The preconditioner parameter required
by this routine is M = P^-1. The inverse should preferably not be calculated explicitly. Rather, use the following
template to produce M:

# Construct a linear operator that computes P^-1 * x.
import scipy.sparse.linalg as spla
M_x = lambda x: spla.spsolve(P, x)
M = spla.LinearOperator((n, n), M_x)

Examples

>>> from scipy.sparse import csc_matrix
>>> from scipy.sparse.linalg import gmres
>>> A = csc_matrix([[3, 2, 0], [1, -1, 0], [0, 5, 1]], dtype=float)
>>> b = np.array([2, 4, -1], dtype=float)
>>> x, exitCode = gmres(A, b)
>>> print(exitCode) # 0 indicates successful convergence
0
>>> np.allclose(A.dot(x), b)
True

scipy.sparse.linalg.lgmres

scipy.sparse.linalg.lgmres(A, b, x0=None, tol=1e-05, maxiter=1000, M=None, callback=None,
inner_m=30, outer_k=3, outer_v=None, store_outer_Av=True,
prepend_outer_v=False, atol=None)

Solve a matrix equation using the LGMRES algorithm.
The LGMRES algorithm [1] [2] is designed to avoid some problems in the convergence in restarted GMRES, and
often converges in fewer iterations.

Parameters

A [{sparse matrix, dense matrix, LinearOperator}] The real or complex N-by-N matrix of the
linear system. Alternatively, A can be a linear operator which can produce Ax using, e.g.,
scipy.sparse.linalg.LinearOperator.

b [{array, matrix}] Right hand side of the linear system. Has shape (N,) or (N,1).
x0 [{array, matrix}] Starting guess for the solution.
tol, atol [float, optional] Tolerances for convergence, norm(residual) <=

max(tol*norm(b), atol). The default for atol is tol.

Warning: The default value for atol will be changed in a future release. For future
compatibility, specify atol explicitly.

maxiter [int, optional] Maximum number of iterations. Iteration will stop after maxiter steps even if
the specified tolerance has not been achieved.

M [{sparse matrix, dense matrix, LinearOperator}, optional] Preconditioner for A. The pre-
conditioner should approximate the inverse of A. Effective preconditioning dramatically
improves the rate of convergence, which implies that fewer iterations are needed to reach a
given error tolerance.

6.23. Sparse linear algebra (scipy.sparse.linalg) 1787



SciPy Reference Guide, Release 1.3.1

callback [function, optional] User-supplied function to call after each iteration. It is called as call-
back(xk), where xk is the current solution vector.

inner_m [int, optional] Number of inner GMRES iterations per each outer iteration.
outer_k [int, optional] Number of vectors to carry between inner GMRES iterations. According to

[1], good values are in the range of 1…3. However, note that if you want to use the additional
vectors to accelerate solving multiple similar problems, larger values may be beneficial.

outer_v [list of tuples, optional] List containing tuples (v, Av) of vectors and corresponding
matrix-vector products, used to augment the Krylov subspace, and carried between inner
GMRES iterations. The element Av can be None if the matrix-vector product should be re-
evaluated. This parameter is modified in-place by lgmres, and can be used to pass “guess”
vectors in and out of the algorithm when solving similar problems.

store_outer_Av
[bool, optional] Whether LGMRES should store also A*v in addition to vectors v in the
outer_v list. Default is True.

prepend_outer_v
[bool, optional] Whether to put outer_v augmentation vectors before Krylov iterates. In
standard LGMRES, prepend_outer_v=False.

Returns

x [array or matrix] The converged solution.
info [int] Provides convergence information:

• 0 : successful exit
• >0 : convergence to tolerance not achieved, number of iterations
• <0 : illegal input or breakdown

Notes

The LGMRES algorithm [1] [2] is designed to avoid the slowing of convergence in restarted GMRES, due to
alternating residual vectors. Typically, it often outperforms GMRES(m) of comparable memory requirements by
some measure, or at least is not much worse.
Another advantage in this algorithm is that you can supply it with ‘guess’ vectors in the outer_v argument that
augment the Krylov subspace. If the solution lies close to the span of these vectors, the algorithm converges faster.
This can be useful if several very similar matrices need to be inverted one after another, such as in Newton-Krylov
iteration where the Jacobian matrix often changes little in the nonlinear steps.

References

[1], [2]

Examples

>>> from scipy.sparse import csc_matrix
>>> from scipy.sparse.linalg import lgmres
>>> A = csc_matrix([[3, 2, 0], [1, -1, 0], [0, 5, 1]], dtype=float)
>>> b = np.array([2, 4, -1], dtype=float)
>>> x, exitCode = lgmres(A, b)
>>> print(exitCode) # 0 indicates successful convergence
0
>>> np.allclose(A.dot(x), b)
True
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scipy.sparse.linalg.minres

scipy.sparse.linalg.minres(A, b, x0=None, shift=0.0, tol=1e-05, maxiter=None, M=None, call-
back=None, show=False, check=False)

Use MINimum RESidual iteration to solve Ax=b
MINRES minimizes norm(A*x - b) for a real symmetric matrix A. Unlike the Conjugate Gradient method, A can
be indefinite or singular.
If shift != 0 then the method solves (A - shift*I)x = b

Parameters

A [{sparse matrix, dense matrix, LinearOperator}] The real symmetric N-by-N matrix of the
linear system Alternatively, A can be a linear operator which can produce Ax using, e.g.,
scipy.sparse.linalg.LinearOperator.

b [{array, matrix}] Right hand side of the linear system. Has shape (N,) or (N,1).
Returns

x [{array, matrix}] The converged solution.
info [integer]

Provides convergence information:
0 : successful exit >0 : convergence to tolerance not achieved, number of iter-
ations <0 : illegal input or breakdown

Other Parameters

x0 [{array, matrix}] Starting guess for the solution.
tol [float] Tolerance to achieve. The algorithm terminates when the relative residual is below tol.
maxiter [integer] Maximum number of iterations. Iteration will stop after maxiter steps even if the

specified tolerance has not been achieved.
M [{sparse matrix, dense matrix, LinearOperator}] Preconditioner for A. The preconditioner

should approximate the inverse of A. Effective preconditioning dramatically improves the
rate of convergence, which implies that fewer iterations are needed to reach a given error
tolerance.

callback [function] User-supplied function to call after each iteration. It is called as callback(xk),
where xk is the current solution vector.

References

Solution of sparse indefinite systems of linear equations,

C. C. Paige and M. A. Saunders (1975), SIAM J. Numer. Anal. 12(4), pp. 617-629. https://web.stanford.
edu/group/SOL/software/minres/

This file is a translation of the following MATLAB implementation:

https://web.stanford.edu/group/SOL/software/minres/minres-matlab.zip

scipy.sparse.linalg.qmr

scipy.sparse.linalg.qmr(A, b, x0=None, tol=1e-05, maxiter=None, M1=None, M2=None, call-
back=None, atol=None)

Use Quasi-Minimal Residual iteration to solve Ax = b.
Parameters
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A [{sparsematrix, densematrix, LinearOperator}] The real-valuedN-by-Nmatrix of the linear
system. Alternatively, A can be a linear operator which can produce Ax and A^T x using,
e.g., scipy.sparse.linalg.LinearOperator.

b [{array, matrix}] Right hand side of the linear system. Has shape (N,) or (N,1).
Returns

x [{array, matrix}] The converged solution.
info [integer]

Provides convergence information:
0 : successful exit >0 : convergence to tolerance not achieved, number of iter-
ations <0 : illegal input or breakdown

Other Parameters

x0 [{array, matrix}] Starting guess for the solution.
tol, atol [float, optional] Tolerances for convergence, norm(residual) <=

max(tol*norm(b), atol). The default for atol is 'legacy', which emu-
lates a different legacy behavior.

Warning: The default value for atol will be changed in a future release. For future
compatibility, specify atol explicitly.

maxiter [integer] Maximum number of iterations. Iteration will stop after maxiter steps even if the
specified tolerance has not been achieved.

M1 [{sparse matrix, dense matrix, LinearOperator}] Left preconditioner for A.
M2 [{sparse matrix, dense matrix, LinearOperator}] Right preconditioner for A. Used together

with the left preconditioner M1. The matrix M1*A*M2 should have better conditioned than
A alone.

callback [function] User-supplied function to call after each iteration. It is called as callback(xk),
where xk is the current solution vector.

See also:
LinearOperator

Examples

>>> from scipy.sparse import csc_matrix
>>> from scipy.sparse.linalg import qmr
>>> A = csc_matrix([[3, 2, 0], [1, -1, 0], [0, 5, 1]], dtype=float)
>>> b = np.array([2, 4, -1], dtype=float)
>>> x, exitCode = qmr(A, b)
>>> print(exitCode) # 0 indicates successful convergence
0
>>> np.allclose(A.dot(x), b)
True

scipy.sparse.linalg.gcrotmk

scipy.sparse.linalg.gcrotmk(A, b, x0=None, tol=1e-05, maxiter=1000, M=None, callback=None,
m=20, k=None, CU=None, discard_C=False, truncate=’oldest’,
atol=None)

Solve a matrix equation using flexible GCROT(m,k) algorithm.
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Parameters

A [{sparse matrix, dense matrix, LinearOperator}] The real or complex N-by-N matrix of the
linear system. Alternatively, A can be a linear operator which can produce Ax using, e.g.,
scipy.sparse.linalg.LinearOperator.

b [{array, matrix}] Right hand side of the linear system. Has shape (N,) or (N,1).
x0 [{array, matrix}] Starting guess for the solution.
tol, atol [float, optional] Tolerances for convergence, norm(residual) <=

max(tol*norm(b), atol). The default for atol is tol.

Warning: The default value for atol will be changed in a future release. For future
compatibility, specify atol explicitly.

maxiter [int, optional] Maximum number of iterations. Iteration will stop after maxiter steps even if
the specified tolerance has not been achieved.

M [{sparse matrix, dense matrix, LinearOperator}, optional] Preconditioner for A. The pre-
conditioner should approximate the inverse of A. gcrotmk is a ‘flexible’ algorithm and the
preconditioner can vary from iteration to iteration. Effective preconditioning dramatically
improves the rate of convergence, which implies that fewer iterations are needed to reach a
given error tolerance.

callback [function, optional] User-supplied function to call after each iteration. It is called as call-
back(xk), where xk is the current solution vector.

m [int, optional] Number of inner FGMRES iterations per each outer iteration. Default: 20
k [int, optional] Number of vectors to carry between inner FGMRES iterations. According to

[2], good values are around m. Default: m
CU [list of tuples, optional] List of tuples (c, u) which contain the columns of the matrices

C and U in the GCROT(m,k) algorithm. For details, see [2]. The list given and vectors
contained in it are modified in-place. If not given, start from empty matrices. The c elements
in the tuples can be None, in which case the vectors are recomputed via c = A u on start
and orthogonalized as described in [3].

discard_C [bool, optional] Discard the C-vectors at the end. Useful if recycling Krylov subspaces for
different linear systems.

truncate [{‘oldest’, ‘smallest’}, optional] Truncation scheme to use. Drop: oldest vectors, or vectors
with smallest singular values using the scheme discussed in [1,2]. See [2] for detailed com-
parison. Default: ‘oldest’

Returns

x [array or matrix] The solution found.
info [int] Provides convergence information:

• 0 : successful exit
• >0 : convergence to tolerance not achieved, number of iterations

References

[1], [2], [3]
Iterative methods for least-squares problems:

lsqr(A, b[, damp, atol, btol, conlim, …]) Find the least-squares solution to a large, sparse, linear
system of equations.

lsmr(A, b[, damp, atol, btol, conlim, …]) Iterative solver for least-squares problems.

6.23. Sparse linear algebra (scipy.sparse.linalg) 1791



SciPy Reference Guide, Release 1.3.1

scipy.sparse.linalg.lsqr

scipy.sparse.linalg.lsqr(A, b, damp=0.0, atol=1e-08, btol=1e-08, conlim=100000000.0,
iter_lim=None, show=False, calc_var=False, x0=None)

Find the least-squares solution to a large, sparse, linear system of equations.
The function solves Ax = b or min ||b - Ax||^2 or min ||Ax - b||^2 + d^2 ||x||^2.
The matrix A may be square or rectangular (over-determined or under-determined), and may have any rank.

1. Unsymmetric equations -- solve A*x = b

2. Linear least squares -- solve A*x = b
in the least-squares sense

3. Damped least squares -- solve ( A )*x = ( b )
( damp*I ) ( 0 )

in the least-squares sense

Parameters

A [{sparse matrix, ndarray, LinearOperator}] Representation of an m-by-n matrix. Alterna-
tively, A can be a linear operator which can produce Ax and A^T x using, e.g., scipy.
sparse.linalg.LinearOperator.

b [array_like, shape (m,)] Right-hand side vector b.
damp [float] Damping coefficient.
atol, btol [float, optional] Stopping tolerances. If both are 1.0e-9 (say), the final residual norm should

be accurate to about 9 digits. (The final x will usually have fewer correct digits, depending
on cond(A) and the size of damp.)

conlim [float, optional] Another stopping tolerance. lsqr terminates if an estimate of cond(A)
exceeds conlim. For compatible systems Ax = b, conlim could be as large as 1.0e+12 (say).
For least-squares problems, conlim should be less than 1.0e+8. Maximum precision can be
obtained by setting atol = btol = conlim = zero, but the number of iterations
may then be excessive.

iter_lim [int, optional] Explicit limitation on number of iterations (for safety).
show [bool, optional] Display an iteration log.
calc_var [bool, optional] Whether to estimate diagonals of (A'A + damp^2*I)^{-1}.
x0 [array_like, shape (n,), optional] Initial guess of x, if None zeros are used.

New in version 1.0.0.
Returns

x [ndarray of float] The final solution.
istop [int] Gives the reason for termination. 1 means x is an approximate solution to Ax = b. 2

means x approximately solves the least-squares problem.
itn [int] Iteration number upon termination.
r1norm [float] norm(r), where r = b - Ax.
r2norm [float] sqrt( norm(r)^2 + damp^2 * norm(x)^2 ). Equal to r1norm if damp

== 0.
anorm [float] Estimate of Frobenius norm of Abar = [[A]; [damp*I]].
acond [float] Estimate of cond(Abar).
arnorm [float] Estimate of norm(A'*r - damp^2*x).
xnorm [float] norm(x)
var [ndarray of float] If calc_var is True, estimates all diagonals of (A'A)^{-1} (if damp

== 0) or more generally (A'A + damp^2*I)^{-1}. This is well defined if A has full
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column rank or damp > 0. (Not sure what var means if rank(A) < n and damp =
0.)

Notes

LSQR uses an iterative method to approximate the solution. The number of iterations required to reach a certain
accuracy depends strongly on the scaling of the problem. Poor scaling of the rows or columns of A should therefore
be avoided where possible.
For example, in problem 1 the solution is unaltered by row-scaling. If a row of A is very small or large compared
to the other rows of A, the corresponding row of ( A b ) should be scaled up or down.
In problems 1 and 2, the solution x is easily recovered following column-scaling. Unless better information is
known, the nonzero columns of A should be scaled so that they all have the same Euclidean norm (e.g., 1.0).
In problem 3, there is no freedom to re-scale if damp is nonzero. However, the value of damp should be assigned
only after attention has been paid to the scaling of A.
The parameter damp is intended to help regularize ill-conditioned systems, by preventing the true solution from
being very large. Another aid to regularization is provided by the parameter acond, which may be used to terminate
iterations before the computed solution becomes very large.
If some initial estimate x0 is known and if damp == 0, one could proceed as follows:
1. Compute a residual vector r0 = b - A*x0.
2. Use LSQR to solve the system A*dx = r0.
3. Add the correction dx to obtain a final solution x = x0 + dx.

This requires that x0 be available before and after the call to LSQR. To judge the benefits, suppose LSQR takes
k1 iterations to solve A*x = b and k2 iterations to solve A*dx = r0. If x0 is “good”, norm(r0) will be smaller than
norm(b). If the same stopping tolerances atol and btol are used for each system, k1 and k2 will be similar, but the
final solution x0 + dx should be more accurate. The only way to reduce the total work is to use a larger stopping
tolerance for the second system. If some value btol is suitable for A*x = b, the larger value btol*norm(b)/norm(r0)
should be suitable for A*dx = r0.
Preconditioning is another way to reduce the number of iterations. If it is possible to solve a related system M*x
= b efficiently, where M approximates A in some helpful way (e.g. M - A has low rank or its elements are small
relative to those of A), LSQR may converge more rapidly on the system A*M(inverse)*z = b, after which
x can be recovered by solving M*x = z.
If A is symmetric, LSQR should not be used!
Alternatives are the symmetric conjugate-gradient method (cg) and/or SYMMLQ. SYMMLQ is an implementation
of symmetric cg that applies to any symmetric A and will convergemore rapidly than LSQR. If A is positive definite,
there are other implementations of symmetric cg that require slightly less work per iteration than SYMMLQ (but
will take the same number of iterations).

References

[1], [2], [3]

Examples
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>>> from scipy.sparse import csc_matrix
>>> from scipy.sparse.linalg import lsqr
>>> A = csc_matrix([[1., 0.], [1., 1.], [0., 1.]], dtype=float)

The first example has the trivial solution [0, 0]

>>> b = np.array([0., 0., 0.], dtype=float)
>>> x, istop, itn, normr = lsqr(A, b)[:4]
The exact solution is x = 0
>>> istop
0
>>> x
array([ 0., 0.])

The stopping code istop=0 returned indicates that a vector of zeros was found as a solution. The returned solution
x indeed contains [0., 0.]. The next example has a non-trivial solution:

>>> b = np.array([1., 0., -1.], dtype=float)
>>> x, istop, itn, r1norm = lsqr(A, b)[:4]
>>> istop
1
>>> x
array([ 1., -1.])
>>> itn
1
>>> r1norm
4.440892098500627e-16

As indicated by istop=1, lsqr found a solution obeying the tolerance limits. The given solution [1., -1.] obviously
solves the equation. The remaining return values include information about the number of iterations (itn=1) and
the remaining difference of left and right side of the solved equation. The final example demonstrates the behavior
in the case where there is no solution for the equation:

>>> b = np.array([1., 0.01, -1.], dtype=float)
>>> x, istop, itn, r1norm = lsqr(A, b)[:4]
>>> istop
2
>>> x
array([ 1.00333333, -0.99666667])
>>> A.dot(x)-b
array([ 0.00333333, -0.00333333, 0.00333333])
>>> r1norm
0.005773502691896255

istop indicates that the system is inconsistent and thus x is rather an approximate solution to the corresponding
least-squares problem. r1norm contains the norm of the minimal residual that was found.

scipy.sparse.linalg.lsmr

scipy.sparse.linalg.lsmr(A, b, damp=0.0, atol=1e-06, btol=1e-06, conlim=100000000.0, max-
iter=None, show=False, x0=None)

Iterative solver for least-squares problems.
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lsmr solves the system of linear equations Ax = b. If the system is inconsistent, it solves the least-squares problem
min ||b - Ax||_2. A is a rectangular matrix of dimension m-by-n, where all cases are allowed: m = n, m >
n, or m < n. B is a vector of length m. The matrix A may be dense or sparse (usually sparse).

Parameters

A [{matrix, sparse matrix, ndarray, LinearOperator}] Matrix A in the linear system. Alterna-
tively, A can be a linear operator which can produce Ax and A^T x using, e.g., scipy.
sparse.linalg.LinearOperator.

b [array_like, shape (m,)] Vector b in the linear system.
damp [float] Damping factor for regularized least-squares. lsmr solves the regularized least-

squares problem:

min ||(b) - ( A )x||
||(0) (damp*I) ||_2

where damp is a scalar. If damp is None or 0, the system is solved without regularization.
atol, btol [float, optional] Stopping tolerances. lsmr continues iterations until a certain backward

error estimate is smaller than some quantity depending on atol and btol. Let r = b -
Ax be the residual vector for the current approximate solution x. If Ax = b seems to be
consistent, lsmr terminates when norm(r) <= atol * norm(A) * norm(x) +
btol * norm(b). Otherwise, lsmr terminates when norm(A^{T} r) <= atol *
norm(A) * norm(r). If both tolerances are 1.0e-6 (say), the final norm(r) should be
accurate to about 6 digits. (The final x will usually have fewer correct digits, depending on
cond(A) and the size of LAMBDA.) If atol or btol is None, a default value of 1.0e-6 will
be used. Ideally, they should be estimates of the relative error in the entries of A and B
respectively. For example, if the entries of A have 7 correct digits, set atol = 1e-7. This
prevents the algorithm from doing unnecessary work beyond the uncertainty of the input
data.

conlim [float, optional] lsmr terminates if an estimate of cond(A) exceeds conlim. For compati-
ble systems Ax = b, conlim could be as large as 1.0e+12 (say). For least-squares problems,
conlim should be less than 1.0e+8. If conlim is None, the default value is 1e+8. Maximum
precision can be obtained by setting atol = btol = conlim = 0, but the number
of iterations may then be excessive.

maxiter [int, optional] lsmr terminates if the number of iterations reaches maxiter. The default is
maxiter = min(m, n). For ill-conditioned systems, a larger value of maxiter may be
needed.

show [bool, optional] Print iterations logs if show=True.
x0 [array_like, shape (n,), optional] Initial guess of x, if None zeros are used.

New in version 1.0.0.
Returns
——-
x [ndarray of float] Least-square solution returned.
istop [int] istop gives the reason for stopping:

istop = 0 means x=0 is a solution. If x0 was given,␣
↪→then x=x0 is a

solution.
= 1 means x is an approximate solution to A*x = B,

according to atol and btol.
= 2 means x approximately solves the least-squares␣

↪→problem
according to atol.

= 3 means COND(A) seems to be greater than CONLIM.
= 4 is the same as 1 with atol = btol = eps␣

↪→(machine (continues on next page)

6.23. Sparse linear algebra (scipy.sparse.linalg) 1795



SciPy Reference Guide, Release 1.3.1

(continued from previous page)
precision)

= 5 is the same as 2 with atol = eps.
= 6 is the same as 3 with CONLIM = 1/eps.
= 7 means ITN reached maxiter before the other␣

↪→stopping
conditions were satisfied.

itn [int] Number of iterations used.
normr [float] norm(b-Ax)
normar [float] norm(A^T (b - Ax))
norma [float] norm(A)
conda [float] Condition number of A.
normx [float] norm(x)

Notes

New in version 0.11.0.

References

[1], [2]

Examples

>>> from scipy.sparse import csc_matrix
>>> from scipy.sparse.linalg import lsmr
>>> A = csc_matrix([[1., 0.], [1., 1.], [0., 1.]], dtype=float)

The first example has the trivial solution [0, 0]

>>> b = np.array([0., 0., 0.], dtype=float)
>>> x, istop, itn, normr = lsmr(A, b)[:4]
>>> istop
0
>>> x
array([ 0., 0.])

The stopping code istop=0 returned indicates that a vector of zeros was found as a solution. The returned solution
x indeed contains [0., 0.]. The next example has a non-trivial solution:

>>> b = np.array([1., 0., -1.], dtype=float)
>>> x, istop, itn, normr = lsmr(A, b)[:4]
>>> istop
1
>>> x
array([ 1., -1.])
>>> itn
1
>>> normr
4.440892098500627e-16
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As indicated by istop=1, lsmr found a solution obeying the tolerance limits. The given solution [1., -1.] obviously
solves the equation. The remaining return values include information about the number of iterations (itn=1) and
the remaining difference of left and right side of the solved equation. The final example demonstrates the behavior
in the case where there is no solution for the equation:

>>> b = np.array([1., 0.01, -1.], dtype=float)
>>> x, istop, itn, normr = lsmr(A, b)[:4]
>>> istop
2
>>> x
array([ 1.00333333, -0.99666667])
>>> A.dot(x)-b
array([ 0.00333333, -0.00333333, 0.00333333])
>>> normr
0.005773502691896255

istop indicates that the system is inconsistent and thus x is rather an approximate solution to the corresponding
least-squares problem. normr contains the minimal distance that was found.

6.23.5 Matrix factorizations

Eigenvalue problems:

eigs(A[, k, M, sigma, which, v0, ncv, …]) Find k eigenvalues and eigenvectors of the square matrix
A.

eigsh(A[, k, M, sigma, which, v0, ncv, …]) Find k eigenvalues and eigenvectors of the real symmetric
square matrix or complex hermitian matrix A.

lobpcg(A, X[, B, M, Y, tol, maxiter, …]) Locally Optimal Block Preconditioned Conjugate Gradi-
ent Method (LOBPCG)

scipy.sparse.linalg.eigs

scipy.sparse.linalg.eigs(A, k=6, M=None, sigma=None, which=’LM’, v0=None, ncv=None, max-
iter=None, tol=0, return_eigenvectors=True,Minv=None, OPinv=None, OP-
part=None)

Find k eigenvalues and eigenvectors of the square matrix A.
Solves A * x[i] = w[i] * x[i], the standard eigenvalue problem for w[i] eigenvalues with corresponding
eigenvectors x[i].
IfM is specified, solves A * x[i] = w[i] * M * x[i], the generalized eigenvalue problem for w[i] eigen-
values with corresponding eigenvectors x[i]

Parameters

A [ndarray, sparse matrix or LinearOperator] An array, sparse matrix, or LinearOperator rep-
resenting the operation A * x, where A is a real or complex square matrix.

k [int, optional] The number of eigenvalues and eigenvectors desired. k must be smaller than
N-1. It is not possible to compute all eigenvectors of a matrix.

M [ndarray, sparse matrix or LinearOperator, optional] An array, sparse matrix, or LinearOp-
erator representing the operation M*x for the generalized eigenvalue problem
A * x = w * M * x.
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M must represent a real, symmetric matrix if A is real, and must represent a complex, her-
mitian matrix if A is complex. For best results, the data type of M should be the same as
that of A. Additionally:
If sigma is None, M is positive definite
If sigma is specified, M is positive semi-definite

If sigma is None, eigs requires an operator to compute the solution of the linear equation M
* x = b. This is done internally via a (sparse) LU decomposition for an explicit matrix
M, or via an iterative solver for a general linear operator. Alternatively, the user can supply
the matrix or operator Minv, which gives x = Minv * b = M^-1 * b.

sigma [real or complex, optional] Find eigenvalues near sigma using shift-invert mode. This re-
quires an operator to compute the solution of the linear system [A - sigma * M] * x
= b, where M is the identity matrix if unspecified. This is computed internally via a (sparse)
LU decomposition for explicit matrices A & M, or via an iterative solver if either A or M is
a general linear operator. Alternatively, the user can supply the matrix or operator OPinv,
which gives x = OPinv * b = [A - sigma * M]^-1 * b. For a real matrix A,
shift-invert can either be done in imaginary mode or real mode, specified by the parameter
OPpart (‘r’ or ‘i’). Note that when sigma is specified, the keyword ‘which’ (below) refers to
the shifted eigenvalues w'[i] where:
If A is real and OPpart == ‘r’ (default),

w'[i] = 1/2 * [1/(w[i]-sigma) + 1/
(w[i]-conj(sigma))].

If A is real and OPpart == ‘i’,
w'[i] = 1/2i * [1/(w[i]-sigma) - 1/
(w[i]-conj(sigma))].

If A is complex, w'[i] = 1/(w[i]-sigma).
v0 [ndarray, optional] Starting vector for iteration. Default: random
ncv [int, optional] The number of Lanczos vectors generated ncv must be greater than k; it is

recommended that ncv > 2*k. Default: min(n, max(2*k + 1, 20))
which [str, [‘LM’ | ‘SM’ | ‘LR’ | ‘SR’ | ‘LI’ | ‘SI’], optional] Which k eigenvectors and eigenvalues to

find:
‘LM’ : largest magnitude
‘SM’ : smallest magnitude
‘LR’ : largest real part
‘SR’ : smallest real part
‘LI’ : largest imaginary part
‘SI’ : smallest imaginary part

When sigma != None, ‘which’ refers to the shifted eigenvalues w’[i] (see discussion in ‘sigma’,
above). ARPACK is generally better at finding large values than small values. If small
eigenvalues are desired, consider using shift-invert mode for better performance.

maxiter [int, optional] Maximum number of Arnoldi update iterations allowed Default: n*10
tol [float, optional] Relative accuracy for eigenvalues (stopping criterion) The default value of 0

implies machine precision.
return_eigenvectors

[bool, optional] Return eigenvectors (True) in addition to eigenvalues
Minv [ndarray, sparse matrix or LinearOperator, optional] See notes in M, above.
OPinv [ndarray, sparse matrix or LinearOperator, optional] See notes in sigma, above.
OPpart [{‘r’ or ‘i’}, optional] See notes in sigma, above

Returns

w [ndarray] Array of k eigenvalues.
v [ndarray] An array of k eigenvectors. v[:, i] is the eigenvector corresponding to the

eigenvalue w[i].
Raises
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ArpackNoConvergence
When the requested convergence is not obtained. The currently converged eigenvalues and
eigenvectors can be found as eigenvalues and eigenvectors attributes of the ex-
ception object.

See also:

eigsh

eigenvalues and eigenvectors for symmetric matrix A
svds

singular value decomposition for a matrix A

Notes

This function is a wrapper to the ARPACK [1] SNEUPD, DNEUPD, CNEUPD, ZNEUPD, functions which use
the Implicitly Restarted Arnoldi Method to find the eigenvalues and eigenvectors [2].

References

[1], [2]

Examples

Find 6 eigenvectors of the identity matrix:

>>> from scipy.sparse.linalg import eigs
>>> id = np.eye(13)
>>> vals, vecs = eigs(id, k=6)
>>> vals
array([ 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j])
>>> vecs.shape
(13, 6)

scipy.sparse.linalg.eigsh

scipy.sparse.linalg.eigsh(A, k=6, M=None, sigma=None, which=’LM’, v0=None, ncv=None, max-
iter=None, tol=0, return_eigenvectors=True, Minv=None, OPinv=None,
mode=’normal’)

Find k eigenvalues and eigenvectors of the real symmetric square matrix or complex hermitian matrix A.
Solves A * x[i] = w[i] * x[i], the standard eigenvalue problem for w[i] eigenvalues with corresponding
eigenvectors x[i].
IfM is specified, solves A * x[i] = w[i] * M * x[i], the generalized eigenvalue problem for w[i] eigen-
values with corresponding eigenvectors x[i].

Parameters

A [ndarray, sparse matrix or LinearOperator] A square operator representing the operation A
* x, where A is real symmetric or complex hermitian. For buckling mode (see below) A
must additionally be positive-definite.
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k [int, optional] The number of eigenvalues and eigenvectors desired. k must be smaller than
N. It is not possible to compute all eigenvectors of a matrix.

Returns

w [array] Array of k eigenvalues.
v [array] An array representing the k eigenvectors. The column v[:, i] is the eigenvector

corresponding to the eigenvalue w[i].
Other Parameters

M [An N x N matrix, array, sparse matrix, or linear operator representing] the operation M @
x for the generalized eigenvalue problem
A @ x = w * M @ x.

M must represent a real, symmetric matrix if A is real, and must represent a complex, her-
mitian matrix if A is complex. For best results, the data type of M should be the same as
that of A. Additionally:
If sigma is None, M is symmetric positive definite.
If sigma is specified, M is symmetric positive semi-definite.
In buckling mode, M is symmetric indefinite.

If sigma is None, eigsh requires an operator to compute the solution of the linear equation M
@ x = b. This is done internally via a (sparse) LU decomposition for an explicit matrix
M, or via an iterative solver for a general linear operator. Alternatively, the user can supply
the matrix or operator Minv, which gives x = Minv @ b = M^-1 @ b.

sigma [real] Find eigenvalues near sigma using shift-invert mode. This requires an operator to
compute the solution of the linear system [A - sigma * M] x = b, where M is the
identity matrix if unspecified. This is computed internally via a (sparse) LU decomposition
for explicit matrices A & M, or via an iterative solver if either A or M is a general linear
operator. Alternatively, the user can supply the matrix or operator OPinv, which gives x =
OPinv @ b = [A - sigma * M]^-1 @ b. Note that when sigma is specified, the
keyword ‘which’ refers to the shifted eigenvalues w'[i] where:
if mode == ‘normal’, w'[i] = 1 / (w[i] - sigma).
if mode == ‘cayley’, w'[i] = (w[i] + sigma) / (w[i] - sigma).
if mode == ‘buckling’, w'[i] = w[i] / (w[i] - sigma).

(see further discussion in ‘mode’ below)
v0 [ndarray, optional] Starting vector for iteration. Default: random
ncv [int, optional] The number of Lanczos vectors generated ncv must be greater than k and

smaller than n; it is recommended that ncv > 2*k. Default: min(n, max(2*k +
1, 20))

which [str [‘LM’ | ‘SM’ | ‘LA’ | ‘SA’ | ‘BE’]] If A is a complex hermitian matrix, ‘BE’ is invalid.
Which k eigenvectors and eigenvalues to find:
‘LM’ : Largest (in magnitude) eigenvalues.
‘SM’ : Smallest (in magnitude) eigenvalues.
‘LA’ : Largest (algebraic) eigenvalues.
‘SA’ : Smallest (algebraic) eigenvalues.
‘BE’ : Half (k/2) from each end of the spectrum.

When k is odd, return one more (k/2+1) from the high end. When sigma != None, ‘which’
refers to the shifted eigenvalues w'[i] (see discussion in ‘sigma’, above). ARPACK is
generally better at finding large values than small values. If small eigenvalues are desired,
consider using shift-invert mode for better performance.

maxiter [int, optional] Maximum number of Arnoldi update iterations allowed. Default: n*10
tol [float] Relative accuracy for eigenvalues (stopping criterion). The default value of 0 implies

machine precision.
Minv [N x N matrix, array, sparse matrix, or LinearOperator] See notes in M, above.
OPinv [N x N matrix, array, sparse matrix, or LinearOperator] See notes in sigma, above.
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return_eigenvectors
[bool] Return eigenvectors (True) in addition to eigenvalues. This value determines the order
in which eigenvalues are sorted. The sort order is also dependent on the which variable.
For which = ‘LM’ or ‘SA’:

If return_eigenvectors is True, eigenvalues are sorted by algebraic value.
If return_eigenvectors is False, eigenvalues are sorted by absolute value.

For which = ‘BE’ or ‘LA’:
eigenvalues are always sorted by algebraic value.

For which = ‘SM’:
If return_eigenvectors is True, eigenvalues are sorted by algebraic value.
If return_eigenvectors is False, eigenvalues are sorted by decreasing absolute
value.

mode [string [‘normal’ | ‘buckling’ | ‘cayley’]] Specify strategy to use for shift-invert mode. This
argument applies only for real-valuedA and sigma !=None. For shift-invert mode, ARPACK
internally solves the eigenvalue problem OP * x'[i] = w'[i] * B * x'[i] and
transforms the resulting Ritz vectors x’[i] and Ritz values w’[i] into the desired eigenvectors
and eigenvalues of the problem A * x[i] = w[i] * M * x[i]. The modes are as
follows:
‘normal’ : OP = [A - sigma * M]^-1 @ M, B = M, w’[i] = 1 / (w[i] - sigma)
‘buckling’ :

OP = [A - sigma * M]^-1 @ A, B = A, w’[i] = w[i] / (w[i] - sigma)
‘cayley’ : OP = [A - sigma * M]^-1 @ [A + sigma * M], B = M, w’[i] = (w[i] + sigma)

/ (w[i] - sigma)
The choice of mode will affect which eigenvalues are selected by the keyword ‘which’, and
can also impact the stability of convergence (see [2] for a discussion).

Raises

ArpackNoConvergence
When the requested convergence is not obtained.
The currently converged eigenvalues and eigenvectors can be found as eigenvalues and
eigenvectors attributes of the exception object.

See also:

eigs

eigenvalues and eigenvectors for a general (nonsymmetric) matrix A
svds

singular value decomposition for a matrix A

Notes

This function is a wrapper to the ARPACK [1] SSEUPD andDSEUPD functions which use the Implicitly Restarted
Lanczos Method to find the eigenvalues and eigenvectors [2].

References

[1], [2]
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Examples

>>> from scipy.sparse.linalg import eigsh
>>> identity = np.eye(13)
>>> eigenvalues, eigenvectors = eigsh(identity, k=6)
>>> eigenvalues
array([1., 1., 1., 1., 1., 1.])
>>> eigenvectors.shape
(13, 6)

scipy.sparse.linalg.lobpcg

scipy.sparse.linalg.lobpcg(A, X, B=None,M=None, Y=None, tol=None, maxiter=20, largest=True,
verbosityLevel=0, retLambdaHistory=False, retResidualNormsHis-
tory=False)

Locally Optimal Block Preconditioned Conjugate Gradient Method (LOBPCG)
LOBPCG is a preconditioned eigensolver for large symmetric positive definite (SPD) generalized eigenproblems.

Parameters

A [{sparse matrix, dense matrix, LinearOperator}] The symmetric linear operator of the prob-
lem, usually a sparse matrix. Often called the “stiffness matrix”.

X [array_like] Initial approximation to the k eigenvectors. If A has shape=(n,n) then X should
have shape shape=(n,k).

B [{dense matrix, sparse matrix, LinearOperator}, optional] the right hand side operator in a
generalized eigenproblem. by default, B = Identity often called the “mass matrix”

M [{dense matrix, sparse matrix, LinearOperator}, optional] preconditioner to A; by default M
= Identity M should approximate the inverse of A

Y [array_like, optional] n-by-sizeY matrix of constraints, sizeY < n The iterations will be per-
formed in the B-orthogonal complement of the column-space of Y. Y must be full rank.

tol [scalar, optional] Solver tolerance (stopping criterion) by default: tol=n*sqrt(eps)
maxiter [integer, optional] maximum number of iterations by default: maxiter=min(n,20)
largest [bool, optional] when True, solve for the largest eigenvalues, otherwise the smallest
verbosityLevel

[integer, optional] controls solver output. default: verbosityLevel = 0.
retLambdaHistory

[boolean, optional] whether to return eigenvalue history
retResidualNormsHistory

[boolean, optional] whether to return history of residual norms
Returns

w [array] Array of k eigenvalues
v [array] An array of k eigenvectors. V has the same shape as X.
lambdas [list of arrays, optional] The eigenvalue history, if retLambdaHistory is True.
rnorms [list of arrays, optional] The history of residual norms, if retResidualNormsHistory is True.

Notes

If both retLambdaHistory and retResidualNormsHistory are True, the return tuple has the following format
(lambda, V, lambda history, residual norms history).
In the following n denotes the matrix size and m the number of required eigenvalues (smallest or largest).
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The LOBPCG code internally solves eigenproblems of the size 3‘‘m‘‘ on every iteration by calling the “standard”
dense eigensolver, so if m is not small enough compared to n, it does not make sense to call the LOBPCG code, but
rather one should use the “standard” eigensolver, e.g. numpy or scipy function in this case. If one calls the LOBPCG
algorithm for 5‘‘m‘‘>‘‘n‘‘, it will most likely break internally, so the code tries to call the standard function instead.
It is not that n should be large for the LOBPCG to work, but rather the ratio n/m should be large. It you call
LOBPCG with m``=1 and ``n``=10, it works though ``n is small. The method is intended for
extremely large n/m, see e.g., reference [28] in https://arxiv.org/abs/0705.2626
The convergence speed depends basically on two factors:
1. How well relatively separated the seeking eigenvalues are from the rest of the eigenvalues. One can try to

vary m to make this better.
2. How well conditioned the problem is. This can be changed by using proper preconditioning. For example, a

rod vibration test problem (under tests directory) is ill-conditioned for large n, so convergence will be slow,
unless efficient preconditioning is used. For this specific problem, a good simple preconditioner function
would be a linear solve for A, which is easy to code since A is tridiagonal.

Acknowledgements

lobpcg.py code was written by Robert Cimrman. Many thanks belong to Andrew Knyazev, the author of the
algorithm, for lots of advice and support.

References

[1], [2], [3]

Examples

Solve A x = lambda B x with constraints and preconditioning.

>>> from scipy.sparse import spdiags, issparse
>>> from scipy.sparse.linalg import lobpcg, LinearOperator
>>> n = 100
>>> vals = [np.arange(n, dtype=np.float64) + 1]
>>> A = spdiags(vals, 0, n, n)
>>> A.toarray()
array([[ 1., 0., 0., ..., 0., 0., 0.],

[ 0., 2., 0., ..., 0., 0., 0.],
[ 0., 0., 3., ..., 0., 0., 0.],
...,
[ 0., 0., 0., ..., 98., 0., 0.],
[ 0., 0., 0., ..., 0., 99., 0.],
[ 0., 0., 0., ..., 0., 0., 100.]])

Constraints.

>>> Y = np.eye(n, 3)

Initial guess for eigenvectors, should have linearly independent columns. Column dimension = number of requested
eigenvalues.

>>> X = np.random.rand(n, 3)

Preconditioner – inverse of A (as an abstract linear operator).
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>>> invA = spdiags([1./vals[0]], 0, n, n)
>>> def precond( x ):
... return invA * x
>>> M = LinearOperator(matvec=precond, shape=(n, n), dtype=float)

Here, invA could of course have been used directly as a preconditioner. Let us then solve the problem:

>>> eigs, vecs = lobpcg(A, X, Y=Y, M=M, largest=False)
>>> eigs
array([4., 5., 6.])

Note that the vectors passed in Y are the eigenvectors of the 3 smallest eigenvalues. The results returned are
orthogonal to those.

Singular values problems:

svds(A[, k, ncv, tol, which, v0, maxiter, …]) Compute the largest k singular values/vectors for a sparse
matrix.

scipy.sparse.linalg.svds

scipy.sparse.linalg.svds(A, k=6, ncv=None, tol=0, which=’LM’, v0=None, maxiter=None, re-
turn_singular_vectors=True)

Compute the largest k singular values/vectors for a sparse matrix.
Parameters

A [{sparse matrix, LinearOperator}] Array to compute the SVD on, of shape (M, N)
k [int, optional] Number of singular values and vectors to compute. Must be 1 <= k <

min(A.shape).
ncv [int, optional] The number of Lanczos vectors generated ncv must be greater than k+1 and

smaller than n; it is recommended that ncv > 2*k Default: min(n, max(2*k + 1,
20))

tol [float, optional] Tolerance for singular values. Zero (default) means machine precision.
which [str, [‘LM’ | ‘SM’], optional] Which k singular values to find:

• ‘LM’ : largest singular values
• ‘SM’ : smallest singular values
New in version 0.12.0.

v0 [ndarray, optional] Starting vector for iteration, of length min(A.shape). Should be an (ap-
proximate) left singular vector if N > M and a right singular vector otherwise. Default:
random
New in version 0.12.0.

maxiter [int, optional] Maximum number of iterations.
New in version 0.12.0.

return_singular_vectors
[bool or str, optional]
• True: return singular vectors (True) in addition to singular values.
New in version 0.12.0.
• “u”: only return the u matrix, without computing vh (if N > M).
• “vh”: only return the vh matrix, without computing u (if N <= M).
New in version 0.16.0.

Returns

1804 Chapter 6. API Reference



SciPy Reference Guide, Release 1.3.1

u [ndarray, shape=(M, k)] Unitary matrix having left singular vectors as columns. If re-
turn_singular_vectors is “vh”, this variable is not computed, and None is returned instead.

s [ndarray, shape=(k,)] The singular values.
vt [ndarray, shape=(k, N)] Unitary matrix having right singular vectors as rows. If re-

turn_singular_vectors is “u”, this variable is not computed, and None is returned instead.

Notes

This is a naive implementation using ARPACK as an eigensolver on A.H * A or A * A.H, depending on which one
is more efficient.

Examples

>>> from scipy.sparse import csc_matrix
>>> from scipy.sparse.linalg import svds, eigs
>>> A = csc_matrix([[1, 0, 0], [5, 0, 2], [0, -1, 0], [0, 0, 3]],␣
↪→dtype=float)
>>> u, s, vt = svds(A, k=2)
>>> s
array([ 2.75193379, 5.6059665 ])
>>> np.sqrt(eigs(A.dot(A.T), k=2)[0]).real
array([ 5.6059665 , 2.75193379])

Complete or incomplete LU factorizations

splu(A[, permc_spec, diag_pivot_thresh, …]) Compute the LU decomposition of a sparse, square ma-
trix.

spilu(A[, drop_tol, fill_factor, drop_rule, …]) Compute an incomplete LU decomposition for a sparse,
square matrix.

SuperLU LU factorization of a sparse matrix.

scipy.sparse.linalg.splu

scipy.sparse.linalg.splu(A, permc_spec=None, diag_pivot_thresh=None, relax=None,
panel_size=None, options={})

Compute the LU decomposition of a sparse, square matrix.
Parameters

A [sparse matrix] Sparse matrix to factorize. Should be in CSR or CSC format.
permc_spec

[str, optional] How to permute the columns of the matrix for sparsity preservation. (default:
‘COLAMD’)
• NATURAL: natural ordering.
• MMD_ATA: minimum degree ordering on the structure of A^T A.
• MMD_AT_PLUS_A: minimum degree ordering on the structure of A^T+A.
• COLAMD: approximate minimum degree column ordering

diag_pivot_thresh
[float, optional] Threshold used for a diagonal entry to be an acceptable pivot. See SuperLU
user’s guide for details [1]

relax [int, optional] Expert option for customizing the degree of relaxing supernodes. See SuperLU
user’s guide for details [1]
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panel_size [int, optional] Expert option for customizing the panel size. See SuperLU user’s guide for
details [1]

options [dict, optional] Dictionary containing additional expert options to SuperLU. See SuperLU
user guide [1] (section 2.4 on the ‘Options’ argument) for more details. For example, you
can specify options=dict(Equil=False, IterRefine='SINGLE')) to turn
equilibration off and perform a single iterative refinement.

Returns

invA [scipy.sparse.linalg.SuperLU] Object, which has a solve method.
See also:

spilu

incomplete LU decomposition

Notes

This function uses the SuperLU library.

References

[1]

Examples

>>> from scipy.sparse import csc_matrix
>>> from scipy.sparse.linalg import splu
>>> A = csc_matrix([[1., 0., 0.], [5., 0., 2.], [0., -1., 0.]],␣
↪→dtype=float)
>>> B = splu(A)
>>> x = np.array([1., 2., 3.], dtype=float)
>>> B.solve(x)
array([ 1. , -3. , -1.5])
>>> A.dot(B.solve(x))
array([ 1., 2., 3.])
>>> B.solve(A.dot(x))
array([ 1., 2., 3.])

scipy.sparse.linalg.spilu

scipy.sparse.linalg.spilu(A, drop_tol=None, fill_factor=None, drop_rule=None, permc_spec=None,
diag_pivot_thresh=None, relax=None, panel_size=None, options=None)

Compute an incomplete LU decomposition for a sparse, square matrix.
The resulting object is an approximation to the inverse of A.

Parameters

A [(N, N) array_like] Sparse matrix to factorize
drop_tol [float, optional] Drop tolerance (0 <= tol <= 1) for an incomplete LUdecomposition. (default:

1e-4)
fill_factor [float, optional] Specifies the fill ratio upper bound (>= 1.0) for ILU. (default: 10)
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drop_rule [str, optional] Comma-separated string of drop rules to use. Available rules: basic,
prows, column, area, secondary, dynamic, interp. (Default: basic,area)
See SuperLU documentation for details.

Remaining other options
Same as for splu

Returns

invA_approx
[scipy.sparse.linalg.SuperLU] Object, which has a solve method.

See also:

splu

complete LU decomposition

Notes

To improve the better approximation to the inverse, you may need to increase fill_factor AND decrease drop_tol.
This function uses the SuperLU library.

Examples

>>> from scipy.sparse import csc_matrix
>>> from scipy.sparse.linalg import spilu
>>> A = csc_matrix([[1., 0., 0.], [5., 0., 2.], [0., -1., 0.]],␣
↪→dtype=float)
>>> B = spilu(A)
>>> x = np.array([1., 2., 3.], dtype=float)
>>> B.solve(x)
array([ 1. , -3. , -1.5])
>>> A.dot(B.solve(x))
array([ 1., 2., 3.])
>>> B.solve(A.dot(x))
array([ 1., 2., 3.])

scipy.sparse.linalg.SuperLU

class scipy.sparse.linalg.SuperLU
LU factorization of a sparse matrix.
Factorization is represented as:

Pr * A * Pc = L * U

To construct these SuperLU objects, call the splu and spilu functions.

Notes

New in version 0.14.0.
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Examples

The LU decomposition can be used to solve matrix equations. Consider:

>>> import numpy as np
>>> from scipy.sparse import csc_matrix, linalg as sla
>>> A = csc_matrix([[1,2,0,4],[1,0,0,1],[1,0,2,1],[2,2,1,0.]])

This can be solved for a given right-hand side:

>>> lu = sla.splu(A)
>>> b = np.array([1, 2, 3, 4])
>>> x = lu.solve(b)
>>> A.dot(x)
array([ 1., 2., 3., 4.])

The lu object also contains an explicit representation of the decomposition. The permutations are represented as
mappings of indices:

>>> lu.perm_r
array([0, 2, 1, 3], dtype=int32)
>>> lu.perm_c
array([2, 0, 1, 3], dtype=int32)

The L and U factors are sparse matrices in CSC format:

>>> lu.L.A
array([[ 1. , 0. , 0. , 0. ],

[ 0. , 1. , 0. , 0. ],
[ 0. , 0. , 1. , 0. ],
[ 1. , 0.5, 0.5, 1. ]])

>>> lu.U.A
array([[ 2., 0., 1., 4.],

[ 0., 2., 1., 1.],
[ 0., 0., 1., 1.],
[ 0., 0., 0., -5.]])

The permutation matrices can be constructed:

>>> Pr = csc_matrix((np.ones(4), (lu.perm_r, np.arange(4))))
>>> Pc = csc_matrix((np.ones(4), (np.arange(4), lu.perm_c)))

We can reassemble the original matrix:

>>> (Pr.T * (lu.L * lu.U) * Pc.T).A
array([[ 1., 2., 0., 4.],

[ 1., 0., 0., 1.],
[ 1., 0., 2., 1.],
[ 2., 2., 1., 0.]])

Attributes

shape Shape of the original matrix as a tuple of ints.
nnz Number of nonzero elements in the matrix.
perm_c Permutation Pc represented as an array of indices.
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perm_r Permutation Pr represented as an array of indices.
L Lower triangular factor with unit diagonal as a scipy.sparse.csc_matrix.
U Upper triangular factor as a scipy.sparse.csc_matrix.

Methods

solve(rhs[, trans]) Solves linear system of equations with one or several
right-hand sides.

scipy.sparse.linalg.SuperLU.solve

SuperLU.solve(rhs[, trans ])
Solves linear system of equations with one or several right-hand sides.

Parameters

rhs [ndarray, shape (n,) or (n, k)] Right hand side(s) of equation
trans [{‘N’, ‘T’, ‘H’}, optional] Type of system to solve:

'N': A * x == rhs (default)
'T': A^T * x == rhs
'H': A^H * x == rhs

i.e., normal, transposed, and hermitian conjugate.
Returns

x [ndarray, shape rhs.shape] Solution vector(s)

6.23.6 Exceptions

ArpackNoConvergence(msg, eigenvalues, …) ARPACK iteration did not converge
ArpackError(info[, infodict]) ARPACK error

scipy.sparse.linalg.ArpackNoConvergence

exception scipy.sparse.linalg.ArpackNoConvergence(msg, eigenvalues, eigenvectors)
ARPACK iteration did not converge

Attributes

eigenvalues
[ndarray] Partial result. Converged eigenvalues.

eigenvectors
[ndarray] Partial result. Converged eigenvectors.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.
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scipy.sparse.linalg.ArpackError

exception scipy.sparse.linalg.ArpackError(info, infodict={’c’: {-9999: ’Could not build an
Arnoldi factorization. IPARAM(5) returns the
size of the current Arnoldi factorization. The
user is advised to check that enough workspace
and array storage has been allocated.’, -13:
”NEV and WHICH = ’BE’ are incompatible.”, -
12: ’IPARAM(1) must be equal to 0 or 1.’, -11:
”IPARAM(7) = 1 and BMAT = ’G’ are incompati-
ble.”, -10: ’IPARAM(7) must be 1, 2, 3.’, -9: ’Start-
ing vector is zero.’, -8: ’Error return from LAPACK
eigenvalue calculation;’, -7: ’Length of private
work array WORKL is not sufficient.’, -6: ”BMAT
must be one of ’I’ or ’G’.”, -5: ” WHICHmust be one
of ’LM’, ’SM’, ’LR’, ’SR’, ’LI’, ’SI’”, -4: ’The maxi-
mum number of Arnoldi update iterations allowed
must be greater than zero.’, -3: ’NCV-NEV >= 2
and less than or equal to N.’, -2: ’NEVmust be pos-
itive.’, -1: ’N must be positive.’, 0: ’Normal exit.’, 1:
’Maximum number of iterations taken. All possible
eigenvalues of OP has been found. IPARAM(5)
returns the number of wanted converged Ritz val-
ues.’, 2: ’No longer an informational error. Depre-
cated starting with release 2 of ARPACK.’, 3: ’No
shifts could be applied during a cycle of the Im-
plicitly restarted Arnoldi iteration. One possibility
is to increase the size of NCV relative to NEV. ’},
’d’: {-9999: ’Could not build an Arnoldi factor-
ization. IPARAM(5) returns the size of the current
Arnoldi factorization. The user is advised to check
that enough workspace and array storage has been
allocated.’, -13: ”NEV and WHICH = ’BE’ are in-
compatible.”, -12: ’IPARAM(1) must be equal to
0 or 1.’, -11: ”IPARAM(7) = 1 and BMAT = ’G’
are incompatible.”, -10: ’IPARAM(7) must be 1,
2, 3, 4.’, -9: ’Starting vector is zero.’, -8: ’Error
return from LAPACK eigenvalue calculation;’, -7:
’Length of private work array WORKL is not suf-
ficient.’, -6: ”BMAT must be one of ’I’ or ’G’.”, -5: ”
WHICH must be one of ’LM’, ’SM’, ’LR’, ’SR’, ’LI’,
’SI’”, -4: ’The maximum number of Arnoldi update
iterations allowed must be greater than zero.’, -3:
’NCV-NEV >= 2 and less than or equal to N.’, -2:
’NEV must be positive.’, -1: ’N must be positive.’,
0: ’Normal exit.’, 1: ’Maximum number of iter-
ations taken. All possible eigenvalues of OP has
been found. IPARAM(5) returns the number of
wanted converged Ritz values.’, 2: ’No longer an
informational error. Deprecated starting with re-
lease 2 of ARPACK.’, 3: ’No shifts could be applied
during a cycle of the Implicitly restarted Arnoldi
iteration. One possibility is to increase the size
of NCV relative to NEV. ’}, ’s’: {-9999: ’Could
not build an Arnoldi factorization. IPARAM(5)
returns the size of the current Arnoldi factoriza-
tion. The user is advised to check that enough
workspace and array storage has been allocated.’,
-13: ”NEV and WHICH = ’BE’ are incompatible.”,
-12: ’IPARAM(1) must be equal to 0 or 1.’, -11:
”IPARAM(7) = 1 and BMAT = ’G’ are incompat-
ible.”, -10: ’IPARAM(7) must be 1, 2, 3, 4.’, -9:
’Starting vector is zero.’, -8: ’Error return from
LAPACK eigenvalue calculation;’, -7: ’Length of
private work array WORKL is not sufficient.’, -6:
”BMAT must be one of ’I’ or ’G’.”, -5: ” WHICH
must be one of ’LM’, ’SM’, ’LR’, ’SR’, ’LI’, ’SI’”, -
4: ’The maximum number of Arnoldi update it-
erations allowed must be greater than zero.’, -3:
’NCV-NEV >= 2 and less than or equal to N.’, -2:
’NEV must be positive.’, -1: ’N must be positive.’,
0: ’Normal exit.’, 1: ’Maximum number of iter-
ations taken. All possible eigenvalues of OP has
been found. IPARAM(5) returns the number of
wanted converged Ritz values.’, 2: ’No longer an
informational error. Deprecated starting with re-
lease 2 of ARPACK.’, 3: ’No shifts could be applied
during a cycle of the Implicitly restarted Arnoldi
iteration. One possibility is to increase the size
of NCV relative to NEV. ’}, ’z’: {-9999: ’Could
not build an Arnoldi factorization. IPARAM(5)
returns the size of the current Arnoldi factoriza-
tion. The user is advised to check that enough
workspace and array storage has been allocated.’,
-13: ”NEV and WHICH = ’BE’ are incompatible.”,
-12: ’IPARAM(1) must be equal to 0 or 1.’, -11:
”IPARAM(7) = 1 and BMAT = ’G’ are incom-
patible.”, -10: ’IPARAM(7) must be 1, 2, 3.’, -9:
’Starting vector is zero.’, -8: ’Error return from
LAPACK eigenvalue calculation;’, -7: ’Length of
private work array WORKL is not sufficient.’, -6:
”BMAT must be one of ’I’ or ’G’.”, -5: ” WHICH
must be one of ’LM’, ’SM’, ’LR’, ’SR’, ’LI’, ’SI’”, -
4: ’The maximum number of Arnoldi update it-
erations allowed must be greater than zero.’, -3:
’NCV-NEV >= 2 and less than or equal to N.’, -2:
’NEV must be positive.’, -1: ’N must be positive.’,
0: ’Normal exit.’, 1: ’Maximum number of iter-
ations taken. All possible eigenvalues of OP has
been found. IPARAM(5) returns the number of
wanted converged Ritz values.’, 2: ’No longer an
informational error. Deprecated starting with re-
lease 2 of ARPACK.’, 3: ’No shifts could be applied
during a cycle of the Implicitly restarted Arnoldi
iteration. One possibility is to increase the size of
NCV relative to NEV. ’}})

ARPACK error
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with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

6.24 Compressed Sparse Graph Routines (scipy.sparse.
csgraph)

Fast graph algorithms based on sparse matrix representations.

6.24.1 Contents

connected_components(csgraph[, directed, …]) Analyze the connected components of a sparse graph
laplacian(csgraph[, normed, return_diag, …]) Return the Laplacian matrix of a directed graph.
shortest_path(csgraph[, method, directed, …]) Perform a shortest-path graph search on a positive di-

rected or undirected graph.
dijkstra(csgraph[, directed, indices, …]) Dijkstra algorithm using Fibonacci Heaps
floyd_warshall(csgraph[, directed, …]) Compute the shortest path lengths using the Floyd-

Warshall algorithm
bellman_ford(csgraph[, directed, indices, …]) Compute the shortest path lengths using the Bellman-

Ford algorithm.
johnson(csgraph[, directed, indices, …]) Compute the shortest path lengths using Johnson’s algo-

rithm.
breadth_first_order(csgraph, i_start[, …]) Return a breadth-first ordering starting with specified

node.
depth_first_order(csgraph, i_start[, …]) Return a depth-first ordering starting with specified node.
breadth_first_tree(csgraph, i_start[, directed]) Return the tree generated by a breadth-first search
depth_first_tree(csgraph, i_start[, directed]) Return a tree generated by a depth-first search.
minimum_spanning_tree(csgraph[, overwrite]) Return a minimum spanning tree of an undirected graph
reverse_cuthill_mckee(graph[, symmet-
ric_mode])

Returns the permutation array that orders a sparse CSR
or CSC matrix in Reverse-Cuthill McKee ordering.

maximum_bipartite_matching(graph[,
perm_type])

Returns an array of row or column permutations that
makes the diagonal of a nonsingular square CSC sparse
matrix zero free.

structural_rank(graph) Compute the structural rank of a graph (matrix) with a
given sparsity pattern.

NegativeCycleError

scipy.sparse.csgraph.connected_components

scipy.sparse.csgraph.connected_components(csgraph, directed=True, connection=’weak’, re-
turn_labels=True)

Analyze the connected components of a sparse graph
New in version 0.11.0.

Parameters

csgraph [array_like or sparse matrix] The N x N matrix representing the compressed sparse graph.
The input csgraph will be converted to csr format for the calculation.

directed [bool, optional] If True (default), then operate on a directed graph: only move from point
i to point j along paths csgraph[i, j]. If False, then find the shortest path on an undirected
graph: the algorithm can progress from point i to j along csgraph[i, j] or csgraph[j, i].
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connection
[str, optional] [‘weak’|’strong’]. For directed graphs, the type of connection to use. Nodes i
and j are strongly connected if a path exists both from i to j and from j to i. Nodes i and j
are weakly connected if only one of these paths exists. If directed == False, this keyword is
not referenced.

return_labels
[bool, optional] If True (default), then return the labels for each of the connected compo-
nents.

Returns

n_components: int
The number of connected components.

labels: ndarray
The length-N array of labels of the connected components.

References

[1]

Examples

>>> from scipy.sparse import csr_matrix
>>> from scipy.sparse.csgraph import connected_components

>>> graph = [
... [ 0, 1 , 1, 0 , 0 ],
... [ 0, 0 , 1 , 0 ,0 ],
... [ 0, 0, 0, 0, 0],
... [0, 0 , 0, 0, 1],
... [0, 0, 0, 0, 0]
... ]
>>> graph = csr_matrix(graph)
>>> print(graph)

(0, 1) 1
(0, 2) 1
(1, 2) 1
(3, 4) 1

>>> n_components, labels = connected_components(csgraph=graph,␣
↪→directed=False, return_labels=True)
>>> n_components
2
>>> labels
array([0, 0, 0, 1, 1], dtype=int32)

scipy.sparse.csgraph.laplacian

scipy.sparse.csgraph.laplacian(csgraph, normed=False, return_diag=False,
use_out_degree=False)

Return the Laplacian matrix of a directed graph.
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Parameters

csgraph [array_like or sparse matrix, 2 dimensions] compressed-sparse graph, with shape (N, N).
normed [bool, optional] If True, then compute normalized Laplacian.
return_diag

[bool, optional] If True, then also return an array related to vertex degrees.
use_out_degree

[bool, optional] If True, then use out-degree instead of in-degree. This distinction matters
only if the graph is asymmetric. Default: False.

Returns

lap [ndarray or sparse matrix] The N x N laplacian matrix of csgraph. It will be a numpy array
(dense) if the input was dense, or a sparse matrix otherwise.

diag [ndarray, optional] The length-N diagonal of the Laplacian matrix. For the normalized
Laplacian, this is the array of square roots of vertex degrees or 1 if the degree is zero.

Notes

The Laplacian matrix of a graph is sometimes referred to as the “Kirchoff matrix” or the “admittance matrix”, and
is useful in many parts of spectral graph theory. In particular, the eigen-decomposition of the laplacian matrix can
give insight into many properties of the graph.

Examples

>>> from scipy.sparse import csgraph
>>> G = np.arange(5) * np.arange(5)[:, np.newaxis]
>>> G
array([[ 0, 0, 0, 0, 0],

[ 0, 1, 2, 3, 4],
[ 0, 2, 4, 6, 8],
[ 0, 3, 6, 9, 12],
[ 0, 4, 8, 12, 16]])

>>> csgraph.laplacian(G, normed=False)
array([[ 0, 0, 0, 0, 0],

[ 0, 9, -2, -3, -4],
[ 0, -2, 16, -6, -8],
[ 0, -3, -6, 21, -12],
[ 0, -4, -8, -12, 24]])

scipy.sparse.csgraph.shortest_path

scipy.sparse.csgraph.shortest_path(csgraph, method=’auto’, directed=True, re-
turn_predecessors=False, unweighted=False, over-
write=False, indices=None)

Perform a shortest-path graph search on a positive directed or undirected graph.
New in version 0.11.0.

Parameters

csgraph [array, matrix, or sparse matrix, 2 dimensions] The N x N array of distances representing
the input graph.

method [string [‘auto’|’FW’|’D’], optional] Algorithm to use for shortest paths. Options are:
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‘auto’ – (default) select the best among ‘FW’, ‘D’, ‘BF’, or ‘J’
based on the input data.

‘FW’ – Floyd-Warshall algorithm. Computational cost is
approximately O[N^3]. The input csgraph will be converted to a dense rep-
resentation.

‘D’ – Dijkstra’s algorithm with Fibonacci heaps. Computational
cost is approximately O[N(N*k + N*log(N))], where k is the average
number of connected edges per node. The input csgraph will be converted to
a csr representation.

‘BF’ – Bellman-Ford algorithm. This algorithm can be used when
weights are negative. If a negative cycle is encountered, an error will be
raised. Computational cost is approximately O[N(N^2 k)], where k is
the average number of connected edges per node. The input csgraph will be
converted to a csr representation.

‘J’ – Johnson’s algorithm. Like the Bellman-Ford algorithm,
Johnson’s algorithm is designed for use when the weights are negative. It
combines the Bellman-Ford algorithm with Dijkstra’s algorithm for faster
computation.

directed [bool, optional] If True (default), then find the shortest path on a directed graph: only move
from point i to point j along paths csgraph[i, j]. If False, then find the shortest path on an
undirected graph: the algorithm can progress from point i to j along csgraph[i, j] or csgraph[j,
i]

return_predecessors
[bool, optional] If True, return the size (N, N) predecesor matrix

unweighted
[bool, optional] If True, then find unweighted distances. That is, rather than finding the path
between each point such that the sum of weights is minimized, find the path such that the
number of edges is minimized.

overwrite [bool, optional] If True, overwrite csgraph with the result. This applies only if method ==
‘FW’ and csgraph is a dense, c-ordered array with dtype=float64.

indices [array_like or int, optional] If specified, only compute the paths for the points at the given
indices. Incompatible with method == ‘FW’.

Returns

dist_matrix
[ndarray] The N x N matrix of distances between graph nodes. dist_matrix[i,j] gives the
shortest distance from point i to point j along the graph.

predecessors
[ndarray] Returned only if return_predecessors == True. The N x N matrix of predecessors,
which can be used to reconstruct the shortest paths. Row i of the predecessor matrix contains
information on the shortest paths from point i: each entry predecessors[i, j] gives the index
of the previous node in the path from point i to point j. If no path exists between point i and
j, then predecessors[i, j] = -9999

Raises

NegativeCycleError:
if there are negative cycles in the graph

Notes

As currently implemented, Dijkstra’s algorithm and Johnson’s algorithm do not work for graphs with direction-
dependent distances when directed == False. i.e., if csgraph[i,j] and csgraph[j,i] are non-equal edges, method=’D’
may yield an incorrect result.
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Examples

>>> from scipy.sparse import csr_matrix
>>> from scipy.sparse.csgraph import shortest_path

>>> graph = [
... [0, 1 , 2, 0],
... [0, 0, 0, 1],
... [2, 0, 0, 3],
... [0, 0, 0, 0]
... ]
>>> graph = csr_matrix(graph)
>>> print(graph)

(0, 1) 1
(0, 2) 2
(1, 3) 1
(2, 0) 2
(2, 3) 3

>>> dist_matrix, predecessors = shortest_path(csgraph=graph,␣
↪→directed=False, indices=0, return_predecessors=True)
>>> dist_matrix
array([ 0., 1., 2., 2.])
>>> predecessors
array([-9999, 0, 0, 1], dtype=int32)

scipy.sparse.csgraph.dijkstra

scipy.sparse.csgraph.dijkstra(csgraph, directed=True, indices=None, return_predecessors=False,
unweighted=False, limit=np.inf)

Dijkstra algorithm using Fibonacci Heaps
New in version 0.11.0.

Parameters

csgraph [array, matrix, or sparse matrix, 2 dimensions] The N x N array of non-negative distances
representing the input graph.

directed [bool, optional] If True (default), then find the shortest path on a directed graph: only move
from point i to point j along paths csgraph[i, j] and from point j to i along paths csgraph[j,
i]. If False, then find the shortest path on an undirected graph: the algorithm can progress
from point i to j or j to i along either csgraph[i, j] or csgraph[j, i].

indices [array_like or int, optional] if specified, only compute the paths for the points at the given
indices.

return_predecessors
[bool, optional] If True, return the size (N, N) predecesor matrix

unweighted
[bool, optional] If True, then find unweighted distances. That is, rather than finding the path
between each point such that the sum of weights is minimized, find the path such that the
number of edges is minimized.

limit [float, optional] The maximum distance to calculate, must be >= 0. Using a smaller limit
will decrease computation time by aborting calculations between pairs that are separated by
a distance > limit. For such pairs, the distance will be equal to np.inf (i.e., not connected).
New in version 0.14.0.
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min_only [bool, optional] If False (default), for every node in the graph, find the shortest path to every
node in indices. If True, for every node in the graph, find the shortest path to any of the
nodes in indices (which can be substantially faster).
New in version 1.3.0.

Returns

dist_matrix
[ndarray, shape ([n_indices, ]n_nodes,)] The matrix of distances between graph nodes. If
min_only=False, dist_matrix has shape (n_indices, n_nodes) and dist_matrix[i, j] gives the
shortest distance from point i to point j along the graph. If min_only=True, dist_matrix has
shape (n_nodes,) and contains the shortest path from each node to any of the nodes in indices.

predecessors
[ndarray, shape ([n_indices, ]n_nodes,)] If min_only=False, this has shape (n_indices,
n_nodes), otherwise it has shape (n_nodes,). Returned only if return_predecessors == True.
The matrix of predecessors, which can be used to reconstruct the shortest paths. Row i of
the predecessor matrix contains information on the shortest paths from point i: each entry
predecessors[i, j] gives the index of the previous node in the path from point i to point j. If
no path exists between point i and j, then predecessors[i, j] = -9999

sources [ndarray, shape (n_nodes,)] Returned only if min_only=True and return_predecessors=True.
Contains the index of the source which had the shortest path to each target. If no path exists
within the limit, this will contain -9999. The value at the indices passed will be equal to that
index (i.e. the fastest way to reach node i, is to start on node i).

Notes

As currently implemented, Dijkstra’s algorithm does not work for graphs with direction-dependent distances when
directed == False. i.e., if csgraph[i,j] and csgraph[j,i] are not equal and both are nonzero, setting directed=False
will not yield the correct result.
Also, this routine does not work for graphs with negative distances. Negative distances can lead to infinite cycles
that must be handled by specialized algorithms such as Bellman-Ford’s algorithm or Johnson’s algorithm.

Examples

>>> from scipy.sparse import csr_matrix
>>> from scipy.sparse.csgraph import dijkstra

>>> graph = [
... [0, 1 , 2, 0],
... [0, 0, 0, 1],
... [0, 0, 0, 3],
... [0, 0, 0, 0]
... ]
>>> graph = csr_matrix(graph)
>>> print(graph)

(0, 1) 1
(0, 2) 2
(1, 3) 1
(2, 3) 3
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>>> dist_matrix, predecessors = dijkstra(csgraph=graph, directed=False,␣
↪→indices=0, return_predecessors=True)
>>> dist_matrix
array([ 0., 1., 2., 2.])
>>> predecessors
array([-9999, 0, 0, 1], dtype=int32)

scipy.sparse.csgraph.floyd_warshall

scipy.sparse.csgraph.floyd_warshall(csgraph, directed=True, return_predecessors=False, un-
weighted=False, overwrite=False)

Compute the shortest path lengths using the Floyd-Warshall algorithm
New in version 0.11.0.

Parameters

csgraph [array, matrix, or sparse matrix, 2 dimensions] The N x N array of distances representing
the input graph.

directed [bool, optional] If True (default), then find the shortest path on a directed graph: only move
from point i to point j along paths csgraph[i, j]. If False, then find the shortest path on an
undirected graph: the algorithm can progress from point i to j along csgraph[i, j] or csgraph[j,
i]

return_predecessors
[bool, optional] If True, return the size (N, N) predecesor matrix

unweighted
[bool, optional] If True, then find unweighted distances. That is, rather than finding the path
between each point such that the sum of weights is minimized, find the path such that the
number of edges is minimized.

overwrite [bool, optional] If True, overwrite csgraph with the result. This applies only if csgraph is a
dense, c-ordered array with dtype=float64.

Returns

dist_matrix
[ndarray] The N x N matrix of distances between graph nodes. dist_matrix[i,j] gives the
shortest distance from point i to point j along the graph.

predecessors
[ndarray] Returned only if return_predecessors == True. The N x N matrix of predecessors,
which can be used to reconstruct the shortest paths. Row i of the predecessor matrix contains
information on the shortest paths from point i: each entry predecessors[i, j] gives the index
of the previous node in the path from point i to point j. If no path exists between point i and
j, then predecessors[i, j] = -9999

Raises

NegativeCycleError:
if there are negative cycles in the graph

Examples

>>> from scipy.sparse import csr_matrix
>>> from scipy.sparse.csgraph import floyd_warshall
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>>> graph = [
... [0, 1 , 2, 0],
... [0, 0, 0, 1],
... [2, 0, 0, 3],
... [0, 0, 0, 0]
... ]
>>> graph = csr_matrix(graph)
>>> print(graph)

(0, 1) 1
(0, 2) 2
(1, 3) 1
(2, 0) 2
(2, 3) 3

>>> dist_matrix, predecessors = floyd_warshall(csgraph=graph,␣
↪→directed=False, return_predecessors=True)
>>> dist_matrix
array([[ 0., 1., 2., 2.],

[ 1., 0., 3., 1.],
[ 2., 3., 0., 3.],
[ 2., 1., 3., 0.]])

>>> predecessors
array([[-9999, 0, 0, 1],

[ 1, -9999, 0, 1],
[ 2, 0, -9999, 2],
[ 1, 3, 3, -9999]], dtype=int32)

scipy.sparse.csgraph.bellman_ford

scipy.sparse.csgraph.bellman_ford(csgraph, directed=True, indices=None, re-
turn_predecessors=False, unweighted=False)

Compute the shortest path lengths using the Bellman-Ford algorithm.
The Bellman-ford algorithm can robustly deal with graphs with negative weights. If a negative cycle is detected, an
error is raised. For graphs without negative edge weights, dijkstra’s algorithm may be faster.
New in version 0.11.0.

Parameters

csgraph [array, matrix, or sparse matrix, 2 dimensions] The N x N array of distances representing
the input graph.

directed [bool, optional] If True (default), then find the shortest path on a directed graph: only move
from point i to point j along paths csgraph[i, j]. If False, then find the shortest path on an
undirected graph: the algorithm can progress from point i to j along csgraph[i, j] or csgraph[j,
i]

indices [array_like or int, optional] if specified, only compute the paths for the points at the given
indices.

return_predecessors
[bool, optional] If True, return the size (N, N) predecesor matrix

unweighted
[bool, optional] If True, then find unweighted distances. That is, rather than finding the path
between each point such that the sum of weights is minimized, find the path such that the
number of edges is minimized.
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Returns

dist_matrix
[ndarray] The N x N matrix of distances between graph nodes. dist_matrix[i,j] gives the
shortest distance from point i to point j along the graph.

predecessors
[ndarray] Returned only if return_predecessors == True. The N x N matrix of predecessors,
which can be used to reconstruct the shortest paths. Row i of the predecessor matrix contains
information on the shortest paths from point i: each entry predecessors[i, j] gives the index
of the previous node in the path from point i to point j. If no path exists between point i and
j, then predecessors[i, j] = -9999

Raises

NegativeCycleError:
if there are negative cycles in the graph

Notes

This routine is specially designed for graphs with negative edge weights. If all edge weights are positive, then
Dijkstra’s algorithm is a better choice.

Examples

>>> from scipy.sparse import csr_matrix
>>> from scipy.sparse.csgraph import bellman_ford

>>> graph = [
... [0, 1 , 2, 0],
... [0, 0, 0, 1],
... [2, 0, 0, 3],
... [0, 0, 0, 0]
... ]
>>> graph = csr_matrix(graph)
>>> print(graph)

(0, 1) 1
(0, 2) 2
(1, 3) 1
(2, 0) 2
(2, 3) 3

>>> dist_matrix, predecessors = bellman_ford(csgraph=graph,␣
↪→directed=False, indices=0, return_predecessors=True)
>>> dist_matrix
array([ 0., 1., 2., 2.])
>>> predecessors
array([-9999, 0, 0, 1], dtype=int32)
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scipy.sparse.csgraph.johnson

scipy.sparse.csgraph.johnson(csgraph, directed=True, indices=None, return_predecessors=False,
unweighted=False)

Compute the shortest path lengths using Johnson’s algorithm.
Johnson’s algorithm combines the Bellman-Ford algorithm and Dijkstra’s algorithm to quickly find shortest paths
in a way that is robust to the presence of negative cycles. If a negative cycle is detected, an error is raised. For
graphs without negative edge weights, dijkstra() may be faster.
New in version 0.11.0.

Parameters

csgraph [array, matrix, or sparse matrix, 2 dimensions] The N x N array of distances representing
the input graph.

directed [bool, optional] If True (default), then find the shortest path on a directed graph: only move
from point i to point j along paths csgraph[i, j]. If False, then find the shortest path on an
undirected graph: the algorithm can progress from point i to j along csgraph[i, j] or csgraph[j,
i]

indices [array_like or int, optional] if specified, only compute the paths for the points at the given
indices.

return_predecessors
[bool, optional] If True, return the size (N, N) predecesor matrix

unweighted
[bool, optional] If True, then find unweighted distances. That is, rather than finding the path
between each point such that the sum of weights is minimized, find the path such that the
number of edges is minimized.

Returns

dist_matrix
[ndarray] The N x N matrix of distances between graph nodes. dist_matrix[i,j] gives the
shortest distance from point i to point j along the graph.

predecessors
[ndarray] Returned only if return_predecessors == True. The N x N matrix of predecessors,
which can be used to reconstruct the shortest paths. Row i of the predecessor matrix contains
information on the shortest paths from point i: each entry predecessors[i, j] gives the index
of the previous node in the path from point i to point j. If no path exists between point i and
j, then predecessors[i, j] = -9999

Raises

NegativeCycleError:
if there are negative cycles in the graph

Notes

This routine is specially designed for graphs with negative edge weights. If all edge weights are positive, then
Dijkstra’s algorithm is a better choice.

Examples

>>> from scipy.sparse import csr_matrix
>>> from scipy.sparse.csgraph import johnson
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>>> graph = [
... [0, 1 , 2, 0],
... [0, 0, 0, 1],
... [2, 0, 0, 3],
... [0, 0, 0, 0]
... ]
>>> graph = csr_matrix(graph)
>>> print(graph)

(0, 1) 1
(0, 2) 2
(1, 3) 1
(2, 0) 2
(2, 3) 3

>>> dist_matrix, predecessors = johnson(csgraph=graph, directed=False,␣
↪→indices=0, return_predecessors=True)
>>> dist_matrix
array([ 0., 1., 2., 2.])
>>> predecessors
array([-9999, 0, 0, 1], dtype=int32)

scipy.sparse.csgraph.breadth_first_order

scipy.sparse.csgraph.breadth_first_order(csgraph, i_start, directed=True, re-
turn_predecessors=True)

Return a breadth-first ordering starting with specified node.
Note that a breadth-first order is not unique, but the tree which it generates is unique.
New in version 0.11.0.

Parameters

csgraph [array_like or sparse matrix] The N x N compressed sparse graph. The input csgraph will
be converted to csr format for the calculation.

i_start [int] The index of starting node.
directed [bool, optional] If True (default), then operate on a directed graph: only move from point

i to point j along paths csgraph[i, j]. If False, then find the shortest path on an undirected
graph: the algorithm can progress from point i to j along csgraph[i, j] or csgraph[j, i].

return_predecessors
[bool, optional] If True (default), then return the predecesor array (see below).

Returns

node_array
[ndarray, one dimension] The breadth-first list of nodes, starting with specified node. The
length of node_array is the number of nodes reachable from the specified node.

predecessors
[ndarray, one dimension] Returned only if return_predecessors is True. The length-N list of
predecessors of each node in a breadth-first tree. If node i is in the tree, then its parent is given
by predecessors[i]. If node i is not in the tree (and for the parent node) then predecessors[i]
= -9999.
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Examples

>>> from scipy.sparse import csr_matrix
>>> from scipy.sparse.csgraph import breadth_first_order

>>> graph = [
... [0, 1 , 2, 0],
... [0, 0, 0, 1],
... [2, 0, 0, 3],
... [0, 0, 0, 0]
... ]
>>> graph = csr_matrix(graph)
>>> print(graph)

(0, 1) 1
(0, 2) 2
(1, 3) 1
(2, 0) 2
(2, 3) 3

>>> breadth_first_order(graph,0)
(array([0, 1, 2, 3], dtype=int32), array([-9999, 0, 0, 1],␣
↪→dtype=int32))

scipy.sparse.csgraph.depth_first_order

scipy.sparse.csgraph.depth_first_order(csgraph, i_start, directed=True, re-
turn_predecessors=True)

Return a depth-first ordering starting with specified node.
Note that a depth-first order is not unique. Furthermore, for graphs with cycles, the tree generated by a depth-first
search is not unique either.
New in version 0.11.0.

Parameters

csgraph [array_like or sparse matrix] The N x N compressed sparse graph. The input csgraph will
be converted to csr format for the calculation.

i_start [int] The index of starting node.
directed [bool, optional] If True (default), then operate on a directed graph: only move from point

i to point j along paths csgraph[i, j]. If False, then find the shortest path on an undirected
graph: the algorithm can progress from point i to j along csgraph[i, j] or csgraph[j, i].

return_predecessors
[bool, optional] If True (default), then return the predecesor array (see below).

Returns

node_array
[ndarray, one dimension] The depth-first list of nodes, starting with specified node. The
length of node_array is the number of nodes reachable from the specified node.

predecessors
[ndarray, one dimension] Returned only if return_predecessors is True. The length-N list of
predecessors of each node in a depth-first tree. If node i is in the tree, then its parent is given
by predecessors[i]. If node i is not in the tree (and for the parent node) then predecessors[i]
= -9999.
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Examples

>>> from scipy.sparse import csr_matrix
>>> from scipy.sparse.csgraph import depth_first_order

>>> graph = [
... [0, 1 , 2, 0],
... [0, 0, 0, 1],
... [2, 0, 0, 3],
... [0, 0, 0, 0]
... ]
>>> graph = csr_matrix(graph)
>>> print(graph)

(0, 1) 1
(0, 2) 2
(1, 3) 1
(2, 0) 2
(2, 3) 3

>>> depth_first_order(graph,0)
(array([0, 1, 3, 2], dtype=int32), array([-9999, 0, 0, 1],␣
↪→dtype=int32))

scipy.sparse.csgraph.breadth_first_tree

scipy.sparse.csgraph.breadth_first_tree(csgraph, i_start, directed=True)
Return the tree generated by a breadth-first search
Note that a breadth-first tree from a specified node is unique.
New in version 0.11.0.

Parameters

csgraph [array_like or sparse matrix] The N x N matrix representing the compressed sparse graph.
The input csgraph will be converted to csr format for the calculation.

i_start [int] The index of starting node.
directed [bool, optional] If True (default), then operate on a directed graph: only move from point

i to point j along paths csgraph[i, j]. If False, then find the shortest path on an undirected
graph: the algorithm can progress from point i to j along csgraph[i, j] or csgraph[j, i].

Returns

cstree [csr matrix] The N x N directed compressed-sparse representation of the breadth- first tree
drawn from csgraph, starting at the specified node.

Examples

The following example shows the computation of a depth-first tree over a simple four-component graph, starting
at node 0:
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input graph breadth first tree from (0)

(0) (0)
/ \ / \

3 8 3 8
/ \ / \

(3)---5---(1) (3) (1)
\ / /
6 2 2
\ / /
(2) (2)

In compressed sparse representation, the solution looks like this:

>>> from scipy.sparse import csr_matrix
>>> from scipy.sparse.csgraph import breadth_first_tree
>>> X = csr_matrix([[0, 8, 0, 3],
... [0, 0, 2, 5],
... [0, 0, 0, 6],
... [0, 0, 0, 0]])
>>> Tcsr = breadth_first_tree(X, 0, directed=False)
>>> Tcsr.toarray().astype(int)
array([[0, 8, 0, 3],

[0, 0, 2, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]])

Note that the resulting graph is a Directed Acyclic Graph which spans the graph. A breadth-first tree from a given
node is unique.

scipy.sparse.csgraph.depth_first_tree

scipy.sparse.csgraph.depth_first_tree(csgraph, i_start, directed=True)
Return a tree generated by a depth-first search.
Note that a tree generated by a depth-first search is not unique: it depends on the order that the children of each
node are searched.
New in version 0.11.0.

Parameters

csgraph [array_like or sparse matrix] The N x N matrix representing the compressed sparse graph.
The input csgraph will be converted to csr format for the calculation.

i_start [int] The index of starting node.
directed [bool, optional] If True (default), then operate on a directed graph: only move from point

i to point j along paths csgraph[i, j]. If False, then find the shortest path on an undirected
graph: the algorithm can progress from point i to j along csgraph[i, j] or csgraph[j, i].

Returns

cstree [csr matrix] The N x N directed compressed-sparse representation of the depth- first tree
drawn from csgraph, starting at the specified node.
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Examples

The following example shows the computation of a depth-first tree over a simple four-component graph, starting
at node 0:

input graph depth first tree from (0)

(0) (0)
/ \ \

3 8 8
/ \ \

(3)---5---(1) (3) (1)
\ / \ /
6 2 6 2
\ / \ /
(2) (2)

In compressed sparse representation, the solution looks like this:

>>> from scipy.sparse import csr_matrix
>>> from scipy.sparse.csgraph import depth_first_tree
>>> X = csr_matrix([[0, 8, 0, 3],
... [0, 0, 2, 5],
... [0, 0, 0, 6],
... [0, 0, 0, 0]])
>>> Tcsr = depth_first_tree(X, 0, directed=False)
>>> Tcsr.toarray().astype(int)
array([[0, 8, 0, 0],

[0, 0, 2, 0],
[0, 0, 0, 6],
[0, 0, 0, 0]])

Note that the resulting graph is a Directed Acyclic Graph which spans the graph. Unlike a breadth-first tree, a
depth-first tree of a given graph is not unique if the graph contains cycles. If the above solution had begun with the
edge connecting nodes 0 and 3, the result would have been different.

scipy.sparse.csgraph.minimum_spanning_tree

scipy.sparse.csgraph.minimum_spanning_tree(csgraph, overwrite=False)
Return a minimum spanning tree of an undirected graph
A minimum spanning tree is a graph consisting of the subset of edges which together connect all connected nodes,
while minimizing the total sum of weights on the edges. This is computed using the Kruskal algorithm.
New in version 0.11.0.

Parameters

csgraph [array_like or sparse matrix, 2 dimensions] The N x N matrix representing an undirected
graph over N nodes (see notes below).

overwrite [bool, optional] if true, then parts of the input graph will be overwritten for efficiency.
Returns

span_tree [csr matrix] The N x N compressed-sparse representation of the undirected minimum span-
ning tree over the input (see notes below).
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Notes

This routine uses undirected graphs as input and output. That is, if graph[i, j] and graph[j, i] are both zero, then
nodes i and j do not have an edge connecting them. If either is nonzero, then the two are connected by the minimum
nonzero value of the two.

Examples

The following example shows the computation of a minimum spanning tree over a simple four-component graph:

input graph minimum spanning tree

(0) (0)
/ \ /

3 8 3
/ \ /

(3)---5---(1) (3)---5---(1)
\ / /
6 2 2
\ / /
(2) (2)

It is easy to see from inspection that the minimum spanning tree involves removing the edges with weights 8 and
6. In compressed sparse representation, the solution looks like this:

>>> from scipy.sparse import csr_matrix
>>> from scipy.sparse.csgraph import minimum_spanning_tree
>>> X = csr_matrix([[0, 8, 0, 3],
... [0, 0, 2, 5],
... [0, 0, 0, 6],
... [0, 0, 0, 0]])
>>> Tcsr = minimum_spanning_tree(X)
>>> Tcsr.toarray().astype(int)
array([[0, 0, 0, 3],

[0, 0, 2, 5],
[0, 0, 0, 0],
[0, 0, 0, 0]])

scipy.sparse.csgraph.reverse_cuthill_mckee

scipy.sparse.csgraph.reverse_cuthill_mckee(graph, symmetric_mode=False)
Returns the permutation array that orders a sparse CSR or CSC matrix in Reverse-Cuthill McKee ordering.
It is assumed by default, symmetric_mode=False, that the input matrix is not symmetric and works on the
matrix A+A.T. If you are guaranteed that the matrix is symmetric in structure (values of matrix elements do not
matter) then set symmetric_mode=True.

Parameters

graph [sparse matrix] Input sparse in CSC or CSR sparse matrix format.
symmetric_mode

[bool, optional] Is input matrix guaranteed to be symmetric.
Returns

1826 Chapter 6. API Reference



SciPy Reference Guide, Release 1.3.1

perm [ndarray] Array of permuted row and column indices.

Notes

New in version 0.15.0.

References

E. Cuthill and J. McKee, “Reducing the Bandwidth of Sparse Symmetric Matrices”, ACM ‘69 Proceedings of the
1969 24th national conference, (1969).

Examples

>>> from scipy.sparse import csr_matrix
>>> from scipy.sparse.csgraph import reverse_cuthill_mckee

>>> graph = [
... [0, 1 , 2, 0],
... [0, 0, 0, 1],
... [2, 0, 0, 3],
... [0, 0, 0, 0]
... ]
>>> graph = csr_matrix(graph)
>>> print(graph)

(0, 1) 1
(0, 2) 2
(1, 3) 1
(2, 0) 2
(2, 3) 3

>>> reverse_cuthill_mckee(graph)
array([3, 2, 1, 0], dtype=int32)

scipy.sparse.csgraph.maximum_bipartite_matching

scipy.sparse.csgraph.maximum_bipartite_matching(graph, perm_type=’row’)
Returns an array of row or column permutations that makes the diagonal of a nonsingular square CSC sparse matrix
zero free.
Such a permutation is always possible provided that the matrix is nonsingular. This function looks at the structure
of the matrix only. The input matrix will be converted to CSC matrix format if necessary.

Parameters

graph [sparse matrix] Input sparse in CSC format
perm_type

[str, {‘row’, ‘column’}] Type of permutation to generate.
Returns

perm [ndarray] Array of row or column permutations.
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Notes

This function relies on a maximum cardinality bipartite matching algorithm based on a breadth-first search (BFS)
of the underlying graph.
New in version 0.15.0.

References

I. S. Duff, K. Kaya, and B. Ucar, “Design, Implementation, and Analysis of Maximum Transversal Algorithms”,
ACM Trans. Math. Softw. 38, no. 2, (2011).

Examples

>>> from scipy.sparse import csr_matrix
>>> from scipy.sparse.csgraph import maximum_bipartite_matching

>>> graph = [
... [0, 1 , 2, 0],
... [1, 0, 0, 1],
... [2, 0, 0, 3],
... [0, 1, 3, 0]
... ]
>>> graph = csr_matrix(graph)
>>> print(graph)

(0, 1) 1
(0, 2) 2
(1, 0) 1
(1, 3) 1
(2, 0) 2
(2, 3) 3
(3, 1) 1
(3, 2) 3

>>> maximum_bipartite_matching(graph, perm_type='row')
array([1, 0, 3, 2], dtype=int32)

scipy.sparse.csgraph.structural_rank

scipy.sparse.csgraph.structural_rank(graph)
Compute the structural rank of a graph (matrix) with a given sparsity pattern.
The structural rank of a matrix is the number of entries in the maximum transversal of the corresponding bipartite
graph, and is an upper bound on the numerical rank of the matrix. A graph has full structural rank if it is possible
to permute the elements to make the diagonal zero-free.
New in version 0.19.0.

Parameters

graph [sparse matrix] Input sparse matrix.
Returns
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rank [int] The structural rank of the sparse graph.

References

[1], [2]

Examples

>>> from scipy.sparse import csr_matrix
>>> from scipy.sparse.csgraph import structural_rank

>>> graph = [
... [0, 1 , 2, 0],
... [1, 0, 0, 1],
... [2, 0, 0, 3],
... [0, 1, 3, 0]
... ]
>>> graph = csr_matrix(graph)
>>> print(graph)

(0, 1) 1
(0, 2) 2
(1, 0) 1
(1, 3) 1
(2, 0) 2
(2, 3) 3
(3, 1) 1
(3, 2) 3

>>> structural_rank(graph)
4

scipy.sparse.csgraph.NegativeCycleError

exception scipy.sparse.csgraph.NegativeCycleError

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

construct_dist_matrix(graph, predecessors[,
…])

Construct distance matrix from a predecessor matrix

csgraph_from_dense(graph[, null_value, …]) Construct a CSR-format sparse graph from a dense ma-
trix.

csgraph_from_masked(graph) Construct a CSR-format graph from a masked array.
csgraph_masked_from_dense(graph[, …]) Construct a masked array graph representation from a

dense matrix.
csgraph_to_dense(csgraph[, null_value]) Convert a sparse graph representation to a dense repre-

sentation
Continued on next page
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Table 194 – continued from previous page
csgraph_to_masked(csgraph) Convert a sparse graph representation to a masked array

representation
reconstruct_path(csgraph, predecessors[, …]) Construct a tree from a graph and a predecessor list.

scipy.sparse.csgraph.construct_dist_matrix

scipy.sparse.csgraph.construct_dist_matrix(graph, predecessors, directed=True,
null_value=np.inf)

Construct distance matrix from a predecessor matrix
New in version 0.11.0.

Parameters

graph [array_like or sparse] The N x N matrix representation of a directed or undirected graph. If
dense, then non-edges are indicated by zeros or infinities.

predecessors
[array_like] The N x N matrix of predecessors of each node (see Notes below).

directed [bool, optional] If True (default), then operate on a directed graph: only move from point i to
point j along paths csgraph[i, j]. If False, then operate on an undirected graph: the algorithm
can progress from point i to j along csgraph[i, j] or csgraph[j, i].

null_value [bool, optional] value to use for distances between unconnected nodes. Default is np.inf
Returns

dist_matrix
[ndarray] The N x N matrix of distances between nodes along the path specified by the
predecessor matrix. If no path exists, the distance is zero.

Notes

The predecessor matrix is of the form returned by shortest_path. Row i of the predecessor matrix contains
information on the shortest paths from point i: each entry predecessors[i, j] gives the index of the previous node in
the path from point i to point j. If no path exists between point i and j, then predecessors[i, j] = -9999

Examples

>>> from scipy.sparse import csr_matrix
>>> from scipy.sparse.csgraph import construct_dist_matrix

>>> graph = [
... [0, 1 , 2, 0],
... [0, 0, 0, 1],
... [0, 0, 0, 3],
... [0, 0, 0, 0]
... ]
>>> graph = csr_matrix(graph)
>>> print(graph)

(0, 1) 1
(0, 2) 2
(1, 3) 1
(2, 3) 3
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>>> pred = np.array([[-9999, 0, 0, 2],
... [1, -9999, 0, 1],
... [2, 0, -9999, 2],
... [1, 3, 3, -9999]], dtype=np.int32)

>>> construct_dist_matrix(graph=graph, predecessors=pred, directed=False)
array([[ 0., 1., 2., 5.],

[ 1., 0., 3., 1.],
[ 2., 3., 0., 3.],
[ 2., 1., 3., 0.]])

scipy.sparse.csgraph.csgraph_from_dense

scipy.sparse.csgraph.csgraph_from_dense(graph, null_value=0, nan_null=True, infin-
ity_null=True)

Construct a CSR-format sparse graph from a dense matrix.
New in version 0.11.0.

Parameters

graph [array_like] Input graph. Shape should be (n_nodes, n_nodes).
null_value [float or None (optional)] Value that denotes non-edges in the graph. Default is zero.
infinity_null

[bool] If True (default), then infinite entries (both positive and negative) are treated as null
edges.

nan_null [bool] If True (default), then NaN entries are treated as non-edges
Returns

csgraph [csr_matrix] Compressed sparse representation of graph,

Examples

>>> from scipy.sparse.csgraph import csgraph_from_dense

>>> graph = [
... [0, 1 , 2, 0],
... [0, 0, 0, 1],
... [0, 0, 0, 3],
... [0, 0, 0, 0]
... ]

>>> csgraph_from_dense(graph)
<4x4 sparse matrix of type '<class 'numpy.float64'>'

with 4 stored elements in Compressed Sparse Row format>

scipy.sparse.csgraph.csgraph_from_masked

scipy.sparse.csgraph.csgraph_from_masked(graph)
Construct a CSR-format graph from a masked array.
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New in version 0.11.0.
Parameters

graph [MaskedArray] Input graph. Shape should be (n_nodes, n_nodes).
Returns

csgraph [csr_matrix] Compressed sparse representation of graph,

Examples

>>> import numpy as np
>>> from scipy.sparse.csgraph import csgraph_from_masked

>>> graph_masked = np.ma.masked_array(data =[
... [0, 1 , 2, 0],
... [0, 0, 0, 1],
... [0, 0, 0, 3],
... [0, 0, 0, 0]
... ],
... mask=[[ True, False, False , True],
... [ True, True , True, False],
... [ True , True, True ,False],
... [ True ,True , True , True]],
... fill_value = 0)

>>> csgraph_from_masked(graph_masked)
<4x4 sparse matrix of type '<class 'numpy.float64'>'

with 4 stored elements in Compressed Sparse Row format>

scipy.sparse.csgraph.csgraph_masked_from_dense

scipy.sparse.csgraph.csgraph_masked_from_dense(graph, null_value=0, nan_null=True, in-
finity_null=True, copy=True)

Construct a masked array graph representation from a dense matrix.
New in version 0.11.0.

Parameters

graph [array_like] Input graph. Shape should be (n_nodes, n_nodes).
null_value [float or None (optional)] Value that denotes non-edges in the graph. Default is zero.
infinity_null

[bool] If True (default), then infinite entries (both positive and negative) are treated as null
edges.

nan_null [bool] If True (default), then NaN entries are treated as non-edges
Returns

csgraph [MaskedArray] masked array representation of graph
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Examples

>>> from scipy.sparse.csgraph import csgraph_masked_from_dense

>>> graph = [
... [0, 1 , 2, 0],
... [0, 0, 0, 1],
... [0, 0, 0, 3],
... [0, 0, 0, 0]
... ]

>>> csgraph_masked_from_dense(graph)
masked_array(

data=[[--, 1, 2, --],
[--, --, --, 1],
[--, --, --, 3],
[--, --, --, --]],

mask=[[ True, False, False, True],
[ True, True, True, False],
[ True, True, True, False],
[ True, True, True, True]],

fill_value=0)

scipy.sparse.csgraph.csgraph_to_dense

scipy.sparse.csgraph.csgraph_to_dense(csgraph, null_value=0)
Convert a sparse graph representation to a dense representation
New in version 0.11.0.

Parameters

csgraph [csr_matrix, csc_matrix, or lil_matrix] Sparse representation of a graph.
null_value [float, optional] The value used to indicate null edges in the dense representation. Default is

0.
Returns

graph [ndarray] The dense representation of the sparse graph.

Notes

For normal sparse graph representations, calling csgraph_to_dense with null_value=0 produces an equivalent result
to using dense format conversions in the main sparse package. When the sparse representations have repeated
values, however, the results will differ. The tools in scipy.sparse will add repeating values to obtain a final value.
This function will select the minimum among repeating values to obtain a final value. For example, here we’ll create
a two-node directed sparse graph with multiple edges from node 0 to node 1, of weights 2 and 3. This illustrates
the difference in behavior:

>>> from scipy.sparse import csr_matrix, csgraph
>>> data = np.array([2, 3])
>>> indices = np.array([1, 1])
>>> indptr = np.array([0, 2, 2])

(continues on next page)
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(continued from previous page)
>>> M = csr_matrix((data, indices, indptr), shape=(2, 2))
>>> M.toarray()
array([[0, 5],

[0, 0]])
>>> csgraph.csgraph_to_dense(M)
array([[0., 2.],

[0., 0.]])

The reason for this difference is to allow a compressed sparse graph to represent multiple edges between any two
nodes. As most sparse graph algorithms are concerned with the single lowest-cost edge between any two nodes, the
default scipy.sparse behavior of summming multiple weights does not make sense in this context.
The other reason for using this routine is to allow for graphs with zero-weight edges. Let’s look at the example of
a two-node directed graph, connected by an edge of weight zero:

>>> from scipy.sparse import csr_matrix, csgraph
>>> data = np.array([0.0])
>>> indices = np.array([1])
>>> indptr = np.array([0, 1, 1])
>>> M = csr_matrix((data, indices, indptr), shape=(2, 2))
>>> M.toarray()
array([[0, 0],

[0, 0]])
>>> csgraph.csgraph_to_dense(M, np.inf)
array([[ inf, 0.],

[ inf, inf]])

In the first case, the zero-weight edge gets lost in the dense representation. In the second case, we can choose a
different null value and see the true form of the graph.

Examples

>>> from scipy.sparse import csr_matrix
>>> from scipy.sparse.csgraph import csgraph_to_dense

>>> graph = csr_matrix( [
... [0, 1 , 2, 0],
... [0, 0, 0, 1],
... [0, 0, 0, 3],
... [0, 0, 0, 0]
... ])
>>> graph
<4x4 sparse matrix of type '<class 'numpy.int64'>'

with 4 stored elements in Compressed Sparse Row format>

>>> csgraph_to_dense(graph)
array([[ 0., 1., 2., 0.],

[ 0., 0., 0., 1.],
[ 0., 0., 0., 3.],
[ 0., 0., 0., 0.]])
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scipy.sparse.csgraph.csgraph_to_masked

scipy.sparse.csgraph.csgraph_to_masked(csgraph)
Convert a sparse graph representation to a masked array representation
New in version 0.11.0.

Parameters

csgraph [csr_matrix, csc_matrix, or lil_matrix] Sparse representation of a graph.
Returns

graph [MaskedArray] The masked dense representation of the sparse graph.

Examples

>>> from scipy.sparse import csr_matrix
>>> from scipy.sparse.csgraph import csgraph_to_masked

>>> graph = csr_matrix( [
... [0, 1 , 2, 0],
... [0, 0, 0, 1],
... [0, 0, 0, 3],
... [0, 0, 0, 0]
... ])
>>> graph
<4x4 sparse matrix of type '<class 'numpy.int64'>'

with 4 stored elements in Compressed Sparse Row format>

>>> csgraph_to_masked(graph)
masked_array(

data=[[--, 1.0, 2.0, --],
[--, --, --, 1.0],
[--, --, --, 3.0],
[--, --, --, --]],

mask=[[ True, False, False, True],
[ True, True, True, False],
[ True, True, True, False],
[ True, True, True, True]],

fill_value=1e+20)

scipy.sparse.csgraph.reconstruct_path

scipy.sparse.csgraph.reconstruct_path(csgraph, predecessors, directed=True)
Construct a tree from a graph and a predecessor list.
New in version 0.11.0.

Parameters

csgraph [array_like or sparse matrix] The N x Nmatrix representing the directed or undirected graph
from which the predecessors are drawn.
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predecessors
[array_like, one dimension] The length-N array of indices of predecessors for the tree. The
index of the parent of node i is given by predecessors[i].

directed [bool, optional] If True (default), then operate on a directed graph: only move from point i to
point j along paths csgraph[i, j]. If False, then operate on an undirected graph: the algorithm
can progress from point i to j along csgraph[i, j] or csgraph[j, i].

Returns

cstree [csr matrix] The N x N directed compressed-sparse representation of the tree drawn from
csgraph which is encoded by the predecessor list.

Examples

>>> from scipy.sparse import csr_matrix
>>> from scipy.sparse.csgraph import reconstruct_path

>>> graph = [
... [0, 1 , 2, 0],
... [0, 0, 0, 1],
... [0, 0, 0, 3],
... [0, 0, 0, 0]
... ]
>>> graph = csr_matrix(graph)
>>> print(graph)

(0, 1) 1
(0, 2) 2
(1, 3) 1
(2, 3) 3

>>> pred = np.array([-9999, 0, 0, 1], dtype=np.int32)

>>> cstree = reconstruct_path(csgraph=graph, predecessors=pred,␣
↪→directed=False)
>>> cstree.todense()
matrix([[ 0., 1., 2., 0.],

[ 0., 0., 0., 1.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.]])

6.24.2 Graph Representations

This module uses graphs which are stored in a matrix format. A graph with N nodes can be represented by an (N x
N) adjacency matrix G. If there is a connection from node i to node j, then G[i, j] = w, where w is the weight of the
connection. For nodes i and j which are not connected, the value depends on the representation:

• for dense array representations, non-edges are represented by G[i, j] = 0, infinity, or NaN.
• for dense masked representations (of type np.ma.MaskedArray), non-edges are represented by masked values. This
can be useful when graphs with zero-weight edges are desired.

• for sparse array representations, non-edges are represented by non-entries in the matrix. This sort of sparse repre-
sentation also allows for edges with zero weights.
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As a concrete example, imagine that you would like to represent the following undirected graph:

G

(0)
/ \
1 2

/ \
(2) (1)

This graph has three nodes, where node 0 and 1 are connected by an edge of weight 2, and nodes 0 and 2 are connected
by an edge of weight 1. We can construct the dense, masked, and sparse representations as follows, keeping in mind that
an undirected graph is represented by a symmetric matrix:

>>> G_dense = np.array([[0, 2, 1],
... [2, 0, 0],
... [1, 0, 0]])
>>> G_masked = np.ma.masked_values(G_dense, 0)
>>> from scipy.sparse import csr_matrix
>>> G_sparse = csr_matrix(G_dense)

This becomes more difficult when zero edges are significant. For example, consider the situation when we slightly modify
the above graph:

G2

(0)
/ \
0 2

/ \
(2) (1)

This is identical to the previous graph, except nodes 0 and 2 are connected by an edge of zero weight. In this case, the
dense representation above leads to ambiguities: how can non-edges be represented if zero is a meaningful value? In this
case, either a masked or sparse representation must be used to eliminate the ambiguity:

>>> G2_data = np.array([[np.inf, 2, 0 ],
... [2, np.inf, np.inf],
... [0, np.inf, np.inf]])
>>> G2_masked = np.ma.masked_invalid(G2_data)
>>> from scipy.sparse.csgraph import csgraph_from_dense
>>> # G2_sparse = csr_matrix(G2_data) would give the wrong result
>>> G2_sparse = csgraph_from_dense(G2_data, null_value=np.inf)
>>> G2_sparse.data
array([ 2., 0., 2., 0.])

Here we have used a utility routine from the csgraph submodule in order to convert the dense representation to a sparse
representation which can be understood by the algorithms in submodule. By viewing the data array, we can see that the
zero values are explicitly encoded in the graph.

Directed vs. Undirected

Matrices may represent either directed or undirected graphs. This is specified throughout the csgraph module by a boolean
keyword. Graphs are assumed to be directed by default. In a directed graph, traversal from node i to node j can be
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accomplished over the edge G[i, j], but not the edge G[j, i]. Consider the following dense graph:

>>> G_dense = np.array([[0, 1, 0],
... [2, 0, 3],
... [0, 4, 0]])

When directed=True we get the graph:

---1--> ---3-->
(0) (1) (2)

<--2--- <--4---

In a non-directed graph, traversal from node i to node j can be accomplished over either G[i, j] or G[j, i]. If both edges
are not null, and the two have unequal weights, then the smaller of the two is used.
So for the same graph, when directed=False we get the graph:

(0)--1--(1)--2--(2)

Note that a symmetric matrix will represent an undirected graph, regardless of whether the ‘directed’ keyword is set to
True or False. In this case, using directed=True generally leads to more efficient computation.
The routines in this module accept as input either scipy.sparse representations (csr, csc, or lil format), masked represen-
tations, or dense representations with non-edges indicated by zeros, infinities, and NaN entries.

6.25 Spatial algorithms and data structures (scipy.spatial)

6.25.1 Spatial Transformations

These are contained in the scipy.spatial.transform submodule.

6.25.2 Nearest-neighbor Queries

KDTree(data[, leafsize]) kd-tree for quick nearest-neighbor lookup
cKDTree(data[, leafsize, compact_nodes, …]) kd-tree for quick nearest-neighbor lookup
Rectangle(maxes, mins) Hyperrectangle class.

scipy.spatial.KDTree

class scipy.spatial.KDTree(data, leafsize=10)
kd-tree for quick nearest-neighbor lookup
This class provides an index into a set of k-dimensional points which can be used to rapidly look up the nearest
neighbors of any point.

Parameters

data [(N,K) array_like] The data points to be indexed. This array is not copied, and so modifying
this data will result in bogus results.

leafsize [int, optional] The number of points at which the algorithm switches over to brute-force. Has
to be positive.

Raises
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RuntimeError
The maximum recursion limit can be exceeded for large data sets. If this happens, either
increase the value for the leafsize parameter or increase the recursion limit by:

>>> import sys
>>> sys.setrecursionlimit(10000)

See also:

cKDTree

Implementation of KDTree in Cython

Notes

The algorithm used is described in Maneewongvatana and Mount 1999. The general idea is that the kd-tree is a
binary tree, each of whose nodes represents an axis-aligned hyperrectangle. Each node specifies an axis and splits
the set of points based on whether their coordinate along that axis is greater than or less than a particular value.
During construction, the axis and splitting point are chosen by the “sliding midpoint” rule, which ensures that the
cells do not all become long and thin.
The tree can be queried for the r closest neighbors of any given point (optionally returning only those within some
maximum distance of the point). It can also be queried, with a substantial gain in efficiency, for the r approximate
closest neighbors.
For large dimensions (20 is already large) do not expect this to run significantly faster than brute force. High-
dimensional nearest-neighbor queries are a substantial open problem in computer science.
The tree also supports all-neighbors queries, both with arrays of points and with other kd-trees. These do use a
reasonably efficient algorithm, but the kd-tree is not necessarily the best data structure for this sort of calculation.

Methods

count_neighbors(other, r[, p]) Count how many nearby pairs can be formed.
query(x[, k, eps, p, distance_upper_bound]) Query the kd-tree for nearest neighbors
query_ball_point(x, r[, p, eps]) Find all points within distance r of point(s) x.
query_ball_tree(other, r[, p, eps]) Find all pairs of points whose distance is at most r
query_pairs(r[, p, eps]) Find all pairs of points within a distance.
sparse_distance_matrix(other,
max_distance)

Compute a sparse distance matrix

scipy.spatial.KDTree.count_neighbors
KDTree.count_neighbors(other, r, p=2.0)

Count how many nearby pairs can be formed.
Count the number of pairs (x1,x2) can be formed, with x1 drawn from self and x2 drawn from other, and
where distance(x1, x2, p) <= r. This is the “two-point correlation” described in Gray andMoore
2000, “N-body problems in statistical learning”, and the code here is based on their algorithm.

Parameters

other [KDTree instance] The other tree to draw points from.
r [float or one-dimensional array of floats] The radius to produce a count for. Multiple

radii are searched with a single tree traversal.
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p [float, 1<=p<=infinity, optional] Which Minkowski p-norm to use
Returns

result [int or 1-D array of ints] The number of pairs. Note that this is internally stored in a
numpy int, and so may overflow if very large (2e9).

scipy.spatial.KDTree.query
KDTree.query(x, k=1, eps=0, p=2, distance_upper_bound=inf)

Query the kd-tree for nearest neighbors
Parameters

x [array_like, last dimension self.m] An array of points to query.
k [int, optional] The number of nearest neighbors to return.
eps [nonnegative float, optional] Return approximate nearest neighbors; the kth returned

value is guaranteed to be no further than (1+eps) times the distance to the real kth
nearest neighbor.

p [float, 1<=p<=infinity, optional] Which Minkowski p-norm to use. 1 is the sum-of-
absolute-values “Manhattan” distance 2 is the usual Euclidean distance infinity is the
maximum-coordinate-difference distance

distance_upper_bound
[nonnegative float, optional] Return only neighbors within this distance. This is used to
prune tree searches, so if you are doing a series of nearest-neighbor queries, it may help
to supply the distance to the nearest neighbor of the most recent point.

Returns

d [float or array of floats] The distances to the nearest neighbors. If x has shape tu-
ple+(self.m,), then d has shape tuple if k is one, or tuple+(k,) if k is larger than one.
Missing neighbors (e.g. when k > n or distance_upper_bound is given) are indicated
with infinite distances. If k is None, then d is an object array of shape tuple, containing
lists of distances. In either case the hits are sorted by distance (nearest first).

i [integer or array of integers] The locations of the neighbors in self.data. i is the same
shape as d.

Examples

>>> from scipy import spatial
>>> x, y = np.mgrid[0:5, 2:8]
>>> tree = spatial.KDTree(list(zip(x.ravel(), y.ravel())))
>>> tree.data
array([[0, 2],

[0, 3],
[0, 4],
[0, 5],
[0, 6],
[0, 7],
[1, 2],
[1, 3],
[1, 4],
[1, 5],
[1, 6],
[1, 7],
[2, 2],

(continues on next page)
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(continued from previous page)
[2, 3],
[2, 4],
[2, 5],
[2, 6],
[2, 7],
[3, 2],
[3, 3],
[3, 4],
[3, 5],
[3, 6],
[3, 7],
[4, 2],
[4, 3],
[4, 4],
[4, 5],
[4, 6],
[4, 7]])

>>> pts = np.array([[0, 0], [2.1, 2.9]])
>>> tree.query(pts)
(array([ 2. , 0.14142136]), array([ 0, 13]))
>>> tree.query(pts[0])
(2.0, 0)

scipy.spatial.KDTree.query_ball_point
KDTree.query_ball_point(x, r, p=2.0, eps=0)

Find all points within distance r of point(s) x.
Parameters

x [array_like, shape tuple + (self.m,)] The point or points to search for neighbors of.
r [positive float] The radius of points to return.
p [float, optional] Which Minkowski p-norm to use. Should be in the range [1, inf].
eps [nonnegative float, optional] Approximate search. Branches of the tree are not explored

if their nearest points are further than r / (1 + eps), and branches are added in
bulk if their furthest points are nearer than r * (1 + eps).

Returns

results [list or array of lists] If x is a single point, returns a list of the indices of the neighbors
of x. If x is an array of points, returns an object array of shape tuple containing lists of
neighbors.

Notes

If you have many points whose neighbors you want to find, you may save substantial amounts of time by
putting them in a KDTree and using query_ball_tree.

Examples

>>> from scipy import spatial
>>> x, y = np.mgrid[0:5, 0:5]

(continues on next page)
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(continued from previous page)
>>> points = np.c_[x.ravel(), y.ravel()]
>>> tree = spatial.KDTree(points)
>>> tree.query_ball_point([2, 0], 1)
[5, 10, 11, 15]

Query multiple points and plot the results:

>>> import matplotlib.pyplot as plt
>>> points = np.asarray(points)
>>> plt.plot(points[:,0], points[:,1], '.')
>>> for results in tree.query_ball_point(([2, 0], [3, 3]), 1):
... nearby_points = points[results]
... plt.plot(nearby_points[:,0], nearby_points[:,1], 'o')
>>> plt.margins(0.1, 0.1)
>>> plt.show()

0 1 2 3 4

0

1

2

3

4

scipy.spatial.KDTree.query_ball_tree
KDTree.query_ball_tree(other, r, p=2.0, eps=0)

Find all pairs of points whose distance is at most r
Parameters

other [KDTree instance] The tree containing points to search against.
r [float] The maximum distance, has to be positive.
p [float, optional] Which Minkowski norm to use. p has to meet the condition 1 <= p

<= infinity.
eps [float, optional] Approximate search. Branches of the tree are not explored if their

nearest points are further than r/(1+eps), and branches are added in bulk if their
furthest points are nearer than r * (1+eps). eps has to be non-negative.

Returns

results [list of lists] For each element self.data[i] of this tree, results[i] is a list of
the indices of its neighbors in other.data.
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scipy.spatial.KDTree.query_pairs
KDTree.query_pairs(r, p=2.0, eps=0)

Find all pairs of points within a distance.
Parameters

r [positive float] The maximum distance.
p [float, optional] Which Minkowski norm to use. p has to meet the condition 1 <= p

<= infinity.
eps [float, optional] Approximate search. Branches of the tree are not explored if their

nearest points are further than r/(1+eps), and branches are added in bulk if their
furthest points are nearer than r * (1+eps). eps has to be non-negative.

Returns

results [set] Set of pairs (i,j), with i < j, for which the corresponding positions are close.

scipy.spatial.KDTree.sparse_distance_matrix
KDTree.sparse_distance_matrix(other, max_distance, p=2.0)

Compute a sparse distance matrix
Computes a distance matrix between two KDTrees, leaving as zero any distance greater than max_distance.

Parameters

other [KDTree]
max_distance

[positive float]
p [float, optional]

Returns

result [dok_matrix] Sparse matrix representing the results in “dictionary of keys” format.

innernode
leafnode
node

scipy.spatial.cKDTree

class scipy.spatial.cKDTree(data, leafsize=16, compact_nodes=True, copy_data=False, bal-
anced_tree=True, boxsize=None)

kd-tree for quick nearest-neighbor lookup
This class provides an index into a set of k-dimensional points which can be used to rapidly look up the nearest
neighbors of any point.
The algorithm used is described in Maneewongvatana and Mount 1999. The general idea is that the kd-tree is a
binary trie, each of whose nodes represents an axis-aligned hyperrectangle. Each node specifies an axis and splits
the set of points based on whether their coordinate along that axis is greater than or less than a particular value.
During construction, the axis and splitting point are chosen by the “sliding midpoint” rule, which ensures that the
cells do not all become long and thin.
The tree can be queried for the r closest neighbors of any given point (optionally returning only those within some
maximum distance of the point). It can also be queried, with a substantial gain in efficiency, for the r approximate
closest neighbors.
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For large dimensions (20 is already large) do not expect this to run significantly faster than brute force. High-
dimensional nearest-neighbor queries are a substantial open problem in computer science.

Parameters

data [array_like, shape (n,m)] The n data points of dimension m to be indexed. This array is not
copied unless this is necessary to produce a contiguous array of doubles, and so modifying
this data will result in bogus results. The data are also copied if the kd-tree is built with
copy_data=True.

leafsize [positive int, optional] The number of points at which the algorithm switches over to brute-
force. Default: 16.

compact_nodes
[bool, optional] If True, the kd-tree is built to shrink the hyperrectangles to the actual data
range. This usually gives a more compact tree that is robust against degenerated input data
and gives faster queries at the expense of longer build time. Default: True.

copy_data [bool, optional] If True the data is always copied to protect the kd-tree against data corrup-
tion. Default: False.

balanced_tree
[bool, optional] If True, the median is used to split the hyperrectangles instead of the mid-
point. This usually gives a more compact tree and faster queries at the expense of longer
build time. Default: True.

boxsize [array_like or scalar, optional] Apply a m-d toroidal topology to the KDTree.. The topology
is generated by xi + niLi where ni are integers and Li is the boxsize along i-th dimension.
The input data shall be wrapped into [0, Li). A ValueError is raised if any of the data is
outside of this bound.

See also:

KDTree

Implementation of cKDTree in pure Python

Attributes

data [ndarray, shape (n,m)] The n data points of dimension m to be indexed. This array is not
copied unless this is necessary to produce a contiguous array of doubles. The data are also
copied if the kd-tree is built with copy_data=True.

leafsize [positive int] The number of points at which the algorithm switches over to brute-force.
m [int] The dimension of a single data-point.
n [int] The number of data points.
maxes [ndarray, shape (m,)] The maximum value in each dimension of the n data points.
mins [ndarray, shape (m,)] The minimum value in each dimension of the n data points.
tree [object, class cKDTreeNode] This class exposes a Python view of the root node in the cK-

DTree object.
size [int] The number of nodes in the tree.

Methods

count_neighbors(self, other, r[, p, …]) Count how many nearby pairs can be formed.
query(self, x[, k, eps, p, …]) Query the kd-tree for nearest neighbors
query_ball_point(self, x, r[, p, eps]) Find all points within distance r of point(s) x.
query_ball_tree(self, other, r[, p, eps]) Find all pairs of points whose distance is at most r
query_pairs(self, r[, p, eps]) Find all pairs of points whose distance is at most r.

Continued on next page
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Table 197 – continued from previous page
sparse_distance_matrix(self, other,
max_distance)

Compute a sparse distance matrix

scipy.spatial.cKDTree.count_neighbors
cKDTree.count_neighbors(self, other, r, p=2., weights=None, cumulative=True)

Count how many nearby pairs can be formed. (pair-counting)
Count the number of pairs (x1,x2) can be formed, with x1 drawn from self and x2 drawn from other, and
where distance(x1, x2, p) <= r.
Data points on self and other are optionally weighted by the weights argument. (See below)
The algorithm we implement here is based on [1]. See notes for further discussion.

Parameters

other [cKDTree instance] The other tree to draw points from, can be the same tree as self.
r [float or one-dimensional array of floats] The radius to produce a count for.

Multiple radii are searched with a single tree traversal. If the count is non-
cumulative(cumulative=False), r defines the edges of the bins, and must be non-
decreasing.

p [float, optional] 1<=p<=infinity. WhichMinkowski p-norm to use. Default 2.0. A finite
large p may cause a ValueError if overflow can occur.

weights [tuple, array_like, or None, optional] If None, the pair-counting is unweighted. If given
as a tuple, weights[0] is the weights of points in self, and weights[1] is the weights of
points in other; either can be None to indicate the points are unweighted. If given as
an array_like, weights is the weights of points in self and other. For this to make
sense, self and othermust be the same tree. If self and other are two different
trees, a ValueError is raised. Default: None

cumulative
[bool, optional] Whether the returned counts are cumulative. When cumulative is set to
False the algorithm is optimized to work with a large number of bins (>10) specified
by r. When cumulative is set to True, the algorithm is optimized to work with a
small number of r. Default: True

Returns

result [scalar or 1-D array] The number of pairs. For unweighted counts, the result is integer.
For weighted counts, the result is float. If cumulative is False, result[i] contains
the counts with (-inf if i == 0 else r[i-1]) < R <= r[i]

Notes

Pair-counting is the basic operation used to calculate the two point correlation functions from a data set
composed of position of objects.
Two point correlation function measures the clustering of objects and is widely used in cosmology to quantify
the large scale structure in our Universe, but it may be useful for data analysis in other fields where self-similar
assembly of objects also occur.
The Landy-Szalay estimator for the two point correlation function of D measures the clustering signal in D.
[2]
For example, given the position of two sets of objects,
• objects D (data) contains the clustering signal, and
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• objects R (random) that contains no signal,

ξ(r) =
< D,D > −2f < D,R > +f2 < R,R >

f2 < R,R >
,

where the brackets represents counting pairs between two data sets in a finite bin around r (distance), cor-
responding to setting cumulative=False, and f = float(len(D)) / float(len(R)) is the ratio
between number of objects from data and random.
The algorithm implemented here is loosely based on the dual-tree algorithm described in [1]. We switch
between two different pair-cumulation scheme depending on the setting of cumulative. The computing
time of the method we use when for cumulative == False does not scale with the total number of
bins. The algorithm for cumulative == True scales linearly with the number of bins, though it is
slightly faster when only 1 or 2 bins are used. [5].
As an extension to the naive pair-counting, weighted pair-counting counts the product of weights instead of
number of pairs. Weighted pair-counting is used to estimate marked correlation functions ([3], section 2.2),
or to properly calculate the average of data per distance bin (e.g. [4], section 2.1 on redshift).

scipy.spatial.cKDTree.query
cKDTree.query(self, x, k=1, eps=0, p=2, distance_upper_bound=np.inf, n_jobs=1)

Query the kd-tree for nearest neighbors
Parameters

x [array_like, last dimension self.m] An array of points to query.
k [list of integer or integer] The list of k-th nearest neighbors to return. If k is an integer

it is treated as a list of [1, … k] (range(1, k+1)). Note that the counting starts from 1.
eps [non-negative float] Return approximate nearest neighbors; the k-th returned value is

guaranteed to be no further than (1+eps) times the distance to the real k-th nearest
neighbor.

p [float, 1<=p<=infinity] Which Minkowski p-norm to use. 1 is the sum-of-absolute-
values “Manhattan” distance 2 is the usual Euclidean distance infinity is the maximum-
coordinate-difference distance A finite large p may cause a ValueError if overflow can
occur.

distance_upper_bound
[nonnegative float] Return only neighbors within this distance. This is used to prune tree
searches, so if you are doing a series of nearest-neighbor queries, it may help to supply
the distance to the nearest neighbor of the most recent point.

n_jobs [int, optional] Number of jobs to schedule for parallel processing. If -1 is given all
processors are used. Default: 1.

Returns

d [array of floats] The distances to the nearest neighbors. Ifx has shapetuple+(self.
m,), then d has shape tuple+(k,). When k == 1, the last dimension of the output
is squeezed. Missing neighbors are indicated with infinite distances.

i [ndarray of ints] The locations of the neighbors in self.data. If x has shape
tuple+(self.m,), then i has shape tuple+(k,). When k == 1, the last di-
mension of the output is squeezed. Missing neighbors are indicated with self.n.

Notes

If the KD-Tree is periodic, the position x is wrapped into the box.
When the input k is a list, a query for arange(max(k)) is performed, but only columns that store the requested
values of k are preserved. This is implemented in a manner that reduces memory usage.
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Examples

>>> import numpy as np
>>> from scipy.spatial import cKDTree
>>> x, y = np.mgrid[0:5, 2:8]
>>> tree = cKDTree(np.c_[x.ravel(), y.ravel()])

To query the nearest neighbours and return squeezed result, use

>>> dd, ii = tree.query([[0, 0], [2.1, 2.9]], k=1)
>>> print(dd, ii)
[2. 0.14142136] [ 0 13]

To query the nearest neighbours and return unsqueezed result, use

>>> dd, ii = tree.query([[0, 0], [2.1, 2.9]], k=[1])
>>> print(dd, ii)
[[2. ]
[0.14142136]] [[ 0]
[13]]

To query the second nearest neighbours and return unsqueezed result, use

>>> dd, ii = tree.query([[0, 0], [2.1, 2.9]], k=[2])
>>> print(dd, ii)
[[2.23606798]
[0.90553851]] [[ 6]
[12]]

To query the first and second nearest neighbours, use

>>> dd, ii = tree.query([[0, 0], [2.1, 2.9]], k=2)
>>> print(dd, ii)
[[2. 2.23606798]
[0.14142136 0.90553851]] [[ 0 6]
[13 12]]

or, be more specific

>>> dd, ii = tree.query([[0, 0], [2.1, 2.9]], k=[1, 2])
>>> print(dd, ii)
[[2. 2.23606798]
[0.14142136 0.90553851]] [[ 0 6]
[13 12]]

scipy.spatial.cKDTree.query_ball_point
cKDTree.query_ball_point(self, x, r, p=2., eps=0)

Find all points within distance r of point(s) x.
Parameters

x [array_like, shape tuple + (self.m,)] The point or points to search for neighbors of.
r [array_like, float] The radius of points to return, shall broadcast to the length of x.
p [float, optional] Which Minkowski p-norm to use. Should be in the range [1, inf]. A

finite large p may cause a ValueError if overflow can occur.
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eps [nonnegative float, optional] Approximate search. Branches of the tree are not explored
if their nearest points are further than r / (1 + eps), and branches are added in
bulk if their furthest points are nearer than r * (1 + eps).

n_jobs [int, optional] Number of jobs to schedule for parallel processing. If -1 is given all
processors are used. Default: 1.

return_sorted
[bool, optional] Sorts returned indicies if True and does not sort them if False. If None,
does not sort single point queries, but does sort multi-point queries which was the be-
havior before this option was added.
New in version 1.2.0.

return_length: bool, optional
Return the number of points inside the radius instead of a list of the indices. .. version-
added:: 1.3.0

Returns

results [list or array of lists] If x is a single point, returns a list of the indices of the neighbors
of x. If x is an array of points, returns an object array of shape tuple containing lists of
neighbors.

Notes

If you have many points whose neighbors you want to find, you may save substantial amounts of time by
putting them in a cKDTree and using query_ball_tree.

Examples

>>> from scipy import spatial
>>> x, y = np.mgrid[0:4, 0:4]
>>> points = np.c_[x.ravel(), y.ravel()]
>>> tree = spatial.cKDTree(points)
>>> tree.query_ball_point([2, 0], 1)
[4, 8, 9, 12]

scipy.spatial.cKDTree.query_ball_tree
cKDTree.query_ball_tree(self, other, r, p=2., eps=0)

Find all pairs of points whose distance is at most r
Parameters

other [cKDTree instance] The tree containing points to search against.
r [float] The maximum distance, has to be positive.
p [float, optional] Which Minkowski norm to use. p has to meet the condition 1 <= p

<= infinity. A finite large p may cause a ValueError if overflow can occur.
eps [float, optional] Approximate search. Branches of the tree are not explored if their

nearest points are further than r/(1+eps), and branches are added in bulk if their
furthest points are nearer than r * (1+eps). eps has to be non-negative.

Returns

results [list of lists] For each element self.data[i] of this tree, results[i] is a list of
the indices of its neighbors in other.data.
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scipy.spatial.cKDTree.query_pairs
cKDTree.query_pairs(self, r, p=2., eps=0)

Find all pairs of points whose distance is at most r.
Parameters

r [positive float] The maximum distance.
p [float, optional] Which Minkowski norm to use. p has to meet the condition 1 <= p

<= infinity. A finite large p may cause a ValueError if overflow can occur.
eps [float, optional] Approximate search. Branches of the tree are not explored if their

nearest points are further than r/(1+eps), and branches are added in bulk if their
furthest points are nearer than r * (1+eps). eps has to be non-negative.

output_type
[string, optional] Choose the output container, ‘set’ or ‘ndarray’. Default: ‘set’

Returns

results [set or ndarray] Set of pairs (i,j), with i < j, for which the corresponding positions
are close. If output_type is ‘ndarray’, an ndarry is returned instead of a set.

scipy.spatial.cKDTree.sparse_distance_matrix
cKDTree.sparse_distance_matrix(self, other, max_distance, p=2.)

Compute a sparse distance matrix
Computes a distance matrix between two cKDTrees, leaving as zero any distance greater than max_distance.

Parameters

other [cKDTree]
max_distance

[positive float]
p [float, 1<=p<=infinity] Which Minkowski p-norm to use. A finite large p may cause a

ValueError if overflow can occur.
output_type

[string, optional] Which container to use for output data. Options: ‘dok_matrix’,
‘coo_matrix’, ‘dict’, or ‘ndarray’. Default: ‘dok_matrix’.

Returns

result [dok_matrix, coo_matrix, dict or ndarray] Sparsematrix representing the results in “dic-
tionary of keys” format. If a dict is returned the keys are (i,j) tuples of indices. If
output_type is ‘ndarray’ a record array with fields ‘i’, ‘j’, and ‘k’ is returned,

scipy.spatial.Rectangle

class scipy.spatial.Rectangle(maxes, mins)
Hyperrectangle class.
Represents a Cartesian product of intervals.

Methods

max_distance_point(x[, p]) Return the maximum distance between input and
points in the hyperrectangle.

Continued on next page
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Table 198 – continued from previous page
max_distance_rectangle(other[, p]) Compute the maximum distance between points in the

two hyperrectangles.
min_distance_point(x[, p]) Return the minimum distance between input and

points in the hyperrectangle.
min_distance_rectangle(other[, p]) Compute the minimum distance between points in the

two hyperrectangles.
split(d, split) Produce two hyperrectangles by splitting.
volume() Total volume.

scipy.spatial.Rectangle.max_distance_point
Rectangle.max_distance_point(x, p=2.0)

Return the maximum distance between input and points in the hyperrectangle.
Parameters

x [array_like] Input array.
p [float, optional] Input.

scipy.spatial.Rectangle.max_distance_rectangle
Rectangle.max_distance_rectangle(other, p=2.0)

Compute the maximum distance between points in the two hyperrectangles.
Parameters

other [hyperrectangle] Input.
p [float, optional] Input.

scipy.spatial.Rectangle.min_distance_point
Rectangle.min_distance_point(x, p=2.0)

Return the minimum distance between input and points in the hyperrectangle.
Parameters

x [array_like] Input.
p [float, optional] Input.

scipy.spatial.Rectangle.min_distance_rectangle
Rectangle.min_distance_rectangle(other, p=2.0)

Compute the minimum distance between points in the two hyperrectangles.
Parameters

other [hyperrectangle] Input.
p [float] Input.

scipy.spatial.Rectangle.split
Rectangle.split(d, split)

Produce two hyperrectangles by splitting.
In general, if you need to compute maximum and minimum distances to the children, it can be done more
efficiently by updating the maximum and minimum distances to the parent.

Parameters

d [int] Axis to split hyperrectangle along.
split [float] Position along axis d to split at.
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scipy.spatial.Rectangle.volume
Rectangle.volume()

Total volume.
Distance metrics are contained in the scipy.spatial.distance submodule.

6.25.3 Delaunay Triangulation, Convex Hulls and Voronoi Diagrams

Delaunay(points[, furthest_site, …]) Delaunay tessellation in N dimensions.
ConvexHull(points[, incremental, qhull_options]) Convex hulls in N dimensions.
Voronoi(points[, furthest_site, …]) Voronoi diagrams in N dimensions.
SphericalVoronoi(points[, radius, center, …]) Voronoi diagrams on the surface of a sphere.
HalfspaceIntersection(halfspaces, inte-
rior_point)

Halfspace intersections in N dimensions.

scipy.spatial.Delaunay

class scipy.spatial.Delaunay(points, furthest_site=False, incremental=False, qhull_options=None)
Delaunay tessellation in N dimensions.
New in version 0.9.

Parameters

points [ndarray of floats, shape (npoints, ndim)] Coordinates of points to triangulate
furthest_site

[bool, optional] Whether to compute a furthest-site Delaunay triangulation. Default: False
New in version 0.12.0.

incremental
[bool, optional] Allow adding new points incrementally. This takes up some additional re-
sources.

qhull_options
[str, optional] Additional options to pass to Qhull. See Qhull manual for details. Option
“Qt” is always enabled. Default:”Qbb Qc Qz Qx Q12” for ndim > 4 and “Qbb Qc Qz Q12”
otherwise. Incremental mode omits “Qz”.
New in version 0.12.0.

Raises

QhullError
Raised when Qhull encounters an error condition, such as geometrical degeneracy when op-
tions to resolve are not enabled.

ValueError
Raised if an incompatible array is given as input.

Notes

The tessellation is computed using the Qhull library Qhull library.

Note: Unless you pass in the Qhull option “QJ”, Qhull does not guarantee that each input point appears as a vertex
in the Delaunay triangulation. Omitted points are listed in the coplanar attribute.
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Examples

Triangulation of a set of points:

>>> points = np.array([[0, 0], [0, 1.1], [1, 0], [1, 1]])
>>> from scipy.spatial import Delaunay
>>> tri = Delaunay(points)

We can plot it:

>>> import matplotlib.pyplot as plt
>>> plt.triplot(points[:,0], points[:,1], tri.simplices)
>>> plt.plot(points[:,0], points[:,1], 'o')
>>> plt.show()
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Point indices and coordinates for the two triangles forming the triangulation:

>>> tri.simplices
array([[2, 3, 0], # may vary

[3, 1, 0]], dtype=int32)

Note that depending on how rounding errors go, the simplices may be in a different order than above.

>>> points[tri.simplices]
array([[[ 1. , 0. ], # may vary

[ 1. , 1. ],
[ 0. , 0. ]],
[[ 1. , 1. ],
[ 0. , 1.1],
[ 0. , 0. ]]])

Triangle 0 is the only neighbor of triangle 1, and it’s opposite to vertex 1 of triangle 1:

>>> tri.neighbors[1]
array([-1, 0, -1], dtype=int32)

(continues on next page)
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(continued from previous page)
>>> points[tri.simplices[1,1]]
array([ 0. , 1.1])

We can find out which triangle points are in:

>>> p = np.array([(0.1, 0.2), (1.5, 0.5), (0.5, 1.05)])
>>> tri.find_simplex(p)
array([ 1, -1, 1], dtype=int32)

The returned integers in the array are the indices of the simplex the corresponding point is in. If -1 is returned, the
point is in no simplex. Be aware that the shortcut in the following example only works corretcly for valid points as
invalid points result in -1 which is itself a valid index for the last simplex in the list.

>>> p_valids = np.array([(0.1, 0.2), (0.5, 1.05)])
>>> tri.simplices[tri.find_simplex(p_valids)]
array([[3, 1, 0], # may vary

[3, 1, 0]], dtype=int32)

We can also compute barycentric coordinates in triangle 1 for these points:

>>> b = tri.transform[1,:2].dot(np.transpose(p - tri.transform[1,2]))
>>> np.c_[np.transpose(b), 1 - b.sum(axis=0)]
array([[ 0.1 , 0.09090909, 0.80909091],

[ 1.5 , -0.90909091, 0.40909091],
[ 0.5 , 0.5 , 0. ]])

The coordinates for the first point are all positive, meaning it is indeed inside the triangle. The third point is on a
vertex, hence its null third coordinate.

Attributes

points [ndarray of double, shape (npoints, ndim)] Coordinates of input points.
simplices [ndarray of ints, shape (nsimplex, ndim+1)] Indices of the points forming the simplices in

the triangulation. For 2-D, the points are oriented counterclockwise.
neighbors [ndarray of ints, shape (nsimplex, ndim+1)] Indices of neighbor simplices for each simplex.

The kth neighbor is opposite to the kth vertex. For simplices at the boundary, -1 denotes no
neighbor.

equations [ndarray of double, shape (nsimplex, ndim+2)] [normal, offset] forming the hyperplane equa-
tion of the facet on the paraboloid (see Qhull documentation for more).

paraboloid_scale, paraboloid_shift
[float] Scale and shift for the extra paraboloid dimension (see Qhull documentation for more).

transform
[ndarray of double, shape (nsimplex, ndim+1, ndim)] Affine transform from x to the
barycentric coordinates c.

vertex_to_simplex
[ndarray of int, shape (npoints,)] Lookup array, from a vertex, to some simplex which it is a
part of.

convex_hull
[ndarray of int, shape (nfaces, ndim)] Vertices of facets forming the convex hull of the point
set.

coplanar [ndarray of int, shape (ncoplanar, 3)] Indices of coplanar points and the corresponding in-
dices of the nearest facet and the nearest vertex. Coplanar points are input points which were
not included in the triangulation due to numerical precision issues.
If option “Qc” is not specified, this list is not computed.
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New in version 0.12.0.
vertices Same as simplices, but deprecated.
vertex_neighbor_vertices

[tuple of two ndarrays of int; (indptr, indices)] Neighboring vertices of vertices.

Methods

add_points(points[, restart]) Process a set of additional new points.
close() Finish incremental processing.
find_simplex(self, xi[, bruteforce, tol]) Find the simplices containing the given points.
lift_points(self, x) Lift points to the Qhull paraboloid.
plane_distance(self, xi) Compute hyperplane distances to the point xi from all

simplices.

scipy.spatial.Delaunay.add_points
Delaunay.add_points(points, restart=False)

Process a set of additional new points.
Parameters

points [ndarray] New points to add. The dimensionality should match that of the initial points.
restart [bool, optional] Whether to restart processing from scratch, rather than adding points

incrementally.
Raises

QhullError
Raised when Qhull encounters an error condition, such as geometrical degeneracy when
options to resolve are not enabled.

See also:
close

Notes

You need to specify incremental=True when constructing the object to be able to add points incremen-
tally. Incremental addition of points is also not possible after close has been called.

scipy.spatial.Delaunay.close
Delaunay.close

Finish incremental processing.
Call this to free resources taken up by Qhull, when using the incremental mode. After calling this, adding
more points is no longer possible.

scipy.spatial.Delaunay.find_simplex
Delaunay.find_simplex(self, xi, bruteforce=False, tol=None)

Find the simplices containing the given points.
Parameters

tri [DelaunayInfo] Delaunay triangulation
xi [ndarray of double, shape (…, ndim)] Points to locate
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bruteforce [bool, optional] Whether to only perform a brute-force search
tol [float, optional] Tolerance allowed in the inside-triangle check. Default is 100*eps.

Returns

i [ndarray of int, same shape as xi] Indices of simplices containing each point. Points
outside the triangulation get the value -1.

Notes

This uses an algorithm adapted from Qhull’s qh_findbestfacet, which makes use of the connection
between a convex hull and a Delaunay triangulation. After finding the simplex closest to the point in N+1
dimensions, the algorithm falls back to directed search in N dimensions.

scipy.spatial.Delaunay.lift_points
Delaunay.lift_points(self, x)

Lift points to the Qhull paraboloid.

scipy.spatial.Delaunay.plane_distance
Delaunay.plane_distance(self, xi)

Compute hyperplane distances to the point xi from all simplices.

scipy.spatial.ConvexHull

class scipy.spatial.ConvexHull(points, incremental=False, qhull_options=None)
Convex hulls in N dimensions.
New in version 0.12.0.

Parameters

points [ndarray of floats, shape (npoints, ndim)] Coordinates of points to construct a convex hull
from

incremental
[bool, optional] Allow adding new points incrementally. This takes up some additional re-
sources.

qhull_options
[str, optional] Additional options to pass to Qhull. See Qhull manual for details. (Default:
“Qx” for ndim > 4 and “” otherwise) Option “Qt” is always enabled.

Raises

QhullError
Raised when Qhull encounters an error condition, such as geometrical degeneracy when op-
tions to resolve are not enabled.

ValueError
Raised if an incompatible array is given as input.

Notes

The convex hull is computed using the Qhull library.
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References

[Qhull]

Examples

Convex hull of a random set of points:

>>> from scipy.spatial import ConvexHull, convex_hull_plot_2d
>>> points = np.random.rand(30, 2) # 30 random points in 2-D
>>> hull = ConvexHull(points)

Plot it:

>>> import matplotlib.pyplot as plt
>>> plt.plot(points[:,0], points[:,1], 'o')
>>> for simplex in hull.simplices:
... plt.plot(points[simplex, 0], points[simplex, 1], 'k-')

We could also have directly used the vertices of the hull, which for 2-D are guaranteed to be in counterclockwise
order:

>>> plt.plot(points[hull.vertices,0], points[hull.vertices,1], 'r--',␣
↪→lw=2)
>>> plt.plot(points[hull.vertices[0],0], points[hull.vertices[0],1], 'ro')
>>> plt.show()
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Facets visible from a point:
Create a square and add a point above the square.

>>> generators = np.array([[0.2, 0.2],
... [0.2, 0.4],
... [0.4, 0.4],

(continues on next page)
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(continued from previous page)
... [0.4, 0.2],
... [0.3, 0.6]])

Call ConvexHull with the QG option. QG4means compute the portions of the hull not including point 4, indicating
the facets that are visible from point 4.

>>> hull = ConvexHull(points=generators,
... qhull_options='QG4')

The “good” array indicates which facets are visible from point 4.

>>> print(hull.simplices)
[[1 0]
[1 2]
[3 0]
[3 2]]

>>> print(hull.good)
[False True False False]

Now plot it, highlighting the visible facets.

>>> fig = plt.figure()
>>> ax = fig.add_subplot(1,1,1)
>>> for visible_facet in hull.simplices[hull.good]:
... ax.plot(hull.points[visible_facet, 0],
... hull.points[visible_facet, 1],
... color='violet',
... lw=6)
>>> convex_hull_plot_2d(hull, ax=ax)

<Figure size 640x480 with 1 Axes> # may vary
>>> plt.show()
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Attributes
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points [ndarray of double, shape (npoints, ndim)] Coordinates of input points.
vertices [ndarray of ints, shape (nvertices,)] Indices of points forming the vertices of the convex hull.

For 2-D convex hulls, the vertices are in counterclockwise order. For other dimensions, they
are in input order.

simplices [ndarray of ints, shape (nfacet, ndim)] Indices of points forming the simplical facets of the
convex hull.

neighbors [ndarray of ints, shape (nfacet, ndim)] Indices of neighbor facets for each facet. The kth
neighbor is opposite to the kth vertex. -1 denotes no neighbor.

equations [ndarray of double, shape (nfacet, ndim+1)] [normal, offset] forming the hyperplane equation
of the facet (see Qhull documentation for more).

coplanar [ndarray of int, shape (ncoplanar, 3)] Indices of coplanar points and the corresponding in-
dices of the nearest facets and nearest vertex indices. Coplanar points are input points which
were not included in the triangulation due to numerical precision issues.
If option “Qc” is not specified, this list is not computed.

good [ndarray of bool or None] A one-dimensional Boolean array indicating which facets are good.
Used with options that compute good facets, e.g. QGn and QG-n. Good facets are defined as
those that are visible (n) or invisible (-n) from point n, where n is the nth point in ‘points’. The
‘good’ attribute may be used as an index into ‘simplices’ to return the good (visible) facets:
simplices[good]. A facet is visible from the outside of the hull only, and neither coplanarity
nor degeneracy count as cases of visibility.
If a “QGn” or “QG-n” option is not specified, None is returned.
New in version 1.3.0.

area [float] Area of the convex hull.
New in version 0.17.0.

volume [float] Volume of the convex hull.
New in version 0.17.0.

Methods

add_points(points[, restart]) Process a set of additional new points.
close() Finish incremental processing.

scipy.spatial.ConvexHull.add_points
ConvexHull.add_points(points, restart=False)

Process a set of additional new points.
Parameters

points [ndarray] New points to add. The dimensionality should match that of the initial points.
restart [bool, optional] Whether to restart processing from scratch, rather than adding points

incrementally.
Raises

QhullError
Raised when Qhull encounters an error condition, such as geometrical degeneracy when
options to resolve are not enabled.

See also:
close
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Notes

You need to specify incremental=True when constructing the object to be able to add points incremen-
tally. Incremental addition of points is also not possible after close has been called.

scipy.spatial.ConvexHull.close
ConvexHull.close

Finish incremental processing.
Call this to free resources taken up by Qhull, when using the incremental mode. After calling this, adding
more points is no longer possible.

scipy.spatial.Voronoi

class scipy.spatial.Voronoi(points, furthest_site=False, incremental=False, qhull_options=None)
Voronoi diagrams in N dimensions.
New in version 0.12.0.

Parameters

points [ndarray of floats, shape (npoints, ndim)] Coordinates of points to construct a convex hull
from

furthest_site
[bool, optional] Whether to compute a furthest-site Voronoi diagram. Default: False

incremental
[bool, optional] Allow adding new points incrementally. This takes up some additional re-
sources.

qhull_options
[str, optional] Additional options to pass to Qhull. See Qhull manual for details. (Default:
“Qbb Qc Qz Qx” for ndim > 4 and “Qbb Qc Qz” otherwise. Incremental mode omits “Qz”.)

Raises

QhullError
Raised when Qhull encounters an error condition, such as geometrical degeneracy when op-
tions to resolve are not enabled.

ValueError
Raised if an incompatible array is given as input.

Notes

The Voronoi diagram is computed using the Qhull library.

Examples

Voronoi diagram for a set of point:

>>> points = np.array([[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2],
... [2, 0], [2, 1], [2, 2]])
>>> from scipy.spatial import Voronoi, voronoi_plot_2d
>>> vor = Voronoi(points)

Plot it:
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>>> import matplotlib.pyplot as plt
>>> fig = voronoi_plot_2d(vor)
>>> plt.show()
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The Voronoi vertices:

>>> vor.vertices
array([[ 0.5, 0.5],

[ 1.5, 0.5],
[ 0.5, 1.5],
[ 1.5, 1.5]])

There is a single finite Voronoi region, and four finite Voronoi ridges:

>>> vor.regions
[[], [-1, 0], [-1, 1], [1, -1, 0], [3, -1, 2], [-1, 3], [-1, 2], [3, 2, 0,
↪→ 1], [2, -1, 0], [3, -1, 1]]
>>> vor.ridge_vertices
[[-1, 0], [-1, 0], [-1, 1], [-1, 1], [0, 1], [-1, 3], [-1, 2], [2, 3], [-
↪→1, 3], [-1, 2], [0, 2], [1, 3]]

The ridges are perpendicular between lines drawn between the following input points:

>>> vor.ridge_points
array([[0, 1],

[0, 3],
[6, 3],
[6, 7],
[3, 4],
[5, 8],
[5, 2],
[5, 4],
[8, 7],
[2, 1],

(continues on next page)
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(continued from previous page)
[4, 1],
[4, 7]], dtype=int32)

Attributes

points [ndarray of double, shape (npoints, ndim)] Coordinates of input points.
vertices [ndarray of double, shape (nvertices, ndim)] Coordinates of the Voronoi vertices.
ridge_points

[ndarray of ints, shape (nridges, 2)] Indices of the points between which each Voronoi
ridge lies.

ridge_vertices
[list of list of ints, shape (nridges, *)] Indices of the Voronoi vertices forming each
Voronoi ridge.

regions [list of list of ints, shape (nregions, *)] Indices of the Voronoi vertices forming each
Voronoi region. -1 indicates vertex outside the Voronoi diagram.

point_region
[list of ints, shape (npoints)] Index of the Voronoi region for each input point. If qhull option
“Qc” was not specified, the list will contain -1 for points that are not associated with a Voronoi
region.

Methods

add_points(points[, restart]) Process a set of additional new points.
close() Finish incremental processing.

scipy.spatial.Voronoi.add_points
Voronoi.add_points(points, restart=False)

Process a set of additional new points.
Parameters

points [ndarray] New points to add. The dimensionality should match that of the initial points.
restart [bool, optional] Whether to restart processing from scratch, rather than adding points

incrementally.
Raises

QhullError
Raised when Qhull encounters an error condition, such as geometrical degeneracy when
options to resolve are not enabled.

See also:
close

Notes

You need to specify incremental=True when constructing the object to be able to add points incremen-
tally. Incremental addition of points is also not possible after close has been called.
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scipy.spatial.Voronoi.close
Voronoi.close

Finish incremental processing.
Call this to free resources taken up by Qhull, when using the incremental mode. After calling this, adding
more points is no longer possible.

scipy.spatial.SphericalVoronoi

class scipy.spatial.SphericalVoronoi(points, radius=None, center=None, threshold=1e-06)
Voronoi diagrams on the surface of a sphere.
New in version 0.18.0.

Parameters

points [ndarray of floats, shape (npoints, 3)] Coordinates of points from which to construct a spher-
ical Voronoi diagram.

radius [float, optional] Radius of the sphere (Default: 1)
center [ndarray of floats, shape (3,)] Center of sphere (Default: origin)
threshold [float] Threshold for detecting duplicate points and mismatches between points and sphere

parameters. (Default: 1e-06)
Raises

ValueError
If there are duplicates in points. If the provided radius is not consistent with points.

See also:

Voronoi

Conventional Voronoi diagrams in N dimensions.

Notes

The spherical Voronoi diagram algorithm proceeds as follows. The Convex Hull of the input points (generators) is
calculated, and is equivalent to their Delaunay triangulation on the surface of the sphere [Caroli]. A 3D Delaunay
tetrahedralization is obtained by including the origin of the coordinate system as the fourth vertex of each simplex
of the Convex Hull. The circumcenters of all tetrahedra in the system are calculated and projected to the surface
of the sphere, producing the Voronoi vertices. The Delaunay tetrahedralization neighbour information is then used
to order the Voronoi region vertices around each generator. The latter approach is substantially less sensitive to
floating point issues than angle-based methods of Voronoi region vertex sorting.
The surface area of spherical polygons is calculated by decomposing them into triangles and using L’Huilier’s Theo-
rem to calculate the spherical excess of each triangle [Weisstein]. The sum of the spherical excesses is multiplied by
the square of the sphere radius to obtain the surface area of the spherical polygon. For nearly-degenerate spherical
polygons an area of approximately 0 is returned by default, rather than attempting the unstable calculation.
Empirical assessment of spherical Voronoi algorithm performance suggests quadratic time complexity (loglinear is
optimal, but algorithms are more challenging to implement). The reconstitution of the surface area of the sphere,
measured as the sum of the surface areas of all Voronoi regions, is closest to 100 % for larger (>> 10) numbers of
generators.
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References

[Caroli], [Weisstein]

Examples

Do some imports and take some points on a cube:

>>> from matplotlib import colors
>>> from mpl_toolkits.mplot3d.art3d import Poly3DCollection
>>> import matplotlib.pyplot as plt
>>> from scipy.spatial import SphericalVoronoi
>>> from mpl_toolkits.mplot3d import proj3d
>>> # set input data
>>> points = np.array([[0, 0, 1], [0, 0, -1], [1, 0, 0],
... [0, 1, 0], [0, -1, 0], [-1, 0, 0], ])

Calculate the spherical Voronoi diagram:

>>> radius = 1
>>> center = np.array([0, 0, 0])
>>> sv = SphericalVoronoi(points, radius, center)

Generate plot:

>>> # sort vertices (optional, helpful for plotting)
>>> sv.sort_vertices_of_regions()
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111, projection='3d')
>>> # plot the unit sphere for reference (optional)
>>> u = np.linspace(0, 2 * np.pi, 100)
>>> v = np.linspace(0, np.pi, 100)
>>> x = np.outer(np.cos(u), np.sin(v))
>>> y = np.outer(np.sin(u), np.sin(v))
>>> z = np.outer(np.ones(np.size(u)), np.cos(v))
>>> ax.plot_surface(x, y, z, color='y', alpha=0.1)
>>> # plot generator points
>>> ax.scatter(points[:, 0], points[:, 1], points[:, 2], c='b')
>>> # plot Voronoi vertices
>>> ax.scatter(sv.vertices[:, 0], sv.vertices[:, 1], sv.vertices[:, 2],
... c='g')
>>> # indicate Voronoi regions (as Euclidean polygons)
>>> for region in sv.regions:
... random_color = colors.rgb2hex(np.random.rand(3))
... polygon = Poly3DCollection([sv.vertices[region]], alpha=1.0)
... polygon.set_color(random_color)
... ax.add_collection3d(polygon)
>>> plt.show()

Attributes

points [double array of shape (npoints, 3)] the points in 3D to generate the Voronoi diagram from
radius [double] radius of the sphere Default: None (forces estimation, which is less precise)
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center [double array of shape (3,)] center of the sphere Default: None (assumes sphere is centered
at origin)

vertices [double array of shape (nvertices, 3)] Voronoi vertices corresponding to points
regions [list of list of integers of shape (npoints, _ )] the n-th entry is a list consisting of the indices

of the vertices belonging to the n-th point in points

Methods

sort_vertices_of_regions() Sort indices of the vertices to be (counter-)clockwise
ordered.

scipy.spatial.SphericalVoronoi.sort_vertices_of_regions
SphericalVoronoi.sort_vertices_of_regions()

Sort indices of the vertices to be (counter-)clockwise ordered.

Notes

For each region in regions, it sorts the indices of the Voronoi vertices such that the resulting points are in a
clockwise or counterclockwise order around the generator point.
This is done as follows: Recall that the n-th region in regions surrounds the n-th generator in points and
that the k-th Voronoi vertex in vertices is the projected circumcenter of the tetrahedron obtained by the k-th
triangle in _tri.simplices (and the origin). For each region n, we choose the first triangle (=Voronoi vertex)
in _tri.simplices and a vertex of that triangle not equal to the center n. These determine a unique neighbor
of that triangle, which is then chosen as the second triangle. The second triangle will have a unique vertex
not equal to the current vertex or the center. This determines a unique neighbor of the second triangle, which
is then chosen as the third triangle and so forth. We proceed through all the triangles (=Voronoi vertices)
belonging to the generator in points and obtain a sorted version of the vertices of its surrounding region.

scipy.spatial.HalfspaceIntersection

class scipy.spatial.HalfspaceIntersection(halfspaces, interior_point, incremental=False,
qhull_options=None)

Halfspace intersections in N dimensions.
New in version 0.19.0.

Parameters

halfspaces [ndarray of floats, shape (nineq, ndim+1)] Stacked Inequalities of the form Ax + b <= 0 in
format [A; b]

interior_point
[ndarray of floats, shape (ndim,)] Point clearly inside the region defined by halfspaces. Also
called a feasible point, it can be obtained by linear programming.

incremental
[bool, optional] Allow adding new halfspaces incrementally. This takes up some additional
resources.

qhull_options
[str, optional] Additional options to pass to Qhull. See Qhull manual for details. (Default:
“Qx” for ndim > 4 and “” otherwise) Option “H” is always enabled.

Raises
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QhullError
Raised when Qhull encounters an error condition, such as geometrical degeneracy when op-
tions to resolve are not enabled.

ValueError
Raised if an incompatible array is given as input.

Notes

The intersections are computed using the Qhull library. This reproduces the “qhalf” functionality of Qhull.

References

[Qhull], [1]

Examples

Halfspace intersection of planes forming some polygon

>>> from scipy.spatial import HalfspaceIntersection
>>> halfspaces = np.array([[-1, 0., 0.],
... [0., -1., 0.],
... [2., 1., -4.],
... [-0.5, 1., -2.]])
>>> feasible_point = np.array([0.5, 0.5])
>>> hs = HalfspaceIntersection(halfspaces, feasible_point)

Plot halfspaces as filled regions and intersection points:

>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> ax = fig.add_subplot('111', aspect='equal')
>>> xlim, ylim = (-1, 3), (-1, 3)
>>> ax.set_xlim(xlim)
>>> ax.set_ylim(ylim)
>>> x = np.linspace(-1, 3, 100)
>>> symbols = ['-', '+', 'x', '*']
>>> signs = [0, 0, -1, -1]
>>> fmt = {"color": None, "edgecolor": "b", "alpha": 0.5}
>>> for h, sym, sign in zip(halfspaces, symbols, signs):
... hlist = h.tolist()
... fmt["hatch"] = sym
... if h[1]== 0:
... ax.axvline(-h[2]/h[0], label='{}x+{}y+{}=0'.format(*hlist))
... xi = np.linspace(xlim[sign], -h[2]/h[0], 100)
... ax.fill_between(xi, ylim[0], ylim[1], **fmt)
... else:
... ax.plot(x, (-h[2]-h[0]*x)/h[1], label='{}x+{}y+{}=0'.
↪→format(*hlist))
... ax.fill_between(x, (-h[2]-h[0]*x)/h[1], ylim[sign], **fmt)
>>> x, y = zip(*hs.intersections)
>>> ax.plot(x, y, 'o', markersize=8)
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By default, qhull does not provide with a way to compute an interior point. This can easily be computed using
linear programming. Considering halfspaces of the form Ax+ b ≤ 0, solving the linear program:

max y

s.t.Ax+ y||Ai|| ≤ −b

With Ai being the rows of A, i.e. the normals to each plane.
Will yield a point x that is furthest inside the convex polyhedron. To be precise, it is the center of the largest
hypersphere of radius y inscribed in the polyhedron. This point is called the Chebyshev center of the polyhedron
(see [1] 4.3.1, pp148-149). The equations outputted by Qhull are always normalized.

>>> from scipy.optimize import linprog
>>> from matplotlib.patches import Circle
>>> norm_vector = np.reshape(np.linalg.norm(halfspaces[:, :-1], axis=1),
... (halfspaces.shape[0], 1))
>>> c = np.zeros((halfspaces.shape[1],))
>>> c[-1] = -1
>>> A = np.hstack((halfspaces[:, :-1], norm_vector))
>>> b = - halfspaces[:, -1:]
>>> res = linprog(c, A_ub=A, b_ub=b)
>>> x = res.x[:-1]
>>> y = res.x[-1]
>>> circle = Circle(x, radius=y, alpha=0.3)
>>> ax.add_patch(circle)
>>> plt.legend(bbox_to_anchor=(1.6, 1.0))
>>> plt.show()

1 0 1 2 3
1

0

1

2

3
-1.0x+0.0y+0.0=0
0.0x+-1.0y+0.0=0
2.0x+1.0y+-4.0=0
-0.5x+1.0y+-2.0=0

Attributes

halfspaces [ndarray of double, shape (nineq, ndim+1)] Input halfspaces.
interior_point :ndarray of floats, shape (ndim,)

Input interior point.
intersections

[ndarray of double, shape (ninter, ndim)] Intersections of all halfspaces.
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dual_points
[ndarray of double, shape (nineq, ndim)] Dual points of the input halfspaces.

dual_facets
[list of lists of ints] Indices of points forming the (non necessarily simplicial) facets of the
dual convex hull.

dual_vertices
[ndarray of ints, shape (nvertices,)] Indices of halfspaces forming the vertices of the dual
convex hull. For 2-D convex hulls, the vertices are in counterclockwise order. For other
dimensions, they are in input order.

dual_equations
[ndarray of double, shape (nfacet, ndim+1)] [normal, offset] forming the hyperplane equation
of the dual facet (see Qhull documentation for more).

dual_area [float] Area of the dual convex hull
dual_volume

[float] Volume of the dual convex hull

Methods

add_halfspaces(halfspaces[, restart]) Process a set of additional new halfspaces.
close() Finish incremental processing.

scipy.spatial.HalfspaceIntersection.add_halfspaces
HalfspaceIntersection.add_halfspaces(halfspaces, restart=False)

Process a set of additional new halfspaces.
Parameters

halfspaces [ndarray] New halfspaces to add. The dimensionality should match that of the initial
halfspaces.

restart [bool, optional] Whether to restart processing from scratch, rather than adding halfs-
paces incrementally.

Raises

QhullError
Raised when Qhull encounters an error condition, such as geometrical degeneracy when
options to resolve are not enabled.

See also:
close

Notes

You need to specify incremental=True when constructing the object to be able to add halfspaces in-
crementally. Incremental addition of halfspaces is also not possible after close has been called.

scipy.spatial.HalfspaceIntersection.close
HalfspaceIntersection.close

Finish incremental processing.
Call this to free resources taken up by Qhull, when using the incremental mode. After calling this, adding
more points is no longer possible.
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6.25.4 Plotting Helpers

delaunay_plot_2d(tri[, ax]) Plot the given Delaunay triangulation in 2-D
convex_hull_plot_2d(hull[, ax]) Plot the given convex hull diagram in 2-D
voronoi_plot_2d(vor[, ax]) Plot the given Voronoi diagram in 2-D

scipy.spatial.delaunay_plot_2d

scipy.spatial.delaunay_plot_2d(tri, ax=None)
Plot the given Delaunay triangulation in 2-D

Parameters

tri [scipy.spatial.Delaunay instance] Triangulation to plot
ax [matplotlib.axes.Axes instance, optional] Axes to plot on

Returns

fig [matplotlib.figure.Figure instance] Figure for the plot
See also:
Delaunay, matplotlib.pyplot.triplot

Notes

Requires Matplotlib.

Examples

>>> import matplotlib.pyplot as plt
>>> from scipy.spatial import Delaunay, delaunay_plot_2d

The Delaunay triangulation of a set of random points:

>>> points = np.random.rand(30, 2)
>>> tri = Delaunay(points)

Plot it:

>>> _ = delaunay_plot_2d(tri)
>>> plt.show()

scipy.spatial.convex_hull_plot_2d

scipy.spatial.convex_hull_plot_2d(hull, ax=None)
Plot the given convex hull diagram in 2-D

Parameters

hull [scipy.spatial.ConvexHull instance] Convex hull to plot
ax [matplotlib.axes.Axes instance, optional] Axes to plot on

Returns
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fig [matplotlib.figure.Figure instance] Figure for the plot
See also:
ConvexHull

Notes

Requires Matplotlib.

Examples

>>> import matplotlib.pyplot as plt
>>> from scipy.spatial import ConvexHull, convex_hull_plot_2d

The convex hull of a random set of points:

>>> points = np.random.rand(30, 2)
>>> hull = ConvexHull(points)

Plot it:

>>> _ = convex_hull_plot_2d(hull)
>>> plt.show()

scipy.spatial.voronoi_plot_2d

scipy.spatial.voronoi_plot_2d(vor, ax=None, **kw)
Plot the given Voronoi diagram in 2-D

Parameters

vor [scipy.spatial.Voronoi instance] Diagram to plot
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ax [matplotlib.axes.Axes instance, optional] Axes to plot on
show_points: bool, optional

Add the Voronoi points to the plot.
show_vertices

[bool, optional] Add the Voronoi vertices to the plot.
line_colors

[string, optional] Specifies the line color for polygon boundaries
line_width [float, optional] Specifies the line width for polygon boundaries
line_alpha: float, optional

Specifies the line alpha for polygon boundaries
point_size: float, optional

Specifies the size of points
Returns

fig [matplotlib.figure.Figure instance] Figure for the plot
See also:
Voronoi

Notes

Requires Matplotlib.

Examples

Set of point:

>>> import matplotlib.pyplot as plt
>>> points = np.random.rand(10,2) #random

Voronoi diagram of the points:
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>>> from scipy.spatial import Voronoi, voronoi_plot_2d
>>> vor = Voronoi(points)

using voronoi_plot_2d for visualisation:

>>> fig = voronoi_plot_2d(vor)

using voronoi_plot_2d for visualisation with enhancements:

>>> fig = voronoi_plot_2d(vor, show_vertices=False, line_colors='orange',
... line_width=2, line_alpha=0.6, point_size=2)
>>> plt.show()
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See also:
Tutorial
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6.25.5 Simplex representation

The simplices (triangles, tetrahedra, …) appearing in the Delaunay tessellation (N-dim simplices), convex hull facets, and
Voronoi ridges (N-1 dim simplices) are represented in the following scheme:

tess = Delaunay(points)
hull = ConvexHull(points)
voro = Voronoi(points)

# coordinates of the j-th vertex of the i-th simplex
tess.points[tess.simplices[i, j], :] # tessellation element
hull.points[hull.simplices[i, j], :] # convex hull facet
voro.vertices[voro.ridge_vertices[i, j], :] # ridge between Voronoi cells

For Delaunay triangulations and convex hulls, the neighborhood structure of the simplices satisfies the condition:
tess.neighbors[i,j] is the neighboring simplex of the i-th simplex, opposite to the j-vertex. It is -1 in case
of no neighbor.

Convex hull facets also define a hyperplane equation:

(hull.equations[i,:-1] * coord).sum() + hull.equations[i,-1] == 0

Similar hyperplane equations for the Delaunay triangulation correspond to the convex hull facets on the corresponding
N+1 dimensional paraboloid.
The Delaunay triangulation objects offer a method for locating the simplex containing a given point, and barycentric
coordinate computations.

Functions

tsearch(tri, xi) Find simplices containing the given points.
distance_matrix(x, y[, p, threshold]) Compute the distance matrix.
minkowski_distance(x, y[, p]) Compute the L**p distance between two arrays.
minkowski_distance_p(x, y[, p]) Compute the p-th power of the L**p distance between

two arrays.
procrustes(data1, data2) Procrustes analysis, a similarity test for two data sets.

scipy.spatial.tsearch
scipy.spatial.tsearch(tri, xi)

Find simplices containing the given points. This function does the same thing as Delaunay.find_simplex.
New in version 0.9.
See also:
Delaunay.find_simplex

Examples

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from scipy.spatial import Delaunay, delaunay_plot_2d, tsearch
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The Delaunay triangulation of a set of random points:

>>> pts = np.random.rand(20, 2)
>>> tri = Delaunay(pts)
>>> _ = delaunay_plot_2d(tri)

Find the simplices containing a given set of points:

>>> loc = np.random.uniform(0.2, 0.8, (5, 2))
>>> s = tsearch(tri, loc)
>>> plt.triplot(pts[:, 0], pts[:, 1], tri.simplices[s], 'b-', mask=s==-1)
>>> plt.scatter(loc[:, 0], loc[:, 1], c='r', marker='x')
>>> plt.show()
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scipy.spatial.distance_matrix
scipy.spatial.distance_matrix(x, y, p=2, threshold=1000000)

Compute the distance matrix.
Returns the matrix of all pair-wise distances.

Parameters

x [(M, K) array_like] Matrix of M vectors in K dimensions.
y [(N, K) array_like] Matrix of N vectors in K dimensions.
p [float, 1 <= p <= infinity] Which Minkowski p-norm to use.
threshold [positive int] If M * N * K > threshold, algorithm uses a Python loop instead of large

temporary arrays.
Returns

result [(M, N) ndarray] Matrix containing the distance from every vector in x to every vector in y.

Examples

6.25. Spatial algorithms and data structures (scipy.spatial) 1873



SciPy Reference Guide, Release 1.3.1

>>> from scipy.spatial import distance_matrix
>>> distance_matrix([[0,0],[0,1]], [[1,0],[1,1]])
array([[ 1. , 1.41421356],

[ 1.41421356, 1. ]])

scipy.spatial.minkowski_distance
scipy.spatial.minkowski_distance(x, y, p=2)

Compute the L**p distance between two arrays.
Parameters

x [(M, K) array_like] Input array.
y [(N, K) array_like] Input array.
p [float, 1 <= p <= infinity] Which Minkowski p-norm to use.

Examples

>>> from scipy.spatial import minkowski_distance
>>> minkowski_distance([[0,0],[0,0]], [[1,1],[0,1]])
array([ 1.41421356, 1. ])

scipy.spatial.minkowski_distance_p
scipy.spatial.minkowski_distance_p(x, y, p=2)

Compute the p-th power of the L**p distance between two arrays.
For efficiency, this function computes the L**p distance but does not extract the pth root. If p is 1 or infinity, this
is equal to the actual L**p distance.

Parameters

x [(M, K) array_like] Input array.
y [(N, K) array_like] Input array.
p [float, 1 <= p <= infinity] Which Minkowski p-norm to use.

Examples

>>> from scipy.spatial import minkowski_distance_p
>>> minkowski_distance_p([[0,0],[0,0]], [[1,1],[0,1]])
array([2, 1])

scipy.spatial.procrustes
scipy.spatial.procrustes(data1, data2)

Procrustes analysis, a similarity test for two data sets.
Each input matrix is a set of points or vectors (the rows of the matrix). The dimension of the space is the number
of columns of each matrix. Given two identically sized matrices, procrustes standardizes both such that:

• tr(AAT ) = 1.
• Both sets of points are centered around the origin.
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Procrustes ([1], [2]) then applies the optimal transform to the second matrix (including scaling/dilation, rotations,
and reflections) to minimizeM2 =

∑
(data1 − data2)2, or the sum of the squares of the pointwise differences

between the two input datasets.
This function was not designed to handle datasets with different numbers of datapoints (rows). If two data sets have
different dimensionality (different number of columns), simply add columns of zeros to the smaller of the two.

Parameters

data1 [array_like] Matrix, n rows represent points in k (columns) space data1 is the reference data,
after it is standardised, the data from data2 will be transformed to fit the pattern in data1
(must have >1 unique points).

data2 [array_like] n rows of data in k space to be fit to data1. Must be the same shape(numrows,
numcols) as data1 (must have >1 unique points).

Returns

mtx1 [array_like] A standardized version of data1.
mtx2 [array_like] The orientation of data2 that best fits data1. Centered, but not necessarily

tr(AAT ) = 1.
disparity [float]M2 as defined above.

Raises

ValueError
If the input arrays are not two-dimensional. If the shape of the input arrays is different. If
the input arrays have zero columns or zero rows.

See also:
scipy.linalg.orthogonal_procrustes

scipy.spatial.distance.directed_hausdorff

Another similarity test for two data sets

Notes

• The disparity should not depend on the order of the input matrices, but the output matrices will, as only the
first output matrix is guaranteed to be scaled such that tr(AAT ) = 1.

• Duplicate data points are generally ok, duplicating a data point will increase its effect on the procrustes fit.
• The disparity scales as the number of points per input matrix.

References

[1], [2]

Examples

>>> from scipy.spatial import procrustes

The matrix b is a rotated, shifted, scaled and mirrored version of a here:
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>>> a = np.array([[1, 3], [1, 2], [1, 1], [2, 1]], 'd')
>>> b = np.array([[4, -2], [4, -4], [4, -6], [2, -6]], 'd')
>>> mtx1, mtx2, disparity = procrustes(a, b)
>>> round(disparity)
0.0

6.26 Distance computations (scipy.spatial.distance)

6.26.1 Function Reference

Distance matrix computation from a collection of raw observation vectors stored in a rectangular array.

pdist(X[, metric]) Pairwise distances between observations in n-dimensional
space.

cdist(XA, XB[, metric]) Compute distance between each pair of the two collec-
tions of inputs.

squareform(X[, force, checks]) Convert a vector-form distance vector to a square-form
distance matrix, and vice-versa.

directed_hausdorff(u, v[, seed]) Compute the directed Hausdorff distance between twoN-
D arrays.

scipy.spatial.distance.pdist

scipy.spatial.distance.pdist(X, metric=’euclidean’, *args, **kwargs)
Pairwise distances between observations in n-dimensional space.
See Notes for common calling conventions.

Parameters

X [ndarray] An m by n array of m original observations in an n-dimensional space.
metric [str or function, optional] The distance metric to use. The distance function can be ‘braycur-

tis’, ‘canberra’, ‘chebyshev’, ‘cityblock’, ‘correlation’, ‘cosine’, ‘dice’, ‘euclidean’, ‘hamming’,
‘jaccard’, ‘jensenshannon’, ‘kulsinski’, ‘mahalanobis’, ‘matching’, ‘minkowski’, ‘rogerstani-
moto’, ‘russellrao’, ‘seuclidean’, ‘sokalmichener’, ‘sokalsneath’, ‘sqeuclidean’, ‘yule’.

*args [tuple. Deprecated.] Additional arguments should be passed as keyword arguments
**kwargs [dict, optional] Extra arguments to metric: refer to each metric documentation for a list of

all possible arguments.
Some possible arguments:
p : scalar The p-norm to apply for Minkowski, weighted and unweighted. Default: 2.
w : ndarray The weight vector for metrics that support weights (e.g., Minkowski).
V : ndarray The variance vector for standardized Euclidean. Default: var(X, axis=0, ddof=1)
VI : ndarray The inverse of the covariance matrix forMahalanobis. Default: inv(cov(X.T)).T
out : ndarray. The output array If not None, condensed distance matrix Y is stored in this
array. Note: metric independent, it will become a regular keyword arg in a future scipy
version

Returns

Y [ndarray] Returns a condensed distancematrix Y. For each i and j (where i < j < m),where
m is the number of original observations. The metric dist(u=X[i], v=X[j]) is com-
puted and stored in entry ij.
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See also:

squareform

converts between condensed distance matrices and square distance matrices.

Notes

See squareform for information on how to calculate the index of this entry or to convert the condensed distance
matrix to a redundant square matrix.
The following are common calling conventions.
1. Y = pdist(X, 'euclidean')

Computes the distance between m points using Euclidean distance (2-norm) as the distance metric between
the points. The points are arranged as m n-dimensional row vectors in the matrix X.

2. Y = pdist(X, 'minkowski', p=2.)

Computes the distances using the Minkowski distance ||u− v||p (p-norm) where p ≥ 1.
3. Y = pdist(X, 'cityblock')

Computes the city block or Manhattan distance between the points.
4. Y = pdist(X, 'seuclidean', V=None)

Computes the standardized Euclidean distance. The standardized Euclidean distance between two n-vectors
u and v is √∑

(ui − vi)2/V [xi]

V is the variance vector; V[i] is the variance computed over all the i’th components of the points. If not
passed, it is automatically computed.

5. Y = pdist(X, 'sqeuclidean')

Computes the squared Euclidean distance ||u− v||22 between the vectors.
6. Y = pdist(X, 'cosine')

Computes the cosine distance between vectors u and v,

1− u · v
||u||2||v||2

where || ∗ ||2 is the 2-norm of its argument *, and u · v is the dot product of u and v.
7. Y = pdist(X, 'correlation')

Computes the correlation distance between vectors u and v. This is

1− (u− ū) · (v − v̄)

||(u− ū)||2||(v − v̄)||2

where v̄ is the mean of the elements of vector v, and x · y is the dot product of x and y.
8. Y = pdist(X, 'hamming')

Computes the normalized Hamming distance, or the proportion of those vector elements between two n-
vectors u and v which disagree. To save memory, the matrix X can be of type boolean.
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9. Y = pdist(X, 'jaccard')

Computes the Jaccard distance between the points. Given two vectors, u and v, the Jaccard distance is the
proportion of those elements u[i] and v[i] that disagree.

10. Y = pdist(X, 'chebyshev')

Computes the Chebyshev distance between the points. The Chebyshev distance between two n-vectors u and
v is the maximum norm-1 distance between their respective elements. More precisely, the distance is given
by

d(u, v) = max
i

|ui − vi|

11. Y = pdist(X, 'canberra')

Computes the Canberra distance between the points. The Canberra distance between two points u and v is

d(u, v) =
∑
i

|ui − vi|
|ui|+ |vi|

12. Y = pdist(X, 'braycurtis')

Computes the Bray-Curtis distance between the points. The Bray-Curtis distance between two points u and
v is

d(u, v) =

∑
i |ui − vi|∑
i |ui + vi|

13. Y = pdist(X, 'mahalanobis', VI=None)

Computes the Mahalanobis distance between the points. TheMahalanobis distance between two points u and
v is

√
(u− v)(1/V )(u− v)T where (1/V ) (the VI variable) is the inverse covariance. If VI is not None,

VI will be used as the inverse covariance matrix.

14. Y = pdist(X, 'yule')

Computes the Yule distance between each pair of boolean vectors. (see yule function documentation)

15. Y = pdist(X, 'matching')

Synonym for ‘hamming’.

16. Y = pdist(X, 'dice')

Computes the Dice distance between each pair of boolean vectors. (see dice function documentation)

17. Y = pdist(X, 'kulsinski')

Computes the Kulsinski distance between each pair of boolean vectors. (see kulsinski function documenta-
tion)

18. Y = pdist(X, 'rogerstanimoto')

Computes the Rogers-Tanimoto distance between each pair of boolean vectors. (see rogerstanimoto function
documentation)
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19. Y = pdist(X, 'russellrao')

Computes the Russell-Rao distance between each pair of boolean vectors. (see russellrao function documen-
tation)

20. Y = pdist(X, 'sokalmichener')

Computes the Sokal-Michener distance between each pair of boolean vectors. (see sokalmichener function
documentation)

21. Y = pdist(X, 'sokalsneath')

Computes the Sokal-Sneath distance between each pair of boolean vectors. (see sokalsneath function docu-
mentation)

22. Y = pdist(X, 'wminkowski', p=2, w=w)

Computes the weighted Minkowski distance between each pair of vectors. (see wminkowski function docu-
mentation)

23. Y = pdist(X, f)

Computes the distance between all pairs of vectors in X using the user supplied 2-arity function f. For
example, Euclidean distance between the vectors could be computed as follows:

dm = pdist(X, lambda u, v: np.sqrt(((u-v)**2).sum()))

Note that you should avoid passing a reference to one of the distance functions defined in this library. For
example,:

dm = pdist(X, sokalsneath)

would calculate the pair-wise distances between the vectors in X using the Python function sokalsneath. This
would result in sokalsneath being called

(
n
2

)
times, which is inefficient. Instead, the optimized C version is

more efficient, and we call it using the following syntax.:

dm = pdist(X, 'sokalsneath')

scipy.spatial.distance.cdist

scipy.spatial.distance.cdist(XA, XB, metric=’euclidean’, *args, **kwargs)
Compute distance between each pair of the two collections of inputs.
See Notes for common calling conventions.

Parameters

XA [ndarray] AnmA by n array ofmA original observations in an n-dimensional space. Inputs
are converted to float type.

XB [ndarray] AnmB by n array ofmB original observations in an n-dimensional space. Inputs
are converted to float type.

metric [str or callable, optional] The distance metric to use. If a string, the distance func-
tion can be ‘braycurtis’, ‘canberra’, ‘chebyshev’, ‘cityblock’, ‘correlation’, ‘cosine’, ‘dice’,
‘euclidean’, ‘hamming’, ‘jaccard’, ‘jensenshannon’, ‘kulsinski’, ‘mahalanobis’, ‘matching’,
‘minkowski’, ‘rogerstanimoto’, ‘russellrao’, ‘seuclidean’, ‘sokalmichener’, ‘sokalsneath’, ‘sqeu-
clidean’, ‘wminkowski’, ‘yule’.
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*args [tuple. Deprecated.] Additional arguments should be passed as keyword arguments
**kwargs [dict, optional] Extra arguments to metric: refer to each metric documentation for a list of

all possible arguments.
Some possible arguments:
p : scalar The p-norm to apply for Minkowski, weighted and unweighted. Default: 2.
w : ndarray The weight vector for metrics that support weights (e.g., Minkowski).
V : ndarray The variance vector for standardized Euclidean. Default: var(vstack([XA, XB]),
axis=0, ddof=1)
VI : ndarray The inverse of the covariance matrix for Mahalanobis. Default:
inv(cov(vstack([XA, XB].T))).T
out : ndarray The output array If not None, the distance matrix Y is stored in this array.
Note: metric independent, it will become a regular keyword arg in a future scipy version

Returns

Y [ndarray] A mA by mB distance matrix is returned. For each i and j, the metric
dist(u=XA[i], v=XB[j]) is computed and stored in the ij th entry.

Raises

ValueError
An exception is thrown if XA and XB do not have the same number of columns.

Notes

The following are common calling conventions:
1. Y = cdist(XA, XB, 'euclidean')

Computes the distance betweenm points using Euclidean distance (2-norm) as the distance metric between
the points. The points are arranged asm n-dimensional row vectors in the matrix X.

2. Y = cdist(XA, XB, 'minkowski', p=2.)

Computes the distances using the Minkowski distance ||u− v||p (p-norm) where p ≥ 1.
3. Y = cdist(XA, XB, 'cityblock')

Computes the city block or Manhattan distance between the points.
4. Y = cdist(XA, XB, 'seuclidean', V=None)

Computes the standardized Euclidean distance. The standardized Euclidean distance between two n-vectors
u and v is √∑

(ui − vi)2/V [xi].

V is the variance vector; V[i] is the variance computed over all the i’th components of the points. If not
passed, it is automatically computed.

5. Y = cdist(XA, XB, 'sqeuclidean')

Computes the squared Euclidean distance ||u− v||22 between the vectors.
6. Y = cdist(XA, XB, 'cosine')

Computes the cosine distance between vectors u and v,

1− u · v
||u||2||v||2

where || ∗ ||2 is the 2-norm of its argument *, and u · v is the dot product of u and v.
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7. Y = cdist(XA, XB, 'correlation')

Computes the correlation distance between vectors u and v. This is

1− (u− ū) · (v − v̄)

||(u− ū)||2||(v − v̄)||2

where v̄ is the mean of the elements of vector v, and x · y is the dot product of x and y.
8. Y = cdist(XA, XB, 'hamming')

Computes the normalized Hamming distance, or the proportion of those vector elements between two n-
vectors u and v which disagree. To save memory, the matrix X can be of type boolean.

9. Y = cdist(XA, XB, 'jaccard')

Computes the Jaccard distance between the points. Given two vectors, u and v, the Jaccard distance is the
proportion of those elements u[i] and v[i] that disagree where at least one of them is non-zero.

10. Y = cdist(XA, XB, 'chebyshev')

Computes the Chebyshev distance between the points. The Chebyshev distance between two n-vectors u and
v is the maximum norm-1 distance between their respective elements. More precisely, the distance is given
by

d(u, v) = max
i

|ui − vi|.

11. Y = cdist(XA, XB, 'canberra')

Computes the Canberra distance between the points. The Canberra distance between two points u and v is

d(u, v) =
∑
i

|ui − vi|
|ui|+ |vi|

.

12. Y = cdist(XA, XB, 'braycurtis')

Computes the Bray-Curtis distance between the points. The Bray-Curtis distance between two points u and
v is

d(u, v) =

∑
i(|ui − vi|)∑
i(|ui + vi|)

13. Y = cdist(XA, XB, 'mahalanobis', VI=None)

Computes the Mahalanobis distance between the points. TheMahalanobis distance between two points u and
v is

√
(u− v)(1/V )(u− v)T where (1/V ) (the VI variable) is the inverse covariance. If VI is not None,

VI will be used as the inverse covariance matrix.

14. Y = cdist(XA, XB, 'yule')

Computes the Yule distance between the boolean vectors. (see yule function documentation)

15. Y = cdist(XA, XB, 'matching')

Synonym for ‘hamming’.

16. Y = cdist(XA, XB, 'dice')
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Computes the Dice distance between the boolean vectors. (see dice function documentation)

17. Y = cdist(XA, XB, 'kulsinski')

Computes the Kulsinski distance between the boolean vectors. (see kulsinski function documentation)

18. Y = cdist(XA, XB, 'rogerstanimoto')

Computes the Rogers-Tanimoto distance between the boolean vectors. (see rogerstanimoto function
documentation)

19. Y = cdist(XA, XB, 'russellrao')

Computes the Russell-Rao distance between the boolean vectors. (see russellrao function documenta-
tion)

20. Y = cdist(XA, XB, 'sokalmichener')

Computes the Sokal-Michener distance between the boolean vectors. (see sokalmichener function doc-
umentation)

21. Y = cdist(XA, XB, 'sokalsneath')

Computes the Sokal-Sneath distance between the vectors. (see sokalsneath function documentation)

22. Y = cdist(XA, XB, 'wminkowski', p=2., w=w)

Computes the weighted Minkowski distance between the vectors. (see wminkowski function documenta-
tion)

23. Y = cdist(XA, XB, f)

Computes the distance between all pairs of vectors in X using the user supplied 2-arity function f. For
example, Euclidean distance between the vectors could be computed as follows:

dm = cdist(XA, XB, lambda u, v: np.sqrt(((u-v)**2).sum()))

Note that you should avoid passing a reference to one of the distance functions defined in this library. For
example,:

dm = cdist(XA, XB, sokalsneath)

would calculate the pair-wise distances between the vectors in X using the Python function sokalsneath.
This would result in sokalsneath being called

(
n
2

)
times, which is inefficient. Instead, the optimized C version

is more efficient, and we call it using the following syntax:

dm = cdist(XA, XB, 'sokalsneath')

Examples

Find the Euclidean distances between four 2-D coordinates:
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>>> from scipy.spatial import distance
>>> coords = [(35.0456, -85.2672),
... (35.1174, -89.9711),
... (35.9728, -83.9422),
... (36.1667, -86.7833)]
>>> distance.cdist(coords, coords, 'euclidean')
array([[ 0. , 4.7044, 1.6172, 1.8856],

[ 4.7044, 0. , 6.0893, 3.3561],
[ 1.6172, 6.0893, 0. , 2.8477],
[ 1.8856, 3.3561, 2.8477, 0. ]])

Find the Manhattan distance from a 3-D point to the corners of the unit cube:

>>> a = np.array([[0, 0, 0],
... [0, 0, 1],
... [0, 1, 0],
... [0, 1, 1],
... [1, 0, 0],
... [1, 0, 1],
... [1, 1, 0],
... [1, 1, 1]])
>>> b = np.array([[ 0.1, 0.2, 0.4]])
>>> distance.cdist(a, b, 'cityblock')
array([[ 0.7],

[ 0.9],
[ 1.3],
[ 1.5],
[ 1.5],
[ 1.7],
[ 2.1],
[ 2.3]])

scipy.spatial.distance.squareform

scipy.spatial.distance.squareform(X, force=’no’, checks=True)
Convert a vector-form distance vector to a square-form distance matrix, and vice-versa.

Parameters

X [ndarray] Either a condensed or redundant distance matrix.
force [str, optional] As withMATLAB(TM), if force is equal to'tovector' or'tomatrix',

the input will be treated as a distance matrix or distance vector respectively.
checks [bool, optional] If set to False, no checks will be made for matrix symmetry nor zero diag-

onals. This is useful if it is known that X - X.T1 is small and diag(X) is close to zero.
These values are ignored any way so they do not disrupt the squareform transformation.

Returns

Y [ndarray] If a condensed distance matrix is passed, a redundant one is returned, or if a re-
dundant one is passed, a condensed distance matrix is returned.

Notes

1. v = squareform(X)
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Given a square d-by-d symmetric distance matrix X, v = squareform(X) returns a d * (d-1) / 2
(or
(
n
2

)
) sized vector v.

v[
(
n
2

)
−
(
n−i
2

)
+ (j − i − 1)] is the distance between points i and j. If X is non-square or asymmetric, an

error is returned.

2. X = squareform(v)

Given a d*(d-1)/2 sized v for some integer d >= 2 encoding distances as described, X =
squareform(v) returns a d by d distance matrix X. The X[i, j] and X[j, i] values are set to
v[
(
n
2

)
−
(
n−i
2

)
+ (j − i− 1)] and all diagonal elements are zero.

In SciPy 0.19.0, squareform stopped casting all input types to float64, and started returning arrays of the same
dtype as the input.

scipy.spatial.distance.directed_hausdorff

scipy.spatial.distance.directed_hausdorff(u, v, seed=0)
Compute the directed Hausdorff distance between two N-D arrays.
Distances between pairs are calculated using a Euclidean metric.

Parameters

u [(M,N) ndarray] Input array.
v [(O,N) ndarray] Input array.
seed [int or None] Local numpy.random.mtrand.RandomState seed. Default is 0, a

random shuffling of u and v that guarantees reproducibility.
Returns

d [double] The directed Hausdorff distance between arrays u and v,
index_1 [int] index of point contributing to Hausdorff pair in u
index_2 [int] index of point contributing to Hausdorff pair in v

Raises

ValueError
An exception is thrown if u and v do not have the same number of columns.

See also:

scipy.spatial.procrustes

Another similarity test for two data sets

Notes

Uses the early break technique and the random sampling approach described by [1]. Although worst-case perfor-
mance is O(m * o) (as with the brute force algorithm), this is unlikely in practice as the input data would have
to require the algorithm to explore every single point interaction, and after the algorithm shuffles the input points
at that. The best case performance is O(m), which is satisfied by selecting an inner loop distance that is less than
cmax and leads to an early break as often as possible. The authors have formally shown that the average runtime is
closer to O(m).
New in version 0.19.0.
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References

[1]

Examples

Find the directed Hausdorff distance between two 2-D arrays of coordinates:

>>> from scipy.spatial.distance import directed_hausdorff
>>> u = np.array([(1.0, 0.0),
... (0.0, 1.0),
... (-1.0, 0.0),
... (0.0, -1.0)])
>>> v = np.array([(2.0, 0.0),
... (0.0, 2.0),
... (-2.0, 0.0),
... (0.0, -4.0)])

>>> directed_hausdorff(u, v)[0]
2.23606797749979
>>> directed_hausdorff(v, u)[0]
3.0

Find the general (symmetric) Hausdorff distance between two 2-D arrays of coordinates:

>>> max(directed_hausdorff(u, v)[0], directed_hausdorff(v, u)[0])
3.0

Find the indices of the points that generate the Hausdorff distance (the Hausdorff pair):

>>> directed_hausdorff(v, u)[1:]
(3, 3)

Predicates for checking the validity of distance matrices, both condensed and redundant. Also contained in this module
are functions for computing the number of observations in a distance matrix.

is_valid_dm(D[, tol, throw, name, warning]) Return True if input array is a valid distance matrix.
is_valid_y(y[, warning, throw, name]) Return True if the input array is a valid condensed dis-

tance matrix.
num_obs_dm(d) Return the number of original observations that corre-

spond to a square, redundant distance matrix.
num_obs_y(Y) Return the number of original observations that corre-

spond to a condensed distance matrix.

scipy.spatial.distance.is_valid_dm

scipy.spatial.distance.is_valid_dm(D, tol=0.0, throw=False, name=’D’, warning=False)
Return True if input array is a valid distance matrix.
Distance matrices must be 2-dimensional numpy arrays. They must have a zero-diagonal, and they must be sym-
metric.

Parameters
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D [ndarray] The candidate object to test for validity.
tol [float, optional] The distance matrix should be symmetric. tol is the maximum difference

between entries ij and ji for the distance metric to be considered symmetric.
throw [bool, optional] An exception is thrown if the distance matrix passed is not valid.
name [str, optional] The name of the variable to checked. This is useful if throw is set to True

so the offending variable can be identified in the exception message when an exception is
thrown.

warning [bool, optional] Instead of throwing an exception, a warning message is raised.
Returns

valid [bool] True if the variable D passed is a valid distance matrix.

Notes

Small numerical differences in D and D.T and non-zeroness of the diagonal are ignored if they are within the
tolerance specified by tol.

scipy.spatial.distance.is_valid_y

scipy.spatial.distance.is_valid_y(y, warning=False, throw=False, name=None)
Return True if the input array is a valid condensed distance matrix.
Condensed distance matrices must be 1-dimensional numpy arrays. Their length must be a binomial coefficient

(
n
2

)
for some positive integer n.

Parameters

y [ndarray] The condensed distance matrix.
warning [bool, optional] Invokes a warning if the variable passed is not a valid condensed distance

matrix. The warning message explains why the distance matrix is not valid. name is used
when referencing the offending variable.

throw [bool, optional] Throws an exception if the variable passed is not a valid condensed distance
matrix.

name [bool, optional] Used when referencing the offending variable in the warning or exception
message.

scipy.spatial.distance.num_obs_dm

scipy.spatial.distance.num_obs_dm(d)
Return the number of original observations that correspond to a square, redundant distance matrix.

Parameters

d [ndarray] The target distance matrix.
Returns

num_obs_dm
[int] The number of observations in the redundant distance matrix.
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scipy.spatial.distance.num_obs_y

scipy.spatial.distance.num_obs_y(Y)
Return the number of original observations that correspond to a condensed distance matrix.

Parameters

Y [ndarray] Condensed distance matrix.
Returns

n [int] The number of observations in the condensed distance matrix Y.
Distance functions between two numeric vectors u and v. Computing distances over a large collection of vectors is
inefficient for these functions. Use pdist for this purpose.

braycurtis(u, v[, w]) Compute the Bray-Curtis distance between two 1-D ar-
rays.

canberra(u, v[, w]) Compute the Canberra distance between two 1-D arrays.
chebyshev(u, v[, w]) Compute the Chebyshev distance.
cityblock(u, v[, w]) Compute the City Block (Manhattan) distance.
correlation(u, v[, w, centered]) Compute the correlation distance between two 1-D ar-

rays.
cosine(u, v[, w]) Compute the Cosine distance between 1-D arrays.
euclidean(u, v[, w]) Computes the Euclidean distance between two 1-D ar-

rays.
jensenshannon(p, q[, base]) Compute the Jensen-Shannon distance (metric) between

two 1-D probability arrays.
mahalanobis(u, v, VI) Compute the Mahalanobis distance between two 1-D ar-

rays.
minkowski(u, v[, p, w]) Compute the Minkowski distance between two 1-D ar-

rays.
seuclidean(u, v, V) Return the standardized Euclidean distance between two

1-D arrays.
sqeuclidean(u, v[, w]) Compute the squared Euclidean distance between two 1-

D arrays.
wminkowski(u, v, p, w) Compute the weighted Minkowski distance between two

1-D arrays.

scipy.spatial.distance.braycurtis

scipy.spatial.distance.braycurtis(u, v, w=None)
Compute the Bray-Curtis distance between two 1-D arrays.
Bray-Curtis distance is defined as ∑

|ui − vi|/
∑

|ui + vi|

The Bray-Curtis distance is in the range [0, 1] if all coordinates are positive, and is undefined if the inputs are of
length zero.

Parameters

u [(N,) array_like] Input array.
v [(N,) array_like] Input array.
w [(N,) array_like, optional] The weights for each value in u and v. Default is None, which

gives each value a weight of 1.0
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Returns

braycurtis [double] The Bray-Curtis distance between 1-D arrays u and v.

Examples

>>> from scipy.spatial import distance
>>> distance.braycurtis([1, 0, 0], [0, 1, 0])
1.0
>>> distance.braycurtis([1, 1, 0], [0, 1, 0])
0.33333333333333331

scipy.spatial.distance.canberra

scipy.spatial.distance.canberra(u, v, w=None)
Compute the Canberra distance between two 1-D arrays.
The Canberra distance is defined as

d(u, v) =
∑
i

|ui − vi|
|ui|+ |vi|

.

Parameters

u [(N,) array_like] Input array.
v [(N,) array_like] Input array.
w [(N,) array_like, optional] The weights for each value in u and v. Default is None, which

gives each value a weight of 1.0
Returns

canberra [double] The Canberra distance between vectors u and v.

Notes

When u[i] and v[i] are 0 for given i, then the fraction 0/0 = 0 is used in the calculation.

Examples

>>> from scipy.spatial import distance
>>> distance.canberra([1, 0, 0], [0, 1, 0])
2.0
>>> distance.canberra([1, 1, 0], [0, 1, 0])
1.0

scipy.spatial.distance.chebyshev

scipy.spatial.distance.chebyshev(u, v, w=None)
Compute the Chebyshev distance.
Computes the Chebyshev distance between two 1-D arrays u and v, which is defined as

max
i

|ui − vi|.
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Parameters

u [(N,) array_like] Input vector.
v [(N,) array_like] Input vector.
w [(N,) array_like, optional] The weights for each value in u and v. Default is None, which

gives each value a weight of 1.0
Returns

chebyshev [double] The Chebyshev distance between vectors u and v.

Examples

>>> from scipy.spatial import distance
>>> distance.chebyshev([1, 0, 0], [0, 1, 0])
1
>>> distance.chebyshev([1, 1, 0], [0, 1, 0])
1

scipy.spatial.distance.cityblock

scipy.spatial.distance.cityblock(u, v, w=None)
Compute the City Block (Manhattan) distance.
Computes the Manhattan distance between two 1-D arrays u and v, which is defined as∑

i

|ui − vi|.

Parameters

u [(N,) array_like] Input array.
v [(N,) array_like] Input array.
w [(N,) array_like, optional] The weights for each value in u and v. Default is None, which

gives each value a weight of 1.0
Returns

cityblock [double] The City Block (Manhattan) distance between vectors u and v.

Examples

>>> from scipy.spatial import distance
>>> distance.cityblock([1, 0, 0], [0, 1, 0])
2
>>> distance.cityblock([1, 0, 0], [0, 2, 0])
3
>>> distance.cityblock([1, 0, 0], [1, 1, 0])
1
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scipy.spatial.distance.correlation

scipy.spatial.distance.correlation(u, v, w=None, centered=True)
Compute the correlation distance between two 1-D arrays.
The correlation distance between u and v, is defined as

1− (u− ū) · (v − v̄)

||(u− ū)||2||(v − v̄)||2

where ū is the mean of the elements of u and x · y is the dot product of x and y.
Parameters

u [(N,) array_like] Input array.
v [(N,) array_like] Input array.
w [(N,) array_like, optional] The weights for each value in u and v. Default is None, which

gives each value a weight of 1.0
Returns

correlation
[double] The correlation distance between 1-D array u and v.

scipy.spatial.distance.cosine

scipy.spatial.distance.cosine(u, v, w=None)
Compute the Cosine distance between 1-D arrays.
The Cosine distance between u and v, is defined as

1− u · v
||u||2||v||2

.

where u · v is the dot product of u and v.
Parameters

u [(N,) array_like] Input array.
v [(N,) array_like] Input array.
w [(N,) array_like, optional] The weights for each value in u and v. Default is None, which

gives each value a weight of 1.0
Returns

cosine [double] The Cosine distance between vectors u and v.

Examples

>>> from scipy.spatial import distance
>>> distance.cosine([1, 0, 0], [0, 1, 0])
1.0
>>> distance.cosine([100, 0, 0], [0, 1, 0])
1.0
>>> distance.cosine([1, 1, 0], [0, 1, 0])
0.29289321881345254
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scipy.spatial.distance.euclidean

scipy.spatial.distance.euclidean(u, v, w=None)
Computes the Euclidean distance between two 1-D arrays.
The Euclidean distance between 1-D arrays u and v, is defined as

||u− v||2(∑
(wi|(ui − vi)|2)

)1/2
Parameters

u [(N,) array_like] Input array.
v [(N,) array_like] Input array.
w [(N,) array_like, optional] The weights for each value in u and v. Default is None, which

gives each value a weight of 1.0
Returns

euclidean [double] The Euclidean distance between vectors u and v.

Examples

>>> from scipy.spatial import distance
>>> distance.euclidean([1, 0, 0], [0, 1, 0])
1.4142135623730951
>>> distance.euclidean([1, 1, 0], [0, 1, 0])
1.0

scipy.spatial.distance.jensenshannon

scipy.spatial.distance.jensenshannon(p, q, base=None)
Compute the Jensen-Shannon distance (metric) between two 1-D probability arrays. This is the square root of the
Jensen-Shannon divergence.
The Jensen-Shannon distance between two probability vectors p and q is defined as,√

D(p ∥ m) +D(q ∥ m)

2

wherem is the pointwise mean of p and q and D is the Kullback-Leibler divergence.
This routine will normalize p and q if they don’t sum to 1.0.

Parameters

p [(N,) array_like] left probability vector
q [(N,) array_like] right probability vector
base [double, optional] the base of the logarithm used to compute the output if not given, then

the routine uses the default base of scipy.stats.entropy.
Returns

js [double] The Jensen-Shannon distance between p and q
.. versionadded:: 1.2.0
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Examples

>>> from scipy.spatial import distance
>>> distance.jensenshannon([1.0, 0.0, 0.0], [0.0, 1.0, 0.0], 2.0)
1.0
>>> distance.jensenshannon([1.0, 0.0], [0.5, 0.5])
0.46450140402245893
>>> distance.jensenshannon([1.0, 0.0, 0.0], [1.0, 0.0, 0.0])
0.0

scipy.spatial.distance.mahalanobis

scipy.spatial.distance.mahalanobis(u, v, VI)
Compute the Mahalanobis distance between two 1-D arrays.
The Mahalanobis distance between 1-D arrays u and v, is defined as√

(u− v)V −1(u− v)T

where V is the covariance matrix. Note that the argument VI is the inverse of V.
Parameters

u [(N,) array_like] Input array.
v [(N,) array_like] Input array.
VI [ndarray] The inverse of the covariance matrix.

Returns

mahalanobis
[double] The Mahalanobis distance between vectors u and v.

Examples

>>> from scipy.spatial import distance
>>> iv = [[1, 0.5, 0.5], [0.5, 1, 0.5], [0.5, 0.5, 1]]
>>> distance.mahalanobis([1, 0, 0], [0, 1, 0], iv)
1.0
>>> distance.mahalanobis([0, 2, 0], [0, 1, 0], iv)
1.0
>>> distance.mahalanobis([2, 0, 0], [0, 1, 0], iv)
1.7320508075688772

scipy.spatial.distance.minkowski

scipy.spatial.distance.minkowski(u, v, p=2, w=None)
Compute the Minkowski distance between two 1-D arrays.
The Minkowski distance between 1-D arrays u and v, is defined as

||u− v||p = (
∑

|ui − vi|p)1/p.(∑
wi(|(ui − vi)|p)

)1/p
.
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Parameters

u [(N,) array_like] Input array.
v [(N,) array_like] Input array.
p [int] The order of the norm of the difference ||u− v||p.
w [(N,) array_like, optional] The weights for each value in u and v. Default is None, which

gives each value a weight of 1.0
Returns

minkowski
[double] The Minkowski distance between vectors u and v.

Examples

>>> from scipy.spatial import distance
>>> distance.minkowski([1, 0, 0], [0, 1, 0], 1)
2.0
>>> distance.minkowski([1, 0, 0], [0, 1, 0], 2)
1.4142135623730951
>>> distance.minkowski([1, 0, 0], [0, 1, 0], 3)
1.2599210498948732
>>> distance.minkowski([1, 1, 0], [0, 1, 0], 1)
1.0
>>> distance.minkowski([1, 1, 0], [0, 1, 0], 2)
1.0
>>> distance.minkowski([1, 1, 0], [0, 1, 0], 3)
1.0

scipy.spatial.distance.seuclidean

scipy.spatial.distance.seuclidean(u, v, V)
Return the standardized Euclidean distance between two 1-D arrays.
The standardized Euclidean distance between u and v.

Parameters

u [(N,) array_like] Input array.
v [(N,) array_like] Input array.
V [(N,) array_like] V is an 1-D array of component variances. It is usually computed among a

larger collection vectors.
Returns

seuclidean [double] The standardized Euclidean distance between vectors u and v.

Examples

>>> from scipy.spatial import distance
>>> distance.seuclidean([1, 0, 0], [0, 1, 0], [0.1, 0.1, 0.1])
4.4721359549995796
>>> distance.seuclidean([1, 0, 0], [0, 1, 0], [1, 0.1, 0.1])
3.3166247903553998

(continues on next page)
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(continued from previous page)
>>> distance.seuclidean([1, 0, 0], [0, 1, 0], [10, 0.1, 0.1])
3.1780497164141406

scipy.spatial.distance.sqeuclidean

scipy.spatial.distance.sqeuclidean(u, v, w=None)
Compute the squared Euclidean distance between two 1-D arrays.
The squared Euclidean distance between u and v is defined as

||u− v||22(∑
(wi|(ui − vi)|2)

)
Parameters

u [(N,) array_like] Input array.
v [(N,) array_like] Input array.
w [(N,) array_like, optional] The weights for each value in u and v. Default is None, which

gives each value a weight of 1.0
Returns

sqeuclidean
[double] The squared Euclidean distance between vectors u and v.

Examples

>>> from scipy.spatial import distance
>>> distance.sqeuclidean([1, 0, 0], [0, 1, 0])
2.0
>>> distance.sqeuclidean([1, 1, 0], [0, 1, 0])
1.0

scipy.spatial.distance.wminkowski

scipy.spatial.distance.wminkowski(u, v, p, w)
Compute the weighted Minkowski distance between two 1-D arrays.
The weighted Minkowski distance between u and v, defined as(∑

(|wi(ui − vi)|p)
)1/p

.

Parameters

u [(N,) array_like] Input array.
v [(N,) array_like] Input array.
p [int] The order of the norm of the difference ||u− v||p.
w [(N,) array_like] The weight vector.

Returns

wminkowski
[double] The weighted Minkowski distance between vectors u and v.
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Notes

wminkowski is DEPRECATED. It implements a definition where weights are powered. It is recommended to
use the weighted version of minkowski instead. This function will be removed in a future version of scipy.

Examples

>>> from scipy.spatial import distance
>>> distance.wminkowski([1, 0, 0], [0, 1, 0], 1, np.ones(3))
2.0
>>> distance.wminkowski([1, 0, 0], [0, 1, 0], 2, np.ones(3))
1.4142135623730951
>>> distance.wminkowski([1, 0, 0], [0, 1, 0], 3, np.ones(3))
1.2599210498948732
>>> distance.wminkowski([1, 1, 0], [0, 1, 0], 1, np.ones(3))
1.0
>>> distance.wminkowski([1, 1, 0], [0, 1, 0], 2, np.ones(3))
1.0
>>> distance.wminkowski([1, 1, 0], [0, 1, 0], 3, np.ones(3))
1.0

Distance functions between two boolean vectors (representing sets) u and v. As in the case of numerical vectors, pdist
is more efficient for computing the distances between all pairs.

dice(u, v[, w]) Compute the Dice dissimilarity between two boolean 1-D
arrays.

hamming(u, v[, w]) Compute the Hamming distance between two 1-D arrays.
jaccard(u, v[, w]) Compute the Jaccard-Needham dissimilarity between

two boolean 1-D arrays.
kulsinski(u, v[, w]) Compute the Kulsinski dissimilarity between two boolean

1-D arrays.
rogerstanimoto(u, v[, w]) Compute the Rogers-Tanimoto dissimilarity between two

boolean 1-D arrays.
russellrao(u, v[, w]) Compute the Russell-Rao dissimilarity between two

boolean 1-D arrays.
sokalmichener(u, v[, w]) Compute the Sokal-Michener dissimilarity between two

boolean 1-D arrays.
sokalsneath(u, v[, w]) Compute the Sokal-Sneath dissimilarity between two

boolean 1-D arrays.
yule(u, v[, w]) Compute the Yule dissimilarity between two boolean 1-D

arrays.

scipy.spatial.distance.dice

scipy.spatial.distance.dice(u, v, w=None)
Compute the Dice dissimilarity between two boolean 1-D arrays.
The Dice dissimilarity between u and v, is

cTF + cFT

2cTT + cFT + cTF

where cij is the number of occurrences of u[k] = i and v[k] = j for k < n.
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Parameters

u [(N,) ndarray, bool] Input 1-D array.
v [(N,) ndarray, bool] Input 1-D array.
w [(N,) array_like, optional] The weights for each value in u and v. Default is None, which

gives each value a weight of 1.0
Returns

dice [double] The Dice dissimilarity between 1-D arrays u and v.

Examples

>>> from scipy.spatial import distance
>>> distance.dice([1, 0, 0], [0, 1, 0])
1.0
>>> distance.dice([1, 0, 0], [1, 1, 0])
0.3333333333333333
>>> distance.dice([1, 0, 0], [2, 0, 0])
-0.3333333333333333

scipy.spatial.distance.hamming

scipy.spatial.distance.hamming(u, v, w=None)
Compute the Hamming distance between two 1-D arrays.
The Hamming distance between 1-D arrays u and v, is simply the proportion of disagreeing components in u and
v. If u and v are boolean vectors, the Hamming distance is

c01 + c10
n

where cij is the number of occurrences of u[k] = i and v[k] = j for k < n.
Parameters

u [(N,) array_like] Input array.
v [(N,) array_like] Input array.
w [(N,) array_like, optional] The weights for each value in u and v. Default is None, which

gives each value a weight of 1.0
Returns

hamming [double] The Hamming distance between vectors u and v.

Examples

>>> from scipy.spatial import distance
>>> distance.hamming([1, 0, 0], [0, 1, 0])
0.66666666666666663
>>> distance.hamming([1, 0, 0], [1, 1, 0])
0.33333333333333331
>>> distance.hamming([1, 0, 0], [2, 0, 0])
0.33333333333333331
>>> distance.hamming([1, 0, 0], [3, 0, 0])
0.33333333333333331
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scipy.spatial.distance.jaccard

scipy.spatial.distance.jaccard(u, v, w=None)
Compute the Jaccard-Needham dissimilarity between two boolean 1-D arrays.
The Jaccard-Needham dissimilarity between 1-D boolean arrays u and v, is defined as

cTF + cFT

cTT + cFT + cTF

where cij is the number of occurrences of u[k] = i and v[k] = j for k < n.
Parameters

u [(N,) array_like, bool] Input array.
v [(N,) array_like, bool] Input array.
w [(N,) array_like, optional] The weights for each value in u and v. Default is None, which

gives each value a weight of 1.0
Returns

jaccard [double] The Jaccard distance between vectors u and v.

Notes

When both u and v lead to a 0/0 division i.e. there is no overlap between the items in the vectors the returned
distance is 0. See the Wikipedia page on the Jaccard index [1], and this paper [2].
Changed in version 1.2.0: Previously, when u and v lead to a 0/0 division, the function would return NaN. This was
changed to return 0 instead.

References

[1], [2]

Examples

>>> from scipy.spatial import distance
>>> distance.jaccard([1, 0, 0], [0, 1, 0])
1.0
>>> distance.jaccard([1, 0, 0], [1, 1, 0])
0.5
>>> distance.jaccard([1, 0, 0], [1, 2, 0])
0.5
>>> distance.jaccard([1, 0, 0], [1, 1, 1])
0.66666666666666663

scipy.spatial.distance.kulsinski

scipy.spatial.distance.kulsinski(u, v, w=None)
Compute the Kulsinski dissimilarity between two boolean 1-D arrays.
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The Kulsinski dissimilarity between two boolean 1-D arrays u and v, is defined as

cTF + cFT − cTT + n

cFT + cTF + n

where cij is the number of occurrences of u[k] = i and v[k] = j for k < n.
Parameters

u [(N,) array_like, bool] Input array.
v [(N,) array_like, bool] Input array.
w [(N,) array_like, optional] The weights for each value in u and v. Default is None, which

gives each value a weight of 1.0
Returns

kulsinski [double] The Kulsinski distance between vectors u and v.

Examples

>>> from scipy.spatial import distance
>>> distance.kulsinski([1, 0, 0], [0, 1, 0])
1.0
>>> distance.kulsinski([1, 0, 0], [1, 1, 0])
0.75
>>> distance.kulsinski([1, 0, 0], [2, 1, 0])
0.33333333333333331
>>> distance.kulsinski([1, 0, 0], [3, 1, 0])
-0.5

scipy.spatial.distance.rogerstanimoto

scipy.spatial.distance.rogerstanimoto(u, v, w=None)
Compute the Rogers-Tanimoto dissimilarity between two boolean 1-D arrays.
The Rogers-Tanimoto dissimilarity between two boolean 1-D arrays u and v, is defined as

R

cTT + cFF +R

where cij is the number of occurrences of u[k] = i and v[k] = j for k < n and R = 2(cTF + cFT ).
Parameters

u [(N,) array_like, bool] Input array.
v [(N,) array_like, bool] Input array.
w [(N,) array_like, optional] The weights for each value in u and v. Default is None, which

gives each value a weight of 1.0
Returns

rogerstanimoto
[double] The Rogers-Tanimoto dissimilarity between vectors u and v.

Examples
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>>> from scipy.spatial import distance
>>> distance.rogerstanimoto([1, 0, 0], [0, 1, 0])
0.8
>>> distance.rogerstanimoto([1, 0, 0], [1, 1, 0])
0.5
>>> distance.rogerstanimoto([1, 0, 0], [2, 0, 0])
-1.0

scipy.spatial.distance.russellrao

scipy.spatial.distance.russellrao(u, v, w=None)
Compute the Russell-Rao dissimilarity between two boolean 1-D arrays.
The Russell-Rao dissimilarity between two boolean 1-D arrays, u and v, is defined as

n− cTT

n

where cij is the number of occurrences of u[k] = i and v[k] = j for k < n.
Parameters

u [(N,) array_like, bool] Input array.
v [(N,) array_like, bool] Input array.
w [(N,) array_like, optional] The weights for each value in u and v. Default is None, which

gives each value a weight of 1.0
Returns

russellrao [double] The Russell-Rao dissimilarity between vectors u and v.

Examples

>>> from scipy.spatial import distance
>>> distance.russellrao([1, 0, 0], [0, 1, 0])
1.0
>>> distance.russellrao([1, 0, 0], [1, 1, 0])
0.6666666666666666
>>> distance.russellrao([1, 0, 0], [2, 0, 0])
0.3333333333333333

scipy.spatial.distance.sokalmichener

scipy.spatial.distance.sokalmichener(u, v, w=None)
Compute the Sokal-Michener dissimilarity between two boolean 1-D arrays.
The Sokal-Michener dissimilarity between boolean 1-D arrays u and v, is defined as

R

S +R

where cij is the number of occurrences of u[k] = i and v[k] = j for k < n, R = 2 ∗ (cTF + cFT ) and
S = cFF + cTT .

Parameters
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u [(N,) array_like, bool] Input array.
v [(N,) array_like, bool] Input array.
w [(N,) array_like, optional] The weights for each value in u and v. Default is None, which

gives each value a weight of 1.0
Returns

sokalmichener
[double] The Sokal-Michener dissimilarity between vectors u and v.

Examples

>>> from scipy.spatial import distance
>>> distance.sokalmichener([1, 0, 0], [0, 1, 0])
0.8
>>> distance.sokalmichener([1, 0, 0], [1, 1, 0])
0.5
>>> distance.sokalmichener([1, 0, 0], [2, 0, 0])
-1.0

scipy.spatial.distance.sokalsneath

scipy.spatial.distance.sokalsneath(u, v, w=None)
Compute the Sokal-Sneath dissimilarity between two boolean 1-D arrays.
The Sokal-Sneath dissimilarity between u and v,

R

cTT +R

where cij is the number of occurrences of u[k] = i and v[k] = j for k < n and R = 2(cTF + cFT ).
Parameters

u [(N,) array_like, bool] Input array.
v [(N,) array_like, bool] Input array.
w [(N,) array_like, optional] The weights for each value in u and v. Default is None, which

gives each value a weight of 1.0
Returns

sokalsneath
[double] The Sokal-Sneath dissimilarity between vectors u and v.

Examples

>>> from scipy.spatial import distance
>>> distance.sokalsneath([1, 0, 0], [0, 1, 0])
1.0
>>> distance.sokalsneath([1, 0, 0], [1, 1, 0])
0.66666666666666663
>>> distance.sokalsneath([1, 0, 0], [2, 1, 0])
0.0
>>> distance.sokalsneath([1, 0, 0], [3, 1, 0])
-2.0
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scipy.spatial.distance.yule

scipy.spatial.distance.yule(u, v, w=None)
Compute the Yule dissimilarity between two boolean 1-D arrays.
The Yule dissimilarity is defined as

R

cTT ∗ cFF + R
2

where cij is the number of occurrences of u[k] = i and v[k] = j for k < n and R = 2.0 ∗ cTF ∗ cFT .
Parameters

u [(N,) array_like, bool] Input array.
v [(N,) array_like, bool] Input array.
w [(N,) array_like, optional] The weights for each value in u and v. Default is None, which

gives each value a weight of 1.0
Returns

yule [double] The Yule dissimilarity between vectors u and v.

Examples

>>> from scipy.spatial import distance
>>> distance.yule([1, 0, 0], [0, 1, 0])
2.0
>>> distance.yule([1, 1, 0], [0, 1, 0])
0.0

hamming also operates over discrete numerical vectors.

6.27 Special functions (scipy.special)

Nearly all of the functions below are universal functions and follow broadcasting and automatic array-looping rules. Ex-
ceptions are noted.
See also:
scipy.special.cython_special – Typed Cython versions of special functions

6.27.1 Error handling

Errors are handled by returning NaNs or other appropriate values. Some of the special function routines can emit warnings
or raise exceptions when an error occurs. By default this is disabled; to query and control the current error handling state
the following functions are provided.

geterr Get the current way of handling special-function errors.
seterr Set how special-function errors are handled.
errstate Context manager for special-function error handling.
SpecialFunctionWarning Warning that can be emitted by special functions.
SpecialFunctionError Exception that can be raised by special functions.
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scipy.special.geterr

scipy.special.geterr()
Get the current way of handling special-function errors.

Returns

err [dict] A dictionary with keys “singular”, “underflow”, “overflow”, “slow”, “loss”, “no_result”,
“domain”, “arg”, and “other”, whose values are from the strings “ignore”, “warn”, and “raise”.
The keys represent possible special-function errors, and the values define how these errors
are handled.

See also:

seterr

set how special-function errors are handled
errstate

context manager for special-function error handling
numpy.geterr

similar numpy function for floating-point errors

Notes

For complete documentation of the types of special-function errors and treatment options, see seterr.

Examples

By default all errors are ignored.

>>> import scipy.special as sc
>>> for key, value in sorted(sc.geterr().items()):
... print("{}: {}".format(key, value))
...
arg: ignore
domain: ignore
loss: ignore
no_result: ignore
other: ignore
overflow: ignore
singular: ignore
slow: ignore
underflow: ignore

scipy.special.seterr

scipy.special.seterr()
Set how special-function errors are handled.

Parameters
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all [{‘ignore’, ‘warn’ ‘raise’}, optional] Set treatment for all type of special-function errors at
once. The options are:
• ‘ignore’ Take no action when the error occurs
• ‘warn’ Print a SpecialFunctionWarning when the error occurs (via the Python
warnings module)

• ‘raise’ Raise a SpecialFunctionError when the error occurs.
The default is to not change the current behavior. If behaviors for additional categories of
special-function errors are specified, then all is applied first, followed by the additional
categories.

singular [{‘ignore’, ‘warn’, ‘raise’}, optional] Treatment for singularities.
underflow [{‘ignore’, ‘warn’, ‘raise’}, optional] Treatment for underflow.
overflow [{‘ignore’, ‘warn’, ‘raise’}, optional] Treatment for overflow.
slow [{‘ignore’, ‘warn’, ‘raise’}, optional] Treatment for slow convergence.
loss [{‘ignore’, ‘warn’, ‘raise’}, optional] Treatment for loss of accuracy.
no_result [{‘ignore’, ‘warn’, ‘raise’}, optional] Treatment for failing to find a result.
domain [{‘ignore’, ‘warn’, ‘raise’}, optional] Treatment for an invalid argument to a function.
arg [{‘ignore’, ‘warn’, ‘raise’}, optional] Treatment for an invalid parameter to a function.
other [{‘ignore’, ‘warn’, ‘raise’}, optional] Treatment for an unknown error.

Returns

olderr [dict] Dictionary containing the old settings.
See also:

geterr

get the current way of handling special-function errors
errstate

context manager for special-function error handling
numpy.seterr

similar numpy function for floating-point errors

Examples

>>> import scipy.special as sc
>>> from pytest import raises
>>> sc.gammaln(0)
inf
>>> olderr = sc.seterr(singular='raise')
>>> with raises(sc.SpecialFunctionError):
... sc.gammaln(0)
...
>>> _ = sc.seterr(**olderr)

We can also raise for every category except one.

>>> olderr = sc.seterr(all='raise', singular='ignore')
>>> sc.gammaln(0)
inf
>>> with raises(sc.SpecialFunctionError):
... sc.spence(-1)

(continues on next page)
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(continued from previous page)
...
>>> _ = sc.seterr(**olderr)

scipy.special.errstate

class scipy.special.errstate
Context manager for special-function error handling.
Using an instance of errstate as a context manager allows statements in that context to execute with a known
error handling behavior. Upon entering the context the error handling is set with seterr, and upon exiting it is
restored to what it was before.

Parameters

kwargs [{all, singular, underflow, overflow, slow, loss, no_result, domain, arg, other}] Keyword ar-
guments. The valid keywords are possible special-function errors. Each keyword should
have a string value that defines the treatement for the particular type of error. Values must
be ‘ignore’, ‘warn’, or ‘other’. See seterr for details.

See also:

geterr

get the current way of handling special-function errors
seterr

set how special-function errors are handled
numpy.errstate

similar numpy function for floating-point errors

Examples

>>> import scipy.special as sc
>>> from pytest import raises
>>> sc.gammaln(0)
inf
>>> with sc.errstate(singular='raise'):
... with raises(sc.SpecialFunctionError):
... sc.gammaln(0)
...
>>> sc.gammaln(0)
inf

We can also raise on every category except one.

>>> with sc.errstate(all='raise', singular='ignore'):
... sc.gammaln(0)
... with raises(sc.SpecialFunctionError):
... sc.spence(-1)
...
inf
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scipy.special.SpecialFunctionWarning

exception scipy.special.SpecialFunctionWarning
Warning that can be emitted by special functions.
with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

scipy.special.SpecialFunctionError

exception scipy.special.SpecialFunctionError
Exception that can be raised by special functions.
with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

6.27.2 Available functions

Airy functions

airy(z) Airy functions and their derivatives.
airye(z) Exponentially scaled Airy functions and their derivatives.
ai_zeros(nt) Compute nt zeros and values of the Airy function Ai and

its derivative.
bi_zeros(nt) Compute nt zeros and values of the Airy function Bi and

its derivative.
itairy(x) Integrals of Airy functions

scipy.special.airy
scipy.special.airy(z) = <ufunc 'airy'>

Airy functions and their derivatives.
Parameters

z [array_like] Real or complex argument.
Returns

Ai, Aip, Bi, Bip
[ndarrays] Airy functions Ai and Bi, and their derivatives Aip and Bip.

See also:

airye

exponentially scaled Airy functions.

Notes

The Airy functions Ai and Bi are two independent solutions of

y′′(x) = xy(x).
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For real z in [-10, 10], the computation is carried out by calling the Cephes [1] airy routine, which uses power
series summation for small z and rational minimax approximations for large z.
Outside this range, the AMOS [2] zairy and zbiry routines are employed. They are computed using power series
for |z| < 1 and the following relations to modified Bessel functions for larger z (where t ≡ 2z3/2/3):

Ai(z) =
1

π
√
3
K1/3(t)

Ai′(z) = − z

π
√
3
K2/3(t)

Bi(z) =

√
z

3

(
I−1/3(t) + I1/3(t)

)
Bi′(z) =

z√
3

(
I−2/3(t) + I2/3(t)

)

References

[1], [2]

Examples

Compute the Airy functions on the interval [-15, 5].

>>> from scipy import special
>>> x = np.linspace(-15, 5, 201)
>>> ai, aip, bi, bip = special.airy(x)

Plot Ai(x) and Bi(x).

>>> import matplotlib.pyplot as plt
>>> plt.plot(x, ai, 'r', label='Ai(x)')
>>> plt.plot(x, bi, 'b--', label='Bi(x)')
>>> plt.ylim(-0.5, 1.0)
>>> plt.grid()
>>> plt.legend(loc='upper left')
>>> plt.show()

scipy.special.airye
scipy.special.airye(z) = <ufunc 'airye'>

Exponentially scaled Airy functions and their derivatives.
Scaling:

eAi = Ai * exp(2.0/3.0*z*sqrt(z))
eAip = Aip * exp(2.0/3.0*z*sqrt(z))
eBi = Bi * exp(-abs(2.0/3.0*(z*sqrt(z)).real))
eBip = Bip * exp(-abs(2.0/3.0*(z*sqrt(z)).real))

Parameters

z [array_like] Real or complex argument.
Returns
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Ai(x)
Bi(x)

eAi, eAip, eBi, eBip
[array_like] Airy functions Ai and Bi, and their derivatives Aip and Bip

See also:
airy

Notes

Wrapper for the AMOS [1] routines zairy and zbiry.

References

[1]

scipy.special.ai_zeros
scipy.special.ai_zeros(nt)

Compute nt zeros and values of the Airy function Ai and its derivative.
Computes the first nt zeros, a, of the Airy function Ai(x); first nt zeros, ap, of the derivative of the Airy function
Ai’(x); the corresponding values Ai(a’); and the corresponding values Ai’(a).

Parameters

nt [int] Number of zeros to compute
Returns

a [ndarray] First nt zeros of Ai(x)
ap [ndarray] First nt zeros of Ai’(x)
ai [ndarray] Values of Ai(x) evaluated at first nt zeros of Ai’(x)
aip [ndarray] Values of Ai’(x) evaluated at first nt zeros of Ai(x)
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References

[1]

Examples

>>> from scipy import special
>>> a, ap, ai, aip = special.ai_zeros(3)
>>> a
array([-2.33810741, -4.08794944, -5.52055983])
>>> ap
array([-1.01879297, -3.24819758, -4.82009921])
>>> ai
array([ 0.53565666, -0.41901548, 0.38040647])
>>> aip
array([ 0.70121082, -0.80311137, 0.86520403])

scipy.special.bi_zeros
scipy.special.bi_zeros(nt)

Compute nt zeros and values of the Airy function Bi and its derivative.
Computes the first nt zeros, b, of the Airy function Bi(x); first nt zeros, b’, of the derivative of the Airy function
Bi’(x); the corresponding values Bi(b’); and the corresponding values Bi’(b).

Parameters

nt [int] Number of zeros to compute
Returns

b [ndarray] First nt zeros of Bi(x)
bp [ndarray] First nt zeros of Bi’(x)
bi [ndarray] Values of Bi(x) evaluated at first nt zeros of Bi’(x)
bip [ndarray] Values of Bi’(x) evaluated at first nt zeros of Bi(x)

References

[1]

Examples

>>> from scipy import special
>>> b, bp, bi, bip = special.bi_zeros(3)
>>> b
array([-1.17371322, -3.2710933 , -4.83073784])
>>> bp
array([-2.29443968, -4.07315509, -5.51239573])
>>> bi
array([-0.45494438, 0.39652284, -0.36796916])
>>> bip
array([ 0.60195789, -0.76031014, 0.83699101])
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scipy.special.itairy
scipy.special.itairy(x) = <ufunc 'itairy'>

Integrals of Airy functions
Calculates the integrals of Airy functions from 0 to x.

Parameters

x: array_like
Upper limit of integration (float).

Returns

Apt Integral of Ai(t) from 0 to x.
Bpt Integral of Bi(t) from 0 to x.
Ant Integral of Ai(-t) from 0 to x.
Bnt Integral of Bi(-t) from 0 to x.

Notes

Wrapper for a Fortran routine created by Shanjie Zhang and Jianming Jin [1].

References

[1]

Elliptic Functions and Integrals

ellipj(u, m) Jacobian elliptic functions
ellipk(m) Complete elliptic integral of the first kind.
ellipkm1(p) Complete elliptic integral of the first kind around m = 1
ellipkinc(phi, m) Incomplete elliptic integral of the first kind
ellipe(m) Complete elliptic integral of the second kind
ellipeinc(phi, m) Incomplete elliptic integral of the second kind

scipy.special.ellipj
scipy.special.ellipj(u, m) = <ufunc 'ellipj'>

Jacobian elliptic functions
Calculates the Jacobian elliptic functions of parameter m between 0 and 1, and real argument u.

Parameters

m [array_like] Parameter.
u [array_like] Argument.

Returns

sn, cn, dn, ph
[ndarrays] The returned functions:

sn(u|m), cn(u|m), dn(u|m)

The value ph is such that if u = ellipkinc(ph, m), then sn(u|m) = sin(ph) and cn(u|m) = cos(ph).
See also:
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ellipk

Complete elliptic integral of the first kind
ellipkinc

Incomplete elliptic integral of the first kind

Notes

Wrapper for the Cephes [1] routine ellpj.
These functions are periodic, with quarter-period on the real axis equal to the complete elliptic integral ellipk(m).
Relation to incomplete elliptic integral: If u = ellipkinc(phi,m), then sn(u|m) = sin(phi), and cn(u|m) = cos(phi).
The phi is called the amplitude of u.
Computation is by means of the arithmetic-geometric mean algorithm, except when m is within 1e-9 of 0 or 1. In
the latter case with m close to 1, the approximation applies only for phi < pi/2.

References

[1]

scipy.special.ellipk
scipy.special.ellipk(m)

Complete elliptic integral of the first kind.
This function is defined as

K(m) =

∫ π/2

0

[1−m sin(t)2]−1/2dt

Parameters

m [array_like] The parameter of the elliptic integral.
Returns

K [array_like] Value of the elliptic integral.
See also:

ellipkm1

Complete elliptic integral of the first kind around m = 1
ellipkinc

Incomplete elliptic integral of the first kind
ellipe

Complete elliptic integral of the second kind
ellipeinc

Incomplete elliptic integral of the second kind
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Notes

For more precision around point m = 1, use ellipkm1, which this function calls.
The parameterization in terms of m follows that of section 17.2 in [1]. Other parameterizations in terms of the
complementary parameter 1 −m, modular angle sin2(α) = m, or modulus k2 = m are also used, so be careful
that you choose the correct parameter.

References

[1]

scipy.special.ellipkm1
scipy.special.ellipkm1(p) = <ufunc 'ellipkm1'>

Complete elliptic integral of the first kind around m = 1
This function is defined as

K(p) =

∫ π/2

0

[1−m sin(t)2]−1/2dt

where m = 1 - p.
Parameters

p [array_like] Defines the parameter of the elliptic integral as m = 1 - p.
Returns

K [ndarray] Value of the elliptic integral.
See also:

ellipk

Complete elliptic integral of the first kind
ellipkinc

Incomplete elliptic integral of the first kind
ellipe

Complete elliptic integral of the second kind
ellipeinc

Incomplete elliptic integral of the second kind

Notes

Wrapper for the Cephes [1] routine ellpk.
For p <= 1, computation uses the approximation,

K(p) ≈ P (p)− log(p)Q(p),

where P andQ are tenth-order polynomials. The argument p is used internally rather thanm so that the logarithmic
singularity at m = 1 will be shifted to the origin; this preserves maximum accuracy. For p > 1, the identity

K(p) = K(1/p)/
√

(p)

is used.
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References

[1]

scipy.special.ellipkinc
scipy.special.ellipkinc(phi, m) = <ufunc 'ellipkinc'>

Incomplete elliptic integral of the first kind
This function is defined as

K(ϕ,m) =

∫ ϕ

0

[1−m sin(t)2]−1/2dt

This function is also called F(phi, m).
Parameters

phi [array_like] amplitude of the elliptic integral
m [array_like] parameter of the elliptic integral

Returns

K [ndarray] Value of the elliptic integral
See also:

ellipkm1

Complete elliptic integral of the first kind, near m = 1
ellipk

Complete elliptic integral of the first kind
ellipe

Complete elliptic integral of the second kind
ellipeinc

Incomplete elliptic integral of the second kind

Notes

Wrapper for the Cephes [1] routine ellik. The computation is carried out using the arithmetic-geometric mean
algorithm.
The parameterization in terms of m follows that of section 17.2 in [2]. Other parameterizations in terms of the
complementary parameter 1 −m, modular angle sin2(α) = m, or modulus k2 = m are also used, so be careful
that you choose the correct parameter.

References

[1], [2]
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scipy.special.ellipe
scipy.special.ellipe(m) = <ufunc 'ellipe'>

Complete elliptic integral of the second kind
This function is defined as

E(m) =

∫ π/2

0

[1−m sin(t)2]1/2dt

Parameters

m [array_like] Defines the parameter of the elliptic integral.
Returns

E [ndarray] Value of the elliptic integral.
See also:

ellipkm1

Complete elliptic integral of the first kind, near m = 1
ellipk

Complete elliptic integral of the first kind
ellipkinc

Incomplete elliptic integral of the first kind
ellipeinc

Incomplete elliptic integral of the second kind

Notes

Wrapper for the Cephes [1] routine ellpe.
For m > 0 the computation uses the approximation,

E(m) ≈ P (1−m)− (1−m) log(1−m)Q(1−m),

where P and Q are tenth-order polynomials. For m < 0, the relation

E(m) = E(m/(m− 1))
√

(1−m)

is used.
The parameterization in terms of m follows that of section 17.2 in [2]. Other parameterizations in terms of the
complementary parameter 1 −m, modular angle sin2(α) = m, or modulus k2 = m are also used, so be careful
that you choose the correct parameter.

References

[1], [2]
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Examples

This function is used in finding the circumference of an ellipse with semi-major axis a and semi-minor axis b.

>>> from scipy import special

>>> a = 3.5
>>> b = 2.1
>>> e_sq = 1.0 - b**2/a**2 # eccentricity squared

Then the circumference is found using the following:

>>> C = 4*a*special.ellipe(e_sq) # circumference formula
>>> C
17.868899204378693

When a and b are the same (meaning eccentricity is 0), this reduces to the circumference of a circle.

>>> 4*a*special.ellipe(0.0) # formula for ellipse with a = b
21.991148575128552
>>> 2*np.pi*a # formula for circle of radius a
21.991148575128552

scipy.special.ellipeinc
scipy.special.ellipeinc(phi, m) = <ufunc 'ellipeinc'>

Incomplete elliptic integral of the second kind
This function is defined as

E(ϕ,m) =

∫ ϕ

0

[1−m sin(t)2]1/2dt

Parameters

phi [array_like] amplitude of the elliptic integral.
m [array_like] parameter of the elliptic integral.

Returns

E [ndarray] Value of the elliptic integral.
See also:

ellipkm1

Complete elliptic integral of the first kind, near m = 1
ellipk

Complete elliptic integral of the first kind
ellipkinc

Incomplete elliptic integral of the first kind
ellipe

Complete elliptic integral of the second kind
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Notes

Wrapper for the Cephes [1] routine ellie.
Computation uses arithmetic-geometric means algorithm.
The parameterization in terms of m follows that of section 17.2 in [2]. Other parameterizations in terms of the
complementary parameter 1 −m, modular angle sin2(α) = m, or modulus k2 = m are also used, so be careful
that you choose the correct parameter.

References

[1], [2]

Bessel Functions

jv(v, z) Bessel function of the first kind of real order and complex
argument.

jve(v, z) Exponentially scaled Bessel function of order v.
yn(n, x) Bessel function of the second kind of integer order and

real argument.
yv(v, z) Bessel function of the second kind of real order and com-

plex argument.
yve(v, z) Exponentially scaled Bessel function of the second kind

of real order.
kn(n, x) Modified Bessel function of the second kind of integer

order n
kv(v, z) Modified Bessel function of the second kind of real order

v
kve(v, z) Exponentially scaled modified Bessel function of the sec-

ond kind.
iv(v, z) Modified Bessel function of the first kind of real order.
ive(v, z) Exponentially scaled modified Bessel function of the first

kind
hankel1(v, z) Hankel function of the first kind
hankel1e(v, z) Exponentially scaled Hankel function of the first kind
hankel2(v, z) Hankel function of the second kind
hankel2e(v, z) Exponentially scaled Hankel function of the second kind

scipy.special.jv
scipy.special.jv(v, z) = <ufunc 'jv'>

Bessel function of the first kind of real order and complex argument.
Parameters

v [array_like] Order (float).
z [array_like] Argument (float or complex).

Returns

J [ndarray] Value of the Bessel function, Jv(z).
See also:
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jve

Jv with leading exponential behavior stripped off.
spherical_jn

spherical Bessel functions.

Notes

For positive v values, the computation is carried out using the AMOS [1] zbesj routine, which exploits the connection
to the modified Bessel function Iv ,

Jv(z) = exp(vπı/2)Iv(−ız) (ℑz > 0)

Jv(z) = exp(−vπı/2)Iv(ız) (ℑz < 0)

For negative v values the formula,

J−v(z) = Jv(z) cos(πv)− Yv(z) sin(πv)

is used, where Yv(z) is the Bessel function of the second kind, computed using the AMOS routine zbesy. Note that
the second term is exactly zero for integer v; to improve accuracy the second term is explicitly omitted for v values
such that v = floor(v).
Not to be confused with the spherical Bessel functions (see spherical_jn).

References

[1]

scipy.special.jve
scipy.special.jve(v, z) = <ufunc 'jve'>

Exponentially scaled Bessel function of order v.
Defined as:

jve(v, z) = jv(v, z) * exp(-abs(z.imag))

Parameters

v [array_like] Order (float).
z [array_like] Argument (float or complex).

Returns

J [ndarray] Value of the exponentially scaled Bessel function.

Notes

For positive v values, the computation is carried out using the AMOS [1] zbesj routine, which exploits the connection
to the modified Bessel function Iv ,

Jv(z) = exp(vπı/2)Iv(−ız) (ℑz > 0)

Jv(z) = exp(−vπı/2)Iv(ız) (ℑz < 0)
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For negative v values the formula,

J−v(z) = Jv(z) cos(πv)− Yv(z) sin(πv)

is used, where Yv(z) is the Bessel function of the second kind, computed using the AMOS routine zbesy. Note that
the second term is exactly zero for integer v; to improve accuracy the second term is explicitly omitted for v values
such that v = floor(v).

References

[1]

scipy.special.yn
scipy.special.yn(n, x) = <ufunc 'yn'>

Bessel function of the second kind of integer order and real argument.
Parameters

n [array_like] Order (integer).
z [array_like] Argument (float).

Returns

Y [ndarray] Value of the Bessel function, Yn(x).
See also:

yv

For real order and real or complex argument.

Notes

Wrapper for the Cephes [1] routine yn.
The function is evaluated by forward recurrence on n, starting with values computed by the Cephes routines y0
and y1. If n = 0 or 1, the routine for y0 or y1 is called directly.

References

[1]

scipy.special.yv
scipy.special.yv(v, z) = <ufunc 'yv'>

Bessel function of the second kind of real order and complex argument.
Parameters

v [array_like] Order (float).
z [array_like] Argument (float or complex).

Returns

Y [ndarray] Value of the Bessel function of the second kind, Yv(x).
See also:

6.27. Special functions (scipy.special) 1917



SciPy Reference Guide, Release 1.3.1

yve

Yv with leading exponential behavior stripped off.

Notes

For positive v values, the computation is carried out using the AMOS [1] zbesy routine, which exploits the connec-
tion to the Hankel Bessel functions H(1)

v andH(2)
v ,

Yv(z) =
1

2ı
(H(1)

v −H(2)
v ).

For negative v values the formula,

Y−v(z) = Yv(z) cos(πv) + Jv(z) sin(πv)

is used, where Jv(z) is the Bessel function of the first kind, computed using the AMOS routine zbesj. Note that
the second term is exactly zero for integer v; to improve accuracy the second term is explicitly omitted for v values
such that v = floor(v).

References

[1]

scipy.special.yve
scipy.special.yve(v, z) = <ufunc 'yve'>

Exponentially scaled Bessel function of the second kind of real order.
Returns the exponentially scaled Bessel function of the second kind of real order v at complex z:

yve(v, z) = yv(v, z) * exp(-abs(z.imag))

Parameters

v [array_like] Order (float).
z [array_like] Argument (float or complex).

Returns

Y [ndarray] Value of the exponentially scaled Bessel function.

Notes

For positive v values, the computation is carried out using the AMOS [1] zbesy routine, which exploits the connec-
tion to the Hankel Bessel functions H(1)

v andH(2)
v ,

Yv(z) =
1

2ı
(H(1)

v −H(2)
v ).

For negative v values the formula,

Y−v(z) = Yv(z) cos(πv) + Jv(z) sin(πv)

is used, where Jv(z) is the Bessel function of the first kind, computed using the AMOS routine zbesj. Note that
the second term is exactly zero for integer v; to improve accuracy the second term is explicitly omitted for v values
such that v = floor(v).
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References

[1]

scipy.special.kn
scipy.special.kn(n, x) = <ufunc 'kn'>

Modified Bessel function of the second kind of integer order n
Returns the modified Bessel function of the second kind for integer order n at real z.
These are also sometimes called functions of the third kind, Basset functions, or Macdonald functions.

Parameters

n [array_like of int] Order of Bessel functions (floats will truncate with a warning)
z [array_like of float] Argument at which to evaluate the Bessel functions

Returns

out [ndarray] The results
See also:

kv

Same function, but accepts real order and complex argument
kvp

Derivative of this function

Notes

Wrapper for AMOS [1] routine zbesk. For a discussion of the algorithm used, see [2] and the references therein.

References

[1], [2]

Examples

Plot the function of several orders for real input:

>>> from scipy.special import kn
>>> import matplotlib.pyplot as plt
>>> x = np.linspace(0, 5, 1000)
>>> for N in range(6):
... plt.plot(x, kn(N, x), label='$K_{}(x)$'.format(N))
>>> plt.ylim(0, 10)
>>> plt.legend()
>>> plt.title(r'Modified Bessel function of the second kind $K_n(x)$')
>>> plt.show()

Calculate for a single value at multiple orders:
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Modified Bessel function of the second kind Kn(x)

K0(x)
K1(x)
K2(x)
K3(x)
K4(x)
K5(x)

>>> kn([4, 5, 6], 1)
array([ 44.23241585, 360.9605896 , 3653.83831186])

scipy.special.kv
scipy.special.kv(v, z) = <ufunc 'kv'>

Modified Bessel function of the second kind of real order v
Returns the modified Bessel function of the second kind for real order v at complex z.
These are also sometimes called functions of the third kind, Basset functions, or Macdonald functions. They are
defined as those solutions of the modified Bessel equation for which,

Kv(x) ∼
√
π/(2x) exp(−x)

as x→ ∞ [3].
Parameters

v [array_like of float] Order of Bessel functions
z [array_like of complex] Argument at which to evaluate the Bessel functions

Returns

out [ndarray] The results. Note that input must be of complex type to get complex output, e.g.
kv(3, -2+0j) instead of kv(3, -2).

See also:

kve

This function with leading exponential behavior stripped off.
kvp

Derivative of this function
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Notes

Wrapper for AMOS [1] routine zbesk. For a discussion of the algorithm used, see [2] and the references therein.

References

[1], [2], [3]

Examples

Plot the function of several orders for real input:

>>> from scipy.special import kv
>>> import matplotlib.pyplot as plt
>>> x = np.linspace(0, 5, 1000)
>>> for N in np.linspace(0, 6, 5):
... plt.plot(x, kv(N, x), label='$K_{{{}}}(x)$'.format(N))
>>> plt.ylim(0, 10)
>>> plt.legend()
>>> plt.title(r'Modified Bessel function of the second kind $K_\nu(x)$')
>>> plt.show()
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Modified Bessel function of the second kind K (x)

K0.0(x)
K1.5(x)
K3.0(x)
K4.5(x)
K6.0(x)

Calculate for a single value at multiple orders:

>>> kv([4, 4.5, 5], 1+2j)
array([ 0.1992+2.3892j, 2.3493+3.6j , 7.2827+3.8104j])

scipy.special.kve
scipy.special.kve(v, z) = <ufunc 'kve'>

Exponentially scaled modified Bessel function of the second kind.
Returns the exponentially scaled, modified Bessel function of the second kind (sometimes called the third kind) for
real order v at complex z:
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kve(v, z) = kv(v, z) * exp(z)

Parameters

v [array_like of float] Order of Bessel functions
z [array_like of complex] Argument at which to evaluate the Bessel functions

Returns

out [ndarray] The exponentially scaled modified Bessel function of the second kind.

Notes

Wrapper for AMOS [1] routine zbesk. For a discussion of the algorithm used, see [2] and the references therein.

References

[1], [2]

scipy.special.iv
scipy.special.iv(v, z) = <ufunc 'iv'>

Modified Bessel function of the first kind of real order.
Parameters

v [array_like] Order. If z is of real type and negative, v must be integer valued.
z [array_like of float or complex] Argument.

Returns

out [ndarray] Values of the modified Bessel function.
See also:

kve

This function with leading exponential behavior stripped off.

Notes

For real z and v ∈ [−50, 50], the evaluation is carried out using Temme’s method [1]. For larger orders, uniform
asymptotic expansions are applied.
For complex z and positive v, the AMOS [2] zbesi routine is called. It uses a power series for small z, the asymptotic
expansion for large abs(z), theMiller algorithm normalized by theWronskian and aNeumann series for intermediate
magnitudes, and the uniform asymptotic expansions for Iv(z) and Jv(z) for large orders. Backward recurrence is
used to generate sequences or reduce orders when necessary.
The calculations above are done in the right half plane and continued into the left half plane by the formula,

Iv(z exp(±ıπ)) = exp(±πv)Iv(z)

(valid when the real part of z is positive). For negative v, the formula

I−v(z) = Iv(z) +
2

π
sin(πv)Kv(z)

is used, whereKv(z) is the modified Bessel function of the second kind, evaluated using the AMOS routine zbesk.
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References

[1], [2]

scipy.special.ive
scipy.special.ive(v, z) = <ufunc 'ive'>

Exponentially scaled modified Bessel function of the first kind
Defined as:

ive(v, z) = iv(v, z) * exp(-abs(z.real))

Parameters

v [array_like of float] Order.
z [array_like of float or complex] Argument.

Returns

out [ndarray] Values of the exponentially scaled modified Bessel function.

Notes

For positive v, the AMOS [1] zbesi routine is called. It uses a power series for small z, the asymptotic expansion for
large abs(z), the Miller algorithm normalized by theWronskian and a Neumann series for intermediate magnitudes,
and the uniform asymptotic expansions for Iv(z) and Jv(z) for large orders. Backward recurrence is used to
generate sequences or reduce orders when necessary.
The calculations above are done in the right half plane and continued into the left half plane by the formula,

Iv(z exp(±ıπ)) = exp(±πv)Iv(z)

(valid when the real part of z is positive). For negative v, the formula

I−v(z) = Iv(z) +
2

π
sin(πv)Kv(z)

is used, whereKv(z) is the modified Bessel function of the second kind, evaluated using the AMOS routine zbesk.

References

[1]

scipy.special.hankel1
scipy.special.hankel1(v, z) = <ufunc 'hankel1'>

Hankel function of the first kind
Parameters

v [array_like] Order (float).
z [array_like] Argument (float or complex).

Returns

out [Values of the Hankel function of the first kind.]
See also:
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hankel1e

this function with leading exponential behavior stripped off.

Notes

A wrapper for the AMOS [1] routine zbesh, which carries out the computation using the relation,

H(1)
v (z) =

2

ıπ
exp(−ıπv/2)Kv(z exp(−ıπ/2))

whereKv is the modified Bessel function of the second kind. For negative orders, the relation

H
(1)
−v (z) = H(1)

v (z) exp(ıπv)

is used.

References

[1]

scipy.special.hankel1e
scipy.special.hankel1e(v, z) = <ufunc 'hankel1e'>

Exponentially scaled Hankel function of the first kind
Defined as:

hankel1e(v, z) = hankel1(v, z) * exp(-1j * z)

Parameters

v [array_like] Order (float).
z [array_like] Argument (float or complex).

Returns

out [Values of the exponentially scaled Hankel function.]

Notes

A wrapper for the AMOS [1] routine zbesh, which carries out the computation using the relation,

H(1)
v (z) =

2

ıπ
exp(−ıπv/2)Kv(z exp(−ıπ/2))

whereKv is the modified Bessel function of the second kind. For negative orders, the relation

H
(1)
−v (z) = H(1)

v (z) exp(ıπv)

is used.

References

[1]
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scipy.special.hankel2
scipy.special.hankel2(v, z) = <ufunc 'hankel2'>

Hankel function of the second kind
Parameters

v [array_like] Order (float).
z [array_like] Argument (float or complex).

Returns

out [Values of the Hankel function of the second kind.]
See also:

hankel2e

this function with leading exponential behavior stripped off.

Notes

A wrapper for the AMOS [1] routine zbesh, which carries out the computation using the relation,

H(2)
v (z) = − 2

ıπ
exp(ıπv/2)Kv(z exp(ıπ/2))

whereKv is the modified Bessel function of the second kind. For negative orders, the relation

H
(2)
−v (z) = H(2)

v (z) exp(−ıπv)

is used.

References

[1]

scipy.special.hankel2e
scipy.special.hankel2e(v, z) = <ufunc 'hankel2e'>

Exponentially scaled Hankel function of the second kind
Defined as:

hankel2e(v, z) = hankel2(v, z) * exp(1j * z)

Parameters

v [array_like] Order (float).
z [array_like] Argument (float or complex).

Returns

out [Values of the exponentially scaled Hankel function of the second kind.]
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Notes

A wrapper for the AMOS [1] routine zbesh, which carries out the computation using the relation,

H(2)
v (z) = − 2

ıπ
exp(

ıπv

2
)Kv(zexp(

ıπ

2
))

whereKv is the modified Bessel function of the second kind. For negative orders, the relation

H
(2)
−v (z) = H(2)

v (z) exp(−ıπv)

is used.

References

[1]
The following is not an universal function:

lmbda(v, x) Jahnke-Emden Lambda function, Lambdav(x).

scipy.special.lmbda
scipy.special.lmbda(v, x)

Jahnke-Emden Lambda function, Lambdav(x).
This function is defined as [2],

Λv(x) = Γ(v + 1)
Jv(x)

(x/2)v
,

where Γ is the gamma function and Jv is the Bessel function of the first kind.
Parameters

v [float] Order of the Lambda function
x [float] Value at which to evaluate the function and derivatives

Returns

vl [ndarray] Values of Lambda_vi(x), for vi=v-int(v), vi=1+v-int(v), …, vi=v.
dl [ndarray] Derivatives Lambda_vi’(x), for vi=v-int(v), vi=1+v-int(v), …, vi=v.

References

[1], [2]

Zeros of Bessel Functions
These are not universal functions:

jnjnp_zeros(nt) Compute zeros of integer-order Bessel functions Jn and
Jn’.

jnyn_zeros(n, nt) Compute nt zeros of Bessel functions Jn(x), Jn’(x), Yn(x),
and Yn’(x).

jn_zeros(n, nt) Compute zeros of integer-order Bessel function Jn(x).
Continued on next page
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Table 216 – continued from previous page
jnp_zeros(n, nt) Compute zeros of integer-order Bessel function derivative

Jn’(x).
yn_zeros(n, nt) Compute zeros of integer-order Bessel function Yn(x).
ynp_zeros(n, nt) Compute zeros of integer-order Bessel function derivative

Yn’(x).
y0_zeros(nt[, complex]) Compute nt zeros of Bessel function Y0(z), and derivative

at each zero.
y1_zeros(nt[, complex]) Compute nt zeros of Bessel function Y1(z), and derivative

at each zero.
y1p_zeros(nt[, complex]) Compute nt zeros of Bessel derivative Y1’(z), and value

at each zero.

scipy.special.jnjnp_zeros

scipy.special.jnjnp_zeros(nt)
Compute zeros of integer-order Bessel functions Jn and Jn’.
Results are arranged in order of the magnitudes of the zeros.

Parameters

nt [int] Number (<=1200) of zeros to compute
Returns

zo[l-1] [ndarray] Value of the lth zero of Jn(x) and Jn’(x). Of length nt.
n[l-1] [ndarray] Order of the Jn(x) or Jn’(x) associated with lth zero. Of length nt.
m[l-1] [ndarray] Serial number of the zeros of Jn(x) or Jn’(x) associated with lth zero. Of length nt.
t[l-1] [ndarray] 0 if lth zero in zo is zero of Jn(x), 1 if it is a zero of Jn’(x). Of length nt.

See also:
jn_zeros, jnp_zeros

References

[1]

scipy.special.jnyn_zeros

scipy.special.jnyn_zeros(n, nt)
Compute nt zeros of Bessel functions Jn(x), Jn’(x), Yn(x), and Yn’(x).
Returns 4 arrays of length nt, corresponding to the first nt zeros of Jn(x), Jn’(x), Yn(x), and Yn’(x), respectively.

Parameters

n [int] Order of the Bessel functions
nt [int] Number (<=1200) of zeros to compute
See jn_zeros, jnp_zeros, yn_zeros, ynp_zeros to get separate arrays.

References

[1]
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scipy.special.jn_zeros

scipy.special.jn_zeros(n, nt)
Compute zeros of integer-order Bessel function Jn(x).

Parameters

n [int] Order of Bessel function
nt [int] Number of zeros to return

References

[1]

scipy.special.jnp_zeros

scipy.special.jnp_zeros(n, nt)
Compute zeros of integer-order Bessel function derivative Jn’(x).

Parameters

n [int] Order of Bessel function
nt [int] Number of zeros to return

References

[1]

scipy.special.yn_zeros

scipy.special.yn_zeros(n, nt)
Compute zeros of integer-order Bessel function Yn(x).

Parameters

n [int] Order of Bessel function
nt [int] Number of zeros to return

References

[1]

scipy.special.ynp_zeros

scipy.special.ynp_zeros(n, nt)
Compute zeros of integer-order Bessel function derivative Yn’(x).

Parameters

n [int] Order of Bessel function
nt [int] Number of zeros to return
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References

[1]

scipy.special.y0_zeros

scipy.special.y0_zeros(nt, complex=False)
Compute nt zeros of Bessel function Y0(z), and derivative at each zero.
The derivatives are given by Y0’(z0) = -Y1(z0) at each zero z0.

Parameters

nt [int] Number of zeros to return
complex [bool, default False] Set to False to return only the real zeros; set to True to return only the

complex zeros with negative real part and positive imaginary part. Note that the complex
conjugates of the latter are also zeros of the function, but are not returned by this routine.

Returns

z0n [ndarray] Location of nth zero of Y0(z)
y0pz0n [ndarray] Value of derivative Y0’(z0) for nth zero

References

[1]

scipy.special.y1_zeros

scipy.special.y1_zeros(nt, complex=False)
Compute nt zeros of Bessel function Y1(z), and derivative at each zero.
The derivatives are given by Y1’(z1) = Y0(z1) at each zero z1.

Parameters

nt [int] Number of zeros to return
complex [bool, default False] Set to False to return only the real zeros; set to True to return only the

complex zeros with negative real part and positive imaginary part. Note that the complex
conjugates of the latter are also zeros of the function, but are not returned by this routine.

Returns

z1n [ndarray] Location of nth zero of Y1(z)
y1pz1n [ndarray] Value of derivative Y1’(z1) for nth zero

References

[1]
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scipy.special.y1p_zeros

scipy.special.y1p_zeros(nt, complex=False)
Compute nt zeros of Bessel derivative Y1’(z), and value at each zero.
The values are given by Y1(z1) at each z1 where Y1’(z1)=0.

Parameters

nt [int] Number of zeros to return
complex [bool, default False] Set to False to return only the real zeros; set to True to return only the

complex zeros with negative real part and positive imaginary part. Note that the complex
conjugates of the latter are also zeros of the function, but are not returned by this routine.

Returns

z1pn [ndarray] Location of nth zero of Y1’(z)
y1z1pn [ndarray] Value of derivative Y1(z1) for nth zero

References

[1]

Faster versions of common Bessel Functions

j0(x) Bessel function of the first kind of order 0.
j1(x) Bessel function of the first kind of order 1.
y0(x) Bessel function of the second kind of order 0.
y1(x) Bessel function of the second kind of order 1.
i0(x) Modified Bessel function of order 0.
i0e(x) Exponentially scaled modified Bessel function of order 0.
i1(x) Modified Bessel function of order 1.
i1e(x) Exponentially scaled modified Bessel function of order 1.
k0(x) Modified Bessel function of the second kind of order 0,

K0.
k0e(x) Exponentially scaled modified Bessel function K of order

0
k1(x) Modified Bessel function of the second kind of order 1,

K1(x).
k1e(x) Exponentially scaled modified Bessel function K of order

1

scipy.special.j0

scipy.special.j0(x) = <ufunc 'j0'>
Bessel function of the first kind of order 0.

Parameters

x [array_like] Argument (float).
Returns

J [ndarray] Value of the Bessel function of the first kind of order 0 at x.
See also:
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jv

Bessel function of real order and complex argument.
spherical_jn

spherical Bessel functions.

Notes

The domain is divided into the intervals [0, 5] and (5, infinity). In the first interval the following rational approxi-
mation is used:

J0(x) ≈ (w − r21)(w − r22)
P3(w)

Q8(w)
,

where w = x2 and r1, r2 are the zeros of J0, and P3 and Q8 are polynomials of degrees 3 and 8, respectively.
In the second interval, the Hankel asymptotic expansion is employed with two rational functions of degree 6/6 and
7/7.
This function is a wrapper for the Cephes [1] routine j0. It should not be confused with the spherical Bessel
functions (see spherical_jn).

References

[1]

scipy.special.j1

scipy.special.j1(x) = <ufunc 'j1'>
Bessel function of the first kind of order 1.

Parameters

x [array_like] Argument (float).
Returns

J [ndarray] Value of the Bessel function of the first kind of order 1 at x.
See also:
jv

spherical_jn

spherical Bessel functions.

Notes

The domain is divided into the intervals [0, 8] and (8, infinity). In the first interval a 24 term Chebyshev expansion
is used. In the second, the asymptotic trigonometric representation is employed using two rational functions of
degree 5/5.
This function is a wrapper for the Cephes [1] routine j1. It should not be confused with the spherical Bessel
functions (see spherical_jn).
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References

[1]

scipy.special.y0

scipy.special.y0(x) = <ufunc 'y0'>
Bessel function of the second kind of order 0.

Parameters

x [array_like] Argument (float).
Returns

Y [ndarray] Value of the Bessel function of the second kind of order 0 at x.
See also:
j0, yv

Notes

The domain is divided into the intervals [0, 5] and (5, infinity). In the first interval a rational approximation R(x)
is employed to compute,

Y0(x) = R(x) +
2 log(x)J0(x)

π
,

where J0 is the Bessel function of the first kind of order 0.
In the second interval, the Hankel asymptotic expansion is employed with two rational functions of degree 6/6 and
7/7.
This function is a wrapper for the Cephes [1] routine y0.

References

[1]

scipy.special.y1

scipy.special.y1(x) = <ufunc 'y1'>
Bessel function of the second kind of order 1.

Parameters

x [array_like] Argument (float).
Returns

Y [ndarray] Value of the Bessel function of the second kind of order 1 at x.
See also:
j1, yn, yv
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Notes

The domain is divided into the intervals [0, 8] and (8, infinity). In the first interval a 25 term Chebyshev expan-
sion is used, and computing J1 (the Bessel function of the first kind) is required. In the second, the asymptotic
trigonometric representation is employed using two rational functions of degree 5/5.
This function is a wrapper for the Cephes [1] routine y1.

References

[1]

scipy.special.i0

scipy.special.i0(x) = <ufunc 'i0'>
Modified Bessel function of order 0.
Defined as,

I0(x) =

∞∑
k=0

(x2/4)k

(k!)2
= J0(ıx),

where J0 is the Bessel function of the first kind of order 0.
Parameters

x [array_like] Argument (float)
Returns

I [ndarray] Value of the modified Bessel function of order 0 at x.
See also:
iv, i0e

Notes

The range is partitioned into the two intervals [0, 8] and (8, infinity). Chebyshev polynomial expansions are em-
ployed in each interval.
This function is a wrapper for the Cephes [1] routine i0.

References

[1]

scipy.special.i0e

scipy.special.i0e(x) = <ufunc 'i0e'>
Exponentially scaled modified Bessel function of order 0.
Defined as:
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i0e(x) = exp(-abs(x)) * i0(x).

Parameters

x [array_like] Argument (float)
Returns

I [ndarray] Value of the exponentially scaled modified Bessel function of order 0 at x.

See also:
iv, i0

Notes

The range is partitioned into the two intervals [0, 8] and (8, infinity). Chebyshev polynomial expansions are em-
ployed in each interval. The polynomial expansions used are the same as those in i0, but they are not multiplied
by the dominant exponential factor.
This function is a wrapper for the Cephes [1] routine i0e.

References

[1]

scipy.special.i1

scipy.special.i1(x) = <ufunc 'i1'>
Modified Bessel function of order 1.
Defined as,

I1(x) =
1

2
x

∞∑
k=0

(x2/4)k

k!(k + 1)!
= −ıJ1(ıx),

where J1 is the Bessel function of the first kind of order 1.
Parameters

x [array_like] Argument (float)
Returns

I [ndarray] Value of the modified Bessel function of order 1 at x.
See also:
iv, i1e

Notes

The range is partitioned into the two intervals [0, 8] and (8, infinity). Chebyshev polynomial expansions are em-
ployed in each interval.
This function is a wrapper for the Cephes [1] routine i1.
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References

[1]

scipy.special.i1e

scipy.special.i1e(x) = <ufunc 'i1e'>
Exponentially scaled modified Bessel function of order 1.
Defined as:

i1e(x) = exp(-abs(x)) * i1(x)

Parameters

x [array_like] Argument (float)
Returns

I [ndarray] Value of the exponentially scaled modified Bessel function of order 1 at x.

See also:
iv, i1

Notes

The range is partitioned into the two intervals [0, 8] and (8, infinity). Chebyshev polynomial expansions are em-
ployed in each interval. The polynomial expansions used are the same as those in i1, but they are not multiplied
by the dominant exponential factor.
This function is a wrapper for the Cephes [1] routine i1e.

References

[1]

scipy.special.k0

scipy.special.k0(x) = <ufunc 'k0'>
Modified Bessel function of the second kind of order 0,K0.
This function is also sometimes referred to as the modified Bessel function of the third kind of order 0.

Parameters

x [array_like] Argument (float).
Returns

K [ndarray] Value of the modified Bessel functionK0 at x.
See also:
kv, k0e
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Notes

The range is partitioned into the two intervals [0, 2] and (2, infinity). Chebyshev polynomial expansions are em-
ployed in each interval.
This function is a wrapper for the Cephes [1] routine k0.

References

[1]

scipy.special.k0e

scipy.special.k0e(x) = <ufunc 'k0e'>
Exponentially scaled modified Bessel function K of order 0
Defined as:

k0e(x) = exp(x) * k0(x).

Parameters

x [array_like] Argument (float)
Returns

K [ndarray] Value of the exponentially scaled modified Bessel function K of order 0 at x.

See also:
kv, k0

Notes

The range is partitioned into the two intervals [0, 2] and (2, infinity). Chebyshev polynomial expansions are em-
ployed in each interval.
This function is a wrapper for the Cephes [1] routine k0e.

References

[1]

scipy.special.k1

scipy.special.k1(x) = <ufunc 'k1'>
Modified Bessel function of the second kind of order 1,K1(x).

Parameters

x [array_like] Argument (float)
Returns

K [ndarray] Value of the modified Bessel function K of order 1 at x.
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See also:
kv, k1e

Notes

The range is partitioned into the two intervals [0, 2] and (2, infinity). Chebyshev polynomial expansions are em-
ployed in each interval.
This function is a wrapper for the Cephes [1] routine k1.

References

[1]

scipy.special.k1e

scipy.special.k1e(x) = <ufunc 'k1e'>
Exponentially scaled modified Bessel function K of order 1
Defined as:

k1e(x) = exp(x) * k1(x)

Parameters

x [array_like] Argument (float)
Returns

K [ndarray] Value of the exponentially scaled modified Bessel function K of order 1 at x.

See also:
kv, k1

Notes

The range is partitioned into the two intervals [0, 2] and (2, infinity). Chebyshev polynomial expansions are em-
ployed in each interval.
This function is a wrapper for the Cephes [1] routine k1e.

References

[1]
Continued on next page
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Table 218 – continued from previous page

Integrals of Bessel Functions

itj0y0(x) Integrals of Bessel functions of order 0
it2j0y0(x) Integrals related to Bessel functions of order 0
iti0k0(x) Integrals of modified Bessel functions of order 0
it2i0k0(x) Integrals related to modified Bessel functions of order 0
besselpoly(a, lmb, nu) Weighted integral of a Bessel function.

scipy.special.itj0y0

scipy.special.itj0y0(x) = <ufunc 'itj0y0'>
Integrals of Bessel functions of order 0
Returns simple integrals from 0 to x of the zeroth order Bessel functions j0 and y0.

Returns

ij0, iy0

scipy.special.it2j0y0

scipy.special.it2j0y0(x) = <ufunc 'it2j0y0'>
Integrals related to Bessel functions of order 0

Returns

ij0 integral((1-j0(t))/t, t=0..x)
iy0 integral(y0(t)/t, t=x..inf)

scipy.special.iti0k0

scipy.special.iti0k0(x) = <ufunc 'iti0k0'>
Integrals of modified Bessel functions of order 0
Returns simple integrals from 0 to x of the zeroth order modified Bessel functions i0 and k0.

Returns

ii0, ik0

scipy.special.it2i0k0

scipy.special.it2i0k0(x) = <ufunc 'it2i0k0'>
Integrals related to modified Bessel functions of order 0

Returns

ii0 integral((i0(t)-1)/t, t=0..x)
ik0 integral(k0(t)/t, t=x..inf)
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scipy.special.besselpoly

scipy.special.besselpoly(a, lmb, nu) = <ufunc 'besselpoly'>
Weighted integral of a Bessel function. ∫ 1

0

xλJν(2ax) dx

where Jν is a Bessel function and λ = lmb, ν = nu.

Derivatives of Bessel Functions

jvp(v, z[, n]) Compute nth derivative of Bessel function Jv(z) with re-
spect to z.

yvp(v, z[, n]) Compute nth derivative of Bessel function Yv(z) with re-
spect to z.

kvp(v, z[, n]) Compute nth derivative of real-order modified Bessel
function Kv(z)

ivp(v, z[, n]) Compute nth derivative of modified Bessel function Iv(z)
with respect to z.

h1vp(v, z[, n]) Compute nth derivative of Hankel function H1v(z) with
respect to z.

h2vp(v, z[, n]) Compute nth derivative of Hankel function H2v(z) with
respect to z.

scipy.special.jvp

scipy.special.jvp(v, z, n=1)
Compute nth derivative of Bessel function Jv(z) with respect to z.

Parameters

v [float] Order of Bessel function
z [complex] Argument at which to evaluate the derivative
n [int, default 1] Order of derivative

Notes

The derivative is computed using the relation DLFM 10.6.7 [2].

References

[1], [2]

scipy.special.yvp

scipy.special.yvp(v, z, n=1)
Compute nth derivative of Bessel function Yv(z) with respect to z.

Parameters

v [float] Order of Bessel function
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z [complex] Argument at which to evaluate the derivative
n [int, default 1] Order of derivative

Notes

The derivative is computed using the relation DLFM 10.6.7 [2].

References

[1], [2]

scipy.special.kvp

scipy.special.kvp(v, z, n=1)
Compute nth derivative of real-order modified Bessel function Kv(z)
Kv(z) is the modified Bessel function of the second kind. Derivative is calculated with respect to z.

Parameters

v [array_like of float] Order of Bessel function
z [array_like of complex] Argument at which to evaluate the derivative
n [int] Order of derivative. Default is first derivative.

Returns

out [ndarray] The results

Notes

The derivative is computed using the relation DLFM 10.29.5 [2].

References

[1], [2]

Examples

Calculate multiple values at order 5:

>>> from scipy.special import kvp
>>> kvp(5, (1, 2, 3+5j))
array([-1.84903536e+03+0.j , -2.57735387e+01+0.j ,

-3.06627741e-02+0.08750845j])

Calculate for a single value at multiple orders:

>>> kvp((4, 4.5, 5), 1)
array([ -184.0309, -568.9585, -1849.0354])
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scipy.special.ivp

scipy.special.ivp(v, z, n=1)
Compute nth derivative of modified Bessel function Iv(z) with respect to z.

Parameters

v [array_like of float] Order of Bessel function
z [array_like of complex] Argument at which to evaluate the derivative
n [int, default 1] Order of derivative

Notes

The derivative is computed using the relation DLFM 10.29.5 [2].

References

[1], [2]

scipy.special.h1vp

scipy.special.h1vp(v, z, n=1)
Compute nth derivative of Hankel function H1v(z) with respect to z.

Parameters

v [float] Order of Hankel function
z [complex] Argument at which to evaluate the derivative
n [int, default 1] Order of derivative

Notes

The derivative is computed using the relation DLFM 10.6.7 [2].

References

[1], [2]

scipy.special.h2vp

scipy.special.h2vp(v, z, n=1)
Compute nth derivative of Hankel function H2v(z) with respect to z.

Parameters

v [float] Order of Hankel function
z [complex] Argument at which to evaluate the derivative
n [int, default 1] Order of derivative
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Notes

The derivative is computed using the relation DLFM 10.6.7 [2].

References

[1], [2]

Spherical Bessel Functions

spherical_jn(n, z[, derivative]) Spherical Bessel function of the first kind or its derivative.
spherical_yn(n, z[, derivative]) Spherical Bessel function of the second kind or its deriva-

tive.
spherical_in(n, z[, derivative]) Modified spherical Bessel function of the first kind or its

derivative.
spherical_kn(n, z[, derivative]) Modified spherical Bessel function of the second kind or

its derivative.

scipy.special.spherical_jn

scipy.special.spherical_jn(n, z, derivative=False)
Spherical Bessel function of the first kind or its derivative.
Defined as [1],

jn(z) =

√
π

2z
Jn+1/2(z),

where Jn is the Bessel function of the first kind.
Parameters

n [int, array_like] Order of the Bessel function (n >= 0).
z [complex or float, array_like] Argument of the Bessel function.
derivative [bool, optional] If True, the value of the derivative (rather than the function itself) is returned.

Returns

jn [ndarray]

Notes

For real arguments greater than the order, the function is computed using the ascending recurrence [2]. For small
real or complex arguments, the definitional relation to the cylindrical Bessel function of the first kind is used.
The derivative is computed using the relations [3],

j′n(z) = jn−1(z)−
n+ 1

z
jn(z).

j′0(z) = −j1(z)

New in version 0.18.0.

References

[1], [2], [3]
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scipy.special.spherical_yn

scipy.special.spherical_yn(n, z, derivative=False)
Spherical Bessel function of the second kind or its derivative.
Defined as [1],

yn(z) =

√
π

2z
Yn+1/2(z),

where Yn is the Bessel function of the second kind.
Parameters

n [int, array_like] Order of the Bessel function (n >= 0).
z [complex or float, array_like] Argument of the Bessel function.
derivative [bool, optional] If True, the value of the derivative (rather than the function itself) is returned.

Returns

yn [ndarray]

Notes

For real arguments, the function is computed using the ascending recurrence [2]. For complex arguments, the
definitional relation to the cylindrical Bessel function of the second kind is used.
The derivative is computed using the relations [3],

y′n = yn−1 −
n+ 1

z
yn.

y′0 = −y1
New in version 0.18.0.

References

[1], [2], [3]

scipy.special.spherical_in

scipy.special.spherical_in(n, z, derivative=False)
Modified spherical Bessel function of the first kind or its derivative.
Defined as [1],

in(z) =

√
π

2z
In+1/2(z),

where In is the modified Bessel function of the first kind.
Parameters

n [int, array_like] Order of the Bessel function (n >= 0).
z [complex or float, array_like] Argument of the Bessel function.
derivative [bool, optional] If True, the value of the derivative (rather than the function itself) is returned.

Returns

in [ndarray]
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Notes

The function is computed using its definitional relation to the modified cylindrical Bessel function of the first kind.
The derivative is computed using the relations [2],

i′n = in−1 −
n+ 1

z
in.

i′1 = i0

New in version 0.18.0.

References

[1], [2]

scipy.special.spherical_kn

scipy.special.spherical_kn(n, z, derivative=False)
Modified spherical Bessel function of the second kind or its derivative.
Defined as [1],

kn(z) =

√
π

2z
Kn+1/2(z),

whereKn is the modified Bessel function of the second kind.
Parameters

n [int, array_like] Order of the Bessel function (n >= 0).
z [complex or float, array_like] Argument of the Bessel function.
derivative [bool, optional] If True, the value of the derivative (rather than the function itself) is returned.

Returns

kn [ndarray]

Notes

The function is computed using its definitional relation to the modified cylindrical Bessel function of the second
kind.
The derivative is computed using the relations [2],

k′n = −kn−1 −
n+ 1

z
kn.

k′0 = −k1

New in version 0.18.0.

References

[1], [2]
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Riccati-Bessel Functions
These are not universal functions:

riccati_jn(n, x) Compute Ricatti-Bessel function of the first kind and its
derivative.

riccati_yn(n, x) Compute Ricatti-Bessel function of the second kind and
its derivative.

scipy.special.riccati_jn

scipy.special.riccati_jn(n, x)
Compute Ricatti-Bessel function of the first kind and its derivative.
The Ricatti-Bessel function of the first kind is defined as xjn(x), where jn is the spherical Bessel function of the
first kind of order n.
This function computes the value and first derivative of the Ricatti-Bessel function for all orders up to and including
n.

Parameters

n [int] Maximum order of function to compute
x [float] Argument at which to evaluate

Returns

jn [ndarray] Value of j0(x), …, jn(x)
jnp [ndarray] First derivative j0’(x), …, jn’(x)

Notes

The computation is carried out via backward recurrence, using the relation DLMF 10.51.1 [2].
Wrapper for a Fortran routine created by Shanjie Zhang and Jianming Jin [1].

References

[1], [2]

scipy.special.riccati_yn

scipy.special.riccati_yn(n, x)
Compute Ricatti-Bessel function of the second kind and its derivative.
The Ricatti-Bessel function of the second kind is defined as xyn(x), where yn is the spherical Bessel function of
the second kind of order n.
This function computes the value and first derivative of the function for all orders up to and including n.

Parameters

n [int] Maximum order of function to compute
x [float] Argument at which to evaluate

Returns
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yn [ndarray] Value of y0(x), …, yn(x)
ynp [ndarray] First derivative y0’(x), …, yn’(x)

Notes

The computation is carried out via ascending recurrence, using the relation DLMF 10.51.1 [2].
Wrapper for a Fortran routine created by Shanjie Zhang and Jianming Jin [1].

References

[1], [2]

Struve Functions

struve(v, x) Struve function.
modstruve(v, x) Modified Struve function.
itstruve0(x) Integral of the Struve function of order 0.
it2struve0(x) Integral related to the Struve function of order 0.
itmodstruve0(x) Integral of the modified Struve function of order 0.

scipy.special.struve
scipy.special.struve(v, x) = <ufunc 'struve'>

Struve function.
Return the value of the Struve function of order v at x. The Struve function is defined as,

Hv(x) = (z/2)v+1
∞∑

n=0

(−1)n(z/2)2n

Γ(n+ 3
2 )Γ(n+ v + 3

2 )
,

where Γ is the gamma function.
Parameters

v [array_like] Order of the Struve function (float).
x [array_like] Argument of the Struve function (float; must be positive unless v is an integer).

Returns

H [ndarray] Value of the Struve function of order v at x.
See also:
modstruve

Notes

Three methods discussed in [1] are used to evaluate the Struve function:
• power series
• expansion in Bessel functions (if |z| < |v|+ 20)
• asymptotic large-z expansion (if z ≥ 0.7v + 12)
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Rounding errors are estimated based on the largest terms in the sums, and the result associated with the smallest
error is returned.

References

[1]

scipy.special.modstruve
scipy.special.modstruve(v, x) = <ufunc 'modstruve'>

Modified Struve function.
Return the value of the modified Struve function of order v at x. The modified Struve function is defined as,

Lv(x) = −ı exp(−πıv/2)Hv(x),

where Hv is the Struve function.
Parameters

v [array_like] Order of the modified Struve function (float).
x [array_like] Argument of the Struve function (float; must be positive unless v is an integer).

Returns

L [ndarray] Value of the modified Struve function of order v at x.
See also:
struve

Notes

Three methods discussed in [1] are used to evaluate the function:
• power series
• expansion in Bessel functions (if |z| < |v|+ 20)
• asymptotic large-z expansion (if z ≥ 0.7v + 12)

Rounding errors are estimated based on the largest terms in the sums, and the result associated with the smallest
error is returned.

References

[1]

scipy.special.itstruve0
scipy.special.itstruve0(x) = <ufunc 'itstruve0'>

Integral of the Struve function of order 0.

I =

∫ x

0

H0(t) dt

Parameters

x [array_like] Upper limit of integration (float).
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Returns

I [ndarray] The integral of H0 from 0 to x.
See also:
struve

Notes

Wrapper for a Fortran routine created by Shanjie Zhang and Jianming Jin [1].

References

[1]

scipy.special.it2struve0
scipy.special.it2struve0(x) = <ufunc 'it2struve0'>

Integral related to the Struve function of order 0.
Returns the integral, ∫ ∞

x

H0(t)

t
dt

where H0 is the Struve function of order 0.
Parameters

x [array_like] Lower limit of integration.
Returns

I [ndarray] The value of the integral.
See also:
struve

Notes

Wrapper for a Fortran routine created by Shanjie Zhang and Jianming Jin [1].

References

[1]

scipy.special.itmodstruve0
scipy.special.itmodstruve0(x) = <ufunc 'itmodstruve0'>

Integral of the modified Struve function of order 0.

I =

∫ x

0

L0(t) dt

Parameters

x [array_like] Upper limit of integration (float).

1948 Chapter 6. API Reference



SciPy Reference Guide, Release 1.3.1

Returns

I [ndarray] The integral of L0 from 0 to x.

Notes

Wrapper for a Fortran routine created by Shanjie Zhang and Jianming Jin [1].

References

[1]

Raw Statistical Functions

See also:
scipy.stats: Friendly versions of these functions.

bdtr(k, n, p) Binomial distribution cumulative distribution function.
bdtrc(k, n, p) Binomial distribution survival function.
bdtri(k, n, y) Inverse function to bdtr with respect to p.
bdtrik(y, n, p) Inverse function to bdtr with respect to k.
bdtrin(k, y, p) Inverse function to bdtr with respect to n.
btdtr(a, b, x) Cumulative distribution function of the beta distribution.
btdtri(a, b, p) The p-th quantile of the beta distribution.
btdtria(p, b, x) Inverse of btdtr with respect to a.
btdtrib(a, p, x) Inverse of btdtr with respect to b.
fdtr(dfn, dfd, x) F cumulative distribution function.
fdtrc(dfn, dfd, x) F survival function.
fdtri(dfn, dfd, p) The p-th quantile of the F-distribution.
fdtridfd(dfn, p, x) Inverse to fdtr vs dfd
gdtr(a, b, x) Gamma distribution cumulative distribution function.
gdtrc(a, b, x) Gamma distribution survival function.
gdtria(p, b, x[, out]) Inverse of gdtr vs a.
gdtrib(a, p, x[, out]) Inverse of gdtr vs b.
gdtrix(a, b, p[, out]) Inverse of gdtr vs x.
nbdtr(k, n, p) Negative binomial cumulative distribution function.
nbdtrc(k, n, p) Negative binomial survival function.
nbdtri(k, n, y) Inverse of nbdtr vs p.
nbdtrik(y, n, p) Inverse of nbdtr vs k.
nbdtrin(k, y, p) Inverse of nbdtr vs n.
ncfdtr(dfn, dfd, nc, f) Cumulative distribution function of the non-central F dis-

tribution.
ncfdtridfd(dfn, p, nc, f) Calculate degrees of freedom (denominator) for the non-

central F-distribution.
ncfdtridfn(p, dfd, nc, f) Calculate degrees of freedom (numerator) for the noncen-

tral F-distribution.
ncfdtri(dfn, dfd, nc, p) Inverse with respect to f of the CDF of the non-central F

distribution.
Continued on next page
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Table 223 – continued from previous page
ncfdtrinc(dfn, dfd, p, f) Calculate non-centrality parameter for non-central F dis-

tribution.
nctdtr(df, nc, t) Cumulative distribution function of the non-central t dis-

tribution.
nctdtridf(p, nc, t) Calculate degrees of freedom for non-central t distribu-

tion.
nctdtrit(df, nc, p) Inverse cumulative distribution function of the non-

central t distribution.
nctdtrinc(df, p, t) Calculate non-centrality parameter for non-central t dis-

tribution.
nrdtrimn(p, x, std) Calculate mean of normal distribution given other

params.
nrdtrisd(p, x, mn) Calculate standard deviation of normal distribution given

other params.
pdtr(k, m) Poisson cumulative distribution function
pdtrc(k, m) Poisson survival function
pdtri(k, y) Inverse to pdtr vs m
pdtrik(p, m) Inverse to pdtr vs k
stdtr(df, t) Student t distribution cumulative distribution function
stdtridf(p, t) Inverse of stdtr vs df
stdtrit(df, p) Inverse of stdtr vs t
chdtr(v, x) Chi square cumulative distribution function
chdtrc(v, x) Chi square survival function
chdtri(v, p) Inverse to chdtrc
chdtriv(p, x) Inverse to chdtr vs v
ndtr(x) Gaussian cumulative distribution function.
log_ndtr(x) Logarithm of Gaussian cumulative distribution function.
ndtri(y) Inverse of ndtr vs x
chndtr(x, df, nc) Non-central chi square cumulative distribution function
chndtridf(x, p, nc) Inverse to chndtr vs df
chndtrinc(x, df, p) Inverse to chndtr vs nc
chndtrix(p, df, nc) Inverse to chndtr vs x
smirnov(n, d) Kolmogorov-Smirnov complementary cumulative distri-

bution function
smirnovi(n, p) Inverse to smirnov
kolmogorov(y) Complementary cumulative distribution (Survival Func-

tion) function of Kolmogorov distribution.
kolmogi(p) Inverse Survival Function of Kolmogorov distribution
tklmbda(x, lmbda) Tukey-Lambda cumulative distribution function
logit(x) Logit ufunc for ndarrays.
expit(x) Expit (a.k.a.
boxcox(x, lmbda) Compute the Box-Cox transformation.
boxcox1p(x, lmbda) Compute the Box-Cox transformation of 1 + x.
inv_boxcox(y, lmbda) Compute the inverse of the Box-Cox transformation.
inv_boxcox1p(y, lmbda) Compute the inverse of the Box-Cox transformation.
owens_t(h, a) Owen’s T Function.

scipy.special.bdtr
scipy.special.bdtr(k, n, p) = <ufunc 'bdtr'>

Binomial distribution cumulative distribution function.
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Sum of the terms 0 through k of the Binomial probability density.

bdtr(k, n, p) =

k∑
j=0

(
n

j

)
pj(1− p)n−j

Parameters

k [array_like] Number of successes (int).
n [array_like] Number of events (int).
p [array_like] Probability of success in a single event (float).

Returns

y [ndarray] Probability of k or fewer successes in n independent events with success probabil-
ities of p.

Notes

The terms are not summed directly; instead the regularized incomplete beta function is employed, according to the
formula,

bdtr(k, n, p) = I1−p(n− k, k + 1).

Wrapper for the Cephes [1] routine bdtr.

References

[1]

scipy.special.bdtrc
scipy.special.bdtrc(k, n, p) = <ufunc 'bdtrc'>

Binomial distribution survival function.
Sum of the terms k + 1 through n of the binomial probability density,

bdtrc(k, n, p) =

n∑
j=k+1

(
n

j

)
pj(1− p)n−j

Parameters

k [array_like] Number of successes (int).
n [array_like] Number of events (int)
p [array_like] Probability of success in a single event.

Returns

y [ndarray] Probability of k + 1 or more successes in n independent events with success prob-
abilities of p.

See also:
bdtr, betainc
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Notes

The terms are not summed directly; instead the regularized incomplete beta function is employed, according to the
formula,

bdtrc(k, n, p) = Ip(k + 1, n− k).

Wrapper for the Cephes [1] routine bdtrc.

References

[1]

scipy.special.bdtri
scipy.special.bdtri(k, n, y) = <ufunc 'bdtri'>

Inverse function to bdtr with respect to p.
Finds the event probability p such that the sum of the terms 0 through k of the binomial probability density is equal
to the given cumulative probability y.

Parameters

k [array_like] Number of successes (float).
n [array_like] Number of events (float)
y [array_like] Cumulative probability (probability of k or fewer successes in n events).

Returns

p [ndarray] The event probability such that bdtr(k, n, p) = y.
See also:
bdtr, betaincinv

Notes

The computation is carried out using the inverse beta integral function and the relation,:

1 - p = betaincinv(n - k, k + 1, y).

Wrapper for the Cephes [1] routine bdtri.

References

[1]

scipy.special.bdtrik
scipy.special.bdtrik(y, n, p) = <ufunc 'bdtrik'>

Inverse function to bdtr with respect to k.
Finds the number of successes k such that the sum of the terms 0 through k of the Binomial probability density for
n events with probability p is equal to the given cumulative probability y.

Parameters

y [array_like] Cumulative probability (probability of k or fewer successes in n events).
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n [array_like] Number of events (float).
p [array_like] Success probability (float).

Returns

k [ndarray] The number of successes k such that bdtr(k, n, p) = y.
See also:
bdtr

Notes

Formula 26.5.24 of [1] is used to reduce the binomial distribution to the cumulative incomplete beta distribution.
Computation of k involves a search for a value that produces the desired value of y. The search relies on the
monotonicity of y with k.
Wrapper for the CDFLIB [2] Fortran routine cdfbin.

References

[1], [2]

scipy.special.bdtrin
scipy.special.bdtrin(k, y, p) = <ufunc 'bdtrin'>

Inverse function to bdtr with respect to n.
Finds the number of events n such that the sum of the terms 0 through k of the Binomial probability density for
events with probability p is equal to the given cumulative probability y.

Parameters

k [array_like] Number of successes (float).
y [array_like] Cumulative probability (probability of k or fewer successes in n events).
p [array_like] Success probability (float).

Returns

n [ndarray] The number of events n such that bdtr(k, n, p) = y.
See also:
bdtr

Notes

Formula 26.5.24 of [1] is used to reduce the binomial distribution to the cumulative incomplete beta distribution.
Computation of n involves a search for a value that produces the desired value of y. The search relies on the
monotonicity of y with n.
Wrapper for the CDFLIB [2] Fortran routine cdfbin.

References

[1], [2]

6.27. Special functions (scipy.special) 1953



SciPy Reference Guide, Release 1.3.1

scipy.special.btdtr
scipy.special.btdtr(a, b, x) = <ufunc 'btdtr'>

Cumulative distribution function of the beta distribution.
Returns the integral from zero to x of the beta probability density function,

I =

∫ x

0

Γ(a+ b)

Γ(a)Γ(b)
ta−1(1− t)b−1 dt

where Γ is the gamma function.
Parameters

a [array_like] Shape parameter (a > 0).
b [array_like] Shape parameter (b > 0).
x [array_like] Upper limit of integration, in [0, 1].

Returns

I [ndarray] Cumulative distribution function of the beta distribution with parameters a and b
at x.

See also:
betainc

Notes

This function is identical to the incomplete beta integral function betainc.
Wrapper for the Cephes [1] routine btdtr.

References

[1]

scipy.special.btdtri
scipy.special.btdtri(a, b, p) = <ufunc 'btdtri'>

The p-th quantile of the beta distribution.
This function is the inverse of the beta cumulative distribution function, btdtr, returning the value of x for which
btdtr(a, b, x) = p, or

p =

∫ x

0

Γ(a+ b)

Γ(a)Γ(b)
ta−1(1− t)b−1 dt

Parameters

a [array_like] Shape parameter (a > 0).
b [array_like] Shape parameter (b > 0).
p [array_like] Cumulative probability, in [0, 1].

Returns

x [ndarray] The quantile corresponding to p.
See also:
betaincinv, btdtr
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Notes

The value of x is found by interval halving or Newton iterations.
Wrapper for the Cephes [1] routine incbi, which solves the equivalent problem of finding the inverse of the incom-
plete beta integral.

References

[1]

scipy.special.btdtria
scipy.special.btdtria(p, b, x) = <ufunc 'btdtria'>

Inverse of btdtr with respect to a.
This is the inverse of the beta cumulative distribution function, btdtr, considered as a function of a, returning
the value of a for which btdtr(a, b, x) = p, or

p =

∫ x

0

Γ(a+ b)

Γ(a)Γ(b)
ta−1(1− t)b−1 dt

Parameters

p [array_like] Cumulative probability, in [0, 1].
b [array_like] Shape parameter (b > 0).
x [array_like] The quantile, in [0, 1].

Returns

a [ndarray] The value of the shape parameter a such that btdtr(a, b, x) = p.
See also:

btdtr

Cumulative distribution function of the beta distribution.
btdtri

Inverse with respect to x.
btdtrib

Inverse with respect to b.

Notes

Wrapper for the CDFLIB [1] Fortran routine cdfbet.
The cumulative distribution function p is computed using a routine by DiDinato and Morris [2]. Computation of a
involves a search for a value that produces the desired value of p. The search relies on the monotonicity of p with
a.

References

[1], [2]
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scipy.special.btdtrib
scipy.special.btdtrib(a, p, x) = <ufunc 'btdtrib'>

Inverse of btdtr with respect to b.
This is the inverse of the beta cumulative distribution function, btdtr, considered as a function of b, returning
the value of b for which btdtr(a, b, x) = p, or

p =

∫ x

0

Γ(a+ b)

Γ(a)Γ(b)
ta−1(1− t)b−1 dt

Parameters

a [array_like] Shape parameter (a > 0).
p [array_like] Cumulative probability, in [0, 1].
x [array_like] The quantile, in [0, 1].

Returns

b [ndarray] The value of the shape parameter b such that btdtr(a, b, x) = p.
See also:

btdtr

Cumulative distribution function of the beta distribution.
btdtri

Inverse with respect to x.
btdtria

Inverse with respect to a.

Notes

Wrapper for the CDFLIB [1] Fortran routine cdfbet.
The cumulative distribution function p is computed using a routine by DiDinato and Morris [2]. Computation of b
involves a search for a value that produces the desired value of p. The search relies on the monotonicity of p with
b.

References

[1], [2]

scipy.special.fdtr
scipy.special.fdtr(dfn, dfd, x) = <ufunc 'fdtr'>

F cumulative distribution function.
Returns the value of the cumulative distribution function of the F-distribution, also known as Snedecor’s F-
distribution or the Fisher-Snedecor distribution.
The F-distribution with parameters dn and dd is the distribution of the random variable,

X =
Un/dn
Ud/dd

,

where Un and Ud are random variables distributed χ2, with dn and dd degrees of freedom, respectively.
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Parameters

dfn [array_like] First parameter (positive float).
dfd [array_like] Second parameter (positive float).
x [array_like] Argument (nonnegative float).

Returns

y [ndarray] The CDF of the F-distribution with parameters dfn and dfd at x.

Notes

The regularized incomplete beta function is used, according to the formula,

F (dn, dd;x) = Ixdn/(dd+xdn)(dn/2, dd/2).

Wrapper for the Cephes [1] routine fdtr.

References

[1]

scipy.special.fdtrc
scipy.special.fdtrc(dfn, dfd, x) = <ufunc 'fdtrc'>

F survival function.
Returns the complemented F-distribution function (the integral of the density from x to infinity).

Parameters

dfn [array_like] First parameter (positive float).
dfd [array_like] Second parameter (positive float).
x [array_like] Argument (nonnegative float).

Returns

y [ndarray] The complemented F-distribution function with parameters dfn and dfd at x.
See also:
fdtr

Notes

The regularized incomplete beta function is used, according to the formula,

F (dn, dd;x) = Idd/(dd+xdn)(dd/2, dn/2).

Wrapper for the Cephes [1] routine fdtrc.

References

[1]
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scipy.special.fdtri
scipy.special.fdtri(dfn, dfd, p) = <ufunc 'fdtri'>

The p-th quantile of the F-distribution.
This function is the inverse of the F-distribution CDF, fdtr, returning the x such that fdtr(dfn, dfd, x) = p.

Parameters

dfn [array_like] First parameter (positive float).
dfd [array_like] Second parameter (positive float).
p [array_like] Cumulative probability, in [0, 1].

Returns

x [ndarray] The quantile corresponding to p.

Notes

The computation is carried out using the relation to the inverse regularized beta function, I−1
x (a, b). Let z =

I−1
p (dd/2, dn/2). Then,

x =
dd(1− z)

dnz
.

If p is such that x < 0.5, the following relation is used instead for improved stability: let z′ = I−1
1−p(dn/2, dd/2).

Then,

x =
ddz

′

dn(1− z′)
.

Wrapper for the Cephes [1] routine fdtri.

References

[1]

scipy.special.fdtridfd
scipy.special.fdtridfd(dfn, p, x) = <ufunc 'fdtridfd'>

Inverse to fdtr vs dfd
Finds the F density argument dfd such that fdtr(dfn, dfd, x) == p.

scipy.special.gdtr
scipy.special.gdtr(a, b, x) = <ufunc 'gdtr'>

Gamma distribution cumulative distribution function.
Returns the integral from zero to x of the gamma probability density function,

F =

∫ x

0

ab

Γ(b)
tb−1e−at dt,

where Γ is the gamma function.
Parameters

a [array_like] The rate parameter of the gamma distribution, sometimes denoted β (float). It
is also the reciprocal of the scale parameter θ.
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b [array_like] The shape parameter of the gamma distribution, sometimes denoted α (float).
x [array_like] The quantile (upper limit of integration; float).

Returns

F [ndarray] The CDF of the gamma distribution with parameters a and b evaluated at x.
See also:

gdtrc

1 - CDF of the gamma distribution.

Notes

The evaluation is carried out using the relation to the incomplete gamma integral (regularized gamma function).
Wrapper for the Cephes [1] routine gdtr.

References

[1]

scipy.special.gdtrc
scipy.special.gdtrc(a, b, x) = <ufunc 'gdtrc'>

Gamma distribution survival function.
Integral from x to infinity of the gamma probability density function,

F =

∫ ∞

x

ab

Γ(b)
tb−1e−at dt,

where Γ is the gamma function.
Parameters

a [array_like] The rate parameter of the gamma distribution, sometimes denoted β (float). It
is also the reciprocal of the scale parameter θ.

b [array_like] The shape parameter of the gamma distribution, sometimes denoted α (float).
x [array_like] The quantile (lower limit of integration; float).

Returns

F [ndarray] The survival function of the gamma distribution with parameters a and b evaluated
at x.

See also:
gdtr, gdtrix

Notes

The evaluation is carried out using the relation to the incomplete gamma integral (regularized gamma function).
Wrapper for the Cephes [1] routine gdtrc.
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References

[1]

scipy.special.gdtria
scipy.special.gdtria(p, b, x, out=None) = <ufunc 'gdtria'>

Inverse of gdtr vs a.
Returns the inverse with respect to the parameter a of p = gdtr(a, b, x), the cumulative distribution func-
tion of the gamma distribution.

Parameters

p [array_like] Probability values.
b [array_like] b parameter values of gdtr(a, b, x). b is the “shape” parameter of the gamma

distribution.
x [array_like] Nonnegative real values, from the domain of the gamma distribution.
out [ndarray, optional] If a fourth argument is given, it must be a numpy.ndarray whose size

matches the broadcast result of a, b and x. out is then the array returned by the function.
Returns

a [ndarray] Values of the a parameter such that p = gdtr(a, b, x). 1/a is the “scale” parameter
of the gamma distribution.

See also:

gdtr

CDF of the gamma distribution.
gdtrib

Inverse with respect to b of gdtr(a, b, x).
gdtrix

Inverse with respect to x of gdtr(a, b, x).

Notes

Wrapper for the CDFLIB [1] Fortran routine cdfgam.
The cumulative distribution function p is computed using a routine by DiDinato and Morris [2]. Computation of a
involves a search for a value that produces the desired value of p. The search relies on the monotonicity of p with
a.

References

[1], [2]

Examples

First evaluate gdtr.
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>>> from scipy.special import gdtr, gdtria
>>> p = gdtr(1.2, 3.4, 5.6)
>>> print(p)
0.94378087442

Verify the inverse.

>>> gdtria(p, 3.4, 5.6)
1.2

scipy.special.gdtrib
scipy.special.gdtrib(a, p, x, out=None) = <ufunc 'gdtrib'>

Inverse of gdtr vs b.
Returns the inverse with respect to the parameter b of p = gdtr(a, b, x), the cumulative distribution func-
tion of the gamma distribution.

Parameters

a [array_like] a parameter values of gdtr(a, b, x). 1/a is the “scale” parameter of the gamma
distribution.

p [array_like] Probability values.
x [array_like] Nonnegative real values, from the domain of the gamma distribution.
out [ndarray, optional] If a fourth argument is given, it must be a numpy.ndarray whose size

matches the broadcast result of a, b and x. out is then the array returned by the function.
Returns

b [ndarray] Values of the b parameter such that p = gdtr(a, b, x). b is the “shape” parameter
of the gamma distribution.

See also:

gdtr

CDF of the gamma distribution.
gdtria

Inverse with respect to a of gdtr(a, b, x).
gdtrix

Inverse with respect to x of gdtr(a, b, x).

Notes

Wrapper for the CDFLIB [1] Fortran routine cdfgam.
The cumulative distribution function p is computed using a routine by DiDinato and Morris [2]. Computation of b
involves a search for a value that produces the desired value of p. The search relies on the monotonicity of p with
b.

References

[1], [2]
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Examples

First evaluate gdtr.

>>> from scipy.special import gdtr, gdtrib
>>> p = gdtr(1.2, 3.4, 5.6)
>>> print(p)
0.94378087442

Verify the inverse.

>>> gdtrib(1.2, p, 5.6)
3.3999999999723882

scipy.special.gdtrix
scipy.special.gdtrix(a, b, p, out=None) = <ufunc 'gdtrix'>

Inverse of gdtr vs x.
Returns the inverse with respect to the parameter x of p = gdtr(a, b, x), the cumulative distribution func-
tion of the gamma distribution. This is also known as the p’th quantile of the distribution.

Parameters

a [array_like] a parameter values of gdtr(a, b, x). 1/a is the “scale” parameter of the gamma
distribution.

b [array_like] b parameter values of gdtr(a, b, x). b is the “shape” parameter of the gamma
distribution.

p [array_like] Probability values.
out [ndarray, optional] If a fourth argument is given, it must be a numpy.ndarray whose size

matches the broadcast result of a, b and x. out is then the array returned by the function.
Returns

x [ndarray] Values of the x parameter such that p = gdtr(a, b, x).
See also:

gdtr

CDF of the gamma distribution.
gdtria

Inverse with respect to a of gdtr(a, b, x).
gdtrib

Inverse with respect to b of gdtr(a, b, x).

Notes

Wrapper for the CDFLIB [1] Fortran routine cdfgam.
The cumulative distribution function p is computed using a routine by DiDinato and Morris [2]. Computation of x
involves a search for a value that produces the desired value of p. The search relies on the monotonicity of p with
x.
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References

[1], [2]

Examples

First evaluate gdtr.

>>> from scipy.special import gdtr, gdtrix
>>> p = gdtr(1.2, 3.4, 5.6)
>>> print(p)
0.94378087442

Verify the inverse.

>>> gdtrix(1.2, 3.4, p)
5.5999999999999996

scipy.special.nbdtr
scipy.special.nbdtr(k, n, p) = <ufunc 'nbdtr'>

Negative binomial cumulative distribution function.
Returns the sum of the terms 0 through k of the negative binomial distribution probability mass function,

F =

k∑
j=0

(
n+ j − 1

j

)
pn(1− p)j .

In a sequence of Bernoulli trials with individual success probabilities p, this is the probability that k or fewer failures
precede the nth success.

Parameters

k [array_like] The maximum number of allowed failures (nonnegative int).
n [array_like] The target number of successes (positive int).
p [array_like] Probability of success in a single event (float).

Returns

F [ndarray] The probability of k or fewer failures before n successes in a sequence of events
with individual success probability p.

See also:
nbdtrc

Notes

If floating point values are passed for k or n, they will be truncated to integers.
The terms are not summed directly; instead the regularized incomplete beta function is employed, according to the
formula,

nbdtr(k, n, p) = Ip(n, k + 1).

Wrapper for the Cephes [1] routine nbdtr.
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References

[1]

scipy.special.nbdtrc
scipy.special.nbdtrc(k, n, p) = <ufunc 'nbdtrc'>

Negative binomial survival function.
Returns the sum of the terms k + 1 to infinity of the negative binomial distribution probability mass function,

F =

∞∑
j=k+1

(
n+ j − 1

j

)
pn(1− p)j .

In a sequence of Bernoulli trials with individual success probabilities p, this is the probability that more than k
failures precede the nth success.

Parameters

k [array_like] The maximum number of allowed failures (nonnegative int).
n [array_like] The target number of successes (positive int).
p [array_like] Probability of success in a single event (float).

Returns

F [ndarray] The probability of k + 1 or more failures before n successes in a sequence of events
with individual success probability p.

Notes

If floating point values are passed for k or n, they will be truncated to integers.
The terms are not summed directly; instead the regularized incomplete beta function is employed, according to the
formula,

nbdtrc(k, n, p) = I1−p(k + 1, n).

Wrapper for the Cephes [1] routine nbdtrc.

References

[1]

scipy.special.nbdtri
scipy.special.nbdtri(k, n, y) = <ufunc 'nbdtri'>

Inverse of nbdtr vs p.
Returns the inverse with respect to the parameter p of y = nbdtr(k, n, p), the negative binomial cumulative distri-
bution function.

Parameters

k [array_like] The maximum number of allowed failures (nonnegative int).
n [array_like] The target number of successes (positive int).
y [array_like] The probability of k or fewer failures before n successes (float).

Returns
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p [ndarray] Probability of success in a single event (float) such that nbdtr(k, n, p) = y.
See also:

nbdtr

Cumulative distribution function of the negative binomial.
nbdtrik

Inverse with respect to k of nbdtr(k, n, p).
nbdtrin

Inverse with respect to n of nbdtr(k, n, p).

Notes

Wrapper for the Cephes [1] routine nbdtri.

References

[1]

scipy.special.nbdtrik
scipy.special.nbdtrik(y, n, p) = <ufunc 'nbdtrik'>

Inverse of nbdtr vs k.
Returns the inverse with respect to the parameter k of y = nbdtr(k, n, p), the negative binomial cumulative distri-
bution function.

Parameters

y [array_like] The probability of k or fewer failures before n successes (float).
n [array_like] The target number of successes (positive int).
p [array_like] Probability of success in a single event (float).

Returns

k [ndarray] The maximum number of allowed failures such that nbdtr(k, n, p) = y.
See also:

nbdtr

Cumulative distribution function of the negative binomial.
nbdtri

Inverse with respect to p of nbdtr(k, n, p).
nbdtrin

Inverse with respect to n of nbdtr(k, n, p).
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Notes

Wrapper for the CDFLIB [1] Fortran routine cdfnbn.
Formula 26.5.26 of [2],

∞∑
j=k+1

(
n+ j − 1

j

)
pn(1− p)j = I1−p(k + 1, n),

is used to reduce calculation of the cumulative distribution function to that of a regularized incomplete beta I .
Computation of k involves a search for a value that produces the desired value of y. The search relies on the
monotonicity of y with k.

References

[1], [2]

scipy.special.nbdtrin
scipy.special.nbdtrin(k, y, p) = <ufunc 'nbdtrin'>

Inverse of nbdtr vs n.
Returns the inverse with respect to the parameter n of y = nbdtr(k, n, p), the negative binomial cumulative distri-
bution function.

Parameters

k [array_like] The maximum number of allowed failures (nonnegative int).
y [array_like] The probability of k or fewer failures before n successes (float).
p [array_like] Probability of success in a single event (float).

Returns

n [ndarray] The number of successes n such that nbdtr(k, n, p) = y.
See also:

nbdtr

Cumulative distribution function of the negative binomial.
nbdtri

Inverse with respect to p of nbdtr(k, n, p).
nbdtrik

Inverse with respect to k of nbdtr(k, n, p).

Notes

Wrapper for the CDFLIB [1] Fortran routine cdfnbn.
Formula 26.5.26 of [2],

∞∑
j=k+1

(
n+ j − 1

j

)
pn(1− p)j = I1−p(k + 1, n),

is used to reduce calculation of the cumulative distribution function to that of a regularized incomplete beta I .
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Computation of n involves a search for a value that produces the desired value of y. The search relies on the
monotonicity of y with n.

References

[1], [2]

scipy.special.ncfdtr
scipy.special.ncfdtr(dfn, dfd, nc, f) = <ufunc 'ncfdtr'>

Cumulative distribution function of the non-central F distribution.
The non-central F describes the distribution of,

Z =
X/dn
Y/dd

whereX and Y are independently distributed, withX distributed non-central χ2 with noncentrality parameter nc
and dn degrees of freedom, and Y distributed χ2 with dd degrees of freedom.

Parameters

dfn [array_like] Degrees of freedom of the numerator sum of squares. Range (0, inf).
dfd [array_like] Degrees of freedom of the denominator sum of squares. Range (0, inf).
nc [array_like] Noncentrality parameter. Should be in range (0, 1e4).
f [array_like] Quantiles, i.e. the upper limit of integration.

Returns

cdf [float or ndarray] The calculated CDF. If all inputs are scalar, the return will be a float.
Otherwise it will be an array.

See also:

ncfdtri

Quantile function; inverse of ncfdtr with respect to f.
ncfdtridfd

Inverse of ncfdtr with respect to dfd.
ncfdtridfn

Inverse of ncfdtr with respect to dfn.
ncfdtrinc

Inverse of ncfdtr with respect to nc.

Notes

Wrapper for the CDFLIB [1] Fortran routine cdffnc.
The cumulative distribution function is computed using Formula 26.6.20 of [2]:

F (dn, dd, nc, f) =

∞∑
j=0

e−nc/2
(nc/2)

j

j!
Ix(

dn
2

+ j,
dd
2
),

where I is the regularized incomplete beta function, and x = fdn/(fdn + dd).
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The computation time required for this routine is proportional to the noncentrality parameter nc. Very large values
of this parameter can consume immense computer resources. This is why the search range is bounded by 10,000.

References

[1], [2]

Examples

>>> from scipy import special
>>> from scipy import stats
>>> import matplotlib.pyplot as plt

Plot the CDF of the non-central F distribution, for nc=0. Compare with the F-distribution from scipy.stats:

>>> x = np.linspace(-1, 8, num=500)
>>> dfn = 3
>>> dfd = 2
>>> ncf_stats = stats.f.cdf(x, dfn, dfd)
>>> ncf_special = special.ncfdtr(dfn, dfd, 0, x)

>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> ax.plot(x, ncf_stats, 'b-', lw=3)
>>> ax.plot(x, ncf_special, 'r-')
>>> plt.show()
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scipy.special.ncfdtridfd
scipy.special.ncfdtridfd(dfn, p, nc, f) = <ufunc 'ncfdtridfd'>

Calculate degrees of freedom (denominator) for the noncentral F-distribution.
This is the inverse with respect to dfd of ncfdtr. See ncfdtr for more details.
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Parameters

dfn [array_like] Degrees of freedom of the numerator sum of squares. Range (0, inf).
p [array_like] Value of the cumulative distribution function. Must be in the range [0, 1].
nc [array_like] Noncentrality parameter. Should be in range (0, 1e4).
f [array_like] Quantiles, i.e. the upper limit of integration.

Returns

dfd [float] Degrees of freedom of the denominator sum of squares.
See also:

ncfdtr

CDF of the non-central F distribution.
ncfdtri

Quantile function; inverse of ncfdtr with respect to f.
ncfdtridfn

Inverse of ncfdtr with respect to dfn.
ncfdtrinc

Inverse of ncfdtr with respect to nc.

Notes

The value of the cumulative noncentral F distribution is not necessarily monotone in either degrees of freedom.
There thus may be two values that provide a given CDF value. This routine assumes monotonicity and will find an
arbitrary one of the two values.

Examples

>>> from scipy.special import ncfdtr, ncfdtridfd

Compute the CDF for several values of dfd:

>>> dfd = [1, 2, 3]
>>> p = ncfdtr(2, dfd, 0.25, 15)
>>> p
array([ 0.8097138 , 0.93020416, 0.96787852])

Compute the inverse. We recover the values of dfd, as expected:

>>> ncfdtridfd(2, p, 0.25, 15)
array([ 1., 2., 3.])

scipy.special.ncfdtridfn
scipy.special.ncfdtridfn(p, dfd, nc, f) = <ufunc 'ncfdtridfn'>

Calculate degrees of freedom (numerator) for the noncentral F-distribution.
This is the inverse with respect to dfn of ncfdtr. See ncfdtr for more details.

Parameters
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p [array_like] Value of the cumulative distribution function. Must be in the range [0, 1].
dfd [array_like] Degrees of freedom of the denominator sum of squares. Range (0, inf).
nc [array_like] Noncentrality parameter. Should be in range (0, 1e4).
f [float] Quantiles, i.e. the upper limit of integration.

Returns

dfn [float] Degrees of freedom of the numerator sum of squares.
See also:

ncfdtr

CDF of the non-central F distribution.
ncfdtri

Quantile function; inverse of ncfdtr with respect to f.
ncfdtridfd

Inverse of ncfdtr with respect to dfd.
ncfdtrinc

Inverse of ncfdtr with respect to nc.

Notes

The value of the cumulative noncentral F distribution is not necessarily monotone in either degrees of freedom.
There thus may be two values that provide a given CDF value. This routine assumes monotonicity and will find an
arbitrary one of the two values.

Examples

>>> from scipy.special import ncfdtr, ncfdtridfn

Compute the CDF for several values of dfn:

>>> dfn = [1, 2, 3]
>>> p = ncfdtr(dfn, 2, 0.25, 15)
>>> p
array([ 0.92562363, 0.93020416, 0.93188394])

Compute the inverse. We recover the values of dfn, as expected:

>>> ncfdtridfn(p, 2, 0.25, 15)
array([ 1., 2., 3.])

scipy.special.ncfdtri
scipy.special.ncfdtri(dfn, dfd, nc, p) = <ufunc 'ncfdtri'>

Inverse with respect to f of the CDF of the non-central F distribution.
See ncfdtr for more details.

Parameters

dfn [array_like] Degrees of freedom of the numerator sum of squares. Range (0, inf).
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dfd [array_like] Degrees of freedom of the denominator sum of squares. Range (0, inf).
nc [array_like] Noncentrality parameter. Should be in range (0, 1e4).
p [array_like] Value of the cumulative distribution function. Must be in the range [0, 1].

Returns

f [float] Quantiles, i.e. the upper limit of integration.
See also:

ncfdtr

CDF of the non-central F distribution.
ncfdtridfd

Inverse of ncfdtr with respect to dfd.
ncfdtridfn

Inverse of ncfdtr with respect to dfn.
ncfdtrinc

Inverse of ncfdtr with respect to nc.

Examples

>>> from scipy.special import ncfdtr, ncfdtri

Compute the CDF for several values of f:

>>> f = [0.5, 1, 1.5]
>>> p = ncfdtr(2, 3, 1.5, f)
>>> p
array([ 0.20782291, 0.36107392, 0.47345752])

Compute the inverse. We recover the values of f, as expected:

>>> ncfdtri(2, 3, 1.5, p)
array([ 0.5, 1. , 1.5])

scipy.special.ncfdtrinc
scipy.special.ncfdtrinc(dfn, dfd, p, f) = <ufunc 'ncfdtrinc'>

Calculate non-centrality parameter for non-central F distribution.
This is the inverse with respect to nc of ncfdtr. See ncfdtr for more details.

Parameters

dfn [array_like] Degrees of freedom of the numerator sum of squares. Range (0, inf).
dfd [array_like] Degrees of freedom of the denominator sum of squares. Range (0, inf).
p [array_like] Value of the cumulative distribution function. Must be in the range [0, 1].
f [array_like] Quantiles, i.e. the upper limit of integration.

Returns

nc [float] Noncentrality parameter.
See also:
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ncfdtr

CDF of the non-central F distribution.
ncfdtri

Quantile function; inverse of ncfdtr with respect to f.
ncfdtridfd

Inverse of ncfdtr with respect to dfd.
ncfdtridfn

Inverse of ncfdtr with respect to dfn.

Examples

>>> from scipy.special import ncfdtr, ncfdtrinc

Compute the CDF for several values of nc:

>>> nc = [0.5, 1.5, 2.0]
>>> p = ncfdtr(2, 3, nc, 15)
>>> p
array([ 0.96309246, 0.94327955, 0.93304098])

Compute the inverse. We recover the values of nc, as expected:

>>> ncfdtrinc(2, 3, p, 15)
array([ 0.5, 1.5, 2. ])

scipy.special.nctdtr
scipy.special.nctdtr(df, nc, t) = <ufunc 'nctdtr'>

Cumulative distribution function of the non-central t distribution.
Parameters

df [array_like] Degrees of freedom of the distribution. Should be in range (0, inf).
nc [array_like] Noncentrality parameter. Should be in range (-1e6, 1e6).
t [array_like] Quantiles, i.e. the upper limit of integration.

Returns

cdf [float or ndarray] The calculated CDF. If all inputs are scalar, the return will be a float.
Otherwise it will be an array.

See also:

nctdtrit

Inverse CDF (iCDF) of the non-central t distribution.
nctdtridf

Calculate degrees of freedom, given CDF and iCDF values.
nctdtrinc

Calculate non-centrality parameter, given CDF iCDF values.
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Examples

>>> from scipy import special
>>> from scipy import stats
>>> import matplotlib.pyplot as plt

Plot the CDF of the non-central t distribution, for nc=0. Compare with the t-distribution from scipy.stats:

>>> x = np.linspace(-5, 5, num=500)
>>> df = 3
>>> nct_stats = stats.t.cdf(x, df)
>>> nct_special = special.nctdtr(df, 0, x)

>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> ax.plot(x, nct_stats, 'b-', lw=3)
>>> ax.plot(x, nct_special, 'r-')
>>> plt.show()
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scipy.special.nctdtridf
scipy.special.nctdtridf(p, nc, t) = <ufunc 'nctdtridf'>

Calculate degrees of freedom for non-central t distribution.
See nctdtr for more details.

Parameters

p [array_like] CDF values, in range (0, 1].
nc [array_like] Noncentrality parameter. Should be in range (-1e6, 1e6).
t [array_like] Quantiles, i.e. the upper limit of integration.

scipy.special.nctdtrit
scipy.special.nctdtrit(df, nc, p) = <ufunc 'nctdtrit'>

Inverse cumulative distribution function of the non-central t distribution.
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See nctdtr for more details.
Parameters

df [array_like] Degrees of freedom of the distribution. Should be in range (0, inf).
nc [array_like] Noncentrality parameter. Should be in range (-1e6, 1e6).
p [array_like] CDF values, in range (0, 1].

scipy.special.nctdtrinc
scipy.special.nctdtrinc(df, p, t) = <ufunc 'nctdtrinc'>

Calculate non-centrality parameter for non-central t distribution.
See nctdtr for more details.

Parameters

df [array_like] Degrees of freedom of the distribution. Should be in range (0, inf).
p [array_like] CDF values, in range (0, 1].
t [array_like] Quantiles, i.e. the upper limit of integration.

scipy.special.nrdtrimn
scipy.special.nrdtrimn(p, x, std) = <ufunc 'nrdtrimn'>

Calculate mean of normal distribution given other params.
Parameters

p [array_like] CDF values, in range (0, 1].
x [array_like] Quantiles, i.e. the upper limit of integration.
std [array_like] Standard deviation.

Returns

mn [float or ndarray] The mean of the normal distribution.
See also:
nrdtrimn, ndtr

scipy.special.nrdtrisd
scipy.special.nrdtrisd(p, x, mn) = <ufunc 'nrdtrisd'>

Calculate standard deviation of normal distribution given other params.
Parameters

p [array_like] CDF values, in range (0, 1].
x [array_like] Quantiles, i.e. the upper limit of integration.
mn [float or ndarray] The mean of the normal distribution.

Returns

std [array_like] Standard deviation.
See also:
ndtr
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scipy.special.pdtr
scipy.special.pdtr(k, m) = <ufunc 'pdtr'>

Poisson cumulative distribution function
Returns the sum of the first k terms of the Poisson distribution: sum(exp(-m) * m**j / j!, j=0..k) = gammaincc(
k+1, m). Arguments must both be positive and k an integer.

scipy.special.pdtrc
scipy.special.pdtrc(k, m) = <ufunc 'pdtrc'>

Poisson survival function
Returns the sum of the terms from k+1 to infinity of the Poisson distribution: sum(exp(-m) * m**j / j!, j=k+1..inf)
= gammainc( k+1, m). Arguments must both be positive and k an integer.

scipy.special.pdtri
scipy.special.pdtri(k, y) = <ufunc 'pdtri'>

Inverse to pdtr vs m
Returns the Poisson variablem such that the sum from 0 to k of the Poisson density is equal to the given probability
y: calculated by gammaincinv(k+1, y). k must be a nonnegative integer and y between 0 and 1.

scipy.special.pdtrik
scipy.special.pdtrik(p, m) = <ufunc 'pdtrik'>

Inverse to pdtr vs k
Returns the quantile k such that pdtr(k, m) = p

scipy.special.stdtr
scipy.special.stdtr(df, t) = <ufunc 'stdtr'>

Student t distribution cumulative distribution function
Returns the integral from minus infinity to t of the Student t distribution with df > 0 degrees of freedom:

gamma((df+1)/2)/(sqrt(df*pi)*gamma(df/2)) *
integral((1+x**2/df)**(-df/2-1/2), x=-inf..t)

scipy.special.stdtridf
scipy.special.stdtridf(p, t) = <ufunc 'stdtridf'>

Inverse of stdtr vs df
Returns the argument df such that stdtr(df, t) is equal to p.

scipy.special.stdtrit
scipy.special.stdtrit(df, p) = <ufunc 'stdtrit'>

Inverse of stdtr vs t
Returns the argument t such that stdtr(df, t) is equal to p.

scipy.special.chdtr
scipy.special.chdtr(v, x) = <ufunc 'chdtr'>

Chi square cumulative distribution function
Returns the area under the left hand tail (from 0 to x) of the Chi square probability density function with v degrees
of freedom:
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1/(2**(v/2) * gamma(v/2)) * integral(t**(v/2-1) * exp(-t/2), t=0..x)

scipy.special.chdtrc
scipy.special.chdtrc(v, x) = <ufunc 'chdtrc'>

Chi square survival function
Returns the area under the right hand tail (from x to infinity) of the Chi square probability density function with v
degrees of freedom:

1/(2**(v/2) * gamma(v/2)) * integral(t**(v/2-1) * exp(-t/2), t=x..inf)

scipy.special.chdtri
scipy.special.chdtri(v, p) = <ufunc 'chdtri'>

Inverse to chdtrc
Returns the argument x such that chdtrc(v, x) == p.

scipy.special.chdtriv
scipy.special.chdtriv(p, x) = <ufunc 'chdtriv'>

Inverse to chdtr vs v
Returns the argument v such that chdtr(v, x) == p.

scipy.special.ndtr
scipy.special.ndtr(x) = <ufunc 'ndtr'>

Gaussian cumulative distribution function.
Returns the area under the standard Gaussian probability density function, integrated from minus infinity to x

1√
2π

∫ x

−∞
exp(−t2/2)dt

Parameters

x [array_like, real or complex] Argument
Returns

ndarray The value of the normal CDF evaluated at x
See also:
erf, erfc, scipy.stats.norm, log_ndtr

scipy.special.log_ndtr
scipy.special.log_ndtr(x) = <ufunc 'log_ndtr'>

Logarithm of Gaussian cumulative distribution function.
Returns the log of the area under the standard Gaussian probability density function, integrated from minus infinity
to x:

log(1/sqrt(2*pi) * integral(exp(-t**2 / 2), t=-inf..x))

Parameters

x [array_like, real or complex] Argument
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Returns

ndarray The value of the log of the normal CDF evaluated at x

See also:
erf, erfc, scipy.stats.norm, ndtr

scipy.special.ndtri
scipy.special.ndtri(y) = <ufunc 'ndtri'>

Inverse of ndtr vs x
Returns the argument x for which the area under the Gaussian probability density function (integrated from minus
infinity to x) is equal to y.

scipy.special.chndtr
scipy.special.chndtr(x, df, nc) = <ufunc 'chndtr'>

Non-central chi square cumulative distribution function

scipy.special.chndtridf
scipy.special.chndtridf(x, p, nc) = <ufunc 'chndtridf'>

Inverse to chndtr vs df

scipy.special.chndtrinc
scipy.special.chndtrinc(x, df, p) = <ufunc 'chndtrinc'>

Inverse to chndtr vs nc

scipy.special.chndtrix
scipy.special.chndtrix(p, df, nc) = <ufunc 'chndtrix'>

Inverse to chndtr vs x

scipy.special.smirnov
scipy.special.smirnov(n, d) = <ufunc 'smirnov'>

Kolmogorov-Smirnov complementary cumulative distribution function
Returns the exact Kolmogorov-Smirnov complementary cumulative distribution function,(aka the Survival Func-
tion) of Dn+ (or Dn-) for a one-sided test of equality between an empirical and a theoretical distribution. It is equal
to the probability that the maximum difference between a theoretical distribution and an empirical one based on n
samples is greater than d.

Parameters

n [int] Number of samples
d [float array_like] Deviation between the Empirical CDF (ECDF) and the target CDF.

Returns

float The value(s) of smirnov(n, d), Prob(Dn+ >= d) (Also Prob(Dn- >= d))
See also:

smirnovi

The Inverse Survival Function for the distribution
scipy.stats.ksone

Provides the functionality as a continuous distribution
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kolmogorov, kolmogi

Notes

smirnov is used by stats.kstest in the application of the Kolmogorov-Smirnov Goodness of Fit test. For his-
torial reasons this function is exposed in scpy.special, but the recommended way to achieve the most accurate
CDF/SF/PDF/PPF/ISF computations is to use the stats.ksone distrubution.

Examples

>>> from scipy.special import smirnov

Show the probability of a gap at least as big as 0, 0.5 and 1.0 for a sample of size 5

>>> smirnov(5, [0, 0.5, 1.0])
array([ 1. , 0.056, 0. ])

Compare a sample of size 5 drawn from a source N(0.5, 1) distribution against a target N(0, 1) CDF.

>>> from scipy.stats import norm
>>> n = 5
>>> gendist = norm(0.5, 1) # Normal distribution, mean 0.5, stddev 1
>>> np.random.seed(seed=233423) # Set the seed for reproducibility
>>> x = np.sort(gendist.rvs(size=n))
>>> x
array([-0.20946287, 0.71688765, 0.95164151, 1.44590852, 3.08880533])
>>> target = norm(0, 1)
>>> cdfs = target.cdf(x)
>>> cdfs
array([ 0.41704346, 0.76327829, 0.82936059, 0.92589857, 0.99899518])
# Construct the Empirical CDF and the K-S statistics (Dn+, Dn-, Dn)
>>> ecdfs = np.arange(n+1, dtype=float)/n
>>> cols = np.column_stack([x, ecdfs[1:], cdfs, cdfs - ecdfs[:n],␣
↪→ecdfs[1:] - cdfs])
>>> np.set_printoptions(precision=3)
>>> cols
array([[ -2.095e-01, 2.000e-01, 4.170e-01, 4.170e-01, -2.170e-01],

[ 7.169e-01, 4.000e-01, 7.633e-01, 5.633e-01, -3.633e-01],
[ 9.516e-01, 6.000e-01, 8.294e-01, 4.294e-01, -2.294e-01],
[ 1.446e+00, 8.000e-01, 9.259e-01, 3.259e-01, -1.259e-01],
[ 3.089e+00, 1.000e+00, 9.990e-01, 1.990e-01, 1.005e-03]])

>>> gaps = cols[:, -2:]
>>> Dnpm = np.max(gaps, axis=0)
>>> print('Dn-=%f, Dn+=%f' % (Dnpm[0], Dnpm[1]))
Dn-=0.563278, Dn+=0.001005
>>> probs = smirnov(n, Dnpm)
>>> print(chr(10).join(['For a sample of size %d drawn from a N(0, 1)␣
↪→distribution:' % n,
... ' Smirnov n=%d: Prob(Dn- >= %f) = %.4f' % (n, Dnpm[0],␣
↪→probs[0]),
... ' Smirnov n=%d: Prob(Dn+ >= %f) = %.4f' % (n, Dnpm[1],␣
↪→probs[1])]))

(continues on next page)
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(continued from previous page)
For a sample of size 5 drawn from a N(0, 1) distribution:
Smirnov n=5: Prob(Dn- >= 0.563278) = 0.0250
Smirnov n=5: Prob(Dn+ >= 0.001005) = 0.9990

Plot the Empirical CDF against the target N(0, 1) CDF

>>> import matplotlib.pyplot as plt
>>> plt.step(np.concatenate([[-3], x]), ecdfs, where='post', label=
↪→'Empirical CDF')
>>> x3 = np.linspace(-3, 3, 100)
>>> plt.plot(x3, target.cdf(x3), label='CDF for N(0, 1)')
>>> plt.ylim([0, 1]); plt.grid(True); plt.legend();
# Add vertical lines marking Dn+ and Dn-
>>> iminus, iplus = np.argmax(gaps, axis=0)
>>> plt.vlines([x[iminus]], ecdfs[iminus], cdfs[iminus], color='r',␣
↪→linestyle='dashed', lw=4)
>>> plt.vlines([x[iplus]], cdfs[iplus], ecdfs[iplus+1], color='m',␣
↪→linestyle='dashed', lw=4)
>>> plt.show()
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scipy.special.smirnovi
scipy.special.smirnovi(n, p) = <ufunc 'smirnovi'>

Inverse to smirnov
Returns d such that smirnov(n, d) == p, the critical value corresponding to p.

Parameters

n [int] Number of samples
p [float array_like] Probability

Returns

float The value(s) of smirnovi(n, p), the critical values.
See also:
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smirnov

The Survival Function (SF) for the distribution
scipy.stats.ksone

Provides the functionality as a continuous distribution

kolmogorov, kolmogi, scipy.stats.kstwobign

Notes

smirnov is used by stats.kstest in the application of the Kolmogorov-Smirnov Goodness of Fit test. For his-
torial reasons this function is exposed in scpy.special, but the recommended way to achieve the most accurate
CDF/SF/PDF/PPF/ISF computations is to use the stats.ksone distrubution.

scipy.special.kolmogorov
scipy.special.kolmogorov(y) = <ufunc 'kolmogorov'>

Complementary cumulative distribution (Survival Function) function of Kolmogorov distribution.
Returns the complementary cumulative distribution function of Kolmogorov’s limiting distribution
(D_n*\sqrt(n) as n goes to infinity) of a two-sided test for equality between an empirical and a theo-
retical distribution. It is equal to the (limit as n->infinity of the) probability that sqrt(n) * max absolute
deviation > y.

Parameters

y [float array_like] Absolute deviation between the Empirical CDF (ECDF) and the target
CDF, multiplied by sqrt(n).

Returns

float The value(s) of kolmogorov(y)
See also:

kolmogi

The Inverse Survival Function for the distribution
scipy.stats.kstwobign

Provides the functionality as a continuous distribution

smirnov, smirnovi

Notes

kolmogorov is used by stats.kstest in the application of the Kolmogorov-Smirnov Goodness of Fit test. For
historial reasons this function is exposed in scpy.special, but the recommended way to achieve the most accurate
CDF/SF/PDF/PPF/ISF computations is to use the stats.kstwobign distrubution.
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Examples

Show the probability of a gap at least as big as 0, 0.5 and 1.0.

>>> from scipy.special import kolmogorov
>>> from scipy.stats import kstwobign
>>> kolmogorov([0, 0.5, 1.0])
array([ 1. , 0.96394524, 0.26999967])

Compare a sample of size 1000 drawn from a Laplace(0, 1) distribution against the target distribution, a Normal(0,
1) distribution.

>>> from scipy.stats import norm, laplace
>>> n = 1000
>>> np.random.seed(seed=233423)
>>> lap01 = laplace(0, 1)
>>> x = np.sort(lap01.rvs(n))
>>> np.mean(x), np.std(x)
(-0.083073685397609842, 1.3676426568399822)

Construct the Empirical CDF and the K-S statistic Dn.

>>> target = norm(0,1) # Normal mean 0, stddev 1
>>> cdfs = target.cdf(x)
>>> ecdfs = np.arange(n+1, dtype=float)/n
>>> gaps = np.column_stack([cdfs - ecdfs[:n], ecdfs[1:] - cdfs])
>>> Dn = np.max(gaps)
>>> Kn = np.sqrt(n) * Dn
>>> print('Dn=%f, sqrt(n)*Dn=%f' % (Dn, Kn))
Dn=0.058286, sqrt(n)*Dn=1.843153
>>> print(chr(10).join(['For a sample of size n drawn from a N(0, 1)␣
↪→distribution:',
... ' the approximate Kolmogorov probability that sqrt(n)*Dn>=%f is %f
↪→' % (Kn, kolmogorov(Kn)),
... ' the approximate Kolmogorov probability that sqrt(n)*Dn<=%f is %f
↪→' % (Kn, kstwobign.cdf(Kn))]))
For a sample of size n drawn from a N(0, 1) distribution:
the approximate Kolmogorov probability that sqrt(n)*Dn>=1.843153 is 0.
↪→002240
the approximate Kolmogorov probability that sqrt(n)*Dn<=1.843153 is 0.
↪→997760

Plot the Empirical CDF against the target N(0, 1) CDF.

>>> import matplotlib.pyplot as plt
>>> plt.step(np.concatenate([[-3], x]), ecdfs, where='post', label=
↪→'Empirical CDF')
>>> x3 = np.linspace(-3, 3, 100)
>>> plt.plot(x3, target.cdf(x3), label='CDF for N(0, 1)')
>>> plt.ylim([0, 1]); plt.grid(True); plt.legend();
>>> # Add vertical lines marking Dn+ and Dn-
>>> iminus, iplus = np.argmax(gaps, axis=0)
>>> plt.vlines([x[iminus]], ecdfs[iminus], cdfs[iminus], color='r',␣
↪→linestyle='dashed', lw=4)

(continues on next page)
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(continued from previous page)
>>> plt.vlines([x[iplus]], cdfs[iplus], ecdfs[iplus+1], color='r',␣
↪→linestyle='dashed', lw=4)
>>> plt.show()
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scipy.special.kolmogi
scipy.special.kolmogi(p) = <ufunc 'kolmogi'>

Inverse Survival Function of Kolmogorov distribution
It is the inverse function to kolmogorov. Returns y such that kolmogorov(y) == p.

Parameters

p [float array_like] Probability
Returns

float The value(s) of kolmogi(p)
See also:

kolmogorov

The Survival Function for the distribution
scipy.stats.kstwobign

Provides the functionality as a continuous distribution

smirnov, smirnovi

Notes

kolmogorov is used by stats.kstest in the application of the Kolmogorov-Smirnov Goodness of Fit test. For
historial reasons this function is exposed in scpy.special, but the recommended way to achieve the most accurate
CDF/SF/PDF/PPF/ISF computations is to use the stats.kstwobign distribution.
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Examples

>>> from scipy.special import kolmogi
>>> kolmogi([0, 0.1, 0.25, 0.5, 0.75, 0.9, 1.0])
array([ inf, 1.22384787, 1.01918472, 0.82757356, 0.67644769,

0.57117327, 0. ])

scipy.special.tklmbda
scipy.special.tklmbda(x, lmbda) = <ufunc 'tklmbda'>

Tukey-Lambda cumulative distribution function

scipy.special.logit
scipy.special.logit(x) = <ufunc 'logit'>

Logit ufunc for ndarrays.
The logit function is defined as logit(p) = log(p/(1-p)). Note that logit(0) = -inf, logit(1) = inf, and logit(p) for p<0
or p>1 yields nan.

Parameters

x [ndarray] The ndarray to apply logit to element-wise.
Returns

out [ndarray] An ndarray of the same shape as x. Its entries are logit of the corresponding entry
of x.

See also:
expit

Notes

As a ufunc logit takes a number of optional keyword arguments. For more information see ufuncs
New in version 0.10.0.

Examples

>>> from scipy.special import logit, expit

>>> logit([0, 0.25, 0.5, 0.75, 1])
array([ -inf, -1.09861229, 0. , 1.09861229, inf])

expit is the inverse of logit:

>>> expit(logit([0.1, 0.75, 0.999]))
array([ 0.1 , 0.75 , 0.999])

Plot logit(x) for x in [0, 1]:
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>>> import matplotlib.pyplot as plt
>>> x = np.linspace(0, 1, 501)
>>> y = logit(x)
>>> plt.plot(x, y)
>>> plt.grid()
>>> plt.ylim(-6, 6)
>>> plt.xlabel('x')
>>> plt.title('logit(x)')
>>> plt.show()
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scipy.special.expit
scipy.special.expit(x) = <ufunc 'expit'>

Expit (a.k.a. logistic sigmoid) ufunc for ndarrays.
The expit function, also known as the logistic sigmoid function, is defined as expit(x) = 1/(1+exp(-x)).
It is the inverse of the logit function.

Parameters

x [ndarray] The ndarray to apply expit to element-wise.
Returns

out [ndarray] An ndarray of the same shape as x. Its entries are expit of the corresponding
entry of x.

See also:
logit

Notes

As a ufunc expit takes a number of optional keyword arguments. For more information see ufuncs
New in version 0.10.0.
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Examples

>>> from scipy.special import expit, logit

>>> expit([-np.inf, -1.5, 0, 1.5, np.inf])
array([ 0. , 0.18242552, 0.5 , 0.81757448, 1. ])

logit is the inverse of expit:

>>> logit(expit([-2.5, 0, 3.1, 5.0]))
array([-2.5, 0. , 3.1, 5. ])

Plot expit(x) for x in [-6, 6]:

>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-6, 6, 121)
>>> y = expit(x)
>>> plt.plot(x, y)
>>> plt.grid()
>>> plt.xlim(-6, 6)
>>> plt.xlabel('x')
>>> plt.title('expit(x)')
>>> plt.show()
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scipy.special.boxcox
scipy.special.boxcox(x, lmbda) = <ufunc 'boxcox'>

Compute the Box-Cox transformation.
The Box-Cox transformation is:

y = (x**lmbda - 1) / lmbda if lmbda != 0
log(x) if lmbda == 0

Returns nan if x < 0. Returns -inf if x == 0 and lmbda < 0.
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Parameters

x [array_like] Data to be transformed.
lmbda [array_like] Power parameter of the Box-Cox transform.

Returns

y [array] Transformed data.

Notes

New in version 0.14.0.

Examples

>>> from scipy.special import boxcox
>>> boxcox([1, 4, 10], 2.5)
array([ 0. , 12.4 , 126.09110641])
>>> boxcox(2, [0, 1, 2])
array([ 0.69314718, 1. , 1.5 ])

scipy.special.boxcox1p
scipy.special.boxcox1p(x, lmbda) = <ufunc 'boxcox1p'>

Compute the Box-Cox transformation of 1 + x.
The Box-Cox transformation computed by boxcox1p is:

y = ((1+x)**lmbda - 1) / lmbda if lmbda != 0
log(1+x) if lmbda == 0

Returns nan if x < -1. Returns -inf if x == -1 and lmbda < 0.
Parameters

x [array_like] Data to be transformed.
lmbda [array_like] Power parameter of the Box-Cox transform.

Returns

y [array] Transformed data.

Notes

New in version 0.14.0.

Examples

>>> from scipy.special import boxcox1p
>>> boxcox1p(1e-4, [0, 0.5, 1])
array([ 9.99950003e-05, 9.99975001e-05, 1.00000000e-04])
>>> boxcox1p([0.01, 0.1], 0.25)
array([ 0.00996272, 0.09645476])
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scipy.special.inv_boxcox
scipy.special.inv_boxcox(y, lmbda) = <ufunc 'inv_boxcox'>

Compute the inverse of the Box-Cox transformation.
Find x such that:

y = (x**lmbda - 1) / lmbda if lmbda != 0
log(x) if lmbda == 0

Parameters

y [array_like] Data to be transformed.
lmbda [array_like] Power parameter of the Box-Cox transform.

Returns

x [array] Transformed data.

Notes

New in version 0.16.0.

Examples

>>> from scipy.special import boxcox, inv_boxcox
>>> y = boxcox([1, 4, 10], 2.5)
>>> inv_boxcox(y, 2.5)
array([1., 4., 10.])

scipy.special.inv_boxcox1p
scipy.special.inv_boxcox1p(y, lmbda) = <ufunc 'inv_boxcox1p'>

Compute the inverse of the Box-Cox transformation.
Find x such that:

y = ((1+x)**lmbda - 1) / lmbda if lmbda != 0
log(1+x) if lmbda == 0

Parameters

y [array_like] Data to be transformed.
lmbda [array_like] Power parameter of the Box-Cox transform.

Returns

x [array] Transformed data.

Notes

New in version 0.16.0.
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Examples

>>> from scipy.special import boxcox1p, inv_boxcox1p
>>> y = boxcox1p([1, 4, 10], 2.5)
>>> inv_boxcox1p(y, 2.5)
array([1., 4., 10.])

scipy.special.owens_t
scipy.special.owens_t(h, a) = <ufunc 'owens_t'>

Owen’s T Function.
The function T(h, a) gives the probability of the event (X > h and 0 < Y < a * X) where X and Y are independent
standard normal random variables.

Parameters

h: array_like
Input value.

a: array_like
Input value.

Returns

t: scalar or ndarray
Probability of the event (X > h and 0 < Y < a * X), where X and Y are independent standard
normal random variables.

References

[1]

Examples

>>> from scipy import special
>>> a = 3.5
>>> h = 0.78
>>> special.owens_t(h, a)
0.10877216734852274

Information Theory Functions

entr(x) Elementwise function for computing entropy.
rel_entr(x, y) Elementwise function for computing relative entropy.
kl_div(x, y) Elementwise function for computing Kullback-Leibler

divergence.
huber(delta, r) Huber loss function.
pseudo_huber(delta, r) Pseudo-Huber loss function.
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scipy.special.entr
scipy.special.entr(x) = <ufunc 'entr'>

Elementwise function for computing entropy.

entr(x) =


−x log(x) x > 0

0 x = 0

−∞ otherwise

Parameters

x [ndarray] Input array.
Returns

res [ndarray] The value of the elementwise entropy function at the given points x.
See also:
kl_div, rel_entr

Notes

This function is concave.
New in version 0.15.0.

scipy.special.rel_entr
scipy.special.rel_entr(x, y) = <ufunc 'rel_entr'>

Elementwise function for computing relative entropy.

rel_entr(x, y) =


x log(x/y) x > 0, y > 0

0 x = 0, y ≥ 0

∞ otherwise

Parameters

x [ndarray] First input array.
y [ndarray] Second input array.

Returns

res [ndarray] Output array.
See also:
entr, kl_div

Notes

This function is jointly convex in x and y.
New in version 0.15.0.
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scipy.special.kl_div
scipy.special.kl_div(x, y) = <ufunc 'kl_div'>

Elementwise function for computing Kullback-Leibler divergence.

kl_div(x, y) =


x log(x/y)− x+ y x > 0, y > 0

y x = 0, y ≥ 0

∞ otherwise

Parameters

x [ndarray] First input array.
y [ndarray] Second input array.

Returns

res [ndarray] Output array.
See also:
entr, rel_entr

Notes

This function is non-negative and is jointly convex in x and y.
New in version 0.15.0.

scipy.special.huber
scipy.special.huber(delta, r) = <ufunc 'huber'>

Huber loss function.

huber(δ, r) =


∞ δ < 0
1
2r

2 0 ≤ δ, |r| ≤ δ

δ(|r| − 1
2δ) otherwise

Parameters

delta [ndarray] Input array, indicating the quadratic vs. linear loss changepoint.
r [ndarray] Input array, possibly representing residuals.

Returns

res [ndarray] The computed Huber loss function values.

Notes

This function is convex in r.
New in version 0.15.0.
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scipy.special.pseudo_huber
scipy.special.pseudo_huber(delta, r) = <ufunc 'pseudo_huber'>

Pseudo-Huber loss function.

pseudo_huber(δ, r) = δ2

(√
1 +

(r
δ

)2
− 1

)

Parameters

delta [ndarray] Input array, indicating the soft quadratic vs. linear loss changepoint.
r [ndarray] Input array, possibly representing residuals.

Returns

res [ndarray] The computed Pseudo-Huber loss function values.

Notes

This function is convex in r.
New in version 0.15.0.

Gamma and Related Functions

gamma(z) Gamma function.
gammaln(x, /[, out, where, casting, order, …]) Logarithm of the absolute value of the Gamma function.
loggamma(z[, out]) Principal branch of the logarithm of the Gamma function.
gammasgn(x) Sign of the gamma function.
gammainc(a, x) Regularized lower incomplete gamma function.
gammaincinv(a, y) Inverse to gammainc
gammaincc(a, x) Regularized upper incomplete gamma function.
gammainccinv(a, y) Inverse to gammaincc
beta(a, b) Beta function.
betaln(a, b) Natural logarithm of absolute value of beta function.
betainc(a, b, x) Incomplete beta integral.
betaincinv(a, b, y) Inverse function to beta integral.
psi(z[, out]) The digamma function.
rgamma(z) Gamma function inverted
polygamma(n, x) Polygamma function n.
multigammaln(a, d) Returns the log of multivariate gamma, also sometimes

called the generalized gamma.
digamma(z[, out]) The digamma function.
poch(z, m) Rising factorial (z)_m

scipy.special.gamma
scipy.special.gamma(z) = <ufunc 'gamma'>

Gamma function.

Γ(z) =

∫ ∞

0

xz−1e−xdx = (z − 1)!

The gamma function is often referred to as the generalized factorial since z*gamma(z) = gamma(z+1) and
gamma(n+1) = n! for natural number n.

6.27. Special functions (scipy.special) 1991



SciPy Reference Guide, Release 1.3.1

Parameters

z [float or complex array_like]
Returns

float or complex
The value(s) of gamma(z)

Examples

>>> from scipy.special import gamma, factorial

>>> gamma([0, 0.5, 1, 5])
array([ inf, 1.77245385, 1. , 24. ])

>>> z = 2.5 + 1j
>>> gamma(z)
(0.77476210455108352+0.70763120437959293j)
>>> gamma(z+1), z*gamma(z) # Recurrence property
((1.2292740569981171+2.5438401155000685j),
(1.2292740569981158+2.5438401155000658j))

>>> gamma(0.5)**2 # gamma(0.5) = sqrt(pi)
3.1415926535897927

Plot gamma(x) for real x

>>> x = np.linspace(-3.5, 5.5, 2251)
>>> y = gamma(x)

>>> import matplotlib.pyplot as plt
>>> plt.plot(x, y, 'b', alpha=0.6, label='gamma(x)')
>>> k = np.arange(1, 7)
>>> plt.plot(k, factorial(k-1), 'k*', alpha=0.6,
... label='(x-1)!, x = 1, 2, ...')
>>> plt.xlim(-3.5, 5.5)
>>> plt.ylim(-10, 25)
>>> plt.grid()
>>> plt.xlabel('x')
>>> plt.legend(loc='lower right')
>>> plt.show()

scipy.special.gammaln
scipy.special.gammaln(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,

subok=True[, signature, extobj ]) = <ufunc 'gammaln'>
Logarithm of the absolute value of the Gamma function.

Parameters

x [array-like] Values on the real line at which to compute gammaln
Returns

gammaln [ndarray] Values of gammaln at x.
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(x-1)!, x = 1, 2, ...

See also:

gammasgn

sign of the gamma function
loggamma

principal branch of the logarithm of the gamma function

Notes

When used in conjunction with gammasgn, this function is useful for working in logspace on the real axis without
having to deal with complex numbers, via the relation exp(gammaln(x)) = gammasgn(x)*gamma(x).
For complex-valued log-gamma, use loggamma instead of gammaln.

scipy.special.loggamma
scipy.special.loggamma(z, out=None) = <ufunc 'loggamma'>

Principal branch of the logarithm of the Gamma function.
Defined to be log(Γ(x)) for x > 0 and extended to the complex plane by analytic continuation. The function has
a single branch cut on the negative real axis.
New in version 0.18.0.

Parameters

z [array-like] Values in the complex plain at which to compute loggamma
out [ndarray, optional] Output array for computed values of loggamma

Returns

loggamma [ndarray] Values of loggamma at z.
See also:
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gammaln

logarithm of the absolute value of the Gamma function
gammasgn

sign of the gamma function

Notes

It is not generally true that log Γ(z) = log(Γ(z)), though the real parts of the functions do agree. The benefit of
not defining loggamma as log(Γ(z)) is that the latter function has a complicated branch cut structure whereas
loggamma is analytic except for on the negative real axis.
The identities

exp(log Γ(z)) = Γ(z)

log Γ(z + 1) = log(z) + log Γ(z)

make loggamma useful for working in complex logspace.
On the real line loggamma is related to gammaln via exp(loggamma(x + 0j)) =
gammasgn(x)*exp(gammaln(x)), up to rounding error.
The implementation here is based on [hare1997].

References

[hare1997]

scipy.special.gammasgn
scipy.special.gammasgn(x) = <ufunc 'gammasgn'>

Sign of the gamma function.
See also:
gammaln, loggamma

scipy.special.gammainc
scipy.special.gammainc(a, x) = <ufunc 'gammainc'>

Regularized lower incomplete gamma function.
Defined as

1

Γ(a)

∫ x

0

ta−1e−tdt

for a > 0 and x ≥ 0. The function satisfies the relation gammainc(a, x) + gammaincc(a, x) = 1
where gammaincc is the regularized upper incomplete gamma function.
See also:

gammaincc

regularized upper incomplete gamma function
gammaincinv

inverse to gammainc versus x
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gammainccinv

inverse to gammaincc versus x

Notes

The implementation largely follows that of [1].

References

[1]

scipy.special.gammaincinv
scipy.special.gammaincinv(a, y) = <ufunc 'gammaincinv'>

Inverse to gammainc
Returns x such that gammainc(a, x) = y.

scipy.special.gammaincc
scipy.special.gammaincc(a, x) = <ufunc 'gammaincc'>

Regularized upper incomplete gamma function.
Defined as

1

Γ(a)

∫ ∞

x

ta−1e−tdt

for a > 0 and x ≥ 0. The function satisfies the relation gammainc(a, x) + gammaincc(a, x) = 1
where gammainc is the regularized lower incomplete gamma function.
See also:

gammainc

regularized lower incomplete gamma function
gammaincinv

inverse to gammainc versus x
gammainccinv

inverse to gammaincc versus x

Notes

The implementation largely follows that of [1].

References

[1]
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scipy.special.gammainccinv
scipy.special.gammainccinv(a, y) = <ufunc 'gammainccinv'>

Inverse to gammaincc
Returns x such that gammaincc(a, x) == y.

scipy.special.beta
scipy.special.beta(a, b) = <ufunc 'beta'>

Beta function.

beta(a, b) = gamma(a) * gamma(b) / gamma(a+b)

scipy.special.betaln
scipy.special.betaln(a, b) = <ufunc 'betaln'>

Natural logarithm of absolute value of beta function.
Computes ln(abs(beta(a, b))).

scipy.special.betainc
scipy.special.betainc(a, b, x) = <ufunc 'betainc'>

Incomplete beta integral.
Compute the incomplete beta integral of the arguments, evaluated from zero to x:

gamma(a+b) / (gamma(a)*gamma(b)) * integral(t**(a-1) (1-t)**(b-1), t=0..
↪→x).

Notes

The incomplete beta is also sometimes defined without the terms in gamma, in which case the above definition is
the so-called regularized incomplete beta. Under this definition, you can get the incomplete beta by multiplying the
result of the scipy function by beta(a, b).

scipy.special.betaincinv
scipy.special.betaincinv(a, b, y) = <ufunc 'betaincinv'>

Inverse function to beta integral.
Compute x such that betainc(a, b, x) = y.

scipy.special.psi
scipy.special.psi(z, out=None) = <ufunc 'psi'>

The digamma function.
The logarithmic derivative of the gamma function evaluated at z.

Parameters

z [array_like] Real or complex argument.
out [ndarray, optional] Array for the computed values of psi.

Returns

digamma [ndarray] Computed values of psi.
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Notes

For large values not close to the negative real axis psi is computed using the asymptotic series (5.11.2) from
[1]. For small arguments not close to the negative real axis the recurrence relation (5.5.2) from [1] is used until
the argument is large enough to use the asymptotic series. For values close to the negative real axis the reflection
formula (5.5.4) from [1] is used first. Note that psi has a family of zeros on the negative real axis which occur
between the poles at nonpositive integers. Around the zeros the reflection formula suffers from cancellation and the
implementation loses precision. The sole positive zero and the first negative zero, however, are handled separately
by precomputing series expansions using [2], so the function should maintain full accuracy around the origin.

References

[1], [2]

scipy.special.rgamma
scipy.special.rgamma(z) = <ufunc 'rgamma'>

Gamma function inverted
Returns 1/gamma(x)

scipy.special.polygamma
scipy.special.polygamma(n, x)

Polygamma function n.
This is the nth derivative of the digamma (psi) function.

Parameters

n [array_like of int] The order of the derivative of psi.
x [array_like] Where to evaluate the polygamma function.

Returns

polygamma
[ndarray] The result.

Examples

>>> from scipy import special
>>> x = [2, 3, 25.5]
>>> special.polygamma(1, x)
array([ 0.64493407, 0.39493407, 0.03999467])
>>> special.polygamma(0, x) == special.psi(x)
array([ True, True, True], dtype=bool)

scipy.special.multigammaln
scipy.special.multigammaln(a, d)

Returns the log of multivariate gamma, also sometimes called the generalized gamma.
Parameters

a [ndarray] The multivariate gamma is computed for each item of a.
d [int] The dimension of the space of integration.

Returns
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res [ndarray] The values of the log multivariate gamma at the given points a.

Notes

The formal definition of the multivariate gamma of dimension d for a real a is

Γd(a) =

∫
A>0

e−tr(A)|A|a−(d+1)/2dA

with the condition a > (d − 1)/2, and A > 0 being the set of all the positive definite matrices of dimension d.
Note that a is a scalar: the integrand only is multivariate, the argument is not (the function is defined over a subset
of the real set).
This can be proven to be equal to the much friendlier equation

Γd(a) = πd(d−1)/4
d∏

i=1

Γ(a− (i− 1)/2).

References

R. J. Muirhead, Aspects of multivariate statistical theory (Wiley Series in probability and mathematical statistics).

scipy.special.digamma
scipy.special.digamma(z, out=None) = <ufunc 'psi'>

The digamma function.
The logarithmic derivative of the gamma function evaluated at z.

Parameters

z [array_like] Real or complex argument.
out [ndarray, optional] Array for the computed values of psi.

Returns

digamma [ndarray] Computed values of psi.

Notes

For large values not close to the negative real axis psi is computed using the asymptotic series (5.11.2) from
[1]. For small arguments not close to the negative real axis the recurrence relation (5.5.2) from [1] is used until
the argument is large enough to use the asymptotic series. For values close to the negative real axis the reflection
formula (5.5.4) from [1] is used first. Note that psi has a family of zeros on the negative real axis which occur
between the poles at nonpositive integers. Around the zeros the reflection formula suffers from cancellation and the
implementation loses precision. The sole positive zero and the first negative zero, however, are handled separately
by precomputing series expansions using [2], so the function should maintain full accuracy around the origin.

References

[1], [2]
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scipy.special.poch
scipy.special.poch(z, m) = <ufunc 'poch'>

Rising factorial (z)_m
The Pochhammer symbol (rising factorial), is defined as

(z)m =
Γ(z +m)

Γ(z)

For positive integer m it reads

(z)m = z(z + 1)...(z +m− 1)

Parameters

z [array_like] (int or float)
m [array_like] (int or float)

Returns

poch [ndarray] The value of the function.

Error Function and Fresnel Integrals

erf(z) Returns the error function of complex argument.
erfc(x) Complementary error function, 1 - erf(x).
erfcx(x) Scaled complementary error function, exp(x**2) *

erfc(x).
erfi(z) Imaginary error function, -i erf(i z).
erfinv(y) Inverse of the error function erf.
erfcinv(y) Inverse of the complementary error function erfc.
wofz(z) Faddeeva function
dawsn(x) Dawson’s integral.
fresnel(z) Fresnel sin and cos integrals
fresnel_zeros(nt) Compute nt complex zeros of sine and cosine Fresnel in-

tegrals S(z) and C(z).
modfresnelp(x) Modified Fresnel positive integrals
modfresnelm(x) Modified Fresnel negative integrals

scipy.special.erf
scipy.special.erf(z) = <ufunc 'erf'>

Returns the error function of complex argument.
It is defined as 2/sqrt(pi)*integral(exp(-t**2), t=0..z).

Parameters

x [ndarray] Input array.
Returns

res [ndarray] The values of the error function at the given points x.
See also:
erfc, erfinv, erfcinv, wofz, erfcx, erfi

6.27. Special functions (scipy.special) 1999



SciPy Reference Guide, Release 1.3.1

Notes

The cumulative of the unit normal distribution is given by Phi(z) = 1/2[1 + erf(z/sqrt(2))].

References

[1], [2], [3]

Examples

>>> from scipy import special
>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-3, 3)
>>> plt.plot(x, special.erf(x))
>>> plt.xlabel('$x$')
>>> plt.ylabel('$erf(x)$')
>>> plt.show()
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scipy.special.erfc
scipy.special.erfc(x) = <ufunc 'erfc'>

Complementary error function, 1 - erf(x).
See also:
erf, erfi, erfcx, dawsn, wofz

References

[1]
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Examples

>>> from scipy import special
>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-3, 3)
>>> plt.plot(x, special.erfc(x))
>>> plt.xlabel('$x$')
>>> plt.ylabel('$erfc(x)$')
>>> plt.show()
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scipy.special.erfcx
scipy.special.erfcx(x) = <ufunc 'erfcx'>

Scaled complementary error function, exp(x**2) * erfc(x).
See also:
erf, erfc, erfi, dawsn, wofz

Notes

New in version 0.12.0.

References

[1]

Examples

>>> from scipy import special
>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-3, 3)

(continues on next page)
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(continued from previous page)
>>> plt.plot(x, special.erfcx(x))
>>> plt.xlabel('$x$')
>>> plt.ylabel('$erfcx(x)$')
>>> plt.show()
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scipy.special.erfi
scipy.special.erfi(z) = <ufunc 'erfi'>

Imaginary error function, -i erf(i z).
See also:
erf, erfc, erfcx, dawsn, wofz

Notes

New in version 0.12.0.

References

[1]

Examples

>>> from scipy import special
>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-3, 3)
>>> plt.plot(x, special.erfi(x))
>>> plt.xlabel('$x$')
>>> plt.ylabel('$erfi(x)$')
>>> plt.show()
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scipy.special.erfinv
scipy.special.erfinv(y)

Inverse of the error function erf.
Computes the inverse of the error function.
In complex domain, there is no unique complex number w satisfying erf(w)=z. This indicates a true inverse function
would have multi-value. When the domain restricts to the real, -1 < x < 1, there is a unique real number satisfying
erf(erfinv(x)) = x.

Parameters

y [ndarray] Argument at which to evaluate. Domain: [-1, 1]
Returns

erfinv [ndarray] The inverse of erf of y, element-wise

Examples

1) evaluating a float number

>>> from scipy import special
>>> special.erfinv(0.5)
0.4769362762044698

2) evaluating a ndarray

>>> from scipy import special
>>> y = np.linspace(-1.0, 1.0, num=10)
>>> special.erfinv(y)
array([ -inf, -0.86312307, -0.5407314 , -0.30457019, -0.0987901 ,

0.0987901 , 0.30457019, 0.5407314 , 0.86312307, inf])
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scipy.special.erfcinv
scipy.special.erfcinv(y)

Inverse of the complementary error function erfc.
Computes the inverse of the complementary error function erfc.
In complex domain, there is no unique complex number w satisfying erfc(w)=z. This indicates a true inverse
function would have multi-value. When the domain restricts to the real, 0 < x < 2, there is a unique real number
satisfying erfc(erfcinv(x)) = erfcinv(erfc(x)).
It is related to inverse of the error function by erfcinv(1-x) = erfinv(x)

Parameters

y [ndarray] Argument at which to evaluate. Domain: [0, 2]
Returns

erfcinv [ndarray] The inverse of erfc of y, element-wise

Examples

1) evaluating a float number

>>> from scipy import special
>>> special.erfcinv(0.5)
0.4769362762044698

2) evaluating a ndarray

>>> from scipy import special
>>> y = np.linspace(0.0, 2.0, num=11)
>>> special.erfcinv(y)
array([ inf, 0.9061938 , 0.59511608, 0.37080716, 0.17914345,

-0. , -0.17914345, -0.37080716, -0.59511608, -0.9061938 ,
-inf])

scipy.special.wofz
scipy.special.wofz(z) = <ufunc 'wofz'>

Faddeeva function
Returns the value of the Faddeeva function for complex argument:

exp(-z**2) * erfc(-i*z)

See also:
dawsn, erf, erfc, erfcx, erfi

References

[1]
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Examples

>>> from scipy import special
>>> import matplotlib.pyplot as plt

>>> x = np.linspace(-3, 3)
>>> z = special.wofz(x)

>>> plt.plot(x, z.real, label='wofz(x).real')
>>> plt.plot(x, z.imag, label='wofz(x).imag')
>>> plt.xlabel('$x$')
>>> plt.legend(framealpha=1, shadow=True)
>>> plt.grid(alpha=0.25)
>>> plt.show()
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scipy.special.dawsn
scipy.special.dawsn(x) = <ufunc 'dawsn'>

Dawson’s integral.
Computes:

exp(-x**2) * integral(exp(t**2), t=0..x).

See also:
wofz, erf, erfc, erfcx, erfi

References

[1]
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Examples

>>> from scipy import special
>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-15, 15, num=1000)
>>> plt.plot(x, special.dawsn(x))
>>> plt.xlabel('$x$')
>>> plt.ylabel('$dawsn(x)$')
>>> plt.show()
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scipy.special.fresnel
scipy.special.fresnel(z) = <ufunc 'fresnel'>

Fresnel sin and cos integrals
Defined as:

ssa = integral(sin(pi/2 * t**2), t=0..z)
csa = integral(cos(pi/2 * t**2), t=0..z)

Parameters

z [float or complex array_like] Argument
Returns

ssa, csa Fresnel sin and cos integral values

scipy.special.fresnel_zeros
scipy.special.fresnel_zeros(nt)

Compute nt complex zeros of sine and cosine Fresnel integrals S(z) and C(z).

References

[1]
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scipy.special.modfresnelp
scipy.special.modfresnelp(x) = <ufunc 'modfresnelp'>

Modified Fresnel positive integrals
Returns

fp Integral F_+(x): integral(exp(1j*t*t), t=x..inf)
kp Integral K_+(x): 1/sqrt(pi)*exp(-1j*(x*x+pi/4))*fp

scipy.special.modfresnelm
scipy.special.modfresnelm(x) = <ufunc 'modfresnelm'>

Modified Fresnel negative integrals
Returns

fm Integral F_-(x): integral(exp(-1j*t*t), t=x..inf)
km Integral K_-(x): 1/sqrt(pi)*exp(1j*(x*x+pi/4))*fp

These are not universal functions:

erf_zeros(nt) Compute the first nt zero in the first quadrant, ordered by
absolute value.

fresnelc_zeros(nt) Compute nt complex zeros of cosine Fresnel integral
C(z).

fresnels_zeros(nt) Compute nt complex zeros of sine Fresnel integral S(z).

scipy.special.erf_zeros
scipy.special.erf_zeros(nt)

Compute the first nt zero in the first quadrant, ordered by absolute value.
Zeros in the other quadrants can be obtained by using the symmetries erf(-z) = erf(z) and erf(conj(z)) = conj(erf(z)).

Parameters

nt [int] The number of zeros to compute
Returns

The locations of the zeros of erf
[ndarray (complex)] Complex values at which zeros of erf(z)

References

[1]

Examples

>>> from scipy import special
>>> special.erf_zeros(1)
array([1.45061616+1.880943j])

Check that erf is (close to) zero for the value returned by erf_zeros

>>> special.erf(special.erf_zeros(1))
array([4.95159469e-14-1.16407394e-16j])
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scipy.special.fresnelc_zeros
scipy.special.fresnelc_zeros(nt)

Compute nt complex zeros of cosine Fresnel integral C(z).

References

[1]

scipy.special.fresnels_zeros
scipy.special.fresnels_zeros(nt)

Compute nt complex zeros of sine Fresnel integral S(z).

References

[1]

Legendre Functions

lpmv(m, v, x) Associated Legendre function of integer order and real
degree.

sph_harm(m, n, theta, phi) Compute spherical harmonics.

scipy.special.lpmv
scipy.special.lpmv(m, v, x) = <ufunc 'lpmv'>

Associated Legendre function of integer order and real degree.
Defined as

Pm
v = (−1)m(1− x2)m/2 d

m

dxm
Pv(x)

where

Pv =

∞∑
k=0

(−v)k(v + 1)k
(k!)2

(
1− x

2

)k

is the Legendre function of the first kind. Here (·)k is the Pochhammer symbol; see poch.
Parameters

m [array_like] Order (int or float). If passed a float not equal to an integer the function returns
NaN.

v [array_like] Degree (float).
x [array_like] Argument (float). Must have |x| <= 1.

Returns

pmv [ndarray] Value of the associated Legendre function.
See also:

lpmn

Compute the associated Legendre function for all orders 0, ..., m and degrees 0, ..., n.
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clpmn

Compute the associated Legendre function at complex arguments.

Notes

Note that this implementation includes the Condon-Shortley phase.

References

[1]

scipy.special.sph_harm
scipy.special.sph_harm(m, n, theta, phi) = <ufunc 'sph_harm'>

Compute spherical harmonics.
The spherical harmonics are defined as

Y m
n (θ, ϕ) =

√
2n+ 1

4π

(n−m)!

(n+m)!
eimθPm

n (cos(ϕ))

where Pm
n are the associated Legendre functions; see lpmv.

Parameters

m [array_like] Order of the harmonic (int); must have |m| <= n.
n [array_like] Degree of the harmonic (int); must have n >= 0. This is often denoted by l

(lower case L) in descriptions of spherical harmonics.
theta [array_like] Azimuthal (longitudinal) coordinate; must be in [0, 2*pi].
phi [array_like] Polar (colatitudinal) coordinate; must be in [0, pi].

Returns

y_mn [complex float] The harmonic Y m
n sampled at theta and phi.

Notes

There are different conventions for the meanings of the input arguments theta and phi. In SciPy theta is the
azimuthal angle and phi is the polar angle. It is common to see the opposite convention, that is, theta as the
polar angle and phi as the azimuthal angle.
Note that SciPy’s spherical harmonics include the Condon-Shortley phase [2] because it is part of lpmv.
With SciPy’s conventions, the first several spherical harmonics are

Y 0
0 (θ, ϕ) =

1

2

√
1

π

Y −1
1 (θ, ϕ) =

1

2

√
3

2π
e−iθ sin(ϕ)

Y 0
1 (θ, ϕ) =

1

2

√
3

π
cos(ϕ)

Y 1
1 (θ, ϕ) = −1

2

√
3

2π
eiθ sin(ϕ).
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References

[1], [2]
These are not universal functions:

clpmn(m, n, z[, type]) Associated Legendre function of the first kind for com-
plex arguments.

lpn(n, z) Legendre function of the first kind.
lqn(n, z) Legendre function of the second kind.
lpmn(m, n, z) Sequence of associated Legendre functions of the first

kind.
lqmn(m, n, z) Sequence of associated Legendre functions of the second

kind.

scipy.special.clpmn
scipy.special.clpmn(m, n, z, type=3)

Associated Legendre function of the first kind for complex arguments.
Computes the associated Legendre function of the first kind of order m and degree n, Pmn(z) = Pm

n (z), and its
derivative, Pmn'(z). Returns two arrays of size (m+1, n+1) containing Pmn(z) and Pmn'(z) for all orders
from 0..m and degrees from 0..n.

Parameters

m [int] |m| <= n; the order of the Legendre function.
n [int] where n >= 0; the degree of the Legendre function. Often called l (lower case L) in

descriptions of the associated Legendre function
z [float or complex] Input value.
type [int, optional] takes values 2 or 3 2: cut on the real axis |x| > 1 3: cut on the real axis -1

< x < 1 (default)
Returns

Pmn_z [(m+1, n+1) array] Values for all orders 0..m and degrees 0..n
Pmn_d_z [(m+1, n+1) array] Derivatives for all orders 0..m and degrees 0..n

See also:

lpmn

associated Legendre functions of the first kind for real z

Notes

By default, i.e. for type=3, phase conventions are chosen according to [1] such that the function is analytic. The
cut lies on the interval (-1, 1). Approaching the cut from above or below in general yields a phase factor with respect
to Ferrer’s function of the first kind (cf. lpmn).
For type=2 a cut at |x| > 1 is chosen. Approaching the real values on the interval (-1, 1) in the complex plane
yields Ferrer’s function of the first kind.

References

[1], [2]
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scipy.special.lpn
scipy.special.lpn(n, z)

Legendre function of the first kind.
Compute sequence of Legendre functions of the first kind (polynomials), Pn(z) and derivatives for all degrees from
0 to n (inclusive).
See also special.legendre for polynomial class.

References

[1]

scipy.special.lqn
scipy.special.lqn(n, z)

Legendre function of the second kind.
Compute sequence of Legendre functions of the second kind, Qn(z) and derivatives for all degrees from 0 to n
(inclusive).

References

[1]

scipy.special.lpmn
scipy.special.lpmn(m, n, z)

Sequence of associated Legendre functions of the first kind.
Computes the associated Legendre function of the first kind of order m and degree n, Pmn(z) = Pm

n (z), and its
derivative, Pmn'(z). Returns two arrays of size (m+1, n+1) containing Pmn(z) and Pmn'(z) for all orders
from 0..m and degrees from 0..n.
This function takes a real argument z. For complex arguments z use clpmn instead.

Parameters

m [int] |m| <= n; the order of the Legendre function.
n [int] where n >= 0; the degree of the Legendre function. Often called l (lower case L) in

descriptions of the associated Legendre function
z [float] Input value.

Returns

Pmn_z [(m+1, n+1) array] Values for all orders 0..m and degrees 0..n
Pmn_d_z [(m+1, n+1) array] Derivatives for all orders 0..m and degrees 0..n

See also:

clpmn

associated Legendre functions of the first kind for complex z

Notes

In the interval (-1, 1), Ferrer’s function of the first kind is returned. The phase convention used for the intervals (1,
inf) and (-inf, -1) is such that the result is always real.
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References

[1], [2]

scipy.special.lqmn
scipy.special.lqmn(m, n, z)

Sequence of associated Legendre functions of the second kind.
Computes the associated Legendre function of the second kind of order m and degree n, Qmn(z) = Qm

n (z), and
its derivative, Qmn'(z). Returns two arrays of size (m+1, n+1) containing Qmn(z) and Qmn'(z) for all
orders from 0..m and degrees from 0..n.

Parameters

m [int] |m| <= n; the order of the Legendre function.
n [int] where n >= 0; the degree of the Legendre function. Often called l (lower case L) in

descriptions of the associated Legendre function
z [complex] Input value.

Returns

Qmn_z [(m+1, n+1) array] Values for all orders 0..m and degrees 0..n
Qmn_d_z [(m+1, n+1) array] Derivatives for all orders 0..m and degrees 0..n

References

[1]

Ellipsoidal Harmonics

ellip_harm(h2, k2, n, p, s[, signm, signn]) Ellipsoidal harmonic functions E^p_n(l)
ellip_harm_2(h2, k2, n, p, s) Ellipsoidal harmonic functions F^p_n(l)
ellip_normal(h2, k2, n, p) Ellipsoidal harmonic normalization constants

gamma^p_n

scipy.special.ellip_harm
scipy.special.ellip_harm(h2, k2, n, p, s, signm=1, signn=1)

Ellipsoidal harmonic functions E^p_n(l)
These are also known as Lame functions of the first kind, and are solutions to the Lame equation:

(s2 − h2)(s2 − k2)E′′(s) + s(2s2 − h2 − k2)E′(s) + (a− qs2)E(s) = 0

where q = (n+ 1)n and a is the eigenvalue (not returned) corresponding to the solutions.
Parameters

h2 [float] h**2
k2 [float] k**2; should be larger than h**2
n [int] Degree
s [float] Coordinate
p [int] Order, can range between [1,2n+1]
signm [{1, -1}, optional] Sign of prefactor of functions. Can be +/-1. See Notes.
signn [{1, -1}, optional] Sign of prefactor of functions. Can be +/-1. See Notes.
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Returns

E [float] the harmonic Ep
n(s)

See also:
ellip_harm_2, ellip_normal

Notes

The geometric interpretation of the ellipsoidal functions is explained in [2], [3], [4]. The signm and signn arguments
control the sign of prefactors for functions according to their type:

K : +1
L : signm
M : signn
N : signm*signn

New in version 0.15.0.

References

[1], [2], [3], [4]

Examples

>>> from scipy.special import ellip_harm
>>> w = ellip_harm(5,8,1,1,2.5)
>>> w
2.5

Check that the functions indeed are solutions to the Lame equation:

>>> from scipy.interpolate import UnivariateSpline
>>> def eigenvalue(f, df, ddf):
... r = ((s**2 - h**2)*(s**2 - k**2)*ddf + s*(2*s**2 - h**2 -␣
↪→k**2)*df - n*(n+1)*s**2*f)/f
... return -r.mean(), r.std()
>>> s = np.linspace(0.1, 10, 200)
>>> k, h, n, p = 8.0, 2.2, 3, 2
>>> E = ellip_harm(h**2, k**2, n, p, s)
>>> E_spl = UnivariateSpline(s, E)
>>> a, a_err = eigenvalue(E_spl(s), E_spl(s,1), E_spl(s,2))
>>> a, a_err
(583.44366156701483, 6.4580890640310646e-11)

scipy.special.ellip_harm_2
scipy.special.ellip_harm_2(h2, k2, n, p, s)

Ellipsoidal harmonic functions F^p_n(l)
These are also known as Lame functions of the second kind, and are solutions to the Lame equation:

(s2 − h2)(s2 − k2)F ′′(s) + s(2s2 − h2 − k2)F ′(s) + (a− qs2)F (s) = 0
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where q = (n+ 1)n and a is the eigenvalue (not returned) corresponding to the solutions.
Parameters

h2 [float] h**2
k2 [float] k**2; should be larger than h**2
n [int] Degree.
p [int] Order, can range between [1,2n+1].
s [float] Coordinate

Returns

F [float] The harmonic F p
n(s)

See also:
ellip_harm, ellip_normal

Notes

Lame functions of the second kind are related to the functions of the first kind:

F p
n(s) = (2n+ 1)Ep

n(s)

∫ 1/s

0

du

(Ep
n(1/u))2

√
(1− u2k2)(1− u2h2)

New in version 0.15.0.

Examples

>>> from scipy.special import ellip_harm_2
>>> w = ellip_harm_2(5,8,2,1,10)
>>> w
0.00108056853382

scipy.special.ellip_normal
scipy.special.ellip_normal(h2, k2, n, p)

Ellipsoidal harmonic normalization constants gamma^p_n
The normalization constant is defined as

γpn = 8

∫ h

0

dx

∫ k

h

dy
(y2 − x2)(Ep

n(y)E
p
n(x))

2√
((k2 − y2)(y2 − h2)(h2 − x2)(k2 − x2)

Parameters

h2 [float] h**2
k2 [float] k**2; should be larger than h**2
n [int] Degree.
p [int] Order, can range between [1,2n+1].

Returns

gamma [float] The normalization constant γpn
See also:
ellip_harm, ellip_harm_2
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Notes

New in version 0.15.0.

Examples

>>> from scipy.special import ellip_normal
>>> w = ellip_normal(5,8,3,7)
>>> w
1723.38796997

Orthogonal polynomials

The following functions evaluate values of orthogonal polynomials:

assoc_laguerre(x, n[, k]) Compute the generalized (associated) Laguerre polyno-
mial of degree n and order k.

eval_legendre(n, x[, out]) Evaluate Legendre polynomial at a point.
eval_chebyt(n, x[, out]) Evaluate Chebyshev polynomial of the first kind at a point.
eval_chebyu(n, x[, out]) Evaluate Chebyshev polynomial of the second kind at a

point.
eval_chebyc(n, x[, out]) Evaluate Chebyshev polynomial of the first kind on [-2,

2] at a point.
eval_chebys(n, x[, out]) Evaluate Chebyshev polynomial of the second kind on [-

2, 2] at a point.
eval_jacobi(n, alpha, beta, x[, out]) Evaluate Jacobi polynomial at a point.
eval_laguerre(n, x[, out]) Evaluate Laguerre polynomial at a point.
eval_genlaguerre(n, alpha, x[, out]) Evaluate generalized Laguerre polynomial at a point.
eval_hermite(n, x[, out]) Evaluate physicist’s Hermite polynomial at a point.
eval_hermitenorm(n, x[, out]) Evaluate probabilist’s (normalized) Hermite polynomial

at a point.
eval_gegenbauer(n, alpha, x[, out]) Evaluate Gegenbauer polynomial at a point.
eval_sh_legendre(n, x[, out]) Evaluate shifted Legendre polynomial at a point.
eval_sh_chebyt(n, x[, out]) Evaluate shifted Chebyshev polynomial of the first kind

at a point.
eval_sh_chebyu(n, x[, out]) Evaluate shifted Chebyshev polynomial of the second

kind at a point.
eval_sh_jacobi(n, p, q, x[, out]) Evaluate shifted Jacobi polynomial at a point.

scipy.special.assoc_laguerre
scipy.special.assoc_laguerre(x, n, k=0.0)

Compute the generalized (associated) Laguerre polynomial of degree n and order k.

The polynomial L(k)
n (x) is orthogonal over [0, inf), with weighting function exp(-x) * x**k with k >

-1.

Notes

assoc_laguerre is a simple wrapper around eval_genlaguerre, with reversed argument order (x, n,
k=0.0) --> (n, k, x).
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scipy.special.eval_legendre
scipy.special.eval_legendre(n, x, out=None) = <ufunc 'eval_legendre'>

Evaluate Legendre polynomial at a point.
The Legendre polynomials can be defined via the Gauss hypergeometric function 2F1 as

Pn(x) = 2F1(−n, n+ 1; 1; (1− x)/2).

When n is an integer the result is a polynomial of degree n.
Parameters

n [array_like] Degree of the polynomial. If not an integer, the result is determined via the
relation to the Gauss hypergeometric function.

x [array_like] Points at which to evaluate the Legendre polynomial
Returns

P [ndarray] Values of the Legendre polynomial
See also:

roots_legendre

roots and quadrature weights of Legendre polynomials
legendre

Legendre polynomial object
hyp2f1

Gauss hypergeometric function
numpy.polynomial.legendre.Legendre

Legendre series

scipy.special.eval_chebyt
scipy.special.eval_chebyt(n, x, out=None) = <ufunc 'eval_chebyt'>

Evaluate Chebyshev polynomial of the first kind at a point.
The Chebyshev polynomials of the first kind can be defined via the Gauss hypergeometric function 2F1 as

Tn(x) = 2F1(n,−n; 1/2; (1− x)/2).

When n is an integer the result is a polynomial of degree n.
Parameters

n [array_like] Degree of the polynomial. If not an integer, the result is determined via the
relation to the Gauss hypergeometric function.

x [array_like] Points at which to evaluate the Chebyshev polynomial
Returns

T [ndarray] Values of the Chebyshev polynomial
See also:

roots_chebyt

roots and quadrature weights of Chebyshev polynomials of the first kind
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chebyu

Chebychev polynomial object
eval_chebyu

evaluate Chebyshev polynomials of the second kind
hyp2f1

Gauss hypergeometric function
numpy.polynomial.chebyshev.Chebyshev

Chebyshev series

Notes

This routine is numerically stable for x in [-1, 1] at least up to order 10000.

scipy.special.eval_chebyu
scipy.special.eval_chebyu(n, x, out=None) = <ufunc 'eval_chebyu'>

Evaluate Chebyshev polynomial of the second kind at a point.
The Chebyshev polynomials of the second kind can be defined via the Gauss hypergeometric function 2F1 as

Un(x) = (n+ 1)2F1(−n, n+ 2; 3/2; (1− x)/2).

When n is an integer the result is a polynomial of degree n.
Parameters

n [array_like] Degree of the polynomial. If not an integer, the result is determined via the
relation to the Gauss hypergeometric function.

x [array_like] Points at which to evaluate the Chebyshev polynomial
Returns

U [ndarray] Values of the Chebyshev polynomial
See also:

roots_chebyu

roots and quadrature weights of Chebyshev polynomials of the second kind
chebyu

Chebyshev polynomial object
eval_chebyt

evaluate Chebyshev polynomials of the first kind
hyp2f1

Gauss hypergeometric function
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scipy.special.eval_chebyc
scipy.special.eval_chebyc(n, x, out=None) = <ufunc 'eval_chebyc'>

Evaluate Chebyshev polynomial of the first kind on [-2, 2] at a point.
These polynomials are defined as

Sn(x) = Tn(x/2)

where Tn is a Chebyshev polynomial of the first kind.
Parameters

n [array_like] Degree of the polynomial. If not an integer, the result is determined via the
relation to eval_chebyt.

x [array_like] Points at which to evaluate the Chebyshev polynomial
Returns

C [ndarray] Values of the Chebyshev polynomial
See also:

roots_chebyc

roots and quadrature weights of Chebyshev polynomials of the first kind on [-2, 2]
chebyc

Chebyshev polynomial object
numpy.polynomial.chebyshev.Chebyshev

Chebyshev series
eval_chebyt

evaluate Chebycshev polynomials of the first kind

scipy.special.eval_chebys
scipy.special.eval_chebys(n, x, out=None) = <ufunc 'eval_chebys'>

Evaluate Chebyshev polynomial of the second kind on [-2, 2] at a point.
These polynomials are defined as

Sn(x) = Un(x/2)

where Un is a Chebyshev polynomial of the second kind.
Parameters

n [array_like] Degree of the polynomial. If not an integer, the result is determined via the
relation to eval_chebyu.

x [array_like] Points at which to evaluate the Chebyshev polynomial
Returns

S [ndarray] Values of the Chebyshev polynomial
See also:

roots_chebys

roots and quadrature weights of Chebyshev polynomials of the second kind on [-2, 2]
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chebys

Chebyshev polynomial object
eval_chebyu

evaluate Chebyshev polynomials of the second kind

scipy.special.eval_jacobi
scipy.special.eval_jacobi(n, alpha, beta, x, out=None) = <ufunc 'eval_jacobi'>

Evaluate Jacobi polynomial at a point.
The Jacobi polynomials can be defined via the Gauss hypergeometric function 2F1 as

P (α,β)
n (x) =

(α+ 1)n
Γ(n+ 1)

2F1(−n, 1 + α+ β + n;α+ 1; (1− z)/2)

where (·)n is the Pochhammer symbol; see poch. When n is an integer the result is a polynomial of degree n.
Parameters

n [array_like] Degree of the polynomial. If not an integer the result is determined via the
relation to the Gauss hypergeometric function.

alpha [array_like] Parameter
beta [array_like] Parameter
x [array_like] Points at which to evaluate the polynomial

Returns

P [ndarray] Values of the Jacobi polynomial
See also:

roots_jacobi

roots and quadrature weights of Jacobi polynomials
jacobi

Jacobi polynomial object
hyp2f1

Gauss hypergeometric function

scipy.special.eval_laguerre
scipy.special.eval_laguerre(n, x, out=None) = <ufunc 'eval_laguerre'>

Evaluate Laguerre polynomial at a point.
The Laguerre polynomials can be defined via the confluent hypergeometric function 1F1 as

Ln(x) = 1F1(−n, 1, x).

When n is an integer the result is a polynomial of degree n.
Parameters

n [array_like] Degree of the polynomial. If not an integer the result is determined via the
relation to the confluent hypergeometric function.

x [array_like] Points at which to evaluate the Laguerre polynomial
Returns
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L [ndarray] Values of the Laguerre polynomial
See also:

roots_laguerre

roots and quadrature weights of Laguerre polynomials
laguerre

Laguerre polynomial object
numpy.polynomial.laguerre.Laguerre

Laguerre series
eval_genlaguerre

evaluate generalized Laguerre polynomials

scipy.special.eval_genlaguerre
scipy.special.eval_genlaguerre(n, alpha, x, out=None) = <ufunc

'eval_genlaguerre'>
Evaluate generalized Laguerre polynomial at a point.
The generalized Laguerre polynomials can be defined via the confluent hypergeometric function 1F1 as

L(α)
n (x) =

(
n+ α

n

)
1F1(−n, α+ 1, x).

When n is an integer the result is a polynomial of degree n. The Laguerre polynomials are the special case where
α = 0.

Parameters

n [array_like] Degree of the polynomial. If not an integer the result is determined via the
relation to the confluent hypergeometric function.

alpha [array_like] Parameter; must have alpha > -1
x [array_like] Points at which to evaluate the generalized Laguerre polynomial

Returns

L [ndarray] Values of the generalized Laguerre polynomial
See also:

roots_genlaguerre

roots and quadrature weights of generalized Laguerre polynomials
genlaguerre

generalized Laguerre polynomial object
hyp1f1

confluent hypergeometric function
eval_laguerre

evaluate Laguerre polynomials
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scipy.special.eval_hermite
scipy.special.eval_hermite(n, x, out=None) = <ufunc 'eval_hermite'>

Evaluate physicist’s Hermite polynomial at a point.
Defined by

Hn(x) = (−1)nex
2 dn

dxn
e−x2

;

Hn is a polynomial of degree n.
Parameters

n [array_like] Degree of the polynomial
x [array_like] Points at which to evaluate the Hermite polynomial

Returns

H [ndarray] Values of the Hermite polynomial
See also:

roots_hermite

roots and quadrature weights of physicist’s Hermite polynomials
hermite

physicist’s Hermite polynomial object
numpy.polynomial.hermite.Hermite

Physicist’s Hermite series
eval_hermitenorm

evaluate Probabilist’s Hermite polynomials

scipy.special.eval_hermitenorm
scipy.special.eval_hermitenorm(n, x, out=None) = <ufunc 'eval_hermitenorm'>

Evaluate probabilist’s (normalized) Hermite polynomial at a point.
Defined by

Hen(x) = (−1)nex
2/2 d

n

dxn
e−x2/2;

Hen is a polynomial of degree n.
Parameters

n [array_like] Degree of the polynomial
x [array_like] Points at which to evaluate the Hermite polynomial

Returns

He [ndarray] Values of the Hermite polynomial
See also:

roots_hermitenorm

roots and quadrature weights of probabilist’s Hermite polynomials
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hermitenorm

probabilist’s Hermite polynomial object
numpy.polynomial.hermite_e.HermiteE

Probabilist’s Hermite series
eval_hermite

evaluate physicist’s Hermite polynomials

scipy.special.eval_gegenbauer
scipy.special.eval_gegenbauer(n, alpha, x, out=None) = <ufunc 'eval_gegenbauer'>

Evaluate Gegenbauer polynomial at a point.
The Gegenbauer polynomials can be defined via the Gauss hypergeometric function 2F1 as

C(α)
n =

(2α)n
Γ(n+ 1)

2F1(−n, 2α+ n;α+ 1/2; (1− z)/2).

When n is an integer the result is a polynomial of degree n.
Parameters

n [array_like] Degree of the polynomial. If not an integer, the result is determined via the
relation to the Gauss hypergeometric function.

alpha [array_like] Parameter
x [array_like] Points at which to evaluate the Gegenbauer polynomial

Returns

C [ndarray] Values of the Gegenbauer polynomial
See also:

roots_gegenbauer

roots and quadrature weights of Gegenbauer polynomials
gegenbauer

Gegenbauer polynomial object
hyp2f1

Gauss hypergeometric function

scipy.special.eval_sh_legendre
scipy.special.eval_sh_legendre(n, x, out=None) = <ufunc 'eval_sh_legendre'>

Evaluate shifted Legendre polynomial at a point.
These polynomials are defined as

P ∗
n(x) = Pn(2x− 1)

where Pn is a Legendre polynomial.
Parameters

n [array_like] Degree of the polynomial. If not an integer, the value is determined via the
relation to eval_legendre.

x [array_like] Points at which to evaluate the shifted Legendre polynomial
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Returns

P [ndarray] Values of the shifted Legendre polynomial
See also:

roots_sh_legendre

roots and quadrature weights of shifted Legendre polynomials
sh_legendre

shifted Legendre polynomial object
eval_legendre

evaluate Legendre polynomials
numpy.polynomial.legendre.Legendre

Legendre series

scipy.special.eval_sh_chebyt
scipy.special.eval_sh_chebyt(n, x, out=None) = <ufunc 'eval_sh_chebyt'>

Evaluate shifted Chebyshev polynomial of the first kind at a point.
These polynomials are defined as

T ∗
n(x) = Tn(2x− 1)

where Tn is a Chebyshev polynomial of the first kind.
Parameters

n [array_like] Degree of the polynomial. If not an integer, the result is determined via the
relation to eval_chebyt.

x [array_like] Points at which to evaluate the shifted Chebyshev polynomial
Returns

T [ndarray] Values of the shifted Chebyshev polynomial
See also:

roots_sh_chebyt

roots and quadrature weights of shifted Chebyshev polynomials of the first kind
sh_chebyt

shifted Chebyshev polynomial object
eval_chebyt

evaluate Chebyshev polynomials of the first kind
numpy.polynomial.chebyshev.Chebyshev

Chebyshev series
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scipy.special.eval_sh_chebyu
scipy.special.eval_sh_chebyu(n, x, out=None) = <ufunc 'eval_sh_chebyu'>

Evaluate shifted Chebyshev polynomial of the second kind at a point.
These polynomials are defined as

U∗
n(x) = Un(2x− 1)

where Un is a Chebyshev polynomial of the first kind.
Parameters

n [array_like] Degree of the polynomial. If not an integer, the result is determined via the
relation to eval_chebyu.

x [array_like] Points at which to evaluate the shifted Chebyshev polynomial
Returns

U [ndarray] Values of the shifted Chebyshev polynomial
See also:

roots_sh_chebyu

roots and quadrature weights of shifted Chebychev polynomials of the second kind
sh_chebyu

shifted Chebyshev polynomial object
eval_chebyu

evaluate Chebyshev polynomials of the second kind

scipy.special.eval_sh_jacobi
scipy.special.eval_sh_jacobi(n, p, q, x, out=None) = <ufunc 'eval_sh_jacobi'>

Evaluate shifted Jacobi polynomial at a point.
Defined by

G(p,q)
n (x) =

(
2n+ p− 1

n

)−1

P (p−q,q−1)
n (2x− 1),

where P (·,·)
n is the n-th Jacobi polynomial.

Parameters

n [int] Degree of the polynomial. If not an integer, the result is determined via the relation to
binom and eval_jacobi.

p [float] Parameter
q [float] Parameter

Returns

G [ndarray] Values of the shifted Jacobi polynomial.
See also:

roots_sh_jacobi

roots and quadrature weights of shifted Jacobi polynomials
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sh_jacobi

shifted Jacobi polynomial object
eval_jacobi

evaluate Jacobi polynomials

The following functions compute roots and quadrature weights for orthogonal polynomials:

roots_legendre(n[, mu]) Gauss-Legendre quadrature.
roots_chebyt(n[, mu]) Gauss-Chebyshev (first kind) quadrature.
roots_chebyu(n[, mu]) Gauss-Chebyshev (second kind) quadrature.
roots_chebyc(n[, mu]) Gauss-Chebyshev (first kind) quadrature.
roots_chebys(n[, mu]) Gauss-Chebyshev (second kind) quadrature.
roots_jacobi(n, alpha, beta[, mu]) Gauss-Jacobi quadrature.
roots_laguerre(n[, mu]) Gauss-Laguerre quadrature.
roots_genlaguerre(n, alpha[, mu]) Gauss-generalized Laguerre quadrature.
roots_hermite(n[, mu]) Gauss-Hermite (physicst’s) quadrature.
roots_hermitenorm(n[, mu]) Gauss-Hermite (statistician’s) quadrature.
roots_gegenbauer(n, alpha[, mu]) Gauss-Gegenbauer quadrature.
roots_sh_legendre(n[, mu]) Gauss-Legendre (shifted) quadrature.
roots_sh_chebyt(n[, mu]) Gauss-Chebyshev (first kind, shifted) quadrature.
roots_sh_chebyu(n[, mu]) Gauss-Chebyshev (second kind, shifted) quadrature.
roots_sh_jacobi(n, p1, q1[, mu]) Gauss-Jacobi (shifted) quadrature.

scipy.special.roots_legendre
scipy.special.roots_legendre(n, mu=False)

Gauss-Legendre quadrature.
Computes the sample points and weights for Gauss-Legendre quadrature. The sample points are the roots of the n-
th degree Legendre polynomial Pn(x). These sample points and weights correctly integrate polynomials of degree
2n− 1 or less over the interval [−1, 1] with weight function f(x) = 1.0.

Parameters

n [int] quadrature order
mu [bool, optional] If True, return the sum of the weights, optional.

Returns

x [ndarray] Sample points
w [ndarray] Weights
mu [float] Sum of the weights

See also:
scipy.integrate.quadrature, scipy.integrate.fixed_quad, numpy.polynomial.
legendre.leggauss

scipy.special.roots_chebyt
scipy.special.roots_chebyt(n, mu=False)

Gauss-Chebyshev (first kind) quadrature.
Computes the sample points and weights for Gauss-Chebyshev quadrature. The sample points are the roots of the
n-th degree Chebyshev polynomial of the first kind, Tn(x). These sample points and weights correctly integrate
polynomials of degree 2n− 1 or less over the interval [−1, 1] with weight function f(x) = 1/

√
1− x2.
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Parameters

n [int] quadrature order
mu [bool, optional] If True, return the sum of the weights, optional.

Returns

x [ndarray] Sample points
w [ndarray] Weights
mu [float] Sum of the weights

See also:
scipy.integrate.quadrature, scipy.integrate.fixed_quad, numpy.polynomial.
chebyshev.chebgauss

scipy.special.roots_chebyu
scipy.special.roots_chebyu(n, mu=False)

Gauss-Chebyshev (second kind) quadrature.
Computes the sample points and weights for Gauss-Chebyshev quadrature. The sample points are the roots of the
n-th degree Chebyshev polynomial of the second kind, Un(x). These sample points and weights correctly integrate
polynomials of degree 2n− 1 or less over the interval [−1, 1] with weight function f(x) =

√
1− x2.

Parameters

n [int] quadrature order
mu [bool, optional] If True, return the sum of the weights, optional.

Returns

x [ndarray] Sample points
w [ndarray] Weights
mu [float] Sum of the weights

See also:
scipy.integrate.quadrature, scipy.integrate.fixed_quad

scipy.special.roots_chebyc
scipy.special.roots_chebyc(n, mu=False)

Gauss-Chebyshev (first kind) quadrature.
Computes the sample points and weights for Gauss-Chebyshev quadrature. The sample points are the roots of the
n-th degree Chebyshev polynomial of the first kind, Cn(x). These sample points and weights correctly integrate
polynomials of degree 2n− 1 or less over the interval [−2, 2] with weight function f(x) = 1/

√
1− (x/2)2.

Parameters

n [int] quadrature order
mu [bool, optional] If True, return the sum of the weights, optional.

Returns

x [ndarray] Sample points
w [ndarray] Weights
mu [float] Sum of the weights

See also:
scipy.integrate.quadrature, scipy.integrate.fixed_quad
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scipy.special.roots_chebys
scipy.special.roots_chebys(n, mu=False)

Gauss-Chebyshev (second kind) quadrature.
Computes the sample points and weights for Gauss-Chebyshev quadrature. The sample points are the roots of the
n-th degree Chebyshev polynomial of the second kind, Sn(x). These sample points and weights correctly integrate
polynomials of degree 2n− 1 or less over the interval [−2, 2] with weight function f(x) =

√
1− (x/2)2.

Parameters

n [int] quadrature order
mu [bool, optional] If True, return the sum of the weights, optional.

Returns

x [ndarray] Sample points
w [ndarray] Weights
mu [float] Sum of the weights

See also:
scipy.integrate.quadrature, scipy.integrate.fixed_quad

scipy.special.roots_jacobi
scipy.special.roots_jacobi(n, alpha, beta, mu=False)

Gauss-Jacobi quadrature.
Computes the sample points and weights for Gauss-Jacobi quadrature. The sample points are the roots of the n-th
degree Jacobi polynomial, Pα,β

n (x). These sample points and weights correctly integrate polynomials of degree
2n− 1 or less over the interval [−1, 1] with weight function f(x) = (1− x)α(1 + x)β .

Parameters

n [int] quadrature order
alpha [float] alpha must be > -1
beta [float] beta must be > -1
mu [bool, optional] If True, return the sum of the weights, optional.

Returns

x [ndarray] Sample points
w [ndarray] Weights
mu [float] Sum of the weights

See also:
scipy.integrate.quadrature, scipy.integrate.fixed_quad

scipy.special.roots_laguerre
scipy.special.roots_laguerre(n, mu=False)

Gauss-Laguerre quadrature.
Computes the sample points and weights for Gauss-Laguerre quadrature. The sample points are the roots of the n-
th degree Laguerre polynomial, Ln(x). These sample points and weights correctly integrate polynomials of degree
2n− 1 or less over the interval [0,∞] with weight function f(x) = e−x.

Parameters

n [int] quadrature order
mu [bool, optional] If True, return the sum of the weights, optional.

Returns
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x [ndarray] Sample points
w [ndarray] Weights
mu [float] Sum of the weights

See also:
scipy.integrate.quadrature, scipy.integrate.fixed_quad, numpy.polynomial.
laguerre.laggauss

scipy.special.roots_genlaguerre
scipy.special.roots_genlaguerre(n, alpha, mu=False)

Gauss-generalized Laguerre quadrature.
Computes the sample points and weights for Gauss-generalized Laguerre quadrature. The sample points are the
roots of the n-th degree generalized Laguerre polynomial, Lα

n(x). These sample points and weights correctly
integrate polynomials of degree 2n− 1 or less over the interval [0,∞] with weight function f(x) = xαe−x.

Parameters

n [int] quadrature order
alpha [float] alpha must be > -1
mu [bool, optional] If True, return the sum of the weights, optional.

Returns

x [ndarray] Sample points
w [ndarray] Weights
mu [float] Sum of the weights

See also:
scipy.integrate.quadrature, scipy.integrate.fixed_quad

scipy.special.roots_hermite
scipy.special.roots_hermite(n, mu=False)

Gauss-Hermite (physicst’s) quadrature.
Computes the sample points and weights for Gauss-Hermite quadrature. The sample points are the roots of the n-th
degree Hermite polynomial, Hn(x). These sample points and weights correctly integrate polynomials of degree
2n− 1 or less over the interval [−∞,∞] with weight function f(x) = e−x2 .

Parameters

n [int] quadrature order
mu [bool, optional] If True, return the sum of the weights, optional.

Returns

x [ndarray] Sample points
w [ndarray] Weights
mu [float] Sum of the weights

See also:
scipy.integrate.quadrature, scipy.integrate.fixed_quad, numpy.polynomial.
hermite.hermgauss, roots_hermitenorm
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Notes

For small n up to 150 a modified version of the Golub-Welsch algorithm is used. Nodes are computed from the
eigenvalue problem and improved by one step of a Newton iteration. The weights are computed from the well-
known analytical formula.
For n larger than 150 an optimal asymptotic algorithm is applied which computes nodes andweights in a numerically
stable manner. The algorithm has linear runtime making computation for very large n (several thousand or more)
feasible.

References

[townsend.trogdon.olver-2014], [townsend.trogdon.olver-2015]

scipy.special.roots_hermitenorm
scipy.special.roots_hermitenorm(n, mu=False)

Gauss-Hermite (statistician’s) quadrature.
Computes the sample points and weights for Gauss-Hermite quadrature. The sample points are the roots of the n-th
degree Hermite polynomial, Hen(x). These sample points and weights correctly integrate polynomials of degree
2n− 1 or less over the interval [−∞,∞] with weight function f(x) = e−x2/2.

Parameters

n [int] quadrature order
mu [bool, optional] If True, return the sum of the weights, optional.

Returns

x [ndarray] Sample points
w [ndarray] Weights
mu [float] Sum of the weights

See also:
scipy.integrate.quadrature, scipy.integrate.fixed_quad, numpy.polynomial.
hermite_e.hermegauss

Notes

For small n up to 150 a modified version of the Golub-Welsch algorithm is used. Nodes are computed from the
eigenvalue problem and improved by one step of a Newton iteration. The weights are computed from the well-
known analytical formula.
For n larger than 150 an optimal asymptotic algorithm is used which computes nodes and weights in a numerical
stable manner. The algorithm has linear runtime making computation for very large n (several thousand or more)
feasible.

scipy.special.roots_gegenbauer
scipy.special.roots_gegenbauer(n, alpha, mu=False)

Gauss-Gegenbauer quadrature.
Computes the sample points and weights for Gauss-Gegenbauer quadrature. The sample points are the roots of the
n-th degree Gegenbauer polynomial, Cα

n (x). These sample points and weights correctly integrate polynomials of
degree 2n− 1 or less over the interval [−1, 1] with weight function f(x) = (1− x2)α−1/2.

Parameters
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n [int] quadrature order
alpha [float] alpha must be > -0.5
mu [bool, optional] If True, return the sum of the weights, optional.

Returns

x [ndarray] Sample points
w [ndarray] Weights
mu [float] Sum of the weights

See also:
scipy.integrate.quadrature, scipy.integrate.fixed_quad

scipy.special.roots_sh_legendre
scipy.special.roots_sh_legendre(n, mu=False)

Gauss-Legendre (shifted) quadrature.
Computes the sample points and weights for Gauss-Legendre quadrature. The sample points are the roots of the
n-th degree shifted Legendre polynomial P ∗

n(x). These sample points and weights correctly integrate polynomials
of degree 2n− 1 or less over the interval [0, 1] with weight function f(x) = 1.0.

Parameters

n [int] quadrature order
mu [bool, optional] If True, return the sum of the weights, optional.

Returns

x [ndarray] Sample points
w [ndarray] Weights
mu [float] Sum of the weights

See also:
scipy.integrate.quadrature, scipy.integrate.fixed_quad

scipy.special.roots_sh_chebyt
scipy.special.roots_sh_chebyt(n, mu=False)

Gauss-Chebyshev (first kind, shifted) quadrature.
Computes the sample points and weights for Gauss-Chebyshev quadrature. The sample points are the roots of
the n-th degree shifted Chebyshev polynomial of the first kind, Tn(x). These sample points and weights correctly
integrate polynomials of degree 2n− 1 or less over the interval [0, 1] with weight function f(x) = 1/

√
x− x2.

Parameters

n [int] quadrature order
mu [bool, optional] If True, return the sum of the weights, optional.

Returns

x [ndarray] Sample points
w [ndarray] Weights
mu [float] Sum of the weights

See also:
scipy.integrate.quadrature, scipy.integrate.fixed_quad
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scipy.special.roots_sh_chebyu
scipy.special.roots_sh_chebyu(n, mu=False)

Gauss-Chebyshev (second kind, shifted) quadrature.
Computes the sample points and weights for Gauss-Chebyshev quadrature. The sample points are the roots of the
n-th degree shifted Chebyshev polynomial of the second kind, Un(x). These sample points and weights correctly
integrate polynomials of degree 2n− 1 or less over the interval [0, 1] with weight function f(x) =

√
x− x2.

Parameters

n [int] quadrature order
mu [bool, optional] If True, return the sum of the weights, optional.

Returns

x [ndarray] Sample points
w [ndarray] Weights
mu [float] Sum of the weights

See also:
scipy.integrate.quadrature, scipy.integrate.fixed_quad

scipy.special.roots_sh_jacobi
scipy.special.roots_sh_jacobi(n, p1, q1, mu=False)

Gauss-Jacobi (shifted) quadrature.
Computes the sample points and weights for Gauss-Jacobi (shifted) quadrature. The sample points are the roots of
the n-th degree shifted Jacobi polynomial, Gp,q

n (x). These sample points and weights correctly integrate polyno-
mials of degree 2n− 1 or less over the interval [0, 1] with weight function f(x) = (1− x)p−qxq−1

Parameters

n [int] quadrature order
p1 [float] (p1 - q1) must be > -1
q1 [float] q1 must be > 0
mu [bool, optional] If True, return the sum of the weights, optional.

Returns

x [ndarray] Sample points
w [ndarray] Weights
mu [float] Sum of the weights

See also:
scipy.integrate.quadrature, scipy.integrate.fixed_quad

The functions below, in turn, return the polynomial coefficients in orthopoly1d objects, which function similarly as
numpy.poly1d. The orthopoly1d class also has an attribute weights which returns the roots, weights, and total
weights for the appropriate form of Gaussian quadrature. These are returned in an n x 3 array with roots in the first
column, weights in the second column, and total weights in the final column. Note that orthopoly1d objects are
converted to poly1d when doing arithmetic, and lose information of the original orthogonal polynomial.

legendre(n[, monic]) Legendre polynomial.
chebyt(n[, monic]) Chebyshev polynomial of the first kind.
chebyu(n[, monic]) Chebyshev polynomial of the second kind.
chebyc(n[, monic]) Chebyshev polynomial of the first kind on [−2, 2].
chebys(n[, monic]) Chebyshev polynomial of the second kind on [−2, 2].

Continued on next page
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Table 233 – continued from previous page
jacobi(n, alpha, beta[, monic]) Jacobi polynomial.
laguerre(n[, monic]) Laguerre polynomial.
genlaguerre(n, alpha[, monic]) Generalized (associated) Laguerre polynomial.
hermite(n[, monic]) Physicist’s Hermite polynomial.
hermitenorm(n[, monic]) Normalized (probabilist’s) Hermite polynomial.
gegenbauer(n, alpha[, monic]) Gegenbauer (ultraspherical) polynomial.
sh_legendre(n[, monic]) Shifted Legendre polynomial.
sh_chebyt(n[, monic]) Shifted Chebyshev polynomial of the first kind.
sh_chebyu(n[, monic]) Shifted Chebyshev polynomial of the second kind.
sh_jacobi(n, p, q[, monic]) Shifted Jacobi polynomial.

scipy.special.legendre
scipy.special.legendre(n, monic=False)

Legendre polynomial.
Defined to be the solution of

d

dx

[
(1− x2)

d

dx
Pn(x)

]
+ n(n+ 1)Pn(x) = 0;

Pn(x) is a polynomial of degree n.
Parameters

n [int] Degree of the polynomial.
monic [bool, optional] If True, scale the leading coefficient to be 1. Default is False.

Returns

P [orthopoly1d] Legendre polynomial.

Notes

The polynomials Pn are orthogonal over [−1, 1] with weight function 1.

Examples

Generate the 3rd-order Legendre polynomial 1/2*(5x^3 + 0x^2 - 3x + 0):

>>> from scipy.special import legendre
>>> legendre(3)
poly1d([ 2.5, 0. , -1.5, 0. ])

scipy.special.chebyt
scipy.special.chebyt(n, monic=False)

Chebyshev polynomial of the first kind.
Defined to be the solution of

(1− x2)
d2

dx2
Tn − x

d

dx
Tn + n2Tn = 0;

Tn is a polynomial of degree n.
Parameters
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n [int] Degree of the polynomial.
monic [bool, optional] If True, scale the leading coefficient to be 1. Default is False.

Returns

T [orthopoly1d] Chebyshev polynomial of the first kind.
See also:

chebyu

Chebyshev polynomial of the second kind.

Notes

The polynomials Tn are orthogonal over [−1, 1] with weight function (1− x2)−1/2.

scipy.special.chebyu
scipy.special.chebyu(n, monic=False)

Chebyshev polynomial of the second kind.
Defined to be the solution of

(1− x2)
d2

dx2
Un − 3x

d

dx
Un + n(n+ 2)Un = 0;

Un is a polynomial of degree n.
Parameters

n [int] Degree of the polynomial.
monic [bool, optional] If True, scale the leading coefficient to be 1. Default is False.

Returns

U [orthopoly1d] Chebyshev polynomial of the second kind.
See also:

chebyt

Chebyshev polynomial of the first kind.

Notes

The polynomials Un are orthogonal over [−1, 1] with weight function (1− x2)1/2.

scipy.special.chebyc
scipy.special.chebyc(n, monic=False)

Chebyshev polynomial of the first kind on [−2, 2].
Defined as Cn(x) = 2Tn(x/2), where Tn is the nth Chebychev polynomial of the first kind.

Parameters

n [int] Degree of the polynomial.
monic [bool, optional] If True, scale the leading coefficient to be 1. Default is False.

Returns
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C [orthopoly1d] Chebyshev polynomial of the first kind on [−2, 2].
See also:

chebyt

Chebyshev polynomial of the first kind.

Notes

The polynomials Cn(x) are orthogonal over [−2, 2] with weight function 1/
√

1− (x/2)2.

References

[1]

scipy.special.chebys
scipy.special.chebys(n, monic=False)

Chebyshev polynomial of the second kind on [−2, 2].
Defined as Sn(x) = Un(x/2) where Un is the nth Chebychev polynomial of the second kind.

Parameters

n [int] Degree of the polynomial.
monic [bool, optional] If True, scale the leading coefficient to be 1. Default is False.

Returns

S [orthopoly1d] Chebyshev polynomial of the second kind on [−2, 2].
See also:

chebyu

Chebyshev polynomial of the second kind

Notes

The polynomials Sn(x) are orthogonal over [−2, 2] with weight function
√

1− (x/2)
2.

References

[1]

scipy.special.jacobi
scipy.special.jacobi(n, alpha, beta, monic=False)

Jacobi polynomial.
Defined to be the solution of

(1− x2)
d2

dx2
P (α,β)
n + (β − α− (α+ β + 2)x)

d

dx
P (α,β)
n + n(n+ α+ β + 1)P (α,β)

n = 0

for α, β > −1; P (α,β)
n is a polynomial of degree n.
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Parameters

n [int] Degree of the polynomial.
alpha [float] Parameter, must be greater than -1.
beta [float] Parameter, must be greater than -1.
monic [bool, optional] If True, scale the leading coefficient to be 1. Default is False.

Returns

P [orthopoly1d] Jacobi polynomial.

Notes

For fixed α, β, the polynomials P (α,β)
n are orthogonal over [−1, 1] with weight function (1− x)α(1 + x)β .

scipy.special.laguerre
scipy.special.laguerre(n, monic=False)

Laguerre polynomial.
Defined to be the solution of

x
d2

dx2
Ln + (1− x)

d

dx
Ln + nLn = 0;

Ln is a polynomial of degree n.
Parameters

n [int] Degree of the polynomial.
monic [bool, optional] If True, scale the leading coefficient to be 1. Default is False.

Returns

L [orthopoly1d] Laguerre Polynomial.

Notes

The polynomials Ln are orthogonal over [0,∞) with weight function e−x.

scipy.special.genlaguerre
scipy.special.genlaguerre(n, alpha, monic=False)

Generalized (associated) Laguerre polynomial.
Defined to be the solution of

x
d2

dx2
L(α)
n + (α+ 1− x)

d

dx
L(α)
n + nL(α)

n = 0,

where α > −1; L(α)
n is a polynomial of degree n.

Parameters

n [int] Degree of the polynomial.
alpha [float] Parameter, must be greater than -1.
monic [bool, optional] If True, scale the leading coefficient to be 1. Default is False.

Returns

L [orthopoly1d] Generalized Laguerre polynomial.
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See also:

laguerre

Laguerre polynomial.

Notes

For fixed α, the polynomials L(α)
n are orthogonal over [0,∞) with weight function e−xxα.

The Laguerre polynomials are the special case where α = 0.

scipy.special.hermite
scipy.special.hermite(n, monic=False)

Physicist’s Hermite polynomial.
Defined by

Hn(x) = (−1)nex
2 dn

dxn
e−x2

;

Hn is a polynomial of degree n.
Parameters

n [int] Degree of the polynomial.
monic [bool, optional] If True, scale the leading coefficient to be 1. Default is False.

Returns

H [orthopoly1d] Hermite polynomial.

Notes

The polynomials Hn are orthogonal over (−∞,∞) with weight function e−x2 .

scipy.special.hermitenorm
scipy.special.hermitenorm(n, monic=False)

Normalized (probabilist’s) Hermite polynomial.
Defined by

Hen(x) = (−1)nex
2/2 d

n

dxn
e−x2/2;

Hen is a polynomial of degree n.
Parameters

n [int] Degree of the polynomial.
monic [bool, optional] If True, scale the leading coefficient to be 1. Default is False.

Returns

He [orthopoly1d] Hermite polynomial.
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Notes

The polynomials Hen are orthogonal over (−∞,∞) with weight function e−x2/2.

scipy.special.gegenbauer
scipy.special.gegenbauer(n, alpha, monic=False)

Gegenbauer (ultraspherical) polynomial.
Defined to be the solution of

(1− x2)
d2

dx2
C(α)

n − (2α+ 1)x
d

dx
C(α)

n + n(n+ 2α)C(α)
n = 0

for α > −1/2; C(α)
n is a polynomial of degree n.

Parameters

n [int] Degree of the polynomial.
monic [bool, optional] If True, scale the leading coefficient to be 1. Default is False.

Returns

C [orthopoly1d] Gegenbauer polynomial.

Notes

The polynomials C(α)
n are orthogonal over [−1, 1] with weight function (1− x2)(α−1/2).

scipy.special.sh_legendre
scipy.special.sh_legendre(n, monic=False)

Shifted Legendre polynomial.
Defined as P ∗

n(x) = Pn(2x− 1) for Pn the nth Legendre polynomial.
Parameters

n [int] Degree of the polynomial.
monic [bool, optional] If True, scale the leading coefficient to be 1. Default is False.

Returns

P [orthopoly1d] Shifted Legendre polynomial.

Notes

The polynomials P ∗
n are orthogonal over [0, 1] with weight function 1.

scipy.special.sh_chebyt
scipy.special.sh_chebyt(n, monic=False)

Shifted Chebyshev polynomial of the first kind.
Defined as T ∗

n(x) = Tn(2x− 1) for Tn the nth Chebyshev polynomial of the first kind.
Parameters

n [int] Degree of the polynomial.
monic [bool, optional] If True, scale the leading coefficient to be 1. Default is False.
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Returns

T [orthopoly1d] Shifted Chebyshev polynomial of the first kind.

Notes

The polynomials T ∗
n are orthogonal over [0, 1] with weight function (x− x2)−1/2.

scipy.special.sh_chebyu
scipy.special.sh_chebyu(n, monic=False)

Shifted Chebyshev polynomial of the second kind.
Defined as U∗

n(x) = Un(2x− 1) for Un the nth Chebyshev polynomial of the second kind.
Parameters

n [int] Degree of the polynomial.
monic [bool, optional] If True, scale the leading coefficient to be 1. Default is False.

Returns

U [orthopoly1d] Shifted Chebyshev polynomial of the second kind.

Notes

The polynomials U∗
n are orthogonal over [0, 1] with weight function (x− x2)1/2.

scipy.special.sh_jacobi
scipy.special.sh_jacobi(n, p, q, monic=False)

Shifted Jacobi polynomial.
Defined by

G(p,q)
n (x) =

(
2n+ p− 1

n

)−1

P (p−q,q−1)
n (2x− 1),

where P (·,·)
n is the nth Jacobi polynomial.

Parameters

n [int] Degree of the polynomial.
p [float] Parameter, must have p > q − 1.
q [float] Parameter, must be greater than 0.
monic [bool, optional] If True, scale the leading coefficient to be 1. Default is False.

Returns

G [orthopoly1d] Shifted Jacobi polynomial.

Notes

For fixed p, q, the polynomials G(p,q)
n are orthogonal over [0, 1] with weight function (1− x)p−qxq−1.

Warning: Computing values of high-order polynomials (around order > 20) using polynomial coefficients is
numerically unstable. To evaluate polynomial values, the eval_* functions should be used instead.
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Hypergeometric Functions

hyp2f1(a, b, c, z) Gauss hypergeometric function 2F1(a, b; c; z)
hyp1f1(a, b, x) Confluent hypergeometric function 1F1(a, b; x)
hyperu(a, b, x) Confluent hypergeometric function U(a, b, x) of the sec-

ond kind
hyp0f1(v, x) Confluent hypergeometric limit function 0F1.
hyp2f0(a, b, x, type) hyp2f0 is deprecated! hyp2f0 is deprecated in SciPy

1.2
hyp1f2(a, b, c, x) hyp1f2 is deprecated! hyp1f2 is deprecated in SciPy

1.2
hyp3f0(a, b, c, x) hyp3f0 is deprecated! hyp3f0 is deprecated in SciPy

1.2

scipy.special.hyp2f1
scipy.special.hyp2f1(a, b, c, z) = <ufunc 'hyp2f1'>

Gauss hypergeometric function 2F1(a, b; c; z)
Parameters

a, b, c [array_like] Arguments, should be real-valued.
z [array_like] Argument, real or complex.

Returns

hyp2f1 [scalar or ndarray] The values of the gaussian hypergeometric function.
See also:

hyp0f1

confluent hypergeometric limit function.
hyp1f1

Kummer’s (confluent hypergeometric) function.

Notes

This function is defined for |z| < 1 as

hyp2f1(a, b, c, z) =

∞∑
n=0

(a)n(b)n
(c)n

zn

n!
,

and defined on the rest of the complex z-plane by analytic continuation. Here (·)n is the Pochhammer symbol; see
poch. When n is an integer the result is a polynomial of degree n.
The implementation for complex values of z is described in [1].

References

[1], [2], [3]
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scipy.special.hyp1f1
scipy.special.hyp1f1(a, b, x) = <ufunc 'hyp1f1'>

Confluent hypergeometric function 1F1(a, b; x)

scipy.special.hyperu
scipy.special.hyperu(a, b, x) = <ufunc 'hyperu'>

Confluent hypergeometric function U(a, b, x) of the second kind

scipy.special.hyp0f1
scipy.special.hyp0f1(v, x) = <ufunc 'hyp0f1'>

Confluent hypergeometric limit function 0F1.
Parameters

v, z [array_like] Input values.
Returns

hyp0f1 [ndarray] The confluent hypergeometric limit function.

Notes

This function is defined as:

0F1(v, z) =

∞∑
k=0

zk

(v)kk!
.

It’s also the limit as q → ∞ of 1F1(q; v; z/q), and satisfies the differential equation f ′′(z) + vf ′(z) = f(z).

scipy.special.hyp2f0
scipy.special.hyp2f0(a, b, x, type)

hyp2f0 is deprecated! hyp2f0 is deprecated in SciPy 1.2
Hypergeometric function 2F0 in y and an error estimate
The parameter type determines a convergence factor and can be either 1 or 2.

Returns

y Value of the function
err Error estimate

scipy.special.hyp1f2
scipy.special.hyp1f2(a, b, c, x)

hyp1f2 is deprecated! hyp1f2 is deprecated in SciPy 1.2
Hypergeometric function 1F2 and error estimate

Returns

y Value of the function
err Error estimate
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scipy.special.hyp3f0
scipy.special.hyp3f0(a, b, c, x)

hyp3f0 is deprecated! hyp3f0 is deprecated in SciPy 1.2
Hypergeometric function 3F0 in y and an error estimate

Returns

y Value of the function
err Error estimate

Parabolic Cylinder Functions

pbdv(v, x) Parabolic cylinder function D
pbvv(v, x) Parabolic cylinder function V
pbwa(a, x) Parabolic cylinder function W.

scipy.special.pbdv
scipy.special.pbdv(v, x) = <ufunc 'pbdv'>

Parabolic cylinder function D
Returns (d, dp) the parabolic cylinder function Dv(x) in d and the derivative, Dv’(x) in dp.

Returns

d Value of the function
dp Value of the derivative vs x

scipy.special.pbvv
scipy.special.pbvv(v, x) = <ufunc 'pbvv'>

Parabolic cylinder function V
Returns the parabolic cylinder function Vv(x) in v and the derivative, Vv’(x) in vp.

Returns

v Value of the function
vp Value of the derivative vs x

scipy.special.pbwa
scipy.special.pbwa(a, x) = <ufunc 'pbwa'>

Parabolic cylinder function W.
The function is a particular solution to the differential equation

y′′ +

(
1

4
x2 − a

)
y = 0,

for a full definition see section 12.14 in [1].
Parameters

a [array_like] Real parameter
x [array_like] Real argument

Returns

w [scalar or ndarray] Value of the function
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wp [scalar or ndarray] Value of the derivative in x

Notes

The function is a wrapper for a Fortran routine by Zhang and Jin [2]. The implementation is accurate only for
|a|, |x| < 5 and returns NaN outside that range.

References

[1], [2]
These are not universal functions:

pbdv_seq(v, x) Parabolic cylinder functions Dv(x) and derivatives.
pbvv_seq(v, x) Parabolic cylinder functions Vv(x) and derivatives.
pbdn_seq(n, z) Parabolic cylinder functions Dn(z) and derivatives.

scipy.special.pbdv_seq
scipy.special.pbdv_seq(v, x)

Parabolic cylinder functions Dv(x) and derivatives.
Parameters

v [float] Order of the parabolic cylinder function
x [float] Value at which to evaluate the function and derivatives

Returns

dv [ndarray] Values of D_vi(x), for vi=v-int(v), vi=1+v-int(v), …, vi=v.
dp [ndarray] Derivatives D_vi’(x), for vi=v-int(v), vi=1+v-int(v), …, vi=v.

References

[1]

scipy.special.pbvv_seq
scipy.special.pbvv_seq(v, x)

Parabolic cylinder functions Vv(x) and derivatives.
Parameters

v [float] Order of the parabolic cylinder function
x [float] Value at which to evaluate the function and derivatives

Returns

dv [ndarray] Values of V_vi(x), for vi=v-int(v), vi=1+v-int(v), …, vi=v.
dp [ndarray] Derivatives V_vi’(x), for vi=v-int(v), vi=1+v-int(v), …, vi=v.

References

[1]
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scipy.special.pbdn_seq
scipy.special.pbdn_seq(n, z)

Parabolic cylinder functions Dn(z) and derivatives.
Parameters

n [int] Order of the parabolic cylinder function
z [complex] Value at which to evaluate the function and derivatives

Returns

dv [ndarray] Values of D_i(z), for i=0, …, i=n.
dp [ndarray] Derivatives D_i’(z), for i=0, …, i=n.

References

[1]

Mathieu and Related Functions

mathieu_a(m, q) Characteristic value of even Mathieu functions
mathieu_b(m, q) Characteristic value of odd Mathieu functions

scipy.special.mathieu_a
scipy.special.mathieu_a(m, q) = <ufunc 'mathieu_a'>

Characteristic value of even Mathieu functions
Returns the characteristic value for the even solution, ce_m(z, q), of Mathieu’s equation.

scipy.special.mathieu_b
scipy.special.mathieu_b(m, q) = <ufunc 'mathieu_b'>

Characteristic value of odd Mathieu functions
Returns the characteristic value for the odd solution, se_m(z, q), of Mathieu’s equation.

These are not universal functions:

mathieu_even_coef(m, q) Fourier coefficients for even Mathieu and modified Math-
ieu functions.

mathieu_odd_coef(m, q) Fourier coefficients for even Mathieu and modified Math-
ieu functions.

scipy.special.mathieu_even_coef
scipy.special.mathieu_even_coef(m, q)

Fourier coefficients for even Mathieu and modified Mathieu functions.
The Fourier series of the even solutions of the Mathieu differential equation are of the form

ce2n(z, q) =

∞∑
k=0

A
(2k)
(2n) cos 2kz

ce2n+1(z, q) =

∞∑
k=0

A
(2k+1)
(2n+1) cos(2k + 1)z
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This function returns the coefficients A(2k)
(2n) for even input m=2n, and the coefficients A(2k+1)

(2n+1) for odd input
m=2n+1.

Parameters

m [int] Order of Mathieu functions. Must be non-negative.
q [float (>=0)] Parameter of Mathieu functions. Must be non-negative.

Returns

Ak [ndarray] Even or odd Fourier coefficients, corresponding to even or odd m.

References

[1], [2]

scipy.special.mathieu_odd_coef
scipy.special.mathieu_odd_coef(m, q)

Fourier coefficients for even Mathieu and modified Mathieu functions.
The Fourier series of the odd solutions of the Mathieu differential equation are of the form

se2n+1(z, q) =

∞∑
k=0

B
(2k+1)
(2n+1) sin(2k + 1)z

se2n+2(z, q) =

∞∑
k=0

B
(2k+2)
(2n+2) sin(2k + 2)z

This function returns the coefficients B(2k+2)
(2n+2) for even input m=2n+2, and the coefficients B

(2k+1)
(2n+1) for odd input

m=2n+1.
Parameters

m [int] Order of Mathieu functions. Must be non-negative.
q [float (>=0)] Parameter of Mathieu functions. Must be non-negative.

Returns

Bk [ndarray] Even or odd Fourier coefficients, corresponding to even or odd m.

References

[1]
The following return both function and first derivative:

mathieu_cem(m, q, x) Even Mathieu function and its derivative
mathieu_sem(m, q, x) Odd Mathieu function and its derivative
mathieu_modcem1(m, q, x) Even modified Mathieu function of the first kind and its

derivative
mathieu_modcem2(m, q, x) Even modified Mathieu function of the second kind and

its derivative
mathieu_modsem1(m, q, x) Odd modified Mathieu function of the first kind and its

derivative
mathieu_modsem2(m, q, x) Odd modified Mathieu function of the second kind and

its derivative
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scipy.special.mathieu_cem
scipy.special.mathieu_cem(m, q, x) = <ufunc 'mathieu_cem'>

Even Mathieu function and its derivative
Returns the even Mathieu function, ce_m(x, q), of order m and parameter q evaluated at x (given in degrees).
Also returns the derivative with respect to x of ce_m(x, q)

Parameters

m Order of the function
q Parameter of the function
x Argument of the function, given in degrees, not radians

Returns

y Value of the function
yp Value of the derivative vs x

scipy.special.mathieu_sem
scipy.special.mathieu_sem(m, q, x) = <ufunc 'mathieu_sem'>

Odd Mathieu function and its derivative
Returns the odd Mathieu function, se_m(x, q), of order m and parameter q evaluated at x (given in degrees). Also
returns the derivative with respect to x of se_m(x, q).

Parameters

m Order of the function
q Parameter of the function
x Argument of the function, given in degrees, not radians.

Returns

y Value of the function
yp Value of the derivative vs x

scipy.special.mathieu_modcem1
scipy.special.mathieu_modcem1(m, q, x) = <ufunc 'mathieu_modcem1'>

Even modified Mathieu function of the first kind and its derivative
Evaluates the even modified Mathieu function of the first kind, Mc1m(x, q), and its derivative at x for order m
and parameter q.

Returns

y Value of the function
yp Value of the derivative vs x

scipy.special.mathieu_modcem2
scipy.special.mathieu_modcem2(m, q, x) = <ufunc 'mathieu_modcem2'>

Even modified Mathieu function of the second kind and its derivative
Evaluates the even modified Mathieu function of the second kind, Mc2m(x, q), and its derivative at x (given in
degrees) for order m and parameter q.

Returns

y Value of the function
yp Value of the derivative vs x
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scipy.special.mathieu_modsem1
scipy.special.mathieu_modsem1(m, q, x) = <ufunc 'mathieu_modsem1'>

Odd modified Mathieu function of the first kind and its derivative
Evaluates the odd modified Mathieu function of the first kind, Ms1m(x, q), and its derivative at x (given in degrees)
for order m and parameter q.

Returns

y Value of the function
yp Value of the derivative vs x

scipy.special.mathieu_modsem2
scipy.special.mathieu_modsem2(m, q, x) = <ufunc 'mathieu_modsem2'>

Odd modified Mathieu function of the second kind and its derivative
Evaluates the odd modified Mathieu function of the second kind, Ms2m(x, q), and its derivative at x (given in
degrees) for order m and parameter q.

Returns

y Value of the function
yp Value of the derivative vs x

Spheroidal Wave Functions

pro_ang1(m, n, c, x) Prolate spheroidal angular function of the first kind and
its derivative

pro_rad1(m, n, c, x) Prolate spheroidal radial function of the first kind and its
derivative

pro_rad2(m, n, c, x) Prolate spheroidal radial function of the second kind and
its derivative

obl_ang1(m, n, c, x) Oblate spheroidal angular function of the first kind and its
derivative

obl_rad1(m, n, c, x) Oblate spheroidal radial function of the first kind and its
derivative

obl_rad2(m, n, c, x) Oblate spheroidal radial function of the second kind and
its derivative.

pro_cv(m, n, c) Characteristic value of prolate spheroidal function
obl_cv(m, n, c) Characteristic value of oblate spheroidal function
pro_cv_seq(m, n, c) Characteristic values for prolate spheroidal wave func-

tions.
obl_cv_seq(m, n, c) Characteristic values for oblate spheroidal wave functions.

scipy.special.pro_ang1
scipy.special.pro_ang1(m, n, c, x) = <ufunc 'pro_ang1'>

Prolate spheroidal angular function of the first kind and its derivative
Computes the prolate spheroidal angular function of the first kind and its derivative (with respect to x) for mode
parameters m>=0 and n>=m, spheroidal parameter c and |x| < 1.0.

Returns

s Value of the function
sp Value of the derivative vs x
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scipy.special.pro_rad1
scipy.special.pro_rad1(m, n, c, x) = <ufunc 'pro_rad1'>

Prolate spheroidal radial function of the first kind and its derivative
Computes the prolate spheroidal radial function of the first kind and its derivative (with respect to x) for mode
parameters m>=0 and n>=m, spheroidal parameter c and |x| < 1.0.

Returns

s Value of the function
sp Value of the derivative vs x

scipy.special.pro_rad2
scipy.special.pro_rad2(m, n, c, x) = <ufunc 'pro_rad2'>

Prolate spheroidal radial function of the second kind and its derivative
Computes the prolate spheroidal radial function of the second kind and its derivative (with respect to x) for mode
parameters m>=0 and n>=m, spheroidal parameter c and |x| < 1.0.

Returns

s Value of the function
sp Value of the derivative vs x

scipy.special.obl_ang1
scipy.special.obl_ang1(m, n, c, x) = <ufunc 'obl_ang1'>

Oblate spheroidal angular function of the first kind and its derivative
Computes the oblate spheroidal angular function of the first kind and its derivative (with respect to x) for mode
parameters m>=0 and n>=m, spheroidal parameter c and |x| < 1.0.

Returns

s Value of the function
sp Value of the derivative vs x

scipy.special.obl_rad1
scipy.special.obl_rad1(m, n, c, x) = <ufunc 'obl_rad1'>

Oblate spheroidal radial function of the first kind and its derivative
Computes the oblate spheroidal radial function of the first kind and its derivative (with respect to x) for mode
parameters m>=0 and n>=m, spheroidal parameter c and |x| < 1.0.

Returns

s Value of the function
sp Value of the derivative vs x

scipy.special.obl_rad2
scipy.special.obl_rad2(m, n, c, x) = <ufunc 'obl_rad2'>

Oblate spheroidal radial function of the second kind and its derivative.
Computes the oblate spheroidal radial function of the second kind and its derivative (with respect to x) for mode
parameters m>=0 and n>=m, spheroidal parameter c and |x| < 1.0.

Returns

s Value of the function
sp Value of the derivative vs x
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scipy.special.pro_cv
scipy.special.pro_cv(m, n, c) = <ufunc 'pro_cv'>

Characteristic value of prolate spheroidal function
Computes the characteristic value of prolate spheroidal wave functions of order m, n (n>=m) and spheroidal pa-
rameter c.

scipy.special.obl_cv
scipy.special.obl_cv(m, n, c) = <ufunc 'obl_cv'>

Characteristic value of oblate spheroidal function
Computes the characteristic value of oblate spheroidal wave functions of orderm, n (n>=m) and spheroidal param-
eter c.

scipy.special.pro_cv_seq
scipy.special.pro_cv_seq(m, n, c)

Characteristic values for prolate spheroidal wave functions.
Compute a sequence of characteristic values for the prolate spheroidal wave functions for mode m and n’=m..n and
spheroidal parameter c.

References

[1]

scipy.special.obl_cv_seq
scipy.special.obl_cv_seq(m, n, c)

Characteristic values for oblate spheroidal wave functions.
Compute a sequence of characteristic values for the oblate spheroidal wave functions for mode m and n’=m..n and
spheroidal parameter c.

References

[1]
The following functions require pre-computed characteristic value:

pro_ang1_cv(m, n, c, cv, x) Prolate spheroidal angular function pro_ang1 for precom-
puted characteristic value

pro_rad1_cv(m, n, c, cv, x) Prolate spheroidal radial function pro_rad1 for precom-
puted characteristic value

pro_rad2_cv(m, n, c, cv, x) Prolate spheroidal radial function pro_rad2 for precom-
puted characteristic value

obl_ang1_cv(m, n, c, cv, x) Oblate spheroidal angular function obl_ang1 for precom-
puted characteristic value

obl_rad1_cv(m, n, c, cv, x) Oblate spheroidal radial function obl_rad1 for precom-
puted characteristic value

obl_rad2_cv(m, n, c, cv, x) Oblate spheroidal radial function obl_rad2 for precom-
puted characteristic value
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scipy.special.pro_ang1_cv
scipy.special.pro_ang1_cv(m, n, c, cv, x) = <ufunc 'pro_ang1_cv'>

Prolate spheroidal angular function pro_ang1 for precomputed characteristic value
Computes the prolate spheroidal angular function of the first kind and its derivative (with respect to x) for mode
parameters m>=0 and n>=m, spheroidal parameter c and |x| < 1.0. Requires pre-computed characteristic
value.

Returns

s Value of the function
sp Value of the derivative vs x

scipy.special.pro_rad1_cv
scipy.special.pro_rad1_cv(m, n, c, cv, x) = <ufunc 'pro_rad1_cv'>

Prolate spheroidal radial function pro_rad1 for precomputed characteristic value
Computes the prolate spheroidal radial function of the first kind and its derivative (with respect to x) for mode
parameters m>=0 and n>=m, spheroidal parameter c and |x| < 1.0. Requires pre-computed characteristic
value.

Returns

s Value of the function
sp Value of the derivative vs x

scipy.special.pro_rad2_cv
scipy.special.pro_rad2_cv(m, n, c, cv, x) = <ufunc 'pro_rad2_cv'>

Prolate spheroidal radial function pro_rad2 for precomputed characteristic value
Computes the prolate spheroidal radial function of the second kind and its derivative (with respect to x) for mode
parameters m>=0 and n>=m, spheroidal parameter c and |x| < 1.0. Requires pre-computed characteristic
value.

Returns

s Value of the function
sp Value of the derivative vs x

scipy.special.obl_ang1_cv
scipy.special.obl_ang1_cv(m, n, c, cv, x) = <ufunc 'obl_ang1_cv'>

Oblate spheroidal angular function obl_ang1 for precomputed characteristic value
Computes the oblate spheroidal angular function of the first kind and its derivative (with respect to x) for mode
parameters m>=0 and n>=m, spheroidal parameter c and |x| < 1.0. Requires pre-computed characteristic
value.

Returns

s Value of the function
sp Value of the derivative vs x

scipy.special.obl_rad1_cv
scipy.special.obl_rad1_cv(m, n, c, cv, x) = <ufunc 'obl_rad1_cv'>

Oblate spheroidal radial function obl_rad1 for precomputed characteristic value
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Computes the oblate spheroidal radial function of the first kind and its derivative (with respect to x) for mode
parameters m>=0 and n>=m, spheroidal parameter c and |x| < 1.0. Requires pre-computed characteristic
value.

Returns

s Value of the function
sp Value of the derivative vs x

scipy.special.obl_rad2_cv
scipy.special.obl_rad2_cv(m, n, c, cv, x) = <ufunc 'obl_rad2_cv'>

Oblate spheroidal radial function obl_rad2 for precomputed characteristic value
Computes the oblate spheroidal radial function of the second kind and its derivative (with respect to x) for mode
parameters m>=0 and n>=m, spheroidal parameter c and |x| < 1.0. Requires pre-computed characteristic
value.

Returns

s Value of the function
sp Value of the derivative vs x

Kelvin Functions

kelvin(x) Kelvin functions as complex numbers
kelvin_zeros(nt) Compute nt zeros of all Kelvin functions.
ber(x) Kelvin function ber.
bei(x) Kelvin function bei
berp(x) Derivative of the Kelvin function ber
beip(x) Derivative of the Kelvin function bei
ker(x) Kelvin function ker
kei(x) Kelvin function ker
kerp(x) Derivative of the Kelvin function ker
keip(x) Derivative of the Kelvin function kei

scipy.special.kelvin
scipy.special.kelvin(x) = <ufunc 'kelvin'>

Kelvin functions as complex numbers
Returns

Be, Ke, Bep, Kep
The tuple (Be, Ke, Bep, Kep) contains complex numbers representing the real and imaginary
Kelvin functions and their derivatives evaluated at x. For example, kelvin(x)[0].real = ber x
and kelvin(x)[0].imag = bei x with similar relationships for ker and kei.

scipy.special.kelvin_zeros
scipy.special.kelvin_zeros(nt)

Compute nt zeros of all Kelvin functions.
Returned in a length-8 tuple of arrays of length nt. The tuple contains the arrays of zeros of (ber, bei, ker, kei, ber’,
bei’, ker’, kei’).
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[1]

scipy.special.ber
scipy.special.ber(x) = <ufunc 'ber'>

Kelvin function ber.

scipy.special.bei
scipy.special.bei(x) = <ufunc 'bei'>

Kelvin function bei

scipy.special.berp
scipy.special.berp(x) = <ufunc 'berp'>

Derivative of the Kelvin function ber

scipy.special.beip
scipy.special.beip(x) = <ufunc 'beip'>

Derivative of the Kelvin function bei

scipy.special.ker
scipy.special.ker(x) = <ufunc 'ker'>

Kelvin function ker

scipy.special.kei
scipy.special.kei(x) = <ufunc 'kei'>

Kelvin function ker

scipy.special.kerp
scipy.special.kerp(x) = <ufunc 'kerp'>

Derivative of the Kelvin function ker

scipy.special.keip
scipy.special.keip(x) = <ufunc 'keip'>

Derivative of the Kelvin function kei
These are not universal functions:

ber_zeros(nt) Compute nt zeros of the Kelvin function ber(x).
bei_zeros(nt) Compute nt zeros of the Kelvin function bei(x).
berp_zeros(nt) Compute nt zeros of the Kelvin function ber’(x).
beip_zeros(nt) Compute nt zeros of the Kelvin function bei’(x).
ker_zeros(nt) Compute nt zeros of the Kelvin function ker(x).
kei_zeros(nt) Compute nt zeros of the Kelvin function kei(x).
kerp_zeros(nt) Compute nt zeros of the Kelvin function ker’(x).
keip_zeros(nt) Compute nt zeros of the Kelvin function kei’(x).

scipy.special.ber_zeros
scipy.special.ber_zeros(nt)

Compute nt zeros of the Kelvin function ber(x).
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scipy.special.bei_zeros
scipy.special.bei_zeros(nt)

Compute nt zeros of the Kelvin function bei(x).

References

[1]

scipy.special.berp_zeros
scipy.special.berp_zeros(nt)

Compute nt zeros of the Kelvin function ber’(x).

References

[1]

scipy.special.beip_zeros
scipy.special.beip_zeros(nt)

Compute nt zeros of the Kelvin function bei’(x).

References

[1]

scipy.special.ker_zeros
scipy.special.ker_zeros(nt)

Compute nt zeros of the Kelvin function ker(x).

References

[1]

scipy.special.kei_zeros
scipy.special.kei_zeros(nt)

Compute nt zeros of the Kelvin function kei(x).

scipy.special.kerp_zeros
scipy.special.kerp_zeros(nt)

Compute nt zeros of the Kelvin function ker’(x).

References

[1]
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scipy.special.keip_zeros
scipy.special.keip_zeros(nt)

Compute nt zeros of the Kelvin function kei’(x).

References

[1]

Combinatorics

comb(N, k[, exact, repetition]) The number of combinations of N things taken k at a time.
perm(N, k[, exact]) Permutations of N things taken k at a time, i.e., k-

permutations of N.

scipy.special.comb
scipy.special.comb(N, k, exact=False, repetition=False)

The number of combinations of N things taken k at a time.
This is often expressed as “N choose k”.

Parameters

N [int, ndarray] Number of things.
k [int, ndarray] Number of elements taken.
exact [bool, optional] If exact is False, then floating point precision is used, otherwise exact long

integer is computed.
repetition [bool, optional] If repetition is True, then the number of combinations with repetition is

computed.
Returns

val [int, float, ndarray] The total number of combinations.
See also:

binom

Binomial coefficient ufunc

Notes

• Array arguments accepted only for exact=False case.
• If k > N, N < 0, or k < 0, then a 0 is returned.

Examples

>>> from scipy.special import comb
>>> k = np.array([3, 4])
>>> n = np.array([10, 10])
>>> comb(n, k, exact=False)
array([ 120., 210.])

(continues on next page)

6.27. Special functions (scipy.special) 2053



SciPy Reference Guide, Release 1.3.1

(continued from previous page)
>>> comb(10, 3, exact=True)
120L
>>> comb(10, 3, exact=True, repetition=True)
220L

scipy.special.perm
scipy.special.perm(N, k, exact=False)

Permutations of N things taken k at a time, i.e., k-permutations of N.
It’s also known as “partial permutations”.

Parameters

N [int, ndarray] Number of things.
k [int, ndarray] Number of elements taken.
exact [bool, optional] If exact is False, then floating point precision is used, otherwise exact long

integer is computed.
Returns

val [int, ndarray] The number of k-permutations of N.

Notes

• Array arguments accepted only for exact=False case.
• If k > N, N < 0, or k < 0, then a 0 is returned.

Examples

>>> from scipy.special import perm
>>> k = np.array([3, 4])
>>> n = np.array([10, 10])
>>> perm(n, k)
array([ 720., 5040.])
>>> perm(10, 3, exact=True)
720

Lambert W and Related Functions

lambertw(z[, k, tol]) Lambert W function.
wrightomega(z[, out]) Wright Omega function.

scipy.special.lambertw
scipy.special.lambertw(z, k=0, tol=1e-8)

Lambert W function.
The Lambert W function W(z) is defined as the inverse function of w * exp(w). In other words, the value of
W(z) is such that z = W(z) * exp(W(z)) for any complex number z.
The Lambert W function is a multivalued function with infinitely many branches. Each branch gives a separate
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solution of the equation z = w exp(w). Here, the branches are indexed by the integer k.
Parameters

z [array_like] Input argument.
k [int, optional] Branch index.
tol [float, optional] Evaluation tolerance.

Returns

w [array] w will have the same shape as z.
See also:

wrightomega

the Wright Omega function

Notes

All branches are supported by lambertw:
• lambertw(z) gives the principal solution (branch 0)
• lambertw(z, k) gives the solution on branch k

The Lambert W function has two partially real branches: the principal branch (k = 0) is real for real z > -1/e,
and the k = -1 branch is real for -1/e < z < 0. All branches except k = 0 have a logarithmic singularity
at z = 0.
Possible issues
The evaluation can become inaccurate very close to the branch point at -1/e. In some corner cases, lambertw
might currently fail to converge, or can end up on the wrong branch.
Algorithm
Halley’s iteration is used to invert w * exp(w), using a first-order asymptotic approximation (O(log(w)) orO(w))
as the initial estimate.
The definition, implementation and choice of branches is based on [2].

References

[1], [2]

Examples

The Lambert W function is the inverse of w exp(w):

>>> from scipy.special import lambertw
>>> w = lambertw(1)
>>> w
(0.56714329040978384+0j)
>>> w * np.exp(w)
(1.0+0j)

Any branch gives a valid inverse:
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>>> w = lambertw(1, k=3)
>>> w
(-2.8535817554090377+17.113535539412148j)
>>> w*np.exp(w)
(1.0000000000000002+1.609823385706477e-15j)

Applications to equation-solving
The Lambert W function may be used to solve various kinds of equations, such as finding the value of the infinite
power tower zzz... :

>>> def tower(z, n):
... if n == 0:
... return z
... return z ** tower(z, n-1)
...
>>> tower(0.5, 100)
0.641185744504986
>>> -lambertw(-np.log(0.5)) / np.log(0.5)
(0.64118574450498589+0j)

scipy.special.wrightomega
scipy.special.wrightomega(z, out=None) = <ufunc 'wrightomega'>

Wright Omega function.
Defined as the solution to

ω + log(ω) = z

where log is the principal branch of the complex logarithm.
Parameters

z [array_like] Points at which to evaluate the Wright Omega function
Returns

omega [ndarray] Values of the Wright Omega function
See also:

lambertw

The Lambert W function

Notes

New in version 0.19.0.
The function can also be defined as

ω(z) =WK(z)(e
z)

whereK(z) = ⌈(ℑ(z)− π)/(2π)⌉ is the unwinding number andW is the Lambert W function.
The implementation here is taken from [1].
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Other Special Functions

agm(a, b) Compute the arithmetic-geometric mean of a and b.
bernoulli(n) Bernoulli numbers B0..Bn (inclusive).
binom(n, k) Binomial coefficient
diric(x, n) Periodic sinc function, also called the Dirichlet function.
euler(n) Euler numbers E(0), E(1), …, E(n).
expn(n, x) Exponential integral E_n
exp1(z) Exponential integral E_1 of complex argument z
expi(x) Exponential integral Ei
factorial(n[, exact]) The factorial of a number or array of numbers.
factorial2(n[, exact]) Double factorial.
factorialk(n, k[, exact]) Multifactorial of n of order k, n(!!…!).
shichi(x[, out]) Hyperbolic sine and cosine integrals.
sici(x[, out]) Sine and cosine integrals.
softmax(x[, axis]) Softmax function
spence(z[, out]) Spence’s function, also known as the dilogarithm.
zeta(x[, q, out]) Riemann or Hurwitz zeta function.
zetac(x) Riemann zeta function minus 1.

scipy.special.agm
scipy.special.agm(a, b) = <ufunc 'agm'>

Compute the arithmetic-geometric mean of a and b.
Start with a_0 = a and b_0 = b and iteratively compute:

a_{n+1} = (a_n + b_n)/2
b_{n+1} = sqrt(a_n*b_n)

a_n and b_n converge to the same limit as n increases; their common limit is agm(a, b).
Parameters

a, b [array_like] Real values only. If the values are both negative, the result is negative. If one
value is negative and the other is positive, nan is returned.

Returns

float The arithmetic-geometric mean of a and b.

Examples

>>> from scipy.special import agm
>>> a, b = 24.0, 6.0
>>> agm(a, b)
13.458171481725614

Compare that result to the iteration:
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>>> while a != b:
... a, b = (a + b)/2, np.sqrt(a*b)
... print("a = %19.16f b=%19.16f" % (a, b))
...
a = 15.0000000000000000 b=12.0000000000000000
a = 13.5000000000000000 b=13.4164078649987388
a = 13.4582039324993694 b=13.4581390309909850
a = 13.4581714817451772 b=13.4581714817060547
a = 13.4581714817256159 b=13.4581714817256159

When array-like arguments are given, broadcasting applies:

>>> a = np.array([[1.5], [3], [6]]) # a has shape (3, 1).
>>> b = np.array([6, 12, 24, 48]) # b has shape (4,).
>>> agm(a, b)
array([[ 3.36454287, 5.42363427, 9.05798751, 15.53650756],

[ 4.37037309, 6.72908574, 10.84726853, 18.11597502],
[ 6. , 8.74074619, 13.45817148, 21.69453707]])

scipy.special.bernoulli
scipy.special.bernoulli(n)

Bernoulli numbers B0..Bn (inclusive).

References

[1]

scipy.special.binom
scipy.special.binom(n, k) = <ufunc 'binom'>

Binomial coefficient
See also:

comb

The number of combinations of N things taken k at a time.

scipy.special.diric
scipy.special.diric(x, n)

Periodic sinc function, also called the Dirichlet function.
The Dirichlet function is defined as:

diric(x, n) = sin(x * n/2) / (n * sin(x / 2)),

where n is a positive integer.
Parameters

x [array_like] Input data
n [int] Integer defining the periodicity.

Returns

diric [ndarray]
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Examples

>>> from scipy import special
>>> import matplotlib.pyplot as plt

>>> x = np.linspace(-8*np.pi, 8*np.pi, num=201)
>>> plt.figure(figsize=(8, 8));
>>> for idx, n in enumerate([2, 3, 4, 9]):
... plt.subplot(2, 2, idx+1)
... plt.plot(x, special.diric(x, n))
... plt.title('diric, n={}'.format(n))
>>> plt.show()
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The following example demonstrates that diric gives the magnitudes (modulo the sign and scaling) of the Fourier
coefficients of a rectangular pulse.
Suppress output of values that are effectively 0:

>>> np.set_printoptions(suppress=True)

Create a signal x of length m with k ones:

>>> m = 8
>>> k = 3
>>> x = np.zeros(m)
>>> x[:k] = 1

Use the FFT to compute the Fourier transform of x, and inspect the magnitudes of the coefficients:

>>> np.abs(np.fft.fft(x))
array([ 3. , 2.41421356, 1. , 0.41421356, 1. ,

0.41421356, 1. , 2.41421356])

Now find the same values (up to sign) using diric. We multiply by k to account for the different scaling conven-
tions of numpy.fft.fft and diric:

>>> theta = np.linspace(0, 2*np.pi, m, endpoint=False)
>>> k * special.diric(theta, k)
array([ 3. , 2.41421356, 1. , -0.41421356, -1. ,

-0.41421356, 1. , 2.41421356])

scipy.special.euler
scipy.special.euler(n)

Euler numbers E(0), E(1), …, E(n).
The Euler numbers [1] are also known as the secant numbers.
Because euler(n) returns floating point values, it does not give exact values for large n. The first inexact value
is E(22).

Parameters

n [int] The highest index of the Euler number to be returned.
Returns

ndarray The Euler numbers [E(0), E(1), …, E(n)]. The odd Euler numbers, which are all zero, are
included.

References

[1], [2]

Examples

>>> from scipy.special import euler
>>> euler(6)
array([ 1., 0., -1., 0., 5., 0., -61.])
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>>> euler(13).astype(np.int64)
array([ 1, 0, -1, 0, 5, 0, -61,

0, 1385, 0, -50521, 0, 2702765, 0])

>>> euler(22)[-1] # Exact value of E(22) is -69348874393137901.
-69348874393137976.0

scipy.special.expn
scipy.special.expn(n, x) = <ufunc 'expn'>

Exponential integral E_n
Returns the exponential integral for integer n and non-negative x and n:

integral(exp(-x*t) / t**n, t=1..inf).

scipy.special.exp1
scipy.special.exp1(z) = <ufunc 'exp1'>

Exponential integral E_1 of complex argument z

integral(exp(-z*t)/t, t=1..inf).

scipy.special.expi
scipy.special.expi(x) = <ufunc 'expi'>

Exponential integral Ei
Defined as:

integral(exp(t)/t, t=-inf..x)

See expn for a different exponential integral.

scipy.special.factorial
scipy.special.factorial(n, exact=False)

The factorial of a number or array of numbers.
The factorial of non-negative integer n is the product of all positive integers less than or equal to n:

n! = n * (n - 1) * (n - 2) * ... * 1

Parameters

n [int or array_like of ints] Input values. If n < 0, the return value is 0.
exact [bool, optional] If True, calculate the answer exactly using long integer arithmetic. If False,

result is approximated in floating point rapidly using the gamma function. Default is False.
Returns

nf [float or int or ndarray] Factorial of n, as integer or float depending on exact.

Notes

For arrays with exact=True, the factorial is computed only once, for the largest input, with each other result
computed in the process. The output dtype is increased to int64 or object if necessary.
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With exact=False the factorial is approximated using the gamma function:

n! = Γ(n+ 1)

Examples

>>> from scipy.special import factorial
>>> arr = np.array([3, 4, 5])
>>> factorial(arr, exact=False)
array([ 6., 24., 120.])
>>> factorial(arr, exact=True)
array([ 6, 24, 120])
>>> factorial(5, exact=True)
120L

scipy.special.factorial2
scipy.special.factorial2(n, exact=False)

Double factorial.
This is the factorial with every second value skipped. E.g., 7!! = 7 * 5 * 3 * 1. It can be approximated
numerically as:

n!! = special.gamma(n/2+1)*2**((m+1)/2)/sqrt(pi) n odd
= 2**(n/2) * (n/2)! n even

Parameters

n [int or array_like] Calculate n!!. Arrays are only supported with exact set to False. If n <
0, the return value is 0.

exact [bool, optional] The result can be approximated rapidly using the gamma-formula above
(default). If exact is set to True, calculate the answer exactly using integer arithmetic.

Returns

nff [float or int] Double factorial of n, as an int or a float depending on exact.

Examples

>>> from scipy.special import factorial2
>>> factorial2(7, exact=False)
array(105.00000000000001)
>>> factorial2(7, exact=True)
105L

scipy.special.factorialk
scipy.special.factorialk(n, k, exact=True)

Multifactorial of n of order k, n(!!…!).
This is the multifactorial of n skipping k values. For example,

factorialk(17, 4) = 17!!!! = 17 * 13 * 9 * 5 * 1
In particular, for any integer n, we have
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factorialk(n, 1) = factorial(n)
factorialk(n, 2) = factorial2(n)

Parameters

n [int] Calculate multifactorial. If n < 0, the return value is 0.
k [int] Order of multifactorial.
exact [bool, optional] If exact is set to True, calculate the answer exactly using integer arithmetic.

Returns

val [int] Multifactorial of n.
Raises

NotImplementedError
Raises when exact is False

Examples

>>> from scipy.special import factorialk
>>> factorialk(5, 1, exact=True)
120L
>>> factorialk(5, 3, exact=True)
10L

scipy.special.shichi
scipy.special.shichi(x, out=None) = <ufunc 'shichi'>

Hyperbolic sine and cosine integrals.
The hyperbolic sine integral is ∫ x

0

sinh t

t
dt

and the hyperbolic cosine integral is

γ + log(x) +

∫ x

0

cosh t− 1

t
dt

where γ is Euler’s constant and log is the principle branch of the logarithm.
Parameters

x [array_like] Real or complex points at which to compute the hyperbolic sine and cosine
integrals.

Returns

si [ndarray] Hyperbolic sine integral at x
ci [ndarray] Hyperbolic cosine integral at x

Notes

For real arguments with x < 0, chi is the real part of the hyperbolic cosine integral. For such points chi(x)
and chi(x + 0j) differ by a factor of 1j*pi.
For real arguments the function is computed by calling Cephes’ [1] shichi routine. For complex arguments the
algorithm is based on Mpmath’s [2] shi and chi routines.
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References

[1], [2]

scipy.special.sici
scipy.special.sici(x, out=None) = <ufunc 'sici'>

Sine and cosine integrals.
The sine integral is ∫ x

0

sin t

t
dt

and the cosine integral is

γ + log(x) +

∫ x

0

cos t− 1

t
dt

where γ is Euler’s constant and log is the principle branch of the logarithm.
Parameters

x [array_like] Real or complex points at which to compute the sine and cosine integrals.
Returns

si [ndarray] Sine integral at x
ci [ndarray] Cosine integral at x

Notes

For real arguments with x < 0, ci is the real part of the cosine integral. For such points ci(x) and ci(x +
0j) differ by a factor of 1j*pi.
For real arguments the function is computed by calling Cephes’ [1] sici routine. For complex arguments the algo-
rithm is based on Mpmath’s [2] si and ci routines.

References

[1], [2]

scipy.special.softmax
scipy.special.softmax(x, axis=None)

Softmax function
The softmax function transforms each element of a collection by computing the exponential of each element divided
by the sum of the exponentials of all the elements. That is, if x is a one-dimensional numpy array:

softmax(x) = np.exp(x)/sum(np.exp(x))

Parameters

x [array_like] Input array.
axis [int or tuple of ints, optional] Axis to compute values along. Default is None and softmax

will be computed over the entire array x.
Returns

s [ndarray] An array the same shape as x. The result will sum to 1 along the specified axis.
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Notes

The formula for the softmax function σ(x) for a vector x = {x0, x1, ..., xn−1} is

σ(x)j =
exj∑
k e

xk

The softmax function is the gradient of logsumexp.
New in version 1.2.0.

Examples

>>> from scipy.special import softmax
>>> np.set_printoptions(precision=5)

>>> x = np.array([[1, 0.5, 0.2, 3],
... [1, -1, 7, 3],
... [2, 12, 13, 3]])
...

Compute the softmax transformation over the entire array.

>>> m = softmax(x)
>>> m
array([[ 4.48309e-06, 2.71913e-06, 2.01438e-06, 3.31258e-05],

[ 4.48309e-06, 6.06720e-07, 1.80861e-03, 3.31258e-05],
[ 1.21863e-05, 2.68421e-01, 7.29644e-01, 3.31258e-05]])

>>> m.sum()
1.0000000000000002

Compute the softmax transformation along the first axis (i.e. the columns).

>>> m = softmax(x, axis=0)

>>> m
array([[ 2.11942e-01, 1.01300e-05, 2.75394e-06, 3.33333e-01],

[ 2.11942e-01, 2.26030e-06, 2.47262e-03, 3.33333e-01],
[ 5.76117e-01, 9.99988e-01, 9.97525e-01, 3.33333e-01]])

>>> m.sum(axis=0)
array([ 1., 1., 1., 1.])

Compute the softmax transformation along the second axis (i.e. the rows).

>>> m = softmax(x, axis=1)
>>> m
array([[ 1.05877e-01, 6.42177e-02, 4.75736e-02, 7.82332e-01],

[ 2.42746e-03, 3.28521e-04, 9.79307e-01, 1.79366e-02],
[ 1.22094e-05, 2.68929e-01, 7.31025e-01, 3.31885e-05]])
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>>> m.sum(axis=1)
array([ 1., 1., 1.])

scipy.special.spence
scipy.special.spence(z, out=None) = <ufunc 'spence'>

Spence’s function, also known as the dilogarithm.
It is defined to be ∫ z

0

log(t)

1− t
dt

for complex z, where the contour of integration is taken to avoid the branch cut of the logarithm. Spence’s function
is analytic everywhere except the negative real axis where it has a branch cut.

Parameters

z [array_like] Points at which to evaluate Spence’s function
Returns

s [ndarray] Computed values of Spence’s function

Notes

There is a different convention which defines Spence’s function by the integral

−
∫ z

0

log(1− t)

t
dt;

this is our spence(1 - z).

scipy.special.zeta
scipy.special.zeta(x, q=None, out=None)

Riemann or Hurwitz zeta function.
Parameters

x [array_like of float] Input data, must be real
q [array_like of float, optional] Input data, must be real. Defaults to Riemann zeta.
out [ndarray, optional] Output array for the computed values.

Returns

out [array_like] Values of zeta(x).
See also:
zetac

Notes

The two-argument version is the Hurwitz zeta function:

ζ(x, q) =

∞∑
k=0

1

(k + q)x
,

Riemann zeta function corresponds to q = 1.
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Examples

>>> from scipy.special import zeta, polygamma, factorial

Some specific values:

>>> zeta(2), np.pi**2/6
(1.6449340668482266, 1.6449340668482264)

>>> zeta(4), np.pi**4/90
(1.0823232337111381, 1.082323233711138)

Relation to the polygamma function:

>>> m = 3
>>> x = 1.25
>>> polygamma(m, x)
array(2.782144009188397)
>>> (-1)**(m+1) * factorial(m) * zeta(m+1, x)
2.7821440091883969

scipy.special.zetac
scipy.special.zetac(x) = <ufunc 'zetac'>

Riemann zeta function minus 1.
This function is defined as

ζ(x) =

∞∑
k=2

1/kx,

where x > 1. For x < 1, the analytic continuation is computed.
Because of limitations of the numerical algorithm, zetac(x) returns nan for x less than -30.8148.

Parameters

x [array_like of float] Values at which to compute zeta(x) - 1 (must be real).
Returns

out [array_like] Values of zeta(x) - 1.
See also:
zeta

Examples

>>> from scipy.special import zetac, zeta

Some special values:

>>> zetac(2), np.pi**2/6 - 1
(0.64493406684822641, 0.6449340668482264)
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>>> zetac(-1), -1.0/12 - 1
(-1.0833333333333333, -1.0833333333333333)

Compare zetac(x) to zeta(x) - 1 for large x:

>>> zetac(60), zeta(60) - 1
(8.673617380119933e-19, 0.0)

Convenience Functions

cbrt(x) Element-wise cube root of x.
exp10(x) Compute 10**x element-wise.
exp2(x) Compute 2**x element-wise.
radian(d, m, s) Convert from degrees to radians
cosdg(x) Cosine of the angle x given in degrees.
sindg(x) Sine of angle given in degrees
tandg(x) Tangent of angle x given in degrees.
cotdg(x) Cotangent of the angle x given in degrees.
log1p(x) Calculates log(1+x) for use when x is near zero
expm1(x) Compute exp(x) - 1.
cosm1(x) cos(x) - 1 for use when x is near zero.
round(x) Round to nearest integer
xlogy(x, y) Compute x*log(y) so that the result is 0 if x = 0.
xlog1py(x, y) Compute x*log1p(y) so that the result is 0 if x = 0.
logsumexp(a[, axis, b, keepdims, return_sign]) Compute the log of the sum of exponentials of input ele-

ments.
exprel(x) Relative error exponential, (exp(x) - 1)/x.
sinc(x) Return the sinc function.

scipy.special.cbrt
scipy.special.cbrt(x) = <ufunc 'cbrt'>

Element-wise cube root of x.
Parameters

x [array_like] x must contain real numbers.
Returns

float The cube root of each value in x.

Examples

>>> from scipy.special import cbrt

>>> cbrt(8)
2.0
>>> cbrt([-8, -3, 0.125, 1.331])
array([-2. , -1.44224957, 0.5 , 1.1 ])
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scipy.special.exp10
scipy.special.exp10(x) = <ufunc 'exp10'>

Compute 10**x element-wise.
Parameters

x [array_like] x must contain real numbers.
Returns

float 10**x, computed element-wise.

Examples

>>> from scipy.special import exp10

>>> exp10(3)
1000.0
>>> x = np.array([[-1, -0.5, 0], [0.5, 1, 1.5]])
>>> exp10(x)
array([[ 0.1 , 0.31622777, 1. ],

[ 3.16227766, 10. , 31.6227766 ]])

scipy.special.exp2
scipy.special.exp2(x) = <ufunc 'exp2'>

Compute 2**x element-wise.
Parameters

x [array_like] x must contain real numbers.
Returns

float 2**x, computed element-wise.

Examples

>>> from scipy.special import exp2

>>> exp2(3)
8.0
>>> x = np.array([[-1, -0.5, 0], [0.5, 1, 1.5]])
>>> exp2(x)
array([[ 0.5 , 0.70710678, 1. ],

[ 1.41421356, 2. , 2.82842712]])

scipy.special.radian
scipy.special.radian(d, m, s) = <ufunc 'radian'>

Convert from degrees to radians
Returns the angle given in (d)egrees, (m)inutes, and (s)econds in radians.
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scipy.special.cosdg
scipy.special.cosdg(x) = <ufunc 'cosdg'>

Cosine of the angle x given in degrees.

scipy.special.sindg
scipy.special.sindg(x) = <ufunc 'sindg'>

Sine of angle given in degrees

scipy.special.tandg
scipy.special.tandg(x) = <ufunc 'tandg'>

Tangent of angle x given in degrees.

scipy.special.cotdg
scipy.special.cotdg(x) = <ufunc 'cotdg'>

Cotangent of the angle x given in degrees.

scipy.special.log1p
scipy.special.log1p(x) = <ufunc 'log1p'>

Calculates log(1+x) for use when x is near zero

scipy.special.expm1
scipy.special.expm1(x) = <ufunc 'expm1'>

Compute exp(x) - 1.
When x is near zero, exp(x) is near 1, so the numerical calculation of exp(x) - 1 can suffer from catastrophic
loss of precision. expm1(x) is implemented to avoid the loss of precision that occurs when x is near zero.

Parameters

x [array_like] x must contain real numbers.
Returns

float exp(x) - 1 computed element-wise.

Examples

>>> from scipy.special import expm1

>>> expm1(1.0)
1.7182818284590451
>>> expm1([-0.2, -0.1, 0, 0.1, 0.2])
array([-0.18126925, -0.09516258, 0. , 0.10517092, 0.22140276])

The exact value of exp(7.5e-13) - 1 is:

7.5000000000028125000000007031250000001318...*10**-13.

Here is what expm1(7.5e-13) gives:

>>> expm1(7.5e-13)
7.5000000000028135e-13
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Compare that to exp(7.5e-13) - 1, where the subtraction results in a “catastrophic” loss of precision:

>>> np.exp(7.5e-13) - 1
7.5006667543675576e-13

scipy.special.cosm1
scipy.special.cosm1(x) = <ufunc 'cosm1'>

cos(x) - 1 for use when x is near zero.

scipy.special.round
scipy.special.round(x) = <ufunc 'round'>

Round to nearest integer
Returns the nearest integer to x as a double precision floating point result. If x ends in 0.5 exactly, the nearest even
integer is chosen.

scipy.special.xlogy
scipy.special.xlogy(x, y) = <ufunc 'xlogy'>

Compute x*log(y) so that the result is 0 if x = 0.
Parameters

x [array_like] Multiplier
y [array_like] Argument

Returns

z [array_like] Computed x*log(y)

Notes

New in version 0.13.0.

scipy.special.xlog1py
scipy.special.xlog1py(x, y) = <ufunc 'xlog1py'>

Compute x*log1p(y) so that the result is 0 if x = 0.
Parameters

x [array_like] Multiplier
y [array_like] Argument

Returns

z [array_like] Computed x*log1p(y)

Notes

New in version 0.13.0.
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scipy.special.logsumexp
scipy.special.logsumexp(a, axis=None, b=None, keepdims=False, return_sign=False)

Compute the log of the sum of exponentials of input elements.
Parameters

a [array_like] Input array.
axis [None or int or tuple of ints, optional] Axis or axes over which the sum is taken. By default

axis is None, and all elements are summed.
New in version 0.11.0.

keepdims [bool, optional] If this is set to True, the axes which are reduced are left in the result as
dimensions with size one. With this option, the result will broadcast correctly against the
original array.
New in version 0.15.0.

b [array-like, optional] Scaling factor for exp(a) must be of the same shape as a or broad-
castable to a. These values may be negative in order to implement subtraction.
New in version 0.12.0.

return_sign
[bool, optional] If this is set to True, the result will be a pair containing sign information; if
False, results that are negative will be returned as NaN. Default is False (no sign information).
New in version 0.16.0.

Returns

res [ndarray] The result, np.log(np.sum(np.exp(a))) calculated in a numerically more
stable way. If b is given then np.log(np.sum(b*np.exp(a))) is returned.

sgn [ndarray] If return_sign is True, this will be an array of floating-point numbers matching res
and +1, 0, or -1 depending on the sign of the result. If False, only one result is returned.

See also:
numpy.logaddexp, numpy.logaddexp2

Notes

NumPy has a logaddexp function which is very similar to logsumexp, but only handles two arguments. logad-
dexp.reduce is similar to this function, but may be less stable.

Examples

>>> from scipy.special import logsumexp
>>> a = np.arange(10)
>>> np.log(np.sum(np.exp(a)))
9.4586297444267107
>>> logsumexp(a)
9.4586297444267107

With weights

>>> a = np.arange(10)
>>> b = np.arange(10, 0, -1)
>>> logsumexp(a, b=b)
9.9170178533034665

(continues on next page)
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(continued from previous page)
>>> np.log(np.sum(b*np.exp(a)))
9.9170178533034647

Returning a sign flag

>>> logsumexp([1,2],b=[1,-1],return_sign=True)
(1.5413248546129181, -1.0)

Notice that logsumexp does not directly support masked arrays. To use it on a masked array, convert the mask
into zero weights:

>>> a = np.ma.array([np.log(2), 2, np.log(3)],
... mask=[False, True, False])
>>> b = (~a.mask).astype(int)
>>> logsumexp(a.data, b=b), np.log(5)
1.6094379124341005, 1.6094379124341005

scipy.special.exprel
scipy.special.exprel(x) = <ufunc 'exprel'>

Relative error exponential, (exp(x) - 1)/x.
When x is near zero, exp(x) is near 1, so the numerical calculation of exp(x) - 1 can suffer from catastrophic
loss of precision. exprel(x) is implemented to avoid the loss of precision that occurs when x is near zero.

Parameters

x [ndarray] Input array. x must contain real numbers.
Returns

float (exp(x) - 1)/x, computed element-wise.
See also:
expm1

Notes

New in version 0.17.0.

Examples

>>> from scipy.special import exprel

>>> exprel(0.01)
1.0050167084168056
>>> exprel([-0.25, -0.1, 0, 0.1, 0.25])
array([ 0.88479687, 0.95162582, 1. , 1.05170918, 1.13610167])

Compare exprel(5e-9) to the naive calculation. The exact value is 1.00000000250000000416....

>>> exprel(5e-9)
1.0000000025
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>>> (np.exp(5e-9) - 1)/5e-9
0.99999999392252903

scipy.special.sinc
scipy.special.sinc(x)

Return the sinc function.
The sinc function is sin(πx)/(πx).

Parameters

x [ndarray] Array (possibly multi-dimensional) of values for which to to calculate sinc(x).
Returns

out [ndarray] sinc(x), which has the same shape as the input.

Notes

sinc(0) is the limit value 1.
The name sinc is short for “sine cardinal” or “sinus cardinalis”.
The sinc function is used in various signal processing applications, including in anti-aliasing, in the construction of
a Lanczos resampling filter, and in interpolation.
For bandlimited interpolation of discrete-time signals, the ideal interpolation kernel is proportional to the sinc
function.

References

[1], [2]

Examples

>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-4, 4, 41)
>>> np.sinc(x)
array([-3.89804309e-17, -4.92362781e-02, -8.40918587e-02, # may vary

-8.90384387e-02, -5.84680802e-02, 3.89804309e-17,
6.68206631e-02, 1.16434881e-01, 1.26137788e-01,
8.50444803e-02, -3.89804309e-17, -1.03943254e-01,
-1.89206682e-01, -2.16236208e-01, -1.55914881e-01,
3.89804309e-17, 2.33872321e-01, 5.04551152e-01,
7.56826729e-01, 9.35489284e-01, 1.00000000e+00,
9.35489284e-01, 7.56826729e-01, 5.04551152e-01,
2.33872321e-01, 3.89804309e-17, -1.55914881e-01,
-2.16236208e-01, -1.89206682e-01, -1.03943254e-01,
-3.89804309e-17, 8.50444803e-02, 1.26137788e-01,
1.16434881e-01, 6.68206631e-02, 3.89804309e-17,
-5.84680802e-02, -8.90384387e-02, -8.40918587e-02,
-4.92362781e-02, -3.89804309e-17])
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>>> plt.plot(x, np.sinc(x))
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Sinc Function")
Text(0.5, 1.0, 'Sinc Function')
>>> plt.ylabel("Amplitude")
Text(0, 0.5, 'Amplitude')
>>> plt.xlabel("X")
Text(0.5, 0, 'X')
>>> plt.show()
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It works in 2-D as well:

>>> x = np.linspace(-4, 4, 401)
>>> xx = np.outer(x, x)
>>> plt.imshow(np.sinc(xx))
<matplotlib.image.AxesImage object at 0x...>

6.28 Statistical functions (scipy.stats)

This module contains a large number of probability distributions as well as a growing library of statistical functions.
Each univariate distribution is an instance of a subclass of rv_continuous (rv_discrete for discrete distribu-
tions):

rv_continuous([momtype, a, b, xtol, …]) A generic continuous random variable class meant for
subclassing.

rv_discrete([a, b, name, badvalue, …]) A generic discrete random variable class meant for sub-
classing.

rv_histogram(histogram, *args, **kwargs) Generates a distribution given by a histogram.
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6.28.1 scipy.stats.rv_continuous

class scipy.stats.rv_continuous(momtype=1, a=None, b=None, xtol=1e-14, badvalue=None,
name=None, longname=None, shapes=None, extradoc=None,
seed=None)

A generic continuous random variable class meant for subclassing.
rv_continuous is a base class to construct specific distribution classes and instances for continuous random
variables. It cannot be used directly as a distribution.

Parameters

momtype [int, optional] The type of generic moment calculation to use: 0 for pdf, 1 (default) for ppf.
a [float, optional] Lower bound of the support of the distribution, default is minus infinity.
b [float, optional] Upper bound of the support of the distribution, default is plus infinity.
xtol [float, optional] The tolerance for fixed point calculation for generic ppf.
badvalue [float, optional] The value in a result arrays that indicates a value that for which some argu-

ment restriction is violated, default is np.nan.
name [str, optional] The name of the instance. This string is used to construct the default example

for distributions.
longname [str, optional] This string is used as part of the first line of the docstring returned when a

subclass has no docstring of its own. Note: longname exists for backwards compatibility, do
not use for new subclasses.

shapes [str, optional] The shape of the distribution. For example "m, n" for a distribution that
takes two integers as the two shape arguments for all its methods. If not provided, shape
parameters will be inferred from the signature of the private methods, _pdf and _cdf of
the instance.

extradoc [str, optional, deprecated] This string is used as the last part of the docstring returned when
a subclass has no docstring of its own. Note: extradoc exists for backwards compatibility,
do not use for new subclasses.

seed [None or int or numpy.random.RandomState instance, optional] This parameter de-
fines the RandomState object to use for drawing random variates. If None (or np.random),
the global np.random state is used. If integer, it is used to seed the local RandomState in-
stance. Default is None.
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Notes

Public methods of an instance of a distribution class (e.g., pdf, cdf) check their arguments and pass valid ar-
guments to private, computational methods (_pdf, _cdf). For pdf(x), x is valid if it is within the support
of the distribution. Whether a shape parameter is valid is decided by an _argcheck method (which defaults to
checking that its arguments are strictly positive.)
Subclassing
New random variables can be defined by subclassing the rv_continuous class and re-defining at least the _pdf
or the _cdf method (normalized to location 0 and scale 1).
If positive argument checking is not correct for your RV then you will also need to re-define the _argcheck
method.
For most of the scipy.stats distributions, the support interval doesn’t depend on the shape parameters. x being in
the support interval is equivalent to self.a <= x <= self.b. If either of the endpoints of the support do
depend on the shape parameters, then i) the distribution must implement the _get_support method; and ii)
those dependent endpoints must be omitted from the distribution’s call to the rv_continuous initializer.
Correct, but potentially slow defaults exist for the remaining methods but for speed and/or accuracy you can over-
ride:

_logpdf, _cdf, _logcdf, _ppf, _rvs, _isf, _sf, _logsf

The default method _rvs relies on the inverse of the cdf, _ppf, applied to a uniform random variate. In order
to generate random variates efficiently, either the default _ppf needs to be overwritten (e.g. if the inverse cdf can
expressed in an explicit form) or a sampling method needs to be implemented in a custom _rvs method.
If possible, you should override_isf, _sf or_logsf. Themain reasonwould be to improve numerical accuracy:
for example, the survival function_sf is computed as1 - _cdfwhich can result in loss of precision if_cdf(x)
is close to one.
Methods that can be overwritten by subclasses

_rvs
_pdf
_cdf
_sf
_ppf
_isf
_stats
_munp
_entropy
_argcheck
_get_support

There are additional (internal and private) generic methods that can be useful for cross-checking and for debugging,
but might work in all cases when directly called.
A note on shapes: subclasses need not specify them explicitly. In this case, shapes will be automatically deduced
from the signatures of the overridden methods (pdf, cdf etc). If, for some reason, you prefer to avoid relying on
introspection, you can specify shapes explicitly as an argument to the instance constructor.
Frozen Distributions
Normally, you must provide shape parameters (and, optionally, location and scale parameters to each call of a
method of a distribution.
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Alternatively, the object may be called (as a function) to fix the shape, location, and scale parameters returning a
“frozen” continuous RV object:
rv = generic(<shape(s)>, loc=0, scale=1)

rv_frozen object with the same methods but holding the given shape, location, and scale fixed
Statistics
Statistics are computed using numerical integration by default. For speed you can redefine this using _stats:

• take shape parameters and return mu, mu2, g1, g2
• If you can’t compute one of these, return it as None
• Can also be defined with a keyword argument moments, which is a string composed of “m”, “v”, “s”, and/or
“k”. Only the components appearing in string should be computed and returned in the order “m”, “v”, “s”, or
“k” with missing values returned as None.

Alternatively, you can override _munp, which takes n and shape parameters and returns the n-th non-central
moment of the distribution.

Examples

To create a new Gaussian distribution, we would do the following:

>>> from scipy.stats import rv_continuous
>>> class gaussian_gen(rv_continuous):
... "Gaussian distribution"
... def _pdf(self, x):
... return np.exp(-x**2 / 2.) / np.sqrt(2.0 * np.pi)
>>> gaussian = gaussian_gen(name='gaussian')

scipy.stats distributions are instances, so here we subclass rv_continuous and create an instance. With
this, we now have a fully functional distributionwith all relevantmethods automagically generated by the framework.
Note that above we defined a standard normal distribution, with zero mean and unit variance. Shifting and scaling
of the distribution can be done by using loc and scale parameters: gaussian.pdf(x, loc, scale)
essentially computes y = (x - loc) / scale and gaussian._pdf(y) / scale.

Attributes

random_state
Get or set the RandomState object for generating random variates.

Methods

rvs(*args, **kwds) Random variates of given type.
pdf(x, *args, **kwds) Probability density function at x of the given RV.
logpdf(x, *args, **kwds) Log of the probability density function at x of the given

RV.
cdf(x, *args, **kwds) Cumulative distribution function of the given RV.
logcdf(x, *args, **kwds) Log of the cumulative distribution function at x of the

given RV.
sf(x, *args, **kwds) Survival function (1 - cdf) at x of the given RV.
logsf(x, *args, **kwds) Log of the survival function of the given RV.

Continued on next page
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Table 249 – continued from previous page
ppf(q, *args, **kwds) Percent point function (inverse of cdf) at q of the

given RV.
isf(q, *args, **kwds) Inverse survival function (inverse of sf) at q of the

given RV.
moment(n, *args, **kwds) n-th order non-central moment of distribution.
stats(*args, **kwds) Some statistics of the given RV.
entropy(*args, **kwds) Differential entropy of the RV.
expect([func, args, loc, scale, lb, ub, …]) Calculate expected value of a function with respect to

the distribution by numerical integration.
median(*args, **kwds) Median of the distribution.
mean(*args, **kwds) Mean of the distribution.
std(*args, **kwds) Standard deviation of the distribution.
var(*args, **kwds) Variance of the distribution.
interval(alpha, *args, **kwds) Confidence interval with equal areas around the me-

dian.
__call__(*args, **kwds) Freeze the distribution for the given arguments.
fit(data, *args, **kwds) Return MLEs for shape (if applicable), location, and

scale parameters from data.
fit_loc_scale(data, *args) Estimate loc and scale parameters from data using 1st

and 2nd moments.
nnlf(theta, x) Return negative loglikelihood function.
support(*args, **kwargs) Return the support of the distribution.

scipy.stats.rv_continuous.rvs

rv_continuous.rvs(*args, **kwds)
Random variates of given type.

Parameters

arg1, arg2, arg3,…
[array_like] The shape parameter(s) for the distribution (see docstring of the instance
object for more information).

loc [array_like, optional] Location parameter (default=0).
scale [array_like, optional] Scale parameter (default=1).
size [int or tuple of ints, optional] Defining number of random variates (default is 1).
random_state

[None or int or np.random.RandomState instance, optional] If int or Ran-
domState, use it for drawing the random variates. If None, rely on self.
random_state. Default is None.

Returns

rvs [ndarray or scalar] Random variates of given size.

scipy.stats.rv_continuous.pdf

rv_continuous.pdf(x, *args, **kwds)
Probability density function at x of the given RV.

Parameters

x [array_like] quantiles
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arg1, arg2, arg3,…
[array_like] The shape parameter(s) for the distribution (see docstring of the instance
object for more information)

loc [array_like, optional] location parameter (default=0)
scale [array_like, optional] scale parameter (default=1)

Returns

pdf [ndarray] Probability density function evaluated at x

scipy.stats.rv_continuous.logpdf

rv_continuous.logpdf(x, *args, **kwds)
Log of the probability density function at x of the given RV.
This uses a more numerically accurate calculation if available.

Parameters

x [array_like] quantiles
arg1, arg2, arg3,…

[array_like] The shape parameter(s) for the distribution (see docstring of the instance
object for more information)

loc [array_like, optional] location parameter (default=0)
scale [array_like, optional] scale parameter (default=1)

Returns

logpdf [array_like] Log of the probability density function evaluated at x

scipy.stats.rv_continuous.cdf

rv_continuous.cdf(x, *args, **kwds)
Cumulative distribution function of the given RV.

Parameters

x [array_like] quantiles
arg1, arg2, arg3,…

[array_like] The shape parameter(s) for the distribution (see docstring of the instance
object for more information)

loc [array_like, optional] location parameter (default=0)
scale [array_like, optional] scale parameter (default=1)

Returns

cdf [ndarray] Cumulative distribution function evaluated at x

scipy.stats.rv_continuous.logcdf

rv_continuous.logcdf(x, *args, **kwds)
Log of the cumulative distribution function at x of the given RV.

Parameters

x [array_like] quantiles
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arg1, arg2, arg3,…
[array_like] The shape parameter(s) for the distribution (see docstring of the instance
object for more information)

loc [array_like, optional] location parameter (default=0)
scale [array_like, optional] scale parameter (default=1)

Returns

logcdf [array_like] Log of the cumulative distribution function evaluated at x

scipy.stats.rv_continuous.sf

rv_continuous.sf(x, *args, **kwds)
Survival function (1 - cdf) at x of the given RV.

Parameters

x [array_like] quantiles
arg1, arg2, arg3,…

[array_like] The shape parameter(s) for the distribution (see docstring of the instance
object for more information)

loc [array_like, optional] location parameter (default=0)
scale [array_like, optional] scale parameter (default=1)

Returns

sf [array_like] Survival function evaluated at x

scipy.stats.rv_continuous.logsf

rv_continuous.logsf(x, *args, **kwds)
Log of the survival function of the given RV.
Returns the log of the “survival function,” defined as (1 - cdf), evaluated at x.

Parameters

x [array_like] quantiles
arg1, arg2, arg3,…

[array_like] The shape parameter(s) for the distribution (see docstring of the instance
object for more information)

loc [array_like, optional] location parameter (default=0)
scale [array_like, optional] scale parameter (default=1)

Returns

logsf [ndarray] Log of the survival function evaluated at x.

scipy.stats.rv_continuous.ppf

rv_continuous.ppf(q, *args, **kwds)
Percent point function (inverse of cdf) at q of the given RV.

Parameters

q [array_like] lower tail probability
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arg1, arg2, arg3,…
[array_like] The shape parameter(s) for the distribution (see docstring of the instance
object for more information)

loc [array_like, optional] location parameter (default=0)
scale [array_like, optional] scale parameter (default=1)

Returns

x [array_like] quantile corresponding to the lower tail probability q.

scipy.stats.rv_continuous.isf

rv_continuous.isf(q, *args, **kwds)
Inverse survival function (inverse of sf) at q of the given RV.

Parameters

q [array_like] upper tail probability
arg1, arg2, arg3,…

[array_like] The shape parameter(s) for the distribution (see docstring of the instance
object for more information)

loc [array_like, optional] location parameter (default=0)
scale [array_like, optional] scale parameter (default=1)

Returns

x [ndarray or scalar] Quantile corresponding to the upper tail probability q.

scipy.stats.rv_continuous.moment

rv_continuous.moment(n, *args, **kwds)
n-th order non-central moment of distribution.

Parameters

n [int, n >= 1] Order of moment.
arg1, arg2, arg3,…

[float] The shape parameter(s) for the distribution (see docstring of the instance object
for more information).

loc [array_like, optional] location parameter (default=0)
scale [array_like, optional] scale parameter (default=1)

scipy.stats.rv_continuous.stats

rv_continuous.stats(*args, **kwds)
Some statistics of the given RV.

Parameters

arg1, arg2, arg3,…
[array_like] The shape parameter(s) for the distribution (see docstring of the instance
object for more information)

loc [array_like, optional] location parameter (default=0)
scale [array_like, optional (continuous RVs only)] scale parameter (default=1)
moments [str, optional] composed of letters [‘mvsk’] defining which moments to compute: ‘m’ =

mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew, ‘k’ = (Fisher’s) kurtosis. (default is ‘mv’)
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Returns

stats [sequence] of requested moments.

scipy.stats.rv_continuous.entropy

rv_continuous.entropy(*args, **kwds)
Differential entropy of the RV.

Parameters

arg1, arg2, arg3,…
[array_like] The shape parameter(s) for the distribution (see docstring of the instance
object for more information).

loc [array_like, optional] Location parameter (default=0).
scale [array_like, optional (continuous distributions only).] Scale parameter (default=1).

Notes

Entropy is defined base e:

>>> drv = rv_discrete(values=((0, 1), (0.5, 0.5)))
>>> np.allclose(drv.entropy(), np.log(2.0))
True

scipy.stats.rv_continuous.expect

rv_continuous.expect(func=None, args=(), loc=0, scale=1, lb=None, ub=None, conditional=False,
**kwds)

Calculate expected value of a function with respect to the distribution by numerical integration.
The expected value of a function f(x) with respect to a distribution dist is defined as:

ub
E[f(x)] = Integral(f(x) * dist.pdf(x)),

lb

where ub and lb are arguments and x has the dist.pdf(x) distribution. If the bounds lb and ub
correspond to the support of the distribution, e.g. [-inf, inf] in the default case, then the integral is the
unrestricted expectation of f(x). Also, the function f(x) may be defined such that f(x) is 0 outside a
finite interval in which case the expectation is calculated within the finite range [lb, ub].

Parameters

func [callable, optional] Function for which integral is calculated. Takes only one argument.
The default is the identity mapping f(x) = x.

args [tuple, optional] Shape parameters of the distribution.
loc [float, optional] Location parameter (default=0).
scale [float, optional] Scale parameter (default=1).
lb, ub [scalar, optional] Lower and upper bound for integration. Default is set to the support

of the distribution.
conditional

[bool, optional] If True, the integral is corrected by the conditional probability of the
integration interval. The return value is the expectation of the function, conditional on
being in the given interval. Default is False.
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Additional keyword arguments are passed to the integration routine.
Returns

expect [float] The calculated expected value.

Notes

The integration behavior of this function is inherited from scipy.integrate.quad. Neither this
function nor scipy.integrate.quad can verify whether the integral exists or is finite. For example
cauchy(0).mean() returns np.nan and cauchy(0).expect() returns 0.0.

Examples

To understand the effect of the bounds of integration consider >>> from scipy.stats import expon >>> ex-
pon(1).expect(lambda x: 1, lb=0.0, ub=2.0) 0.6321205588285578
This is close to

>>> expon(1).cdf(2.0) - expon(1).cdf(0.0)
0.6321205588285577

If conditional=True

>>> expon(1).expect(lambda x: 1, lb=0.0, ub=2.0, conditional=True)
1.0000000000000002

The slight deviation from 1 is due to numerical integration.

scipy.stats.rv_continuous.median

rv_continuous.median(*args, **kwds)
Median of the distribution.

Parameters

arg1, arg2, arg3,…
[array_like] The shape parameter(s) for the distribution (see docstring of the instance
object for more information)

loc [array_like, optional] Location parameter, Default is 0.
scale [array_like, optional] Scale parameter, Default is 1.

Returns

median [float] The median of the distribution.
See also:

rv_discrete.ppf

Inverse of the CDF
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scipy.stats.rv_continuous.mean

rv_continuous.mean(*args, **kwds)
Mean of the distribution.

Parameters

arg1, arg2, arg3,…
[array_like] The shape parameter(s) for the distribution (see docstring of the instance
object for more information)

loc [array_like, optional] location parameter (default=0)
scale [array_like, optional] scale parameter (default=1)

Returns

mean [float] the mean of the distribution

scipy.stats.rv_continuous.std

rv_continuous.std(*args, **kwds)
Standard deviation of the distribution.

Parameters

arg1, arg2, arg3,…
[array_like] The shape parameter(s) for the distribution (see docstring of the instance
object for more information)

loc [array_like, optional] location parameter (default=0)
scale [array_like, optional] scale parameter (default=1)

Returns

std [float] standard deviation of the distribution

scipy.stats.rv_continuous.var

rv_continuous.var(*args, **kwds)
Variance of the distribution.

Parameters

arg1, arg2, arg3,…
[array_like] The shape parameter(s) for the distribution (see docstring of the instance
object for more information)

loc [array_like, optional] location parameter (default=0)
scale [array_like, optional] scale parameter (default=1)

Returns

var [float] the variance of the distribution

scipy.stats.rv_continuous.interval

rv_continuous.interval(alpha, *args, **kwds)
Confidence interval with equal areas around the median.

Parameters
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alpha [array_like of float] Probability that an rv will be drawn from the returned range. Each
value should be in the range [0, 1].

arg1, arg2, …
[array_like] The shape parameter(s) for the distribution (see docstring of the instance
object for more information).

loc [array_like, optional] location parameter, Default is 0.
scale [array_like, optional] scale parameter, Default is 1.

Returns

a, b [ndarray of float] end-points of range that contain 100 * alpha % of the rv’s pos-
sible values.

scipy.stats.rv_continuous.__call__

rv_continuous.__call__(*args, **kwds)
Freeze the distribution for the given arguments.

Parameters

arg1, arg2, arg3,…
[array_like] The shape parameter(s) for the distribution. Should include all the non-
optional arguments, may include loc and scale.

Returns

rv_frozen [rv_frozen instance] The frozen distribution.

scipy.stats.rv_continuous.fit

rv_continuous.fit(data, *args, **kwds)
Return MLEs for shape (if applicable), location, and scale parameters from data.
MLE stands for Maximum Likelihood Estimate. Starting estimates for the fit are given by input arguments;
for any arguments not provided with starting estimates, self._fitstart(data) is called to generate
such.
One can hold some parameters fixed to specific values by passing in keyword arguments f0, f1, …, fn (for
shape parameters) and floc and fscale (for location and scale parameters, respectively).

Parameters

data [array_like] Data to use in calculating the MLEs.
args [floats, optional] Starting value(s) for any shape-characterizing arguments (those not

provided will be determined by a call to _fitstart(data)). No default value.
kwds [floats, optional] Starting values for the location and scale parameters; no default. Spe-

cial keyword arguments are recognized as holding certain parameters fixed:
• f0…fn : hold respective shape parameters fixed. Alternatively, shape parameters
to fix can be specified by name. For example, if self.shapes == "a, b",
fa``and ``fix_a are equivalent to f0, and fb and fix_b are equivalent to
f1.

• floc : hold location parameter fixed to specified value.
• fscale : hold scale parameter fixed to specified value.
• optimizer : The optimizer to use. The optimizer must take func, and starting posi-
tion as the first two arguments, plus args (for extra arguments to pass to the function
to be optimized) and disp=0 to suppress output as keyword arguments.

Returns

2086 Chapter 6. API Reference



SciPy Reference Guide, Release 1.3.1

mle_tuple [tuple of floats] MLEs for any shape parameters (if applicable), followed by those for
location and scale. For most random variables, shape statistics will be returned, but
there are exceptions (e.g. norm).

Notes

This fit is computed by maximizing a log-likelihood function, with penalty applied for samples outside of
range of the distribution. The returned answer is not guaranteed to be the globally optimal MLE, it may only
be locally optimal, or the optimization may fail altogether.

Examples

Generate some data to fit: draw random variates from the beta distribution

>>> from scipy.stats import beta
>>> a, b = 1., 2.
>>> x = beta.rvs(a, b, size=1000)

Now we can fit all four parameters (a, b, loc and scale):

>>> a1, b1, loc1, scale1 = beta.fit(x)

We can also use some prior knowledge about the dataset: let’s keep loc and scale fixed:

>>> a1, b1, loc1, scale1 = beta.fit(x, floc=0, fscale=1)
>>> loc1, scale1
(0, 1)

We can also keep shape parameters fixed by using f-keywords. To keep the zero-th shape parameter a equal
1, use f0=1 or, equivalently, fa=1:

>>> a1, b1, loc1, scale1 = beta.fit(x, fa=1, floc=0, fscale=1)
>>> a1
1

Not all distributions return estimates for the shape parameters. norm for example just returns estimates for
location and scale:

>>> from scipy.stats import norm
>>> x = norm.rvs(a, b, size=1000, random_state=123)
>>> loc1, scale1 = norm.fit(x)
>>> loc1, scale1
(0.92087172783841631, 2.0015750750324668)

scipy.stats.rv_continuous.fit_loc_scale

rv_continuous.fit_loc_scale(data, *args)
Estimate loc and scale parameters from data using 1st and 2nd moments.

Parameters

data [array_like] Data to fit.

6.28. Statistical functions (scipy.stats) 2087



SciPy Reference Guide, Release 1.3.1

arg1, arg2, arg3,…
[array_like] The shape parameter(s) for the distribution (see docstring of the instance
object for more information).

Returns

Lhat [float] Estimated location parameter for the data.
Shat [float] Estimated scale parameter for the data.

scipy.stats.rv_continuous.nnlf

rv_continuous.nnlf(theta, x)
Return negative loglikelihood function.

Notes

This is -sum(log pdf(x, theta), axis=0) where theta are the parameters (including loc and
scale).

scipy.stats.rv_continuous.support

rv_continuous.support(*args, **kwargs)
Return the support of the distribution.

Parameters

arg1, arg2, …
[array_like] The shape parameter(s) for the distribution (see docstring of the instance
object for more information).

loc [array_like, optional] location parameter, Default is 0.
scale [array_like, optional] scale parameter, Default is 1.
Returns
——-
a, b [float] end-points of the distribution’s support.

6.28.2 scipy.stats.rv_discrete

class scipy.stats.rv_discrete(a=0, b=inf, name=None, badvalue=None, moment_tol=1e-08, val-
ues=None, inc=1, longname=None, shapes=None, extradoc=None,
seed=None)

A generic discrete random variable class meant for subclassing.
rv_discrete is a base class to construct specific distribution classes and instances for discrete random variables.
It can also be used to construct an arbitrary distribution defined by a list of support points and corresponding
probabilities.

Parameters

a [float, optional] Lower bound of the support of the distribution, default: 0
b [float, optional] Upper bound of the support of the distribution, default: plus infinity
moment_tol

[float, optional] The tolerance for the generic calculation of moments.
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values [tuple of two array_like, optional] (xk, pk) where xk are integers and pk are the non-
zero probabilities between 0 and 1 with sum(pk) = 1. xk and pk must have the same
shape.

inc [integer, optional] Increment for the support of the distribution. Default is 1. (other values
have not been tested)

badvalue [float, optional] The value in a result arrays that indicates a value that for which some argu-
ment restriction is violated, default is np.nan.

name [str, optional] The name of the instance. This string is used to construct the default example
for distributions.

longname [str, optional] This string is used as part of the first line of the docstring returned when a
subclass has no docstring of its own. Note: longname exists for backwards compatibility, do
not use for new subclasses.

shapes [str, optional] The shape of the distribution. For example “m, n” for a distribution that takes
two integers as the two shape arguments for all its methods If not provided, shape parameters
will be inferred from the signatures of the private methods, _pmf and _cdf of the instance.

extradoc [str, optional] This string is used as the last part of the docstring returned when a subclass
has no docstring of its own. Note: extradoc exists for backwards compatibility, do not use
for new subclasses.

seed [None or int or numpy.random.RandomState instance, optional] This parameter de-
fines the RandomState object to use for drawing random variates. If None, the global
np.random state is used. If integer, it is used to seed the local RandomState instance. Default
is None.

Notes

This class is similar to rv_continuous. Whether a shape parameter is valid is decided by an _argcheck
method (which defaults to checking that its arguments are strictly positive.) The main differences are:

• the support of the distribution is a set of integers
• instead of the probability density function, pdf (and the corresponding private _pdf), this class defines the

probability mass function, pmf (and the corresponding private _pmf.)
• scale parameter is not defined.

To create a new discrete distribution, we would do the following:

>>> from scipy.stats import rv_discrete
>>> class poisson_gen(rv_discrete):
... "Poisson distribution"
... def _pmf(self, k, mu):
... return exp(-mu) * mu**k / factorial(k)

and create an instance:

>>> poisson = poisson_gen(name="poisson")

Note that above we defined the Poisson distribution in the standard form. Shifting the distribution can be done
by providing the loc parameter to the methods of the instance. For example, poisson.pmf(x, mu, loc)
delegates the work to poisson._pmf(x-loc, mu).
Discrete distributions from a list of probabilities
Alternatively, you can construct an arbitrary discrete rv defined on a finite set of values xk with Prob{X=xk} =
pk by using the values keyword argument to the rv_discrete constructor.
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Examples

Custom made discrete distribution:

>>> from scipy import stats
>>> xk = np.arange(7)
>>> pk = (0.1, 0.2, 0.3, 0.1, 0.1, 0.0, 0.2)
>>> custm = stats.rv_discrete(name='custm', values=(xk, pk))
>>>
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
>>> ax.plot(xk, custm.pmf(xk), 'ro', ms=12, mec='r')
>>> ax.vlines(xk, 0, custm.pmf(xk), colors='r', lw=4)
>>> plt.show()
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Random number generation:

>>> R = custm.rvs(size=100)

Attributes

random_state
Get or set the RandomState object for generating random variates.

Methods

rvs(*args, **kwargs) Random variates of given type.
pmf(k, *args, **kwds) Probability mass function at k of the given RV.
logpmf(k, *args, **kwds) Log of the probability mass function at k of the given

RV.
cdf(k, *args, **kwds) Cumulative distribution function of the given RV.

Continued on next page
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Table 250 – continued from previous page
logcdf(k, *args, **kwds) Log of the cumulative distribution function at k of the

given RV.
sf(k, *args, **kwds) Survival function (1 - cdf) at k of the given RV.
logsf(k, *args, **kwds) Log of the survival function of the given RV.
ppf(q, *args, **kwds) Percent point function (inverse of cdf) at q of the

given RV.
isf(q, *args, **kwds) Inverse survival function (inverse of sf) at q of the

given RV.
moment(n, *args, **kwds) n-th order non-central moment of distribution.
stats(*args, **kwds) Some statistics of the given RV.
entropy(*args, **kwds) Differential entropy of the RV.
expect([func, args, loc, lb, ub, …]) Calculate expected value of a function with respect to

the distribution for discrete distribution by numerical
summation.

median(*args, **kwds) Median of the distribution.
mean(*args, **kwds) Mean of the distribution.
std(*args, **kwds) Standard deviation of the distribution.
var(*args, **kwds) Variance of the distribution.
interval(alpha, *args, **kwds) Confidence interval with equal areas around the me-

dian.
__call__(*args, **kwds) Freeze the distribution for the given arguments.
support(*args, **kwargs) Return the support of the distribution.

scipy.stats.rv_discrete.rvs

rv_discrete.rvs(*args, **kwargs)
Random variates of given type.

Parameters

arg1, arg2, arg3,…
[array_like] The shape parameter(s) for the distribution (see docstring of the instance
object for more information).

loc [array_like, optional] Location parameter (default=0).
size [int or tuple of ints, optional] Defining number of random variates (Default is 1). Note

that size has to be given as keyword, not as positional argument.
random_state

[None or int or np.random.RandomState instance, optional] If int or Ran-
domState, use it for drawing the random variates. If None, rely on self.
random_state. Default is None.

Returns

rvs [ndarray or scalar] Random variates of given size.

scipy.stats.rv_discrete.pmf

rv_discrete.pmf(k, *args, **kwds)
Probability mass function at k of the given RV.

Parameters

k [array_like] Quantiles.
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arg1, arg2, arg3,…
[array_like] The shape parameter(s) for the distribution (see docstring of the instance
object for more information)

loc [array_like, optional] Location parameter (default=0).
Returns

pmf [array_like] Probability mass function evaluated at k

scipy.stats.rv_discrete.logpmf

rv_discrete.logpmf(k, *args, **kwds)
Log of the probability mass function at k of the given RV.

Parameters

k [array_like] Quantiles.
arg1, arg2, arg3,…

[array_like] The shape parameter(s) for the distribution (see docstring of the instance
object for more information).

loc [array_like, optional] Location parameter. Default is 0.
Returns

logpmf [array_like] Log of the probability mass function evaluated at k.

scipy.stats.rv_discrete.cdf

rv_discrete.cdf(k, *args, **kwds)
Cumulative distribution function of the given RV.

Parameters

k [array_like, int] Quantiles.
arg1, arg2, arg3,…

[array_like] The shape parameter(s) for the distribution (see docstring of the instance
object for more information).

loc [array_like, optional] Location parameter (default=0).
Returns

cdf [ndarray] Cumulative distribution function evaluated at k.

scipy.stats.rv_discrete.logcdf

rv_discrete.logcdf(k, *args, **kwds)
Log of the cumulative distribution function at k of the given RV.

Parameters

k [array_like, int] Quantiles.
arg1, arg2, arg3,…

[array_like] The shape parameter(s) for the distribution (see docstring of the instance
object for more information).

loc [array_like, optional] Location parameter (default=0).
Returns

logcdf [array_like] Log of the cumulative distribution function evaluated at k.
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scipy.stats.rv_discrete.sf

rv_discrete.sf(k, *args, **kwds)
Survival function (1 - cdf) at k of the given RV.

Parameters

k [array_like] Quantiles.
arg1, arg2, arg3,…

[array_like] The shape parameter(s) for the distribution (see docstring of the instance
object for more information).

loc [array_like, optional] Location parameter (default=0).
Returns

sf [array_like] Survival function evaluated at k.

scipy.stats.rv_discrete.logsf

rv_discrete.logsf(k, *args, **kwds)
Log of the survival function of the given RV.
Returns the log of the “survival function,” defined as 1 - cdf, evaluated at k.

Parameters

k [array_like] Quantiles.
arg1, arg2, arg3,…

[array_like] The shape parameter(s) for the distribution (see docstring of the instance
object for more information).

loc [array_like, optional] Location parameter (default=0).
Returns

logsf [ndarray] Log of the survival function evaluated at k.

scipy.stats.rv_discrete.ppf

rv_discrete.ppf(q, *args, **kwds)
Percent point function (inverse of cdf) at q of the given RV.

Parameters

q [array_like] Lower tail probability.
arg1, arg2, arg3,…

[array_like] The shape parameter(s) for the distribution (see docstring of the instance
object for more information).

loc [array_like, optional] Location parameter (default=0).
Returns

k [array_like] Quantile corresponding to the lower tail probability, q.
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scipy.stats.rv_discrete.isf

rv_discrete.isf(q, *args, **kwds)
Inverse survival function (inverse of sf) at q of the given RV.

Parameters

q [array_like] Upper tail probability.
arg1, arg2, arg3,…

[array_like] The shape parameter(s) for the distribution (see docstring of the instance
object for more information).

loc [array_like, optional] Location parameter (default=0).
Returns

k [ndarray or scalar] Quantile corresponding to the upper tail probability, q.

scipy.stats.rv_discrete.moment

rv_discrete.moment(n, *args, **kwds)
n-th order non-central moment of distribution.

Parameters

n [int, n >= 1] Order of moment.
arg1, arg2, arg3,…

[float] The shape parameter(s) for the distribution (see docstring of the instance object
for more information).

loc [array_like, optional] location parameter (default=0)
scale [array_like, optional] scale parameter (default=1)

scipy.stats.rv_discrete.stats

rv_discrete.stats(*args, **kwds)
Some statistics of the given RV.

Parameters

arg1, arg2, arg3,…
[array_like] The shape parameter(s) for the distribution (see docstring of the instance
object for more information)

loc [array_like, optional] location parameter (default=0)
scale [array_like, optional (continuous RVs only)] scale parameter (default=1)
moments [str, optional] composed of letters [‘mvsk’] defining which moments to compute: ‘m’ =

mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew, ‘k’ = (Fisher’s) kurtosis. (default is ‘mv’)
Returns

stats [sequence] of requested moments.

scipy.stats.rv_discrete.entropy

rv_discrete.entropy(*args, **kwds)
Differential entropy of the RV.

Parameters
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arg1, arg2, arg3,…
[array_like] The shape parameter(s) for the distribution (see docstring of the instance
object for more information).

loc [array_like, optional] Location parameter (default=0).
scale [array_like, optional (continuous distributions only).] Scale parameter (default=1).

Notes

Entropy is defined base e:

>>> drv = rv_discrete(values=((0, 1), (0.5, 0.5)))
>>> np.allclose(drv.entropy(), np.log(2.0))
True

scipy.stats.rv_discrete.expect

rv_discrete.expect(func=None, args=(), loc=0, lb=None, ub=None, conditional=False, max-
count=1000, tolerance=1e-10, chunksize=32)

Calculate expected value of a function with respect to the distribution for discrete distribution by numerical
summation.

Parameters

func [callable, optional] Function for which the expectation value is calculated. Takes only
one argument. The default is the identity mapping f(k) = k.

args [tuple, optional] Shape parameters of the distribution.
loc [float, optional] Location parameter. Default is 0.
lb, ub [int, optional] Lower and upper bound for the summation, default is set to the support

of the distribution, inclusive (ul <= k <= ub).
conditional

[bool, optional] If true then the expectation is corrected by the conditional probability
of the summation interval. The return value is the expectation of the function, func,
conditional on being in the given interval (k such that ul <= k <= ub). Default is
False.

maxcount [int, optional] Maximal number of terms to evaluate (to avoid an endless loop for an
infinite sum). Default is 1000.

tolerance [float, optional] Absolute tolerance for the summation. Default is 1e-10.
chunksize [int, optional] Iterate over the support of a distributions in chunks of this size. Default

is 32.
Returns

expect [float] Expected value.

Notes

For heavy-tailed distributions, the expected value may or may not exist, depending on the function, func. If
it does exist, but the sum converges slowly, the accuracy of the result may be rather low. For instance, for
zipf(4), accuracy for mean, variance in example is only 1e-5. increasing maxcount and/or chunksize may
improve the result, but may also make zipf very slow.
The function is not vectorized.
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scipy.stats.rv_discrete.median

rv_discrete.median(*args, **kwds)
Median of the distribution.

Parameters

arg1, arg2, arg3,…
[array_like] The shape parameter(s) for the distribution (see docstring of the instance
object for more information)

loc [array_like, optional] Location parameter, Default is 0.
scale [array_like, optional] Scale parameter, Default is 1.

Returns

median [float] The median of the distribution.
See also:

rv_discrete.ppf

Inverse of the CDF

scipy.stats.rv_discrete.mean

rv_discrete.mean(*args, **kwds)
Mean of the distribution.

Parameters

arg1, arg2, arg3,…
[array_like] The shape parameter(s) for the distribution (see docstring of the instance
object for more information)

loc [array_like, optional] location parameter (default=0)
scale [array_like, optional] scale parameter (default=1)

Returns

mean [float] the mean of the distribution

scipy.stats.rv_discrete.std

rv_discrete.std(*args, **kwds)
Standard deviation of the distribution.

Parameters

arg1, arg2, arg3,…
[array_like] The shape parameter(s) for the distribution (see docstring of the instance
object for more information)

loc [array_like, optional] location parameter (default=0)
scale [array_like, optional] scale parameter (default=1)

Returns

std [float] standard deviation of the distribution
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scipy.stats.rv_discrete.var

rv_discrete.var(*args, **kwds)
Variance of the distribution.

Parameters

arg1, arg2, arg3,…
[array_like] The shape parameter(s) for the distribution (see docstring of the instance
object for more information)

loc [array_like, optional] location parameter (default=0)
scale [array_like, optional] scale parameter (default=1)

Returns

var [float] the variance of the distribution

scipy.stats.rv_discrete.interval

rv_discrete.interval(alpha, *args, **kwds)
Confidence interval with equal areas around the median.

Parameters

alpha [array_like of float] Probability that an rv will be drawn from the returned range. Each
value should be in the range [0, 1].

arg1, arg2, …
[array_like] The shape parameter(s) for the distribution (see docstring of the instance
object for more information).

loc [array_like, optional] location parameter, Default is 0.
scale [array_like, optional] scale parameter, Default is 1.

Returns

a, b [ndarray of float] end-points of range that contain 100 * alpha % of the rv’s pos-
sible values.

scipy.stats.rv_discrete.__call__

rv_discrete.__call__(*args, **kwds)
Freeze the distribution for the given arguments.

Parameters

arg1, arg2, arg3,…
[array_like] The shape parameter(s) for the distribution. Should include all the non-
optional arguments, may include loc and scale.

Returns

rv_frozen [rv_frozen instance] The frozen distribution.
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scipy.stats.rv_discrete.support

rv_discrete.support(*args, **kwargs)
Return the support of the distribution.

Parameters

arg1, arg2, …
[array_like] The shape parameter(s) for the distribution (see docstring of the instance
object for more information).

loc [array_like, optional] location parameter, Default is 0.
scale [array_like, optional] scale parameter, Default is 1.
Returns
——-
a, b [float] end-points of the distribution’s support.

6.28.3 scipy.stats.rv_histogram

class scipy.stats.rv_histogram(histogram, *args, **kwargs)
Generates a distribution given by a histogram. This is useful to generate a template distribution from a binned
datasample.
As a subclass of the rv_continuous class, rv_histogram inherits from it a collection of generic methods
(see rv_continuous for the full list), and implements them based on the properties of the provided binned
datasample.

Parameters

histogram [tuple of array_like] Tuple containing two array_like objects The first containing the con-
tent of n bins The second containing the (n+1) bin boundaries In particular the return value
np.histogram is accepted

Notes

There are no additional shape parameters except for the loc and scale. The pdf is defined as a stepwise function
from the provided histogram The cdf is a linear interpolation of the pdf.
New in version 0.19.0.

Examples

Create a scipy.stats distribution from a numpy histogram

>>> import scipy.stats
>>> import numpy as np
>>> data = scipy.stats.norm.rvs(size=100000, loc=0, scale=1.5, random_
↪→state=123)
>>> hist = np.histogram(data, bins=100)
>>> hist_dist = scipy.stats.rv_histogram(hist)

Behaves like an ordinary scipy rv_continuous distribution
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>>> hist_dist.pdf(1.0)
0.20538577847618705
>>> hist_dist.cdf(2.0)
0.90818568543056499

PDF is zero above (below) the highest (lowest) bin of the histogram, defined by the max (min) of the original dataset

>>> hist_dist.pdf(np.max(data))
0.0
>>> hist_dist.cdf(np.max(data))
1.0
>>> hist_dist.pdf(np.min(data))
7.7591907244498314e-05
>>> hist_dist.cdf(np.min(data))
0.0

PDF and CDF follow the histogram

>>> import matplotlib.pyplot as plt
>>> X = np.linspace(-5.0, 5.0, 100)
>>> plt.title("PDF from Template")
>>> plt.hist(data, density=True, bins=100)
>>> plt.plot(X, hist_dist.pdf(X), label='PDF')
>>> plt.plot(X, hist_dist.cdf(X), label='CDF')
>>> plt.show()
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Attributes

random_state
Get or set the RandomState object for generating random variates.

Methods
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__call__(*args, **kwds) Freeze the distribution for the given arguments.
cdf(x, *args, **kwds) Cumulative distribution function of the given RV.
entropy(*args, **kwds) Differential entropy of the RV.
expect([func, args, loc, scale, lb, ub, …]) Calculate expected value of a function with respect to

the distribution by numerical integration.
fit(data, *args, **kwds) Return MLEs for shape (if applicable), location, and

scale parameters from data.
fit_loc_scale(data, *args) Estimate loc and scale parameters from data using 1st

and 2nd moments.
freeze(*args, **kwds) Freeze the distribution for the given arguments.
interval(alpha, *args, **kwds) Confidence interval with equal areas around the me-

dian.
isf(q, *args, **kwds) Inverse survival function (inverse of sf) at q of the

given RV.
logcdf(x, *args, **kwds) Log of the cumulative distribution function at x of the

given RV.
logpdf(x, *args, **kwds) Log of the probability density function at x of the given

RV.
logsf(x, *args, **kwds) Log of the survival function of the given RV.
mean(*args, **kwds) Mean of the distribution.
median(*args, **kwds) Median of the distribution.
moment(n, *args, **kwds) n-th order non-central moment of distribution.
nnlf(theta, x) Return negative loglikelihood function.
pdf(x, *args, **kwds) Probability density function at x of the given RV.
ppf(q, *args, **kwds) Percent point function (inverse of cdf) at q of the

given RV.
rvs(*args, **kwds) Random variates of given type.
sf(x, *args, **kwds) Survival function (1 - cdf) at x of the given RV.
stats(*args, **kwds) Some statistics of the given RV.
std(*args, **kwds) Standard deviation of the distribution.
support(*args, **kwargs) Return the support of the distribution.
var(*args, **kwds) Variance of the distribution.

scipy.stats.rv_histogram.__call__

rv_histogram.__call__(*args, **kwds)
Freeze the distribution for the given arguments.

Parameters

arg1, arg2, arg3,…
[array_like] The shape parameter(s) for the distribution. Should include all the non-
optional arguments, may include loc and scale.

Returns

rv_frozen [rv_frozen instance] The frozen distribution.

scipy.stats.rv_histogram.cdf

rv_histogram.cdf(x, *args, **kwds)
Cumulative distribution function of the given RV.

Parameters
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x [array_like] quantiles
arg1, arg2, arg3,…

[array_like] The shape parameter(s) for the distribution (see docstring of the instance
object for more information)

loc [array_like, optional] location parameter (default=0)
scale [array_like, optional] scale parameter (default=1)

Returns

cdf [ndarray] Cumulative distribution function evaluated at x

scipy.stats.rv_histogram.entropy

rv_histogram.entropy(*args, **kwds)
Differential entropy of the RV.

Parameters

arg1, arg2, arg3,…
[array_like] The shape parameter(s) for the distribution (see docstring of the instance
object for more information).

loc [array_like, optional] Location parameter (default=0).
scale [array_like, optional (continuous distributions only).] Scale parameter (default=1).

Notes

Entropy is defined base e:

>>> drv = rv_discrete(values=((0, 1), (0.5, 0.5)))
>>> np.allclose(drv.entropy(), np.log(2.0))
True

scipy.stats.rv_histogram.expect

rv_histogram.expect(func=None, args=(), loc=0, scale=1, lb=None, ub=None, conditional=False,
**kwds)

Calculate expected value of a function with respect to the distribution by numerical integration.
The expected value of a function f(x) with respect to a distribution dist is defined as:

ub
E[f(x)] = Integral(f(x) * dist.pdf(x)),

lb

where ub and lb are arguments and x has the dist.pdf(x) distribution. If the bounds lb and ub
correspond to the support of the distribution, e.g. [-inf, inf] in the default case, then the integral is the
unrestricted expectation of f(x). Also, the function f(x) may be defined such that f(x) is 0 outside a
finite interval in which case the expectation is calculated within the finite range [lb, ub].

Parameters

func [callable, optional] Function for which integral is calculated. Takes only one argument.
The default is the identity mapping f(x) = x.

args [tuple, optional] Shape parameters of the distribution.
loc [float, optional] Location parameter (default=0).
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scale [float, optional] Scale parameter (default=1).
lb, ub [scalar, optional] Lower and upper bound for integration. Default is set to the support

of the distribution.
conditional

[bool, optional] If True, the integral is corrected by the conditional probability of the
integration interval. The return value is the expectation of the function, conditional on
being in the given interval. Default is False.

Additional keyword arguments are passed to the integration routine.
Returns

expect [float] The calculated expected value.

Notes

The integration behavior of this function is inherited from scipy.integrate.quad. Neither this
function nor scipy.integrate.quad can verify whether the integral exists or is finite. For example
cauchy(0).mean() returns np.nan and cauchy(0).expect() returns 0.0.

Examples

To understand the effect of the bounds of integration consider >>> from scipy.stats import expon >>> ex-
pon(1).expect(lambda x: 1, lb=0.0, ub=2.0) 0.6321205588285578
This is close to

>>> expon(1).cdf(2.0) - expon(1).cdf(0.0)
0.6321205588285577

If conditional=True

>>> expon(1).expect(lambda x: 1, lb=0.0, ub=2.0, conditional=True)
1.0000000000000002

The slight deviation from 1 is due to numerical integration.

scipy.stats.rv_histogram.fit

rv_histogram.fit(data, *args, **kwds)
Return MLEs for shape (if applicable), location, and scale parameters from data.
MLE stands for Maximum Likelihood Estimate. Starting estimates for the fit are given by input arguments;
for any arguments not provided with starting estimates, self._fitstart(data) is called to generate
such.
One can hold some parameters fixed to specific values by passing in keyword arguments f0, f1, …, fn (for
shape parameters) and floc and fscale (for location and scale parameters, respectively).

Parameters

data [array_like] Data to use in calculating the MLEs.
args [floats, optional] Starting value(s) for any shape-characterizing arguments (those not

provided will be determined by a call to _fitstart(data)). No default value.
kwds [floats, optional] Starting values for the location and scale parameters; no default. Spe-

cial keyword arguments are recognized as holding certain parameters fixed:
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• f0…fn : hold respective shape parameters fixed. Alternatively, shape parameters
to fix can be specified by name. For example, if self.shapes == "a, b",
fa``and ``fix_a are equivalent to f0, and fb and fix_b are equivalent to
f1.

• floc : hold location parameter fixed to specified value.
• fscale : hold scale parameter fixed to specified value.
• optimizer : The optimizer to use. The optimizer must take func, and starting posi-
tion as the first two arguments, plus args (for extra arguments to pass to the function
to be optimized) and disp=0 to suppress output as keyword arguments.

Returns

mle_tuple [tuple of floats] MLEs for any shape parameters (if applicable), followed by those for
location and scale. For most random variables, shape statistics will be returned, but
there are exceptions (e.g. norm).

Notes

This fit is computed by maximizing a log-likelihood function, with penalty applied for samples outside of
range of the distribution. The returned answer is not guaranteed to be the globally optimal MLE, it may only
be locally optimal, or the optimization may fail altogether.

Examples

Generate some data to fit: draw random variates from the beta distribution

>>> from scipy.stats import beta
>>> a, b = 1., 2.
>>> x = beta.rvs(a, b, size=1000)

Now we can fit all four parameters (a, b, loc and scale):

>>> a1, b1, loc1, scale1 = beta.fit(x)

We can also use some prior knowledge about the dataset: let’s keep loc and scale fixed:

>>> a1, b1, loc1, scale1 = beta.fit(x, floc=0, fscale=1)
>>> loc1, scale1
(0, 1)

We can also keep shape parameters fixed by using f-keywords. To keep the zero-th shape parameter a equal
1, use f0=1 or, equivalently, fa=1:

>>> a1, b1, loc1, scale1 = beta.fit(x, fa=1, floc=0, fscale=1)
>>> a1
1

Not all distributions return estimates for the shape parameters. norm for example just returns estimates for
location and scale:

>>> from scipy.stats import norm
>>> x = norm.rvs(a, b, size=1000, random_state=123)
>>> loc1, scale1 = norm.fit(x)

(continues on next page)
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(continued from previous page)
>>> loc1, scale1
(0.92087172783841631, 2.0015750750324668)

scipy.stats.rv_histogram.fit_loc_scale

rv_histogram.fit_loc_scale(data, *args)
Estimate loc and scale parameters from data using 1st and 2nd moments.

Parameters

data [array_like] Data to fit.
arg1, arg2, arg3,…

[array_like] The shape parameter(s) for the distribution (see docstring of the instance
object for more information).

Returns

Lhat [float] Estimated location parameter for the data.
Shat [float] Estimated scale parameter for the data.

scipy.stats.rv_histogram.freeze

rv_histogram.freeze(*args, **kwds)
Freeze the distribution for the given arguments.

Parameters

arg1, arg2, arg3,…
[array_like] The shape parameter(s) for the distribution. Should include all the non-
optional arguments, may include loc and scale.

Returns

rv_frozen [rv_frozen instance] The frozen distribution.

scipy.stats.rv_histogram.interval

rv_histogram.interval(alpha, *args, **kwds)
Confidence interval with equal areas around the median.

Parameters

alpha [array_like of float] Probability that an rv will be drawn from the returned range. Each
value should be in the range [0, 1].

arg1, arg2, …
[array_like] The shape parameter(s) for the distribution (see docstring of the instance
object for more information).

loc [array_like, optional] location parameter, Default is 0.
scale [array_like, optional] scale parameter, Default is 1.

Returns

a, b [ndarray of float] end-points of range that contain 100 * alpha % of the rv’s pos-
sible values.
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scipy.stats.rv_histogram.isf

rv_histogram.isf(q, *args, **kwds)
Inverse survival function (inverse of sf) at q of the given RV.

Parameters

q [array_like] upper tail probability
arg1, arg2, arg3,…

[array_like] The shape parameter(s) for the distribution (see docstring of the instance
object for more information)

loc [array_like, optional] location parameter (default=0)
scale [array_like, optional] scale parameter (default=1)

Returns

x [ndarray or scalar] Quantile corresponding to the upper tail probability q.

scipy.stats.rv_histogram.logcdf

rv_histogram.logcdf(x, *args, **kwds)
Log of the cumulative distribution function at x of the given RV.

Parameters

x [array_like] quantiles
arg1, arg2, arg3,…

[array_like] The shape parameter(s) for the distribution (see docstring of the instance
object for more information)

loc [array_like, optional] location parameter (default=0)
scale [array_like, optional] scale parameter (default=1)

Returns

logcdf [array_like] Log of the cumulative distribution function evaluated at x

scipy.stats.rv_histogram.logpdf

rv_histogram.logpdf(x, *args, **kwds)
Log of the probability density function at x of the given RV.
This uses a more numerically accurate calculation if available.

Parameters

x [array_like] quantiles
arg1, arg2, arg3,…

[array_like] The shape parameter(s) for the distribution (see docstring of the instance
object for more information)

loc [array_like, optional] location parameter (default=0)
scale [array_like, optional] scale parameter (default=1)

Returns

logpdf [array_like] Log of the probability density function evaluated at x
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scipy.stats.rv_histogram.logsf

rv_histogram.logsf(x, *args, **kwds)
Log of the survival function of the given RV.
Returns the log of the “survival function,” defined as (1 - cdf), evaluated at x.

Parameters

x [array_like] quantiles
arg1, arg2, arg3,…

[array_like] The shape parameter(s) for the distribution (see docstring of the instance
object for more information)

loc [array_like, optional] location parameter (default=0)
scale [array_like, optional] scale parameter (default=1)

Returns

logsf [ndarray] Log of the survival function evaluated at x.

scipy.stats.rv_histogram.mean

rv_histogram.mean(*args, **kwds)
Mean of the distribution.

Parameters

arg1, arg2, arg3,…
[array_like] The shape parameter(s) for the distribution (see docstring of the instance
object for more information)

loc [array_like, optional] location parameter (default=0)
scale [array_like, optional] scale parameter (default=1)

Returns

mean [float] the mean of the distribution

scipy.stats.rv_histogram.median

rv_histogram.median(*args, **kwds)
Median of the distribution.

Parameters

arg1, arg2, arg3,…
[array_like] The shape parameter(s) for the distribution (see docstring of the instance
object for more information)

loc [array_like, optional] Location parameter, Default is 0.
scale [array_like, optional] Scale parameter, Default is 1.

Returns

median [float] The median of the distribution.
See also:

rv_discrete.ppf

Inverse of the CDF
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scipy.stats.rv_histogram.moment

rv_histogram.moment(n, *args, **kwds)
n-th order non-central moment of distribution.

Parameters

n [int, n >= 1] Order of moment.
arg1, arg2, arg3,…

[float] The shape parameter(s) for the distribution (see docstring of the instance object
for more information).

loc [array_like, optional] location parameter (default=0)
scale [array_like, optional] scale parameter (default=1)

scipy.stats.rv_histogram.nnlf

rv_histogram.nnlf(theta, x)
Return negative loglikelihood function.

Notes

This is -sum(log pdf(x, theta), axis=0) where theta are the parameters (including loc and
scale).

scipy.stats.rv_histogram.pdf

rv_histogram.pdf(x, *args, **kwds)
Probability density function at x of the given RV.

Parameters

x [array_like] quantiles
arg1, arg2, arg3,…

[array_like] The shape parameter(s) for the distribution (see docstring of the instance
object for more information)

loc [array_like, optional] location parameter (default=0)
scale [array_like, optional] scale parameter (default=1)

Returns

pdf [ndarray] Probability density function evaluated at x

scipy.stats.rv_histogram.ppf

rv_histogram.ppf(q, *args, **kwds)
Percent point function (inverse of cdf) at q of the given RV.

Parameters

q [array_like] lower tail probability
arg1, arg2, arg3,…

[array_like] The shape parameter(s) for the distribution (see docstring of the instance
object for more information)

loc [array_like, optional] location parameter (default=0)
scale [array_like, optional] scale parameter (default=1)
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Returns

x [array_like] quantile corresponding to the lower tail probability q.

scipy.stats.rv_histogram.rvs

rv_histogram.rvs(*args, **kwds)
Random variates of given type.

Parameters

arg1, arg2, arg3,…
[array_like] The shape parameter(s) for the distribution (see docstring of the instance
object for more information).

loc [array_like, optional] Location parameter (default=0).
scale [array_like, optional] Scale parameter (default=1).
size [int or tuple of ints, optional] Defining number of random variates (default is 1).
random_state

[None or int or np.random.RandomState instance, optional] If int or Ran-
domState, use it for drawing the random variates. If None, rely on self.
random_state. Default is None.

Returns

rvs [ndarray or scalar] Random variates of given size.

scipy.stats.rv_histogram.sf

rv_histogram.sf(x, *args, **kwds)
Survival function (1 - cdf) at x of the given RV.

Parameters

x [array_like] quantiles
arg1, arg2, arg3,…

[array_like] The shape parameter(s) for the distribution (see docstring of the instance
object for more information)

loc [array_like, optional] location parameter (default=0)
scale [array_like, optional] scale parameter (default=1)

Returns

sf [array_like] Survival function evaluated at x

scipy.stats.rv_histogram.stats

rv_histogram.stats(*args, **kwds)
Some statistics of the given RV.

Parameters

arg1, arg2, arg3,…
[array_like] The shape parameter(s) for the distribution (see docstring of the instance
object for more information)

loc [array_like, optional] location parameter (default=0)
scale [array_like, optional (continuous RVs only)] scale parameter (default=1)
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moments [str, optional] composed of letters [‘mvsk’] defining which moments to compute: ‘m’ =
mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew, ‘k’ = (Fisher’s) kurtosis. (default is ‘mv’)

Returns

stats [sequence] of requested moments.

scipy.stats.rv_histogram.std

rv_histogram.std(*args, **kwds)
Standard deviation of the distribution.

Parameters

arg1, arg2, arg3,…
[array_like] The shape parameter(s) for the distribution (see docstring of the instance
object for more information)

loc [array_like, optional] location parameter (default=0)
scale [array_like, optional] scale parameter (default=1)

Returns

std [float] standard deviation of the distribution

scipy.stats.rv_histogram.support

rv_histogram.support(*args, **kwargs)
Return the support of the distribution.

Parameters

arg1, arg2, …
[array_like] The shape parameter(s) for the distribution (see docstring of the instance
object for more information).

loc [array_like, optional] location parameter, Default is 0.
scale [array_like, optional] scale parameter, Default is 1.
Returns
——-
a, b [float] end-points of the distribution’s support.

scipy.stats.rv_histogram.var

rv_histogram.var(*args, **kwds)
Variance of the distribution.

Parameters

arg1, arg2, arg3,…
[array_like] The shape parameter(s) for the distribution (see docstring of the instance
object for more information)

loc [array_like, optional] location parameter (default=0)
scale [array_like, optional] scale parameter (default=1)

Returns

var [float] the variance of the distribution
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6.28.4 Continuous distributions

alpha An alpha continuous random variable.
anglit An anglit continuous random variable.
arcsine An arcsine continuous random variable.
argus Argus distribution
beta A beta continuous random variable.
betaprime A beta prime continuous random variable.
bradford A Bradford continuous random variable.
burr A Burr (Type III) continuous random variable.
burr12 A Burr (Type XII) continuous random variable.
cauchy A Cauchy continuous random variable.
chi A chi continuous random variable.
chi2 A chi-squared continuous random variable.
cosine A cosine continuous random variable.
crystalball Crystalball distribution
dgamma A double gamma continuous random variable.
dweibull A double Weibull continuous random variable.
erlang An Erlang continuous random variable.
expon An exponential continuous random variable.
exponnorm An exponentially modified Normal continuous random

variable.
exponweib An exponentiated Weibull continuous random variable.
exponpow An exponential power continuous random variable.
f An F continuous random variable.
fatiguelife A fatigue-life (Birnbaum-Saunders) continuous random

variable.
fisk A Fisk continuous random variable.
foldcauchy A folded Cauchy continuous random variable.
foldnorm A folded normal continuous random variable.
frechet_r A Frechet right (or Weibull minimum) continuous ran-

dom variable.
frechet_l A Frechet left (or Weibull maximum) continuous random

variable.
genlogistic A generalized logistic continuous random variable.
gennorm A generalized normal continuous random variable.
genpareto A generalized Pareto continuous random variable.
genexpon A generalized exponential continuous random variable.
genextreme A generalized extreme value continuous random variable.
gausshyper A Gauss hypergeometric continuous random variable.
gamma A gamma continuous random variable.
gengamma A generalized gamma continuous random variable.
genhalflogistic A generalized half-logistic continuous random variable.
gilbrat A Gilbrat continuous random variable.
gompertz A Gompertz (or truncated Gumbel) continuous random

variable.
gumbel_r A right-skewed Gumbel continuous random variable.
gumbel_l A left-skewed Gumbel continuous random variable.
halfcauchy A Half-Cauchy continuous random variable.
halflogistic A half-logistic continuous random variable.
halfnorm A half-normal continuous random variable.

Continued on next page
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Table 252 – continued from previous page
halfgennorm The upper half of a generalized normal continuous ran-

dom variable.
hypsecant A hyperbolic secant continuous random variable.
invgamma An inverted gamma continuous random variable.
invgauss An inverse Gaussian continuous random variable.
invweibull An inverted Weibull continuous random variable.
johnsonsb A Johnson SB continuous random variable.
johnsonsu A Johnson SU continuous random variable.
kappa4 Kappa 4 parameter distribution.
kappa3 Kappa 3 parameter distribution.
ksone General Kolmogorov-Smirnov one-sided test.
kstwobign Kolmogorov-Smirnov two-sided test for large N.
laplace A Laplace continuous random variable.
levy A Levy continuous random variable.
levy_l A left-skewed Levy continuous random variable.
levy_stable A Levy-stable continuous random variable.
logistic A logistic (or Sech-squared) continuous random variable.
loggamma A log gamma continuous random variable.
loglaplace A log-Laplace continuous random variable.
lognorm A lognormal continuous random variable.
lomax A Lomax (Pareto of the second kind) continuous random

variable.
maxwell A Maxwell continuous random variable.
mielke A Mielke Beta-Kappa continuous random variable.
moyal A Moyal continuous random variable.
nakagami A Nakagami continuous random variable.
ncx2 A non-central chi-squared continuous random variable.
ncf A non-central F distribution continuous random variable.
nct A non-central Student’s t continuous random variable.
norm A normal continuous random variable.
norminvgauss A Normal Inverse Gaussian continuous random variable.
pareto A Pareto continuous random variable.
pearson3 A pearson type III continuous random variable.
powerlaw A power-function continuous random variable.
powerlognorm A power log-normal continuous random variable.
powernorm A power normal continuous random variable.
rdist An R-distributed continuous random variable.
reciprocal A reciprocal continuous random variable.
rayleigh A Rayleigh continuous random variable.
rice A Rice continuous random variable.
recipinvgauss A reciprocal inverse Gaussian continuous random vari-

able.
semicircular A semicircular continuous random variable.
skewnorm A skew-normal random variable.
t A Student’s t continuous random variable.
trapz A trapezoidal continuous random variable.
triang A triangular continuous random variable.
truncexpon A truncated exponential continuous random variable.
truncnorm A truncated normal continuous random variable.
tukeylambda A Tukey-Lamdba continuous random variable.

Continued on next page
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Table 252 – continued from previous page
uniform A uniform continuous random variable.
vonmises A Von Mises continuous random variable.
vonmises_line A Von Mises continuous random variable.
wald AWald continuous random variable.
weibull_min Weibull minimum continuous random variable.
weibull_max Weibull maximum continuous random variable.
wrapcauchy A wrapped Cauchy continuous random variable.

scipy.stats.alpha

scipy.stats.alpha = <scipy.stats._continuous_distns.alpha_gen object>
An alpha continuous random variable.
As an instance of the rv_continuous class, alpha object inherits from it a collection of generic methods (see
below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for alpha is:

f(x, a) =
1

x2Φ(a)
√
2π

∗ exp(−1

2
(a− 1/x)2)

where Φ is the normal CDF, x > 0, and a > 0.
alpha takes a as a shape parameter.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, alpha.pdf(x, a, loc, scale) is identically equivalent to
alpha.pdf(y, a) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import alpha
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> a = 3.57
>>> mean, var, skew, kurt = alpha.stats(a, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(alpha.ppf(0.01, a),
... alpha.ppf(0.99, a), 100)
>>> ax.plot(x, alpha.pdf(x, a),
... 'r-', lw=5, alpha=0.6, label='alpha pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:
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>>> rv = alpha(a)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = alpha.ppf([0.001, 0.5, 0.999], a)
>>> np.allclose([0.001, 0.5, 0.999], alpha.cdf(vals, a))
True

Generate random numbers:

>>> r = alpha.rvs(a, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(a, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, a, loc=0, scale=1) Probability density function.
logpdf(x, a, loc=0, scale=1) Log of the probability density function.
cdf(x, a, loc=0, scale=1) Cumulative distribution function.
logcdf(x, a, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, a, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, a, loc=0, scale=1) Log of the survival function.
ppf(q, a, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, a, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, a, loc=0, scale=1) Non-central moment of order n
stats(a, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(a, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, a, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(a,), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(a, loc=0, scale=1) Median of the distribution.
mean(a, loc=0, scale=1) Mean of the distribution.
var(a, loc=0, scale=1) Variance of the distribution.
std(a, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, a, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.anglit

scipy.stats.anglit = <scipy.stats._continuous_distns.anglit_gen object>
An anglit continuous random variable.
As an instance of the rv_continuous class, anglit object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for anglit is:

f(x) = sin(2x+ π/2) = cos(2x)

for −π/4 ≤ x ≤ π/4.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, anglit.pdf(x, loc, scale) is identically equivalent to
anglit.pdf(y) / scale with y = (x - loc) / scale.

Examples
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>>> from scipy.stats import anglit
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> mean, var, skew, kurt = anglit.stats(moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(anglit.ppf(0.01),
... anglit.ppf(0.99), 100)
>>> ax.plot(x, anglit.pdf(x),
... 'r-', lw=5, alpha=0.6, label='anglit pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = anglit()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = anglit.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], anglit.cdf(vals))
True

Generate random numbers:

>>> r = anglit.rvs(size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, loc=0, scale=1) Probability density function.
logpdf(x, loc=0, scale=1) Log of the probability density function.
cdf(x, loc=0, scale=1) Cumulative distribution function.
logcdf(x, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, loc=0, scale=1) Log of the survival function.
ppf(q, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, loc=0, scale=1) Non-central moment of order n
stats(loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(loc=0, scale=1) (Differential) entropy of the RV.
fit(data, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(loc=0, scale=1) Median of the distribution.
mean(loc=0, scale=1) Mean of the distribution.
var(loc=0, scale=1) Variance of the distribution.
std(loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, loc=0, scale=1) Endpoints of the range that contains alpha percent

of the distribution

scipy.stats.arcsine

scipy.stats.arcsine = <scipy.stats._continuous_distns.arcsine_gen object>
An arcsine continuous random variable.
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As an instance of the rv_continuous class, arcsine object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for arcsine is:

f(x) =
1

π
√
x(1− x)

for 0 < x < 1.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, arcsine.pdf(x, loc, scale) is identically equivalent to
arcsine.pdf(y) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import arcsine
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> mean, var, skew, kurt = arcsine.stats(moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(arcsine.ppf(0.01),
... arcsine.ppf(0.99), 100)
>>> ax.plot(x, arcsine.pdf(x),
... 'r-', lw=5, alpha=0.6, label='arcsine pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = arcsine()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = arcsine.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], arcsine.cdf(vals))
True

Generate random numbers:

>>> r = arcsine.rvs(size=1000)

And compare the histogram:
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>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, loc=0, scale=1) Probability density function.
logpdf(x, loc=0, scale=1) Log of the probability density function.
cdf(x, loc=0, scale=1) Cumulative distribution function.
logcdf(x, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, loc=0, scale=1) Log of the survival function.
ppf(q, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, loc=0, scale=1) Non-central moment of order n
stats(loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(loc=0, scale=1) (Differential) entropy of the RV.
fit(data, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(loc=0, scale=1) Median of the distribution.
mean(loc=0, scale=1) Mean of the distribution.
var(loc=0, scale=1) Variance of the distribution.
std(loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, loc=0, scale=1) Endpoints of the range that contains alpha percent

of the distribution
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scipy.stats.argus

scipy.stats.argus = <scipy.stats._continuous_distns.argus_gen object>
Argus distribution
As an instance of the rv_continuous class, argus object inherits from it a collection of generic methods (see
below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for argus is:

f(x, χ) =
χ3

√
2πΨ(χ)

x
√
1− x2 exp(−χ2(1− x2)/2)

for 0 < x < 1, where

Ψ(χ) = Φ(χ)− χϕ(χ)− 1/2

with Φ and ϕ being the CDF and PDF of a standard normal distribution, respectively.
argus takes χ as shape a parameter.

References

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, argus.pdf(x, chi, loc, scale) is identically equivalent to
argus.pdf(y, chi) / scale with y = (x - loc) / scale.
New in version 0.19.0.
[1]

Examples

>>> from scipy.stats import argus
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> chi = 1
>>> mean, var, skew, kurt = argus.stats(chi, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(argus.ppf(0.01, chi),
... argus.ppf(0.99, chi), 100)
>>> ax.plot(x, argus.pdf(x, chi),
... 'r-', lw=5, alpha=0.6, label='argus pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:
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>>> rv = argus(chi)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = argus.ppf([0.001, 0.5, 0.999], chi)
>>> np.allclose([0.001, 0.5, 0.999], argus.cdf(vals, chi))
True

Generate random numbers:

>>> r = argus.rvs(chi, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(chi, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, chi, loc=0, scale=1) Probability density function.
logpdf(x, chi, loc=0, scale=1) Log of the probability density function.
cdf(x, chi, loc=0, scale=1) Cumulative distribution function.
logcdf(x, chi, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, chi, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, chi, loc=0, scale=1) Log of the survival function.
ppf(q, chi, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, chi, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, chi, loc=0, scale=1) Non-central moment of order n
stats(chi, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(chi, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, chi, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(chi,), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(chi, loc=0, scale=1) Median of the distribution.
mean(chi, loc=0, scale=1) Mean of the distribution.
var(chi, loc=0, scale=1) Variance of the distribution.
std(chi, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, chi, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.beta

scipy.stats.beta = <scipy.stats._continuous_distns.beta_gen object>
A beta continuous random variable.
As an instance of the rv_continuous class, beta object inherits from it a collection of generic methods (see
below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for beta is:

f(x, a, b) =
Γ(a+ b)xa−1(1− x)b−1

Γ(a)Γ(b)

for 0 <= x <= 1, a > 0, b > 0, where Γ is the gamma function (scipy.special.gamma).
beta takes a and b as shape parameters.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, beta.pdf(x, a, b, loc, scale) is identically equivalent to
beta.pdf(y, a, b) / scale with y = (x - loc) / scale.
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Examples

>>> from scipy.stats import beta
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> a, b = 2.31, 0.627
>>> mean, var, skew, kurt = beta.stats(a, b, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(beta.ppf(0.01, a, b),
... beta.ppf(0.99, a, b), 100)
>>> ax.plot(x, beta.pdf(x, a, b),
... 'r-', lw=5, alpha=0.6, label='beta pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = beta(a, b)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = beta.ppf([0.001, 0.5, 0.999], a, b)
>>> np.allclose([0.001, 0.5, 0.999], beta.cdf(vals, a, b))
True

Generate random numbers:

>>> r = beta.rvs(a, b, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

2122 Chapter 6. API Reference



SciPy Reference Guide, Release 1.3.1

0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25 beta pdf
frozen pdf

Methods

rvs(a, b, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, a, b, loc=0, scale=1) Probability density function.
logpdf(x, a, b, loc=0, scale=1) Log of the probability density function.
cdf(x, a, b, loc=0, scale=1) Cumulative distribution function.
logcdf(x, a, b, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, a, b, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, a, b, loc=0, scale=1) Log of the survival function.
ppf(q, a, b, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, a, b, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, a, b, loc=0, scale=1) Non-central moment of order n
stats(a, b, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(a, b, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, a, b, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(a, b), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(a, b, loc=0, scale=1) Median of the distribution.
mean(a, b, loc=0, scale=1) Mean of the distribution.
var(a, b, loc=0, scale=1) Variance of the distribution.
std(a, b, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, a, b, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.betaprime

scipy.stats.betaprime = <scipy.stats._continuous_distns.betaprime_gen object>
A beta prime continuous random variable.
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As an instance of therv_continuous class, betaprime object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for betaprime is:

f(x, a, b) =
xa−1(1 + x)−a−b

β(a, b)

for x >= 0, a > 0, b > 0, where β(a, b) is the beta function (see scipy.special.beta).
betaprime takes a and b as shape parameters.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, betaprime.pdf(x, a, b, loc, scale) is identically
equivalent to betaprime.pdf(y, a, b) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import betaprime
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> a, b = 5, 6
>>> mean, var, skew, kurt = betaprime.stats(a, b, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(betaprime.ppf(0.01, a, b),
... betaprime.ppf(0.99, a, b), 100)
>>> ax.plot(x, betaprime.pdf(x, a, b),
... 'r-', lw=5, alpha=0.6, label='betaprime pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = betaprime(a, b)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = betaprime.ppf([0.001, 0.5, 0.999], a, b)
>>> np.allclose([0.001, 0.5, 0.999], betaprime.cdf(vals, a, b))
True

Generate random numbers:

>>> r = betaprime.rvs(a, b, size=1000)

And compare the histogram:
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>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(a, b, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, a, b, loc=0, scale=1) Probability density function.
logpdf(x, a, b, loc=0, scale=1) Log of the probability density function.
cdf(x, a, b, loc=0, scale=1) Cumulative distribution function.
logcdf(x, a, b, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, a, b, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, a, b, loc=0, scale=1) Log of the survival function.
ppf(q, a, b, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, a, b, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, a, b, loc=0, scale=1) Non-central moment of order n
stats(a, b, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(a, b, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, a, b, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(a, b), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(a, b, loc=0, scale=1) Median of the distribution.
mean(a, b, loc=0, scale=1) Mean of the distribution.
var(a, b, loc=0, scale=1) Variance of the distribution.
std(a, b, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, a, b, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution
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scipy.stats.bradford

scipy.stats.bradford = <scipy.stats._continuous_distns.bradford_gen object>
A Bradford continuous random variable.
As an instance of the rv_continuous class, bradford object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for bradford is:

f(x, c) =
c

log(1 + c)(1 + cx)

for 0 <= x <= 1 and c > 0.
bradford takes c as a shape parameter for c.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, bradford.pdf(x, c, loc, scale) is identically equivalent
to bradford.pdf(y, c) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import bradford
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> c = 0.299
>>> mean, var, skew, kurt = bradford.stats(c, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(bradford.ppf(0.01, c),
... bradford.ppf(0.99, c), 100)
>>> ax.plot(x, bradford.pdf(x, c),
... 'r-', lw=5, alpha=0.6, label='bradford pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = bradford(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = bradford.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], bradford.cdf(vals, c))
True

Generate random numbers:
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>>> r = bradford.rvs(c, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(c, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, c, loc=0, scale=1) Probability density function.
logpdf(x, c, loc=0, scale=1) Log of the probability density function.
cdf(x, c, loc=0, scale=1) Cumulative distribution function.
logcdf(x, c, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, c, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, c, loc=0, scale=1) Log of the survival function.
ppf(q, c, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, c, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, c, loc=0, scale=1) Non-central moment of order n
stats(c, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(c, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, c, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(c,), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(c, loc=0, scale=1) Median of the distribution.
mean(c, loc=0, scale=1) Mean of the distribution.
var(c, loc=0, scale=1) Variance of the distribution.
std(c, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, c, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.burr

scipy.stats.burr = <scipy.stats._continuous_distns.burr_gen object>
A Burr (Type III) continuous random variable.
As an instance of the rv_continuous class, burr object inherits from it a collection of generic methods (see
below for the full list), and completes them with details specific for this particular distribution.
See also:

fisk

a special case of either burr or burr12 with d=1
burr12

Burr Type XII distribution

Notes

The probability density function for burr is:

f(x, c, d) = cdx−c−1(1 + x−c)−d−1

for x >= 0 and c, d > 0.
burr takes c and d as shape parameters.
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This is the PDF corresponding to the third CDF given in Burr’s list; specifically, it is equation (11) in Burr’s paper
[1].
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, burr.pdf(x, c, d, loc, scale) is identically equivalent to
burr.pdf(y, c, d) / scale with y = (x - loc) / scale.

References

[1]

Examples

>>> from scipy.stats import burr
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> c, d = 10.5, 4.3
>>> mean, var, skew, kurt = burr.stats(c, d, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(burr.ppf(0.01, c, d),
... burr.ppf(0.99, c, d), 100)
>>> ax.plot(x, burr.pdf(x, c, d),
... 'r-', lw=5, alpha=0.6, label='burr pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = burr(c, d)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = burr.ppf([0.001, 0.5, 0.999], c, d)
>>> np.allclose([0.001, 0.5, 0.999], burr.cdf(vals, c, d))
True

Generate random numbers:

>>> r = burr.rvs(c, d, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(c, d, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, c, d, loc=0, scale=1) Probability density function.
logpdf(x, c, d, loc=0, scale=1) Log of the probability density function.
cdf(x, c, d, loc=0, scale=1) Cumulative distribution function.
logcdf(x, c, d, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, c, d, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, c, d, loc=0, scale=1) Log of the survival function.
ppf(q, c, d, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, c, d, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, c, d, loc=0, scale=1) Non-central moment of order n
stats(c, d, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(c, d, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, c, d, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(c, d), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(c, d, loc=0, scale=1) Median of the distribution.
mean(c, d, loc=0, scale=1) Mean of the distribution.
var(c, d, loc=0, scale=1) Variance of the distribution.
std(c, d, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, c, d, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.burr12

scipy.stats.burr12 = <scipy.stats._continuous_distns.burr12_gen object>
A Burr (Type XII) continuous random variable.
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As an instance of the rv_continuous class, burr12 object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.
See also:

fisk

a special case of either burr or burr12 with d=1
burr

Burr Type III distribution

Notes

The probability density function for burr is:

f(x, c, d) = cdxc−1(1 + xc)−d−1

for x >= 0 and c, d > 0.
burr12 takes c and d as shape parameters for c and d.
This is the PDF corresponding to the twelfth CDF given in Burr’s list; specifically, it is equation (20) in Burr’s paper
[1].
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, burr12.pdf(x, c, d, loc, scale) is identically equivalent
to burr12.pdf(y, c, d) / scale with y = (x - loc) / scale.
The Burr type 12 distribution is also sometimes referred to as the Singh-Maddala distribution from NIST [2].

References

[1], [2]

Examples

>>> from scipy.stats import burr12
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> c, d = 10, 4
>>> mean, var, skew, kurt = burr12.stats(c, d, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(burr12.ppf(0.01, c, d),
... burr12.ppf(0.99, c, d), 100)
>>> ax.plot(x, burr12.pdf(x, c, d),
... 'r-', lw=5, alpha=0.6, label='burr12 pdf')
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Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = burr12(c, d)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = burr12.ppf([0.001, 0.5, 0.999], c, d)
>>> np.allclose([0.001, 0.5, 0.999], burr12.cdf(vals, c, d))
True

Generate random numbers:

>>> r = burr12.rvs(c, d, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(c, d, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, c, d, loc=0, scale=1) Probability density function.
logpdf(x, c, d, loc=0, scale=1) Log of the probability density function.
cdf(x, c, d, loc=0, scale=1) Cumulative distribution function.
logcdf(x, c, d, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, c, d, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, c, d, loc=0, scale=1) Log of the survival function.
ppf(q, c, d, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, c, d, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, c, d, loc=0, scale=1) Non-central moment of order n
stats(c, d, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(c, d, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, c, d, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(c, d), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(c, d, loc=0, scale=1) Median of the distribution.
mean(c, d, loc=0, scale=1) Mean of the distribution.
var(c, d, loc=0, scale=1) Variance of the distribution.
std(c, d, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, c, d, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.cauchy

scipy.stats.cauchy = <scipy.stats._continuous_distns.cauchy_gen object>
A Cauchy continuous random variable.
As an instance of the rv_continuous class, cauchy object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for cauchy is

f(x) =
1

π(1 + x2)

for a real number x.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, cauchy.pdf(x, loc, scale) is identically equivalent to
cauchy.pdf(y) / scale with y = (x - loc) / scale.

Examples
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>>> from scipy.stats import cauchy
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> mean, var, skew, kurt = cauchy.stats(moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(cauchy.ppf(0.01),
... cauchy.ppf(0.99), 100)
>>> ax.plot(x, cauchy.pdf(x),
... 'r-', lw=5, alpha=0.6, label='cauchy pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = cauchy()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = cauchy.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], cauchy.cdf(vals))
True

Generate random numbers:

>>> r = cauchy.rvs(size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, loc=0, scale=1) Probability density function.
logpdf(x, loc=0, scale=1) Log of the probability density function.
cdf(x, loc=0, scale=1) Cumulative distribution function.
logcdf(x, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, loc=0, scale=1) Log of the survival function.
ppf(q, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, loc=0, scale=1) Non-central moment of order n
stats(loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(loc=0, scale=1) (Differential) entropy of the RV.
fit(data, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(loc=0, scale=1) Median of the distribution.
mean(loc=0, scale=1) Mean of the distribution.
var(loc=0, scale=1) Variance of the distribution.
std(loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, loc=0, scale=1) Endpoints of the range that contains alpha percent

of the distribution

scipy.stats.chi

scipy.stats.chi = <scipy.stats._continuous_distns.chi_gen object>
A chi continuous random variable.
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As an instance of the rv_continuous class, chi object inherits from it a collection of generic methods (see
below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for chi is:

f(x, k) =
1

2k/2−1Γ (k/2)
xk−1 exp

(
−x2/2

)
for x >= 0 and k > 0 (degrees of freedom, denoted df in the implementation). Γ is the gamma function
(scipy.special.gamma).
Special cases of chi are:

• chi(1, loc, scale) is equivalent to halfnorm
• chi(2, 0, scale) is equivalent to rayleigh
• chi(3, 0, scale) is equivalent to maxwell

chi takes df as a shape parameter.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, chi.pdf(x, df, loc, scale) is identically equivalent to
chi.pdf(y, df) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import chi
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> df = 78
>>> mean, var, skew, kurt = chi.stats(df, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(chi.ppf(0.01, df),
... chi.ppf(0.99, df), 100)
>>> ax.plot(x, chi.pdf(x, df),
... 'r-', lw=5, alpha=0.6, label='chi pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = chi(df)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:
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>>> vals = chi.ppf([0.001, 0.5, 0.999], df)
>>> np.allclose([0.001, 0.5, 0.999], chi.cdf(vals, df))
True

Generate random numbers:

>>> r = chi.rvs(df, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(df, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, df, loc=0, scale=1) Probability density function.
logpdf(x, df, loc=0, scale=1) Log of the probability density function.
cdf(x, df, loc=0, scale=1) Cumulative distribution function.
logcdf(x, df, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, df, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, df, loc=0, scale=1) Log of the survival function.
ppf(q, df, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, df, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, df, loc=0, scale=1) Non-central moment of order n
stats(df, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(df, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, df, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(df,), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(df, loc=0, scale=1) Median of the distribution.
mean(df, loc=0, scale=1) Mean of the distribution.
var(df, loc=0, scale=1) Variance of the distribution.
std(df, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, df, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.chi2

scipy.stats.chi2 = <scipy.stats._continuous_distns.chi2_gen object>
A chi-squared continuous random variable.
As an instance of the rv_continuous class, chi2 object inherits from it a collection of generic methods (see
below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for chi2 is:

f(x, k) =
1

2k/2Γ (k/2)
xk/2−1 exp (−x/2)

for x > 0 and k > 0 (degrees of freedom, denoted df in the implementation).
chi2 takes df as a shape parameter.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, chi2.pdf(x, df, loc, scale) is identically equivalent to
chi2.pdf(y, df) / scale with y = (x - loc) / scale.
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Examples

>>> from scipy.stats import chi2
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> df = 55
>>> mean, var, skew, kurt = chi2.stats(df, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(chi2.ppf(0.01, df),
... chi2.ppf(0.99, df), 100)
>>> ax.plot(x, chi2.pdf(x, df),
... 'r-', lw=5, alpha=0.6, label='chi2 pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = chi2(df)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = chi2.ppf([0.001, 0.5, 0.999], df)
>>> np.allclose([0.001, 0.5, 0.999], chi2.cdf(vals, df))
True

Generate random numbers:

>>> r = chi2.rvs(df, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(df, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, df, loc=0, scale=1) Probability density function.
logpdf(x, df, loc=0, scale=1) Log of the probability density function.
cdf(x, df, loc=0, scale=1) Cumulative distribution function.
logcdf(x, df, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, df, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, df, loc=0, scale=1) Log of the survival function.
ppf(q, df, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, df, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, df, loc=0, scale=1) Non-central moment of order n
stats(df, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(df, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, df, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(df,), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(df, loc=0, scale=1) Median of the distribution.
mean(df, loc=0, scale=1) Mean of the distribution.
var(df, loc=0, scale=1) Variance of the distribution.
std(df, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, df, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.cosine

scipy.stats.cosine = <scipy.stats._continuous_distns.cosine_gen object>
A cosine continuous random variable.
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As an instance of the rv_continuous class, cosine object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The cosine distribution is an approximation to the normal distribution. The probability density function forcosine
is:

f(x) =
1

2π
(1 + cos(x))

for −π ≤ x ≤ π.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, cosine.pdf(x, loc, scale) is identically equivalent to
cosine.pdf(y) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import cosine
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> mean, var, skew, kurt = cosine.stats(moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(cosine.ppf(0.01),
... cosine.ppf(0.99), 100)
>>> ax.plot(x, cosine.pdf(x),
... 'r-', lw=5, alpha=0.6, label='cosine pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = cosine()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = cosine.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], cosine.cdf(vals))
True

Generate random numbers:

>>> r = cosine.rvs(size=1000)

And compare the histogram:
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>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, loc=0, scale=1) Probability density function.
logpdf(x, loc=0, scale=1) Log of the probability density function.
cdf(x, loc=0, scale=1) Cumulative distribution function.
logcdf(x, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, loc=0, scale=1) Log of the survival function.
ppf(q, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, loc=0, scale=1) Non-central moment of order n
stats(loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(loc=0, scale=1) (Differential) entropy of the RV.
fit(data, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(loc=0, scale=1) Median of the distribution.
mean(loc=0, scale=1) Mean of the distribution.
var(loc=0, scale=1) Variance of the distribution.
std(loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, loc=0, scale=1) Endpoints of the range that contains alpha percent

of the distribution
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scipy.stats.crystalball

scipy.stats.crystalball = <scipy.stats._continuous_distns.crystalball_gen object>
Crystalball distribution
As an instance of the rv_continuous class, crystalball object inherits from it a collection of generic
methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for crystalball is:

f(x, β,m) =

{
N exp(−x2/2), for x > −β
NA(B − x)−m for x ≤ −β

where A = (m/|β|)n exp(−β2/2), B = m/|β| − |β| and N is a normalisation constant.
crystalball takes β > 0 and m > 1 as shape parameters. β defines the point where the pdf changes from a
power-law to a Gaussian distribution. m is the power of the power-law tail.

References

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, crystalball.pdf(x, beta, m, loc, scale) is identi-
cally equivalent to crystalball.pdf(y, beta, m) / scale with y = (x - loc) / scale.
New in version 0.19.0.
[1]

Examples

>>> from scipy.stats import crystalball
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> beta, m = 2, 3
>>> mean, var, skew, kurt = crystalball.stats(beta, m, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(crystalball.ppf(0.01, beta, m),
... crystalball.ppf(0.99, beta, m), 100)
>>> ax.plot(x, crystalball.pdf(x, beta, m),
... 'r-', lw=5, alpha=0.6, label='crystalball pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:
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>>> rv = crystalball(beta, m)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = crystalball.ppf([0.001, 0.5, 0.999], beta, m)
>>> np.allclose([0.001, 0.5, 0.999], crystalball.cdf(vals, beta, m))
True

Generate random numbers:

>>> r = crystalball.rvs(beta, m, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(beta, m, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, beta, m, loc=0, scale=1) Probability density function.
logpdf(x, beta, m, loc=0, scale=1) Log of the probability density function.
cdf(x, beta, m, loc=0, scale=1) Cumulative distribution function.
logcdf(x, beta, m, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, beta, m, loc=0, scale=1) Survival function (also defined as 1 - cdf,

but sf is sometimes more accurate).
logsf(x, beta, m, loc=0, scale=1) Log of the survival function.
ppf(q, beta, m, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, beta, m, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, beta, m, loc=0, scale=1) Non-central moment of order n
stats(beta, m, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(beta, m, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, beta, m, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(beta, m), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(beta, m, loc=0, scale=1) Median of the distribution.
mean(beta, m, loc=0, scale=1) Mean of the distribution.
var(beta, m, loc=0, scale=1) Variance of the distribution.
std(beta, m, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, beta, m, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.dgamma

scipy.stats.dgamma = <scipy.stats._continuous_distns.dgamma_gen object>
A double gamma continuous random variable.
As an instance of the rv_continuous class, dgamma object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for dgamma is:

f(x, a) =
1

2Γ(a)
|x|a−1 exp(−|x|)

for a real number x and a > 0. Γ is the gamma function (scipy.special.gamma).
dgamma takes a as a shape parameter for a.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, dgamma.pdf(x, a, loc, scale) is identically equivalent to
dgamma.pdf(y, a) / scale with y = (x - loc) / scale.
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Examples

>>> from scipy.stats import dgamma
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> a = 1.1
>>> mean, var, skew, kurt = dgamma.stats(a, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(dgamma.ppf(0.01, a),
... dgamma.ppf(0.99, a), 100)
>>> ax.plot(x, dgamma.pdf(x, a),
... 'r-', lw=5, alpha=0.6, label='dgamma pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = dgamma(a)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = dgamma.ppf([0.001, 0.5, 0.999], a)
>>> np.allclose([0.001, 0.5, 0.999], dgamma.cdf(vals, a))
True

Generate random numbers:

>>> r = dgamma.rvs(a, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

2146 Chapter 6. API Reference



SciPy Reference Guide, Release 1.3.1

7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
0.0

0.1

0.2

0.3

dgamma pdf
frozen pdf

Methods

rvs(a, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, a, loc=0, scale=1) Probability density function.
logpdf(x, a, loc=0, scale=1) Log of the probability density function.
cdf(x, a, loc=0, scale=1) Cumulative distribution function.
logcdf(x, a, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, a, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, a, loc=0, scale=1) Log of the survival function.
ppf(q, a, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, a, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, a, loc=0, scale=1) Non-central moment of order n
stats(a, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(a, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, a, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(a,), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(a, loc=0, scale=1) Median of the distribution.
mean(a, loc=0, scale=1) Mean of the distribution.
var(a, loc=0, scale=1) Variance of the distribution.
std(a, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, a, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.dweibull

scipy.stats.dweibull = <scipy.stats._continuous_distns.dweibull_gen object>
A double Weibull continuous random variable.
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As an instance of the rv_continuous class, dweibull object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for dweibull is given by

f(x, c) = c/2|x|c−1 exp(−|x|c)

for a real number x and c > 0.
dweibull takes c as a shape parameter for c.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, dweibull.pdf(x, c, loc, scale) is identically equivalent
to dweibull.pdf(y, c) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import dweibull
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> c = 2.07
>>> mean, var, skew, kurt = dweibull.stats(c, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(dweibull.ppf(0.01, c),
... dweibull.ppf(0.99, c), 100)
>>> ax.plot(x, dweibull.pdf(x, c),
... 'r-', lw=5, alpha=0.6, label='dweibull pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = dweibull(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = dweibull.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], dweibull.cdf(vals, c))
True

Generate random numbers:

>>> r = dweibull.rvs(c, size=1000)

And compare the histogram:
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>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(c, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, c, loc=0, scale=1) Probability density function.
logpdf(x, c, loc=0, scale=1) Log of the probability density function.
cdf(x, c, loc=0, scale=1) Cumulative distribution function.
logcdf(x, c, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, c, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, c, loc=0, scale=1) Log of the survival function.
ppf(q, c, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, c, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, c, loc=0, scale=1) Non-central moment of order n
stats(c, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(c, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, c, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(c,), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(c, loc=0, scale=1) Median of the distribution.
mean(c, loc=0, scale=1) Mean of the distribution.
var(c, loc=0, scale=1) Variance of the distribution.
std(c, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, c, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution
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scipy.stats.erlang

scipy.stats.erlang = <scipy.stats._continuous_distns.erlang_gen object>
An Erlang continuous random variable.
As an instance of the rv_continuous class, erlang object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.
See also:
gamma

Notes

The Erlang distribution is a special case of the Gamma distribution, with the shape parameter a an integer. Note
that this restriction is not enforced by erlang. It will, however, generate a warning the first time a non-integer
value is used for the shape parameter.
Refer to gamma for examples.

Methods

rvs(a, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, a, loc=0, scale=1) Probability density function.
logpdf(x, a, loc=0, scale=1) Log of the probability density function.
cdf(x, a, loc=0, scale=1) Cumulative distribution function.
logcdf(x, a, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, a, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, a, loc=0, scale=1) Log of the survival function.
ppf(q, a, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, a, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, a, loc=0, scale=1) Non-central moment of order n
stats(a, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(a, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, a, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(a,), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(a, loc=0, scale=1) Median of the distribution.
mean(a, loc=0, scale=1) Mean of the distribution.
var(a, loc=0, scale=1) Variance of the distribution.
std(a, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, a, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.expon

scipy.stats.expon = <scipy.stats._continuous_distns.expon_gen object>
An exponential continuous random variable.
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As an instance of the rv_continuous class, expon object inherits from it a collection of generic methods (see
below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for expon is:

f(x) = exp(−x)

for x ≥ 0.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, expon.pdf(x, loc, scale) is identically equivalent to
expon.pdf(y) / scale with y = (x - loc) / scale.
A common parameterization for expon is in terms of the rate parameter lambda, such that pdf = lambda
* exp(-lambda * x). This parameterization corresponds to using scale = 1 / lambda.

Examples

>>> from scipy.stats import expon
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> mean, var, skew, kurt = expon.stats(moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(expon.ppf(0.01),
... expon.ppf(0.99), 100)
>>> ax.plot(x, expon.pdf(x),
... 'r-', lw=5, alpha=0.6, label='expon pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = expon()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = expon.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], expon.cdf(vals))
True

Generate random numbers:

>>> r = expon.rvs(size=1000)

And compare the histogram:
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>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, loc=0, scale=1) Probability density function.
logpdf(x, loc=0, scale=1) Log of the probability density function.
cdf(x, loc=0, scale=1) Cumulative distribution function.
logcdf(x, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, loc=0, scale=1) Log of the survival function.
ppf(q, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, loc=0, scale=1) Non-central moment of order n
stats(loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(loc=0, scale=1) (Differential) entropy of the RV.
fit(data, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(loc=0, scale=1) Median of the distribution.
mean(loc=0, scale=1) Mean of the distribution.
var(loc=0, scale=1) Variance of the distribution.
std(loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, loc=0, scale=1) Endpoints of the range that contains alpha percent

of the distribution
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scipy.stats.exponnorm

scipy.stats.exponnorm = <scipy.stats._continuous_distns.exponnorm_gen object>
An exponentially modified Normal continuous random variable.
As an instance of therv_continuous class, exponnorm object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for exponnorm is:

f(x,K) =
1

2K
exp

(
1

2K2
− x/K

)
erfc

(
−x− 1/K√

2

)
where x is a real number andK > 0.
It can be thought of as the sum of a standard normal random variable and an independent exponentially distributed
random variable with rate 1/K.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, exponnorm.pdf(x, K, loc, scale) is identically equivalent
to exponnorm.pdf(y, K) / scale with y = (x - loc) / scale.
An alternative parameterization of this distribution (for example, in Wikipedia) involves three parameters, µ, λ
and σ. In the present parameterization this corresponds to having loc and scale equal to µ and σ, respectively,
and shape parameterK = 1/(σλ).
New in version 0.16.0.

Examples

>>> from scipy.stats import exponnorm
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> K = 1.5
>>> mean, var, skew, kurt = exponnorm.stats(K, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(exponnorm.ppf(0.01, K),
... exponnorm.ppf(0.99, K), 100)
>>> ax.plot(x, exponnorm.pdf(x, K),
... 'r-', lw=5, alpha=0.6, label='exponnorm pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = exponnorm(K)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
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Check accuracy of cdf and ppf:

>>> vals = exponnorm.ppf([0.001, 0.5, 0.999], K)
>>> np.allclose([0.001, 0.5, 0.999], exponnorm.cdf(vals, K))
True

Generate random numbers:

>>> r = exponnorm.rvs(K, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(K, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, K, loc=0, scale=1) Probability density function.
logpdf(x, K, loc=0, scale=1) Log of the probability density function.
cdf(x, K, loc=0, scale=1) Cumulative distribution function.
logcdf(x, K, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, K, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, K, loc=0, scale=1) Log of the survival function.
ppf(q, K, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, K, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, K, loc=0, scale=1) Non-central moment of order n
stats(K, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(K, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, K, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(K,), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(K, loc=0, scale=1) Median of the distribution.
mean(K, loc=0, scale=1) Mean of the distribution.
var(K, loc=0, scale=1) Variance of the distribution.
std(K, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, K, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.exponweib

scipy.stats.exponweib = <scipy.stats._continuous_distns.exponweib_gen object>
An exponentiated Weibull continuous random variable.
As an instance of therv_continuous class, exponweib object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for exponweib is:

f(x, a, c) = ac(1− exp(−xc))a−1 exp(−xc)xc−1

for x >= 0, a > 0, c > 0.
exponweib takes a and c as shape parameters.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, exponweib.pdf(x, a, c, loc, scale) is identically
equivalent to exponweib.pdf(y, a, c) / scale with y = (x - loc) / scale.

6.28. Statistical functions (scipy.stats) 2155



SciPy Reference Guide, Release 1.3.1

Examples

>>> from scipy.stats import exponweib
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> a, c = 2.89, 1.95
>>> mean, var, skew, kurt = exponweib.stats(a, c, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(exponweib.ppf(0.01, a, c),
... exponweib.ppf(0.99, a, c), 100)
>>> ax.plot(x, exponweib.pdf(x, a, c),
... 'r-', lw=5, alpha=0.6, label='exponweib pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = exponweib(a, c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = exponweib.ppf([0.001, 0.5, 0.999], a, c)
>>> np.allclose([0.001, 0.5, 0.999], exponweib.cdf(vals, a, c))
True

Generate random numbers:

>>> r = exponweib.rvs(a, c, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(a, c, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, a, c, loc=0, scale=1) Probability density function.
logpdf(x, a, c, loc=0, scale=1) Log of the probability density function.
cdf(x, a, c, loc=0, scale=1) Cumulative distribution function.
logcdf(x, a, c, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, a, c, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, a, c, loc=0, scale=1) Log of the survival function.
ppf(q, a, c, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, a, c, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, a, c, loc=0, scale=1) Non-central moment of order n
stats(a, c, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(a, c, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, a, c, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(a, c), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(a, c, loc=0, scale=1) Median of the distribution.
mean(a, c, loc=0, scale=1) Mean of the distribution.
var(a, c, loc=0, scale=1) Variance of the distribution.
std(a, c, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, a, c, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.exponpow

scipy.stats.exponpow = <scipy.stats._continuous_distns.exponpow_gen object>
An exponential power continuous random variable.
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As an instance of the rv_continuous class, exponpow object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for exponpow is:

f(x, b) = bxb−1 exp(1 + xb − exp(xb))

for x ≥ 0, b > 0. Note that this is a different distribution from the exponential power distribution that is also
known under the names “generalized normal” or “generalized Gaussian”.
exponpow takes b as a shape parameter for b.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, exponpow.pdf(x, b, loc, scale) is identically equivalent
to exponpow.pdf(y, b) / scale with y = (x - loc) / scale.

References

http://www.math.wm.edu/~leemis/chart/UDR/PDFs/Exponentialpower.pdf

Examples

>>> from scipy.stats import exponpow
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> b = 2.7
>>> mean, var, skew, kurt = exponpow.stats(b, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(exponpow.ppf(0.01, b),
... exponpow.ppf(0.99, b), 100)
>>> ax.plot(x, exponpow.pdf(x, b),
... 'r-', lw=5, alpha=0.6, label='exponpow pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = exponpow(b)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = exponpow.ppf([0.001, 0.5, 0.999], b)
>>> np.allclose([0.001, 0.5, 0.999], exponpow.cdf(vals, b))
True

2158 Chapter 6. API Reference

http://www.math.wm.edu/~leemis/chart/UDR/PDFs/Exponentialpower.pdf


SciPy Reference Guide, Release 1.3.1

Generate random numbers:

>>> r = exponpow.rvs(b, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(b, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, b, loc=0, scale=1) Probability density function.
logpdf(x, b, loc=0, scale=1) Log of the probability density function.
cdf(x, b, loc=0, scale=1) Cumulative distribution function.
logcdf(x, b, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, b, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, b, loc=0, scale=1) Log of the survival function.
ppf(q, b, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, b, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, b, loc=0, scale=1) Non-central moment of order n
stats(b, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(b, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, b, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(b,), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(b, loc=0, scale=1) Median of the distribution.
mean(b, loc=0, scale=1) Mean of the distribution.
var(b, loc=0, scale=1) Variance of the distribution.
std(b, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, b, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.f

scipy.stats.f = <scipy.stats._continuous_distns.f_gen object>
An F continuous random variable.
As an instance of the rv_continuous class, f object inherits from it a collection of generic methods (see below
for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for f is:

f(x, df1, df2) =
df

df2/2
2 df

df1/2
1 xdf1/2−1

(df2 + df1x)(df1+df2)/2B(df1/2, df2/2)

for x > 0.
f takes dfn and dfd as shape parameters.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, f.pdf(x, dfn, dfd, loc, scale) is identically equivalent
to f.pdf(y, dfn, dfd) / scale with y = (x - loc) / scale.
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Examples

>>> from scipy.stats import f
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> dfn, dfd = 29, 18
>>> mean, var, skew, kurt = f.stats(dfn, dfd, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(f.ppf(0.01, dfn, dfd),
... f.ppf(0.99, dfn, dfd), 100)
>>> ax.plot(x, f.pdf(x, dfn, dfd),
... 'r-', lw=5, alpha=0.6, label='f pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = f(dfn, dfd)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = f.ppf([0.001, 0.5, 0.999], dfn, dfd)
>>> np.allclose([0.001, 0.5, 0.999], f.cdf(vals, dfn, dfd))
True

Generate random numbers:

>>> r = f.rvs(dfn, dfd, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(dfn, dfd, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, dfn, dfd, loc=0, scale=1) Probability density function.
logpdf(x, dfn, dfd, loc=0, scale=1) Log of the probability density function.
cdf(x, dfn, dfd, loc=0, scale=1) Cumulative distribution function.
logcdf(x, dfn, dfd, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, dfn, dfd, loc=0, scale=1) Survival function (also defined as 1 - cdf,

but sf is sometimes more accurate).
logsf(x, dfn, dfd, loc=0, scale=1) Log of the survival function.
ppf(q, dfn, dfd, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, dfn, dfd, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, dfn, dfd, loc=0, scale=1) Non-central moment of order n
stats(dfn, dfd, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(dfn, dfd, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, dfn, dfd, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(dfn, dfd), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(dfn, dfd, loc=0, scale=1) Median of the distribution.
mean(dfn, dfd, loc=0, scale=1) Mean of the distribution.
var(dfn, dfd, loc=0, scale=1) Variance of the distribution.
std(dfn, dfd, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, dfn, dfd, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.fatiguelife

scipy.stats.fatiguelife = <scipy.stats._continuous_distns.fatiguelife_gen object>
A fatigue-life (Birnbaum-Saunders) continuous random variable.
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As an instance of the rv_continuous class, fatiguelife object inherits from it a collection of generic
methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for fatiguelife is:

f(x, c) =
x+ 1

2c
√
2πx3

exp(− (x− 1)2

2xc2
)

for x >= 0 and c > 0.
fatiguelife takes c as a shape parameter for c.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, fatiguelife.pdf(x, c, loc, scale) is identically
equivalent to fatiguelife.pdf(y, c) / scale with y = (x - loc) / scale.

References

[1]

Examples

>>> from scipy.stats import fatiguelife
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> c = 29
>>> mean, var, skew, kurt = fatiguelife.stats(c, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(fatiguelife.ppf(0.01, c),
... fatiguelife.ppf(0.99, c), 100)
>>> ax.plot(x, fatiguelife.pdf(x, c),
... 'r-', lw=5, alpha=0.6, label='fatiguelife pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = fatiguelife(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = fatiguelife.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], fatiguelife.cdf(vals, c))
True
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Generate random numbers:

>>> r = fatiguelife.rvs(c, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(c, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, c, loc=0, scale=1) Probability density function.
logpdf(x, c, loc=0, scale=1) Log of the probability density function.
cdf(x, c, loc=0, scale=1) Cumulative distribution function.
logcdf(x, c, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, c, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, c, loc=0, scale=1) Log of the survival function.
ppf(q, c, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, c, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, c, loc=0, scale=1) Non-central moment of order n
stats(c, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(c, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, c, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(c,), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(c, loc=0, scale=1) Median of the distribution.
mean(c, loc=0, scale=1) Mean of the distribution.
var(c, loc=0, scale=1) Variance of the distribution.
std(c, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, c, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.fisk

scipy.stats.fisk = <scipy.stats._continuous_distns.fisk_gen object>
A Fisk continuous random variable.
The Fisk distribution is also known as the log-logistic distribution.
As an instance of the rv_continuous class, fisk object inherits from it a collection of generic methods (see
below for the full list), and completes them with details specific for this particular distribution.
See also:
burr

Notes

The probability density function for fisk is:

f(x, c) = cx−c−1(1 + x−c)−2

for x >= 0 and c > 0.
fisk takes c as a shape parameter for c.
fisk is a special case of burr or burr12 with d=1.
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The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, fisk.pdf(x, c, loc, scale) is identically equivalent to
fisk.pdf(y, c) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import fisk
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> c = 3.09
>>> mean, var, skew, kurt = fisk.stats(c, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(fisk.ppf(0.01, c),
... fisk.ppf(0.99, c), 100)
>>> ax.plot(x, fisk.pdf(x, c),
... 'r-', lw=5, alpha=0.6, label='fisk pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = fisk(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = fisk.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], fisk.cdf(vals, c))
True

Generate random numbers:

>>> r = fisk.rvs(c, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(c, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, c, loc=0, scale=1) Probability density function.
logpdf(x, c, loc=0, scale=1) Log of the probability density function.
cdf(x, c, loc=0, scale=1) Cumulative distribution function.
logcdf(x, c, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, c, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, c, loc=0, scale=1) Log of the survival function.
ppf(q, c, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, c, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, c, loc=0, scale=1) Non-central moment of order n
stats(c, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(c, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, c, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(c,), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(c, loc=0, scale=1) Median of the distribution.
mean(c, loc=0, scale=1) Mean of the distribution.
var(c, loc=0, scale=1) Variance of the distribution.
std(c, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, c, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.foldcauchy

scipy.stats.foldcauchy = <scipy.stats._continuous_distns.foldcauchy_gen object>
A folded Cauchy continuous random variable.
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As an instance of the rv_continuous class, foldcauchy object inherits from it a collection of generic
methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for foldcauchy is:

f(x, c) =
1

π(1 + (x− c)2)
+

1

π(1 + (x+ c)2)

for x ≥ 0.
foldcauchy takes c as a shape parameter for c.

Examples

>>> from scipy.stats import foldcauchy
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> c = 4.72
>>> mean, var, skew, kurt = foldcauchy.stats(c, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(foldcauchy.ppf(0.01, c),
... foldcauchy.ppf(0.99, c), 100)
>>> ax.plot(x, foldcauchy.pdf(x, c),
... 'r-', lw=5, alpha=0.6, label='foldcauchy pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = foldcauchy(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = foldcauchy.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], foldcauchy.cdf(vals, c))
True

Generate random numbers:

>>> r = foldcauchy.rvs(c, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(c, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, c, loc=0, scale=1) Probability density function.
logpdf(x, c, loc=0, scale=1) Log of the probability density function.
cdf(x, c, loc=0, scale=1) Cumulative distribution function.
logcdf(x, c, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, c, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, c, loc=0, scale=1) Log of the survival function.
ppf(q, c, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, c, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, c, loc=0, scale=1) Non-central moment of order n
stats(c, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(c, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, c, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(c,), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(c, loc=0, scale=1) Median of the distribution.
mean(c, loc=0, scale=1) Mean of the distribution.
var(c, loc=0, scale=1) Variance of the distribution.
std(c, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, c, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.foldnorm

scipy.stats.foldnorm = <scipy.stats._continuous_distns.foldnorm_gen object>
A folded normal continuous random variable.
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As an instance of the rv_continuous class, foldnorm object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for foldnorm is:

f(x, c) =
√
2/πcosh(cx) exp(−x

2 + c2

2
)

for c ≥ 0.
foldnorm takes c as a shape parameter for c.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, foldnorm.pdf(x, c, loc, scale) is identically equivalent
to foldnorm.pdf(y, c) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import foldnorm
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> c = 1.95
>>> mean, var, skew, kurt = foldnorm.stats(c, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(foldnorm.ppf(0.01, c),
... foldnorm.ppf(0.99, c), 100)
>>> ax.plot(x, foldnorm.pdf(x, c),
... 'r-', lw=5, alpha=0.6, label='foldnorm pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = foldnorm(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = foldnorm.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], foldnorm.cdf(vals, c))
True

Generate random numbers:

>>> r = foldnorm.rvs(c, size=1000)

And compare the histogram:
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>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(c, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, c, loc=0, scale=1) Probability density function.
logpdf(x, c, loc=0, scale=1) Log of the probability density function.
cdf(x, c, loc=0, scale=1) Cumulative distribution function.
logcdf(x, c, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, c, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, c, loc=0, scale=1) Log of the survival function.
ppf(q, c, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, c, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, c, loc=0, scale=1) Non-central moment of order n
stats(c, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(c, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, c, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(c,), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(c, loc=0, scale=1) Median of the distribution.
mean(c, loc=0, scale=1) Mean of the distribution.
var(c, loc=0, scale=1) Variance of the distribution.
std(c, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, c, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution
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scipy.stats.frechet_r

scipy.stats.frechet_r = <scipy.stats._continuous_distns.frechet_r_gen object>
A Frechet right (or Weibull minimum) continuous random variable.
As an instance of therv_continuous class, frechet_r object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.
See also:

weibull_min

The same distribution as frechet_r.

Notes

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, frechet_r.pdf(x, c, loc, scale) is identically equivalent
to frechet_r.pdf(y, c) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import frechet_r
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> c = 1.89
>>> mean, var, skew, kurt = frechet_r.stats(c, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(frechet_r.ppf(0.01, c),
... frechet_r.ppf(0.99, c), 100)
>>> ax.plot(x, frechet_r.pdf(x, c),
... 'r-', lw=5, alpha=0.6, label='frechet_r pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = frechet_r(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = frechet_r.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], frechet_r.cdf(vals, c))
True

Generate random numbers:
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>>> r = frechet_r.rvs(c, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(c, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, c, loc=0, scale=1) Probability density function.
logpdf(x, c, loc=0, scale=1) Log of the probability density function.
cdf(x, c, loc=0, scale=1) Cumulative distribution function.
logcdf(x, c, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, c, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, c, loc=0, scale=1) Log of the survival function.
ppf(q, c, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, c, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, c, loc=0, scale=1) Non-central moment of order n
stats(c, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(c, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, c, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(c,), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(c, loc=0, scale=1) Median of the distribution.
mean(c, loc=0, scale=1) Mean of the distribution.
var(c, loc=0, scale=1) Variance of the distribution.
std(c, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, c, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.frechet_l

scipy.stats.frechet_l = <scipy.stats._continuous_distns.frechet_l_gen object>
A Frechet left (or Weibull maximum) continuous random variable.
As an instance of therv_continuous class, frechet_l object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.
See also:

weibull_max

The same distribution as frechet_l.

Notes

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, frechet_l.pdf(x, c, loc, scale) is identically equivalent
to frechet_l.pdf(y, c) / scale with y = (x - loc) / scale.

Examples
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>>> from scipy.stats import frechet_l
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> c = 3.63
>>> mean, var, skew, kurt = frechet_l.stats(c, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(frechet_l.ppf(0.01, c),
... frechet_l.ppf(0.99, c), 100)
>>> ax.plot(x, frechet_l.pdf(x, c),
... 'r-', lw=5, alpha=0.6, label='frechet_l pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = frechet_l(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = frechet_l.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], frechet_l.cdf(vals, c))
True

Generate random numbers:

>>> r = frechet_l.rvs(c, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(c, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, c, loc=0, scale=1) Probability density function.
logpdf(x, c, loc=0, scale=1) Log of the probability density function.
cdf(x, c, loc=0, scale=1) Cumulative distribution function.
logcdf(x, c, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, c, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, c, loc=0, scale=1) Log of the survival function.
ppf(q, c, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, c, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, c, loc=0, scale=1) Non-central moment of order n
stats(c, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(c, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, c, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(c,), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(c, loc=0, scale=1) Median of the distribution.
mean(c, loc=0, scale=1) Mean of the distribution.
var(c, loc=0, scale=1) Variance of the distribution.
std(c, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, c, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.genlogistic

scipy.stats.genlogistic = <scipy.stats._continuous_distns.genlogistic_gen object>
A generalized logistic continuous random variable.
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As an instance of the rv_continuous class, genlogistic object inherits from it a collection of generic
methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for genlogistic is:

f(x, c) = c
exp(−x)

(1 + exp(−x))c+1

for x >= 0, c > 0.
genlogistic takes c as a shape parameter for c.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, genlogistic.pdf(x, c, loc, scale) is identically
equivalent to genlogistic.pdf(y, c) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import genlogistic
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> c = 0.412
>>> mean, var, skew, kurt = genlogistic.stats(c, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(genlogistic.ppf(0.01, c),
... genlogistic.ppf(0.99, c), 100)
>>> ax.plot(x, genlogistic.pdf(x, c),
... 'r-', lw=5, alpha=0.6, label='genlogistic pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = genlogistic(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = genlogistic.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], genlogistic.cdf(vals, c))
True

Generate random numbers:

>>> r = genlogistic.rvs(c, size=1000)

And compare the histogram:
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>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(c, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, c, loc=0, scale=1) Probability density function.
logpdf(x, c, loc=0, scale=1) Log of the probability density function.
cdf(x, c, loc=0, scale=1) Cumulative distribution function.
logcdf(x, c, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, c, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, c, loc=0, scale=1) Log of the survival function.
ppf(q, c, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, c, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, c, loc=0, scale=1) Non-central moment of order n
stats(c, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(c, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, c, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(c,), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(c, loc=0, scale=1) Median of the distribution.
mean(c, loc=0, scale=1) Mean of the distribution.
var(c, loc=0, scale=1) Variance of the distribution.
std(c, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, c, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution
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scipy.stats.gennorm

scipy.stats.gennorm = <scipy.stats._continuous_distns.gennorm_gen object>
A generalized normal continuous random variable.
As an instance of the rv_continuous class, gennorm object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.
See also:

laplace

Laplace distribution
norm

normal distribution

Notes

The probability density function for gennorm is [1]:

f(x, β) =
β

2Γ(1/β)
exp(−|x|β)

Γ is the gamma function (scipy.special.gamma).
gennorm takes beta as a shape parameter for β. For β = 1, it is identical to a Laplace distribution. For β = 2,
it is identical to a normal distribution (with scale=1/sqrt(2)).

References

[1]

Examples

>>> from scipy.stats import gennorm
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> beta = 1.3
>>> mean, var, skew, kurt = gennorm.stats(beta, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(gennorm.ppf(0.01, beta),
... gennorm.ppf(0.99, beta), 100)
>>> ax.plot(x, gennorm.pdf(x, beta),
... 'r-', lw=5, alpha=0.6, label='gennorm pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:
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>>> rv = gennorm(beta)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = gennorm.ppf([0.001, 0.5, 0.999], beta)
>>> np.allclose([0.001, 0.5, 0.999], gennorm.cdf(vals, beta))
True

Generate random numbers:

>>> r = gennorm.rvs(beta, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(beta, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, beta, loc=0, scale=1) Probability density function.
logpdf(x, beta, loc=0, scale=1) Log of the probability density function.
cdf(x, beta, loc=0, scale=1) Cumulative distribution function.
logcdf(x, beta, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, beta, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, beta, loc=0, scale=1) Log of the survival function.
ppf(q, beta, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, beta, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, beta, loc=0, scale=1) Non-central moment of order n
stats(beta, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(beta, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, beta, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(beta,), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(beta, loc=0, scale=1) Median of the distribution.
mean(beta, loc=0, scale=1) Mean of the distribution.
var(beta, loc=0, scale=1) Variance of the distribution.
std(beta, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, beta, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.genpareto

scipy.stats.genpareto = <scipy.stats._continuous_distns.genpareto_gen object>
A generalized Pareto continuous random variable.
As an instance of therv_continuous class, genpareto object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for genpareto is:

f(x, c) = (1 + cx)−1−1/c

defined for x ≥ 0 if c ≥ 0, and for 0 ≤ x ≤ −1/c if c < 0.
genpareto takes c as a shape parameter for c.
For c = 0, genpareto reduces to the exponential distribution, expon:

f(x, 0) = exp(−x)

For c = −1, genpareto is uniform on [0, 1]:

f(x,−1) = 1
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The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, genpareto.pdf(x, c, loc, scale) is identically equivalent
to genpareto.pdf(y, c) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import genpareto
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> c = 0.1
>>> mean, var, skew, kurt = genpareto.stats(c, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(genpareto.ppf(0.01, c),
... genpareto.ppf(0.99, c), 100)
>>> ax.plot(x, genpareto.pdf(x, c),
... 'r-', lw=5, alpha=0.6, label='genpareto pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = genpareto(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = genpareto.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], genpareto.cdf(vals, c))
True

Generate random numbers:

>>> r = genpareto.rvs(c, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(c, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, c, loc=0, scale=1) Probability density function.
logpdf(x, c, loc=0, scale=1) Log of the probability density function.
cdf(x, c, loc=0, scale=1) Cumulative distribution function.
logcdf(x, c, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, c, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, c, loc=0, scale=1) Log of the survival function.
ppf(q, c, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, c, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, c, loc=0, scale=1) Non-central moment of order n
stats(c, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(c, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, c, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(c,), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(c, loc=0, scale=1) Median of the distribution.
mean(c, loc=0, scale=1) Mean of the distribution.
var(c, loc=0, scale=1) Variance of the distribution.
std(c, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, c, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.genexpon

scipy.stats.genexpon = <scipy.stats._continuous_distns.genexpon_gen object>
A generalized exponential continuous random variable.
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As an instance of the rv_continuous class, genexpon object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for genexpon is:

f(x, a, b, c) = (a+ b(1− exp(−cx))) exp(−ax− bx+
b

c
(1− exp(−cx)))

for x ≥ 0, a, b, c > 0.
genexpon takes a, b and c as shape parameters.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, genexpon.pdf(x, a, b, c, loc, scale) is identically
equivalent to genexpon.pdf(y, a, b, c) / scale with y = (x - loc) / scale.

References

H.K. Ryu, “An Extension of Marshall and Olkin’s Bivariate Exponential Distribution”, Journal of the American
Statistical Association, 1993.
N. Balakrishnan, “The Exponential Distribution: Theory, Methods and Applications”, Asit P. Basu.

Examples

>>> from scipy.stats import genexpon
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> a, b, c = 9.13, 16.2, 3.28
>>> mean, var, skew, kurt = genexpon.stats(a, b, c, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(genexpon.ppf(0.01, a, b, c),
... genexpon.ppf(0.99, a, b, c), 100)
>>> ax.plot(x, genexpon.pdf(x, a, b, c),
... 'r-', lw=5, alpha=0.6, label='genexpon pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = genexpon(a, b, c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:
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>>> vals = genexpon.ppf([0.001, 0.5, 0.999], a, b, c)
>>> np.allclose([0.001, 0.5, 0.999], genexpon.cdf(vals, a, b, c))
True

Generate random numbers:

>>> r = genexpon.rvs(a, b, c, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(a, b, c, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, a, b, c, loc=0, scale=1) Probability density function.
logpdf(x, a, b, c, loc=0, scale=1) Log of the probability density function.
cdf(x, a, b, c, loc=0, scale=1) Cumulative distribution function.
logcdf(x, a, b, c, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, a, b, c, loc=0, scale=1) Survival function (also defined as 1 - cdf,

but sf is sometimes more accurate).
logsf(x, a, b, c, loc=0, scale=1) Log of the survival function.
ppf(q, a, b, c, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, a, b, c, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, a, b, c, loc=0, scale=1) Non-central moment of order n
stats(a, b, c, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(a, b, c, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, a, b, c, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(a, b, c), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(a, b, c, loc=0, scale=1) Median of the distribution.
mean(a, b, c, loc=0, scale=1) Mean of the distribution.
var(a, b, c, loc=0, scale=1) Variance of the distribution.
std(a, b, c, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, a, b, c, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.genextreme

scipy.stats.genextreme = <scipy.stats._continuous_distns.genextreme_gen object>
A generalized extreme value continuous random variable.
As an instance of the rv_continuous class, genextreme object inherits from it a collection of generic
methods (see below for the full list), and completes them with details specific for this particular distribution.
See also:
gumbel_r

Notes

For c = 0, genextreme is equal to gumbel_r. The probability density function for genextreme is:

f(x, c) =

{
exp(− exp(−x)) exp(−x) for c = 0

exp(−(1− cx)1/c)(1− cx)1/c−1 for x ≤ 1/c, c > 0

Note that several sources and software packages use the opposite convention for the sign of the shape parameter c.
genextreme takes c as a shape parameter for c.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, genextreme.pdf(x, c, loc, scale) is identically equiva-
lent to genextreme.pdf(y, c) / scale with y = (x - loc) / scale.
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Examples

>>> from scipy.stats import genextreme
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> c = -0.1
>>> mean, var, skew, kurt = genextreme.stats(c, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(genextreme.ppf(0.01, c),
... genextreme.ppf(0.99, c), 100)
>>> ax.plot(x, genextreme.pdf(x, c),
... 'r-', lw=5, alpha=0.6, label='genextreme pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = genextreme(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = genextreme.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], genextreme.cdf(vals, c))
True

Generate random numbers:

>>> r = genextreme.rvs(c, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(c, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, c, loc=0, scale=1) Probability density function.
logpdf(x, c, loc=0, scale=1) Log of the probability density function.
cdf(x, c, loc=0, scale=1) Cumulative distribution function.
logcdf(x, c, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, c, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, c, loc=0, scale=1) Log of the survival function.
ppf(q, c, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, c, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, c, loc=0, scale=1) Non-central moment of order n
stats(c, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(c, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, c, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(c,), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(c, loc=0, scale=1) Median of the distribution.
mean(c, loc=0, scale=1) Mean of the distribution.
var(c, loc=0, scale=1) Variance of the distribution.
std(c, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, c, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.gausshyper

scipy.stats.gausshyper = <scipy.stats._continuous_distns.gausshyper_gen object>
A Gauss hypergeometric continuous random variable.
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As an instance of the rv_continuous class, gausshyper object inherits from it a collection of generic
methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for gausshyper is:

f(x, a, b, c, z) = Cxa−1(1− x)b−1(1 + zx)−c

for 0 ≤ x ≤ 1, a > 0, b > 0, and C = 1
B(a,b)F [2,1](c,a;a+b;−z) . F [2, 1] is the Gauss hypergeometric function

scipy.special.hyp2f1.
gausshyper takes a, b, c and z as shape parameters.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, gausshyper.pdf(x, a, b, c, z, loc, scale)
is identically equivalent to gausshyper.pdf(y, a, b, c, z) / scale with y = (x - loc) /
scale.

Examples

>>> from scipy.stats import gausshyper
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> a, b, c, z = 13.8, 3.12, 2.51, 5.18
>>> mean, var, skew, kurt = gausshyper.stats(a, b, c, z, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(gausshyper.ppf(0.01, a, b, c, z),
... gausshyper.ppf(0.99, a, b, c, z), 100)
>>> ax.plot(x, gausshyper.pdf(x, a, b, c, z),
... 'r-', lw=5, alpha=0.6, label='gausshyper pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = gausshyper(a, b, c, z)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = gausshyper.ppf([0.001, 0.5, 0.999], a, b, c, z)
>>> np.allclose([0.001, 0.5, 0.999], gausshyper.cdf(vals, a, b, c, z))
True

Generate random numbers:

>>> r = gausshyper.rvs(a, b, c, z, size=1000)
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And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

1

2

3

4 gausshyper pdf
frozen pdf

2190 Chapter 6. API Reference



SciPy Reference Guide, Release 1.3.1

Methods

rvs(a, b, c, z, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, a, b, c, z, loc=0, scale=1) Probability density function.
logpdf(x, a, b, c, z, loc=0, scale=1) Log of the probability density function.
cdf(x, a, b, c, z, loc=0, scale=1) Cumulative distribution function.
logcdf(x, a, b, c, z, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, a, b, c, z, loc=0, scale=1) Survival function (also defined as 1 - cdf,

but sf is sometimes more accurate).
logsf(x, a, b, c, z, loc=0, scale=1) Log of the survival function.
ppf(q, a, b, c, z, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, a, b, c, z, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, a, b, c, z, loc=0, scale=1) Non-central moment of order n
stats(a, b, c, z, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(a, b, c, z, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, a, b, c, z, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(a, b, c, z), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(a, b, c, z, loc=0, scale=1) Median of the distribution.
mean(a, b, c, z, loc=0, scale=1) Mean of the distribution.
var(a, b, c, z, loc=0, scale=1) Variance of the distribution.
std(a, b, c, z, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, a, b, c, z, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.gamma

scipy.stats.gamma = <scipy.stats._continuous_distns.gamma_gen object>
A gamma continuous random variable.
As an instance of the rv_continuous class, gamma object inherits from it a collection of generic methods (see
below for the full list), and completes them with details specific for this particular distribution.
See also:
erlang, expon

Notes

The probability density function for gamma is:

f(x, a) =
xa−1 exp(−x)

Γ(a)

for x ≥ 0, a > 0. Here Γ(a) refers to the gamma function.
gamma takes a as a shape parameter for a.
When a is an integer, gamma reduces to the Erlang distribution, and when a = 1 to the exponential distribution.
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The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, gamma.pdf(x, a, loc, scale) is identically equivalent to
gamma.pdf(y, a) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import gamma
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> a = 1.99
>>> mean, var, skew, kurt = gamma.stats(a, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(gamma.ppf(0.01, a),
... gamma.ppf(0.99, a), 100)
>>> ax.plot(x, gamma.pdf(x, a),
... 'r-', lw=5, alpha=0.6, label='gamma pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = gamma(a)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = gamma.ppf([0.001, 0.5, 0.999], a)
>>> np.allclose([0.001, 0.5, 0.999], gamma.cdf(vals, a))
True

Generate random numbers:

>>> r = gamma.rvs(a, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(a, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, a, loc=0, scale=1) Probability density function.
logpdf(x, a, loc=0, scale=1) Log of the probability density function.
cdf(x, a, loc=0, scale=1) Cumulative distribution function.
logcdf(x, a, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, a, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, a, loc=0, scale=1) Log of the survival function.
ppf(q, a, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, a, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, a, loc=0, scale=1) Non-central moment of order n
stats(a, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(a, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, a, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(a,), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(a, loc=0, scale=1) Median of the distribution.
mean(a, loc=0, scale=1) Mean of the distribution.
var(a, loc=0, scale=1) Variance of the distribution.
std(a, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, a, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.gengamma

scipy.stats.gengamma = <scipy.stats._continuous_distns.gengamma_gen object>
A generalized gamma continuous random variable.
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As an instance of the rv_continuous class, gengamma object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for gengamma is:

f(x, a, c) =
|c|xca−1 exp(−xc)

Γ(a)

for x ≥ 0, a > 0, and c ̸= 0. Γ is the gamma function (scipy.special.gamma).
gengamma takes a and c as shape parameters.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, gengamma.pdf(x, a, c, loc, scale) is identically
equivalent to gengamma.pdf(y, a, c) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import gengamma
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> a, c = 4.42, -3.12
>>> mean, var, skew, kurt = gengamma.stats(a, c, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(gengamma.ppf(0.01, a, c),
... gengamma.ppf(0.99, a, c), 100)
>>> ax.plot(x, gengamma.pdf(x, a, c),
... 'r-', lw=5, alpha=0.6, label='gengamma pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = gengamma(a, c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = gengamma.ppf([0.001, 0.5, 0.999], a, c)
>>> np.allclose([0.001, 0.5, 0.999], gengamma.cdf(vals, a, c))
True

Generate random numbers:

>>> r = gengamma.rvs(a, c, size=1000)

And compare the histogram:

2194 Chapter 6. API Reference



SciPy Reference Guide, Release 1.3.1

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(a, c, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, a, c, loc=0, scale=1) Probability density function.
logpdf(x, a, c, loc=0, scale=1) Log of the probability density function.
cdf(x, a, c, loc=0, scale=1) Cumulative distribution function.
logcdf(x, a, c, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, a, c, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, a, c, loc=0, scale=1) Log of the survival function.
ppf(q, a, c, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, a, c, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, a, c, loc=0, scale=1) Non-central moment of order n
stats(a, c, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(a, c, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, a, c, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(a, c), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(a, c, loc=0, scale=1) Median of the distribution.
mean(a, c, loc=0, scale=1) Mean of the distribution.
var(a, c, loc=0, scale=1) Variance of the distribution.
std(a, c, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, a, c, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution
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scipy.stats.genhalflogistic

scipy.stats.genhalflogistic = <scipy.stats._continuous_distns.genhalflogistic_gen object>
A generalized half-logistic continuous random variable.
As an instance of therv_continuous class, genhalflogistic object inherits from it a collection of generic
methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for genhalflogistic is:

f(x, c) =
2(1− cx)1/(c−1)

[1 + (1− cx)1/c]2

for 0 ≤ x ≤ 1/c, and c > 0.
genhalflogistic takes c as a shape parameter for c.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, genhalflogistic.pdf(x, c, loc, scale) is identically
equivalent to genhalflogistic.pdf(y, c) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import genhalflogistic
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> c = 0.773
>>> mean, var, skew, kurt = genhalflogistic.stats(c, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(genhalflogistic.ppf(0.01, c),
... genhalflogistic.ppf(0.99, c), 100)
>>> ax.plot(x, genhalflogistic.pdf(x, c),
... 'r-', lw=5, alpha=0.6, label='genhalflogistic pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = genhalflogistic(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = genhalflogistic.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], genhalflogistic.cdf(vals, c))
True
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Generate random numbers:

>>> r = genhalflogistic.rvs(c, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(c, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, c, loc=0, scale=1) Probability density function.
logpdf(x, c, loc=0, scale=1) Log of the probability density function.
cdf(x, c, loc=0, scale=1) Cumulative distribution function.
logcdf(x, c, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, c, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, c, loc=0, scale=1) Log of the survival function.
ppf(q, c, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, c, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, c, loc=0, scale=1) Non-central moment of order n
stats(c, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(c, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, c, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(c,), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(c, loc=0, scale=1) Median of the distribution.
mean(c, loc=0, scale=1) Mean of the distribution.
var(c, loc=0, scale=1) Variance of the distribution.
std(c, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, c, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.gilbrat

scipy.stats.gilbrat = <scipy.stats._continuous_distns.gilbrat_gen object>
A Gilbrat continuous random variable.
As an instance of the rv_continuous class, gilbrat object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for gilbrat is:

f(x) =
1

x
√
2π

exp(−1

2
(log(x))2)

gilbrat is a special case of lognorm with s=1.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, gilbrat.pdf(x, loc, scale) is identically equivalent to
gilbrat.pdf(y) / scale with y = (x - loc) / scale.

Examples
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>>> from scipy.stats import gilbrat
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> mean, var, skew, kurt = gilbrat.stats(moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(gilbrat.ppf(0.01),
... gilbrat.ppf(0.99), 100)
>>> ax.plot(x, gilbrat.pdf(x),
... 'r-', lw=5, alpha=0.6, label='gilbrat pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = gilbrat()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = gilbrat.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], gilbrat.cdf(vals))
True

Generate random numbers:

>>> r = gilbrat.rvs(size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, loc=0, scale=1) Probability density function.
logpdf(x, loc=0, scale=1) Log of the probability density function.
cdf(x, loc=0, scale=1) Cumulative distribution function.
logcdf(x, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, loc=0, scale=1) Log of the survival function.
ppf(q, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, loc=0, scale=1) Non-central moment of order n
stats(loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(loc=0, scale=1) (Differential) entropy of the RV.
fit(data, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(loc=0, scale=1) Median of the distribution.
mean(loc=0, scale=1) Mean of the distribution.
var(loc=0, scale=1) Variance of the distribution.
std(loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, loc=0, scale=1) Endpoints of the range that contains alpha percent

of the distribution

scipy.stats.gompertz

scipy.stats.gompertz = <scipy.stats._continuous_distns.gompertz_gen object>
A Gompertz (or truncated Gumbel) continuous random variable.
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As an instance of the rv_continuous class, gompertz object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for gompertz is:

f(x, c) = c exp(x) exp(−c(ex − 1))

for x ≥ 0, c > 0.
gompertz takes c as a shape parameter for c.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, gompertz.pdf(x, c, loc, scale) is identically equivalent
to gompertz.pdf(y, c) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import gompertz
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> c = 0.947
>>> mean, var, skew, kurt = gompertz.stats(c, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(gompertz.ppf(0.01, c),
... gompertz.ppf(0.99, c), 100)
>>> ax.plot(x, gompertz.pdf(x, c),
... 'r-', lw=5, alpha=0.6, label='gompertz pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = gompertz(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = gompertz.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], gompertz.cdf(vals, c))
True

Generate random numbers:

>>> r = gompertz.rvs(c, size=1000)

And compare the histogram:
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>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(c, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, c, loc=0, scale=1) Probability density function.
logpdf(x, c, loc=0, scale=1) Log of the probability density function.
cdf(x, c, loc=0, scale=1) Cumulative distribution function.
logcdf(x, c, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, c, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, c, loc=0, scale=1) Log of the survival function.
ppf(q, c, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, c, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, c, loc=0, scale=1) Non-central moment of order n
stats(c, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(c, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, c, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(c,), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(c, loc=0, scale=1) Median of the distribution.
mean(c, loc=0, scale=1) Mean of the distribution.
var(c, loc=0, scale=1) Variance of the distribution.
std(c, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, c, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution
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scipy.stats.gumbel_r

scipy.stats.gumbel_r = <scipy.stats._continuous_distns.gumbel_r_gen object>
A right-skewed Gumbel continuous random variable.
As an instance of the rv_continuous class, gumbel_r object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.
See also:
gumbel_l, gompertz, genextreme

Notes

The probability density function for gumbel_r is:

f(x) = exp(−(x+ e−x))

The Gumbel distribution is sometimes referred to as a type I Fisher-Tippett distribution. It is also related to the
extreme value distribution, log-Weibull and Gompertz distributions.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, gumbel_r.pdf(x, loc, scale) is identically equivalent to
gumbel_r.pdf(y) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import gumbel_r
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> mean, var, skew, kurt = gumbel_r.stats(moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(gumbel_r.ppf(0.01),
... gumbel_r.ppf(0.99), 100)
>>> ax.plot(x, gumbel_r.pdf(x),
... 'r-', lw=5, alpha=0.6, label='gumbel_r pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = gumbel_r()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = gumbel_r.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], gumbel_r.cdf(vals))
True
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Generate random numbers:

>>> r = gumbel_r.rvs(size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, loc=0, scale=1) Probability density function.
logpdf(x, loc=0, scale=1) Log of the probability density function.
cdf(x, loc=0, scale=1) Cumulative distribution function.
logcdf(x, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, loc=0, scale=1) Log of the survival function.
ppf(q, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, loc=0, scale=1) Non-central moment of order n
stats(loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(loc=0, scale=1) (Differential) entropy of the RV.
fit(data, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(loc=0, scale=1) Median of the distribution.
mean(loc=0, scale=1) Mean of the distribution.
var(loc=0, scale=1) Variance of the distribution.
std(loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, loc=0, scale=1) Endpoints of the range that contains alpha percent

of the distribution

scipy.stats.gumbel_l

scipy.stats.gumbel_l = <scipy.stats._continuous_distns.gumbel_l_gen object>
A left-skewed Gumbel continuous random variable.
As an instance of the rv_continuous class, gumbel_l object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.
See also:
gumbel_r, gompertz, genextreme

Notes

The probability density function for gumbel_l is:

f(x) = exp(x− ex)

The Gumbel distribution is sometimes referred to as a type I Fisher-Tippett distribution. It is also related to the
extreme value distribution, log-Weibull and Gompertz distributions.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, gumbel_l.pdf(x, loc, scale) is identically equivalent to
gumbel_l.pdf(y) / scale with y = (x - loc) / scale.
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Examples

>>> from scipy.stats import gumbel_l
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> mean, var, skew, kurt = gumbel_l.stats(moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(gumbel_l.ppf(0.01),
... gumbel_l.ppf(0.99), 100)
>>> ax.plot(x, gumbel_l.pdf(x),
... 'r-', lw=5, alpha=0.6, label='gumbel_l pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = gumbel_l()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = gumbel_l.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], gumbel_l.cdf(vals))
True

Generate random numbers:

>>> r = gumbel_l.rvs(size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, loc=0, scale=1) Probability density function.
logpdf(x, loc=0, scale=1) Log of the probability density function.
cdf(x, loc=0, scale=1) Cumulative distribution function.
logcdf(x, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, loc=0, scale=1) Log of the survival function.
ppf(q, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, loc=0, scale=1) Non-central moment of order n
stats(loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(loc=0, scale=1) (Differential) entropy of the RV.
fit(data, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(loc=0, scale=1) Median of the distribution.
mean(loc=0, scale=1) Mean of the distribution.
var(loc=0, scale=1) Variance of the distribution.
std(loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, loc=0, scale=1) Endpoints of the range that contains alpha percent

of the distribution

scipy.stats.halfcauchy

scipy.stats.halfcauchy = <scipy.stats._continuous_distns.halfcauchy_gen object>
A Half-Cauchy continuous random variable.
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As an instance of the rv_continuous class, halfcauchy object inherits from it a collection of generic
methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for halfcauchy is:

f(x) =
2

π(1 + x2)

for x ≥ 0.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, halfcauchy.pdf(x, loc, scale) is identically equivalent to
halfcauchy.pdf(y) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import halfcauchy
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> mean, var, skew, kurt = halfcauchy.stats(moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(halfcauchy.ppf(0.01),
... halfcauchy.ppf(0.99), 100)
>>> ax.plot(x, halfcauchy.pdf(x),
... 'r-', lw=5, alpha=0.6, label='halfcauchy pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = halfcauchy()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = halfcauchy.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], halfcauchy.cdf(vals))
True

Generate random numbers:

>>> r = halfcauchy.rvs(size=1000)

And compare the histogram:
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>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, loc=0, scale=1) Probability density function.
logpdf(x, loc=0, scale=1) Log of the probability density function.
cdf(x, loc=0, scale=1) Cumulative distribution function.
logcdf(x, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, loc=0, scale=1) Log of the survival function.
ppf(q, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, loc=0, scale=1) Non-central moment of order n
stats(loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(loc=0, scale=1) (Differential) entropy of the RV.
fit(data, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(loc=0, scale=1) Median of the distribution.
mean(loc=0, scale=1) Mean of the distribution.
var(loc=0, scale=1) Variance of the distribution.
std(loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, loc=0, scale=1) Endpoints of the range that contains alpha percent

of the distribution
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scipy.stats.halflogistic

scipy.stats.halflogistic = <scipy.stats._continuous_distns.halflogistic_gen object>
A half-logistic continuous random variable.
As an instance of the rv_continuous class, halflogistic object inherits from it a collection of generic
methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for halflogistic is:

f(x) =
2e−x

(1 + e−x)2
=

1

2
sech(x/2)2

for x ≥ 0.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, halflogistic.pdf(x, loc, scale) is identically equivalent
to halflogistic.pdf(y) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import halflogistic
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> mean, var, skew, kurt = halflogistic.stats(moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(halflogistic.ppf(0.01),
... halflogistic.ppf(0.99), 100)
>>> ax.plot(x, halflogistic.pdf(x),
... 'r-', lw=5, alpha=0.6, label='halflogistic pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = halflogistic()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = halflogistic.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], halflogistic.cdf(vals))
True

Generate random numbers:
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>>> r = halflogistic.rvs(size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, loc=0, scale=1) Probability density function.
logpdf(x, loc=0, scale=1) Log of the probability density function.
cdf(x, loc=0, scale=1) Cumulative distribution function.
logcdf(x, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, loc=0, scale=1) Log of the survival function.
ppf(q, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, loc=0, scale=1) Non-central moment of order n
stats(loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(loc=0, scale=1) (Differential) entropy of the RV.
fit(data, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(loc=0, scale=1) Median of the distribution.
mean(loc=0, scale=1) Mean of the distribution.
var(loc=0, scale=1) Variance of the distribution.
std(loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, loc=0, scale=1) Endpoints of the range that contains alpha percent

of the distribution

scipy.stats.halfnorm

scipy.stats.halfnorm = <scipy.stats._continuous_distns.halfnorm_gen object>
A half-normal continuous random variable.
As an instance of the rv_continuous class, halfnorm object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for halfnorm is:

f(x) =
√

2/π exp(−x2/2)

for x >= 0.
halfnorm is a special case of chi with df=1.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, halfnorm.pdf(x, loc, scale) is identically equivalent to
halfnorm.pdf(y) / scale with y = (x - loc) / scale.
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Examples

>>> from scipy.stats import halfnorm
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> mean, var, skew, kurt = halfnorm.stats(moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(halfnorm.ppf(0.01),
... halfnorm.ppf(0.99), 100)
>>> ax.plot(x, halfnorm.pdf(x),
... 'r-', lw=5, alpha=0.6, label='halfnorm pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = halfnorm()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = halfnorm.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], halfnorm.cdf(vals))
True

Generate random numbers:

>>> r = halfnorm.rvs(size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, loc=0, scale=1) Probability density function.
logpdf(x, loc=0, scale=1) Log of the probability density function.
cdf(x, loc=0, scale=1) Cumulative distribution function.
logcdf(x, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, loc=0, scale=1) Log of the survival function.
ppf(q, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, loc=0, scale=1) Non-central moment of order n
stats(loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(loc=0, scale=1) (Differential) entropy of the RV.
fit(data, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(loc=0, scale=1) Median of the distribution.
mean(loc=0, scale=1) Mean of the distribution.
var(loc=0, scale=1) Variance of the distribution.
std(loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, loc=0, scale=1) Endpoints of the range that contains alpha percent

of the distribution

scipy.stats.halfgennorm

scipy.stats.halfgennorm = <scipy.stats._continuous_distns.halfgennorm_gen object>
The upper half of a generalized normal continuous random variable.

2214 Chapter 6. API Reference



SciPy Reference Guide, Release 1.3.1

As an instance of the rv_continuous class, halfgennorm object inherits from it a collection of generic
methods (see below for the full list), and completes them with details specific for this particular distribution.
See also:

gennorm

generalized normal distribution
expon

exponential distribution
halfnorm

half normal distribution

Notes

The probability density function for halfgennorm is:

f(x, β) =
β

Γ(1/β)
exp(−|x|β)

for x > 0. Γ is the gamma function (scipy.special.gamma).
gennorm takes beta as a shape parameter for β. For β = 1, it is identical to an exponential distribution. For
β = 2, it is identical to a half normal distribution (with scale=1/sqrt(2)).

References

[1]

Examples

>>> from scipy.stats import halfgennorm
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> beta = 0.675
>>> mean, var, skew, kurt = halfgennorm.stats(beta, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(halfgennorm.ppf(0.01, beta),
... halfgennorm.ppf(0.99, beta), 100)
>>> ax.plot(x, halfgennorm.pdf(x, beta),
... 'r-', lw=5, alpha=0.6, label='halfgennorm pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:
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>>> rv = halfgennorm(beta)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = halfgennorm.ppf([0.001, 0.5, 0.999], beta)
>>> np.allclose([0.001, 0.5, 0.999], halfgennorm.cdf(vals, beta))
True

Generate random numbers:

>>> r = halfgennorm.rvs(beta, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(beta, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, beta, loc=0, scale=1) Probability density function.
logpdf(x, beta, loc=0, scale=1) Log of the probability density function.
cdf(x, beta, loc=0, scale=1) Cumulative distribution function.
logcdf(x, beta, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, beta, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, beta, loc=0, scale=1) Log of the survival function.
ppf(q, beta, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, beta, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, beta, loc=0, scale=1) Non-central moment of order n
stats(beta, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(beta, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, beta, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(beta,), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(beta, loc=0, scale=1) Median of the distribution.
mean(beta, loc=0, scale=1) Mean of the distribution.
var(beta, loc=0, scale=1) Variance of the distribution.
std(beta, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, beta, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.hypsecant

scipy.stats.hypsecant = <scipy.stats._continuous_distns.hypsecant_gen object>
A hyperbolic secant continuous random variable.
As an instance of therv_continuous class, hypsecant object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for hypsecant is:

f(x) =
1

π
sech(x)

for a real number x.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, hypsecant.pdf(x, loc, scale) is identically equivalent to
hypsecant.pdf(y) / scale with y = (x - loc) / scale.

Examples
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>>> from scipy.stats import hypsecant
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> mean, var, skew, kurt = hypsecant.stats(moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(hypsecant.ppf(0.01),
... hypsecant.ppf(0.99), 100)
>>> ax.plot(x, hypsecant.pdf(x),
... 'r-', lw=5, alpha=0.6, label='hypsecant pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = hypsecant()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = hypsecant.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], hypsecant.cdf(vals))
True

Generate random numbers:

>>> r = hypsecant.rvs(size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, loc=0, scale=1) Probability density function.
logpdf(x, loc=0, scale=1) Log of the probability density function.
cdf(x, loc=0, scale=1) Cumulative distribution function.
logcdf(x, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, loc=0, scale=1) Log of the survival function.
ppf(q, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, loc=0, scale=1) Non-central moment of order n
stats(loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(loc=0, scale=1) (Differential) entropy of the RV.
fit(data, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(loc=0, scale=1) Median of the distribution.
mean(loc=0, scale=1) Mean of the distribution.
var(loc=0, scale=1) Variance of the distribution.
std(loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, loc=0, scale=1) Endpoints of the range that contains alpha percent

of the distribution

scipy.stats.invgamma

scipy.stats.invgamma = <scipy.stats._continuous_distns.invgamma_gen object>
An inverted gamma continuous random variable.
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As an instance of the rv_continuous class, invgamma object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for invgamma is:

f(x, a) =
x−a−1

Γ(a)
exp(− 1

x
)

for x >= 0, a > 0. Γ is the gamma function (scipy.special.gamma).
invgamma takes a as a shape parameter for a.
invgamma is a special case of gengamma with c=-1.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, invgamma.pdf(x, a, loc, scale) is identically equivalent
to invgamma.pdf(y, a) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import invgamma
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> a = 4.07
>>> mean, var, skew, kurt = invgamma.stats(a, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(invgamma.ppf(0.01, a),
... invgamma.ppf(0.99, a), 100)
>>> ax.plot(x, invgamma.pdf(x, a),
... 'r-', lw=5, alpha=0.6, label='invgamma pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = invgamma(a)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = invgamma.ppf([0.001, 0.5, 0.999], a)
>>> np.allclose([0.001, 0.5, 0.999], invgamma.cdf(vals, a))
True

Generate random numbers:
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>>> r = invgamma.rvs(a, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(a, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, a, loc=0, scale=1) Probability density function.
logpdf(x, a, loc=0, scale=1) Log of the probability density function.
cdf(x, a, loc=0, scale=1) Cumulative distribution function.
logcdf(x, a, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, a, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, a, loc=0, scale=1) Log of the survival function.
ppf(q, a, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, a, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, a, loc=0, scale=1) Non-central moment of order n
stats(a, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(a, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, a, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(a,), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(a, loc=0, scale=1) Median of the distribution.
mean(a, loc=0, scale=1) Mean of the distribution.
var(a, loc=0, scale=1) Variance of the distribution.
std(a, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, a, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.invgauss

scipy.stats.invgauss = <scipy.stats._continuous_distns.invgauss_gen object>
An inverse Gaussian continuous random variable.
As an instance of the rv_continuous class, invgauss object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for invgauss is:

f(x, µ) =
1√
2πx3

exp(− (x− µ)2

2xµ2
)

for x >= 0 and µ > 0.
invgauss takes mu as a shape parameter for µ.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, invgauss.pdf(x, mu, loc, scale) is identically equivalent
to invgauss.pdf(y, mu) / scale with y = (x - loc) / scale.
When µ is too small, evaluating the cumulative distribution function will be inaccurate due to cdf(mu -> 0)
= inf * 0. NaNs are returned for µ ≤ 0.0028.
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Examples

>>> from scipy.stats import invgauss
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> mu = 0.145
>>> mean, var, skew, kurt = invgauss.stats(mu, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(invgauss.ppf(0.01, mu),
... invgauss.ppf(0.99, mu), 100)
>>> ax.plot(x, invgauss.pdf(x, mu),
... 'r-', lw=5, alpha=0.6, label='invgauss pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = invgauss(mu)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = invgauss.ppf([0.001, 0.5, 0.999], mu)
>>> np.allclose([0.001, 0.5, 0.999], invgauss.cdf(vals, mu))
True

Generate random numbers:

>>> r = invgauss.rvs(mu, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(mu, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, mu, loc=0, scale=1) Probability density function.
logpdf(x, mu, loc=0, scale=1) Log of the probability density function.
cdf(x, mu, loc=0, scale=1) Cumulative distribution function.
logcdf(x, mu, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, mu, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, mu, loc=0, scale=1) Log of the survival function.
ppf(q, mu, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, mu, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, mu, loc=0, scale=1) Non-central moment of order n
stats(mu, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(mu, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, mu, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(mu,), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(mu, loc=0, scale=1) Median of the distribution.
mean(mu, loc=0, scale=1) Mean of the distribution.
var(mu, loc=0, scale=1) Variance of the distribution.
std(mu, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, mu, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.invweibull

scipy.stats.invweibull = <scipy.stats._continuous_distns.invweibull_gen object>
An inverted Weibull continuous random variable.
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This distribution is also known as the Fréchet distribution or the type II extreme value distribution.
As an instance of the rv_continuous class, invweibull object inherits from it a collection of generic
methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for invweibull is:

f(x, c) = cx−c−1 exp(−x−c)

for x > 0, c > 0.
invweibull takes c as a shape parameter for c.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, invweibull.pdf(x, c, loc, scale) is identically equiva-
lent to invweibull.pdf(y, c) / scale with y = (x - loc) / scale.

References

F.R.S. de Gusmao, E.M.MOrtega andG.M. Cordeiro, “The generalized inverseWeibull distribution”, Stat. Papers,
vol. 52, pp. 591-619, 2011.

Examples

>>> from scipy.stats import invweibull
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> c = 10.6
>>> mean, var, skew, kurt = invweibull.stats(c, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(invweibull.ppf(0.01, c),
... invweibull.ppf(0.99, c), 100)
>>> ax.plot(x, invweibull.pdf(x, c),
... 'r-', lw=5, alpha=0.6, label='invweibull pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = invweibull(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = invweibull.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], invweibull.cdf(vals, c))
True
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Generate random numbers:

>>> r = invweibull.rvs(c, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(c, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, c, loc=0, scale=1) Probability density function.
logpdf(x, c, loc=0, scale=1) Log of the probability density function.
cdf(x, c, loc=0, scale=1) Cumulative distribution function.
logcdf(x, c, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, c, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, c, loc=0, scale=1) Log of the survival function.
ppf(q, c, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, c, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, c, loc=0, scale=1) Non-central moment of order n
stats(c, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(c, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, c, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(c,), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(c, loc=0, scale=1) Median of the distribution.
mean(c, loc=0, scale=1) Mean of the distribution.
var(c, loc=0, scale=1) Variance of the distribution.
std(c, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, c, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.johnsonsb

scipy.stats.johnsonsb = <scipy.stats._continuous_distns.johnsonsb_gen object>
A Johnson SB continuous random variable.
As an instance of therv_continuous class, johnsonsb object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.
See also:
johnsonsu

Notes

The probability density function for johnsonsb is:

f(x, a, b) =
b

x(1− x)
ϕ(a+ b log

x

1− x
)

for 0 <= x <= 1 and a, b > 0, and ϕ is the normal pdf.
johnsonsb takes a and b as shape parameters.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, johnsonsb.pdf(x, a, b, loc, scale) is identically
equivalent to johnsonsb.pdf(y, a, b) / scale with y = (x - loc) / scale.
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Examples

>>> from scipy.stats import johnsonsb
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> a, b = 4.32, 3.18
>>> mean, var, skew, kurt = johnsonsb.stats(a, b, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(johnsonsb.ppf(0.01, a, b),
... johnsonsb.ppf(0.99, a, b), 100)
>>> ax.plot(x, johnsonsb.pdf(x, a, b),
... 'r-', lw=5, alpha=0.6, label='johnsonsb pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = johnsonsb(a, b)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = johnsonsb.ppf([0.001, 0.5, 0.999], a, b)
>>> np.allclose([0.001, 0.5, 0.999], johnsonsb.cdf(vals, a, b))
True

Generate random numbers:

>>> r = johnsonsb.rvs(a, b, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(a, b, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, a, b, loc=0, scale=1) Probability density function.
logpdf(x, a, b, loc=0, scale=1) Log of the probability density function.
cdf(x, a, b, loc=0, scale=1) Cumulative distribution function.
logcdf(x, a, b, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, a, b, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, a, b, loc=0, scale=1) Log of the survival function.
ppf(q, a, b, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, a, b, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, a, b, loc=0, scale=1) Non-central moment of order n
stats(a, b, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(a, b, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, a, b, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(a, b), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(a, b, loc=0, scale=1) Median of the distribution.
mean(a, b, loc=0, scale=1) Mean of the distribution.
var(a, b, loc=0, scale=1) Variance of the distribution.
std(a, b, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, a, b, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.johnsonsu

scipy.stats.johnsonsu = <scipy.stats._continuous_distns.johnsonsu_gen object>
A Johnson SU continuous random variable.
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As an instance of therv_continuous class, johnsonsu object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.
See also:
johnsonsb

Notes

The probability density function for johnsonsu is:

f(x, a, b) =
b√

x2 + 1
ϕ(a+ b log(x+

√
x2 + 1))

for all x, a, b > 0, and ϕ is the normal pdf.
johnsonsu takes a and b as shape parameters.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, johnsonsu.pdf(x, a, b, loc, scale) is identically
equivalent to johnsonsu.pdf(y, a, b) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import johnsonsu
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> a, b = 2.55, 2.25
>>> mean, var, skew, kurt = johnsonsu.stats(a, b, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(johnsonsu.ppf(0.01, a, b),
... johnsonsu.ppf(0.99, a, b), 100)
>>> ax.plot(x, johnsonsu.pdf(x, a, b),
... 'r-', lw=5, alpha=0.6, label='johnsonsu pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = johnsonsu(a, b)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = johnsonsu.ppf([0.001, 0.5, 0.999], a, b)
>>> np.allclose([0.001, 0.5, 0.999], johnsonsu.cdf(vals, a, b))
True

Generate random numbers:
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>>> r = johnsonsu.rvs(a, b, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(a, b, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, a, b, loc=0, scale=1) Probability density function.
logpdf(x, a, b, loc=0, scale=1) Log of the probability density function.
cdf(x, a, b, loc=0, scale=1) Cumulative distribution function.
logcdf(x, a, b, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, a, b, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, a, b, loc=0, scale=1) Log of the survival function.
ppf(q, a, b, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, a, b, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, a, b, loc=0, scale=1) Non-central moment of order n
stats(a, b, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(a, b, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, a, b, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(a, b), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(a, b, loc=0, scale=1) Median of the distribution.
mean(a, b, loc=0, scale=1) Mean of the distribution.
var(a, b, loc=0, scale=1) Variance of the distribution.
std(a, b, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, a, b, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.kappa4

scipy.stats.kappa4 = <scipy.stats._continuous_distns.kappa4_gen object>
Kappa 4 parameter distribution.
As an instance of the rv_continuous class, kappa4 object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for kappa4 is:

f(x, h, k) = (1− kx)1/k−1(1− h(1− kx)1/k)1/h−1

if h and k are not equal to 0.
If h or k are zero then the pdf can be simplified:
h = 0 and k != 0:

kappa4.pdf(x, h, k) = (1.0 - k*x)**(1.0/k - 1.0)*
exp(-(1.0 - k*x)**(1.0/k))

h != 0 and k = 0:
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kappa4.pdf(x, h, k) = exp(-x)*(1.0 - h*exp(-x))**(1.0/h - 1.0)

h = 0 and k = 0:

kappa4.pdf(x, h, k) = exp(-x)*exp(-exp(-x))

kappa4 takes h and k as shape parameters.
The kappa4 distribution returns other distributions when certain h and k values are used.

h k=0.0 k=1.0 -inf<=k<=inf
-1.0 Logistic

logistic(x)
Generalized Logistic(1)

0.0 Gumbel
gumbel_r(x)

Reverse Exponential(2) Generalized Extreme Value
genextreme(x, k)

1.0 Exponential
expon(x)

Uniform
uniform(x)

Generalized Pareto
genpareto(x, -k)

(1) There are at least five generalized logistic distributions. Four are described here: https://en.wikipedia.org/
wiki/Generalized_logistic_distribution The “fifth” one is the one kappa4 should match which currently isn’t
implemented in scipy: https://en.wikipedia.org/wiki/Talk:Generalized_logistic_distribution https://www.
mathwave.com/help/easyfit/html/analyses/distributions/gen_logistic.html

(2) This distribution is currently not in scipy.

References

J.C. Finney, “Optimization of a Skewed Logistic Distribution With Respect to the Kolmogorov-Smirnov Test”, A
Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical
College, (August, 2004), https://digitalcommons.lsu.edu/gradschool_dissertations/3672
J.R.M. Hosking, “The four-parameter kappa distribution”. IBM J. Res. Develop. 38 (3), 25 1-258 (1994).
B. Kumphon, A. Kaew-Man, P. Seenoi, “A Rainfall Distribution for the Lampao Site in the Chi River Basin,
Thailand”, Journal of Water Resource and Protection, vol. 4, 866-869, (2012). https://doi.org/10.4236/jwarp.
2012.410101
C. Winchester, “On Estimation of the Four-Parameter Kappa Distribution”, A Thesis Submitted to Dalhousie
University, Halifax, Nova Scotia, (March 2000). http://www.nlc-bnc.ca/obj/s4/f2/dsk2/ftp01/MQ57336.pdf
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, kappa4.pdf(x, h, k, loc, scale) is identically equivalent
to kappa4.pdf(y, h, k) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import kappa4
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> h, k = 0.1, 0
>>> mean, var, skew, kurt = kappa4.stats(h, k, moments='mvsk')
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Display the probability density function (pdf):

>>> x = np.linspace(kappa4.ppf(0.01, h, k),
... kappa4.ppf(0.99, h, k), 100)
>>> ax.plot(x, kappa4.pdf(x, h, k),
... 'r-', lw=5, alpha=0.6, label='kappa4 pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = kappa4(h, k)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = kappa4.ppf([0.001, 0.5, 0.999], h, k)
>>> np.allclose([0.001, 0.5, 0.999], kappa4.cdf(vals, h, k))
True

Generate random numbers:

>>> r = kappa4.rvs(h, k, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(h, k, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, h, k, loc=0, scale=1) Probability density function.
logpdf(x, h, k, loc=0, scale=1) Log of the probability density function.
cdf(x, h, k, loc=0, scale=1) Cumulative distribution function.
logcdf(x, h, k, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, h, k, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, h, k, loc=0, scale=1) Log of the survival function.
ppf(q, h, k, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, h, k, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, h, k, loc=0, scale=1) Non-central moment of order n
stats(h, k, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(h, k, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, h, k, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(h, k), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(h, k, loc=0, scale=1) Median of the distribution.
mean(h, k, loc=0, scale=1) Mean of the distribution.
var(h, k, loc=0, scale=1) Variance of the distribution.
std(h, k, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, h, k, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.kappa3

scipy.stats.kappa3 = <scipy.stats._continuous_distns.kappa3_gen object>
Kappa 3 parameter distribution.
As an instance of the rv_continuous class, kappa3 object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for kappa3 is:

f(x, a) = a(a+ xa)−(a+1)/a

for x > 0 and a > 0.
kappa3 takes a as a shape parameter for a.

References

P.W. Mielke and E.S. Johnson, “Three-Parameter Kappa Distribution Maximum Likelihood and Likeli-
hood Ratio Tests”, Methods in Weather Research, 701-707, (September, 1973), https://doi.org/10.1175/
1520-0493(1973)101<0701:TKDMLE>2.3.CO;2
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B. Kumphon, “Maximum Entropy and Maximum Likelihood Estimation for the Three-Parameter Kappa Distri-
bution”, Open Journal of Statistics, vol 2, 415-419 (2012), https://doi.org/10.4236/ojs.2012.24050
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, kappa3.pdf(x, a, loc, scale) is identically equivalent to
kappa3.pdf(y, a) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import kappa3
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> a = 1
>>> mean, var, skew, kurt = kappa3.stats(a, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(kappa3.ppf(0.01, a),
... kappa3.ppf(0.99, a), 100)
>>> ax.plot(x, kappa3.pdf(x, a),
... 'r-', lw=5, alpha=0.6, label='kappa3 pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = kappa3(a)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = kappa3.ppf([0.001, 0.5, 0.999], a)
>>> np.allclose([0.001, 0.5, 0.999], kappa3.cdf(vals, a))
True

Generate random numbers:

>>> r = kappa3.rvs(a, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(a, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, a, loc=0, scale=1) Probability density function.
logpdf(x, a, loc=0, scale=1) Log of the probability density function.
cdf(x, a, loc=0, scale=1) Cumulative distribution function.
logcdf(x, a, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, a, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, a, loc=0, scale=1) Log of the survival function.
ppf(q, a, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, a, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, a, loc=0, scale=1) Non-central moment of order n
stats(a, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(a, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, a, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(a,), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(a, loc=0, scale=1) Median of the distribution.
mean(a, loc=0, scale=1) Mean of the distribution.
var(a, loc=0, scale=1) Variance of the distribution.
std(a, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, a, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.ksone

scipy.stats.ksone = <scipy.stats._continuous_distns.ksone_gen object>
General Kolmogorov-Smirnov one-sided test.
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This is the distribution of the one-sided Kolmogorov-Smirnov (KS) statistics D+
n and D−

n for a finite sample size
n (the shape parameter).
As an instance of the rv_continuous class, ksone object inherits from it a collection of generic methods (see
below for the full list), and completes them with details specific for this particular distribution.
See also:
kstwobign, kstest

Notes

D+
n and D−

n are given by

D+
n = supx(Fn(x)− F (x)),

D−
n = supx(F (x)− Fn(x)),

where F is a CDF and Fn is an empirical CDF. ksone describes the distribution under the null hypothesis of the
KS test that the empirical CDF corresponds to n i.i.d. random variates with CDF F .
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, ksone.pdf(x, n, loc, scale) is identically equivalent to
ksone.pdf(y, n) / scale with y = (x - loc) / scale.

References

[1]

Examples

>>> from scipy.stats import ksone
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> n = 1e+03
>>> mean, var, skew, kurt = ksone.stats(n, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(ksone.ppf(0.01, n),
... ksone.ppf(0.99, n), 100)
>>> ax.plot(x, ksone.pdf(x, n),
... 'r-', lw=5, alpha=0.6, label='ksone pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = ksone(n)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:
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>>> vals = ksone.ppf([0.001, 0.5, 0.999], n)
>>> np.allclose([0.001, 0.5, 0.999], ksone.cdf(vals, n))
True

Generate random numbers:

>>> r = ksone.rvs(n, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(n, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, n, loc=0, scale=1) Probability density function.
logpdf(x, n, loc=0, scale=1) Log of the probability density function.
cdf(x, n, loc=0, scale=1) Cumulative distribution function.
logcdf(x, n, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, n, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, n, loc=0, scale=1) Log of the survival function.
ppf(q, n, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, n, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, n, loc=0, scale=1) Non-central moment of order n
stats(n, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(n, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, n, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(n,), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(n, loc=0, scale=1) Median of the distribution.
mean(n, loc=0, scale=1) Mean of the distribution.
var(n, loc=0, scale=1) Variance of the distribution.
std(n, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, n, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.kstwobign

scipy.stats.kstwobign = <scipy.stats._continuous_distns.kstwobign_gen object>
Kolmogorov-Smirnov two-sided test for large N.
This is the asymptotic distribution of the two-sided Kolmogorov-Smirnov statistic √nDn that measures the max-
imum absolute distance of the theoretical CDF from the empirical CDF (see kstest).
As an instance of therv_continuous class, kstwobign object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.
See also:
ksone, kstest

Notes
√
nDn is given by

Dn = supx|Fn(x)− F (x)|

where F is a CDF and Fn is an empirical CDF. kstwobign describes the asymptotic distribution (i.e. the limit
of √nDn) under the null hypothesis of the KS test that the empirical CDF corresponds to i.i.d. random variates
with CDF F .
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The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, kstwobign.pdf(x, loc, scale) is identically equivalent to
kstwobign.pdf(y) / scale with y = (x - loc) / scale.

References

[1]

Examples

>>> from scipy.stats import kstwobign
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> mean, var, skew, kurt = kstwobign.stats(moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(kstwobign.ppf(0.01),
... kstwobign.ppf(0.99), 100)
>>> ax.plot(x, kstwobign.pdf(x),
... 'r-', lw=5, alpha=0.6, label='kstwobign pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = kstwobign()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = kstwobign.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], kstwobign.cdf(vals))
True

Generate random numbers:

>>> r = kstwobign.rvs(size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, loc=0, scale=1) Probability density function.
logpdf(x, loc=0, scale=1) Log of the probability density function.
cdf(x, loc=0, scale=1) Cumulative distribution function.
logcdf(x, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, loc=0, scale=1) Log of the survival function.
ppf(q, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, loc=0, scale=1) Non-central moment of order n
stats(loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(loc=0, scale=1) (Differential) entropy of the RV.
fit(data, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(loc=0, scale=1) Median of the distribution.
mean(loc=0, scale=1) Mean of the distribution.
var(loc=0, scale=1) Variance of the distribution.
std(loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, loc=0, scale=1) Endpoints of the range that contains alpha percent

of the distribution

scipy.stats.laplace

scipy.stats.laplace = <scipy.stats._continuous_distns.laplace_gen object>
A Laplace continuous random variable.
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As an instance of the rv_continuous class, laplace object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for laplace is

f(x) =
1

2
exp(−|x|)

for a real number x.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, laplace.pdf(x, loc, scale) is identically equivalent to
laplace.pdf(y) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import laplace
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> mean, var, skew, kurt = laplace.stats(moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(laplace.ppf(0.01),
... laplace.ppf(0.99), 100)
>>> ax.plot(x, laplace.pdf(x),
... 'r-', lw=5, alpha=0.6, label='laplace pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = laplace()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = laplace.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], laplace.cdf(vals))
True

Generate random numbers:

>>> r = laplace.rvs(size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, loc=0, scale=1) Probability density function.
logpdf(x, loc=0, scale=1) Log of the probability density function.
cdf(x, loc=0, scale=1) Cumulative distribution function.
logcdf(x, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, loc=0, scale=1) Log of the survival function.
ppf(q, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, loc=0, scale=1) Non-central moment of order n
stats(loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(loc=0, scale=1) (Differential) entropy of the RV.
fit(data, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(loc=0, scale=1) Median of the distribution.
mean(loc=0, scale=1) Mean of the distribution.
var(loc=0, scale=1) Variance of the distribution.
std(loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, loc=0, scale=1) Endpoints of the range that contains alpha percent

of the distribution

scipy.stats.levy

scipy.stats.levy = <scipy.stats._continuous_distns.levy_gen object>
A Levy continuous random variable.
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As an instance of the rv_continuous class, levy object inherits from it a collection of generic methods (see
below for the full list), and completes them with details specific for this particular distribution.
See also:
levy_stable, levy_l

Notes

The probability density function for levy is:

f(x) =
1√
2πx3

exp

(
− 1

2x

)
for x >= 0.
This is the same as the Levy-stable distribution with a = 1/2 and b = 1.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, levy.pdf(x, loc, scale) is identically equivalent to levy.
pdf(y) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import levy
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> mean, var, skew, kurt = levy.stats(moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(levy.ppf(0.01),
... levy.ppf(0.99), 100)
>>> ax.plot(x, levy.pdf(x),
... 'r-', lw=5, alpha=0.6, label='levy pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = levy()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = levy.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], levy.cdf(vals))
True

Generate random numbers:
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>>> r = levy.rvs(size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, loc=0, scale=1) Probability density function.
logpdf(x, loc=0, scale=1) Log of the probability density function.
cdf(x, loc=0, scale=1) Cumulative distribution function.
logcdf(x, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, loc=0, scale=1) Log of the survival function.
ppf(q, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, loc=0, scale=1) Non-central moment of order n
stats(loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(loc=0, scale=1) (Differential) entropy of the RV.
fit(data, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(loc=0, scale=1) Median of the distribution.
mean(loc=0, scale=1) Mean of the distribution.
var(loc=0, scale=1) Variance of the distribution.
std(loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, loc=0, scale=1) Endpoints of the range that contains alpha percent

of the distribution

scipy.stats.levy_l

scipy.stats.levy_l = <scipy.stats._continuous_distns.levy_l_gen object>
A left-skewed Levy continuous random variable.
As an instance of the rv_continuous class, levy_l object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.
See also:
levy, levy_stable

Notes

The probability density function for levy_l is:

f(x) =
1

|x|
√
2π|x|

exp

(
− 1

2|x|

)
for x <= 0.
This is the same as the Levy-stable distribution with a = 1/2 and b = −1.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, levy_l.pdf(x, loc, scale) is identically equivalent to
levy_l.pdf(y) / scale with y = (x - loc) / scale.
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Examples

>>> from scipy.stats import levy_l
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> mean, var, skew, kurt = levy_l.stats(moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(levy_l.ppf(0.01),
... levy_l.ppf(0.99), 100)
>>> ax.plot(x, levy_l.pdf(x),
... 'r-', lw=5, alpha=0.6, label='levy_l pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = levy_l()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = levy_l.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], levy_l.cdf(vals))
True

Generate random numbers:

>>> r = levy_l.rvs(size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, loc=0, scale=1) Probability density function.
logpdf(x, loc=0, scale=1) Log of the probability density function.
cdf(x, loc=0, scale=1) Cumulative distribution function.
logcdf(x, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, loc=0, scale=1) Log of the survival function.
ppf(q, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, loc=0, scale=1) Non-central moment of order n
stats(loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(loc=0, scale=1) (Differential) entropy of the RV.
fit(data, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(loc=0, scale=1) Median of the distribution.
mean(loc=0, scale=1) Mean of the distribution.
var(loc=0, scale=1) Variance of the distribution.
std(loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, loc=0, scale=1) Endpoints of the range that contains alpha percent

of the distribution

scipy.stats.levy_stable

scipy.stats.levy_stable = <scipy.stats._continuous_distns.levy_stable_gen object>
A Levy-stable continuous random variable.
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As an instance of the rv_continuous class, levy_stable object inherits from it a collection of generic
methods (see below for the full list), and completes them with details specific for this particular distribution.
See also:
levy, levy_l

Notes

The distribution for levy_stable has characteristic function:

φ(t, α, β, c, µ) = eitµ−|ct|α(1−iβ sign(t)Φ(α,t))

where:

Φ =

{
tan

(
πα
2

)
α ̸= 1

− 2
π log |t| α = 1

The probability density function for levy_stable is:

f(x) =
1

2π

∫ ∞

−∞
φ(t)e−ixt dt

where −∞ < t <∞. This integral does not have a known closed form.
For evaluation of pdf we use either Zolotarev S0 parameterization with integration, direct integration of standard
parameterization of characteristic function or FFT of characteristic function. If set to other than None and if
number of points is greater than levy_stable.pdf_fft_min_points_threshold (defaults to None)
we use FFT otherwise we use one of the other methods.
The default method is ‘best’ which uses Zolotarev’s method if alpha = 1 and integration of characteristic function
otherwise. The default method can be changed by setting levy_stable.pdf_default_method to either
‘zolotarev’, ‘quadrature’ or ‘best’.
To increase accuracy of FFT calculation one can specify levy_stable.pdf_fft_grid_spacing (defaults
to 0.001) and pdf_fft_n_points_two_power (defaults to a value that covers the input range * 4). Setting
pdf_fft_n_points_two_power to 16 should be sufficiently accurate in most cases at the expense of CPU
time.
For evaluation of cdf we use Zolatarev S0 parameterization with integration or integral of the pdf FFT interpolated
spline. The settings affecting FFT calculation are the same as for pdf calculation. Setting the threshold to None
(default) will disable FFT. For cdf calculations the Zolatarev method is superior in accuracy, so FFT is disabled by
default.
Fitting estimate uses quantile estimation method in [MC]. MLE estimation of parameters in fit method uses this
quantile estimate initially. Note that MLE doesn’t always converge if using FFT for pdf calculations; so it’s best
that pdf_fft_min_points_threshold is left unset.

Warning: For pdf calculations implementation of Zolatarev is unstable for values where alpha = 1 and beta
!= 0. In this case the quadrature method is recommended. FFT calculation is also considered experimental.
For cdf calculations FFT calculation is considered experimental. Use Zolatarev’s method instead (default).

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, levy_stable.pdf(x, alpha, beta, loc, scale) is
identically equivalent to levy_stable.pdf(y, alpha, beta) / scale with y = (x - loc) /
scale.
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References

[MC], [MS], [BS]

Examples

>>> from scipy.stats import levy_stable
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> alpha, beta = 1.8, -0.5
>>> mean, var, skew, kurt = levy_stable.stats(alpha, beta, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(levy_stable.ppf(0.01, alpha, beta),
... levy_stable.ppf(0.99, alpha, beta), 100)
>>> ax.plot(x, levy_stable.pdf(x, alpha, beta),
... 'r-', lw=5, alpha=0.6, label='levy_stable pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = levy_stable(alpha, beta)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = levy_stable.ppf([0.001, 0.5, 0.999], alpha, beta)
>>> np.allclose([0.001, 0.5, 0.999], levy_stable.cdf(vals, alpha, beta))
True

Generate random numbers:

>>> r = levy_stable.rvs(alpha, beta, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(alpha, beta, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, alpha, beta, loc=0, scale=1) Probability density function.
logpdf(x, alpha, beta, loc=0, scale=1) Log of the probability density function.
cdf(x, alpha, beta, loc=0, scale=1) Cumulative distribution function.
logcdf(x, alpha, beta, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, alpha, beta, loc=0, scale=1) Survival function (also defined as 1 - cdf,

but sf is sometimes more accurate).
logsf(x, alpha, beta, loc=0, scale=1) Log of the survival function.
ppf(q, alpha, beta, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, alpha, beta, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, alpha, beta, loc=0, scale=1) Non-central moment of order n
stats(alpha, beta, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(alpha, beta, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, alpha, beta, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(alpha, beta), loc=0, scale=1,
lb=None, ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(alpha, beta, loc=0, scale=1) Median of the distribution.
mean(alpha, beta, loc=0, scale=1) Mean of the distribution.
var(alpha, beta, loc=0, scale=1) Variance of the distribution.
std(alpha, beta, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, alpha, beta, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.logistic

scipy.stats.logistic = <scipy.stats._continuous_distns.logistic_gen object>
A logistic (or Sech-squared) continuous random variable.
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As an instance of the rv_continuous class, logistic object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for logistic is:

f(x) =
exp(−x)

(1 + exp(−x))2

logistic is a special case of genlogistic with c=1.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, logistic.pdf(x, loc, scale) is identically equivalent to
logistic.pdf(y) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import logistic
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> mean, var, skew, kurt = logistic.stats(moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(logistic.ppf(0.01),
... logistic.ppf(0.99), 100)
>>> ax.plot(x, logistic.pdf(x),
... 'r-', lw=5, alpha=0.6, label='logistic pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = logistic()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = logistic.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], logistic.cdf(vals))
True

Generate random numbers:

>>> r = logistic.rvs(size=1000)

And compare the histogram:
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>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, loc=0, scale=1) Probability density function.
logpdf(x, loc=0, scale=1) Log of the probability density function.
cdf(x, loc=0, scale=1) Cumulative distribution function.
logcdf(x, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, loc=0, scale=1) Log of the survival function.
ppf(q, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, loc=0, scale=1) Non-central moment of order n
stats(loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(loc=0, scale=1) (Differential) entropy of the RV.
fit(data, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(loc=0, scale=1) Median of the distribution.
mean(loc=0, scale=1) Mean of the distribution.
var(loc=0, scale=1) Variance of the distribution.
std(loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, loc=0, scale=1) Endpoints of the range that contains alpha percent

of the distribution
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scipy.stats.loggamma

scipy.stats.loggamma = <scipy.stats._continuous_distns.loggamma_gen object>
A log gamma continuous random variable.
As an instance of the rv_continuous class, loggamma object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for loggamma is:

f(x, c) =
exp(cx− exp(x))

Γ(c)

for all x, c > 0. Here, Γ is the gamma function (scipy.special.gamma).
loggamma takes c as a shape parameter for c.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, loggamma.pdf(x, c, loc, scale) is identically equivalent
to loggamma.pdf(y, c) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import loggamma
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> c = 0.414
>>> mean, var, skew, kurt = loggamma.stats(c, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(loggamma.ppf(0.01, c),
... loggamma.ppf(0.99, c), 100)
>>> ax.plot(x, loggamma.pdf(x, c),
... 'r-', lw=5, alpha=0.6, label='loggamma pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = loggamma(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = loggamma.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], loggamma.cdf(vals, c))
True

Generate random numbers:
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>>> r = loggamma.rvs(c, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(c, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, c, loc=0, scale=1) Probability density function.
logpdf(x, c, loc=0, scale=1) Log of the probability density function.
cdf(x, c, loc=0, scale=1) Cumulative distribution function.
logcdf(x, c, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, c, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, c, loc=0, scale=1) Log of the survival function.
ppf(q, c, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, c, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, c, loc=0, scale=1) Non-central moment of order n
stats(c, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(c, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, c, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(c,), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(c, loc=0, scale=1) Median of the distribution.
mean(c, loc=0, scale=1) Mean of the distribution.
var(c, loc=0, scale=1) Variance of the distribution.
std(c, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, c, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.loglaplace

scipy.stats.loglaplace = <scipy.stats._continuous_distns.loglaplace_gen object>
A log-Laplace continuous random variable.
As an instance of the rv_continuous class, loglaplace object inherits from it a collection of generic
methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for loglaplace is:

f(x, c) =

{
c
2x

c−1 for 0 < x < 1
c
2x

−c−1 for x ≥ 1

for c > 0.
loglaplace takes c as a shape parameter for c.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, loglaplace.pdf(x, c, loc, scale) is identically equiva-
lent to loglaplace.pdf(y, c) / scale with y = (x - loc) / scale.
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References

T.J. Kozubowski and K. Podgorski, “A log-Laplace growth rate model”, The Mathematical Scientist, vol. 28, pp.
49-60, 2003.

Examples

>>> from scipy.stats import loglaplace
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> c = 3.25
>>> mean, var, skew, kurt = loglaplace.stats(c, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(loglaplace.ppf(0.01, c),
... loglaplace.ppf(0.99, c), 100)
>>> ax.plot(x, loglaplace.pdf(x, c),
... 'r-', lw=5, alpha=0.6, label='loglaplace pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = loglaplace(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = loglaplace.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], loglaplace.cdf(vals, c))
True

Generate random numbers:

>>> r = loglaplace.rvs(c, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(c, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, c, loc=0, scale=1) Probability density function.
logpdf(x, c, loc=0, scale=1) Log of the probability density function.
cdf(x, c, loc=0, scale=1) Cumulative distribution function.
logcdf(x, c, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, c, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, c, loc=0, scale=1) Log of the survival function.
ppf(q, c, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, c, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, c, loc=0, scale=1) Non-central moment of order n
stats(c, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(c, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, c, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(c,), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(c, loc=0, scale=1) Median of the distribution.
mean(c, loc=0, scale=1) Mean of the distribution.
var(c, loc=0, scale=1) Variance of the distribution.
std(c, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, c, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.lognorm

scipy.stats.lognorm = <scipy.stats._continuous_distns.lognorm_gen object>
A lognormal continuous random variable.
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As an instance of the rv_continuous class, lognorm object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for lognorm is:

f(x, s) =
1

sx
√
2π

exp

(
− log2(x)

2s2

)
for x > 0, s > 0.
lognorm takes s as a shape parameter for s.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, lognorm.pdf(x, s, loc, scale) is identically equivalent to
lognorm.pdf(y, s) / scale with y = (x - loc) / scale.
A common parametrization for a lognormal random variable Y is in terms of the mean, mu, and standard devia-
tion, sigma, of the unique normally distributed random variable X such that exp(X) = Y. This parametrization
corresponds to setting s = sigma and scale = exp(mu).

Examples

>>> from scipy.stats import lognorm
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> s = 0.954
>>> mean, var, skew, kurt = lognorm.stats(s, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(lognorm.ppf(0.01, s),
... lognorm.ppf(0.99, s), 100)
>>> ax.plot(x, lognorm.pdf(x, s),
... 'r-', lw=5, alpha=0.6, label='lognorm pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = lognorm(s)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = lognorm.ppf([0.001, 0.5, 0.999], s)
>>> np.allclose([0.001, 0.5, 0.999], lognorm.cdf(vals, s))
True

Generate random numbers:
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>>> r = lognorm.rvs(s, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

0 5 10 15 20 25 30
0.0
0.1
0.2
0.3
0.4
0.5
0.6 lognorm pdf

frozen pdf

6.28. Statistical functions (scipy.stats) 2261



SciPy Reference Guide, Release 1.3.1

Methods

rvs(s, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, s, loc=0, scale=1) Probability density function.
logpdf(x, s, loc=0, scale=1) Log of the probability density function.
cdf(x, s, loc=0, scale=1) Cumulative distribution function.
logcdf(x, s, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, s, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, s, loc=0, scale=1) Log of the survival function.
ppf(q, s, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, s, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, s, loc=0, scale=1) Non-central moment of order n
stats(s, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(s, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, s, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(s,), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(s, loc=0, scale=1) Median of the distribution.
mean(s, loc=0, scale=1) Mean of the distribution.
var(s, loc=0, scale=1) Variance of the distribution.
std(s, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, s, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.lomax

scipy.stats.lomax = <scipy.stats._continuous_distns.lomax_gen object>
A Lomax (Pareto of the second kind) continuous random variable.
As an instance of the rv_continuous class, lomax object inherits from it a collection of generic methods (see
below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for lomax is:

f(x, c) =
c

(1 + x)c+1

for x ≥ 0, c > 0.
lomax takes c as a shape parameter for c.
lomax is a special case of pareto with loc=-1.0.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, lomax.pdf(x, c, loc, scale) is identically equivalent to
lomax.pdf(y, c) / scale with y = (x - loc) / scale.
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Examples

>>> from scipy.stats import lomax
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> c = 1.88
>>> mean, var, skew, kurt = lomax.stats(c, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(lomax.ppf(0.01, c),
... lomax.ppf(0.99, c), 100)
>>> ax.plot(x, lomax.pdf(x, c),
... 'r-', lw=5, alpha=0.6, label='lomax pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = lomax(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = lomax.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], lomax.cdf(vals, c))
True

Generate random numbers:

>>> r = lomax.rvs(c, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(c, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, c, loc=0, scale=1) Probability density function.
logpdf(x, c, loc=0, scale=1) Log of the probability density function.
cdf(x, c, loc=0, scale=1) Cumulative distribution function.
logcdf(x, c, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, c, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, c, loc=0, scale=1) Log of the survival function.
ppf(q, c, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, c, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, c, loc=0, scale=1) Non-central moment of order n
stats(c, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(c, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, c, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(c,), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(c, loc=0, scale=1) Median of the distribution.
mean(c, loc=0, scale=1) Mean of the distribution.
var(c, loc=0, scale=1) Variance of the distribution.
std(c, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, c, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.maxwell

scipy.stats.maxwell = <scipy.stats._continuous_distns.maxwell_gen object>
A Maxwell continuous random variable.
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As an instance of the rv_continuous class, maxwell object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

A special case of a chi distribution, with df=3, loc=0.0, and given scale = a, where a is the parameter
used in the Mathworld description [1].
The probability density function for maxwell is:

f(x) =
√
2/πx2 exp(−x2/2)

for x >= 0.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, maxwell.pdf(x, loc, scale) is identically equivalent to
maxwell.pdf(y) / scale with y = (x - loc) / scale.

References

[1]

Examples

>>> from scipy.stats import maxwell
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> mean, var, skew, kurt = maxwell.stats(moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(maxwell.ppf(0.01),
... maxwell.ppf(0.99), 100)
>>> ax.plot(x, maxwell.pdf(x),
... 'r-', lw=5, alpha=0.6, label='maxwell pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = maxwell()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = maxwell.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], maxwell.cdf(vals))
True

Generate random numbers:
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>>> r = maxwell.rvs(size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, loc=0, scale=1) Probability density function.
logpdf(x, loc=0, scale=1) Log of the probability density function.
cdf(x, loc=0, scale=1) Cumulative distribution function.
logcdf(x, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, loc=0, scale=1) Log of the survival function.
ppf(q, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, loc=0, scale=1) Non-central moment of order n
stats(loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(loc=0, scale=1) (Differential) entropy of the RV.
fit(data, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(loc=0, scale=1) Median of the distribution.
mean(loc=0, scale=1) Mean of the distribution.
var(loc=0, scale=1) Variance of the distribution.
std(loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, loc=0, scale=1) Endpoints of the range that contains alpha percent

of the distribution

scipy.stats.mielke

scipy.stats.mielke = <scipy.stats._continuous_distns.mielke_gen object>
A Mielke Beta-Kappa continuous random variable.
As an instance of the rv_continuous class, mielke object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for mielke is:

f(x, k, s) =
kxk−1

(1 + xs)1+k/s

for x >= 0 and k, s > 0.
mielke takes k and s as shape parameters.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, mielke.pdf(x, k, s, loc, scale) is identically equivalent
to mielke.pdf(y, k, s) / scale with y = (x - loc) / scale.

References

[1]
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Examples

>>> from scipy.stats import mielke
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> k, s = 10.4, 4.6
>>> mean, var, skew, kurt = mielke.stats(k, s, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(mielke.ppf(0.01, k, s),
... mielke.ppf(0.99, k, s), 100)
>>> ax.plot(x, mielke.pdf(x, k, s),
... 'r-', lw=5, alpha=0.6, label='mielke pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = mielke(k, s)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = mielke.ppf([0.001, 0.5, 0.999], k, s)
>>> np.allclose([0.001, 0.5, 0.999], mielke.cdf(vals, k, s))
True

Generate random numbers:

>>> r = mielke.rvs(k, s, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(k, s, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, k, s, loc=0, scale=1) Probability density function.
logpdf(x, k, s, loc=0, scale=1) Log of the probability density function.
cdf(x, k, s, loc=0, scale=1) Cumulative distribution function.
logcdf(x, k, s, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, k, s, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, k, s, loc=0, scale=1) Log of the survival function.
ppf(q, k, s, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, k, s, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, k, s, loc=0, scale=1) Non-central moment of order n
stats(k, s, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(k, s, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, k, s, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(k, s), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(k, s, loc=0, scale=1) Median of the distribution.
mean(k, s, loc=0, scale=1) Mean of the distribution.
var(k, s, loc=0, scale=1) Variance of the distribution.
std(k, s, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, k, s, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.moyal

scipy.stats.moyal = <scipy.stats._continuous_distns.moyal_gen object>
A Moyal continuous random variable.
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As an instance of the rv_continuous class, moyal object inherits from it a collection of generic methods (see
below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for moyal is:

f(x) = exp(−(x+ exp(−x))/2)/
√
2π

for a real number x.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, moyal.pdf(x, loc, scale) is identically equivalent to
moyal.pdf(y) / scale with y = (x - loc) / scale.
This distribution has utility in high-energy physics and radiation detection. It describes the energy loss of a charged
relativistic particle due to ionization of the medium [1]. It also provides an approximation for the Landau distri-
bution. For an in depth description see [2]. For additional description, see [3].

References

New in version 1.1.0.
[1], [2], [3]

Examples

>>> from scipy.stats import moyal
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> mean, var, skew, kurt = moyal.stats(moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(moyal.ppf(0.01),
... moyal.ppf(0.99), 100)
>>> ax.plot(x, moyal.pdf(x),
... 'r-', lw=5, alpha=0.6, label='moyal pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = moyal()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = moyal.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], moyal.cdf(vals))
True
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Generate random numbers:

>>> r = moyal.rvs(size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, loc=0, scale=1) Probability density function.
logpdf(x, loc=0, scale=1) Log of the probability density function.
cdf(x, loc=0, scale=1) Cumulative distribution function.
logcdf(x, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, loc=0, scale=1) Log of the survival function.
ppf(q, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, loc=0, scale=1) Non-central moment of order n
stats(loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(loc=0, scale=1) (Differential) entropy of the RV.
fit(data, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(loc=0, scale=1) Median of the distribution.
mean(loc=0, scale=1) Mean of the distribution.
var(loc=0, scale=1) Variance of the distribution.
std(loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, loc=0, scale=1) Endpoints of the range that contains alpha percent

of the distribution

scipy.stats.nakagami

scipy.stats.nakagami = <scipy.stats._continuous_distns.nakagami_gen object>
A Nakagami continuous random variable.
As an instance of the rv_continuous class, nakagami object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for nakagami is:

f(x, ν) =
2νν

Γ(ν)
x2ν−1 exp(−νx2)

for x >= 0, ν > 0.
nakagami takes nu as a shape parameter for ν.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, nakagami.pdf(x, nu, loc, scale) is identically equivalent
to nakagami.pdf(y, nu) / scale with y = (x - loc) / scale.
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Examples

>>> from scipy.stats import nakagami
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> nu = 4.97
>>> mean, var, skew, kurt = nakagami.stats(nu, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(nakagami.ppf(0.01, nu),
... nakagami.ppf(0.99, nu), 100)
>>> ax.plot(x, nakagami.pdf(x, nu),
... 'r-', lw=5, alpha=0.6, label='nakagami pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = nakagami(nu)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = nakagami.ppf([0.001, 0.5, 0.999], nu)
>>> np.allclose([0.001, 0.5, 0.999], nakagami.cdf(vals, nu))
True

Generate random numbers:

>>> r = nakagami.rvs(nu, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(nu, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, nu, loc=0, scale=1) Probability density function.
logpdf(x, nu, loc=0, scale=1) Log of the probability density function.
cdf(x, nu, loc=0, scale=1) Cumulative distribution function.
logcdf(x, nu, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, nu, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, nu, loc=0, scale=1) Log of the survival function.
ppf(q, nu, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, nu, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, nu, loc=0, scale=1) Non-central moment of order n
stats(nu, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(nu, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, nu, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(nu,), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(nu, loc=0, scale=1) Median of the distribution.
mean(nu, loc=0, scale=1) Mean of the distribution.
var(nu, loc=0, scale=1) Variance of the distribution.
std(nu, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, nu, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.ncx2

scipy.stats.ncx2 = <scipy.stats._continuous_distns.ncx2_gen object>
A non-central chi-squared continuous random variable.
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As an instance of the rv_continuous class, ncx2 object inherits from it a collection of generic methods (see
below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for ncx2 is:

f(x, k, λ) =
1

2
exp(−(λ+ x)/2)(x/λ)(k−2)/4I(k−2)/2(

√
λx)

for x >= 0 and k, λ > 0. k specifies the degrees of freedom (denoted df in the implementation) and λ is the
non-centrality parameter (denoted nc in the implementation). Iν denotes the modified Bessel function of first
order of degree ν (scipy.special.iv).
ncx2 takes df and nc as shape parameters.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, ncx2.pdf(x, df, nc, loc, scale) is identically equivalent
to ncx2.pdf(y, df, nc) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import ncx2
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> df, nc = 21, 1.06
>>> mean, var, skew, kurt = ncx2.stats(df, nc, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(ncx2.ppf(0.01, df, nc),
... ncx2.ppf(0.99, df, nc), 100)
>>> ax.plot(x, ncx2.pdf(x, df, nc),
... 'r-', lw=5, alpha=0.6, label='ncx2 pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = ncx2(df, nc)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = ncx2.ppf([0.001, 0.5, 0.999], df, nc)
>>> np.allclose([0.001, 0.5, 0.999], ncx2.cdf(vals, df, nc))
True

Generate random numbers:
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>>> r = ncx2.rvs(df, nc, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(df, nc, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, df, nc, loc=0, scale=1) Probability density function.
logpdf(x, df, nc, loc=0, scale=1) Log of the probability density function.
cdf(x, df, nc, loc=0, scale=1) Cumulative distribution function.
logcdf(x, df, nc, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, df, nc, loc=0, scale=1) Survival function (also defined as 1 - cdf,

but sf is sometimes more accurate).
logsf(x, df, nc, loc=0, scale=1) Log of the survival function.
ppf(q, df, nc, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, df, nc, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, df, nc, loc=0, scale=1) Non-central moment of order n
stats(df, nc, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(df, nc, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, df, nc, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(df, nc), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(df, nc, loc=0, scale=1) Median of the distribution.
mean(df, nc, loc=0, scale=1) Mean of the distribution.
var(df, nc, loc=0, scale=1) Variance of the distribution.
std(df, nc, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, df, nc, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.ncf

scipy.stats.ncf = <scipy.stats._continuous_distns.ncf_gen object>
A non-central F distribution continuous random variable.
As an instance of the rv_continuous class, ncf object inherits from it a collection of generic methods (see
below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for ncf is:

f(x, n1, n2, λ) = exp(
λ

2
+ λn1

x

2(n1x+ n2)
)n

n1/2
1 n

n2/2
2 xn1/2−1

(n2 + n1x)
−(n1+n2)/2γ(n1/2)γ(1 + n2/2)

L
v1
2 −1

v2/2
(−λv1 x

2(v1x+v2)
)

B(v1/2, v2/2)γ(
v1+v2

2 )

for n1 > 1, n2, λ > 0. Here n1 is the degrees of freedom in the numerator, n2 the degrees of freedom in
the denominator, λ the non-centrality parameter, γ is the logarithm of the Gamma function, Lk

n is a generalized
Laguerre polynomial and B is the beta function.
ncf takes df1, df2 and nc as shape parameters.
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The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, ncf.pdf(x, dfn, dfd, nc, loc, scale) is identically
equivalent to ncf.pdf(y, dfn, dfd, nc) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import ncf
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> dfn, dfd, nc = 27, 27, 0.416
>>> mean, var, skew, kurt = ncf.stats(dfn, dfd, nc, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(ncf.ppf(0.01, dfn, dfd, nc),
... ncf.ppf(0.99, dfn, dfd, nc), 100)
>>> ax.plot(x, ncf.pdf(x, dfn, dfd, nc),
... 'r-', lw=5, alpha=0.6, label='ncf pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = ncf(dfn, dfd, nc)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = ncf.ppf([0.001, 0.5, 0.999], dfn, dfd, nc)
>>> np.allclose([0.001, 0.5, 0.999], ncf.cdf(vals, dfn, dfd, nc))
True

Generate random numbers:

>>> r = ncf.rvs(dfn, dfd, nc, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(dfn, dfd, nc, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, dfn, dfd, nc, loc=0, scale=1) Probability density function.
logpdf(x, dfn, dfd, nc, loc=0, scale=1) Log of the probability density function.
cdf(x, dfn, dfd, nc, loc=0, scale=1) Cumulative distribution function.
logcdf(x, dfn, dfd, nc, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, dfn, dfd, nc, loc=0, scale=1) Survival function (also defined as 1 - cdf,

but sf is sometimes more accurate).
logsf(x, dfn, dfd, nc, loc=0, scale=1) Log of the survival function.
ppf(q, dfn, dfd, nc, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, dfn, dfd, nc, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, dfn, dfd, nc, loc=0, scale=1) Non-central moment of order n
stats(dfn, dfd, nc, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(dfn, dfd, nc, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, dfn, dfd, nc, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(dfn, dfd, nc), loc=0, scale=1,
lb=None, ub=None, conditional=False, **kwds)

Expected value of a function (of one
argument) with respect to the distribution.

median(dfn, dfd, nc, loc=0, scale=1) Median of the distribution.
mean(dfn, dfd, nc, loc=0, scale=1) Mean of the distribution.
var(dfn, dfd, nc, loc=0, scale=1) Variance of the distribution.
std(dfn, dfd, nc, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, dfn, dfd, nc, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.nct

scipy.stats.nct = <scipy.stats._continuous_distns.nct_gen object>
A non-central Student’s t continuous random variable.
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As an instance of the rv_continuous class, nct object inherits from it a collection of generic methods (see
below for the full list), and completes them with details specific for this particular distribution.

Notes

If Y is a standard normal random variable and V is an independent chi-square random variable (chi2) with k
degrees of freedom, then

X =
Y + c√
V/k

has a non-central Student’s t distribution on the real line. The degrees of freedom parameter k (denoted df in the
implementation) satisfies k > 0 and the noncentrality parameter c (denoted nct in the implementation) is a real
number.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, nct.pdf(x, df, nc, loc, scale) is identically equivalent
to nct.pdf(y, df, nc) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import nct
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> df, nc = 14, 0.24
>>> mean, var, skew, kurt = nct.stats(df, nc, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(nct.ppf(0.01, df, nc),
... nct.ppf(0.99, df, nc), 100)
>>> ax.plot(x, nct.pdf(x, df, nc),
... 'r-', lw=5, alpha=0.6, label='nct pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = nct(df, nc)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = nct.ppf([0.001, 0.5, 0.999], df, nc)
>>> np.allclose([0.001, 0.5, 0.999], nct.cdf(vals, df, nc))
True

Generate random numbers:
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>>> r = nct.rvs(df, nc, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(df, nc, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, df, nc, loc=0, scale=1) Probability density function.
logpdf(x, df, nc, loc=0, scale=1) Log of the probability density function.
cdf(x, df, nc, loc=0, scale=1) Cumulative distribution function.
logcdf(x, df, nc, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, df, nc, loc=0, scale=1) Survival function (also defined as 1 - cdf,

but sf is sometimes more accurate).
logsf(x, df, nc, loc=0, scale=1) Log of the survival function.
ppf(q, df, nc, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, df, nc, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, df, nc, loc=0, scale=1) Non-central moment of order n
stats(df, nc, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(df, nc, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, df, nc, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(df, nc), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(df, nc, loc=0, scale=1) Median of the distribution.
mean(df, nc, loc=0, scale=1) Mean of the distribution.
var(df, nc, loc=0, scale=1) Variance of the distribution.
std(df, nc, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, df, nc, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.norm

scipy.stats.norm = <scipy.stats._continuous_distns.norm_gen object>
A normal continuous random variable.
The location (loc) keyword specifies the mean. The scale (scale) keyword specifies the standard deviation.
As an instance of the rv_continuous class, norm object inherits from it a collection of generic methods (see
below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for norm is:

f(x) =
exp(−x2/2)√

2π

for a real number x.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, norm.pdf(x, loc, scale) is identically equivalent to norm.
pdf(y) / scale with y = (x - loc) / scale.
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Examples

>>> from scipy.stats import norm
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> mean, var, skew, kurt = norm.stats(moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(norm.ppf(0.01),
... norm.ppf(0.99), 100)
>>> ax.plot(x, norm.pdf(x),
... 'r-', lw=5, alpha=0.6, label='norm pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = norm()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = norm.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], norm.cdf(vals))
True

Generate random numbers:

>>> r = norm.rvs(size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, loc=0, scale=1) Probability density function.
logpdf(x, loc=0, scale=1) Log of the probability density function.
cdf(x, loc=0, scale=1) Cumulative distribution function.
logcdf(x, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, loc=0, scale=1) Log of the survival function.
ppf(q, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, loc=0, scale=1) Non-central moment of order n
stats(loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(loc=0, scale=1) (Differential) entropy of the RV.
fit(data, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(loc=0, scale=1) Median of the distribution.
mean(loc=0, scale=1) Mean of the distribution.
var(loc=0, scale=1) Variance of the distribution.
std(loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, loc=0, scale=1) Endpoints of the range that contains alpha percent

of the distribution

scipy.stats.norminvgauss

scipy.stats.norminvgauss = <scipy.stats._continuous_distns.norminvgauss_gen object>
A Normal Inverse Gaussian continuous random variable.
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As an instance of the rv_continuous class, norminvgauss object inherits from it a collection of generic
methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for norminvgauss is:

f(x, a, b) = (a exp(
√
a2 − b2 + bx))/(π

√
1 + x2K1(a

√
1 + x2))

where x is a real number, the parameter a is the tail heaviness and b is the asymmetry parameter satisfying a > 0
and |b| <= a. K1 is the modified Bessel function of second kind (scipy.special.k1).
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, norminvgauss.pdf(x, a, b, loc, scale) is identically
equivalent to norminvgauss.pdf(y, a, b) / scale with y = (x - loc) / scale.
A normal inverse Gaussian random variable Y with parameters a and b can be expressed as a normal mean-variance
mixture: Y = b * V + sqrt(V) * X where X is norm(0,1) and V is invgauss(mu=1/sqrt(a**2 - b**2)). This repre-
sentation is used to generate random variates.

References

O. Barndorff-Nielsen, “Hyperbolic Distributions and Distributions on Hyperbolae”, Scandinavian Journal of Statis-
tics, Vol. 5(3), pp. 151-157, 1978.
O. Barndorff-Nielsen, “Normal Inverse Gaussian Distributions and Stochastic Volatility Modelling”, Scandinavian
Journal of Statistics, Vol. 24, pp. 1-13, 1997.

Examples

>>> from scipy.stats import norminvgauss
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> a, b = 1, 0.5
>>> mean, var, skew, kurt = norminvgauss.stats(a, b, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(norminvgauss.ppf(0.01, a, b),
... norminvgauss.ppf(0.99, a, b), 100)
>>> ax.plot(x, norminvgauss.pdf(x, a, b),
... 'r-', lw=5, alpha=0.6, label='norminvgauss pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = norminvgauss(a, b)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
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Check accuracy of cdf and ppf:

>>> vals = norminvgauss.ppf([0.001, 0.5, 0.999], a, b)
>>> np.allclose([0.001, 0.5, 0.999], norminvgauss.cdf(vals, a, b))
True

Generate random numbers:

>>> r = norminvgauss.rvs(a, b, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(a, b, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, a, b, loc=0, scale=1) Probability density function.
logpdf(x, a, b, loc=0, scale=1) Log of the probability density function.
cdf(x, a, b, loc=0, scale=1) Cumulative distribution function.
logcdf(x, a, b, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, a, b, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, a, b, loc=0, scale=1) Log of the survival function.
ppf(q, a, b, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, a, b, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, a, b, loc=0, scale=1) Non-central moment of order n
stats(a, b, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(a, b, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, a, b, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(a, b), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(a, b, loc=0, scale=1) Median of the distribution.
mean(a, b, loc=0, scale=1) Mean of the distribution.
var(a, b, loc=0, scale=1) Variance of the distribution.
std(a, b, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, a, b, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.pareto

scipy.stats.pareto = <scipy.stats._continuous_distns.pareto_gen object>
A Pareto continuous random variable.
As an instance of the rv_continuous class, pareto object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for pareto is:

f(x, b) =
b

xb+1

for x ≥ 1, b > 0.
pareto takes b as a shape parameter for b.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, pareto.pdf(x, b, loc, scale) is identically equivalent to
pareto.pdf(y, b) / scale with y = (x - loc) / scale.
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Examples

>>> from scipy.stats import pareto
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> b = 2.62
>>> mean, var, skew, kurt = pareto.stats(b, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(pareto.ppf(0.01, b),
... pareto.ppf(0.99, b), 100)
>>> ax.plot(x, pareto.pdf(x, b),
... 'r-', lw=5, alpha=0.6, label='pareto pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = pareto(b)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = pareto.ppf([0.001, 0.5, 0.999], b)
>>> np.allclose([0.001, 0.5, 0.999], pareto.cdf(vals, b))
True

Generate random numbers:

>>> r = pareto.rvs(b, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(b, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, b, loc=0, scale=1) Probability density function.
logpdf(x, b, loc=0, scale=1) Log of the probability density function.
cdf(x, b, loc=0, scale=1) Cumulative distribution function.
logcdf(x, b, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, b, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, b, loc=0, scale=1) Log of the survival function.
ppf(q, b, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, b, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, b, loc=0, scale=1) Non-central moment of order n
stats(b, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(b, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, b, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(b,), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(b, loc=0, scale=1) Median of the distribution.
mean(b, loc=0, scale=1) Mean of the distribution.
var(b, loc=0, scale=1) Variance of the distribution.
std(b, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, b, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.pearson3

scipy.stats.pearson3 = <scipy.stats._continuous_distns.pearson3_gen object>
A pearson type III continuous random variable.
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As an instance of the rv_continuous class, pearson3 object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for pearson3 is:

f(x, skew) =
|β|
Γ(α)

(β(x− ζ))α−1 exp(−β(x− ζ))

where:

β =
2

skewstddev
α = (stddevβ)2ζ = loc− α

β

Γ is the gamma function (scipy.special.gamma). pearson3 takes skew as a shape parameter for skew.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, pearson3.pdf(x, skew, loc, scale) is identically
equivalent to pearson3.pdf(y, skew) / scale with y = (x - loc) / scale.

References

R.W. Vogel and D.E. McMartin, “Probability Plot Goodness-of-Fit and Skewness Estimation Procedures for the
Pearson Type 3 Distribution”, Water Resources Research, Vol.27, 3149-3158 (1991).
L.R. Salvosa, “Tables of Pearson’s Type III Function”, Ann. Math. Statist., Vol.1, 191-198 (1930).
“Using Modern Computing Tools to Fit the Pearson Type III Distribution to Aviation Loads Data”, Office of
Aviation Research (2003).

Examples

>>> from scipy.stats import pearson3
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> skew = 0.1
>>> mean, var, skew, kurt = pearson3.stats(skew, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(pearson3.ppf(0.01, skew),
... pearson3.ppf(0.99, skew), 100)
>>> ax.plot(x, pearson3.pdf(x, skew),
... 'r-', lw=5, alpha=0.6, label='pearson3 pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:
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>>> rv = pearson3(skew)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = pearson3.ppf([0.001, 0.5, 0.999], skew)
>>> np.allclose([0.001, 0.5, 0.999], pearson3.cdf(vals, skew))
True

Generate random numbers:

>>> r = pearson3.rvs(skew, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(skew, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, skew, loc=0, scale=1) Probability density function.
logpdf(x, skew, loc=0, scale=1) Log of the probability density function.
cdf(x, skew, loc=0, scale=1) Cumulative distribution function.
logcdf(x, skew, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, skew, loc=0, scale=1) Survival function (also defined as 1 - cdf,

but sf is sometimes more accurate).
logsf(x, skew, loc=0, scale=1) Log of the survival function.
ppf(q, skew, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, skew, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, skew, loc=0, scale=1) Non-central moment of order n
stats(skew, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(skew, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, skew, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(skew,), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(skew, loc=0, scale=1) Median of the distribution.
mean(skew, loc=0, scale=1) Mean of the distribution.
var(skew, loc=0, scale=1) Variance of the distribution.
std(skew, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, skew, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.powerlaw

scipy.stats.powerlaw = <scipy.stats._continuous_distns.powerlaw_gen object>
A power-function continuous random variable.
As an instance of the rv_continuous class, powerlaw object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for powerlaw is:

f(x, a) = axa−1

for 0 ≤ x ≤ 1, a > 0.
powerlaw takes a as a shape parameter for a.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, powerlaw.pdf(x, a, loc, scale) is identically equivalent
to powerlaw.pdf(y, a) / scale with y = (x - loc) / scale.
powerlaw is a special case of beta with b=1.
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Examples

>>> from scipy.stats import powerlaw
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> a = 1.66
>>> mean, var, skew, kurt = powerlaw.stats(a, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(powerlaw.ppf(0.01, a),
... powerlaw.ppf(0.99, a), 100)
>>> ax.plot(x, powerlaw.pdf(x, a),
... 'r-', lw=5, alpha=0.6, label='powerlaw pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = powerlaw(a)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = powerlaw.ppf([0.001, 0.5, 0.999], a)
>>> np.allclose([0.001, 0.5, 0.999], powerlaw.cdf(vals, a))
True

Generate random numbers:

>>> r = powerlaw.rvs(a, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(a, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, a, loc=0, scale=1) Probability density function.
logpdf(x, a, loc=0, scale=1) Log of the probability density function.
cdf(x, a, loc=0, scale=1) Cumulative distribution function.
logcdf(x, a, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, a, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, a, loc=0, scale=1) Log of the survival function.
ppf(q, a, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, a, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, a, loc=0, scale=1) Non-central moment of order n
stats(a, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(a, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, a, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(a,), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(a, loc=0, scale=1) Median of the distribution.
mean(a, loc=0, scale=1) Mean of the distribution.
var(a, loc=0, scale=1) Variance of the distribution.
std(a, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, a, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.powerlognorm

scipy.stats.powerlognorm = <scipy.stats._continuous_distns.powerlognorm_gen object>
A power log-normal continuous random variable.
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As an instance of the rv_continuous class, powerlognorm object inherits from it a collection of generic
methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for powerlognorm is:

f(x, c, s) =
c

xs
ϕ(log(x)/s)(Φ(− log(x)/s))c−1

where ϕ is the normal pdf, and Φ is the normal cdf, and x > 0, s, c > 0.
powerlognorm takes c and s as shape parameters.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, powerlognorm.pdf(x, c, s, loc, scale) is identically
equivalent to powerlognorm.pdf(y, c, s) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import powerlognorm
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> c, s = 2.14, 0.446
>>> mean, var, skew, kurt = powerlognorm.stats(c, s, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(powerlognorm.ppf(0.01, c, s),
... powerlognorm.ppf(0.99, c, s), 100)
>>> ax.plot(x, powerlognorm.pdf(x, c, s),
... 'r-', lw=5, alpha=0.6, label='powerlognorm pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = powerlognorm(c, s)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = powerlognorm.ppf([0.001, 0.5, 0.999], c, s)
>>> np.allclose([0.001, 0.5, 0.999], powerlognorm.cdf(vals, c, s))
True

Generate random numbers:

>>> r = powerlognorm.rvs(c, s, size=1000)

And compare the histogram:
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>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(c, s, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, c, s, loc=0, scale=1) Probability density function.
logpdf(x, c, s, loc=0, scale=1) Log of the probability density function.
cdf(x, c, s, loc=0, scale=1) Cumulative distribution function.
logcdf(x, c, s, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, c, s, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, c, s, loc=0, scale=1) Log of the survival function.
ppf(q, c, s, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, c, s, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, c, s, loc=0, scale=1) Non-central moment of order n
stats(c, s, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(c, s, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, c, s, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(c, s), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(c, s, loc=0, scale=1) Median of the distribution.
mean(c, s, loc=0, scale=1) Mean of the distribution.
var(c, s, loc=0, scale=1) Variance of the distribution.
std(c, s, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, c, s, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution
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scipy.stats.powernorm

scipy.stats.powernorm = <scipy.stats._continuous_distns.powernorm_gen object>
A power normal continuous random variable.
As an instance of therv_continuous class, powernorm object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for powernorm is:

f(x, c) = cϕ(x)(Φ(−x))c−1

where ϕ is the normal pdf, and Φ is the normal cdf, and x >= 0, c > 0.
powernorm takes c as a shape parameter for c.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, powernorm.pdf(x, c, loc, scale) is identically equivalent
to powernorm.pdf(y, c) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import powernorm
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> c = 4.45
>>> mean, var, skew, kurt = powernorm.stats(c, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(powernorm.ppf(0.01, c),
... powernorm.ppf(0.99, c), 100)
>>> ax.plot(x, powernorm.pdf(x, c),
... 'r-', lw=5, alpha=0.6, label='powernorm pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = powernorm(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = powernorm.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], powernorm.cdf(vals, c))
True

Generate random numbers:
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>>> r = powernorm.rvs(c, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(c, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, c, loc=0, scale=1) Probability density function.
logpdf(x, c, loc=0, scale=1) Log of the probability density function.
cdf(x, c, loc=0, scale=1) Cumulative distribution function.
logcdf(x, c, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, c, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, c, loc=0, scale=1) Log of the survival function.
ppf(q, c, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, c, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, c, loc=0, scale=1) Non-central moment of order n
stats(c, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(c, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, c, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(c,), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(c, loc=0, scale=1) Median of the distribution.
mean(c, loc=0, scale=1) Mean of the distribution.
var(c, loc=0, scale=1) Variance of the distribution.
std(c, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, c, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.rdist

scipy.stats.rdist = <scipy.stats._continuous_distns.rdist_gen object>
An R-distributed continuous random variable.
As an instance of the rv_continuous class, rdist object inherits from it a collection of generic methods (see
below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for rdist is:

f(x, c) =
(1− x2)c/2−1

B(1/2, c/2)

for −1 ≤ x ≤ 1, c > 0.
rdist takes c as a shape parameter for c.
This distribution includes the following distribution kernels as special cases:

c = 2: uniform
c = 4: Epanechnikov (parabolic)
c = 6: quartic (biweight)
c = 8: triweight
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The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, rdist.pdf(x, c, loc, scale) is identically equivalent to
rdist.pdf(y, c) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import rdist
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> c = 0.9
>>> mean, var, skew, kurt = rdist.stats(c, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(rdist.ppf(0.01, c),
... rdist.ppf(0.99, c), 100)
>>> ax.plot(x, rdist.pdf(x, c),
... 'r-', lw=5, alpha=0.6, label='rdist pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = rdist(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = rdist.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], rdist.cdf(vals, c))
True

Generate random numbers:

>>> r = rdist.rvs(c, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(c, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, c, loc=0, scale=1) Probability density function.
logpdf(x, c, loc=0, scale=1) Log of the probability density function.
cdf(x, c, loc=0, scale=1) Cumulative distribution function.
logcdf(x, c, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, c, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, c, loc=0, scale=1) Log of the survival function.
ppf(q, c, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, c, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, c, loc=0, scale=1) Non-central moment of order n
stats(c, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(c, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, c, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(c,), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(c, loc=0, scale=1) Median of the distribution.
mean(c, loc=0, scale=1) Mean of the distribution.
var(c, loc=0, scale=1) Variance of the distribution.
std(c, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, c, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.reciprocal

scipy.stats.reciprocal = <scipy.stats._continuous_distns.reciprocal_gen object>
A reciprocal continuous random variable.
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As an instance of the rv_continuous class, reciprocal object inherits from it a collection of generic
methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for reciprocal is:

f(x, a, b) =
1

x log(b/a)

for a ≤ x ≤ b, b > a > 0.
reciprocal takes a and b as shape parameters.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, reciprocal.pdf(x, a, b, loc, scale) is identically
equivalent to reciprocal.pdf(y, a, b) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import reciprocal
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> a, b = 0.00623, 1.01
>>> mean, var, skew, kurt = reciprocal.stats(a, b, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(reciprocal.ppf(0.01, a, b),
... reciprocal.ppf(0.99, a, b), 100)
>>> ax.plot(x, reciprocal.pdf(x, a, b),
... 'r-', lw=5, alpha=0.6, label='reciprocal pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = reciprocal(a, b)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = reciprocal.ppf([0.001, 0.5, 0.999], a, b)
>>> np.allclose([0.001, 0.5, 0.999], reciprocal.cdf(vals, a, b))
True

Generate random numbers:

>>> r = reciprocal.rvs(a, b, size=1000)

And compare the histogram:
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>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

30 reciprocal pdf
frozen pdf

Methods

rvs(a, b, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, a, b, loc=0, scale=1) Probability density function.
logpdf(x, a, b, loc=0, scale=1) Log of the probability density function.
cdf(x, a, b, loc=0, scale=1) Cumulative distribution function.
logcdf(x, a, b, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, a, b, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, a, b, loc=0, scale=1) Log of the survival function.
ppf(q, a, b, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, a, b, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, a, b, loc=0, scale=1) Non-central moment of order n
stats(a, b, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(a, b, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, a, b, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(a, b), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(a, b, loc=0, scale=1) Median of the distribution.
mean(a, b, loc=0, scale=1) Mean of the distribution.
var(a, b, loc=0, scale=1) Variance of the distribution.
std(a, b, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, a, b, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution
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scipy.stats.rayleigh

scipy.stats.rayleigh = <scipy.stats._continuous_distns.rayleigh_gen object>
A Rayleigh continuous random variable.
As an instance of the rv_continuous class, rayleigh object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for rayleigh is:

f(x) = x exp(−x2/2)

for x ≥ 0.
rayleigh is a special case of chi with df=2.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, rayleigh.pdf(x, loc, scale) is identically equivalent to
rayleigh.pdf(y) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import rayleigh
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> mean, var, skew, kurt = rayleigh.stats(moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(rayleigh.ppf(0.01),
... rayleigh.ppf(0.99), 100)
>>> ax.plot(x, rayleigh.pdf(x),
... 'r-', lw=5, alpha=0.6, label='rayleigh pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = rayleigh()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = rayleigh.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], rayleigh.cdf(vals))
True

Generate random numbers:
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>>> r = rayleigh.rvs(size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, loc=0, scale=1) Probability density function.
logpdf(x, loc=0, scale=1) Log of the probability density function.
cdf(x, loc=0, scale=1) Cumulative distribution function.
logcdf(x, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, loc=0, scale=1) Log of the survival function.
ppf(q, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, loc=0, scale=1) Non-central moment of order n
stats(loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(loc=0, scale=1) (Differential) entropy of the RV.
fit(data, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(loc=0, scale=1) Median of the distribution.
mean(loc=0, scale=1) Mean of the distribution.
var(loc=0, scale=1) Variance of the distribution.
std(loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, loc=0, scale=1) Endpoints of the range that contains alpha percent

of the distribution

scipy.stats.rice

scipy.stats.rice = <scipy.stats._continuous_distns.rice_gen object>
A Rice continuous random variable.
As an instance of the rv_continuous class, rice object inherits from it a collection of generic methods (see
below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for rice is:

f(x, b) = x exp(−x
2 + b2

2
)I0(xb)

for x >= 0, b > 0. I0 is the modified Bessel function of order zero (scipy.special.i0).
rice takes b as a shape parameter for b.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, rice.pdf(x, b, loc, scale) is identically equivalent to
rice.pdf(y, b) / scale with y = (x - loc) / scale.
The Rice distribution describes the length, r, of a 2-D vector with components (U + u, V + v), where U, V are
constant, u, v are independent Gaussian random variables with standard deviation s. Let R =

√
U2 + V 2. Then

the pdf of r is rice.pdf(x, R/s, scale=s).
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Examples

>>> from scipy.stats import rice
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> b = 0.775
>>> mean, var, skew, kurt = rice.stats(b, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(rice.ppf(0.01, b),
... rice.ppf(0.99, b), 100)
>>> ax.plot(x, rice.pdf(x, b),
... 'r-', lw=5, alpha=0.6, label='rice pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = rice(b)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = rice.ppf([0.001, 0.5, 0.999], b)
>>> np.allclose([0.001, 0.5, 0.999], rice.cdf(vals, b))
True

Generate random numbers:

>>> r = rice.rvs(b, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(b, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, b, loc=0, scale=1) Probability density function.
logpdf(x, b, loc=0, scale=1) Log of the probability density function.
cdf(x, b, loc=0, scale=1) Cumulative distribution function.
logcdf(x, b, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, b, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, b, loc=0, scale=1) Log of the survival function.
ppf(q, b, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, b, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, b, loc=0, scale=1) Non-central moment of order n
stats(b, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(b, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, b, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(b,), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(b, loc=0, scale=1) Median of the distribution.
mean(b, loc=0, scale=1) Mean of the distribution.
var(b, loc=0, scale=1) Variance of the distribution.
std(b, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, b, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.recipinvgauss

scipy.stats.recipinvgauss = <scipy.stats._continuous_distns.recipinvgauss_gen object>
A reciprocal inverse Gaussian continuous random variable.
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As an instance of the rv_continuous class, recipinvgauss object inherits from it a collection of generic
methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for recipinvgauss is:

f(x, µ) =
1√
2πx

exp

(
−(1− µx)2

2µ2x

)
for x ≥ 0.
recipinvgauss takes mu as a shape parameter for µ.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, recipinvgauss.pdf(x, mu, loc, scale) is identically
equivalent to recipinvgauss.pdf(y, mu) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import recipinvgauss
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> mu = 0.63
>>> mean, var, skew, kurt = recipinvgauss.stats(mu, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(recipinvgauss.ppf(0.01, mu),
... recipinvgauss.ppf(0.99, mu), 100)
>>> ax.plot(x, recipinvgauss.pdf(x, mu),
... 'r-', lw=5, alpha=0.6, label='recipinvgauss pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = recipinvgauss(mu)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = recipinvgauss.ppf([0.001, 0.5, 0.999], mu)
>>> np.allclose([0.001, 0.5, 0.999], recipinvgauss.cdf(vals, mu))
True

Generate random numbers:

>>> r = recipinvgauss.rvs(mu, size=1000)

And compare the histogram:
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>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(mu, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, mu, loc=0, scale=1) Probability density function.
logpdf(x, mu, loc=0, scale=1) Log of the probability density function.
cdf(x, mu, loc=0, scale=1) Cumulative distribution function.
logcdf(x, mu, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, mu, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, mu, loc=0, scale=1) Log of the survival function.
ppf(q, mu, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, mu, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, mu, loc=0, scale=1) Non-central moment of order n
stats(mu, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(mu, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, mu, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(mu,), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(mu, loc=0, scale=1) Median of the distribution.
mean(mu, loc=0, scale=1) Mean of the distribution.
var(mu, loc=0, scale=1) Variance of the distribution.
std(mu, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, mu, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution
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scipy.stats.semicircular

scipy.stats.semicircular = <scipy.stats._continuous_distns.semicircular_gen object>
A semicircular continuous random variable.
As an instance of the rv_continuous class, semicircular object inherits from it a collection of generic
methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for semicircular is:

f(x) =
2

π

√
1− x2

for −1 ≤ x ≤ 1.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, semicircular.pdf(x, loc, scale) is identically equivalent
to semicircular.pdf(y) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import semicircular
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> mean, var, skew, kurt = semicircular.stats(moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(semicircular.ppf(0.01),
... semicircular.ppf(0.99), 100)
>>> ax.plot(x, semicircular.pdf(x),
... 'r-', lw=5, alpha=0.6, label='semicircular pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = semicircular()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = semicircular.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], semicircular.cdf(vals))
True

Generate random numbers:
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>>> r = semicircular.rvs(size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, loc=0, scale=1) Probability density function.
logpdf(x, loc=0, scale=1) Log of the probability density function.
cdf(x, loc=0, scale=1) Cumulative distribution function.
logcdf(x, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, loc=0, scale=1) Log of the survival function.
ppf(q, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, loc=0, scale=1) Non-central moment of order n
stats(loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(loc=0, scale=1) (Differential) entropy of the RV.
fit(data, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(loc=0, scale=1) Median of the distribution.
mean(loc=0, scale=1) Mean of the distribution.
var(loc=0, scale=1) Variance of the distribution.
std(loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, loc=0, scale=1) Endpoints of the range that contains alpha percent

of the distribution

scipy.stats.skewnorm

scipy.stats.skewnorm = <scipy.stats._continuous_distns.skew_norm_gen object>
A skew-normal random variable.
As an instance of the rv_continuous class, skewnorm object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The pdf is:

skewnorm.pdf(x, a) = 2 * norm.pdf(x) * norm.cdf(a*x)

skewnorm takes a real number a as a skewness parameter When a = 0 the distribution is identical to a normal
distribution (norm). rvs implements the method of [1].
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, skewnorm.pdf(x, a, loc, scale) is identically equivalent
to skewnorm.pdf(y, a) / scale with y = (x - loc) / scale.

References

[1]
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Examples

>>> from scipy.stats import skewnorm
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> a = 4
>>> mean, var, skew, kurt = skewnorm.stats(a, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(skewnorm.ppf(0.01, a),
... skewnorm.ppf(0.99, a), 100)
>>> ax.plot(x, skewnorm.pdf(x, a),
... 'r-', lw=5, alpha=0.6, label='skewnorm pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = skewnorm(a)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = skewnorm.ppf([0.001, 0.5, 0.999], a)
>>> np.allclose([0.001, 0.5, 0.999], skewnorm.cdf(vals, a))
True

Generate random numbers:

>>> r = skewnorm.rvs(a, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(a, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, a, loc=0, scale=1) Probability density function.
logpdf(x, a, loc=0, scale=1) Log of the probability density function.
cdf(x, a, loc=0, scale=1) Cumulative distribution function.
logcdf(x, a, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, a, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, a, loc=0, scale=1) Log of the survival function.
ppf(q, a, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, a, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, a, loc=0, scale=1) Non-central moment of order n
stats(a, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(a, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, a, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(a,), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(a, loc=0, scale=1) Median of the distribution.
mean(a, loc=0, scale=1) Mean of the distribution.
var(a, loc=0, scale=1) Variance of the distribution.
std(a, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, a, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.t

scipy.stats.t = <scipy.stats._continuous_distns.t_gen object>
A Student’s t continuous random variable.
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As an instance of the rv_continuous class, t object inherits from it a collection of generic methods (see below
for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for t is:

f(x, ν) =
Γ((ν + 1)/2)√

πνΓ(ν)
(1 + x2/ν)−(ν+1)/2

where x is a real number and the degrees of freedom parameter ν (denoted df in the implementation) satisfies
ν > 0. Γ is the gamma function (scipy.special.gamma).
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, t.pdf(x, df, loc, scale) is identically equivalent to
t.pdf(y, df) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import t
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> df = 2.74
>>> mean, var, skew, kurt = t.stats(df, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(t.ppf(0.01, df),
... t.ppf(0.99, df), 100)
>>> ax.plot(x, t.pdf(x, df),
... 'r-', lw=5, alpha=0.6, label='t pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = t(df)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = t.ppf([0.001, 0.5, 0.999], df)
>>> np.allclose([0.001, 0.5, 0.999], t.cdf(vals, df))
True

Generate random numbers:

>>> r = t.rvs(df, size=1000)

And compare the histogram:
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>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(df, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, df, loc=0, scale=1) Probability density function.
logpdf(x, df, loc=0, scale=1) Log of the probability density function.
cdf(x, df, loc=0, scale=1) Cumulative distribution function.
logcdf(x, df, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, df, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, df, loc=0, scale=1) Log of the survival function.
ppf(q, df, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, df, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, df, loc=0, scale=1) Non-central moment of order n
stats(df, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(df, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, df, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(df,), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(df, loc=0, scale=1) Median of the distribution.
mean(df, loc=0, scale=1) Mean of the distribution.
var(df, loc=0, scale=1) Variance of the distribution.
std(df, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, df, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution
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scipy.stats.trapz

scipy.stats.trapz = <scipy.stats._continuous_distns.trapz_gen object>
A trapezoidal continuous random variable.
As an instance of the rv_continuous class, trapz object inherits from it a collection of generic methods (see
below for the full list), and completes them with details specific for this particular distribution.

Notes

The trapezoidal distribution can be represented with an up-sloping line from loc to (loc + c*scale), then
constant to (loc + d*scale) and then downsloping from (loc + d*scale) to (loc+scale).
trapz takes c and d as shape parameters.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, trapz.pdf(x, c, d, loc, scale) is identically equivalent
to trapz.pdf(y, c, d) / scale with y = (x - loc) / scale.
The standard form is in the range [0, 1] with c the mode. The location parameter shifts the start to loc. The scale
parameter changes the width from 1 to scale.

Examples

>>> from scipy.stats import trapz
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> c, d = 0.2, 0.8
>>> mean, var, skew, kurt = trapz.stats(c, d, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(trapz.ppf(0.01, c, d),
... trapz.ppf(0.99, c, d), 100)
>>> ax.plot(x, trapz.pdf(x, c, d),
... 'r-', lw=5, alpha=0.6, label='trapz pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = trapz(c, d)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = trapz.ppf([0.001, 0.5, 0.999], c, d)
>>> np.allclose([0.001, 0.5, 0.999], trapz.cdf(vals, c, d))
True

Generate random numbers:
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>>> r = trapz.rvs(c, d, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(c, d, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, c, d, loc=0, scale=1) Probability density function.
logpdf(x, c, d, loc=0, scale=1) Log of the probability density function.
cdf(x, c, d, loc=0, scale=1) Cumulative distribution function.
logcdf(x, c, d, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, c, d, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, c, d, loc=0, scale=1) Log of the survival function.
ppf(q, c, d, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, c, d, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, c, d, loc=0, scale=1) Non-central moment of order n
stats(c, d, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(c, d, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, c, d, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(c, d), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(c, d, loc=0, scale=1) Median of the distribution.
mean(c, d, loc=0, scale=1) Mean of the distribution.
var(c, d, loc=0, scale=1) Variance of the distribution.
std(c, d, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, c, d, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.triang

scipy.stats.triang = <scipy.stats._continuous_distns.triang_gen object>
A triangular continuous random variable.
As an instance of the rv_continuous class, triang object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The triangular distribution can be represented with an up-sloping line from loc to (loc + c*scale) and then
downsloping for (loc + c*scale) to (loc + scale).
triang takes c as a shape parameter for c.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, triang.pdf(x, c, loc, scale) is identically equivalent to
triang.pdf(y, c) / scale with y = (x - loc) / scale.
The standard form is in the range [0, 1] with c the mode. The location parameter shifts the start to loc. The scale
parameter changes the width from 1 to scale.
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Examples

>>> from scipy.stats import triang
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> c = 0.158
>>> mean, var, skew, kurt = triang.stats(c, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(triang.ppf(0.01, c),
... triang.ppf(0.99, c), 100)
>>> ax.plot(x, triang.pdf(x, c),
... 'r-', lw=5, alpha=0.6, label='triang pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = triang(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = triang.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], triang.cdf(vals, c))
True

Generate random numbers:

>>> r = triang.rvs(c, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(c, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, c, loc=0, scale=1) Probability density function.
logpdf(x, c, loc=0, scale=1) Log of the probability density function.
cdf(x, c, loc=0, scale=1) Cumulative distribution function.
logcdf(x, c, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, c, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, c, loc=0, scale=1) Log of the survival function.
ppf(q, c, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, c, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, c, loc=0, scale=1) Non-central moment of order n
stats(c, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(c, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, c, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(c,), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(c, loc=0, scale=1) Median of the distribution.
mean(c, loc=0, scale=1) Mean of the distribution.
var(c, loc=0, scale=1) Variance of the distribution.
std(c, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, c, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.truncexpon

scipy.stats.truncexpon = <scipy.stats._continuous_distns.truncexpon_gen object>
A truncated exponential continuous random variable.
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As an instance of the rv_continuous class, truncexpon object inherits from it a collection of generic
methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for truncexpon is:

f(x, b) =
exp(−x)

1− exp(−b)

for 0 <= x <= b.
truncexpon takes b as a shape parameter for b.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, truncexpon.pdf(x, b, loc, scale) is identically equiva-
lent to truncexpon.pdf(y, b) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import truncexpon
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> b = 4.69
>>> mean, var, skew, kurt = truncexpon.stats(b, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(truncexpon.ppf(0.01, b),
... truncexpon.ppf(0.99, b), 100)
>>> ax.plot(x, truncexpon.pdf(x, b),
... 'r-', lw=5, alpha=0.6, label='truncexpon pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = truncexpon(b)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = truncexpon.ppf([0.001, 0.5, 0.999], b)
>>> np.allclose([0.001, 0.5, 0.999], truncexpon.cdf(vals, b))
True

Generate random numbers:

>>> r = truncexpon.rvs(b, size=1000)

And compare the histogram:
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>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(b, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, b, loc=0, scale=1) Probability density function.
logpdf(x, b, loc=0, scale=1) Log of the probability density function.
cdf(x, b, loc=0, scale=1) Cumulative distribution function.
logcdf(x, b, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, b, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, b, loc=0, scale=1) Log of the survival function.
ppf(q, b, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, b, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, b, loc=0, scale=1) Non-central moment of order n
stats(b, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(b, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, b, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(b,), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(b, loc=0, scale=1) Median of the distribution.
mean(b, loc=0, scale=1) Mean of the distribution.
var(b, loc=0, scale=1) Variance of the distribution.
std(b, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, b, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution
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scipy.stats.truncnorm

scipy.stats.truncnorm = <scipy.stats._continuous_distns.truncnorm_gen object>
A truncated normal continuous random variable.
As an instance of therv_continuous class, truncnorm object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The standard form of this distribution is a standard normal truncated to the range [a, b] — notice that a and b are
defined over the domain of the standard normal. To convert clip values for a specific mean and standard deviation,
use:

a, b = (myclip_a - my_mean) / my_std, (myclip_b - my_mean) / my_std

truncnorm takes a and b as shape parameters.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, truncnorm.pdf(x, a, b, loc, scale) is identically
equivalent to truncnorm.pdf(y, a, b) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import truncnorm
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> a, b = 0.1, 2
>>> mean, var, skew, kurt = truncnorm.stats(a, b, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(truncnorm.ppf(0.01, a, b),
... truncnorm.ppf(0.99, a, b), 100)
>>> ax.plot(x, truncnorm.pdf(x, a, b),
... 'r-', lw=5, alpha=0.6, label='truncnorm pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = truncnorm(a, b)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = truncnorm.ppf([0.001, 0.5, 0.999], a, b)
>>> np.allclose([0.001, 0.5, 0.999], truncnorm.cdf(vals, a, b))
True

Generate random numbers:
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>>> r = truncnorm.rvs(a, b, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(a, b, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, a, b, loc=0, scale=1) Probability density function.
logpdf(x, a, b, loc=0, scale=1) Log of the probability density function.
cdf(x, a, b, loc=0, scale=1) Cumulative distribution function.
logcdf(x, a, b, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, a, b, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, a, b, loc=0, scale=1) Log of the survival function.
ppf(q, a, b, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, a, b, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, a, b, loc=0, scale=1) Non-central moment of order n
stats(a, b, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(a, b, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, a, b, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(a, b), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(a, b, loc=0, scale=1) Median of the distribution.
mean(a, b, loc=0, scale=1) Mean of the distribution.
var(a, b, loc=0, scale=1) Variance of the distribution.
std(a, b, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, a, b, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.tukeylambda

scipy.stats.tukeylambda = <scipy.stats._continuous_distns.tukeylambda_gen object>
A Tukey-Lamdba continuous random variable.
As an instance of the rv_continuous class, tukeylambda object inherits from it a collection of generic
methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

A flexible distribution, able to represent and interpolate between the following distributions:
• Cauchy (lambda = −1)
• logistic (lambda = 0)
• approx Normal (lambda = 0.14)
• uniform from -1 to 1 (lambda = 1)

tukeylambda takes a real number lambda (denoted lam in the implementation) as a shape parameter.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, tukeylambda.pdf(x, lam, loc, scale) is identically
equivalent to tukeylambda.pdf(y, lam) / scale with y = (x - loc) / scale.
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Examples

>>> from scipy.stats import tukeylambda
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> lam = 3.13
>>> mean, var, skew, kurt = tukeylambda.stats(lam, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(tukeylambda.ppf(0.01, lam),
... tukeylambda.ppf(0.99, lam), 100)
>>> ax.plot(x, tukeylambda.pdf(x, lam),
... 'r-', lw=5, alpha=0.6, label='tukeylambda pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = tukeylambda(lam)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = tukeylambda.ppf([0.001, 0.5, 0.999], lam)
>>> np.allclose([0.001, 0.5, 0.999], tukeylambda.cdf(vals, lam))
True

Generate random numbers:

>>> r = tukeylambda.rvs(lam, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(lam, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, lam, loc=0, scale=1) Probability density function.
logpdf(x, lam, loc=0, scale=1) Log of the probability density function.
cdf(x, lam, loc=0, scale=1) Cumulative distribution function.
logcdf(x, lam, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, lam, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, lam, loc=0, scale=1) Log of the survival function.
ppf(q, lam, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, lam, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, lam, loc=0, scale=1) Non-central moment of order n
stats(lam, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(lam, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, lam, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(lam,), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(lam, loc=0, scale=1) Median of the distribution.
mean(lam, loc=0, scale=1) Mean of the distribution.
var(lam, loc=0, scale=1) Variance of the distribution.
std(lam, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, lam, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.uniform

scipy.stats.uniform = <scipy.stats._continuous_distns.uniform_gen object>
A uniform continuous random variable.
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In the standard form, the distribution is uniform on [0, 1]. Using the parameters loc and scale, one obtains
the uniform distribution on [loc, loc + scale].
As an instance of the rv_continuous class, uniform object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Examples

>>> from scipy.stats import uniform
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> mean, var, skew, kurt = uniform.stats(moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(uniform.ppf(0.01),
... uniform.ppf(0.99), 100)
>>> ax.plot(x, uniform.pdf(x),
... 'r-', lw=5, alpha=0.6, label='uniform pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = uniform()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = uniform.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], uniform.cdf(vals))
True

Generate random numbers:

>>> r = uniform.rvs(size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, loc=0, scale=1) Probability density function.
logpdf(x, loc=0, scale=1) Log of the probability density function.
cdf(x, loc=0, scale=1) Cumulative distribution function.
logcdf(x, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, loc=0, scale=1) Log of the survival function.
ppf(q, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, loc=0, scale=1) Non-central moment of order n
stats(loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(loc=0, scale=1) (Differential) entropy of the RV.
fit(data, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(loc=0, scale=1) Median of the distribution.
mean(loc=0, scale=1) Mean of the distribution.
var(loc=0, scale=1) Variance of the distribution.
std(loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, loc=0, scale=1) Endpoints of the range that contains alpha percent

of the distribution

scipy.stats.vonmises

scipy.stats.vonmises = <scipy.stats._continuous_distns.vonmises_gen object>
A Von Mises continuous random variable.
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As an instance of the rv_continuous class, vonmises object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for vonmises and vonmises_line is:

f(x, κ) =
exp(κ cos(x))

2πI0(κ)

for −π ≤ x ≤ π, κ > 0. I0 is the modified Bessel function of order zero (scipy.special.i0).
vonmises is a circular distribution which does not restrict the distribution to a fixed interval. Currently, there
is no circular distribution framework in scipy. The cdf is implemented such that cdf(x + 2*np.pi) ==
cdf(x) + 1.
vonmises_line is the same distribution, defined on [−π, π] on the real line. This is a regular (i.e. non-circular)
distribution.
vonmises and vonmises_line take kappa as a shape parameter.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, vonmises.pdf(x, kappa, loc, scale) is identically
equivalent to vonmises.pdf(y, kappa) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import vonmises
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> kappa = 3.99
>>> mean, var, skew, kurt = vonmises.stats(kappa, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(vonmises.ppf(0.01, kappa),
... vonmises.ppf(0.99, kappa), 100)
>>> ax.plot(x, vonmises.pdf(x, kappa),
... 'r-', lw=5, alpha=0.6, label='vonmises pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = vonmises(kappa)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = vonmises.ppf([0.001, 0.5, 0.999], kappa)
>>> np.allclose([0.001, 0.5, 0.999], vonmises.cdf(vals, kappa))
True
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Generate random numbers:

>>> r = vonmises.rvs(kappa, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(kappa, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, kappa, loc=0, scale=1) Probability density function.
logpdf(x, kappa, loc=0, scale=1) Log of the probability density function.
cdf(x, kappa, loc=0, scale=1) Cumulative distribution function.
logcdf(x, kappa, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, kappa, loc=0, scale=1) Survival function (also defined as 1 - cdf,

but sf is sometimes more accurate).
logsf(x, kappa, loc=0, scale=1) Log of the survival function.
ppf(q, kappa, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, kappa, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, kappa, loc=0, scale=1) Non-central moment of order n
stats(kappa, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(kappa, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, kappa, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(kappa,), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(kappa, loc=0, scale=1) Median of the distribution.
mean(kappa, loc=0, scale=1) Mean of the distribution.
var(kappa, loc=0, scale=1) Variance of the distribution.
std(kappa, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, kappa, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.vonmises_line

scipy.stats.vonmises_line = <scipy.stats._continuous_distns.vonmises_gen object>
A Von Mises continuous random variable.
As an instance of the rv_continuous class, vonmises_line object inherits from it a collection of generic
methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for vonmises and vonmises_line is:

f(x, κ) =
exp(κ cos(x))

2πI0(κ)

for −π ≤ x ≤ π, κ > 0. I0 is the modified Bessel function of order zero (scipy.special.i0).
vonmises is a circular distribution which does not restrict the distribution to a fixed interval. Currently, there
is no circular distribution framework in scipy. The cdf is implemented such that cdf(x + 2*np.pi) ==
cdf(x) + 1.
vonmises_line is the same distribution, defined on [−π, π] on the real line. This is a regular (i.e. non-circular)
distribution.
vonmises and vonmises_line take kappa as a shape parameter.

2334 Chapter 6. API Reference



SciPy Reference Guide, Release 1.3.1

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, vonmises_line.pdf(x, kappa, loc, scale) is identi-
cally equivalent to vonmises_line.pdf(y, kappa) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import vonmises_line
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> kappa = 3.99
>>> mean, var, skew, kurt = vonmises_line.stats(kappa, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(vonmises_line.ppf(0.01, kappa),
... vonmises_line.ppf(0.99, kappa), 100)
>>> ax.plot(x, vonmises_line.pdf(x, kappa),
... 'r-', lw=5, alpha=0.6, label='vonmises_line pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = vonmises_line(kappa)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = vonmises_line.ppf([0.001, 0.5, 0.999], kappa)
>>> np.allclose([0.001, 0.5, 0.999], vonmises_line.cdf(vals, kappa))
True

Generate random numbers:

>>> r = vonmises_line.rvs(kappa, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(kappa, loc=0, scale=1, size=1,
random_state=None)

Random variates.

pdf(x, kappa, loc=0, scale=1) Probability density function.
logpdf(x, kappa, loc=0, scale=1) Log of the probability density function.
cdf(x, kappa, loc=0, scale=1) Cumulative distribution function.
logcdf(x, kappa, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, kappa, loc=0, scale=1) Survival function (also defined as 1 - cdf,

but sf is sometimes more accurate).
logsf(x, kappa, loc=0, scale=1) Log of the survival function.
ppf(q, kappa, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, kappa, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, kappa, loc=0, scale=1) Non-central moment of order n
stats(kappa, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(kappa, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, kappa, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(kappa,), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(kappa, loc=0, scale=1) Median of the distribution.
mean(kappa, loc=0, scale=1) Mean of the distribution.
var(kappa, loc=0, scale=1) Variance of the distribution.
std(kappa, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, kappa, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.wald

scipy.stats.wald = <scipy.stats._continuous_distns.wald_gen object>
AWald continuous random variable.
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As an instance of the rv_continuous class, wald object inherits from it a collection of generic methods (see
below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for wald is:

f(x) =
1√
2πx3

exp(− (x− 1)2

2x
)

for x >= 0.
wald is a special case of invgauss with mu=1.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, wald.pdf(x, loc, scale) is identically equivalent to wald.
pdf(y) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import wald
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> mean, var, skew, kurt = wald.stats(moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(wald.ppf(0.01),
... wald.ppf(0.99), 100)
>>> ax.plot(x, wald.pdf(x),
... 'r-', lw=5, alpha=0.6, label='wald pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = wald()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = wald.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], wald.cdf(vals))
True

Generate random numbers:

>>> r = wald.rvs(size=1000)

And compare the histogram:
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>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, loc=0, scale=1) Probability density function.
logpdf(x, loc=0, scale=1) Log of the probability density function.
cdf(x, loc=0, scale=1) Cumulative distribution function.
logcdf(x, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, loc=0, scale=1) Log of the survival function.
ppf(q, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, loc=0, scale=1) Non-central moment of order n
stats(loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(loc=0, scale=1) (Differential) entropy of the RV.
fit(data, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(loc=0, scale=1) Median of the distribution.
mean(loc=0, scale=1) Mean of the distribution.
var(loc=0, scale=1) Variance of the distribution.
std(loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, loc=0, scale=1) Endpoints of the range that contains alpha percent

of the distribution
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scipy.stats.weibull_min

scipy.stats.weibull_min = <scipy.stats._continuous_distns.weibull_min_gen object>
Weibull minimum continuous random variable.
As an instance of the rv_continuous class, weibull_min object inherits from it a collection of generic
methods (see below for the full list), and completes them with details specific for this particular distribution.
See also:
weibull_max

Notes

The probability density function for weibull_min is:

f(x, c) = cxc−1 exp(−xc)

for x >= 0, c > 0.
weibull_min takes c as a shape parameter for c.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, weibull_min.pdf(x, c, loc, scale) is identically
equivalent to weibull_min.pdf(y, c) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import weibull_min
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> c = 1.79
>>> mean, var, skew, kurt = weibull_min.stats(c, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(weibull_min.ppf(0.01, c),
... weibull_min.ppf(0.99, c), 100)
>>> ax.plot(x, weibull_min.pdf(x, c),
... 'r-', lw=5, alpha=0.6, label='weibull_min pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = weibull_min(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:
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>>> vals = weibull_min.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], weibull_min.cdf(vals, c))
True

Generate random numbers:

>>> r = weibull_min.rvs(c, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(c, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, c, loc=0, scale=1) Probability density function.
logpdf(x, c, loc=0, scale=1) Log of the probability density function.
cdf(x, c, loc=0, scale=1) Cumulative distribution function.
logcdf(x, c, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, c, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, c, loc=0, scale=1) Log of the survival function.
ppf(q, c, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, c, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, c, loc=0, scale=1) Non-central moment of order n
stats(c, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(c, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, c, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(c,), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(c, loc=0, scale=1) Median of the distribution.
mean(c, loc=0, scale=1) Mean of the distribution.
var(c, loc=0, scale=1) Variance of the distribution.
std(c, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, c, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.weibull_max

scipy.stats.weibull_max = <scipy.stats._continuous_distns.weibull_max_gen object>
Weibull maximum continuous random variable.
As an instance of the rv_continuous class, weibull_max object inherits from it a collection of generic
methods (see below for the full list), and completes them with details specific for this particular distribution.
See also:
weibull_min

Notes

The probability density function for weibull_max is:

f(x, c) = c(−x)c−1 exp(−(−x)c)

for x < 0, c > 0.
weibull_max takes c as a shape parameter for c.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use
the loc and scale parameters. Specifically, weibull_max.pdf(x, c, loc, scale) is identically
equivalent to weibull_max.pdf(y, c) / scale with y = (x - loc) / scale.
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Examples

>>> from scipy.stats import weibull_max
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> c = 2.87
>>> mean, var, skew, kurt = weibull_max.stats(c, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(weibull_max.ppf(0.01, c),
... weibull_max.ppf(0.99, c), 100)
>>> ax.plot(x, weibull_max.pdf(x, c),
... 'r-', lw=5, alpha=0.6, label='weibull_max pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = weibull_max(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = weibull_max.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], weibull_max.cdf(vals, c))
True

Generate random numbers:

>>> r = weibull_max.rvs(c, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(c, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, c, loc=0, scale=1) Probability density function.
logpdf(x, c, loc=0, scale=1) Log of the probability density function.
cdf(x, c, loc=0, scale=1) Cumulative distribution function.
logcdf(x, c, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, c, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, c, loc=0, scale=1) Log of the survival function.
ppf(q, c, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, c, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, c, loc=0, scale=1) Non-central moment of order n
stats(c, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(c, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, c, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(c,), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(c, loc=0, scale=1) Median of the distribution.
mean(c, loc=0, scale=1) Mean of the distribution.
var(c, loc=0, scale=1) Variance of the distribution.
std(c, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, c, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution

scipy.stats.wrapcauchy

scipy.stats.wrapcauchy = <scipy.stats._continuous_distns.wrapcauchy_gen object>
A wrapped Cauchy continuous random variable.
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As an instance of the rv_continuous class, wrapcauchy object inherits from it a collection of generic
methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for wrapcauchy is:

f(x, c) =
1− c2

2π(1 + c2 − 2c cos(x))

for 0 ≤ x ≤ 2π, 0 < c < 1.
wrapcauchy takes c as a shape parameter for c.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, wrapcauchy.pdf(x, c, loc, scale) is identically equiva-
lent to wrapcauchy.pdf(y, c) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import wrapcauchy
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> c = 0.0311
>>> mean, var, skew, kurt = wrapcauchy.stats(c, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(wrapcauchy.ppf(0.01, c),
... wrapcauchy.ppf(0.99, c), 100)
>>> ax.plot(x, wrapcauchy.pdf(x, c),
... 'r-', lw=5, alpha=0.6, label='wrapcauchy pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:

>>> rv = wrapcauchy(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = wrapcauchy.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], wrapcauchy.cdf(vals, c))
True

Generate random numbers:

>>> r = wrapcauchy.rvs(c, size=1000)

And compare the histogram:
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>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Methods

rvs(c, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, c, loc=0, scale=1) Probability density function.
logpdf(x, c, loc=0, scale=1) Log of the probability density function.
cdf(x, c, loc=0, scale=1) Cumulative distribution function.
logcdf(x, c, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, c, loc=0, scale=1) Survival function (also defined as 1 - cdf, but

sf is sometimes more accurate).
logsf(x, c, loc=0, scale=1) Log of the survival function.
ppf(q, c, loc=0, scale=1) Percent point function (inverse of cdf—

percentiles).
isf(q, c, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, c, loc=0, scale=1) Non-central moment of order n
stats(c, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(c, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, c, loc=0, scale=1) Parameter estimates for generic data.
expect(func, args=(c,), loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)

Expected value of a function (of one argument)
with respect to the distribution.

median(c, loc=0, scale=1) Median of the distribution.
mean(c, loc=0, scale=1) Mean of the distribution.
var(c, loc=0, scale=1) Variance of the distribution.
std(c, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, c, loc=0, scale=1) Endpoints of the range that contains alpha

percent of the distribution
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6.28.5 Multivariate distributions

multivariate_normal A multivariate normal random variable.
matrix_normal A matrix normal random variable.
dirichlet A Dirichlet random variable.
wishart AWishart random variable.
invwishart An inverse Wishart random variable.
multinomial A multinomial random variable.
special_ortho_group A matrix-valued SO(N) random variable.
ortho_group A matrix-valued O(N) random variable.
unitary_group A matrix-valued U(N) random variable.
random_correlation A random correlation matrix.

scipy.stats.multivariate_normal

scipy.stats.multivariate_normal = <scipy.stats._multivariate.multivariate_normal_gen object>
A multivariate normal random variable.
The mean keyword specifies the mean. The cov keyword specifies the covariance matrix.

Parameters

x [array_like] Quantiles, with the last axis of x denoting the components.
mean [array_like, optional] Mean of the distribution (default zero)
cov [array_like, optional] Covariance matrix of the distribution (default one)
allow_singular

[bool, optional] Whether to allow a singular covariance matrix. (Default: False)
random_state

[None or int or np.random.RandomState instance, optional] If int or RandomState, use it for
drawing the random variates. If None (or np.random), the global np.random state is used.
Default is None.

Alternatively, the object may be called (as a function) to fix the mean
and covariance parameters, returning a “frozen” multivariate normal
random variable:
rv = multivariate_normal(mean=None, cov=1, allow_singular=False)

• Frozen object with the same methods but holding the given mean and covariance fixed.

Notes

Setting the parameter mean to None is equivalent to having mean
be the zero-vector. The parameter cov can be a scalar, in which case the covariance matrix is the identity times
that value, a vector of diagonal entries for the covariance matrix, or a two-dimensional array_like.

The covariance matrix cov must be a (symmetric) positive semi-definite matrix. The determinant and inverse of
cov are computed as the pseudo-determinant and pseudo-inverse, respectively, so that cov does not need to have
full rank.
The probability density function for multivariate_normal is

f(x) =
1√

(2π)k detΣ
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
,

where µ is the mean, Σ the covariance matrix, and k is the dimension of the space where x takes values.
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New in version 0.14.0.

Examples

>>> import matplotlib.pyplot as plt
>>> from scipy.stats import multivariate_normal

>>> x = np.linspace(0, 5, 10, endpoint=False)
>>> y = multivariate_normal.pdf(x, mean=2.5, cov=0.5); y
array([ 0.00108914, 0.01033349, 0.05946514, 0.20755375, 0.43939129,

0.56418958, 0.43939129, 0.20755375, 0.05946514, 0.01033349])
>>> fig1 = plt.figure()
>>> ax = fig1.add_subplot(111)
>>> ax.plot(x, y)

The input quantiles can be any shape of array, as long as the last axis labels the components. This allows us for
instance to display the frozen pdf for a non-isotropic random variable in 2D as follows:

>>> x, y = np.mgrid[-1:1:.01, -1:1:.01]
>>> pos = np.dstack((x, y))
>>> rv = multivariate_normal([0.5, -0.2], [[2.0, 0.3], [0.3, 0.5]])
>>> fig2 = plt.figure()
>>> ax2 = fig2.add_subplot(111)
>>> ax2.contourf(x, y, rv.pdf(pos))
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Methods

‘‘pdf(x, mean=None, cov=1, allow_singular=False)‘‘ Probability density function.
‘‘logpdf(x, mean=None, cov=1, allow_singular=False)‘‘ Log of the probability density

function.
‘‘cdf(x, mean=None, cov=1, allow_singular=False,
maxpts=1000000*dim, abseps=1e-5, releps=1e-5)‘‘

Cumulative distribution function.

‘‘logcdf(x, mean=None, cov=1, allow_singular=False,
maxpts=1000000*dim, abseps=1e-5, releps=1e-5)‘‘

Log of the cumulative distribution
function.

‘‘rvs(mean=None, cov=1, size=1, random_state=None)‘‘ Draw random samples from a
multivariate normal distribution.

‘‘entropy()‘‘ Compute the differential entropy of
the multivariate normal.

scipy.stats.matrix_normal

scipy.stats.matrix_normal = <scipy.stats._multivariate.matrix_normal_gen object>
A matrix normal random variable.
The mean keyword specifies the mean. The rowcov keyword specifies the among-row covariance matrix. The
‘colcov’ keyword specifies the among-column covariance matrix.

Parameters

X [array_like] Quantiles, with the last two axes of X denoting the components.
mean [array_like, optional] Mean of the distribution (default: None)
rowcov [array_like, optional] Among-row covariance matrix of the distribution (default: 1)
colcov [array_like, optional] Among-column covariance matrix of the distribution (default: 1)
random_state

[None or int or np.random.RandomState instance, optional] If int or RandomState, use it for
drawing the random variates. If None (or np.random), the global np.random state is used.
Default is None.

Alternatively, the object may be called (as a function) to fix the mean
and covariance parameters, returning a “frozen” matrix normal
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random variable:
rv = matrix_normal(mean=None, rowcov=1, colcov=1)

• Frozen object with the same methods but holding the given mean and covariance fixed.

Notes

If mean is set to None then a matrix of zeros is used for the mean.
The dimensions of this matrix are inferred from the shape of rowcov and colcov, if these are provided, or set
to 1 if ambiguous.
rowcov and colcov can be two-dimensional array_likes specifying the covariance matrices directly. Alter-
natively, a one-dimensional array will be be interpreted as the entries of a diagonal matrix, and a scalar or
zero-dimensional array will be interpreted as this value times the identity matrix.

The covariance matrices specified by rowcov and colcov must be (symmetric) positive definite. If the samples in X
arem× n, then rowcov must bem×m and colcov must be n× n. mean must be the same shape as X.
The probability density function for matrix_normal is

f(X) = (2π)−
mn
2 |U |−n

2 |V |−m
2 exp

(
−1

2
Tr
[
U−1(X −M)V −1(X −M)T

])
,

whereM is the mean, U the among-row covariance matrix, V the among-column covariance matrix.
The allow_singular behaviour of the multivariate_normal distribution is not currently supported. Covari-
ance matrices must be full rank.
The matrix_normal distribution is closely related to the multivariate_normal distribution. Specifi-
cally, Vec(X) (the vector formed by concatenating the columns of X) has a multivariate normal distribution with
mean Vec(M) and covariance V ⊗ U (where ⊗ is the Kronecker product). Sampling and pdf evaluation are
O(m3 + n3 +m2n+mn2) for the matrix normal, but O(m3n3) for the equivalent multivariate normal, making
this equivalent form algorithmically inefficient.
New in version 0.17.0.

Examples

>>> from scipy.stats import matrix_normal

>>> M = np.arange(6).reshape(3,2); M
array([[0, 1],

[2, 3],
[4, 5]])

>>> U = np.diag([1,2,3]); U
array([[1, 0, 0],

[0, 2, 0],
[0, 0, 3]])

>>> V = 0.3*np.identity(2); V
array([[ 0.3, 0. ],

[ 0. , 0.3]])
>>> X = M + 0.1; X
array([[ 0.1, 1.1],

[ 2.1, 3.1],
(continues on next page)
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(continued from previous page)
[ 4.1, 5.1]])

>>> matrix_normal.pdf(X, mean=M, rowcov=U, colcov=V)
0.023410202050005054

>>> # Equivalent multivariate normal
>>> from scipy.stats import multivariate_normal
>>> vectorised_X = X.T.flatten()
>>> equiv_mean = M.T.flatten()
>>> equiv_cov = np.kron(V,U)
>>> multivariate_normal.pdf(vectorised_X, mean=equiv_mean, cov=equiv_cov)
0.023410202050005054

Methods

‘‘pdf(X, mean=None, rowcov=1, colcov=1)‘‘ Probability density function.
‘‘logpdf(X, mean=None, rowcov=1, colcov=1)‘‘ Log of the probability density

function.
‘‘rvs(mean=None, rowcov=1, colcov=1, size=1,
random_state=None)‘‘

Draw random samples.

scipy.stats.dirichlet

scipy.stats.dirichlet = <scipy.stats._multivariate.dirichlet_gen object>
A Dirichlet random variable.
The alpha keyword specifies the concentration parameters of the distribution.
New in version 0.15.0.

Parameters

x [array_like] Quantiles, with the last axis of x denoting the components.
alpha [array_like] The concentration parameters. The number of entries determines the dimen-

sionality of the distribution.
random_state

[None or int or np.random.RandomState instance, optional] If int or RandomState, use it for
drawing the random variates. If None (or np.random), the global np.random state is used.
Default is None.

Alternatively, the object may be called (as a function) to fix
concentration parameters, returning a “frozen” Dirichlet
random variable:
rv = dirichlet(alpha)

• Frozen object with the samemethods but holding the given concentration parameters fixed.

Notes

Each α entry must be positive. The distribution has only support on the simplex defined by

K∑
i=1

xi ≤ 1
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The probability density function for dirichlet is

f(x) =
1

B(α)

K∏
i=1

xαi−1
i

where

B(α) =

∏K
i=1 Γ(αi)

Γ
(∑K

i=1 αi

)
and α = (α1, . . . , αK), the concentration parameters andK is the dimension of the space where x takes values.
Note that the dirichlet interface is somewhat inconsistent. The array returned by the rvs function is transposed with
respect to the format expected by the pdf and logpdf.

Examples

>>> from scipy.stats import dirichlet

Generate a dirichlet random variable

>>> quantiles = np.array([0.2, 0.2, 0.6]) # specify quantiles
>>> alpha = np.array([0.4, 5, 15]) # specify concentration parameters
>>> dirichlet.pdf(quantiles, alpha)
0.2843831684937255

The same PDF but following a log scale

>>> dirichlet.logpdf(quantiles, alpha)
-1.2574327653159187

Once we specify the dirichlet distribution we can then calculate quantities of interest

>>> dirichlet.mean(alpha) # get the mean of the distribution
array([0.01960784, 0.24509804, 0.73529412])
>>> dirichlet.var(alpha) # get variance
array([0.00089829, 0.00864603, 0.00909517])
>>> dirichlet.entropy(alpha) # calculate the differential entropy
-4.3280162474082715

We can also return random samples from the distribution

>>> dirichlet.rvs(alpha, size=1, random_state=1)
array([[0.00766178, 0.24670518, 0.74563305]])
>>> dirichlet.rvs(alpha, size=2, random_state=2)
array([[0.01639427, 0.1292273 , 0.85437844],

[0.00156917, 0.19033695, 0.80809388]])
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Methods

‘‘pdf(x, alpha)‘‘ Probability density function.
‘‘logpdf(x, alpha)‘‘ Log of the probability density function.
‘‘rvs(alpha, size=1, random_state=None)‘‘ Draw random samples from a Dirichlet distribution.
‘‘mean(alpha)‘‘ The mean of the Dirichlet distribution
‘‘var(alpha)‘‘ The variance of the Dirichlet distribution
‘‘entropy(alpha)‘‘ Compute the differential entropy of the Dirichlet distribution.

scipy.stats.wishart

scipy.stats.wishart = <scipy.stats._multivariate.wishart_gen object>
AWishart random variable.
The df keyword specifies the degrees of freedom. The scale keyword specifies the scale matrix, which must be
symmetric and positive definite. In this context, the scale matrix is often interpreted in terms of a multivariate
normal precision matrix (the inverse of the covariance matrix).

Parameters

x [array_like] Quantiles, with the last axis of x denoting the components.
df [int] Degrees of freedom, must be greater than or equal to dimension of the scale matrix
scale [array_like] Symmetric positive definite scale matrix of the distribution
random_state

[None or int or np.random.RandomState instance, optional] If int or RandomState, use it for
drawing the random variates. If None (or np.random), the global np.random state is used.
Default is None.

Alternatively, the object may be called (as a function) to fix the degrees
of freedom and scale parameters, returning a “frozen” Wishart random
variable:
rv = wishart(df=1, scale=1)

• Frozen object with the same methods but holding the given degrees of freedom and scale
fixed.

See also:
invwishart, chi2

Notes

The scale matrix scale must be a symmetric positive definite matrix. Singular matrices, including the symmetric
positive semi-definite case, are not supported.
The Wishart distribution is often denoted

Wp(ν,Σ)

where ν is the degrees of freedom and Σ is the p× p scale matrix.
The probability density function for wishart has support over positive definite matrices S; if S ∼ Wp(ν,Σ),
then its PDF is given by:

f(S) =
|S|

ν−p−1
2

2
νp
2 |Σ| ν2 Γp

(
ν
2

) exp (−tr(Σ−1S)/2
)
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If S ∼Wp(ν,Σ) (Wishart) then S−1 ∼W−1
p (ν,Σ−1) (inverse Wishart).

If the scale matrix is 1-dimensional and equal to one, then the Wishart distributionW1(ν, 1) collapses to the χ2(ν)
distribution.
New in version 0.16.0.

References

[1], [2]

Examples

>>> import matplotlib.pyplot as plt
>>> from scipy.stats import wishart, chi2
>>> x = np.linspace(1e-5, 8, 100)
>>> w = wishart.pdf(x, df=3, scale=1); w[:5]
array([ 0.00126156, 0.10892176, 0.14793434, 0.17400548, 0.1929669 ])
>>> c = chi2.pdf(x, 3); c[:5]
array([ 0.00126156, 0.10892176, 0.14793434, 0.17400548, 0.1929669 ])
>>> plt.plot(x, w)

The input quantiles can be any shape of array, as long as the last axis labels the components.
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Methods

‘‘pdf(x, df, scale)‘‘ Probability density function.
‘‘logpdf(x, df, scale)‘‘ Log of the probability density function.
‘‘rvs(df, scale, size=1,
random_state=None)‘‘

Draw random samples from a Wishart distribution.

‘‘entropy()‘‘ Compute the differential entropy of the Wishart
distribution.
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scipy.stats.invwishart

scipy.stats.invwishart = <scipy.stats._multivariate.invwishart_gen object>
An inverse Wishart random variable.
The df keyword specifies the degrees of freedom. The scale keyword specifies the scale matrix, which must be
symmetric and positive definite. In this context, the scale matrix is often interpreted in terms of a multivariate
normal covariance matrix.

Parameters

x [array_like] Quantiles, with the last axis of x denoting the components.
df [int] Degrees of freedom, must be greater than or equal to dimension of the scale matrix
scale [array_like] Symmetric positive definite scale matrix of the distribution
random_state

[None or int or np.random.RandomState instance, optional] If int or RandomState, use it for
drawing the random variates. If None (or np.random), the global np.random state is used.
Default is None.

Alternatively, the object may be called (as a function) to fix the degrees
of freedom and scale parameters, returning a “frozen” inverse Wishart
random variable:
rv = invwishart(df=1, scale=1)

• Frozen object with the same methods but holding the given degrees of freedom and scale
fixed.

See also:
wishart

Notes

The scale matrix scale must be a symmetric positive definite matrix. Singular matrices, including the symmetric
positive semi-definite case, are not supported.
The inverse Wishart distribution is often denoted

W−1
p (ν,Ψ)

where ν is the degrees of freedom and Ψ is the p× p scale matrix.
The probability density function for invwishart has support over positive definite matrices S; if S ∼
W−1

p (ν,Σ), then its PDF is given by:

f(S) =
|Σ| ν2

2
νp
2 |S| ν+p+1

2 Γp

(
ν
2

) exp (−tr(ΣS−1)/2
)

If S ∼W−1
p (ν,Ψ) (inverse Wishart) then S−1 ∼Wp(ν,Ψ

−1) (Wishart).
If the scale matrix is 1-dimensional and equal to one, then the inverse Wishart distributionW1(ν, 1) collapses to
the inverse Gamma distribution with parameters shape = ν

2 and scale = 1
2 .

New in version 0.16.0.

References

[1], [2]
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Examples

>>> import matplotlib.pyplot as plt
>>> from scipy.stats import invwishart, invgamma
>>> x = np.linspace(0.01, 1, 100)
>>> iw = invwishart.pdf(x, df=6, scale=1)
>>> iw[:3]
array([ 1.20546865e-15, 5.42497807e-06, 4.45813929e-03])
>>> ig = invgamma.pdf(x, 6/2., scale=1./2)
>>> ig[:3]
array([ 1.20546865e-15, 5.42497807e-06, 4.45813929e-03])
>>> plt.plot(x, iw)

The input quantiles can be any shape of array, as long as the last axis labels the components.
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Methods

‘‘pdf(x, df, scale)‘‘ Probability density function.
‘‘logpdf(x, df, scale)‘‘ Log of the probability density function.
‘‘rvs(df, scale, size=1,
random_state=None)‘‘

Draw random samples from an inverse Wishart
distribution.

scipy.stats.multinomial

scipy.stats.multinomial = <scipy.stats._multivariate.multinomial_gen object>
A multinomial random variable.

Parameters

x [array_like] Quantiles, with the last axis of x denoting the components.
n [int] Number of trials
p [array_like] Probability of a trial falling into each category; should sum to 1
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random_state
[None or int or np.random.RandomState instance, optional] If int or RandomState, use it for
drawing the random variates. If None (or np.random), the global np.random state is used.
Default is None.

See also:

scipy.stats.binom

The binomial distribution.
numpy.random.Generator.multinomial

Sampling from the multinomial distribution.

Notes

n should be a positive integer. Each element of p should be in the interval [0, 1] and the elements should sum to 1.
If they do not sum to 1, the last element of the p array is not used and is replaced with the remaining probability
left over from the earlier elements.
Alternatively, the object may be called (as a function) to fix the n and p parameters, returning a “frozen” multinomial
random variable:
The probability mass function for multinomial is

f(x) =
n!

x1! · · ·xk!
px1
1 · · · pxk

k ,

supported on x = (x1, . . . , xk) where each xi is a nonnegative integer and their sum is n.
New in version 0.19.0.

Examples

>>> from scipy.stats import multinomial
>>> rv = multinomial(8, [0.3, 0.2, 0.5])
>>> rv.pmf([1, 3, 4])
0.042000000000000072

The multinomial distribution for k = 2 is identical to the corresponding binomial distribution (tiny numerical
differences notwithstanding):

>>> from scipy.stats import binom
>>> multinomial.pmf([3, 4], n=7, p=[0.4, 0.6])
0.29030399999999973
>>> binom.pmf(3, 7, 0.4)
0.29030400000000012

The functions pmf, logpmf, entropy, and cov support broadcasting, under the convention that the vector
parameters (x and p) are interpreted as if each row along the last axis is a single object. For instance:

>>> multinomial.pmf([[3, 4], [3, 5]], n=[7, 8], p=[.3, .7])
array([0.2268945, 0.25412184])
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Here, x.shape == (2, 2), n.shape == (2,), and p.shape == (2,), but following the rules men-
tioned above they behave as if the rows [3, 4] and [3, 5] in x and [.3, .7] in p were a single object,
and as if we had x.shape = (2,), n.shape = (2,), and p.shape = (). To obtain the individual
elements without broadcasting, we would do this:

>>> multinomial.pmf([3, 4], n=7, p=[.3, .7])
0.2268945
>>> multinomial.pmf([3, 5], 8, p=[.3, .7])
0.25412184

This broadcasting also works for cov, where the output objects are square matrices of size p.shape[-1]. For
example:

>>> multinomial.cov([4, 5], [[.3, .7], [.4, .6]])
array([[[ 0.84, -0.84],

[-0.84, 0.84]],
[[ 1.2 , -1.2 ],
[-1.2 , 1.2 ]]])

In this example, n.shape == (2,) and p.shape == (2, 2), and following the rules above, these broad-
cast as if p.shape == (2,). Thus the result should also be of shape (2,), but since each output is a 2 × 2
matrix, the result in fact has shape (2, 2, 2), where result[0] is equal to multinomial.cov(n=4,
p=[.3, .7]) and result[1] is equal to multinomial.cov(n=5, p=[.4, .6]).

Methods

‘‘pmf(x, n, p)‘‘ Probability mass function.
‘‘logpmf(x, n, p)‘‘ Log of the probability mass function.
‘‘rvs(n, p, size=1, random_state=None)‘‘ Draw random samples from a multinomial distribution.
‘‘entropy(n, p)‘‘ Compute the entropy of the multinomial distribution.
‘‘cov(n, p)‘‘ Compute the covariance matrix of the multinomial distribution.

scipy.stats.special_ortho_group

scipy.stats.special_ortho_group = <scipy.stats._multivariate.special_ortho_group_gen object>
A matrix-valued SO(N) random variable.
Return a random rotation matrix, drawn from the Haar distribution (the only uniform distribution on SO(n)).
The dim keyword specifies the dimension N.

Parameters

dim [scalar] Dimension of matrices

Notes

This class is wrapping the random_rot code from the MDP Toolkit, https://github.com/mdp-toolkit/mdp-toolkit
Return a random rotation matrix, drawn from the Haar distribution (the only uniform distribution on SO(n)). The
algorithm is described in the paper Stewart, G.W., “The efficient generation of random orthogonal matrices with an
application to condition estimators”, SIAM Journal on Numerical Analysis, 17(3), pp. 403-409, 1980. For more
information see https://en.wikipedia.org/wiki/Orthogonal_matrix#Randomization
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See also the similar ortho_group.

Examples

>>> from scipy.stats import special_ortho_group
>>> x = special_ortho_group.rvs(3)

>>> np.dot(x, x.T)
array([[ 1.00000000e+00, 1.13231364e-17, -2.86852790e-16],

[ 1.13231364e-17, 1.00000000e+00, -1.46845020e-16],
[ -2.86852790e-16, -1.46845020e-16, 1.00000000e+00]])

>>> import scipy.linalg
>>> scipy.linalg.det(x)
1.0

This generates one random matrix from SO(3). It is orthogonal and has a determinant of 1.

Methods

‘‘rvs(dim=None, size=1, random_state=None)‘‘ Draw random samples from SO(N).

scipy.stats.ortho_group

scipy.stats.ortho_group = <scipy.stats._multivariate.ortho_group_gen object>
A matrix-valued O(N) random variable.
Return a random orthogonal matrix, drawn from the O(N) Haar distribution (the only uniform distribution on
O(N)).
The dim keyword specifies the dimension N.

Parameters

dim [scalar] Dimension of matrices

Notes

This class is closely related to special_ortho_group.
Some care is taken to avoid numerical error, as per the paper by Mezzadri.

References

[1]

Examples
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>>> from scipy.stats import ortho_group
>>> x = ortho_group.rvs(3)

>>> np.dot(x, x.T)
array([[ 1.00000000e+00, 1.13231364e-17, -2.86852790e-16],

[ 1.13231364e-17, 1.00000000e+00, -1.46845020e-16],
[ -2.86852790e-16, -1.46845020e-16, 1.00000000e+00]])

>>> import scipy.linalg
>>> np.fabs(scipy.linalg.det(x))
1.0

This generates one random matrix from O(3). It is orthogonal and has a determinant of +1 or -1.

Methods

‘‘rvs(dim=None, size=1, random_state=None)‘‘ Draw random samples from O(N).

scipy.stats.unitary_group

scipy.stats.unitary_group = <scipy.stats._multivariate.unitary_group_gen object>
A matrix-valued U(N) random variable.
Return a random unitary matrix.
The dim keyword specifies the dimension N.

Parameters

dim [scalar] Dimension of matrices

Notes

This class is similar to ortho_group.

References

[1]

Examples

>>> from scipy.stats import unitary_group
>>> x = unitary_group.rvs(3)

>>> np.dot(x, x.conj().T)
array([[ 1.00000000e+00, 1.13231364e-17, -2.86852790e-16],

[ 1.13231364e-17, 1.00000000e+00, -1.46845020e-16],
[ -2.86852790e-16, -1.46845020e-16, 1.00000000e+00]])

This generates one random matrix from U(3). The dot product confirms that it is unitary up to machine precision.
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Methods

‘‘rvs(dim=None, size=1, random_state=None)‘‘ Draw random samples from U(N).

scipy.stats.random_correlation

scipy.stats.random_correlation = <scipy.stats._multivariate.random_correlation_gen object>
A random correlation matrix.
Return a random correlation matrix, given a vector of eigenvalues.
The eigs keyword specifies the eigenvalues of the correlation matrix, and implies the dimension.

Parameters

eigs [1d ndarray] Eigenvalues of correlation matrix.

Notes

Generates a random correlation matrix following a numerically stable algorithm spelled out by Davies & Higham.
This algorithm uses a single O(N) similarity transformation to construct a symmetric positive semi-definite matrix,
and applies a series of Givens rotations to scale it to have ones on the diagonal.

References

[1]

Examples

>>> from scipy.stats import random_correlation
>>> np.random.seed(514)
>>> x = random_correlation.rvs((.5, .8, 1.2, 1.5))
>>> x
array([[ 1. , -0.20387311, 0.18366501, -0.04953711],

[-0.20387311, 1. , -0.24351129, 0.06703474],
[ 0.18366501, -0.24351129, 1. , 0.38530195],
[-0.04953711, 0.06703474, 0.38530195, 1. ]])

>>> import scipy.linalg
>>> e, v = scipy.linalg.eigh(x)
>>> e
array([ 0.5, 0.8, 1.2, 1.5])

Methods

‘‘rvs(eigs=None, random_state=None)‘‘ Draw random correlation matrices, all with eigenvalues eigs.

6.28.6 Discrete distributions
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bernoulli A Bernoulli discrete random variable.
binom A binomial discrete random variable.
boltzmann A Boltzmann (Truncated Discrete Exponential) random

variable.
dlaplace A Laplacian discrete random variable.
geom A geometric discrete random variable.
hypergeom A hypergeometric discrete random variable.
logser ALogarithmic (Log-Series, Series) discrete random vari-

able.
nbinom A negative binomial discrete random variable.
planck A Planck discrete exponential random variable.
poisson A Poisson discrete random variable.
randint A uniform discrete random variable.
skellam A Skellam discrete random variable.
zipf A Zipf discrete random variable.
yulesimon A Yule-Simon discrete random variable.

scipy.stats.bernoulli

scipy.stats.bernoulli = <scipy.stats._discrete_distns.bernoulli_gen object>
A Bernoulli discrete random variable.
As an instance of the rv_discrete class, bernoulli object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability mass function for bernoulli is:

f(k) =

{
1− p if k = 0

p if k = 1

for k in {0, 1}.
bernoulli takes p as shape parameter.
The probability mass function above is defined in the “standardized” form. To shift distribution use the loc
parameter. Specifically, bernoulli.pmf(k, p, loc) is identically equivalent to bernoulli.pmf(k
- loc, p).

Examples

>>> from scipy.stats import bernoulli
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> p = 0.3
>>> mean, var, skew, kurt = bernoulli.stats(p, moments='mvsk')

Display the probability mass function (pmf):
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>>> x = np.arange(bernoulli.ppf(0.01, p),
... bernoulli.ppf(0.99, p))
>>> ax.plot(x, bernoulli.pmf(x, p), 'bo', ms=8, label='bernoulli pmf')
>>> ax.vlines(x, 0, bernoulli.pmf(x, p), colors='b', lw=5, alpha=0.5)

Alternatively, the distribution object can be called (as a function) to fix the shape and location. This returns a
“frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pmf:

>>> rv = bernoulli(p)
>>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1,
... label='frozen pmf')
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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frozen pmf

Check accuracy of cdf and ppf:

>>> prob = bernoulli.cdf(x, p)
>>> np.allclose(x, bernoulli.ppf(prob, p))
True

Generate random numbers:

>>> r = bernoulli.rvs(p, size=1000)
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Methods

rvs(p, loc=0, size=1, random_state=None) Random variates.
pmf(k, p, loc=0) Probability mass function.
logpmf(k, p, loc=0) Log of the probability mass function.
cdf(k, p, loc=0) Cumulative distribution function.
logcdf(k, p, loc=0) Log of the cumulative distribution function.
sf(k, p, loc=0) Survival function (also defined as 1 - cdf, but sf is

sometimes more accurate).
logsf(k, p, loc=0) Log of the survival function.
ppf(q, p, loc=0) Percent point function (inverse of cdf— percentiles).
isf(q, p, loc=0) Inverse survival function (inverse of sf).
stats(p, loc=0, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’).
entropy(p, loc=0) (Differential) entropy of the RV.
expect(func, args=(p,), loc=0, lb=None,
ub=None, conditional=False)

Expected value of a function (of one argument) with
respect to the distribution.

median(p, loc=0) Median of the distribution.
mean(p, loc=0) Mean of the distribution.
var(p, loc=0) Variance of the distribution.
std(p, loc=0) Standard deviation of the distribution.
interval(alpha, p, loc=0) Endpoints of the range that contains alpha percent of

the distribution

scipy.stats.binom

scipy.stats.binom = <scipy.stats._discrete_distns.binom_gen object>
A binomial discrete random variable.
As an instance of the rv_discrete class, binom object inherits from it a collection of generic methods (see
below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability mass function for binom is:

f(k) =

(
n

k

)
pk(1− p)n−k

for k in {0, 1,..., n}.
binom takes n and p as shape parameters.
The probability mass function above is defined in the “standardized” form. To shift distribution use the loc
parameter. Specifically, binom.pmf(k, n, p, loc) is identically equivalent to binom.pmf(k - loc,
n, p).

Examples

>>> from scipy.stats import binom
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
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Calculate a few first moments:

>>> n, p = 5, 0.4
>>> mean, var, skew, kurt = binom.stats(n, p, moments='mvsk')

Display the probability mass function (pmf):

>>> x = np.arange(binom.ppf(0.01, n, p),
... binom.ppf(0.99, n, p))
>>> ax.plot(x, binom.pmf(x, n, p), 'bo', ms=8, label='binom pmf')
>>> ax.vlines(x, 0, binom.pmf(x, n, p), colors='b', lw=5, alpha=0.5)

Alternatively, the distribution object can be called (as a function) to fix the shape and location. This returns a
“frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pmf:

>>> rv = binom(n, p)
>>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1,
... label='frozen pmf')
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Check accuracy of cdf and ppf:

>>> prob = binom.cdf(x, n, p)
>>> np.allclose(x, binom.ppf(prob, n, p))
True

Generate random numbers:

>>> r = binom.rvs(n, p, size=1000)
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Methods

rvs(n, p, loc=0, size=1, random_state=None) Random variates.
pmf(k, n, p, loc=0) Probability mass function.
logpmf(k, n, p, loc=0) Log of the probability mass function.
cdf(k, n, p, loc=0) Cumulative distribution function.
logcdf(k, n, p, loc=0) Log of the cumulative distribution function.
sf(k, n, p, loc=0) Survival function (also defined as 1 - cdf, but sf is

sometimes more accurate).
logsf(k, n, p, loc=0) Log of the survival function.
ppf(q, n, p, loc=0) Percent point function (inverse of cdf— percentiles).
isf(q, n, p, loc=0) Inverse survival function (inverse of sf).
stats(n, p, loc=0, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’).
entropy(n, p, loc=0) (Differential) entropy of the RV.
expect(func, args=(n, p), loc=0, lb=None,
ub=None, conditional=False)

Expected value of a function (of one argument) with
respect to the distribution.

median(n, p, loc=0) Median of the distribution.
mean(n, p, loc=0) Mean of the distribution.
var(n, p, loc=0) Variance of the distribution.
std(n, p, loc=0) Standard deviation of the distribution.
interval(alpha, n, p, loc=0) Endpoints of the range that contains alpha percent of

the distribution

scipy.stats.boltzmann

scipy.stats.boltzmann = <scipy.stats._discrete_distns.boltzmann_gen object>
A Boltzmann (Truncated Discrete Exponential) random variable.
As an instance of the rv_discrete class, boltzmann object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability mass function for boltzmann is:

f(k) = (1− exp(−λ)) exp(−λk)/(1− exp(−λN))

for k = 0, ..., N − 1.
boltzmann takes λ > 0 and N > 0 as shape parameters.
The probability mass function above is defined in the “standardized” form. To shift distribution use the loc param-
eter. Specifically, boltzmann.pmf(k, lambda_, N, loc) is identically equivalent to boltzmann.
pmf(k - loc, lambda_, N).

Examples

>>> from scipy.stats import boltzmann
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:
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>>> lambda_, N = 1.4, 19
>>> mean, var, skew, kurt = boltzmann.stats(lambda_, N, moments='mvsk')

Display the probability mass function (pmf):

>>> x = np.arange(boltzmann.ppf(0.01, lambda_, N),
... boltzmann.ppf(0.99, lambda_, N))
>>> ax.plot(x, boltzmann.pmf(x, lambda_, N), 'bo', ms=8, label='boltzmann␣
↪→pmf')
>>> ax.vlines(x, 0, boltzmann.pmf(x, lambda_, N), colors='b', lw=5,␣
↪→alpha=0.5)

Alternatively, the distribution object can be called (as a function) to fix the shape and location. This returns a
“frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pmf:

>>> rv = boltzmann(lambda_, N)
>>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1,
... label='frozen pmf')
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Check accuracy of cdf and ppf:

>>> prob = boltzmann.cdf(x, lambda_, N)
>>> np.allclose(x, boltzmann.ppf(prob, lambda_, N))
True

Generate random numbers:

>>> r = boltzmann.rvs(lambda_, N, size=1000)
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Methods

rvs(lambda_, N, loc=0, size=1,
random_state=None)

Random variates.

pmf(k, lambda_, N, loc=0) Probability mass function.
logpmf(k, lambda_, N, loc=0) Log of the probability mass function.
cdf(k, lambda_, N, loc=0) Cumulative distribution function.
logcdf(k, lambda_, N, loc=0) Log of the cumulative distribution function.
sf(k, lambda_, N, loc=0) Survival function (also defined as 1 - cdf, but sf

is sometimes more accurate).
logsf(k, lambda_, N, loc=0) Log of the survival function.
ppf(q, lambda_, N, loc=0) Percent point function (inverse of cdf—

percentiles).
isf(q, lambda_, N, loc=0) Inverse survival function (inverse of sf).
stats(lambda_, N, loc=0, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(lambda_, N, loc=0) (Differential) entropy of the RV.
expect(func, args=(lambda_, N), loc=0, lb=None,
ub=None, conditional=False)

Expected value of a function (of one argument) with
respect to the distribution.

median(lambda_, N, loc=0) Median of the distribution.
mean(lambda_, N, loc=0) Mean of the distribution.
var(lambda_, N, loc=0) Variance of the distribution.
std(lambda_, N, loc=0) Standard deviation of the distribution.
interval(alpha, lambda_, N, loc=0) Endpoints of the range that contains alpha percent

of the distribution

scipy.stats.dlaplace

scipy.stats.dlaplace = <scipy.stats._discrete_distns.dlaplace_gen object>
A Laplacian discrete random variable.
As an instance of the rv_discrete class, dlaplace object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability mass function for dlaplace is:

f(k) = tanh(a/2) exp(−a|k|)

for integers k and a > 0.
dlaplace takes a as shape parameter.
The probability mass function above is defined in the “standardized” form. To shift distribution use the loc
parameter. Specifically, dlaplace.pmf(k, a, loc) is identically equivalent to dlaplace.pmf(k -
loc, a).

Examples
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>>> from scipy.stats import dlaplace
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> a = 0.8
>>> mean, var, skew, kurt = dlaplace.stats(a, moments='mvsk')

Display the probability mass function (pmf):

>>> x = np.arange(dlaplace.ppf(0.01, a),
... dlaplace.ppf(0.99, a))
>>> ax.plot(x, dlaplace.pmf(x, a), 'bo', ms=8, label='dlaplace pmf')
>>> ax.vlines(x, 0, dlaplace.pmf(x, a), colors='b', lw=5, alpha=0.5)

Alternatively, the distribution object can be called (as a function) to fix the shape and location. This returns a
“frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pmf:

>>> rv = dlaplace(a)
>>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1,
... label='frozen pmf')
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Check accuracy of cdf and ppf:

>>> prob = dlaplace.cdf(x, a)
>>> np.allclose(x, dlaplace.ppf(prob, a))
True

Generate random numbers:
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>>> r = dlaplace.rvs(a, size=1000)

Methods

rvs(a, loc=0, size=1, random_state=None) Random variates.
pmf(k, a, loc=0) Probability mass function.
logpmf(k, a, loc=0) Log of the probability mass function.
cdf(k, a, loc=0) Cumulative distribution function.
logcdf(k, a, loc=0) Log of the cumulative distribution function.
sf(k, a, loc=0) Survival function (also defined as 1 - cdf, but sf is

sometimes more accurate).
logsf(k, a, loc=0) Log of the survival function.
ppf(q, a, loc=0) Percent point function (inverse of cdf— percentiles).
isf(q, a, loc=0) Inverse survival function (inverse of sf).
stats(a, loc=0, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’).
entropy(a, loc=0) (Differential) entropy of the RV.
expect(func, args=(a,), loc=0, lb=None,
ub=None, conditional=False)

Expected value of a function (of one argument) with
respect to the distribution.

median(a, loc=0) Median of the distribution.
mean(a, loc=0) Mean of the distribution.
var(a, loc=0) Variance of the distribution.
std(a, loc=0) Standard deviation of the distribution.
interval(alpha, a, loc=0) Endpoints of the range that contains alpha percent of

the distribution

scipy.stats.geom

scipy.stats.geom = <scipy.stats._discrete_distns.geom_gen object>
A geometric discrete random variable.
As an instance of the rv_discrete class, geom object inherits from it a collection of generic methods (see
below for the full list), and completes them with details specific for this particular distribution.
See also:
planck

Notes

The probability mass function for geom is:

f(k) = (1− p)k−1p

for k ≥ 1.
geom takes p as shape parameter.
The probability mass function above is defined in the “standardized” form. To shift distribution use the loc
parameter. Specifically, geom.pmf(k, p, loc) is identically equivalent to geom.pmf(k - loc, p).
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Examples

>>> from scipy.stats import geom
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> p = 0.5
>>> mean, var, skew, kurt = geom.stats(p, moments='mvsk')

Display the probability mass function (pmf):

>>> x = np.arange(geom.ppf(0.01, p),
... geom.ppf(0.99, p))
>>> ax.plot(x, geom.pmf(x, p), 'bo', ms=8, label='geom pmf')
>>> ax.vlines(x, 0, geom.pmf(x, p), colors='b', lw=5, alpha=0.5)

Alternatively, the distribution object can be called (as a function) to fix the shape and location. This returns a
“frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pmf:

>>> rv = geom(p)
>>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1,
... label='frozen pmf')
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Check accuracy of cdf and ppf:

>>> prob = geom.cdf(x, p)
>>> np.allclose(x, geom.ppf(prob, p))
True

Generate random numbers:
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>>> r = geom.rvs(p, size=1000)

Methods

rvs(p, loc=0, size=1, random_state=None) Random variates.
pmf(k, p, loc=0) Probability mass function.
logpmf(k, p, loc=0) Log of the probability mass function.
cdf(k, p, loc=0) Cumulative distribution function.
logcdf(k, p, loc=0) Log of the cumulative distribution function.
sf(k, p, loc=0) Survival function (also defined as 1 - cdf, but sf is

sometimes more accurate).
logsf(k, p, loc=0) Log of the survival function.
ppf(q, p, loc=0) Percent point function (inverse of cdf— percentiles).
isf(q, p, loc=0) Inverse survival function (inverse of sf).
stats(p, loc=0, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’).
entropy(p, loc=0) (Differential) entropy of the RV.
expect(func, args=(p,), loc=0, lb=None,
ub=None, conditional=False)

Expected value of a function (of one argument) with
respect to the distribution.

median(p, loc=0) Median of the distribution.
mean(p, loc=0) Mean of the distribution.
var(p, loc=0) Variance of the distribution.
std(p, loc=0) Standard deviation of the distribution.
interval(alpha, p, loc=0) Endpoints of the range that contains alpha percent of

the distribution

scipy.stats.hypergeom

scipy.stats.hypergeom = <scipy.stats._discrete_distns.hypergeom_gen object>
A hypergeometric discrete random variable.
The hypergeometric distribution models drawing objects from a bin. M is the total number of objects, n is total
number of Type I objects. The random variate represents the number of Type I objects in N drawn without
replacement from the total population.
As an instance of the rv_discrete class, hypergeom object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The symbols used to denote the shape parameters (M, n, and N) are not universally accepted. See the Examples
for a clarification of the definitions used here.
The probability mass function is defined as,

p(k,M, n,N) =

(
n
k

)(
M−n
N−k

)(
M
N

)
for k ∈ [max(0, N −M + n),min(n,N)], where the binomial coefficients are defined as,(

n

k

)
≡ n!

k!(n− k)!
.
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The probability mass function above is defined in the “standardized” form. To shift distribution use the loc
parameter. Specifically, hypergeom.pmf(k, M, n, N, loc) is identically equivalent to hypergeom.
pmf(k - loc, M, n, N).

Examples

>>> from scipy.stats import hypergeom
>>> import matplotlib.pyplot as plt

Suppose we have a collection of 20 animals, of which 7 are dogs. Then if we want to know the probability of
finding a given number of dogs if we choose at random 12 of the 20 animals, we can initialize a frozen distribution
and plot the probability mass function:

>>> [M, n, N] = [20, 7, 12]
>>> rv = hypergeom(M, n, N)
>>> x = np.arange(0, n+1)
>>> pmf_dogs = rv.pmf(x)

>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> ax.plot(x, pmf_dogs, 'bo')
>>> ax.vlines(x, 0, pmf_dogs, lw=2)
>>> ax.set_xlabel('# of dogs in our group of chosen animals')
>>> ax.set_ylabel('hypergeom PMF')
>>> plt.show()
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Instead of using a frozen distribution we can also use hypergeom methods directly. To for example obtain the
cumulative distribution function, use:

>>> prb = hypergeom.cdf(x, M, n, N)

And to generate random numbers:
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>>> R = hypergeom.rvs(M, n, N, size=10)

Methods

rvs(M, n, N, loc=0, size=1, random_state=None) Random variates.
pmf(k, M, n, N, loc=0) Probability mass function.
logpmf(k, M, n, N, loc=0) Log of the probability mass function.
cdf(k, M, n, N, loc=0) Cumulative distribution function.
logcdf(k, M, n, N, loc=0) Log of the cumulative distribution function.
sf(k, M, n, N, loc=0) Survival function (also defined as 1 - cdf, but sf is

sometimes more accurate).
logsf(k, M, n, N, loc=0) Log of the survival function.
ppf(q, M, n, N, loc=0) Percent point function (inverse of cdf—

percentiles).
isf(q, M, n, N, loc=0) Inverse survival function (inverse of sf).
stats(M, n, N, loc=0, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(M, n, N, loc=0) (Differential) entropy of the RV.
expect(func, args=(M, n, N), loc=0, lb=None,
ub=None, conditional=False)

Expected value of a function (of one argument) with
respect to the distribution.

median(M, n, N, loc=0) Median of the distribution.
mean(M, n, N, loc=0) Mean of the distribution.
var(M, n, N, loc=0) Variance of the distribution.
std(M, n, N, loc=0) Standard deviation of the distribution.
interval(alpha, M, n, N, loc=0) Endpoints of the range that contains alpha percent of

the distribution

scipy.stats.logser

scipy.stats.logser = <scipy.stats._discrete_distns.logser_gen object>
A Logarithmic (Log-Series, Series) discrete random variable.
As an instance of the rv_discrete class, logser object inherits from it a collection of generic methods (see
below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability mass function for logser is:

f(k) = − pk

k log(1− p)

for k ≥ 1.
logser takes p as shape parameter.
The probability mass function above is defined in the “standardized” form. To shift distribution use the loc
parameter. Specifically, logser.pmf(k, p, loc) is identically equivalent to logser.pmf(k - loc,
p).
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Examples

>>> from scipy.stats import logser
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> p = 0.6
>>> mean, var, skew, kurt = logser.stats(p, moments='mvsk')

Display the probability mass function (pmf):

>>> x = np.arange(logser.ppf(0.01, p),
... logser.ppf(0.99, p))
>>> ax.plot(x, logser.pmf(x, p), 'bo', ms=8, label='logser pmf')
>>> ax.vlines(x, 0, logser.pmf(x, p), colors='b', lw=5, alpha=0.5)

Alternatively, the distribution object can be called (as a function) to fix the shape and location. This returns a
“frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pmf:

>>> rv = logser(p)
>>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1,
... label='frozen pmf')
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Check accuracy of cdf and ppf:

>>> prob = logser.cdf(x, p)
>>> np.allclose(x, logser.ppf(prob, p))
True

Generate random numbers:
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>>> r = logser.rvs(p, size=1000)

Methods

rvs(p, loc=0, size=1, random_state=None) Random variates.
pmf(k, p, loc=0) Probability mass function.
logpmf(k, p, loc=0) Log of the probability mass function.
cdf(k, p, loc=0) Cumulative distribution function.
logcdf(k, p, loc=0) Log of the cumulative distribution function.
sf(k, p, loc=0) Survival function (also defined as 1 - cdf, but sf is

sometimes more accurate).
logsf(k, p, loc=0) Log of the survival function.
ppf(q, p, loc=0) Percent point function (inverse of cdf— percentiles).
isf(q, p, loc=0) Inverse survival function (inverse of sf).
stats(p, loc=0, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’).
entropy(p, loc=0) (Differential) entropy of the RV.
expect(func, args=(p,), loc=0, lb=None,
ub=None, conditional=False)

Expected value of a function (of one argument) with
respect to the distribution.

median(p, loc=0) Median of the distribution.
mean(p, loc=0) Mean of the distribution.
var(p, loc=0) Variance of the distribution.
std(p, loc=0) Standard deviation of the distribution.
interval(alpha, p, loc=0) Endpoints of the range that contains alpha percent of

the distribution

scipy.stats.nbinom

scipy.stats.nbinom = <scipy.stats._discrete_distns.nbinom_gen object>
A negative binomial discrete random variable.
As an instance of the rv_discrete class, nbinom object inherits from it a collection of generic methods (see
below for the full list), and completes them with details specific for this particular distribution.

Notes

Negative binomial distribution describes a sequence of i.i.d. Bernoulli trials, repeated until a predefined, non-
random number of successes occurs.
The probability mass function of the number of failures for nbinom is:

f(k) =

(
k + n− 1

n− 1

)
pn(1− p)k

for k ≥ 0.
nbinom takes n and p as shape parameters where n is the number of successes, whereas p is the probability of a
single success.
The probability mass function above is defined in the “standardized” form. To shift distribution use the loc param-
eter. Specifically, nbinom.pmf(k, n, p, loc) is identically equivalent to nbinom.pmf(k - loc,
n, p).
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Examples

>>> from scipy.stats import nbinom
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> n, p = 0.4, 0.4
>>> mean, var, skew, kurt = nbinom.stats(n, p, moments='mvsk')

Display the probability mass function (pmf):

>>> x = np.arange(nbinom.ppf(0.01, n, p),
... nbinom.ppf(0.99, n, p))
>>> ax.plot(x, nbinom.pmf(x, n, p), 'bo', ms=8, label='nbinom pmf')
>>> ax.vlines(x, 0, nbinom.pmf(x, n, p), colors='b', lw=5, alpha=0.5)

Alternatively, the distribution object can be called (as a function) to fix the shape and location. This returns a
“frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pmf:

>>> rv = nbinom(n, p)
>>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1,
... label='frozen pmf')
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Check accuracy of cdf and ppf:

>>> prob = nbinom.cdf(x, n, p)
>>> np.allclose(x, nbinom.ppf(prob, n, p))
True

Generate random numbers:
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>>> r = nbinom.rvs(n, p, size=1000)

Methods

rvs(n, p, loc=0, size=1, random_state=None) Random variates.
pmf(k, n, p, loc=0) Probability mass function.
logpmf(k, n, p, loc=0) Log of the probability mass function.
cdf(k, n, p, loc=0) Cumulative distribution function.
logcdf(k, n, p, loc=0) Log of the cumulative distribution function.
sf(k, n, p, loc=0) Survival function (also defined as 1 - cdf, but sf is

sometimes more accurate).
logsf(k, n, p, loc=0) Log of the survival function.
ppf(q, n, p, loc=0) Percent point function (inverse of cdf— percentiles).
isf(q, n, p, loc=0) Inverse survival function (inverse of sf).
stats(n, p, loc=0, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’).
entropy(n, p, loc=0) (Differential) entropy of the RV.
expect(func, args=(n, p), loc=0, lb=None,
ub=None, conditional=False)

Expected value of a function (of one argument) with
respect to the distribution.

median(n, p, loc=0) Median of the distribution.
mean(n, p, loc=0) Mean of the distribution.
var(n, p, loc=0) Variance of the distribution.
std(n, p, loc=0) Standard deviation of the distribution.
interval(alpha, n, p, loc=0) Endpoints of the range that contains alpha percent of

the distribution

scipy.stats.planck

scipy.stats.planck = <scipy.stats._discrete_distns.planck_gen object>
A Planck discrete exponential random variable.
As an instance of the rv_discrete class, planck object inherits from it a collection of generic methods (see
below for the full list), and completes them with details specific for this particular distribution.
See also:
geom

Notes

The probability mass function for planck is:

f(k) = (1− exp(−λ)) exp(−λk)

for k ≥ 0 and λ > 0.
planck takes λ as shape parameter. The Planck distribution can be written as a geometric distribution (geom)
with p = 1− exp(−λ) shifted by loc = -1.
The probability mass function above is defined in the “standardized” form. To shift distribution use the loc
parameter. Specifically, planck.pmf(k, lambda_, loc) is identically equivalent to planck.pmf(k
- loc, lambda_).

6.28. Statistical functions (scipy.stats) 2377



SciPy Reference Guide, Release 1.3.1

Examples

>>> from scipy.stats import planck
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> lambda_ = 0.51
>>> mean, var, skew, kurt = planck.stats(lambda_, moments='mvsk')

Display the probability mass function (pmf):

>>> x = np.arange(planck.ppf(0.01, lambda_),
... planck.ppf(0.99, lambda_))
>>> ax.plot(x, planck.pmf(x, lambda_), 'bo', ms=8, label='planck pmf')
>>> ax.vlines(x, 0, planck.pmf(x, lambda_), colors='b', lw=5, alpha=0.5)

Alternatively, the distribution object can be called (as a function) to fix the shape and location. This returns a
“frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pmf:

>>> rv = planck(lambda_)
>>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1,
... label='frozen pmf')
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Check accuracy of cdf and ppf:

>>> prob = planck.cdf(x, lambda_)
>>> np.allclose(x, planck.ppf(prob, lambda_))
True

Generate random numbers:
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>>> r = planck.rvs(lambda_, size=1000)

Methods

rvs(lambda_, loc=0, size=1, random_state=None) Random variates.
pmf(k, lambda_, loc=0) Probability mass function.
logpmf(k, lambda_, loc=0) Log of the probability mass function.
cdf(k, lambda_, loc=0) Cumulative distribution function.
logcdf(k, lambda_, loc=0) Log of the cumulative distribution function.
sf(k, lambda_, loc=0) Survival function (also defined as 1 - cdf, but sf

is sometimes more accurate).
logsf(k, lambda_, loc=0) Log of the survival function.
ppf(q, lambda_, loc=0) Percent point function (inverse of cdf—

percentiles).
isf(q, lambda_, loc=0) Inverse survival function (inverse of sf).
stats(lambda_, loc=0, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(lambda_, loc=0) (Differential) entropy of the RV.
expect(func, args=(lambda_,), loc=0, lb=None,
ub=None, conditional=False)

Expected value of a function (of one argument) with
respect to the distribution.

median(lambda_, loc=0) Median of the distribution.
mean(lambda_, loc=0) Mean of the distribution.
var(lambda_, loc=0) Variance of the distribution.
std(lambda_, loc=0) Standard deviation of the distribution.
interval(alpha, lambda_, loc=0) Endpoints of the range that contains alpha percent of

the distribution

scipy.stats.poisson

scipy.stats.poisson = <scipy.stats._discrete_distns.poisson_gen object>
A Poisson discrete random variable.
As an instance of the rv_discrete class, poisson object inherits from it a collection of generic methods (see
below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability mass function for poisson is:

f(k) = exp(−µ)µ
k

k!

for k ≥ 0.
poisson takes µ as shape parameter.
The probability mass function above is defined in the “standardized” form. To shift distribution use the loc param-
eter. Specifically, poisson.pmf(k, mu, loc) is identically equivalent to poisson.pmf(k - loc,
mu).
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Examples

>>> from scipy.stats import poisson
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> mu = 0.6
>>> mean, var, skew, kurt = poisson.stats(mu, moments='mvsk')

Display the probability mass function (pmf):

>>> x = np.arange(poisson.ppf(0.01, mu),
... poisson.ppf(0.99, mu))
>>> ax.plot(x, poisson.pmf(x, mu), 'bo', ms=8, label='poisson pmf')
>>> ax.vlines(x, 0, poisson.pmf(x, mu), colors='b', lw=5, alpha=0.5)

Alternatively, the distribution object can be called (as a function) to fix the shape and location. This returns a
“frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pmf:

>>> rv = poisson(mu)
>>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1,
... label='frozen pmf')
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Check accuracy of cdf and ppf:

>>> prob = poisson.cdf(x, mu)
>>> np.allclose(x, poisson.ppf(prob, mu))
True

Generate random numbers:
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>>> r = poisson.rvs(mu, size=1000)

Methods

rvs(mu, loc=0, size=1, random_state=None) Random variates.
pmf(k, mu, loc=0) Probability mass function.
logpmf(k, mu, loc=0) Log of the probability mass function.
cdf(k, mu, loc=0) Cumulative distribution function.
logcdf(k, mu, loc=0) Log of the cumulative distribution function.
sf(k, mu, loc=0) Survival function (also defined as 1 - cdf, but sf is

sometimes more accurate).
logsf(k, mu, loc=0) Log of the survival function.
ppf(q, mu, loc=0) Percent point function (inverse of cdf— percentiles).
isf(q, mu, loc=0) Inverse survival function (inverse of sf).
stats(mu, loc=0, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’).
entropy(mu, loc=0) (Differential) entropy of the RV.
expect(func, args=(mu,), loc=0, lb=None,
ub=None, conditional=False)

Expected value of a function (of one argument) with
respect to the distribution.

median(mu, loc=0) Median of the distribution.
mean(mu, loc=0) Mean of the distribution.
var(mu, loc=0) Variance of the distribution.
std(mu, loc=0) Standard deviation of the distribution.
interval(alpha, mu, loc=0) Endpoints of the range that contains alpha percent of

the distribution

scipy.stats.randint

scipy.stats.randint = <scipy.stats._discrete_distns.randint_gen object>
A uniform discrete random variable.
As an instance of the rv_discrete class, randint object inherits from it a collection of generic methods (see
below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability mass function for randint is:

f(k) =
1

high− low

for k = low, ..., high - 1.
randint takes low and high as shape parameters.
The probability mass function above is defined in the “standardized” form. To shift distribution use the loc param-
eter. Specifically, randint.pmf(k, low, high, loc) is identically equivalent to randint.pmf(k -
loc, low, high).
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Examples

>>> from scipy.stats import randint
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> low, high = 7, 31
>>> mean, var, skew, kurt = randint.stats(low, high, moments='mvsk')

Display the probability mass function (pmf):

>>> x = np.arange(randint.ppf(0.01, low, high),
... randint.ppf(0.99, low, high))
>>> ax.plot(x, randint.pmf(x, low, high), 'bo', ms=8, label='randint pmf')
>>> ax.vlines(x, 0, randint.pmf(x, low, high), colors='b', lw=5, alpha=0.
↪→5)

Alternatively, the distribution object can be called (as a function) to fix the shape and location. This returns a
“frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pmf:

>>> rv = randint(low, high)
>>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1,
... label='frozen pmf')
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Check accuracy of cdf and ppf:

>>> prob = randint.cdf(x, low, high)
>>> np.allclose(x, randint.ppf(prob, low, high))
True
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Generate random numbers:

>>> r = randint.rvs(low, high, size=1000)

Methods

rvs(low, high, loc=0, size=1, random_state=None) Random variates.
pmf(k, low, high, loc=0) Probability mass function.
logpmf(k, low, high, loc=0) Log of the probability mass function.
cdf(k, low, high, loc=0) Cumulative distribution function.
logcdf(k, low, high, loc=0) Log of the cumulative distribution function.
sf(k, low, high, loc=0) Survival function (also defined as 1 - cdf, but sf

is sometimes more accurate).
logsf(k, low, high, loc=0) Log of the survival function.
ppf(q, low, high, loc=0) Percent point function (inverse of cdf—

percentiles).
isf(q, low, high, loc=0) Inverse survival function (inverse of sf).
stats(low, high, loc=0, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(low, high, loc=0) (Differential) entropy of the RV.
expect(func, args=(low, high), loc=0, lb=None,
ub=None, conditional=False)

Expected value of a function (of one argument) with
respect to the distribution.

median(low, high, loc=0) Median of the distribution.
mean(low, high, loc=0) Mean of the distribution.
var(low, high, loc=0) Variance of the distribution.
std(low, high, loc=0) Standard deviation of the distribution.
interval(alpha, low, high, loc=0) Endpoints of the range that contains alpha percent of

the distribution

scipy.stats.skellam

scipy.stats.skellam = <scipy.stats._discrete_distns.skellam_gen object>
A Skellam discrete random variable.
As an instance of the rv_discrete class, skellam object inherits from it a collection of generic methods (see
below for the full list), and completes them with details specific for this particular distribution.

Notes

Probability distribution of the difference of two correlated or uncorrelated Poisson random variables.
Let k1 and k2 be two Poisson-distributed r.v. with expected values λ1 and λ2. Then, k1 − k2 follows a Skellam
distribution with parameters µ1 = λ1 − ρ

√
λ1λ2 and µ2 = λ2 − ρ

√
λ1λ2, where ρ is the correlation coefficient

between k1 and k2. If the two Poisson-distributed r.v. are independent then ρ = 0.
Parameters µ1 and µ2 must be strictly positive.
For details see: https://en.wikipedia.org/wiki/Skellam_distribution
skellam takes µ1 and µ2 as shape parameters.
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The probability mass function above is defined in the “standardized” form. To shift distribution use the loc pa-
rameter. Specifically, skellam.pmf(k, mu1, mu2, loc) is identically equivalent to skellam.pmf(k
- loc, mu1, mu2).

Examples

>>> from scipy.stats import skellam
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> mu1, mu2 = 15, 8
>>> mean, var, skew, kurt = skellam.stats(mu1, mu2, moments='mvsk')

Display the probability mass function (pmf):

>>> x = np.arange(skellam.ppf(0.01, mu1, mu2),
... skellam.ppf(0.99, mu1, mu2))
>>> ax.plot(x, skellam.pmf(x, mu1, mu2), 'bo', ms=8, label='skellam pmf')
>>> ax.vlines(x, 0, skellam.pmf(x, mu1, mu2), colors='b', lw=5, alpha=0.5)

Alternatively, the distribution object can be called (as a function) to fix the shape and location. This returns a
“frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pmf:

>>> rv = skellam(mu1, mu2)
>>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1,
... label='frozen pmf')
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
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Check accuracy of cdf and ppf:
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>>> prob = skellam.cdf(x, mu1, mu2)
>>> np.allclose(x, skellam.ppf(prob, mu1, mu2))
True

Generate random numbers:

>>> r = skellam.rvs(mu1, mu2, size=1000)

Methods

rvs(mu1, mu2, loc=0, size=1,
random_state=None)

Random variates.

pmf(k, mu1, mu2, loc=0) Probability mass function.
logpmf(k, mu1, mu2, loc=0) Log of the probability mass function.
cdf(k, mu1, mu2, loc=0) Cumulative distribution function.
logcdf(k, mu1, mu2, loc=0) Log of the cumulative distribution function.
sf(k, mu1, mu2, loc=0) Survival function (also defined as 1 - cdf, but sf

is sometimes more accurate).
logsf(k, mu1, mu2, loc=0) Log of the survival function.
ppf(q, mu1, mu2, loc=0) Percent point function (inverse of cdf—

percentiles).
isf(q, mu1, mu2, loc=0) Inverse survival function (inverse of sf).
stats(mu1, mu2, loc=0, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(mu1, mu2, loc=0) (Differential) entropy of the RV.
expect(func, args=(mu1, mu2), loc=0, lb=None,
ub=None, conditional=False)

Expected value of a function (of one argument) with
respect to the distribution.

median(mu1, mu2, loc=0) Median of the distribution.
mean(mu1, mu2, loc=0) Mean of the distribution.
var(mu1, mu2, loc=0) Variance of the distribution.
std(mu1, mu2, loc=0) Standard deviation of the distribution.
interval(alpha, mu1, mu2, loc=0) Endpoints of the range that contains alpha percent of

the distribution

scipy.stats.zipf

scipy.stats.zipf = <scipy.stats._discrete_distns.zipf_gen object>
A Zipf discrete random variable.
As an instance of the rv_discrete class, zipf object inherits from it a collection of generic methods (see
below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability mass function for zipf is:

f(k, a) =
1

ζ(a)ka

for k ≥ 1.
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zipf takes a as shape parameter. ζ is the Riemann zeta function (scipy.special.zeta)
The probability mass function above is defined in the “standardized” form. To shift distribution use the loc
parameter. Specifically, zipf.pmf(k, a, loc) is identically equivalent to zipf.pmf(k - loc, a).

Examples

>>> from scipy.stats import zipf
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> a = 6.5
>>> mean, var, skew, kurt = zipf.stats(a, moments='mvsk')

Display the probability mass function (pmf):

>>> x = np.arange(zipf.ppf(0.01, a),
... zipf.ppf(0.99, a))
>>> ax.plot(x, zipf.pmf(x, a), 'bo', ms=8, label='zipf pmf')
>>> ax.vlines(x, 0, zipf.pmf(x, a), colors='b', lw=5, alpha=0.5)

Alternatively, the distribution object can be called (as a function) to fix the shape and location. This returns a
“frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pmf:

>>> rv = zipf(a)
>>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1,
... label='frozen pmf')
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

0.96 0.98 1.00 1.02 1.04
0.0

0.2

0.4

0.6

0.8

1.0 zipf pmf
frozen pmf

Check accuracy of cdf and ppf:
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>>> prob = zipf.cdf(x, a)
>>> np.allclose(x, zipf.ppf(prob, a))
True

Generate random numbers:

>>> r = zipf.rvs(a, size=1000)

Methods

rvs(a, loc=0, size=1, random_state=None) Random variates.
pmf(k, a, loc=0) Probability mass function.
logpmf(k, a, loc=0) Log of the probability mass function.
cdf(k, a, loc=0) Cumulative distribution function.
logcdf(k, a, loc=0) Log of the cumulative distribution function.
sf(k, a, loc=0) Survival function (also defined as 1 - cdf, but sf is

sometimes more accurate).
logsf(k, a, loc=0) Log of the survival function.
ppf(q, a, loc=0) Percent point function (inverse of cdf— percentiles).
isf(q, a, loc=0) Inverse survival function (inverse of sf).
stats(a, loc=0, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’).
entropy(a, loc=0) (Differential) entropy of the RV.
expect(func, args=(a,), loc=0, lb=None,
ub=None, conditional=False)

Expected value of a function (of one argument) with
respect to the distribution.

median(a, loc=0) Median of the distribution.
mean(a, loc=0) Mean of the distribution.
var(a, loc=0) Variance of the distribution.
std(a, loc=0) Standard deviation of the distribution.
interval(alpha, a, loc=0) Endpoints of the range that contains alpha percent of

the distribution

scipy.stats.yulesimon

scipy.stats.yulesimon = <scipy.stats._discrete_distns.yulesimon_gen object>
A Yule-Simon discrete random variable.
As an instance of the rv_discrete class, yulesimon object inherits from it a collection of generic methods
(see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability mass function for the yulesimon is:

f(k) = αB(k, α+ 1)

for k = 1, 2, 3, ..., where α > 0. Here B refers to the scipy.special.beta function.
The sampling of random variates is based on pg 553, Section 6.3 of [1]. Our notation maps to the referenced logic
via α = a− 1.
For details see the wikipedia entry [2].
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References

The probability mass function above is defined in the “standardized” form. To shift distribution use the loc param-
eter. Specifically, yulesimon.pmf(k, alpha, loc) is identically equivalent to yulesimon.pmf(k -
loc, alpha).
[1], [2]

Examples

>>> from scipy.stats import yulesimon
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> alpha = 11
>>> mean, var, skew, kurt = yulesimon.stats(alpha, moments='mvsk')

Display the probability mass function (pmf):

>>> x = np.arange(yulesimon.ppf(0.01, alpha),
... yulesimon.ppf(0.99, alpha))
>>> ax.plot(x, yulesimon.pmf(x, alpha), 'bo', ms=8, label='yulesimon pmf')
>>> ax.vlines(x, 0, yulesimon.pmf(x, alpha), colors='b', lw=5, alpha=0.5)

Alternatively, the distribution object can be called (as a function) to fix the shape and location. This returns a
“frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pmf:

>>> rv = yulesimon(alpha)
>>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1,
... label='frozen pmf')
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

Check accuracy of cdf and ppf:

>>> prob = yulesimon.cdf(x, alpha)
>>> np.allclose(x, yulesimon.ppf(prob, alpha))
True

Generate random numbers:

>>> r = yulesimon.rvs(alpha, size=1000)
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Methods

rvs(alpha, loc=0, size=1, random_state=None) Random variates.
pmf(k, alpha, loc=0) Probability mass function.
logpmf(k, alpha, loc=0) Log of the probability mass function.
cdf(k, alpha, loc=0) Cumulative distribution function.
logcdf(k, alpha, loc=0) Log of the cumulative distribution function.
sf(k, alpha, loc=0) Survival function (also defined as 1 - cdf, but sf is

sometimes more accurate).
logsf(k, alpha, loc=0) Log of the survival function.
ppf(q, alpha, loc=0) Percent point function (inverse of cdf—

percentiles).
isf(q, alpha, loc=0) Inverse survival function (inverse of sf).
stats(alpha, loc=0, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or

kurtosis(‘k’).
entropy(alpha, loc=0) (Differential) entropy of the RV.
expect(func, args=(alpha,), loc=0, lb=None,
ub=None, conditional=False)

Expected value of a function (of one argument) with
respect to the distribution.

median(alpha, loc=0) Median of the distribution.
mean(alpha, loc=0) Mean of the distribution.
var(alpha, loc=0) Variance of the distribution.
std(alpha, loc=0) Standard deviation of the distribution.
interval(alpha, alpha, loc=0) Endpoints of the range that contains alpha percent of

the distribution

An overview of statistical functions is given below. Several of these functions have a similar version in scipy.stats.
mstats which work for masked arrays.

6.28.7 Summary statistics
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describe(a[, axis, ddof, bias, nan_policy]) Compute several descriptive statistics of the passed array.
gmean(a[, axis, dtype]) Compute the geometric mean along the specified axis.
hmean(a[, axis, dtype]) Calculate the harmonic mean along the specified axis.
kurtosis(a[, axis, fisher, bias, nan_policy]) Compute the kurtosis (Fisher or Pearson) of a dataset.
mode(a[, axis, nan_policy]) Return an array of the modal (most common) value in the

passed array.
moment(a[, moment, axis, nan_policy]) Calculate the nth moment about the mean for a sample.
skew(a[, axis, bias, nan_policy]) Compute the sample skewness of a data set.
kstat(data[, n]) Return the nth k-statistic (1<=n<=4 so far).
kstatvar(data[, n]) Returns an unbiased estimator of the variance of the k-

statistic.
tmean(a[, limits, inclusive, axis]) Compute the trimmed mean.
tvar(a[, limits, inclusive, axis, ddof]) Compute the trimmed variance.
tmin(a[, lowerlimit, axis, inclusive, …]) Compute the trimmed minimum.
tmax(a[, upperlimit, axis, inclusive, …]) Compute the trimmed maximum.
tstd(a[, limits, inclusive, axis, ddof]) Compute the trimmed sample standard deviation.
tsem(a[, limits, inclusive, axis, ddof]) Compute the trimmed standard error of the mean.
variation(a[, axis, nan_policy]) Compute the coefficient of variation, the ratio of the bi-

ased standard deviation to the mean.
find_repeats(arr) Find repeats and repeat counts.
trim_mean(a, proportiontocut[, axis]) Return mean of array after trimming distribution from

both tails.
gstd(a[, axis, ddof]) Calculate the geometric standard deviation of an array
iqr(x[, axis, rng, scale, nan_policy, …]) Compute the interquartile range of the data along the

specified axis.
sem(a[, axis, ddof, nan_policy]) Calculate the standard error of the mean (or standard er-

ror of measurement) of the values in the input array.
bayes_mvs(data[, alpha]) Bayesian confidence intervals for the mean, var, and std.
mvsdist(data) ‘Frozen’ distributions for mean, variance, and standard

deviation of data.
entropy(pk[, qk, base]) Calculate the entropy of a distribution for given probabil-

ity values.
median_absolute_deviation(x[, axis, center,
…])

Compute the median absolute deviation of the data along
the given axis.

scipy.stats.describe

scipy.stats.describe(a, axis=0, ddof=1, bias=True, nan_policy=’propagate’)
Compute several descriptive statistics of the passed array.

Parameters

a [array_like] Input data.
axis [int or None, optional] Axis along which statistics are calculated. Default is 0. If None,

compute over the whole array a.
ddof [int, optional] Delta degrees of freedom (only for variance). Default is 1.
bias [bool, optional] If False, then the skewness and kurtosis calculations are corrected for statis-

tical bias.
nan_policy

[{‘propagate’, ‘raise’, ‘omit’}, optional] Defines how to handle when input contains nan. ‘prop-
agate’ returns nan, ‘raise’ throws an error, ‘omit’ performs the calculations ignoring nan values.
Default is ‘propagate’.

Returns
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nobs [int or ndarray of ints] Number of observations (length of data along axis). When ‘omit’ is
chosen as nan_policy, each column is counted separately.

minmax: tuple of ndarrays or floats
Minimum and maximum value of data array.

mean [ndarray or float] Arithmetic mean of data along axis.
variance [ndarray or float] Unbiased variance of the data along axis, denominator is number of ob-

servations minus one.
skewness [ndarray or float] Skewness, based on moment calculations with denominator equal to the

number of observations, i.e. no degrees of freedom correction.
kurtosis [ndarray or float] Kurtosis (Fisher). The kurtosis is normalized so that it is zero for the

normal distribution. No degrees of freedom are used.
See also:
skew, kurtosis

Examples

>>> from scipy import stats
>>> a = np.arange(10)
>>> stats.describe(a)
DescribeResult(nobs=10, minmax=(0, 9), mean=4.5, variance=9.
↪→166666666666666,

skewness=0.0, kurtosis=-1.2242424242424244)
>>> b = [[1, 2], [3, 4]]
>>> stats.describe(b)
DescribeResult(nobs=2, minmax=(array([1, 2]), array([3, 4])),

mean=array([2., 3.]), variance=array([2., 2.]),
skewness=array([0., 0.]), kurtosis=array([-2., -2.]))

scipy.stats.gmean

scipy.stats.gmean(a, axis=0, dtype=None)
Compute the geometric mean along the specified axis.
Return the geometric average of the array elements. That is: n-th root of (x1 * x2 * … * xn)

Parameters

a [array_like] Input array or object that can be converted to an array.
axis [int or None, optional] Axis along which the geometric mean is computed. Default is 0. If

None, compute over the whole array a.
dtype [dtype, optional] Type of the returned array and of the accumulator in which the elements

are summed. If dtype is not specified, it defaults to the dtype of a, unless a has an integer
dtype with a precision less than that of the default platform integer. In that case, the default
platform integer is used.

Returns

gmean [ndarray] see dtype parameter above
See also:

numpy.mean

Arithmetic average
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numpy.average

Weighted average
hmean

Harmonic mean

Notes

The geometric average is computed over a single dimension of the input array, axis=0 by default, or all values in
the array if axis=None. float64 intermediate and return values are used for integer inputs.
Use masked arrays to ignore any non-finite values in the input or that arise in the calculations such as Not a Number
and infinity because masked arrays automatically mask any non-finite values.

Examples

>>> from scipy.stats import gmean
>>> gmean([1, 4])
2.0
>>> gmean([1, 2, 3, 4, 5, 6, 7])
3.3800151591412964

scipy.stats.hmean

scipy.stats.hmean(a, axis=0, dtype=None)
Calculate the harmonic mean along the specified axis.
That is: n / (1/x1 + 1/x2 + … + 1/xn)

Parameters

a [array_like] Input array, masked array or object that can be converted to an array.
axis [int or None, optional] Axis along which the harmonic mean is computed. Default is 0. If

None, compute over the whole array a.
dtype [dtype, optional] Type of the returned array and of the accumulator in which the elements

are summed. If dtype is not specified, it defaults to the dtype of a, unless a has an integer
dtype with a precision less than that of the default platform integer. In that case, the default
platform integer is used.

Returns

hmean [ndarray] see dtype parameter above
See also:

numpy.mean

Arithmetic average
numpy.average

Weighted average
gmean

Geometric mean
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Notes

The harmonic mean is computed over a single dimension of the input array, axis=0 by default, or all values in the
array if axis=None. float64 intermediate and return values are used for integer inputs.
Use masked arrays to ignore any non-finite values in the input or that arise in the calculations such as Not a Number
and infinity.

Examples

>>> from scipy.stats import hmean
>>> hmean([1, 4])
1.6000000000000001
>>> hmean([1, 2, 3, 4, 5, 6, 7])
2.6997245179063363

scipy.stats.kurtosis

scipy.stats.kurtosis(a, axis=0, fisher=True, bias=True, nan_policy=’propagate’)
Compute the kurtosis (Fisher or Pearson) of a dataset.
Kurtosis is the fourth central moment divided by the square of the variance. If Fisher’s definition is used, then 3.0
is subtracted from the result to give 0.0 for a normal distribution.
If bias is False then the kurtosis is calculated using k statistics to eliminate bias coming from biased moment
estimators
Use kurtosistest to see if result is close enough to normal.

Parameters

a [array] data for which the kurtosis is calculated
axis [int or None, optional] Axis along which the kurtosis is calculated. Default is 0. If None,

compute over the whole array a.
fisher [bool, optional] If True, Fisher’s definition is used (normal ==> 0.0). If False, Pearson’s

definition is used (normal ==> 3.0).
bias [bool, optional] If False, then the calculations are corrected for statistical bias.
nan_policy

[{‘propagate’, ‘raise’, ‘omit’}, optional] Defines how to handle when input contains nan. ‘prop-
agate’ returns nan, ‘raise’ throws an error, ‘omit’ performs the calculations ignoring nan values.
Default is ‘propagate’.

Returns

kurtosis [array] The kurtosis of values along an axis. If all values are equal, return -3 for Fisher’s
definition and 0 for Pearson’s definition.

References

[1]
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Examples

>>> from scipy.stats import kurtosis
>>> kurtosis([1, 2, 3, 4, 5])
-1.3

scipy.stats.mode

scipy.stats.mode(a, axis=0, nan_policy=’propagate’)
Return an array of the modal (most common) value in the passed array.
If there is more than one such value, only the smallest is returned. The bin-count for the modal bins is also returned.

Parameters

a [array_like] n-dimensional array of which to find mode(s).
axis [int or None, optional] Axis along which to operate. Default is 0. If None, compute over the

whole array a.
nan_policy

[{‘propagate’, ‘raise’, ‘omit’}, optional] Defines how to handle when input contains nan. ‘prop-
agate’ returns nan, ‘raise’ throws an error, ‘omit’ performs the calculations ignoring nan values.
Default is ‘propagate’.

Returns

mode [ndarray] Array of modal values.
count [ndarray] Array of counts for each mode.

Examples

>>> a = np.array([[6, 8, 3, 0],
... [3, 2, 1, 7],
... [8, 1, 8, 4],
... [5, 3, 0, 5],
... [4, 7, 5, 9]])
>>> from scipy import stats
>>> stats.mode(a)
(array([[3, 1, 0, 0]]), array([[1, 1, 1, 1]]))

To get mode of whole array, specify axis=None:

>>> stats.mode(a, axis=None)
(array([3]), array([3]))

scipy.stats.moment

scipy.stats.moment(a, moment=1, axis=0, nan_policy=’propagate’)
Calculate the nth moment about the mean for a sample.
A moment is a specific quantitative measure of the shape of a set of points. It is often used to calculate coefficients
of skewness and kurtosis due to its close relationship with them.

Parameters
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a [array_like] data
moment [int or array_like of ints, optional] order of central moment that is returned. Default is 1.
axis [int or None, optional] Axis along which the central moment is computed. Default is 0. If

None, compute over the whole array a.
nan_policy

[{‘propagate’, ‘raise’, ‘omit’}, optional] Defines how to handle when input contains nan. ‘prop-
agate’ returns nan, ‘raise’ throws an error, ‘omit’ performs the calculations ignoring nan values.
Default is ‘propagate’.

Returns

n-th central moment
[ndarray or float] The appropriate moment along the given axis or over all values if axis
is None. The denominator for the moment calculation is the number of observations, no
degrees of freedom correction is done.

See also:
kurtosis, skew, describe

Notes

The k-th central moment of a data sample is:

mk =
1

n

n∑
i=1

(xi − x̄)k

Where n is the number of samples and x-bar is the mean. This function uses exponentiation by squares [1] for
efficiency.

References

[1]

Examples

>>> from scipy.stats import moment
>>> moment([1, 2, 3, 4, 5], moment=1)
0.0
>>> moment([1, 2, 3, 4, 5], moment=2)
2.0

scipy.stats.skew

scipy.stats.skew(a, axis=0, bias=True, nan_policy=’propagate’)
Compute the sample skewness of a data set.
For normally distributed data, the skewness should be about 0. For unimodal continuous distributions, a skewness
value > 0 means that there is more weight in the right tail of the distribution. The function skewtest can be used
to determine if the skewness value is close enough to 0, statistically speaking.

Parameters

a [ndarray] data
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axis [int or None, optional] Axis along which skewness is calculated. Default is 0. If None,
compute over the whole array a.

bias [bool, optional] If False, then the calculations are corrected for statistical bias.
nan_policy

[{‘propagate’, ‘raise’, ‘omit’}, optional] Defines how to handle when input contains nan. ‘prop-
agate’ returns nan, ‘raise’ throws an error, ‘omit’ performs the calculations ignoring nan values.
Default is ‘propagate’.

Returns

skewness [ndarray] The skewness of values along an axis, returning 0 where all values are equal.

Notes

The sample skewness is computed as the Fisher-Pearson coefficient of skewness, i.e.

g1 =
m3

m
3/2
2

where

mi =
1

N

N∑
n=1

(x[n]− x̄)i

is the biased sample ith central moment, and x̄ is the sample mean. If bias is False, the calculations are corrected
for bias and the value computed is the adjusted Fisher-Pearson standardized moment coefficient, i.e.

G1 =
k3

k
3/2
2

=

√
N(N − 1)

N − 2

m3

m
3/2
2

.

References

[1]

Examples

>>> from scipy.stats import skew
>>> skew([1, 2, 3, 4, 5])
0.0
>>> skew([2, 8, 0, 4, 1, 9, 9, 0])
0.2650554122698573

scipy.stats.kstat

scipy.stats.kstat(data, n=2)
Return the nth k-statistic (1<=n<=4 so far).
The nth k-statistic k_n is the unique symmetric unbiased estimator of the nth cumulant kappa_n.

Parameters

data [array_like] Input array. Note that n-D input gets flattened.
n [int, {1, 2, 3, 4}, optional] Default is equal to 2.
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Returns

kstat [float] The nth k-statistic.
See also:

kstatvar

Returns an unbiased estimator of the variance of the k-statistic.
moment

Returns the n-th central moment about the mean for a sample.

Notes

For a sample size n, the first few k-statistics are given by:

k1 = µk2 =
n

n− 1
m2k3 =

n2

(n− 1)(n− 2)
m3k4 =

n2[(n+ 1)m4 − 3(n− 1)m2
2]

(n− 1)(n− 2)(n− 3)

where µ is the sample mean,m2 is the sample variance, andmi is the i-th sample central moment.

References

http://mathworld.wolfram.com/k-Statistic.html
http://mathworld.wolfram.com/Cumulant.html

Examples

>>> from scipy import stats
>>> rndm = np.random.RandomState(1234)

As sample size increases, n-th moment and n-th k-statistic converge to the same number (although they aren’t
identical). In the case of the normal distribution, they converge to zero.

>>> for n in [2, 3, 4, 5, 6, 7]:
... x = rndm.normal(size=10**n)
... m, k = stats.moment(x, 3), stats.kstat(x, 3)
... print("%.3g %.3g %.3g" % (m, k, m-k))
-0.631 -0.651 0.0194
0.0282 0.0283 -8.49e-05
-0.0454 -0.0454 1.36e-05
7.53e-05 7.53e-05 -2.26e-09
0.00166 0.00166 -4.99e-09
-2.88e-06 -2.88e-06 8.63e-13

scipy.stats.kstatvar

scipy.stats.kstatvar(data, n=2)
Returns an unbiased estimator of the variance of the k-statistic.
See kstat for more details of the k-statistic.
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Parameters

data [array_like] Input array. Note that n-D input gets flattened.
n [int, {1, 2}, optional] Default is equal to 2.

Returns

kstatvar [float] The nth k-statistic variance.
See also:

kstat

Returns the n-th k-statistic.
moment

Returns the n-th central moment about the mean for a sample.

Notes

The variances of the first few k-statistics are given by:

var(k1) =
κ2

n
var(k2) =

κ4

n
+

2κ22
n− 1

var(k3) =
κ6

n
+

9κ2κ4
n− 1

+
9κ23
n− 1

+
6nκ32

(n− 1)(n− 2)
var(k4) =

κ8

n
+

16κ2κ6
n− 1

+
48κ3κ5
n− 1

+
34κ24
n− 1

+
72nκ22κ4

(n− 1)(n− 2)
+

144nκ2κ
2
3

(n− 1)(n− 2)
+

24(n+ 1)nκ42
(n− 1)(n− 2)(n− 3)

scipy.stats.tmean

scipy.stats.tmean(a, limits=None, inclusive=(True, True), axis=None)
Compute the trimmed mean.
This function finds the arithmetic mean of given values, ignoring values outside the given limits.

Parameters

a [array_like] Array of values.
limits [None or (lower limit, upper limit), optional] Values in the input array less than the lower

limit or greater than the upper limit will be ignored. When limits is None (default), then
all values are used. Either of the limit values in the tuple can also be None representing a
half-open interval.

inclusive [(bool, bool), optional] A tuple consisting of the (lower flag, upper flag). These flags de-
termine whether values exactly equal to the lower or upper limits are included. The default
value is (True, True).

axis [int or None, optional] Axis along which to compute test. Default is None.
Returns

tmean [float]
See also:

trim_mean

returns mean after trimming a proportion from both tails.

Examples
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>>> from scipy import stats
>>> x = np.arange(20)
>>> stats.tmean(x)
9.5
>>> stats.tmean(x, (3,17))
10.0

scipy.stats.tvar

scipy.stats.tvar(a, limits=None, inclusive=(True, True), axis=0, ddof=1)
Compute the trimmed variance.
This function computes the sample variance of an array of values, while ignoring values which are outside of given
limits.

Parameters

a [array_like] Array of values.
limits [None or (lower limit, upper limit), optional] Values in the input array less than the lower

limit or greater than the upper limit will be ignored. When limits is None, then all values
are used. Either of the limit values in the tuple can also be None representing a half-open
interval. The default value is None.

inclusive [(bool, bool), optional] A tuple consisting of the (lower flag, upper flag). These flags de-
termine whether values exactly equal to the lower or upper limits are included. The default
value is (True, True).

axis [int or None, optional] Axis along which to operate. Default is 0. If None, compute over the
whole array a.

ddof [int, optional] Delta degrees of freedom. Default is 1.
Returns

tvar [float] Trimmed variance.

Notes

tvar computes the unbiased sample variance, i.e. it uses a correction factor n / (n - 1).

Examples

>>> from scipy import stats
>>> x = np.arange(20)
>>> stats.tvar(x)
35.0
>>> stats.tvar(x, (3,17))
20.0

scipy.stats.tmin

scipy.stats.tmin(a, lowerlimit=None, axis=0, inclusive=True, nan_policy=’propagate’)
Compute the trimmed minimum.
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This function finds the miminum value of an array a along the specified axis, but only considering values greater
than a specified lower limit.

Parameters

a [array_like] array of values
lowerlimit [None or float, optional] Values in the input array less than the given limit will be ignored.

When lowerlimit is None, then all values are used. The default value is None.
axis [int or None, optional] Axis along which to operate. Default is 0. If None, compute over the

whole array a.
inclusive [{True, False}, optional] This flag determines whether values exactly equal to the lower limit

are included. The default value is True.
nan_policy

[{‘propagate’, ‘raise’, ‘omit’}, optional] Defines how to handle when input contains nan. ‘prop-
agate’ returns nan, ‘raise’ throws an error, ‘omit’ performs the calculations ignoring nan values.
Default is ‘propagate’.

Returns

tmin [float, int or ndarray]

Examples

>>> from scipy import stats
>>> x = np.arange(20)
>>> stats.tmin(x)
0

>>> stats.tmin(x, 13)
13

>>> stats.tmin(x, 13, inclusive=False)
14

scipy.stats.tmax

scipy.stats.tmax(a, upperlimit=None, axis=0, inclusive=True, nan_policy=’propagate’)
Compute the trimmed maximum.
This function computes the maximum value of an array along a given axis, while ignoring values larger than a
specified upper limit.

Parameters

a [array_like] array of values
upperlimit

[None or float, optional] Values in the input array greater than the given limit will be ignored.
When upperlimit is None, then all values are used. The default value is None.

axis [int or None, optional] Axis along which to operate. Default is 0. If None, compute over the
whole array a.

inclusive [{True, False}, optional] This flag determines whether values exactly equal to the upper limit
are included. The default value is True.

2400 Chapter 6. API Reference



SciPy Reference Guide, Release 1.3.1

nan_policy
[{‘propagate’, ‘raise’, ‘omit’}, optional] Defines how to handle when input contains nan. ‘prop-
agate’ returns nan, ‘raise’ throws an error, ‘omit’ performs the calculations ignoring nan values.
Default is ‘propagate’.

Returns

tmax [float, int or ndarray]

Examples

>>> from scipy import stats
>>> x = np.arange(20)
>>> stats.tmax(x)
19

>>> stats.tmax(x, 13)
13

>>> stats.tmax(x, 13, inclusive=False)
12

scipy.stats.tstd

scipy.stats.tstd(a, limits=None, inclusive=(True, True), axis=0, ddof=1)
Compute the trimmed sample standard deviation.
This function finds the sample standard deviation of given values, ignoring values outside the given limits.

Parameters

a [array_like] array of values
limits [None or (lower limit, upper limit), optional] Values in the input array less than the lower

limit or greater than the upper limit will be ignored. When limits is None, then all values
are used. Either of the limit values in the tuple can also be None representing a half-open
interval. The default value is None.

inclusive [(bool, bool), optional] A tuple consisting of the (lower flag, upper flag). These flags de-
termine whether values exactly equal to the lower or upper limits are included. The default
value is (True, True).

axis [int or None, optional] Axis along which to operate. Default is 0. If None, compute over the
whole array a.

ddof [int, optional] Delta degrees of freedom. Default is 1.
Returns

tstd [float]

Notes

tstd computes the unbiased sample standard deviation, i.e. it uses a correction factor n / (n - 1).
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Examples

>>> from scipy import stats
>>> x = np.arange(20)
>>> stats.tstd(x)
5.9160797830996161
>>> stats.tstd(x, (3,17))
4.4721359549995796

scipy.stats.tsem

scipy.stats.tsem(a, limits=None, inclusive=(True, True), axis=0, ddof=1)
Compute the trimmed standard error of the mean.
This function finds the standard error of the mean for given values, ignoring values outside the given limits.

Parameters

a [array_like] array of values
limits [None or (lower limit, upper limit), optional] Values in the input array less than the lower

limit or greater than the upper limit will be ignored. When limits is None, then all values
are used. Either of the limit values in the tuple can also be None representing a half-open
interval. The default value is None.

inclusive [(bool, bool), optional] A tuple consisting of the (lower flag, upper flag). These flags de-
termine whether values exactly equal to the lower or upper limits are included. The default
value is (True, True).

axis [int or None, optional] Axis along which to operate. Default is 0. If None, compute over the
whole array a.

ddof [int, optional] Delta degrees of freedom. Default is 1.
Returns

tsem [float]

Notes

tsem uses unbiased sample standard deviation, i.e. it uses a correction factor n / (n - 1).

Examples

>>> from scipy import stats
>>> x = np.arange(20)
>>> stats.tsem(x)
1.3228756555322954
>>> stats.tsem(x, (3,17))
1.1547005383792515

scipy.stats.variation

scipy.stats.variation(a, axis=0, nan_policy=’propagate’)
Compute the coefficient of variation, the ratio of the biased standard deviation to the mean.
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Parameters

a [array_like] Input array.
axis [int or None, optional] Axis along which to calculate the coefficient of variation. Default is

0. If None, compute over the whole array a.
nan_policy

[{‘propagate’, ‘raise’, ‘omit’}, optional] Defines how to handle when input contains nan. ‘prop-
agate’ returns nan, ‘raise’ throws an error, ‘omit’ performs the calculations ignoring nan values.
Default is ‘propagate’.

Returns

variation [ndarray] The calculated variation along the requested axis.

References

[1]

Examples

>>> from scipy.stats import variation
>>> variation([1, 2, 3, 4, 5])
0.47140452079103173

scipy.stats.find_repeats

scipy.stats.find_repeats(arr)
Find repeats and repeat counts.

Parameters

arr [array_like] Input array. This is cast to float64.
Returns

values [ndarray] The unique values from the (flattened) input that are repeated.
counts [ndarray] Number of times the corresponding ‘value’ is repeated.

Notes

In numpy >= 1.9 numpy.unique provides similar functionality. The main difference is that find_repeats
only returns repeated values.

Examples

>>> from scipy import stats
>>> stats.find_repeats([2, 1, 2, 3, 2, 2, 5])
RepeatedResults(values=array([2.]), counts=array([4]))

>>> stats.find_repeats([[10, 20, 1, 2], [5, 5, 4, 4]])
RepeatedResults(values=array([4., 5.]), counts=array([2, 2]))
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scipy.stats.trim_mean

scipy.stats.trim_mean(a, proportiontocut, axis=0)
Return mean of array after trimming distribution from both tails.
If proportiontocut = 0.1, slices off ‘leftmost’ and ‘rightmost’ 10% of scores. The input is sorted before slicing. Slices
off less if proportion results in a non-integer slice index (i.e., conservatively slices off proportiontocut ).

Parameters

a [array_like] Input array
proportiontocut

[float] Fraction to cut off of both tails of the distribution
axis [int or None, optional] Axis along which the trimmed means are computed. Default is 0. If

None, compute over the whole array a.
Returns

trim_mean
[ndarray] Mean of trimmed array.

See also:
trimboth

tmean

compute the trimmed mean ignoring values outside given limits.

Examples

>>> from scipy import stats
>>> x = np.arange(20)
>>> stats.trim_mean(x, 0.1)
9.5
>>> x2 = x.reshape(5, 4)
>>> x2
array([[ 0, 1, 2, 3],

[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15],
[16, 17, 18, 19]])

>>> stats.trim_mean(x2, 0.25)
array([ 8., 9., 10., 11.])
>>> stats.trim_mean(x2, 0.25, axis=1)
array([ 1.5, 5.5, 9.5, 13.5, 17.5])

scipy.stats.gstd

scipy.stats.gstd(a, axis=0, ddof=1)
Calculate the geometric standard deviation of an array
The geometric standard deviation describes the spread of a set of numbers where the geometric mean is preferred.
It is a multiplicative factor, and so a dimensionless quantity.
It is defined as the exponent of the standard deviation of log(a). Mathematically the population geometric
standard deviation can be evaluated as:
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gstd = exp(std(log(a)))

New in version 1.3.0.
Parameters

a [array_like] An array like object containing the sample data.
axis [int, tuple or None, optional] Axis along which to operate. Default is 0. If None, compute

over the whole array a.
ddof [int, optional] Degree of freedom correction in the calculation of the geometric standard

deviation. Default is 1.
Returns

ndarray or float
An array of the geometric standard deviation. If axis is None or a is a 1d array a float is
returned.

Notes

As the calculation requires the use of logarithms the geometric standard deviation only supports strictly positive
values. Any non-positive or infinite values will raise a ValueError. The geometric standard deviation is sometimes
confused with the exponent of the standard deviation, exp(std(a)). Instead the geometric standard deviation
is exp(std(log(a))). The default value for ddof is different to the default value (0) used by other ddof
containing functions, such as np.std and np.nanstd.

Examples

Find the geometric standard deviation of a log-normally distributed sample. Note that the standard deviation of
the distribution is one, on a log scale this evaluates to approximately exp(1).

>>> from scipy.stats import gstd
>>> np.random.seed(123)
>>> sample = np.random.lognormal(mean=0, sigma=1, size=1000)
>>> gstd(sample)
2.7217860664589946

Compute the geometric standard deviation of a multidimensional array and of a given axis.

>>> a = np.arange(1, 25).reshape(2, 3, 4)
>>> gstd(a, axis=None)
2.2944076136018947
>>> gstd(a, axis=2)
array([[1.82424757, 1.22436866, 1.13183117],

[1.09348306, 1.07244798, 1.05914985]])
>>> gstd(a, axis=(1,2))
array([2.12939215, 1.22120169])

The geometric standard deviation further handles masked arrays.

>>> a = np.arange(1, 25).reshape(2, 3, 4)
>>> ma = np.ma.masked_where(a > 16, a)
>>> ma
masked_array(

(continues on next page)
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(continued from previous page)
data=[[[1, 2, 3, 4],

[5, 6, 7, 8],
[9, 10, 11, 12]],

[[13, 14, 15, 16],
[--, --, --, --],
[--, --, --, --]]],

mask=[[[False, False, False, False],
[False, False, False, False],
[False, False, False, False]],

[[False, False, False, False],
[ True, True, True, True],
[ True, True, True, True]]],

fill_value=999999)
>>> gstd(ma, axis=2)
masked_array(

data=[[1.8242475707663655, 1.2243686572447428, 1.1318311657788478],
[1.0934830582350938, --, --]],

mask=[[False, False, False],
[False, True, True]],

fill_value=999999)

scipy.stats.iqr

scipy.stats.iqr(x, axis=None, rng=(25, 75), scale=’raw’, nan_policy=’propagate’, interpolation=’linear’,
keepdims=False)

Compute the interquartile range of the data along the specified axis.
The interquartile range (IQR) is the difference between the 75th and 25th percentile of the data. It is a measure of
the dispersion similar to standard deviation or variance, but is much more robust against outliers [2].
The rng parameter allows this function to compute other percentile ranges than the actual IQR. For example,
setting rng=(0, 100) is equivalent to numpy.ptp.
The IQR of an empty array is np.nan.
New in version 0.18.0.

Parameters

x [array_like] Input array or object that can be converted to an array.
axis [int or sequence of int, optional] Axis along which the range is computed. The default is to

compute the IQR for the entire array.
rng [Two-element sequence containing floats in range of [0,100] optional] Percentiles over which

to compute the range. Each must be between 0 and 100, inclusive. The default is the true
IQR: (25, 75). The order of the elements is not important.

scale [scalar or str, optional] The numerical value of scale will be divided out of the final result.
The following string values are recognized:
‘raw’ : No scaling, just return the raw IQR. ‘normal’ : Scale by 2

√
2erf−1( 12 ) ≈ 1.349.

The default is ‘raw’. Array-like scale is also allowed, as long as it broadcasts correctly to the
output such that out / scale is a valid operation. The output dimensions depend on the
input array, x, the axis argument, and the keepdims flag.

nan_policy
[{‘propagate’, ‘raise’, ‘omit’}, optional] Defines how to handle when input contains nan. ‘prop-
agate’ returns nan, ‘raise’ throws an error, ‘omit’ performs the calculations ignoring nan values.
Default is ‘propagate’.
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interpolation
[{‘linear’, ‘lower’, ‘higher’, ‘midpoint’, ‘nearest’}, optional] Specifies the interpolation method
to use when the percentile boundaries lie between two data points i and j:
• ‘linear’ [i + (j - i) * fraction, where fraction is the] fractional part of the index sur-

rounded by i and j.
• ‘lower’ : i.
• ‘higher’ : j.
• ‘nearest’ : i or j whichever is nearest.
• ‘midpoint’ : (i + j) / 2.
Default is ‘linear’.

keepdims [bool, optional] If this is set to True, the reduced axes are left in the result as dimensions with
size one. With this option, the result will broadcast correctly against the original array x.

Returns

iqr [scalar or ndarray] If axis=None, a scalar is returned. If the input contains integers or
floats of smaller precision than np.float64, then the output data-type is np.float64.
Otherwise, the output data-type is the same as that of the input.

See also:
numpy.std, numpy.var

Notes

This function is heavily dependent on the version of numpy that is installed. Versions greater than 1.11.0b3 are
highly recommended, as they include a number of enhancements and fixes to numpy.percentile and numpy.
nanpercentile that affect the operation of this function. The following modifications apply:
Below 1.10.0

[nan_policy is poorly defined.] The default behavior of numpy.percentile is used for ‘propagate’. This
is a hybrid of ‘omit’ and ‘propagate’ that mostly yields a skewed version of ‘omit’ since NaNs are sorted to the
end of the data. A warning is raised if there are NaNs in the data.

Below 1.9.0: numpy.nanpercentile does not exist.

This means that numpy.percentile is used regardless of nan_policy and a warning is issued. See previous
item for a description of the behavior.

Below 1.9.0: keepdims and interpolation are not supported.
The keywords get ignored with a warning if supplied with non-default values. However, multiple axes are still
supported.

References

[1], [2], [3]

Examples

>>> from scipy.stats import iqr
>>> x = np.array([[10, 7, 4], [3, 2, 1]])
>>> x
array([[10, 7, 4],

(continues on next page)
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(continued from previous page)
[ 3, 2, 1]])

>>> iqr(x)
4.0
>>> iqr(x, axis=0)
array([ 3.5, 2.5, 1.5])
>>> iqr(x, axis=1)
array([ 3., 1.])
>>> iqr(x, axis=1, keepdims=True)
array([[ 3.],

[ 1.]])

scipy.stats.sem

scipy.stats.sem(a, axis=0, ddof=1, nan_policy=’propagate’)
Calculate the standard error of the mean (or standard error of measurement) of the values in the input array.

Parameters

a [array_like] An array containing the values for which the standard error is returned.
axis [int or None, optional] Axis along which to operate. Default is 0. If None, compute over the

whole array a.
ddof [int, optional] Delta degrees-of-freedom. How many degrees of freedom to adjust for bias

in limited samples relative to the population estimate of variance. Defaults to 1.
nan_policy

[{‘propagate’, ‘raise’, ‘omit’}, optional] Defines how to handle when input contains nan. ‘prop-
agate’ returns nan, ‘raise’ throws an error, ‘omit’ performs the calculations ignoring nan values.
Default is ‘propagate’.

Returns

s [ndarray or float] The standard error of the mean in the sample(s), along the input axis.

Notes

The default value for ddof is different to the default (0) used by other ddof containing routines, such as np.std and
np.nanstd.

Examples

Find standard error along the first axis:

>>> from scipy import stats
>>> a = np.arange(20).reshape(5,4)
>>> stats.sem(a)
array([ 2.8284, 2.8284, 2.8284, 2.8284])

Find standard error across the whole array, using n degrees of freedom:

>>> stats.sem(a, axis=None, ddof=0)
1.2893796958227628
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scipy.stats.bayes_mvs

scipy.stats.bayes_mvs(data, alpha=0.9)
Bayesian confidence intervals for the mean, var, and std.

Parameters

data [array_like] Input data, if multi-dimensional it is flattened to 1-D by bayes_mvs. Requires
2 or more data points.

alpha [float, optional] Probability that the returned confidence interval contains the true parameter.
Returns

mean_cntr, var_cntr, std_cntr
[tuple] The three results are for the mean, variance and standard deviation, respectively. Each
result is a tuple of the form:

(center, (lower, upper))

with center the mean of the conditional pdf of the value given the data, and (lower, upper) a
confidence interval, centered on the median, containing the estimate to a probability alpha.

See also:
mvsdist

Notes

Each tuple of mean, variance, and standard deviation estimates represent the (center, (lower, upper)) with center
the mean of the conditional pdf of the value given the data and (lower, upper) is a confidence interval centered on
the median, containing the estimate to a probability alpha.
Converts data to 1-D and assumes all data has the same mean and variance. Uses Jeffrey’s prior for variance and
std.
Equivalent to tuple((x.mean(), x.interval(alpha)) for x in mvsdist(dat))

References

T.E. Oliphant, “A Bayesian perspective on estimating mean, variance, and standard-deviation from data”, https:
//scholarsarchive.byu.edu/facpub/278, 2006.

Examples

First a basic example to demonstrate the outputs:

>>> from scipy import stats
>>> data = [6, 9, 12, 7, 8, 8, 13]
>>> mean, var, std = stats.bayes_mvs(data)
>>> mean
Mean(statistic=9.0, minmax=(7.103650222612533, 10.896349777387467))
>>> var
Variance(statistic=10.0, minmax=(3.176724206..., 24.45910382...))
>>> std
Std_dev(statistic=2.9724954732045084, minmax=(1.7823367265645143, 4.
↪→945614605014631))
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Now we generate some normally distributed random data, and get estimates of mean and standard deviation with
95% confidence intervals for those estimates:

>>> n_samples = 100000
>>> data = stats.norm.rvs(size=n_samples)
>>> res_mean, res_var, res_std = stats.bayes_mvs(data, alpha=0.95)

>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> ax.hist(data, bins=100, density=True, label='Histogram of data')
>>> ax.vlines(res_mean.statistic, 0, 0.5, colors='r', label='Estimated␣
↪→mean')
>>> ax.axvspan(res_mean.minmax[0],res_mean.minmax[1], facecolor='r',
... alpha=0.2, label=r'Estimated mean (95% limits)')
>>> ax.vlines(res_std.statistic, 0, 0.5, colors='g', label='Estimated␣
↪→scale')
>>> ax.axvspan(res_std.minmax[0],res_std.minmax[1], facecolor='g',␣
↪→alpha=0.2,
... label=r'Estimated scale (95% limits)')

>>> ax.legend(fontsize=10)
>>> ax.set_xlim([-4, 4])
>>> ax.set_ylim([0, 0.5])
>>> plt.show()

4 3 2 1 0 1 2 3 4
0.0

0.1

0.2

0.3
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0.5
Histogram of data
Estimated mean (95% limits)
Estimated scale (95% limits)
Estimated mean
Estimated scale

scipy.stats.mvsdist

scipy.stats.mvsdist(data)
‘Frozen’ distributions for mean, variance, and standard deviation of data.

Parameters

data [array_like] Input array. Converted to 1-D using ravel. Requires 2 or more data-points.
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Returns

mdist [“frozen” distribution object] Distribution object representing the mean of the data
vdist [“frozen” distribution object] Distribution object representing the variance of the data
sdist [“frozen” distribution object] Distribution object representing the standard deviation of the

data
See also:
bayes_mvs

Notes

The return values from bayes_mvs(data) is equivalent to tuple((x.mean(), x.interval(0.90))
for x in mvsdist(data)).
In other words, calling <dist>.mean() and <dist>.interval(0.90) on the three distribution objects
returned from this function will give the same results that are returned from bayes_mvs.

References

T.E. Oliphant, “A Bayesian perspective on estimating mean, variance, and standard-deviation from data”, https:
//scholarsarchive.byu.edu/facpub/278, 2006.

Examples

>>> from scipy import stats
>>> data = [6, 9, 12, 7, 8, 8, 13]
>>> mean, var, std = stats.mvsdist(data)

We now have frozen distribution objects “mean”, “var” and “std” that we can examine:

>>> mean.mean()
9.0
>>> mean.interval(0.95)
(6.6120585482655692, 11.387941451734431)
>>> mean.std()
1.1952286093343936

scipy.stats.entropy

scipy.stats.entropy(pk, qk=None, base=None)
Calculate the entropy of a distribution for given probability values.
If only probabilities pk are given, the entropy is calculated as S = -sum(pk * log(pk), axis=0).
If qk is not None, then compute the Kullback-Leibler divergence S = sum(pk * log(pk / qk),
axis=0).
This routine will normalize pk and qk if they don’t sum to 1.

Parameters

pk [sequence] Defines the (discrete) distribution. pk[i] is the (possibly unnormalized) prob-
ability of event i.
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qk [sequence, optional] Sequence against which the relative entropy is computed. Should be in
the same format as pk.

base [float, optional] The logarithmic base to use, defaults to e (natural logarithm).
Returns

S [float] The calculated entropy.

scipy.stats.median_absolute_deviation

scipy.stats.median_absolute_deviation(x, axis=0, center=<function median>, scale=1.4826,
nan_policy=’propagate’)

Compute the median absolute deviation of the data along the given axis.
The median absolute deviation (MAD, [1]) computes the median over the absolute deviations from the median. It
is a measure of dispersion similar to the standard deviation, but is more robust to outliers [2].
The MAD of an empty array is np.nan.
New in version 1.3.0.

Parameters

x [array_like] Input array or object that can be converted to an array.
axis [int or None, optional] Axis along which the range is computed. Default is 0. If None,

compute the MAD over the entire array.
center [callable, optional] A function that will return the central value. The default is to use

np.median. Any user defined function used will need to have the function signature
func(arr, axis).

scale [int, optional] The scaling factor applied to the MAD. The default scale (1.4826) ensures
consistency with the standard deviation for normally distributed data.

nan_policy
[{‘propagate’, ‘raise’, ‘omit’}, optional] Defines how to handle when input contains nan. ‘prop-
agate’ returns nan, ‘raise’ throws an error, ‘omit’ performs the calculations ignoring nan values.
Default is ‘propagate’.

Returns

mad [scalar or ndarray] If axis=None, a scalar is returned. If the input contains integers or
floats of smaller precision than np.float64, then the output data-type is np.float64.
Otherwise, the output data-type is the same as that of the input.

See also:
numpy.std, numpy.var, numpy.median, scipy.stats.iqr, scipy.stats.tmean, scipy.
stats.tstd, scipy.stats.tvar

Notes

The center argument only affects the calculation of the central value around which the MAD is calculated. That is,
passing in center=np.mean will calculate the MAD around the mean - it will not calculate the mean absolute
deviation.

References

[1], [2]
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Examples

When comparing the behavior of median_absolute_deviation with np.std, the latter is affected when
we change a single value of an array to have an outlier value while the MAD hardly changes:

>>> from scipy import stats
>>> x = stats.norm.rvs(size=100, scale=1, random_state=123456)
>>> x.std()
0.9973906394005013
>>> stats.median_absolute_deviation(x)
1.2280762773108278
>>> x[0] = 345.6
>>> x.std()
34.42304872314415
>>> stats.median_absolute_deviation(x)
1.2340335571164334

Axis handling example:

>>> x = np.array([[10, 7, 4], [3, 2, 1]])
>>> x
array([[10, 7, 4],

[ 3, 2, 1]])
>>> stats.median_absolute_deviation(x)
array([5.1891, 3.7065, 2.2239])
>>> stats.median_absolute_deviation(x, axis=None)
2.9652

6.28.8 Frequency statistics

cumfreq(a[, numbins, defaultreallimits, weights]) Return a cumulative frequency histogram, using the his-
togram function.

itemfreq(*args, **kwds) itemfreq is deprecated! itemfreq is deprecated
and will be removed in a future version.

percentileofscore(a, score[, kind]) The percentile rank of a score relative to a list of scores.
scoreatpercentile(a, per[, limit, …]) Calculate the score at a given percentile of the input se-

quence.
relfreq(a[, numbins, defaultreallimits, weights]) Return a relative frequency histogram, using the his-

togram function.

scipy.stats.cumfreq

scipy.stats.cumfreq(a, numbins=10, defaultreallimits=None, weights=None)
Return a cumulative frequency histogram, using the histogram function.
A cumulative histogram is a mapping that counts the cumulative number of observations in all of the bins up to the
specified bin.

Parameters

a [array_like] Input array.
numbins [int, optional] The number of bins to use for the histogram. Default is 10.
defaultreallimits
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[tuple (lower, upper), optional] The lower and upper values for the range of the histogram. If
no value is given, a range slightly larger than the range of the values in a is used. Specifically
(a.min() - s, a.max() + s), where s = (1/2)(a.max() - a.min())
/ (numbins - 1).

weights [array_like, optional] The weights for each value in a. Default is None, which gives each
value a weight of 1.0

Returns

cumcount [ndarray] Binned values of cumulative frequency.
lowerlimit [float] Lower real limit
binsize [float] Width of each bin.
extrapoints

[int] Extra points.

Examples

>>> import matplotlib.pyplot as plt
>>> from scipy import stats
>>> x = [1, 4, 2, 1, 3, 1]
>>> res = stats.cumfreq(x, numbins=4, defaultreallimits=(1.5, 5))
>>> res.cumcount
array([ 1., 2., 3., 3.])
>>> res.extrapoints
3

Create a normal distribution with 1000 random values

>>> rng = np.random.RandomState(seed=12345)
>>> samples = stats.norm.rvs(size=1000, random_state=rng)

Calculate cumulative frequencies

>>> res = stats.cumfreq(samples, numbins=25)

Calculate space of values for x

>>> x = res.lowerlimit + np.linspace(0, res.binsize*res.cumcount.size,
... res.cumcount.size)

Plot histogram and cumulative histogram

>>> fig = plt.figure(figsize=(10, 4))
>>> ax1 = fig.add_subplot(1, 2, 1)
>>> ax2 = fig.add_subplot(1, 2, 2)
>>> ax1.hist(samples, bins=25)
>>> ax1.set_title('Histogram')
>>> ax2.bar(x, res.cumcount, width=res.binsize)
>>> ax2.set_title('Cumulative histogram')
>>> ax2.set_xlim([x.min(), x.max()])

>>> plt.show()

2414 Chapter 6. API Reference



SciPy Reference Guide, Release 1.3.1

2 0 2 4
0

20

40

60

80

100

Histogram

2 0 2 4
0

200

400

600

800

1000
Cumulative histogram

scipy.stats.itemfreq

scipy.stats.itemfreq(*args, **kwds)
itemfreq is deprecated! itemfreq is deprecated and will be removed in a future version. Use instead
np.unique(…, return_counts=True)

Return a 2-D array of item frequencies.

Parameters

a [(N,) array_like] Input array.
Returns

itemfreq [(K, 2) ndarray] A 2-D frequency table. Column 1 contains sorted, unique values from a,
column 2 contains their respective counts.

Examples

>>> from scipy import stats
>>> a = np.array([1, 1, 5, 0, 1, 2, 2, 0, 1, 4])
>>> stats.itemfreq(a)
array([[ 0., 2.],

[ 1., 4.],
[ 2., 2.],
[ 4., 1.],
[ 5., 1.]])

>>> np.bincount(a)
array([2, 4, 2, 0, 1, 1])

>>> stats.itemfreq(a/10.)
array([[ 0. , 2. ],

[ 0.1, 4. ],
[ 0.2, 2. ],
[ 0.4, 1. ],
[ 0.5, 1. ]])
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scipy.stats.percentileofscore

scipy.stats.percentileofscore(a, score, kind=’rank’)
The percentile rank of a score relative to a list of scores.
A percentileofscore of, for example, 80% means that 80% of the scores in a are below the given score. In
the case of gaps or ties, the exact definition depends on the optional keyword, kind.

Parameters

a [array_like] Array of scores to which score is compared.
score [int or float] Score that is compared to the elements in a.
kind [{‘rank’, ‘weak’, ‘strict’, ‘mean’}, optional] This optional parameter specifies the interpretation

of the resulting score:
• “rank”: Average percentage ranking of score. In case of

multiple matches, average the percentage rankings of all matching scores.
• “weak”: This kind corresponds to the definition of a cumulative

distribution function. A percentileofscore of 80% means that 80% of values
are less than or equal to the provided score.

• “strict”: Similar to “weak”, except that only values that are
strictly less than the given score are counted.

• “mean”: The average of the “weak” and “strict” scores, often used in
testing. See
https://en.wikipedia.org/wiki/Percentile_rank

Returns

pcos [float] Percentile-position of score (0-100) relative to a.
See also:
numpy.percentile

Examples

Three-quarters of the given values lie below a given score:

>>> from scipy import stats
>>> stats.percentileofscore([1, 2, 3, 4], 3)
75.0

With multiple matches, note how the scores of the two matches, 0.6 and 0.8 respectively, are averaged:

>>> stats.percentileofscore([1, 2, 3, 3, 4], 3)
70.0

Only 2/5 values are strictly less than 3:

>>> stats.percentileofscore([1, 2, 3, 3, 4], 3, kind='strict')
40.0

But 4/5 values are less than or equal to 3:

>>> stats.percentileofscore([1, 2, 3, 3, 4], 3, kind='weak')
80.0

The average between the weak and the strict scores is
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>>> stats.percentileofscore([1, 2, 3, 3, 4], 3, kind='mean')
60.0

scipy.stats.scoreatpercentile

scipy.stats.scoreatpercentile(a, per, limit=(), interpolation_method=’fraction’, axis=None)
Calculate the score at a given percentile of the input sequence.
For example, the score at per=50 is the median. If the desired quantile lies between two data points, we interpolate
between them, according to the value of interpolation. If the parameter limit is provided, it should be a tuple (lower,
upper) of two values.

Parameters

a [array_like] A 1-D array of values from which to extract score.
per [array_like] Percentile(s) at which to extract score. Values should be in range [0,100].
limit [tuple, optional] Tuple of two scalars, the lower and upper limits within which to compute

the percentile. Values of a outside this (closed) interval will be ignored.
interpolation_method

[{‘fraction’, ‘lower’, ‘higher’}, optional] This optional parameter specifies the interpolation
method to use, when the desired quantile lies between two data points i and j
• fraction: i + (j - i) * fractionwhere fraction is the fractional part of the
index surrounded by i and j.

• lower: i.
• higher: j.

axis [int, optional] Axis along which the percentiles are computed. Default is None. If None,
compute over the whole array a.

Returns

score [float or ndarray] Score at percentile(s).
See also:
percentileofscore, numpy.percentile

Notes

This function will become obsolete in the future. For NumPy 1.9 and higher, numpy.percentile provides all
the functionality that scoreatpercentile provides. And it’s significantly faster. Therefore it’s recommended
to use numpy.percentile for users that have numpy >= 1.9.

Examples

>>> from scipy import stats
>>> a = np.arange(100)
>>> stats.scoreatpercentile(a, 50)
49.5
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scipy.stats.relfreq

scipy.stats.relfreq(a, numbins=10, defaultreallimits=None, weights=None)
Return a relative frequency histogram, using the histogram function.
A relative frequency histogram is a mapping of the number of observations in each of the bins relative to the total
of observations.

Parameters

a [array_like] Input array.
numbins [int, optional] The number of bins to use for the histogram. Default is 10.
defaultreallimits

[tuple (lower, upper), optional] The lower and upper values for the range of the histogram. If
no value is given, a range slightly larger than the range of the values in a is used. Specifically
(a.min() - s, a.max() + s), where s = (1/2)(a.max() - a.min())
/ (numbins - 1).

weights [array_like, optional] The weights for each value in a. Default is None, which gives each
value a weight of 1.0

Returns

frequency [ndarray] Binned values of relative frequency.
lowerlimit [float] Lower real limit
binsize [float] Width of each bin.
extrapoints

[int] Extra points.

Examples

>>> import matplotlib.pyplot as plt
>>> from scipy import stats
>>> a = np.array([2, 4, 1, 2, 3, 2])
>>> res = stats.relfreq(a, numbins=4)
>>> res.frequency
array([ 0.16666667, 0.5 , 0.16666667, 0.16666667])
>>> np.sum(res.frequency) # relative frequencies should add up to 1
1.0

Create a normal distribution with 1000 random values

>>> rng = np.random.RandomState(seed=12345)
>>> samples = stats.norm.rvs(size=1000, random_state=rng)

Calculate relative frequencies

>>> res = stats.relfreq(samples, numbins=25)

Calculate space of values for x

>>> x = res.lowerlimit + np.linspace(0, res.binsize*res.frequency.size,
... res.frequency.size)

Plot relative frequency histogram
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>>> fig = plt.figure(figsize=(5, 4))
>>> ax = fig.add_subplot(1, 1, 1)
>>> ax.bar(x, res.frequency, width=res.binsize)
>>> ax.set_title('Relative frequency histogram')
>>> ax.set_xlim([x.min(), x.max()])

>>> plt.show()
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binned_statistic(x, values[, statistic, …]) Compute a binned statistic for one or more sets of data.
binned_statistic_2d(x, y, values[, …]) Compute a bidimensional binned statistic for one or more

sets of data.
binned_statistic_dd(sample, values[, …]) Compute a multidimensional binned statistic for a set of

data.

scipy.stats.binned_statistic

scipy.stats.binned_statistic(x, values, statistic=’mean’, bins=10, range=None)
Compute a binned statistic for one or more sets of data.
This is a generalization of a histogram function. A histogram divides the space into bins, and returns the count of
the number of points in each bin. This function allows the computation of the sum, mean, median, or other statistic
of the values (or set of values) within each bin.

Parameters

x [(N,) array_like] A sequence of values to be binned.
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values [(N,) array_like or list of (N,) array_like] The data on which the statistic will be computed.
This must be the same shape as x, or a set of sequences - each the same shape as x. If values
is a set of sequences, the statistic will be computed on each independently.

statistic [string or callable, optional] The statistic to compute (default is ‘mean’). The following statis-
tics are available:
• ‘mean’ : compute the mean of values for points within each bin. Empty bins will be
represented by NaN.

• ‘std’ : compute the standard deviation within each bin. This is implicitly calculated with
ddof=0.

• ‘median’ : compute the median of values for points within each bin. Empty bins will be
represented by NaN.

• ‘count’ : compute the count of points within each bin. This is identical to an unweighted
histogram. values array is not referenced.

• ‘sum’ : compute the sum of values for points within each bin. This is identical to a weighted
histogram.

• ‘min’ : compute the minimum of values for points within each bin. Empty bins will be
represented by NaN.

• ‘max’ : compute the maximum of values for point within each bin. Empty bins will be
represented by NaN.

• function : a user-defined function which takes a 1D array of values, and outputs a single
numerical statistic. This function will be called on the values in each bin. Empty bins will
be represented by function([]), or NaN if this returns an error.

bins [int or sequence of scalars, optional] If bins is an int, it defines the number of equal-width
bins in the given range (10 by default). If bins is a sequence, it defines the bin edges, including
the rightmost edge, allowing for non-uniform bin widths. Values in x that are smaller than
lowest bin edge are assigned to bin number 0, values beyond the highest bin are assigned to
bins[-1]. If the bin edges are specified, the number of bins will be, (nx = len(bins)-1).

range [(float, float) or [(float, float)], optional] The lower and upper range of the bins. If not pro-
vided, range is simply (x.min(), x.max()). Values outside the range are ignored.

Returns

statistic [array] The values of the selected statistic in each bin.
bin_edges [array of dtype float] Return the bin edges (length(statistic)+1).
binnumber: 1-D ndarray of ints

Indices of the bins (corresponding to bin_edges) in which each value of x belongs. Same
length as values. A binnumber of i means the corresponding value is between (bin_edges[i-
1], bin_edges[i]).

See also:
numpy.digitize, numpy.histogram, binned_statistic_2d, binned_statistic_dd

Notes

All but the last (righthand-most) bin is half-open. In other words, if bins is [1, 2, 3, 4], then the first bin
is [1, 2) (including 1, but excluding 2) and the second [2, 3). The last bin, however, is [3, 4], which
includes 4.
New in version 0.11.0.
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Examples

>>> from scipy import stats
>>> import matplotlib.pyplot as plt

First some basic examples:
Create two evenly spaced bins in the range of the given sample, and sum the corresponding values in each of those
bins:

>>> values = [1.0, 1.0, 2.0, 1.5, 3.0]
>>> stats.binned_statistic([1, 1, 2, 5, 7], values, 'sum', bins=2)
(array([ 4. , 4.5]), array([ 1., 4., 7.]), array([1, 1, 1, 2, 2]))

Multiple arrays of values can also be passed. The statistic is calculated on each set independently:

>>> values = [[1.0, 1.0, 2.0, 1.5, 3.0], [2.0, 2.0, 4.0, 3.0, 6.0]]
>>> stats.binned_statistic([1, 1, 2, 5, 7], values, 'sum', bins=2)
(array([[ 4. , 4.5], [ 8. , 9. ]]), array([ 1., 4., 7.]),

array([1, 1, 1, 2, 2]))

>>> stats.binned_statistic([1, 2, 1, 2, 4], np.arange(5), statistic='mean
↪→',
... bins=3)
(array([ 1., 2., 4.]), array([ 1., 2., 3., 4.]),

array([1, 2, 1, 2, 3]))

As a second example, we now generate some random data of sailing boat speed as a function of wind speed, and
then determine how fast our boat is for certain wind speeds:

>>> windspeed = 8 * np.random.rand(500)
>>> boatspeed = .3 * windspeed**.5 + .2 * np.random.rand(500)
>>> bin_means, bin_edges, binnumber = stats.binned_statistic(windspeed,
... boatspeed, statistic='median', bins=[1,2,3,4,5,6,7])
>>> plt.figure()
>>> plt.plot(windspeed, boatspeed, 'b.', label='raw data')
>>> plt.hlines(bin_means, bin_edges[:-1], bin_edges[1:], colors='g', lw=5,
... label='binned statistic of data')
>>> plt.legend()

Now we can use binnumber to select all datapoints with a windspeed below 1:

>>> low_boatspeed = boatspeed[binnumber == 0]

As a final example, we will use bin_edges and binnumber to make a plot of a distribution that shows the mean
and distribution around that mean per bin, on top of a regular histogram and the probability distribution function:

>>> x = np.linspace(0, 5, num=500)
>>> x_pdf = stats.maxwell.pdf(x)
>>> samples = stats.maxwell.rvs(size=10000)

>>> bin_means, bin_edges, binnumber = stats.binned_statistic(x, x_pdf,
... statistic='mean', bins=25)

(continues on next page)
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(continued from previous page)
>>> bin_width = (bin_edges[1] - bin_edges[0])
>>> bin_centers = bin_edges[1:] - bin_width/2

>>> plt.figure()
>>> plt.hist(samples, bins=50, density=True, histtype='stepfilled',
... alpha=0.2, label='histogram of data')
>>> plt.plot(x, x_pdf, 'r-', label='analytical pdf')
>>> plt.hlines(bin_means, bin_edges[:-1], bin_edges[1:], colors='g', lw=2,
... label='binned statistic of data')
>>> plt.plot((binnumber - 0.5) * bin_width, x_pdf, 'g.', alpha=0.5)
>>> plt.legend(fontsize=10)
>>> plt.show()
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scipy.stats.binned_statistic_2d

scipy.stats.binned_statistic_2d(x, y, values, statistic=’mean’, bins=10, range=None, ex-
pand_binnumbers=False)

Compute a bidimensional binned statistic for one or more sets of data.
This is a generalization of a histogram2d function. A histogram divides the space into bins, and returns the count
of the number of points in each bin. This function allows the computation of the sum, mean, median, or other
statistic of the values (or set of values) within each bin.

Parameters

x [(N,) array_like] A sequence of values to be binned along the first dimension.
y [(N,) array_like] A sequence of values to be binned along the second dimension.
values [(N,) array_like or list of (N,) array_like] The data on which the statistic will be computed.

This must be the same shape as x, or a list of sequences - each with the same shape as x. If
values is such a list, the statistic will be computed on each independently.

statistic [string or callable, optional] The statistic to compute (default is ‘mean’). The following statis-
tics are available:
• ‘mean’ : compute the mean of values for points within each bin. Empty bins will be
represented by NaN.

• ‘std’ : compute the standard deviation within each bin. This is implicitly calculated with
ddof=0.

• ‘median’ : compute the median of values for points within each bin. Empty bins will be
represented by NaN.

• ‘count’ : compute the count of points within each bin. This is identical to an unweighted
histogram. values array is not referenced.

• ‘sum’ : compute the sum of values for points within each bin. This is identical to a weighted
histogram.

• ‘min’ : compute the minimum of values for points within each bin. Empty bins will be
represented by NaN.

• ‘max’ : compute the maximum of values for point within each bin. Empty bins will be
represented by NaN.

• function : a user-defined function which takes a 1D array of values, and outputs a single
numerical statistic. This function will be called on the values in each bin. Empty bins will
be represented by function([]), or NaN if this returns an error.

bins [int or [int, int] or array_like or [array, array], optional] The bin specification:
• the number of bins for the two dimensions (nx = ny = bins),
• the number of bins in each dimension (nx, ny = bins),
• the bin edges for the two dimensions (x_edge = y_edge = bins),
• the bin edges in each dimension (x_edge, y_edge = bins).
If the bin edges are specified, the number of bins will be, (nx = len(x_edge)-1, ny =
len(y_edge)-1).

range [(2,2) array_like, optional] The leftmost and rightmost edges of the bins along each dimen-
sion (if not specified explicitly in the bins parameters): [[xmin, xmax], [ymin, ymax]]. All
values outside of this range will be considered outliers and not tallied in the histogram.

expand_binnumbers
[bool, optional] ‘False’ (default): the returned binnumber is a shape (N,) array of linearized
bin indices. ‘True’: the returned binnumber is ‘unraveled’ into a shape (2,N) ndarray, where
each row gives the bin numbers in the corresponding dimension. See the binnumber returned
value, and the Examples section.
New in version 0.17.0.

Returns

statistic [(nx, ny) ndarray] The values of the selected statistic in each two-dimensional bin.
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x_edge [(nx + 1) ndarray] The bin edges along the first dimension.
y_edge [(ny + 1) ndarray] The bin edges along the second dimension.
binnumber

[(N,) array of ints or (2,N) ndarray of ints] This assigns to each element of sample an integer
that represents the bin in which this observation falls. The representation depends on the
expand_binnumbers argument. See Notes for details.

See also:
numpy.digitize, numpy.histogram2d, binned_statistic, binned_statistic_dd

Notes

Binedges: All but the last (righthand-most) bin is half-open. In other words, if bins is [1, 2, 3, 4], then the
first bin is [1, 2) (including 1, but excluding 2) and the second [2, 3). The last bin, however, is [3, 4],
which includes 4.
binnumber: This returned argument assigns to each element of sample an integer that represents the bin in which
it belongs. The representation depends on the expand_binnumbers argument. If ‘False’ (default): The returned
binnumber is a shape (N,) array of linearized indices mapping each element of sample to its corresponding bin
(using row-major ordering). If ‘True’: The returned binnumber is a shape (2,N) ndarray where each row indicates
bin placements for each dimension respectively. In each dimension, a binnumber of i means the corresponding
value is between (D_edge[i-1], D_edge[i]), where ‘D’ is either ‘x’ or ‘y’.
New in version 0.11.0.

Examples

>>> from scipy import stats

Calculate the counts with explicit bin-edges:

>>> x = [0.1, 0.1, 0.1, 0.6]
>>> y = [2.1, 2.6, 2.1, 2.1]
>>> binx = [0.0, 0.5, 1.0]
>>> biny = [2.0, 2.5, 3.0]
>>> ret = stats.binned_statistic_2d(x, y, None, 'count', bins=[binx,biny])
>>> ret.statistic
array([[ 2., 1.],

[ 1., 0.]])

The bin in which each sample is placed is given by the binnumber returned parameter. By default, these are the
linearized bin indices:

>>> ret.binnumber
array([5, 6, 5, 9])

The bin indices can also be expanded into separate entries for each dimension using the expand_binnumbers pa-
rameter:

>>> ret = stats.binned_statistic_2d(x, y, None, 'count', bins=[binx,biny],
... expand_binnumbers=True)
>>> ret.binnumber

(continues on next page)
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(continued from previous page)
array([[1, 1, 1, 2],

[1, 2, 1, 1]])

Which shows that the first three elements belong in the xbin 1, and the fourth into xbin 2; and so on for y.

scipy.stats.binned_statistic_dd

scipy.stats.binned_statistic_dd(sample, values, statistic=’mean’, bins=10, range=None, ex-
pand_binnumbers=False)

Compute a multidimensional binned statistic for a set of data.
This is a generalization of a histogramdd function. A histogram divides the space into bins, and returns the count
of the number of points in each bin. This function allows the computation of the sum, mean, median, or other
statistic of the values within each bin.

Parameters

sample [array_like] Data to histogram passed as a sequence of D arrays of length N, or as an (N,D)
array.

values [(N,) array_like or list of (N,) array_like] The data on which the statistic will be computed.
This must be the same shape as sample, or a list of sequences - each with the same shape as
sample. If values is such a list, the statistic will be computed on each independently.

statistic [string or callable, optional] The statistic to compute (default is ‘mean’). The following statis-
tics are available:
• ‘mean’ : compute the mean of values for points within each bin. Empty bins will be
represented by NaN.

• ‘median’ : compute the median of values for points within each bin. Empty bins will be
represented by NaN.

• ‘count’ : compute the count of points within each bin. This is identical to an unweighted
histogram. values array is not referenced.

• ‘sum’ : compute the sum of values for points within each bin. This is identical to a weighted
histogram.

• ‘std’ : compute the standard deviation within each bin. This is implicitly calculated with
ddof=0.

• ‘min’ : compute the minimum of values for points within each bin. Empty bins will be
represented by NaN.

• ‘max’ : compute the maximum of values for point within each bin. Empty bins will be
represented by NaN.

• function : a user-defined function which takes a 1D array of values, and outputs a single
numerical statistic. This function will be called on the values in each bin. Empty bins will
be represented by function([]), or NaN if this returns an error.

bins [sequence or int, optional] The bin specification must be in one of the following forms:
• A sequence of arrays describing the bin edges along each dimension.
• The number of bins for each dimension (nx, ny, … = bins).
• The number of bins for all dimensions (nx = ny = … = bins).

range [sequence, optional] A sequence of lower and upper bin edges to be used if the edges are not
given explicitly in bins. Defaults to theminimum andmaximum values along each dimension.

expand_binnumbers
[bool, optional] ‘False’ (default): the returned binnumber is a shape (N,) array of linearized
bin indices. ‘True’: the returned binnumber is ‘unraveled’ into a shape (D,N) ndarray, where
each row gives the bin numbers in the corresponding dimension. See the binnumber returned
value, and the Examples section of binned_statistic_2d.
New in version 0.17.0.
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Returns

statistic [ndarray, shape(nx1, nx2, nx3,…)] The values of the selected statistic in each two-
dimensional bin.

bin_edges [list of ndarrays] A list of D arrays describing the (nxi + 1) bin edges for each dimension.
binnumber

[(N,) array of ints or (D,N) ndarray of ints] This assigns to each element of sample an integer
that represents the bin in which this observation falls. The representation depends on the
expand_binnumbers argument. See Notes for details.

See also:
numpy.digitize, numpy.histogramdd, binned_statistic, binned_statistic_2d

Notes

Binedges: All but the last (righthand-most) bin is half-open in each dimension. In other words, if bins is [1,
2, 3, 4], then the first bin is [1, 2) (including 1, but excluding 2) and the second [2, 3). The last bin,
however, is [3, 4], which includes 4.
binnumber: This returned argument assigns to each element of sample an integer that represents the bin in which
it belongs. The representation depends on the expand_binnumbers argument. If ‘False’ (default): The returned
binnumber is a shape (N,) array of linearized indices mapping each element of sample to its corresponding bin
(using row-major ordering). If ‘True’: The returned binnumber is a shape (D,N) ndarray where each row indicates
bin placements for each dimension respectively. In each dimension, a binnumber of i means the corresponding
value is between (bin_edges[D][i-1], bin_edges[D][i]), for each dimension ‘D’.
New in version 0.11.0.

6.28.9 Correlation functions

f_oneway(*args) Performs a 1-way ANOVA.
pearsonr(x, y) Pearson correlation coefficient and p-value for testing

non-correlation.
spearmanr(a[, b, axis, nan_policy]) Calculate a Spearman rank-order correlation coefficient

and the p-value to test for non-correlation.
pointbiserialr(x, y) Calculate a point biserial correlation coefficient and its p-

value.
kendalltau(x, y[, initial_lexsort, …]) Calculate Kendall’s tau, a correlation measure for ordinal

data.
weightedtau(x, y[, rank, weigher, additive]) Compute a weighted version of Kendall’s τ .
linregress(x[, y]) Calculate a linear least-squares regression for two sets of

measurements.
siegelslopes(y[, x, method]) Computes the Siegel estimator for a set of points (x, y).
theilslopes(y[, x, alpha]) Computes the Theil-Sen estimator for a set of points (x,

y).

scipy.stats.f_oneway

scipy.stats.f_oneway(*args)
Performs a 1-way ANOVA.
The one-way ANOVA tests the null hypothesis that two or more groups have the same population mean. The test
is applied to samples from two or more groups, possibly with differing sizes.
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Parameters

sample1, sample2, …
[array_like] The sample measurements for each group.

Returns

statistic [float] The computed F-value of the test.
pvalue [float] The associated p-value from the F-distribution.

Notes

The ANOVA test has important assumptions that must be satisfied in order for the associated p-value to be valid.
1. The samples are independent.
2. Each sample is from a normally distributed population.
3. The population standard deviations of the groups are all equal. This property is known as homoscedasticity.

If these assumptions are not true for a given set of data, it may still be possible to use the Kruskal-Wallis H-test
(scipy.stats.kruskal) although with some loss of power.
The algorithm is from Heiman[2], pp.394-7.

References

[1], [2], [3]

Examples

>>> import scipy.stats as stats

[3] Here are some data on a shell measurement (the length of the anterior adductor muscle scar, standardized
by dividing by length) in the mussel Mytilus trossulus from five locations: Tillamook, Oregon; Newport, Oregon;
Petersburg, Alaska; Magadan, Russia; and Tvarminne, Finland, taken from amuch larger data set used inMcDonald
et al. (1991).

>>> tillamook = [0.0571, 0.0813, 0.0831, 0.0976, 0.0817, 0.0859, 0.0735,
... 0.0659, 0.0923, 0.0836]
>>> newport = [0.0873, 0.0662, 0.0672, 0.0819, 0.0749, 0.0649, 0.0835,
... 0.0725]
>>> petersburg = [0.0974, 0.1352, 0.0817, 0.1016, 0.0968, 0.1064, 0.105]
>>> magadan = [0.1033, 0.0915, 0.0781, 0.0685, 0.0677, 0.0697, 0.0764,
... 0.0689]
>>> tvarminne = [0.0703, 0.1026, 0.0956, 0.0973, 0.1039, 0.1045]
>>> stats.f_oneway(tillamook, newport, petersburg, magadan, tvarminne)
(7.1210194716424473, 0.00028122423145345439)

scipy.stats.pearsonr

scipy.stats.pearsonr(x, y)
Pearson correlation coefficient and p-value for testing non-correlation.
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The Pearson correlation coefficient [1] measures the linear relationship between two datasets. The calculation of
the p-value relies on the assumption that each dataset is normally distributed. (See Kowalski [3] for a discussion of
the effects of non-normality of the input on the distribution of the correlation coefficient.) Like other correlation
coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an
exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that
as x increases, y decreases.
The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson
correlation at least as extreme as the one computed from these datasets.

Parameters

x [(N,) array_like] Input
y [(N,) array_like] Input

Returns

r [float] Pearson’s correlation coefficient
p-value [float] two-tailed p-value

Warns

PearsonRConstantInputWarning
Raised if an input is a constant array. The correlation coefficient is not defined in this case,
so np.nan is returned.

PearsonRNearConstantInputWarning
Raised if an input is “nearly” constant. The array x is considered nearly constant if norm(x
- mean(x)) < 1e-13 * abs(mean(x)). Numerical errors in the calculation x -
mean(x) in this case might result in an inaccurate calculation of r.

See also:

spearmanr

Spearman rank-order correlation coefficient.
kendalltau

Kendall’s tau, a correlation measure for ordinal data.

Notes

The correlation coefficient is calculated as follows:

r =

∑
(x−mx)(y −my)√∑

(x−mx)2
∑

(y −my)2

wheremx is the mean of the vector x andmy is the mean of the vector y.
Under the assumption that x and y are drawn from independent normal distributions (so the population correlation
coefficient is 0), the probability density function of the sample correlation coefficient r is ([1], [2]):

(1 - r**2)**(n/2 - 2)
f(r) = ---------------------

B(1/2, n/2 - 1)

where n is the number of samples, and B is the beta function. This is sometimes referred to as the exact distribution
of r. This is the distribution that is used inpearsonr to compute the p-value. The distribution is a beta distribution
on the interval [-1, 1], with equal shape parameters a = b = n/2 - 1. In terms of SciPy’s implementation of the beta
distribution, the distribution of r is:
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dist = scipy.stats.beta(n/2 - 1, n/2 - 1, loc=-1, scale=2)

The p-value returned by pearsonr is a two-sided p-value. For a given sample with correlation coefficient r, the
p-value is the probability that abs(r’) of a random sample x’ and y’ drawn from the population with zero correlation
would be greater than or equal to abs(r). In terms of the object dist shown above, the p-value for a given r and
length n can be computed as:

p = 2*dist.cdf(-abs(r))

When n is 2, the above continuous distribution is not well-defined. One can interpret the limit of the beta distribution
as the shape parameters a and b approach a = b = 0 as a discrete distribution with equal probability masses at r =
1 and r = -1. More directly, one can observe that, given the data x = [x1, x2] and y = [y1, y2], and assuming x1 !=
x2 and y1 != y2, the only possible values for r are 1 and -1. Because abs(r’) for any sample x’ and y’ with length 2
will be 1, the two-sided p-value for a sample of length 2 is always 1.

References

[1], [2], [3]

Examples

>>> from scipy import stats
>>> a = np.array([0, 0, 0, 1, 1, 1, 1])
>>> b = np.arange(7)
>>> stats.pearsonr(a, b)
(0.8660254037844386, 0.011724811003954649)

>>> stats.pearsonr([1, 2, 3, 4, 5], [10, 9, 2.5, 6, 4])
(-0.7426106572325057, 0.1505558088534455)

scipy.stats.spearmanr

scipy.stats.spearmanr(a, b=None, axis=0, nan_policy=’propagate’)
Calculate a Spearman rank-order correlation coefficient and the p-value to test for non-correlation.
The Spearman correlation is a nonparametric measure of the monotonicity of the relationship between two datasets.
Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally dis-
tributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation.
Correlations of -1 or +1 imply an exact monotonic relationship. Positive correlations imply that as x increases, so
does y. Negative correlations imply that as x increases, y decreases.
The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman
correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but
are probably reasonable for datasets larger than 500 or so.

Parameters

a, b [1D or 2D array_like, b is optional] One or two 1-D or 2-D arrays containing multiple vari-
ables and observations. When these are 1-D, each represents a vector of observations of a
single variable. For the behavior in the 2-D case, see under axis, below. Both arrays need
to have the same length in the axis dimension.
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axis [int or None, optional] If axis=0 (default), then each column represents a variable, with
observations in the rows. If axis=1, the relationship is transposed: each row represents a
variable, while the columns contain observations. If axis=None, then both arrays will be
raveled.

nan_policy
[{‘propagate’, ‘raise’, ‘omit’}, optional] Defines how to handle when input contains nan. ‘prop-
agate’ returns nan, ‘raise’ throws an error, ‘omit’ performs the calculations ignoring nan values.
Default is ‘propagate’.

Returns

correlation
[float or ndarray (2-D square)] Spearman correlation matrix or correlation coefficient (if only
2 variables are given as parameters. Correlation matrix is square with length equal to total
number of variables (columns or rows) in a and b combined.

pvalue [float] The two-sided p-value for a hypothesis test whose null hypothesis is that two sets of
data are uncorrelated, has same dimension as rho.

References

[1]

Examples

>>> from scipy import stats
>>> stats.spearmanr([1,2,3,4,5], [5,6,7,8,7])
(0.82078268166812329, 0.088587005313543798)
>>> np.random.seed(1234321)
>>> x2n = np.random.randn(100, 2)
>>> y2n = np.random.randn(100, 2)
>>> stats.spearmanr(x2n)
(0.059969996999699973, 0.55338590803773591)
>>> stats.spearmanr(x2n[:,0], x2n[:,1])
(0.059969996999699973, 0.55338590803773591)
>>> rho, pval = stats.spearmanr(x2n, y2n)
>>> rho
array([[ 1. , 0.05997 , 0.18569457, 0.06258626],

[ 0.05997 , 1. , 0.110003 , 0.02534653],
[ 0.18569457, 0.110003 , 1. , 0.03488749],
[ 0.06258626, 0.02534653, 0.03488749, 1. ]])

>>> pval
array([[ 0. , 0.55338591, 0.06435364, 0.53617935],

[ 0.55338591, 0. , 0.27592895, 0.80234077],
[ 0.06435364, 0.27592895, 0. , 0.73039992],
[ 0.53617935, 0.80234077, 0.73039992, 0. ]])

>>> rho, pval = stats.spearmanr(x2n.T, y2n.T, axis=1)
>>> rho
array([[ 1. , 0.05997 , 0.18569457, 0.06258626],

[ 0.05997 , 1. , 0.110003 , 0.02534653],
[ 0.18569457, 0.110003 , 1. , 0.03488749],
[ 0.06258626, 0.02534653, 0.03488749, 1. ]])

>>> stats.spearmanr(x2n, y2n, axis=None)
(continues on next page)
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(0.10816770419260482, 0.1273562188027364)
>>> stats.spearmanr(x2n.ravel(), y2n.ravel())
(0.10816770419260482, 0.1273562188027364)

>>> xint = np.random.randint(10, size=(100, 2))
>>> stats.spearmanr(xint)
(0.052760927029710199, 0.60213045837062351)

scipy.stats.pointbiserialr

scipy.stats.pointbiserialr(x, y)
Calculate a point biserial correlation coefficient and its p-value.
The point biserial correlation is used to measure the relationship between a binary variable, x, and a continuous
variable, y. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation.
Correlations of -1 or +1 imply a determinative relationship.
This function uses a shortcut formula but produces the same result as pearsonr.

Parameters

x [array_like of bools] Input array.
y [array_like] Input array.

Returns

correlation
[float] R value

pvalue [float] 2-tailed p-value

Notes

pointbiserialr uses a t-test with n-1 degrees of freedom. It is equivalent to pearsonr.

The value of the point-biserial correlation can be calculated from:

rpb =
Y1 − Y0
sy

√
N1N2

N(N − 1))

Where Y0 and Y1 are means of the metric observations coded 0 and 1 respectively; N0 and N1 are number of
observations coded 0 and 1 respectively; N is the total number of observations and sy is the standard deviation of
all the metric observations.
A value of rpb that is significantly different from zero is completely equivalent to a significant difference in means
between the two groups. Thus, an independent groups t Test with N − 2 degrees of freedom may be used to test
whether rpb is nonzero. The relation between the t-statistic for comparing two independent groups and rpb is given
by:

t =
√
N − 2

rpb√
1− r2pb

References

[1], [2], [3]
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Examples

>>> from scipy import stats
>>> a = np.array([0, 0, 0, 1, 1, 1, 1])
>>> b = np.arange(7)
>>> stats.pointbiserialr(a, b)
(0.8660254037844386, 0.011724811003954652)
>>> stats.pearsonr(a, b)
(0.86602540378443871, 0.011724811003954626)
>>> np.corrcoef(a, b)
array([[ 1. , 0.8660254],

[ 0.8660254, 1. ]])

scipy.stats.kendalltau

scipy.stats.kendalltau(x, y, initial_lexsort=None, nan_policy=’propagate’, method=’auto’)
Calculate Kendall’s tau, a correlation measure for ordinal data.
Kendall’s tau is a measure of the correspondence between two rankings. Values close to 1 indicate strong agreement,
values close to -1 indicate strong disagreement. This is the 1945 “tau-b” version of Kendall’s tau [2], which can
account for ties and which reduces to the 1938 “tau-a” version [1] in absence of ties.

Parameters

x, y [array_like] Arrays of rankings, of the same shape. If arrays are not 1-D, they will be flat-
tened to 1-D.

initial_lexsort
[bool, optional] Unused (deprecated).

nan_policy
[{‘propagate’, ‘raise’, ‘omit’}, optional] Defines how to handle when input contains nan.
‘propagate’ returns nan, ‘raise’ throws an error, ‘omit’ performs the calculations ignoring
nan values. Default is ‘propagate’. Note that if the input contains nan ‘omit’ delegates to
mstats_basic.kendalltau(), which has a different implementation.

method: {‘auto’, ‘asymptotic’, ‘exact’}, optional
Defines which method is used to calculate the p-value [5]. ‘asymptotic’ uses a normal ap-
proximation valid for large samples. ‘exact’ computes the exact p-value, but can only be
used if no ties are present. ‘auto’ is the default and selects the appropriate method based on
a trade-off between speed and accuracy.

Returns

correlation
[float] The tau statistic.

pvalue [float] The two-sided p-value for a hypothesis test whose null hypothesis is an absence of
association, tau = 0.

See also:

spearmanr

Calculates a Spearman rank-order correlation coefficient.
theilslopes

Computes the Theil-Sen estimator for a set of points (x, y).
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weightedtau

Computes a weighted version of Kendall’s tau.

Notes

The definition of Kendall’s tau that is used is [2]:

tau = (P - Q) / sqrt((P + Q + T) * (P + Q + U))

where P is the number of concordant pairs, Q the number of discordant pairs, T the number of ties only in x, and
U the number of ties only in y. If a tie occurs for the same pair in both x and y, it is not added to either T or U.

References

[1], [2], [3], [4], [5]

Examples

>>> from scipy import stats
>>> x1 = [12, 2, 1, 12, 2]
>>> x2 = [1, 4, 7, 1, 0]
>>> tau, p_value = stats.kendalltau(x1, x2)
>>> tau
-0.47140452079103173
>>> p_value
0.2827454599327748

scipy.stats.weightedtau

scipy.stats.weightedtau(x, y, rank=True, weigher=None, additive=True)
Compute a weighted version of Kendall’s τ .
The weighted τ is a weighted version of Kendall’s τ in which exchanges of high weight are more influential than
exchanges of low weight. The default parameters compute the additive hyperbolic version of the index, τh, which
has been shown to provide the best balance between important and unimportant elements [1].
The weighting is defined by means of a rank array, which assigns a nonnegative rank to each element, and a weigher
function, which assigns a weight based from the rank to each element. The weight of an exchange is then the sum
or the product of the weights of the ranks of the exchanged elements. The default parameters compute τh: an
exchange between elements with rank r and s (starting from zero) has weight 1/(r + 1) + 1/(s+ 1).
Specifying a rank array is meaningful only if you have in mind an external criterion of importance. If, as it usually
happens, you do not have in mind a specific rank, the weighted τ is defined by averaging the values obtained using
the decreasing lexicographical rank by (x, y) and by (y, x). This is the behavior with default parameters.
Note that if you are computing the weighted τ on arrays of ranks, rather than of scores (i.e., a larger value implies
a lower rank) you must negate the ranks, so that elements of higher rank are associated with a larger value.

Parameters

x, y [array_like] Arrays of scores, of the same shape. If arrays are not 1-D, they will be flattened
to 1-D.
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rank: array_like of ints or bool, optional
A nonnegative rank assigned to each element. If it is None, the decreasing lexicographical
rank by (x, y) will be used: elements of higher rank will be those with larger x-values, using
y-values to break ties (in particular, swapping x and y will give a different result). If it is
False, the element indices will be used directly as ranks. The default is True, in which case
this function returns the average of the values obtained using the decreasing lexicographical
rank by (x, y) and by (y, x).

weigher [callable, optional] The weigher function. Must map nonnegative integers (zero representing
the most important element) to a nonnegative weight. The default, None, provides hyperbolic
weighing, that is, rank r is mapped to weight 1/(r + 1).

additive [bool, optional] If True, the weight of an exchange is computed by adding the weights of the
ranks of the exchanged elements; otherwise, the weights are multiplied. The default is True.

Returns

correlation
[float] The weighted τ correlation index.

pvalue [float] Presently np.nan, as the null statistics is unknown (even in the additive hyperbolic
case).

See also:

kendalltau

Calculates Kendall’s tau.
spearmanr

Calculates a Spearman rank-order correlation coefficient.
theilslopes

Computes the Theil-Sen estimator for a set of points (x, y).

Notes

This function uses anO(n log n), mergesort-based algorithm [1] that is a weighted extension of Knight’s algorithm
for Kendall’s τ [2]. It can compute Shieh’s weighted τ [3] between rankings without ties (i.e., permutations) by
setting additive and rank to False, as the definition given in [1] is a generalization of Shieh’s.
NaNs are considered the smallest possible score.
New in version 0.19.0.

References

[1], [2], [3]

Examples

>>> from scipy import stats
>>> x = [12, 2, 1, 12, 2]
>>> y = [1, 4, 7, 1, 0]
>>> tau, p_value = stats.weightedtau(x, y)
>>> tau

(continues on next page)
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(continued from previous page)
-0.56694968153682723
>>> p_value
nan
>>> tau, p_value = stats.weightedtau(x, y, additive=False)
>>> tau
-0.62205716951801038

NaNs are considered the smallest possible score:

>>> x = [12, 2, 1, 12, 2]
>>> y = [1, 4, 7, 1, np.nan]
>>> tau, _ = stats.weightedtau(x, y)
>>> tau
-0.56694968153682723

This is exactly Kendall’s tau:

>>> x = [12, 2, 1, 12, 2]
>>> y = [1, 4, 7, 1, 0]
>>> tau, _ = stats.weightedtau(x, y, weigher=lambda x: 1)
>>> tau
-0.47140452079103173

>>> x = [12, 2, 1, 12, 2]
>>> y = [1, 4, 7, 1, 0]
>>> stats.weightedtau(x, y, rank=None)
WeightedTauResult(correlation=-0.4157652301037516, pvalue=nan)
>>> stats.weightedtau(y, x, rank=None)
WeightedTauResult(correlation=-0.7181341329699028, pvalue=nan)

scipy.stats.linregress

scipy.stats.linregress(x, y=None)
Calculate a linear least-squares regression for two sets of measurements.

Parameters

x, y [array_like] Two sets of measurements. Both arrays should have the same length. If only
x is given (and y=None), then it must be a two-dimensional array where one dimension
has length 2. The two sets of measurements are then found by splitting the array along the
length-2 dimension. In the case where y=None and x is a 2x2 array, linregress(x) is
equivalent to linregress(x[0], x[1]).

Returns

slope [float] Slope of the regression line.
intercept [float] Intercept of the regression line.
rvalue [float] Correlation coefficient.
pvalue [float] Two-sided p-value for a hypothesis test whose null hypothesis is that the slope is zero,

using Wald Test with t-distribution of the test statistic.
stderr [float] Standard error of the estimated gradient.

See also:

6.28. Statistical functions (scipy.stats) 2435



SciPy Reference Guide, Release 1.3.1

scipy.optimize.curve_fit

Use non-linear least squares to fit a function to data.
scipy.optimize.leastsq

Minimize the sum of squares of a set of equations.

Notes

Missing values are considered pair-wise: if a value is missing in x, the corresponding value in y is masked.

Examples

>>> import matplotlib.pyplot as plt
>>> from scipy import stats

Generate some data:

>>> np.random.seed(12345678)
>>> x = np.random.random(10)
>>> y = 1.6*x + np.random.random(10)

Perform the linear regression:

>>> slope, intercept, r_value, p_value, std_err = stats.linregress(x, y)
>>> print("slope: %f intercept: %f" % (slope, intercept))
slope: 1.944864 intercept: 0.268578

To get coefficient of determination (R-squared):

>>> print("R-squared: %f" % r_value**2)
R-squared: 0.735498

Plot the data along with the fitted line:

>>> plt.plot(x, y, 'o', label='original data')
>>> plt.plot(x, intercept + slope*x, 'r', label='fitted line')
>>> plt.legend()
>>> plt.show()

Example for the case where only x is provided as a 2x2 array:

>>> x = np.array([[0, 1], [0, 2]])
>>> r = stats.linregress(x)
>>> r.slope, r.intercept
(2.0, 0.0)

scipy.stats.siegelslopes

scipy.stats.siegelslopes(y, x=None, method=’hierarchical’)
Computes the Siegel estimator for a set of points (x, y).
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siegelslopes implements a method for robust linear regression using repeated medians (see [1]) to fit a line
to the points (x, y). The method is robust to outliers with an asymptotic breakdown point of 50%.

Parameters

y [array_like] Dependent variable.
x [array_like or None, optional] Independent variable. If None, use arange(len(y)) in-

stead.
method [{‘hierarchical’, ‘separate’}] If ‘hierarchical’, estimate the intercept using the estimated slope

medslope (default option). If ‘separate’, estimate the intercept independent of the esti-
mated slope. See Notes for details.

Returns

medslope [float] Estimate of the slope of the regression line.
medintercept

[float] Estimate of the intercept of the regression line.
See also:

theilslopes

a similar technique without repeated medians

Notes

With n = len(y), compute m_j as the median of the slopes from the point (x[j], y[j]) to all other n-1
points. medslope is then the median of all slopes m_j. Two ways are given to estimate the intercept in [1] which
can be chosen via the parameter method. The hierarchical approach uses the estimated slope medslope and
computes medintercept as the median of y - medslope*x. The other approach estimates the intercept
separately as follows: for each point (x[j], y[j]), compute the intercepts of all the n-1 lines through the
remaining points and take the median i_j. medintercept is the median of the i_j.
The implementation computes n times the median of a vector of size n which can be slow for large vectors. There
are more efficient algorithms (see [2]) which are not implemented here.
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References

[1], [2]

Examples

>>> from scipy import stats
>>> import matplotlib.pyplot as plt

>>> x = np.linspace(-5, 5, num=150)
>>> y = x + np.random.normal(size=x.size)
>>> y[11:15] += 10 # add outliers
>>> y[-5:] -= 7

Compute the slope and intercept. For comparison, also compute the least-squares fit with linregress:

>>> res = stats.siegelslopes(y, x)
>>> lsq_res = stats.linregress(x, y)

Plot the results. The Siegel regression line is shown in red. The green line shows the least-squares fit for comparison.

>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> ax.plot(x, y, 'b.')
>>> ax.plot(x, res[1] + res[0] * x, 'r-')
>>> ax.plot(x, lsq_res[1] + lsq_res[0] * x, 'g-')
>>> plt.show()
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scipy.stats.theilslopes

scipy.stats.theilslopes(y, x=None, alpha=0.95)
Computes the Theil-Sen estimator for a set of points (x, y).
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theilslopes implements a method for robust linear regression. It computes the slope as the median of all
slopes between paired values.

Parameters

y [array_like] Dependent variable.
x [array_like or None, optional] Independent variable. If None, use arange(len(y)) in-

stead.
alpha [float, optional] Confidence degree between 0 and 1. Default is 95% confidence. Note that

alpha is symmetric around 0.5, i.e. both 0.1 and 0.9 are interpreted as “find the 90%
confidence interval”.

Returns

medslope [float] Theil slope.
medintercept

[float] Intercept of the Theil line, as median(y) - medslope*median(x).
lo_slope [float] Lower bound of the confidence interval on medslope.
up_slope [float] Upper bound of the confidence interval on medslope.

See also:

siegelslopes

a similar technique using repeated medians

Notes

The implementation of theilslopes follows [1]. The intercept is not defined in [1], and here it is defined as
median(y) - medslope*median(x), which is given in [3]. Other definitions of the intercept exist in the
literature. A confidence interval for the intercept is not given as this question is not addressed in [1].

References

[1], [2], [3]

Examples

>>> from scipy import stats
>>> import matplotlib.pyplot as plt

>>> x = np.linspace(-5, 5, num=150)
>>> y = x + np.random.normal(size=x.size)
>>> y[11:15] += 10 # add outliers
>>> y[-5:] -= 7

Compute the slope, intercept and 90% confidence interval. For comparison, also compute the least-squares fit with
linregress:

>>> res = stats.theilslopes(y, x, 0.90)
>>> lsq_res = stats.linregress(x, y)
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Plot the results. The Theil-Sen regression line is shown in red, with the dashed red lines illustrating the confidence
interval of the slope (note that the dashed red lines are not the confidence interval of the regression as the confidence
interval of the intercept is not included). The green line shows the least-squares fit for comparison.

>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> ax.plot(x, y, 'b.')
>>> ax.plot(x, res[1] + res[0] * x, 'r-')
>>> ax.plot(x, res[1] + res[2] * x, 'r--')
>>> ax.plot(x, res[1] + res[3] * x, 'r--')
>>> ax.plot(x, lsq_res[1] + lsq_res[0] * x, 'g-')
>>> plt.show()
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6.28.10 Statistical tests

ttest_1samp(a, popmean[, axis, nan_policy]) Calculate the T-test for the mean of ONE group of scores.
ttest_ind(a, b[, axis, equal_var, nan_policy]) Calculate the T-test for the means of two independent

samples of scores.
ttest_ind_from_stats(mean1, std1, nobs1, …) T-test for means of two independent samples from de-

scriptive statistics.
ttest_rel(a, b[, axis, nan_policy]) Calculate the T-test on TWO RELATED samples of

scores, a and b.
kstest(rvs, cdf[, args, N, alternative, mode]) Perform the Kolmogorov-Smirnov test for goodness of fit.
chisquare(f_obs[, f_exp, ddof, axis]) Calculate a one-way chi square test.
power_divergence(f_obs[, f_exp, ddof, axis, …]) Cressie-Read power divergence statistic and goodness of

fit test.
ks_2samp(data1, data2[, alternative, mode]) Compute theKolmogorov-Smirnov statistic on 2 samples.
epps_singleton_2samp(x, y[, t]) Compute the Epps-Singleton (ES) test statistic.
mannwhitneyu(x, y[, use_continuity, alternative]) Compute the Mann-Whitney rank test on samples x and

y.
Continued on next page
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Table 259 – continued from previous page
tiecorrect(rankvals) Tie correction factor for ties in the Mann-Whitney U and

Kruskal-Wallis H tests.
rankdata(a[, method]) Assign ranks to data, dealing with ties appropriately.
ranksums(x, y) Compute the Wilcoxon rank-sum statistic for two sam-

ples.
wilcoxon(x[, y, zero_method, correction, …]) Calculate the Wilcoxon signed-rank test.
kruskal(*args, **kwargs) Compute the Kruskal-Wallis H-test for independent sam-

ples
friedmanchisquare(*args) Compute the Friedman test for repeated measurements
brunnermunzel(x, y[, alternative, …]) Computes the Brunner-Munzel test on samples x and y
combine_pvalues(pvalues[, method, weights]) Methods for combining the p-values of independent tests

bearing upon the same hypothesis.
jarque_bera(x) Perform the Jarque-Bera goodness of fit test on sample

data.

scipy.stats.ttest_1samp

scipy.stats.ttest_1samp(a, popmean, axis=0, nan_policy=’propagate’)
Calculate the T-test for the mean of ONE group of scores.
This is a two-sided test for the null hypothesis that the expected value (mean) of a sample of independent observa-
tions a is equal to the given population mean, popmean.

Parameters

a [array_like] sample observation
popmean [float or array_like] expected value in null hypothesis. If array_like, then it must have the

same shape as a excluding the axis dimension
axis [int or None, optional] Axis along which to compute test. If None, compute over the whole

array a.
nan_policy

[{‘propagate’, ‘raise’, ‘omit’}, optional] Defines how to handle when input contains nan. ‘prop-
agate’ returns nan, ‘raise’ throws an error, ‘omit’ performs the calculations ignoring nan values.
Default is ‘propagate’.

Returns

statistic [float or array] t-statistic
pvalue [float or array] two-tailed p-value

Examples

>>> from scipy import stats

>>> np.random.seed(7654567) # fix seed to get the same result
>>> rvs = stats.norm.rvs(loc=5, scale=10, size=(50,2))

Test if mean of random sample is equal to true mean, and different mean. We reject the null hypothesis in the
second case and don’t reject it in the first case.

>>> stats.ttest_1samp(rvs,5.0)
(array([-0.68014479, -0.04323899]), array([ 0.49961383, 0.96568674]))

(continues on next page)
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>>> stats.ttest_1samp(rvs,0.0)
(array([ 2.77025808, 4.11038784]), array([ 0.00789095, 0.00014999]))

Examples using axis and non-scalar dimension for population mean.

>>> stats.ttest_1samp(rvs,[5.0,0.0])
(array([-0.68014479, 4.11038784]), array([ 4.99613833e-01, 1.
↪→49986458e-04]))
>>> stats.ttest_1samp(rvs.T,[5.0,0.0],axis=1)
(array([-0.68014479, 4.11038784]), array([ 4.99613833e-01, 1.
↪→49986458e-04]))
>>> stats.ttest_1samp(rvs,[[5.0],[0.0]])
(array([[-0.68014479, -0.04323899],

[ 2.77025808, 4.11038784]]), array([[ 4.99613833e-01, 9.
↪→65686743e-01],

[ 7.89094663e-03, 1.49986458e-04]]))

scipy.stats.ttest_ind

scipy.stats.ttest_ind(a, b, axis=0, equal_var=True, nan_policy=’propagate’)
Calculate the T-test for the means of two independent samples of scores.
This is a two-sided test for the null hypothesis that 2 independent samples have identical average (expected) values.
This test assumes that the populations have identical variances by default.

Parameters

a, b [array_like] The arrays must have the same shape, except in the dimension corresponding to
axis (the first, by default).

axis [int or None, optional] Axis along which to compute test. If None, compute over the whole
arrays, a, and b.

equal_var [bool, optional] If True (default), perform a standard independent 2 sample test that assumes
equal population variances [1]. If False, performWelch’s t-test, which does not assume equal
population variance [2].
New in version 0.11.0.

nan_policy
[{‘propagate’, ‘raise’, ‘omit’}, optional] Defines how to handle when input contains nan. ‘prop-
agate’ returns nan, ‘raise’ throws an error, ‘omit’ performs the calculations ignoring nan values.
Default is ‘propagate’.

Returns

statistic [float or array] The calculated t-statistic.
pvalue [float or array] The two-tailed p-value.

Notes

We can use this test, if we observe two independent samples from the same or different population, e.g. exam
scores of boys and girls or of two ethnic groups. The test measures whether the average (expected) value differs
significantly across samples. If we observe a large p-value, for example larger than 0.05 or 0.1, then we cannot
reject the null hypothesis of identical average scores. If the p-value is smaller than the threshold, e.g. 1%, 5% or
10%, then we reject the null hypothesis of equal averages.
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References

[1], [2]

Examples

>>> from scipy import stats
>>> np.random.seed(12345678)

Test with sample with identical means:

>>> rvs1 = stats.norm.rvs(loc=5,scale=10,size=500)
>>> rvs2 = stats.norm.rvs(loc=5,scale=10,size=500)
>>> stats.ttest_ind(rvs1,rvs2)
(0.26833823296239279, 0.78849443369564776)
>>> stats.ttest_ind(rvs1,rvs2, equal_var = False)
(0.26833823296239279, 0.78849452749500748)

ttest_ind underestimates p for unequal variances:

>>> rvs3 = stats.norm.rvs(loc=5, scale=20, size=500)
>>> stats.ttest_ind(rvs1, rvs3)
(-0.46580283298287162, 0.64145827413436174)
>>> stats.ttest_ind(rvs1, rvs3, equal_var = False)
(-0.46580283298287162, 0.64149646246569292)

When n1 != n2, the equal variance t-statistic is no longer equal to the unequal variance t-statistic:

>>> rvs4 = stats.norm.rvs(loc=5, scale=20, size=100)
>>> stats.ttest_ind(rvs1, rvs4)
(-0.99882539442782481, 0.3182832709103896)
>>> stats.ttest_ind(rvs1, rvs4, equal_var = False)
(-0.69712570584654099, 0.48716927725402048)

T-test with different means, variance, and n:

>>> rvs5 = stats.norm.rvs(loc=8, scale=20, size=100)
>>> stats.ttest_ind(rvs1, rvs5)
(-1.4679669854490653, 0.14263895620529152)
>>> stats.ttest_ind(rvs1, rvs5, equal_var = False)
(-0.94365973617132992, 0.34744170334794122)

scipy.stats.ttest_ind_from_stats

scipy.stats.ttest_ind_from_stats(mean1, std1, nobs1, mean2, std2, nobs2, equal_var=True)
T-test for means of two independent samples from descriptive statistics.
This is a two-sided test for the null hypothesis that two independent samples have identical average (expected)
values.

Parameters

mean1 [array_like] The mean(s) of sample 1.
std1 [array_like] The standard deviation(s) of sample 1.

6.28. Statistical functions (scipy.stats) 2443



SciPy Reference Guide, Release 1.3.1

nobs1 [array_like] The number(s) of observations of sample 1.
mean2 [array_like] The mean(s) of sample 2
std2 [array_like] The standard deviations(s) of sample 2.
nobs2 [array_like] The number(s) of observations of sample 2.
equal_var [bool, optional] If True (default), perform a standard independent 2 sample test that assumes

equal population variances [1]. If False, performWelch’s t-test, which does not assume equal
population variance [2].

Returns

statistic [float or array] The calculated t-statistics
pvalue [float or array] The two-tailed p-value.

See also:
scipy.stats.ttest_ind

Notes

New in version 0.16.0.

References

[1], [2]

Examples

Suppose we have the summary data for two samples, as follows:

Sample Sample
Size Mean Variance

Sample 1 13 15.0 87.5
Sample 2 11 12.0 39.0

Apply the t-test to this data (with the assumption that the population variances are equal):

>>> from scipy.stats import ttest_ind_from_stats
>>> ttest_ind_from_stats(mean1=15.0, std1=np.sqrt(87.5), nobs1=13,
... mean2=12.0, std2=np.sqrt(39.0), nobs2=11)
Ttest_indResult(statistic=0.9051358093310269, pvalue=0.3751996797581487)

For comparison, here is the data from which those summary statistics were taken. With this data, we can compute
the same result using scipy.stats.ttest_ind:

>>> a = np.array([1, 3, 4, 6, 11, 13, 15, 19, 22, 24, 25, 26, 26])
>>> b = np.array([2, 4, 6, 9, 11, 13, 14, 15, 18, 19, 21])
>>> from scipy.stats import ttest_ind
>>> ttest_ind(a, b)
Ttest_indResult(statistic=0.905135809331027, pvalue=0.3751996797581486)
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scipy.stats.ttest_rel

scipy.stats.ttest_rel(a, b, axis=0, nan_policy=’propagate’)
Calculate the T-test on TWO RELATED samples of scores, a and b.
This is a two-sided test for the null hypothesis that 2 related or repeated samples have identical average (expected)
values.

Parameters

a, b [array_like] The arrays must have the same shape.
axis [int or None, optional] Axis along which to compute test. If None, compute over the whole

arrays, a, and b.
nan_policy

[{‘propagate’, ‘raise’, ‘omit’}, optional] Defines how to handle when input contains nan. ‘prop-
agate’ returns nan, ‘raise’ throws an error, ‘omit’ performs the calculations ignoring nan values.
Default is ‘propagate’.

Returns

statistic [float or array] t-statistic
pvalue [float or array] two-tailed p-value

Notes

Examples for the use are scores of the same set of student in different exams, or repeated sampling from the same
units. The test measures whether the average score differs significantly across samples (e.g. exams). If we observe
a large p-value, for example greater than 0.05 or 0.1 then we cannot reject the null hypothesis of identical average
scores. If the p-value is smaller than the threshold, e.g. 1%, 5% or 10%, then we reject the null hypothesis of equal
averages. Small p-values are associated with large t-statistics.

References

https://en.wikipedia.org/wiki/T-test#Dependent_t-test_for_paired_samples

Examples

>>> from scipy import stats
>>> np.random.seed(12345678) # fix random seed to get same numbers

>>> rvs1 = stats.norm.rvs(loc=5,scale=10,size=500)
>>> rvs2 = (stats.norm.rvs(loc=5,scale=10,size=500) +
... stats.norm.rvs(scale=0.2,size=500))
>>> stats.ttest_rel(rvs1,rvs2)
(0.24101764965300962, 0.80964043445811562)
>>> rvs3 = (stats.norm.rvs(loc=8,scale=10,size=500) +
... stats.norm.rvs(scale=0.2,size=500))
>>> stats.ttest_rel(rvs1,rvs3)
(-3.9995108708727933, 7.3082402191726459e-005)
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scipy.stats.kstest

scipy.stats.kstest(rvs, cdf, args=(), N=20, alternative=’two-sided’, mode=’approx’)
Perform the Kolmogorov-Smirnov test for goodness of fit.
This performs a test of the distribution F(x) of an observed random variable against a given distribution G(x).
Under the null hypothesis the two distributions are identical, F(x)=G(x). The alternative hypothesis can be either
‘two-sided’ (default), ‘less’ or ‘greater’. The KS test is only valid for continuous distributions.

Parameters

rvs [str, array or callable] If a string, it should be the name of a distribution in scipy.stats.
If an array, it should be a 1-D array of observations of random variables. If a callable, it
should be a function to generate random variables; it is required to have a keyword argument
size.

cdf [str or callable] If a string, it should be the name of a distribution in scipy.stats. If
rvs is a string then cdf can be False or the same as rvs. If a callable, that callable is used to
calculate the cdf.

args [tuple, sequence, optional] Distribution parameters, used if rvs or cdf are strings.
N [int, optional] Sample size if rvs is string or callable. Default is 20.
alternative

[{‘two-sided’, ‘less’,’greater’}, optional] Defines the alternative hypothesis (see explanation
above). Default is ‘two-sided’.

mode [‘approx’ (default) or ‘asymp’, optional] Defines the distribution used for calculating the p-
value.
• ‘approx’ : use approximation to exact distribution of test statistic
• ‘asymp’ : use asymptotic distribution of test statistic

Returns

statistic [float] KS test statistic, either D, D+ or D-.
pvalue [float] One-tailed or two-tailed p-value.

Notes

In the one-sided test, the alternative is that the empirical cumulative distribution function of the random vari-
able is “less” or “greater” than the cumulative distribution function G(x) of the hypothesis, F(x)<=G(x), resp.
F(x)>=G(x).

Examples

>>> from scipy import stats

>>> x = np.linspace(-15, 15, 9)
>>> stats.kstest(x, 'norm')
(0.44435602715924361, 0.038850142705171065)

>>> np.random.seed(987654321) # set random seed to get the same result
>>> stats.kstest('norm', False, N=100)
(0.058352892479417884, 0.88531190944151261)

The above lines are equivalent to:
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>>> np.random.seed(987654321)
>>> stats.kstest(stats.norm.rvs(size=100), 'norm')
(0.058352892479417884, 0.88531190944151261)

Test against one-sided alternative hypothesis

Shift distribution to larger values, so that cdf_dgp(x) < norm.cdf(x):

>>> np.random.seed(987654321)
>>> x = stats.norm.rvs(loc=0.2, size=100)
>>> stats.kstest(x,'norm', alternative = 'less')
(0.12464329735846891, 0.040989164077641749)

Reject equal distribution against alternative hypothesis: less

>>> stats.kstest(x,'norm', alternative = 'greater')
(0.0072115233216311081, 0.98531158590396395)

Don’t reject equal distribution against alternative hypothesis: greater

>>> stats.kstest(x,'norm', mode='asymp')
(0.12464329735846891, 0.08944488871182088)

Testing t distributed random variables against normal distribution

With 100 degrees of freedom the t distribution looks close to the normal distribution, and the K-S test does not
reject the hypothesis that the sample came from the normal distribution:

>>> np.random.seed(987654321)
>>> stats.kstest(stats.t.rvs(100,size=100),'norm')
(0.072018929165471257, 0.67630062862479168)

With 3 degrees of freedom the t distribution looks sufficiently different from the normal distribution, that we can
reject the hypothesis that the sample came from the normal distribution at the 10% level:

>>> np.random.seed(987654321)
>>> stats.kstest(stats.t.rvs(3,size=100),'norm')
(0.131016895759829, 0.058826222555312224)

scipy.stats.chisquare

scipy.stats.chisquare(f_obs, f_exp=None, ddof=0, axis=0)
Calculate a one-way chi square test.
The chi square test tests the null hypothesis that the categorical data has the given frequencies.

Parameters

f_obs [array_like] Observed frequencies in each category.
f_exp [array_like, optional] Expected frequencies in each category. By default the categories are

assumed to be equally likely.
ddof [int, optional] “Delta degrees of freedom”: adjustment to the degrees of freedom for the

p-value. The p-value is computed using a chi-squared distribution with k - 1 - ddof
degrees of freedom, where k is the number of observed frequencies. The default value of
ddof is 0.
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axis [int or None, optional] The axis of the broadcast result of f_obs and f_exp along which to
apply the test. If axis is None, all values in f_obs are treated as a single data set. Default is
0.

Returns

chisq [float or ndarray] The chi-squared test statistic. The value is a float if axis is None or f_obs
and f_exp are 1-D.

p [float or ndarray] The p-value of the test. The value is a float if ddof and the return value
chisq are scalars.

See also:
scipy.stats.power_divergence

Notes

This test is invalid when the observed or expected frequencies in each category are too small. A typical rule is that
all of the observed and expected frequencies should be at least 5.
The default degrees of freedom, k-1, are for the case when no parameters of the distribution are estimated. If p
parameters are estimated by efficient maximum likelihood then the correct degrees of freedom are k-1-p. If the
parameters are estimated in a different way, then the dof can be between k-1-p and k-1. However, it is also possible
that the asymptotic distribution is not a chisquare, in which case this test is not appropriate.

References

[1], [2]

Examples

When just f_obs is given, it is assumed that the expected frequencies are uniform and given by the mean of the
observed frequencies.

>>> from scipy.stats import chisquare
>>> chisquare([16, 18, 16, 14, 12, 12])
(2.0, 0.84914503608460956)

With f_exp the expected frequencies can be given.

>>> chisquare([16, 18, 16, 14, 12, 12], f_exp=[16, 16, 16, 16, 16, 8])
(3.5, 0.62338762774958223)

When f_obs is 2-D, by default the test is applied to each column.

>>> obs = np.array([[16, 18, 16, 14, 12, 12], [32, 24, 16, 28, 20, 24]]).T
>>> obs.shape
(6, 2)
>>> chisquare(obs)
(array([ 2. , 6.66666667]), array([ 0.84914504, 0.24663415]))

By setting axis=None, the test is applied to all data in the array, which is equivalent to applying the test to the
flattened array.
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>>> chisquare(obs, axis=None)
(23.31034482758621, 0.015975692534127565)
>>> chisquare(obs.ravel())
(23.31034482758621, 0.015975692534127565)

ddof is the change to make to the default degrees of freedom.

>>> chisquare([16, 18, 16, 14, 12, 12], ddof=1)
(2.0, 0.73575888234288467)

The calculation of the p-values is done by broadcasting the chi-squared statistic with ddof.

>>> chisquare([16, 18, 16, 14, 12, 12], ddof=[0,1,2])
(2.0, array([ 0.84914504, 0.73575888, 0.5724067 ]))

f_obs and f_exp are also broadcast. In the following, f_obs has shape (6,) and f_exp has shape (2, 6), so the result
of broadcasting f_obs and f_exp has shape (2, 6). To compute the desired chi-squared statistics, we use axis=1:

>>> chisquare([16, 18, 16, 14, 12, 12],
... f_exp=[[16, 16, 16, 16, 16, 8], [8, 20, 20, 16, 12, 12]],
... axis=1)
(array([ 3.5 , 9.25]), array([ 0.62338763, 0.09949846]))

scipy.stats.power_divergence

scipy.stats.power_divergence(f_obs, f_exp=None, ddof=0, axis=0, lambda_=None)
Cressie-Read power divergence statistic and goodness of fit test.
This function tests the null hypothesis that the categorical data has the given frequencies, using the Cressie-Read
power divergence statistic.

Parameters

f_obs [array_like] Observed frequencies in each category.
f_exp [array_like, optional] Expected frequencies in each category. By default the categories are

assumed to be equally likely.
ddof [int, optional] “Delta degrees of freedom”: adjustment to the degrees of freedom for the

p-value. The p-value is computed using a chi-squared distribution with k - 1 - ddof
degrees of freedom, where k is the number of observed frequencies. The default value of
ddof is 0.

axis [int or None, optional] The axis of the broadcast result of f_obs and f_exp along which to
apply the test. If axis is None, all values in f_obs are treated as a single data set. Default is
0.

lambda_ [float or str, optional] lambda_ gives the power in the Cressie-Read power divergence statis-
tic. The default is 1. For convenience, lambda_may be assigned one of the following strings,
in which case the corresponding numerical value is used:

String Value Description
"pearson" 1 Pearson's chi-squared␣
↪→statistic.

In this case, the function is
equivalent to `stats.

↪→chisquare`.
"log-likelihood" 0 Log-likelihood ratio. Also␣
↪→known as (continues on next page)
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(continued from previous page)
the G-test [Rf6c2a1ea428c-3]_.

"freeman-tukey" -1/2 Freeman-Tukey statistic.
"mod-log-likelihood" -1 Modified log-likelihood ratio.
"neyman" -2 Neyman's statistic.
"cressie-read" 2/3 The power recommended in␣
↪→[Rf6c2a1ea428c-5]_.

Returns

statistic [float or ndarray] The Cressie-Read power divergence test statistic. The value is a float if
axis is None or if‘ f_obs and f_exp are 1-D.

pvalue [float or ndarray] The p-value of the test. The value is a float if ddof and the return value
stat are scalars.

See also:
chisquare

Notes

This test is invalid when the observed or expected frequencies in each category are too small. A typical rule is that
all of the observed and expected frequencies should be at least 5.
When lambda_ is less than zero, the formula for the statistic involves dividing by f_obs, so a warning or error may
be generated if any value in f_obs is 0.
Similarly, a warning or error may be generated if any value in f_exp is zero when lambda_ >= 0.
The default degrees of freedom, k-1, are for the case when no parameters of the distribution are estimated. If p
parameters are estimated by efficient maximum likelihood then the correct degrees of freedom are k-1-p. If the
parameters are estimated in a different way, then the dof can be between k-1-p and k-1. However, it is also possible
that the asymptotic distribution is not a chisquare, in which case this test is not appropriate.
This function handles masked arrays. If an element of f_obs or f_exp is masked, then data at that position is ignored,
and does not count towards the size of the data set.
New in version 0.13.0.

References

[1], [2], [3], [4], [5]

Examples

(See chisquare for more examples.)
When just f_obs is given, it is assumed that the expected frequencies are uniform and given by the mean of the
observed frequencies. Here we perform a G-test (i.e. use the log-likelihood ratio statistic):

>>> from scipy.stats import power_divergence
>>> power_divergence([16, 18, 16, 14, 12, 12], lambda_='log-likelihood')
(2.006573162632538, 0.84823476779463769)

The expected frequencies can be given with the f_exp argument:
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>>> power_divergence([16, 18, 16, 14, 12, 12],
... f_exp=[16, 16, 16, 16, 16, 8],
... lambda_='log-likelihood')
(3.3281031458963746, 0.6495419288047497)

When f_obs is 2-D, by default the test is applied to each column.

>>> obs = np.array([[16, 18, 16, 14, 12, 12], [32, 24, 16, 28, 20, 24]]).T
>>> obs.shape
(6, 2)
>>> power_divergence(obs, lambda_="log-likelihood")
(array([ 2.00657316, 6.77634498]), array([ 0.84823477, 0.23781225]))

By setting axis=None, the test is applied to all data in the array, which is equivalent to applying the test to the
flattened array.

>>> power_divergence(obs, axis=None)
(23.31034482758621, 0.015975692534127565)
>>> power_divergence(obs.ravel())
(23.31034482758621, 0.015975692534127565)

ddof is the change to make to the default degrees of freedom.

>>> power_divergence([16, 18, 16, 14, 12, 12], ddof=1)
(2.0, 0.73575888234288467)

The calculation of the p-values is done by broadcasting the test statistic with ddof.

>>> power_divergence([16, 18, 16, 14, 12, 12], ddof=[0,1,2])
(2.0, array([ 0.84914504, 0.73575888, 0.5724067 ]))

f_obs and f_exp are also broadcast. In the following, f_obs has shape (6,) and f_exp has shape (2, 6), so the result
of broadcasting f_obs and f_exp has shape (2, 6). To compute the desired chi-squared statistics, we must use
axis=1:

>>> power_divergence([16, 18, 16, 14, 12, 12],
... f_exp=[[16, 16, 16, 16, 16, 8],
... [8, 20, 20, 16, 12, 12]],
... axis=1)
(array([ 3.5 , 9.25]), array([ 0.62338763, 0.09949846]))

scipy.stats.ks_2samp

scipy.stats.ks_2samp(data1, data2, alternative=’two-sided’, mode=’auto’)
Compute the Kolmogorov-Smirnov statistic on 2 samples.
This is a two-sided test for the null hypothesis that 2 independent samples are drawn from the same continuous
distribution. The alternative hypothesis can be either ‘two-sided’ (default), ‘less’ or ‘greater’.

Parameters

data1, data2
[sequence of 1-D ndarrays] Two arrays of sample observations assumed to be drawn from a
continuous distribution, sample sizes can be different.
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alternative
[{‘two-sided’, ‘less’, ‘greater’}, optional] Defines the alternative hypothesis (see explanation
above). Default is ‘two-sided’.

mode [{‘auto’, ‘exact’, ‘asymp’}, optional] Defines the method used for calculating the p-value.
Default is ‘auto’.
• ‘exact’ : use approximation to exact distribution of test statistic
• ‘asymp’ : use asymptotic distribution of test statistic
• ‘auto’ : use ‘exact’ for small size arrays, ‘asymp’ for large.

Returns

statistic [float] KS statistic
pvalue [float] two-tailed p-value

Notes

This tests whether 2 samples are drawn from the same distribution. Note that, like in the case of the one-sample
K-S test, the distribution is assumed to be continuous.
In the one-sided test, the alternative is that the empirical cumulative distribution function F(x) of the data1 variable
is “less” or “greater” than the empirical cumulative distribution function G(x) of the data2 variable, F(x)<=G(x),
resp. F(x)>=G(x).
If the K-S statistic is small or the p-value is high, then we cannot reject the hypothesis that the distributions of the
two samples are the same.
If the mode is ‘auto’, the computation is exact if the sample sizes are less than 10000. For larger sizes, the compu-
tation uses the Kolmogorov-Smirnov distributions to compute an approximate value.
We generally follow Hodges’ treatment of Drion/Gnedenko/Korolyuk [1].

References

[1]

Examples

>>> from scipy import stats
>>> np.random.seed(12345678) #fix random seed to get the same result
>>> n1 = 200 # size of first sample
>>> n2 = 300 # size of second sample

For a different distribution, we can reject the null hypothesis since the pvalue is below 1%:

>>> rvs1 = stats.norm.rvs(size=n1, loc=0., scale=1)
>>> rvs2 = stats.norm.rvs(size=n2, loc=0.5, scale=1.5)
>>> stats.ks_2samp(rvs1, rvs2)
(0.20833333333333334, 5.129279597781977e-05)

For a slightly different distribution, we cannot reject the null hypothesis at a 10% or lower alpha since the p-value
at 0.144 is higher than 10%
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>>> rvs3 = stats.norm.rvs(size=n2, loc=0.01, scale=1.0)
>>> stats.ks_2samp(rvs1, rvs3)
(0.10333333333333333, 0.14691437867433876)

For an identical distribution, we cannot reject the null hypothesis since the p-value is high, 41%:

>>> rvs4 = stats.norm.rvs(size=n2, loc=0.0, scale=1.0)
>>> stats.ks_2samp(rvs1, rvs4)
(0.07999999999999996, 0.41126949729859719)

scipy.stats.epps_singleton_2samp

scipy.stats.epps_singleton_2samp(x, y, t=(0.4, 0.8))
Compute the Epps-Singleton (ES) test statistic.
Test the null hypothesis that two samples have the same underlying probability distribution.

Parameters

x, y [array-like] The two samples of observations to be tested. Input must not have more than
one dimension. Samples can have different lengths.

t [array-like, optional] The points (t1, …, tn) where the empirical characteristic function is to
be evaluated. It should be positive distinct numbers. The default value (0.4, 0.8) is proposed
in [1]. Input must not have more than one dimension.

Returns

statistic [float] The test statistic.
pvalue [float] The associated p-value based on the asymptotic chi2-distribution.

See also:
ks_2samp, anderson_ksamp

Notes

Testing whether two samples are generated by the same underlying distribution is a classical question in statistics.
A widely used test is the Kolmogorov-Smirnov (KS) test which relies on the empirical distribution function. Epps
and Singleton introduce a test based on the empirical characteristic function in [1].
One advantage of the ES test compared to the KS test is that is does not assume a continuous distribution. In [1],
the authors conclude that the test also has a higher power than the KS test in many examples. They recommend the
use of the ES test for discrete samples as well as continuous samples with at least 25 observations each, whereas
anderson_ksamp is recommended for smaller sample sizes in the continuous case.
The p-value is computed from the asymptotic distribution of the test statistic which follows a chi2 distribution.
If the sample size of both x and y is below 25, the small sample correction proposed in [1] is applied to the test
statistic.
The default values of t are determined in [1] by considering various distributions and finding good values that lead
to a high power of the test in general. Table III in [1] gives the optimal values for the distributions tested in that
study. The values of t are scaled by the semi-interquartile range in the implementation, see [1].

References

[1], [2]
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scipy.stats.mannwhitneyu

scipy.stats.mannwhitneyu(x, y, use_continuity=True, alternative=None)
Compute the Mann-Whitney rank test on samples x and y.

Parameters

x, y [array_like] Array of samples, should be one-dimensional.
use_continuity

[bool, optional] Whether a continuity correction (1/2.) should be taken into account. Default
is True.

alternative
[None (deprecated), ‘less’, ‘two-sided’, or ‘greater’] Whether to get the p-value for the one-
sided hypothesis (‘less’ or ‘greater’) or for the two-sided hypothesis (‘two-sided’). Defaults
to None, which results in a p-value half the size of the ‘two-sided’ p-value and a different
U statistic. The default behavior is not the same as using ‘less’ or ‘greater’: it only exists for
backward compatibility and is deprecated.

Returns

statistic [float] The Mann-Whitney U statistic, equal to min(U for x, U for y) if alternative is equal
to None (deprecated; exists for backward compatibility), and U for y otherwise.

pvalue [float] p-value assuming an asymptotic normal distribution. One-sided or two-sided, depend-
ing on the choice of alternative.

Notes

Use only when the number of observation in each sample is > 20 and you have 2 independent samples of ranks.
Mann-Whitney U is significant if the u-obtained is LESS THAN or equal to the critical value of U.
This test corrects for ties and by default uses a continuity correction.

References

[1], [2]

scipy.stats.tiecorrect

scipy.stats.tiecorrect(rankvals)
Tie correction factor for ties in the Mann-Whitney U and Kruskal-Wallis H tests.

Parameters

rankvals [array_like] A 1-D sequence of ranks. Typically this will be the array returned by
rankdata.

Returns

factor [float] Correction factor for U or H.
See also:

rankdata

Assign ranks to the data
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mannwhitneyu

Mann-Whitney rank test
kruskal

Kruskal-Wallis H test

References

[1]

Examples

>>> from scipy.stats import tiecorrect, rankdata
>>> tiecorrect([1, 2.5, 2.5, 4])
0.9
>>> ranks = rankdata([1, 3, 2, 4, 5, 7, 2, 8, 4])
>>> ranks
array([ 1. , 4. , 2.5, 5.5, 7. , 8. , 2.5, 9. , 5.5])
>>> tiecorrect(ranks)
0.9833333333333333

scipy.stats.rankdata

scipy.stats.rankdata(a, method=’average’)
Assign ranks to data, dealing with ties appropriately.
Ranks begin at 1. The method argument controls how ranks are assigned to equal values. See [1] for further
discussion of ranking methods.

Parameters

a [array_like] The array of values to be ranked. The array is first flattened.
method [str, optional] The method used to assign ranks to tied elements. The options are ‘average’,

‘min’, ‘max’, ‘dense’ and ‘ordinal’.
‘average’: The average of the ranks that would have been assigned to all the tied values is

assigned to each value.
‘min’: The minimum of the ranks that would have been assigned to all the tied values

is assigned to each value. (This is also referred to as “competition” ranking.)
‘max’: The maximum of the ranks that would have been assigned to all the tied values

is assigned to each value.
‘dense’: Like ‘min’, but the rank of the next highest element is assigned the rank imme-

diately after those assigned to the tied elements.
‘ordinal’: All values are given a distinct rank, corresponding to the order that the values

occur in a.
The default is ‘average’.

Returns

ranks [ndarray] An array of length equal to the size of a, containing rank scores.
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References

[1]

Examples

>>> from scipy.stats import rankdata
>>> rankdata([0, 2, 3, 2])
array([ 1. , 2.5, 4. , 2.5])
>>> rankdata([0, 2, 3, 2], method='min')
array([ 1, 2, 4, 2])
>>> rankdata([0, 2, 3, 2], method='max')
array([ 1, 3, 4, 3])
>>> rankdata([0, 2, 3, 2], method='dense')
array([ 1, 2, 3, 2])
>>> rankdata([0, 2, 3, 2], method='ordinal')
array([ 1, 2, 4, 3])

scipy.stats.ranksums

scipy.stats.ranksums(x, y)
Compute the Wilcoxon rank-sum statistic for two samples.
The Wilcoxon rank-sum test tests the null hypothesis that two sets of measurements are drawn from the same
distribution. The alternative hypothesis is that values in one sample are more likely to be larger than the values in
the other sample.
This test should be used to compare two samples from continuous distributions. It does not handle ties be-
tween measurements in x and y. For tie-handling and an optional continuity correction see scipy.stats.
mannwhitneyu.

Parameters

x,y [array_like] The data from the two samples
Returns

statistic [float] The test statistic under the large-sample approximation that the rank sum statistic is
normally distributed

pvalue [float] The two-sided p-value of the test

References

[1]

scipy.stats.wilcoxon

scipy.stats.wilcoxon(x, y=None, zero_method=’wilcox’, correction=False, alternative=’two-sided’)
Calculate the Wilcoxon signed-rank test.
The Wilcoxon signed-rank test tests the null hypothesis that two related paired samples come from the same dis-
tribution. In particular, it tests whether the distribution of the differences x - y is symmetric about zero. It is a
non-parametric version of the paired T-test.
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Parameters

x [array_like] Either the first set of measurements (in which case y is the second set of mea-
surements), or the differences between two sets of measurements (in which case y is not to
be specified.) Must be one-dimensional.

y [array_like, optional] Either the second set of measurements (if x is the first set of measure-
ments), or not specified (if x is the differences between two sets of measurements.) Must be
one-dimensional.

zero_method
[{“pratt”, “wilcox”, “zsplit”}, optional. Default is “wilcox”.]
“pratt”: includes zero-differences in the ranking process, but drops the ranks of the ze-

ros, see [4], (more conservative)
“wilcox”: discards all zero-differences, the default
“zsplit”: includes zero-differences in the ranking process and split the zero rank between

positive and negative ones
correction [bool, optional] If True, apply continuity correction by adjusting the Wilcoxon rank statistic

by 0.5 towards the mean value when computing the z-statistic. Default is False.
alternative

[{“two-sided”, “greater”, “less”}, optional] The alternative hypothesis to be tested, see Notes.
Default is “two-sided”.

Returns

statistic [float] If alternative is “two-sided”, the sum of the ranks of the differences above or below
zero, whichever is smaller. Otherwise the sum of the ranks of the differences above zero.

pvalue [float] The p-value for the test depending on alternative.
See also:
kruskal, mannwhitneyu

Notes

The test has been introduced in [4]. Given n independent samples (xi, yi) from a bivariate distribution (i.e. paired
samples), it computes the differences di = xi - yi. One assumption of the test is that the differences are symmetric,
see [2]. The two-sided test has the null hypothesis that the median of the differences is zero against the alternative
that it is different from zero. The one-sided test has the null that the median is positive against the alternative that
the it is negative (alternative == 'less'), or vice versa (alternative == 'greater.').
The test uses a normal approximation to derive the p-value (if zero_method == 'pratt', the approximation
is adjusted as in [5]). A typical rule is to require that n > 20 ([2], p. 383). For smaller n, exact tables can be used
to find critical values.

References

[1], [2], [3], [4], [5]

Examples

In [4], the differences in height between cross- and self-fertilized corn plants is given as follows:

>>> d = [6, 8, 14, 16, 23, 24, 28, 29, 41, -48, 49, 56, 60, -67, 75]

Cross-fertilized plants appear to be be higher. To test the null hypothesis that there is no height difference, we can
apply the two-sided test:
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>>> from scipy.stats import wilcoxon
>>> w, p = wilcoxon(d)
>>> w, p
(24.0, 0.04088813291185591)

Hence, we would reject the null hypothesis at a confidence level of 5%, concluding that there is a difference in
height between the groups. To confirm that the median of the differences can be assumed to be positive, we use:

>>> w, p = wilcoxon(d, alternative='greater')
>>> w, p
(96.0, 0.020444066455927955)

This shows that the null hypothesis that the median is negative can be rejected at a confidence level of 5% in favor
of the alternative that the median is greater than zero. The p-value based on the approximation is within the range
of 0.019 and 0.054 given in [2]. Note that the statistic changed to 96 in the one-sided case (the sum of ranks of
positive differences) whereas it is 24 in the two-sided case (the minimum of sum of ranks above and below zero).

scipy.stats.kruskal

scipy.stats.kruskal(*args, **kwargs)
Compute the Kruskal-Wallis H-test for independent samples
The Kruskal-Wallis H-test tests the null hypothesis that the population median of all of the groups are equal. It is a
non-parametric version of ANOVA. The test works on 2 or more independent samples, which may have different
sizes. Note that rejecting the null hypothesis does not indicate which of the groups differs. Post-hoc comparisons
between groups are required to determine which groups are different.

Parameters

sample1, sample2, …
[array_like] Two or more arrays with the sample measurements can be given as arguments.

nan_policy
[{‘propagate’, ‘raise’, ‘omit’}, optional] Defines how to handle when input contains nan. ‘prop-
agate’ returns nan, ‘raise’ throws an error, ‘omit’ performs the calculations ignoring nan values.
Default is ‘propagate’.

Returns

statistic [float] The Kruskal-Wallis H statistic, corrected for ties
pvalue [float] The p-value for the test using the assumption that H has a chi square distribution

See also:

f_oneway

1-way ANOVA
mannwhitneyu

Mann-Whitney rank test on two samples.
friedmanchisquare

Friedman test for repeated measurements

2458 Chapter 6. API Reference



SciPy Reference Guide, Release 1.3.1

Notes

Due to the assumption that H has a chi square distribution, the number of samples in each group must not be too
small. A typical rule is that each sample must have at least 5 measurements.

References

[1], [2]

Examples

>>> from scipy import stats
>>> x = [1, 3, 5, 7, 9]
>>> y = [2, 4, 6, 8, 10]
>>> stats.kruskal(x, y)
KruskalResult(statistic=0.2727272727272734, pvalue=0.6015081344405895)

>>> x = [1, 1, 1]
>>> y = [2, 2, 2]
>>> z = [2, 2]
>>> stats.kruskal(x, y, z)
KruskalResult(statistic=7.0, pvalue=0.0301973834223185)

scipy.stats.friedmanchisquare

scipy.stats.friedmanchisquare(*args)
Compute the Friedman test for repeated measurements
The Friedman test tests the null hypothesis that repeated measurements of the same individuals have the same
distribution. It is often used to test for consistency among measurements obtained in different ways. For example,
if two measurement techniques are used on the same set of individuals, the Friedman test can be used to determine
if the two measurement techniques are consistent.

Parameters

measurements1, measurements2, measurements3…
[array_like] Arrays of measurements. All of the arrays must have the same number of ele-
ments. At least 3 sets of measurements must be given.

Returns

statistic [float] the test statistic, correcting for ties
pvalue [float] the associated p-value assuming that the test statistic has a chi squared distribution

Notes

Due to the assumption that the test statistic has a chi squared distribution, the p-value is only reliable for n > 10
and more than 6 repeated measurements.

References

[1]
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scipy.stats.brunnermunzel

scipy.stats.brunnermunzel(x, y, alternative=’two-sided’, distribution=’t’, nan_policy=’propagate’)
Computes the Brunner-Munzel test on samples x and y
The Brunner-Munzel test is a nonparametric test of the null hypothesis that when values are taken one by one
from each group, the probabilities of getting large values in both groups are equal. Unlike the Wilcoxon-Mann-
Whitney’s U test, this does not require the assumption of equivariance of two groups. Note that this does not assume
the distributions are same. This test works on two independent samples, which may have different sizes.

Parameters

x, y [array_like] Array of samples, should be one-dimensional.
alternative

[‘less’, ‘two-sided’, or ‘greater’, optional] Whether to get the p-value for the one-sided hy-
pothesis (‘less’ or ‘greater’) or for the two-sided hypothesis (‘two-sided’). Defaults value is
‘two-sided’ .

distribution: ‘t’ or ‘normal’, optional
Whether to get the p-value by t-distribution or by standard normal distribution. Defaults
value is ‘t’ .

nan_policy
[{‘propagate’, ‘raise’, ‘omit’}, optional] Defines how to handle when input contains nan. ‘prop-
agate’ returns nan, ‘raise’ throws an error, ‘omit’ performs the calculations ignoring nan values.
Default is ‘propagate’.

Returns

statistic [float] The Brunner-Munzer W statistic.
pvalue [float] p-value assuming an t distribution. One-sided or two-sided, depending on the choice

of alternative and distribution.
See also:

mannwhitneyu

Mann-Whitney rank test on two samples.

Notes

Brunner and Munzel recommended to estimate the p-value by t-distribution when the size of data is 50 or less. If
the size is lower than 10, it would be better to use permuted Brunner Munzel test (see [2]).

References

[1], [2]

Examples

>>> from scipy import stats
>>> x1 = [1,2,1,1,1,1,1,1,1,1,2,4,1,1]
>>> x2 = [3,3,4,3,1,2,3,1,1,5,4]
>>> w, p_value = stats.brunnermunzel(x1, x2)
>>> w
3.1374674823029505

(continues on next page)
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(continued from previous page)
>>> p_value
0.0057862086661515377

scipy.stats.combine_pvalues

scipy.stats.combine_pvalues(pvalues, method=’fisher’, weights=None)
Methods for combining the p-values of independent tests bearing upon the same hypothesis.

Parameters

pvalues [array_like, 1-D] Array of p-values assumed to come from independent tests.
method [{‘fisher’, ‘pearson’, ‘tippett’, ‘stouffer’, ‘mudholkar_george’},]
optional. Name of method to use to combine p-values. The following methods are available:

• “fisher”: Fisher’s method (Fisher’s combined probability test), the default, the sum of the
logarithm of the p-values.

• “pearson”: Pearson’s method (similar to Fisher’s but uses sum of the complement of the
p-values inside the logarithms).

• “tippett”: Tippett’s method (minimum of p-values).
• “stouffer”: Stouffer’s Z-score method.
• “mudholkar_george”: the difference of Fisher’s and Pearson’s methods

divided by 2.
weights [array_like, 1-D, optional] Optional array of weights used only for Stouffer’s Z-score method.

Returns

statistic: float
The statistic calculated by the specified method.

pval: float The combined p-value.

Notes

Fisher’s method (also known as Fisher’s combined probability test) [1] uses a chi-squared statistic to compute a
combined p-value. The closely related Stouffer’s Z-score method [2] uses Z-scores rather than p-values. The ad-
vantage of Stouffer’s method is that it is straightforward to introduce weights, which can make Stouffer’s method
more powerful than Fisher’s method when the p-values are from studies of different size [6] [7]. The Pearson’s
method uses log(1 − pi) inside the sum whereas Fisher’s method uses log(pi) [4]. For Fisher’s and Pearson’s
method, the sum of the logarithms is multiplied by -2 in the implementation. This quantity has a chisquare distri-
bution that determines the p-value. The mudholkar_george method is the difference of the Fisher’s and Pearson’s
test statistics, each of which include the -2 factor [4]. However, the mudholkar_george method does not include
these -2 factors. The test statistic of mudholkar_george is the sum of logisitic random variables and equation 3.6
in [3] is used to approximate the p-value based on Student’s t-distribution.
Fisher’s methodmay be extended to combine p-values from dependent tests [5]. Extensions such as Brown’s method
and Kost’s method are not currently implemented.
New in version 0.15.0.

References

[1], [2], [3], [4], [5], [6], [7]
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scipy.stats.jarque_bera

scipy.stats.jarque_bera(x)
Perform the Jarque-Bera goodness of fit test on sample data.
The Jarque-Bera test tests whether the sample data has the skewness and kurtosis matching a normal distribution.
Note that this test only works for a large enough number of data samples (>2000) as the test statistic asymptotically
has a Chi-squared distribution with 2 degrees of freedom.

Parameters

x [array_like] Observations of a random variable.
Returns

jb_value [float] The test statistic.
p [float] The p-value for the hypothesis test.

References

[1]

Examples

>>> from scipy import stats
>>> np.random.seed(987654321)
>>> x = np.random.normal(0, 1, 100000)
>>> y = np.random.rayleigh(1, 100000)
>>> stats.jarque_bera(x)
(4.7165707989581342, 0.09458225503041906)
>>> stats.jarque_bera(y)
(6713.7098548143422, 0.0)

ansari(x, y) Perform the Ansari-Bradley test for equal scale parame-
ters

bartlett(*args) Perform Bartlett’s test for equal variances
levene(*args, **kwds) Perform Levene test for equal variances.
shapiro(x) Perform the Shapiro-Wilk test for normality.
anderson(x[, dist]) Anderson-Darling test for data coming from a particular

distribution
anderson_ksamp(samples[, midrank]) The Anderson-Darling test for k-samples.
binom_test(x[, n, p, alternative]) Perform a test that the probability of success is p.
fligner(*args, **kwds) Perform Fligner-Killeen test for equality of variance.
median_test(*args, **kwds) Mood’s median test.
mood(x, y[, axis]) Perform Mood’s test for equal scale parameters.
skewtest(a[, axis, nan_policy]) Test whether the skew is different from the normal distri-

bution.
kurtosistest(a[, axis, nan_policy]) Test whether a dataset has normal kurtosis.
normaltest(a[, axis, nan_policy]) Test whether a sample differs from a normal distribution.
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scipy.stats.ansari

scipy.stats.ansari(x, y)
Perform the Ansari-Bradley test for equal scale parameters
The Ansari-Bradley test is a non-parametric test for the equality of the scale parameter of the distributions from
which two samples were drawn.

Parameters

x, y [array_like] arrays of sample data
Returns

statistic [float] The Ansari-Bradley test statistic
pvalue [float] The p-value of the hypothesis test

See also:

fligner

A non-parametric test for the equality of k variances
mood

A non-parametric test for the equality of two scale parameters

Notes

The p-value given is exact when the sample sizes are both less than 55 and there are no ties, otherwise a normal
approximation for the p-value is used.

References

[1]

scipy.stats.bartlett

scipy.stats.bartlett(*args)
Perform Bartlett’s test for equal variances
Bartlett’s test tests the null hypothesis that all input samples are from populations with equal variances. For samples
from significantly non-normal populations, Levene’s test levene is more robust.

Parameters

sample1, sample2,…
[array_like] arrays of sample data. Only 1d arrays are accepted, they may have different
lengths.

Returns

statistic [float] The test statistic.
pvalue [float] The p-value of the test.

See also:

fligner

A non-parametric test for the equality of k variances
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levene

A robust parametric test for equality of k variances

Notes

Conover et al. (1981) examine many of the existing parametric and nonparametric tests by extensive simulations
and they conclude that the tests proposed by Fligner and Killeen (1976) and Levene (1960) appear to be superior
in terms of robustness of departures from normality and power ([3]).

References

[1], [2], [3], [4]

scipy.stats.levene

scipy.stats.levene(*args, **kwds)
Perform Levene test for equal variances.
The Levene test tests the null hypothesis that all input samples are from populations with equal variances. Levene’s
test is an alternative to Bartlett’s test bartlett in the case where there are significant deviations from normality.

Parameters

sample1, sample2, …
[array_like] The sample data, possibly with different lengths. Only one-dimensional samples
are accepted.

center [{‘mean’, ‘median’, ‘trimmed’}, optional] Which function of the data to use in the test. The
default is ‘median’.

proportiontocut
[float, optional] When center is ‘trimmed’, this gives the proportion of data points to cut from
each end. (See scipy.stats.trim_mean.) Default is 0.05.

Returns

statistic [float] The test statistic.
pvalue [float] The p-value for the test.

Notes

Three variations of Levene’s test are possible. The possibilities and their recommended usages are:
• ‘median’ : Recommended for skewed (non-normal) distributions>
• ‘mean’ : Recommended for symmetric, moderate-tailed distributions.
• ‘trimmed’ : Recommended for heavy-tailed distributions.

The test version using the mean was proposed in the original article of Levene ([2]) while the median and trimmed
mean have been studied by Brown and Forsythe ([3]), sometimes also referred to as Brown-Forsythe test.

References

[1], [2], [3]
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scipy.stats.shapiro

scipy.stats.shapiro(x)
Perform the Shapiro-Wilk test for normality.
The Shapiro-Wilk test tests the null hypothesis that the data was drawn from a normal distribution.

Parameters

x [array_like] Array of sample data.
Returns

W [float] The test statistic.
p-value [float] The p-value for the hypothesis test.

See also:

anderson

The Anderson-Darling test for normality
kstest

The Kolmogorov-Smirnov test for goodness of fit.

Notes

The algorithm used is described in [4] but censoring parameters as described are not implemented. For N > 5000
the W test statistic is accurate but the p-value may not be.
The chance of rejecting the null hypothesis when it is true is close to 5% regardless of sample size.

References

[1], [2], [3], [4]

Examples

>>> from scipy import stats
>>> np.random.seed(12345678)
>>> x = stats.norm.rvs(loc=5, scale=3, size=100)
>>> stats.shapiro(x)
(0.9772805571556091, 0.08144091814756393)

scipy.stats.anderson

scipy.stats.anderson(x, dist=’norm’)
Anderson-Darling test for data coming from a particular distribution
The Anderson-Darling tests the null hypothesis that a sample is drawn from a population that follows a particular
distribution. For the Anderson-Darling test, the critical values depend on which distribution is being tested against.
This function works for normal, exponential, logistic, or Gumbel (Extreme Value Type I) distributions.

Parameters
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x [array_like] array of sample data
dist [{‘norm’,’expon’,’logistic’,’gumbel’,’gumbel_l’, gumbel_r’,] ‘extreme1’}, optional the type of

distribution to test against. The default is ‘norm’ and ‘extreme1’, ‘gumbel_l’ and ‘gumbel’ are
synonyms.

Returns

statistic [float] The Anderson-Darling test statistic
critical_values

[list] The critical values for this distribution
significance_level

[list] The significance levels for the corresponding critical values in percents. The function
returns critical values for a differing set of significance levels depending on the distribution
that is being tested against.

See also:

kstest

The Kolmogorov-Smirnov test for goodness-of-fit.

Notes

Critical values provided are for the following significance levels:
normal/exponenential

15%, 10%, 5%, 2.5%, 1%
logistic

25%, 10%, 5%, 2.5%, 1%, 0.5%
Gumbel

25%, 10%, 5%, 2.5%, 1%
If the returned statistic is larger than these critical values then for the corresponding significance level, the null
hypothesis that the data come from the chosen distribution can be rejected. The returned statistic is referred to as
‘A2’ in the references.

References

[1], [2], [3], [4], [5], [6]

scipy.stats.anderson_ksamp

scipy.stats.anderson_ksamp(samples, midrank=True)
The Anderson-Darling test for k-samples.
The k-sample Anderson-Darling test is a modification of the one-sample Anderson-Darling test. It tests the null
hypothesis that k-samples are drawn from the same population without having to specify the distribution function
of that population. The critical values depend on the number of samples.

Parameters

samples [sequence of 1-D array_like] Array of sample data in arrays.
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midrank [bool, optional] Type of Anderson-Darling test which is computed. Default (True) is the
midrank test applicable to continuous and discrete populations. If False, the right side em-
pirical distribution is used.

Returns

statistic [float] Normalized k-sample Anderson-Darling test statistic.
critical_values

[array] The critical values for significance levels 25%, 10%, 5%, 2.5%, 1%.
significance_level

[float] An approximate significance level at which the null hypothesis for the provided sam-
ples can be rejected. The value is floored / capped at 1% / 25%.

Raises

ValueError
If less than 2 samples are provided, a sample is empty, or no distinct observations are in the
samples.

See also:

ks_2samp

2 sample Kolmogorov-Smirnov test
anderson

1 sample Anderson-Darling test

Notes

[1] defines three versions of the k-sample Anderson-Darling test: one for continuous distributions and two for
discrete distributions, in which ties between samples may occur. The default of this routine is to compute the
version based on the midrank empirical distribution function. This test is applicable to continuous and discrete
data. If midrank is set to False, the right side empirical distribution is used for a test for discrete data. According
to [1], the two discrete test statistics differ only slightly if a few collisions due to round-off errors occur in the test
not adjusted for ties between samples.
The critical values corresponding to the significance levels from 0.01 to 0.25 are taken from [1]. p-values are floored
/ capped at 0.1% / 25%. Since the range of critical values might be extended in future releases, it is recommended
not to test p == 0.25, but rather p >= 0.25 (analogously for the lower bound).
New in version 0.14.0.

References

[1]

Examples

>>> from scipy import stats
>>> np.random.seed(314159)

The null hypothesis that the two random samples come from the same distribution can be rejected at the 5% level
because the returned test value is greater than the critical value for 5% (1.961) but not at the 2.5% level. The
interpolation gives an approximate significance level of 3.2%:
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>>> stats.anderson_ksamp([np.random.normal(size=50),
... np.random.normal(loc=0.5, size=30)])
(2.4615796189876105,

array([ 0.325, 1.226, 1.961, 2.718, 3.752, 4.592, 6.546]),
0.03176687568842282)

The null hypothesis cannot be rejected for three samples from an identical distribution. The reported p-value
(25%) has been capped and may not be very accurate (since it corresponds to the value 0.449 whereas the statistic
is -0.731):

>>> stats.anderson_ksamp([np.random.normal(size=50),
... np.random.normal(size=30), np.random.normal(size=20)])
(-0.73091722665244196,

array([ 0.44925884, 1.3052767 , 1.9434184 , 2.57696569, 3.41634856,
4.07210043, 5.56419101]),
0.25)

scipy.stats.binom_test

scipy.stats.binom_test(x, n=None, p=0.5, alternative=’two-sided’)
Perform a test that the probability of success is p.
This is an exact, two-sided test of the null hypothesis that the probability of success in a Bernoulli experiment is p.

Parameters

x [integer or array_like] the number of successes, or if x has length 2, it is the number of
successes and the number of failures.

n [integer] the number of trials. This is ignored if x gives both the number of successes and
failures

p [float, optional] The hypothesized probability of success. 0 <= p <= 1. The default value is
p = 0.5

alternative
[{‘two-sided’, ‘greater’, ‘less’}, optional] Indicates the alternative hypothesis. The default
value is ‘two-sided’.

Returns

p-value [float] The p-value of the hypothesis test

References

[1]

Examples

>>> from scipy import stats

A car manufacturer claims that no more than 10% of their cars are unsafe. 15 cars are inspected for safety, 3 were
found to be unsafe. Test the manufacturer’s claim:

>>> stats.binom_test(3, n=15, p=0.1, alternative='greater')
0.18406106910639114
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The null hypothesis cannot be rejected at the 5% level of significance because the returned p-value is greater than
the critical value of 5%.

scipy.stats.fligner

scipy.stats.fligner(*args, **kwds)
Perform Fligner-Killeen test for equality of variance.
Fligner’s test tests the null hypothesis that all input samples are from populations with equal variances. Fligner-
Killeen’s test is distribution free when populations are identical [2].

Parameters

sample1, sample2, …
[array_like] Arrays of sample data. Need not be the same length.

center [{‘mean’, ‘median’, ‘trimmed’}, optional] Keyword argument controlling which function of
the data is used in computing the test statistic. The default is ‘median’.

proportiontocut
[float, optional] When center is ‘trimmed’, this gives the proportion of data points to cut from
each end. (See scipy.stats.trim_mean.) Default is 0.05.

Returns

statistic [float] The test statistic.
pvalue [float] The p-value for the hypothesis test.

See also:

bartlett

A parametric test for equality of k variances in normal samples
levene

A robust parametric test for equality of k variances

Notes

As with Levene’s test there are three variants of Fligner’s test that differ by the measure of central tendency used
in the test. See levene for more information.
Conover et al. (1981) examine many of the existing parametric and nonparametric tests by extensive simulations
and they conclude that the tests proposed by Fligner and Killeen (1976) and Levene (1960) appear to be superior
in terms of robustness of departures from normality and power [3].

References

[1], [2], [3], [4]

scipy.stats.median_test

scipy.stats.median_test(*args, **kwds)
Mood’s median test.
Test that two or more samples come from populations with the same median.

6.28. Statistical functions (scipy.stats) 2469



SciPy Reference Guide, Release 1.3.1

Let n = len(args) be the number of samples. The “grand median” of all the data is computed, and a con-
tingency table is formed by classifying the values in each sample as being above or below the grand median. The
contingency table, along with correction and lambda_, are passed to scipy.stats.chi2_contingency to
compute the test statistic and p-value.

Parameters

sample1, sample2, …
[array_like] The set of samples. There must be at least two samples. Each sample must be
a one-dimensional sequence containing at least one value. The samples are not required to
have the same length.

ties [str, optional] Determines how values equal to the grand median are classified in the contin-
gency table. The string must be one of:

"below":
Values equal to the grand median are counted as "below

↪→".
"above":

Values equal to the grand median are counted as "above
↪→".
"ignore":

Values equal to the grand median are not counted.

The default is “below”.
correction [bool, optional] If True, and there are just two samples, apply Yates’ correction for continuity

when computing the test statistic associated with the contingency table. Default is True.
lambda_ [float or str, optional.] By default, the statistic computed in this test is Pearson’s chi-squared

statistic. lambda_ allows a statistic from the Cressie-Read power divergence family to be
used instead. See power_divergence for details. Default is 1 (Pearson’s chi-squared
statistic).

nan_policy
[{‘propagate’, ‘raise’, ‘omit’}, optional] Defines how to handle when input contains nan. ‘prop-
agate’ returns nan, ‘raise’ throws an error, ‘omit’ performs the calculations ignoring nan values.
Default is ‘propagate’.

Returns

stat [float] The test statistic. The statistic that is returned is determined by lambda_. The default
is Pearson’s chi-squared statistic.

p [float] The p-value of the test.
m [float] The grand median.
table [ndarray] The contingency table. The shape of the table is (2, n), where n is the number of

samples. The first row holds the counts of the values above the grand median, and the sec-
ond row holds the counts of the values below the grand median. The table allows further
analysis with, for example, scipy.stats.chi2_contingency, or with scipy.
stats.fisher_exact if there are two samples, without having to recompute the table.
If nan_policy is “propagate” and there are nans in the input, the return value for table
is None.

See also:

kruskal

Compute the Kruskal-Wallis H-test for independent samples.
mannwhitneyu

Computes the Mann-Whitney rank test on samples x and y.
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Notes

New in version 0.15.0.

References

[1], [2]

Examples

A biologist runs an experiment in which there are three groups of plants. Group 1 has 16 plants, group 2 has 15
plants, and group 3 has 17 plants. Each plant produces a number of seeds. The seed counts for each group are:

Group 1: 10 14 14 18 20 22 24 25 31 31 32 39 43 43 48 49
Group 2: 28 30 31 33 34 35 36 40 44 55 57 61 91 92 99
Group 3: 0 3 9 22 23 25 25 33 34 34 40 45 46 48 62 67 84

The following code applies Mood’s median test to these samples.

>>> g1 = [10, 14, 14, 18, 20, 22, 24, 25, 31, 31, 32, 39, 43, 43, 48, 49]
>>> g2 = [28, 30, 31, 33, 34, 35, 36, 40, 44, 55, 57, 61, 91, 92, 99]
>>> g3 = [0, 3, 9, 22, 23, 25, 25, 33, 34, 34, 40, 45, 46, 48, 62, 67, 84]
>>> from scipy.stats import median_test
>>> stat, p, med, tbl = median_test(g1, g2, g3)

The median is

>>> med
34.0

and the contingency table is

>>> tbl
array([[ 5, 10, 7],

[11, 5, 10]])

p is too large to conclude that the medians are not the same:

>>> p
0.12609082774093244

The “G-test” can be performed by passing lambda_="log-likelihood" to median_test.

>>> g, p, med, tbl = median_test(g1, g2, g3, lambda_="log-likelihood")
>>> p
0.12224779737117837

The median occurs several times in the data, so we’ll get a different result if, for example, ties="above" is
used:

>>> stat, p, med, tbl = median_test(g1, g2, g3, ties="above")
>>> p
0.063873276069553273
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>>> tbl
array([[ 5, 11, 9],

[11, 4, 8]])

This example demonstrates that if the data set is not large and there are values equal to the median, the p-value can
be sensitive to the choice of ties.

scipy.stats.mood

scipy.stats.mood(x, y, axis=0)
Perform Mood’s test for equal scale parameters.
Mood’s two-sample test for scale parameters is a non-parametric test for the null hypothesis that two samples are
drawn from the same distribution with the same scale parameter.

Parameters

x, y [array_like] Arrays of sample data.
axis [int, optional] The axis along which the samples are tested. x and y can be of different length

along axis. If axis is None, x and y are flattened and the test is done on all values in the
flattened arrays.

Returns

z [scalar or ndarray] The z-score for the hypothesis test. For 1-D inputs a scalar is returned.
p-value [scalar ndarray] The p-value for the hypothesis test.

See also:

fligner

A non-parametric test for the equality of k variances
ansari

A non-parametric test for the equality of 2 variances
bartlett

A parametric test for equality of k variances in normal samples
levene

A parametric test for equality of k variances

Notes

The data are assumed to be drawn from probability distributions f(x) and f(x/s) / s respectively, for some
probability density function f. The null hypothesis is that s == 1.
For multi-dimensional arrays, if the inputs are of shapes (n0, n1, n2, n3) and (n0, m1, n2, n3),
then if axis=1, the resulting z and p values will have shape (n0, n2, n3). Note that n1 and m1 don’t have
to be equal, but the other dimensions do.

Examples
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>>> from scipy import stats
>>> np.random.seed(1234)
>>> x2 = np.random.randn(2, 45, 6, 7)
>>> x1 = np.random.randn(2, 30, 6, 7)
>>> z, p = stats.mood(x1, x2, axis=1)
>>> p.shape
(2, 6, 7)

Find the number of points where the difference in scale is not significant:

>>> (p > 0.1).sum()
74

Perform the test with different scales:

>>> x1 = np.random.randn(2, 30)
>>> x2 = np.random.randn(2, 35) * 10.0
>>> stats.mood(x1, x2, axis=1)
(array([-5.7178125 , -5.25342163]), array([ 1.07904114e-08, 1.
↪→49299218e-07]))

scipy.stats.skewtest

scipy.stats.skewtest(a, axis=0, nan_policy=’propagate’)
Test whether the skew is different from the normal distribution.
This function tests the null hypothesis that the skewness of the population that the sample was drawn from is the
same as that of a corresponding normal distribution.

Parameters

a [array] The data to be tested
axis [int or None, optional] Axis along which statistics are calculated. Default is 0. If None,

compute over the whole array a.
nan_policy

[{‘propagate’, ‘raise’, ‘omit’}, optional] Defines how to handle when input contains nan. ‘prop-
agate’ returns nan, ‘raise’ throws an error, ‘omit’ performs the calculations ignoring nan values.
Default is ‘propagate’.

Returns

statistic [float] The computed z-score for this test.
pvalue [float] a 2-sided p-value for the hypothesis test

Notes

The sample size must be at least 8.

References

[1]
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Examples

>>> from scipy.stats import skewtest
>>> skewtest([1, 2, 3, 4, 5, 6, 7, 8])
SkewtestResult(statistic=1.0108048609177787, pvalue=0.3121098361421897)
>>> skewtest([2, 8, 0, 4, 1, 9, 9, 0])
SkewtestResult(statistic=0.44626385374196975, pvalue=0.6554066631275459)
>>> skewtest([1, 2, 3, 4, 5, 6, 7, 8000])
SkewtestResult(statistic=3.571773510360407, pvalue=0.0003545719905823133)
>>> skewtest([100, 100, 100, 100, 100, 100, 100, 101])
SkewtestResult(statistic=3.5717766638478072, pvalue=0.000354567720281634)

scipy.stats.kurtosistest

scipy.stats.kurtosistest(a, axis=0, nan_policy=’propagate’)
Test whether a dataset has normal kurtosis.
This function tests the null hypothesis that the kurtosis of the population from which the sample was drawn is that
of the normal distribution: kurtosis = 3(n-1)/(n+1).

Parameters

a [array] array of the sample data
axis [int or None, optional] Axis along which to compute test. Default is 0. If None, compute

over the whole array a.
nan_policy

[{‘propagate’, ‘raise’, ‘omit’}, optional] Defines how to handle when input contains nan. ‘prop-
agate’ returns nan, ‘raise’ throws an error, ‘omit’ performs the calculations ignoring nan values.
Default is ‘propagate’.

Returns

statistic [float] The computed z-score for this test.
pvalue [float] The 2-sided p-value for the hypothesis test

Notes

Valid only for n>20. This function uses the method described in [1].

References

[1]

Examples

>>> from scipy.stats import kurtosistest
>>> kurtosistest(list(range(20)))
KurtosistestResult(statistic=-1.7058104152122062, pvalue=0.
↪→08804338332528348)
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>>> np.random.seed(28041990)
>>> s = np.random.normal(0, 1, 1000)
>>> kurtosistest(s)
KurtosistestResult(statistic=1.2317590987707365, pvalue=0.
↪→21803908613450895)

scipy.stats.normaltest

scipy.stats.normaltest(a, axis=0, nan_policy=’propagate’)
Test whether a sample differs from a normal distribution.
This function tests the null hypothesis that a sample comes from a normal distribution. It is based on D’Agostino
and Pearson’s [1], [2] test that combines skew and kurtosis to produce an omnibus test of normality.

Parameters

a [array_like] The array containing the sample to be tested.
axis [int or None, optional] Axis along which to compute test. Default is 0. If None, compute

over the whole array a.
nan_policy

[{‘propagate’, ‘raise’, ‘omit’}, optional] Defines how to handle when input contains nan. ‘prop-
agate’ returns nan, ‘raise’ throws an error, ‘omit’ performs the calculations ignoring nan values.
Default is ‘propagate’.

Returns

statistic [float or array] s^2 + k^2, where s is the z-score returned by skewtest and k is the
z-score returned by kurtosistest.

pvalue [float or array] A 2-sided chi squared probability for the hypothesis test.

References

[1], [2]

Examples

>>> from scipy import stats
>>> pts = 1000
>>> np.random.seed(28041990)
>>> a = np.random.normal(0, 1, size=pts)
>>> b = np.random.normal(2, 1, size=pts)
>>> x = np.concatenate((a, b))
>>> k2, p = stats.normaltest(x)
>>> alpha = 1e-3
>>> print("p = {:g}".format(p))
p = 3.27207e-11
>>> if p < alpha: # null hypothesis: x comes from a normal distribution
... print("The null hypothesis can be rejected")
... else:
... print("The null hypothesis cannot be rejected")
The null hypothesis can be rejected
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6.28.11 Transformations

boxcox(x[, lmbda, alpha]) Return a positive dataset transformed by a Box-Cox
power transformation.

boxcox_normmax(x[, brack, method]) Compute optimal Box-Cox transform parameter for input
data.

boxcox_llf(lmb, data) The boxcox log-likelihood function.
yeojohnson(x[, lmbda]) Return a dataset transformed by a Yeo-Johnson power

transformation.
yeojohnson_normmax(x[, brack]) Compute optimal Yeo-Johnson transform parameter for

input data, using maximum likelihood estimation.
yeojohnson_llf(lmb, data) The yeojohnson log-likelihood function.
obrientransform(*args) Compute the O’Brien transform on input data (any num-

ber of arrays).
sigmaclip(a[, low, high]) Iterative sigma-clipping of array elements.
trimboth(a, proportiontocut[, axis]) Slices off a proportion of items from both ends of an ar-

ray.
trim1(a, proportiontocut[, tail, axis]) Slices off a proportion from ONE end of the passed array

distribution.
zmap(scores, compare[, axis, ddof]) Calculate the relative z-scores.
zscore(a[, axis, ddof]) Calculate the z score of each value in the sample, relative

to the sample mean and standard deviation.

scipy.stats.boxcox

scipy.stats.boxcox(x, lmbda=None, alpha=None)
Return a positive dataset transformed by a Box-Cox power transformation.

Parameters

x [ndarray] Input array. Should be 1-dimensional.
lmbda [{None, scalar}, optional] If lmbda is not None, do the transformation for that value.

If lmbda is None, find the lambda that maximizes the log-likelihood function and return it
as the second output argument.

alpha [{None, float}, optional] If alpha is not None, return the 100 * (1-alpha)% confi-
dence interval for lmbda as the third output argument. Must be between 0.0 and 1.0.

Returns

boxcox [ndarray] Box-Cox power transformed array.
maxlog [float, optional] If the lmbda parameter is None, the second returned argument is the lambda

that maximizes the log-likelihood function.
(min_ci, max_ci)

[tuple of float, optional] If lmbda parameter is None and alpha is not None, this returned
tuple of floats represents the minimum and maximum confidence limits given alpha.

See also:
probplot, boxcox_normplot, boxcox_normmax, boxcox_llf

Notes

The Box-Cox transform is given by:
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y = (x**lmbda - 1) / lmbda, for lmbda > 0
log(x), for lmbda = 0

boxcox requires the input data to be positive. Sometimes a Box-Cox transformation provides a shift parameter
to achieve this; boxcox does not. Such a shift parameter is equivalent to adding a positive constant to x before
calling boxcox.
The confidence limits returned when alpha is provided give the interval where:

llf(λ̂)− llf(λ) <
1

2
χ2(1− α, 1),

with llf the log-likelihood function and χ2 the chi-squared function.

References

G.E.P. Box and D.R. Cox, “An Analysis of Transformations”, Journal of the Royal Statistical Society B, 26, 211-
252 (1964).

Examples

>>> from scipy import stats
>>> import matplotlib.pyplot as plt

We generate some random variates from a non-normal distribution and make a probability plot for it, to show it is
non-normal in the tails:

>>> fig = plt.figure()
>>> ax1 = fig.add_subplot(211)
>>> x = stats.loggamma.rvs(5, size=500) + 5
>>> prob = stats.probplot(x, dist=stats.norm, plot=ax1)
>>> ax1.set_xlabel('')
>>> ax1.set_title('Probplot against normal distribution')

We now use boxcox to transform the data so it’s closest to normal:

>>> ax2 = fig.add_subplot(212)
>>> xt, _ = stats.boxcox(x)
>>> prob = stats.probplot(xt, dist=stats.norm, plot=ax2)
>>> ax2.set_title('Probplot after Box-Cox transformation')

>>> plt.show()

scipy.stats.boxcox_normmax

scipy.stats.boxcox_normmax(x, brack=(-2.0, 2.0), method=’pearsonr’)
Compute optimal Box-Cox transform parameter for input data.

Parameters

x [array_like] Input array.
brack [2-tuple, optional] The starting interval for a downhill bracket search with optimize.brent.

Note that this is in most cases not critical; the final result is allowed to be outside this bracket.
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method [str, optional] The method to determine the optimal transform parameter (boxcox lmbda
parameter). Options are:
‘pearsonr’ (default)

Maximizes the Pearson correlation coefficient between y = boxcox(x) and
the expected values for y if x would be normally-distributed.

‘mle’ Minimizes the log-likelihood boxcox_llf. This is the method used in
boxcox.

‘all’ Use all optimizationmethods available, and return all results. Useful to compare
different methods.

Returns

maxlog [float or ndarray] The optimal transform parameter found. An array instead of a scalar for
method='all'.

See also:
boxcox, boxcox_llf, boxcox_normplot

Examples

>>> from scipy import stats
>>> import matplotlib.pyplot as plt
>>> np.random.seed(1234) # make this example reproducible

Generate some data and determine optimal lmbda in various ways:

>>> x = stats.loggamma.rvs(5, size=30) + 5
>>> y, lmax_mle = stats.boxcox(x)
>>> lmax_pearsonr = stats.boxcox_normmax(x)

>>> lmax_mle
7.177...
>>> lmax_pearsonr

(continues on next page)
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(continued from previous page)
7.916...
>>> stats.boxcox_normmax(x, method='all')
array([ 7.91667384, 7.17718692])

>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> prob = stats.boxcox_normplot(x, -10, 10, plot=ax)
>>> ax.axvline(lmax_mle, color='r')
>>> ax.axvline(lmax_pearsonr, color='g', ls='--')

>>> plt.show()
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scipy.stats.boxcox_llf

scipy.stats.boxcox_llf(lmb, data)
The boxcox log-likelihood function.

Parameters

lmb [scalar] Parameter for Box-Cox transformation. See boxcox for details.
data [array_like] Data to calculate Box-Cox log-likelihood for. If data is multi-dimensional, the

log-likelihood is calculated along the first axis.
Returns

llf [float or ndarray] Box-Cox log-likelihood of data given lmb. A float for 1-D data, an array
otherwise.

See also:
boxcox, probplot, boxcox_normplot, boxcox_normmax
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Notes

The Box-Cox log-likelihood function is defined here as

llf = (λ− 1)
∑
i

(log(xi))−N/2 log(
∑
i

(yi − ȳ)2/N),

where y is the Box-Cox transformed input data x.

Examples

>>> from scipy import stats
>>> import matplotlib.pyplot as plt
>>> from mpl_toolkits.axes_grid1.inset_locator import inset_axes
>>> np.random.seed(1245)

Generate some random variates and calculate Box-Cox log-likelihood values for them for a range of lmbda values:

>>> x = stats.loggamma.rvs(5, loc=10, size=1000)
>>> lmbdas = np.linspace(-2, 10)
>>> llf = np.zeros(lmbdas.shape, dtype=float)
>>> for ii, lmbda in enumerate(lmbdas):
... llf[ii] = stats.boxcox_llf(lmbda, x)

Also find the optimal lmbda value with boxcox:

>>> x_most_normal, lmbda_optimal = stats.boxcox(x)

Plot the log-likelihood as function of lmbda. Add the optimal lmbda as a horizontal line to check that that’s really
the optimum:

>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> ax.plot(lmbdas, llf, 'b.-')
>>> ax.axhline(stats.boxcox_llf(lmbda_optimal, x), color='r')
>>> ax.set_xlabel('lmbda parameter')
>>> ax.set_ylabel('Box-Cox log-likelihood')

Now add some probability plots to show that where the log-likelihood is maximized the data transformed with
boxcox looks closest to normal:

>>> locs = [3, 10, 4] # 'lower left', 'center', 'lower right'
>>> for lmbda, loc in zip([-1, lmbda_optimal, 9], locs):
... xt = stats.boxcox(x, lmbda=lmbda)
... (osm, osr), (slope, intercept, r_sq) = stats.probplot(xt)
... ax_inset = inset_axes(ax, width="20%", height="20%", loc=loc)
... ax_inset.plot(osm, osr, 'c.', osm, slope*osm + intercept, 'k-')
... ax_inset.set_xticklabels([])
... ax_inset.set_yticklabels([])
... ax_inset.set_title(r'$\lambda=%1.2f$' % lmbda)

>>> plt.show()
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scipy.stats.yeojohnson

scipy.stats.yeojohnson(x, lmbda=None)
Return a dataset transformed by a Yeo-Johnson power transformation.

Parameters

x [ndarray] Input array. Should be 1-dimensional.
lmbda [float, optional] If lmbda is None, find the lambda that maximizes the log-likelihood func-

tion and return it as the second output argument. Otherwise the transformation is done for
the given value.

Returns

yeojohnson: ndarray
Yeo-Johnson power transformed array.

maxlog [float, optional] If the lmbda parameter is None, the second returned argument is the lambda
that maximizes the log-likelihood function.

See also:
probplot, yeojohnson_normplot, yeojohnson_normmax, yeojohnson_llf, boxcox

Notes

The Yeo-Johnson transform is given by:

y = ((x + 1)**lmbda - 1) / lmbda, for x >= 0, lmbda != 0
log(x + 1), for x >= 0, lmbda = 0
-((-x + 1)**(2 - lmbda) - 1) / (2 - lmbda), for x < 0, lmbda != 2
-log(-x + 1), for x < 0, lmbda = 2

Unlike boxcox, yeojohnson does not require the input data to be positive.
New in version 1.2.0.
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References

I. Yeo and R.A. Johnson, “A New Family of Power Transformations to Improve Normality or Symmetry”,
Biometrika 87.4 (2000):

Examples

>>> from scipy import stats
>>> import matplotlib.pyplot as plt

We generate some random variates from a non-normal distribution and make a probability plot for it, to show it is
non-normal in the tails:

>>> fig = plt.figure()
>>> ax1 = fig.add_subplot(211)
>>> x = stats.loggamma.rvs(5, size=500) + 5
>>> prob = stats.probplot(x, dist=stats.norm, plot=ax1)
>>> ax1.set_xlabel('')
>>> ax1.set_title('Probplot against normal distribution')

We now use yeojohnson to transform the data so it’s closest to normal:

>>> ax2 = fig.add_subplot(212)
>>> xt, lmbda = stats.yeojohnson(x)
>>> prob = stats.probplot(xt, dist=stats.norm, plot=ax2)
>>> ax2.set_title('Probplot after Yeo-Johnson transformation')

>>> plt.show()
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scipy.stats.yeojohnson_normmax

scipy.stats.yeojohnson_normmax(x, brack=(-2, 2))
Compute optimal Yeo-Johnson transform parameter for input data, using maximum likelihood estimation.
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Parameters

x [array_like] Input array.
brack [2-tuple, optional] The starting interval for a downhill bracket search with optimize.brent.

Note that this is in most cases not critical; the final result is allowed to be outside this bracket.
Returns

maxlog [float] The optimal transform parameter found.
See also:
yeojohnson, yeojohnson_llf, yeojohnson_normplot

Notes

New in version 1.2.0.

Examples

>>> from scipy import stats
>>> import matplotlib.pyplot as plt
>>> np.random.seed(1234) # make this example reproducible

Generate some data and determine optimal lmbda

>>> x = stats.loggamma.rvs(5, size=30) + 5
>>> lmax = stats.yeojohnson_normmax(x)

>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> prob = stats.yeojohnson_normplot(x, -10, 10, plot=ax)
>>> ax.axvline(lmax, color='r')

>>> plt.show()

scipy.stats.yeojohnson_llf

scipy.stats.yeojohnson_llf(lmb, data)
The yeojohnson log-likelihood function.

Parameters

lmb [scalar] Parameter for Yeo-Johnson transformation. See yeojohnson for details.
data [array_like] Data to calculate Yeo-Johnson log-likelihood for. If data is multi-dimensional,

the log-likelihood is calculated along the first axis.
Returns

llf [float] Yeo-Johnson log-likelihood of data given lmb.
See also:
yeojohnson, probplot, yeojohnson_normplot, yeojohnson_normmax

6.28. Statistical functions (scipy.stats) 2483



SciPy Reference Guide, Release 1.3.1

10 5 0 5 10

0.80

0.85

0.90

0.95

1.00

Pr
ob

 P
lo

t C
or

r. 
Co

ef
.

Yeo-Johnson Normality Plot

Notes

The Yeo-Johnson log-likelihood function is defined here as

llf = N/2 log(σ̂2) + (λ− 1)
∑
i

sign (xi) log(|xi|+ 1)

where σ̂2 is estimated variance of the the Yeo-Johnson transformed input data x.
New in version 1.2.0.

Examples

>>> from scipy import stats
>>> import matplotlib.pyplot as plt
>>> from mpl_toolkits.axes_grid1.inset_locator import inset_axes
>>> np.random.seed(1245)

Generate some random variates and calculate Yeo-Johnson log-likelihood values for them for a range of lmbda
values:

>>> x = stats.loggamma.rvs(5, loc=10, size=1000)
>>> lmbdas = np.linspace(-2, 10)
>>> llf = np.zeros(lmbdas.shape, dtype=float)
>>> for ii, lmbda in enumerate(lmbdas):
... llf[ii] = stats.yeojohnson_llf(lmbda, x)

Also find the optimal lmbda value with yeojohnson:

>>> x_most_normal, lmbda_optimal = stats.yeojohnson(x)

Plot the log-likelihood as function of lmbda. Add the optimal lmbda as a horizontal line to check that that’s really
the optimum:
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>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> ax.plot(lmbdas, llf, 'b.-')
>>> ax.axhline(stats.yeojohnson_llf(lmbda_optimal, x), color='r')
>>> ax.set_xlabel('lmbda parameter')
>>> ax.set_ylabel('Yeo-Johnson log-likelihood')

Now add some probability plots to show that where the log-likelihood is maximized the data transformed with
yeojohnson looks closest to normal:

>>> locs = [3, 10, 4] # 'lower left', 'center', 'lower right'
>>> for lmbda, loc in zip([-1, lmbda_optimal, 9], locs):
... xt = stats.yeojohnson(x, lmbda=lmbda)
... (osm, osr), (slope, intercept, r_sq) = stats.probplot(xt)
... ax_inset = inset_axes(ax, width="20%", height="20%", loc=loc)
... ax_inset.plot(osm, osr, 'c.', osm, slope*osm + intercept, 'k-')
... ax_inset.set_xticklabels([])
... ax_inset.set_yticklabels([])
... ax_inset.set_title(r'$\lambda=%1.2f$' % lmbda)

>>> plt.show()
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scipy.stats.obrientransform

scipy.stats.obrientransform(*args)
Compute the O’Brien transform on input data (any number of arrays).
Used to test for homogeneity of variance prior to running one-way stats. Each array in *args is one level of
a factor. If f_oneway is run on the transformed data and found significant, the variances are unequal. From
Maxwell and Delaney [1], p.112.

Parameters

args [tuple of array_like] Any number of arrays.
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Returns

obrientransform
[ndarray] Transformed data for use in an ANOVA. The first dimension of the result corre-
sponds to the sequence of transformed arrays. If the arrays given are all 1-D of the same
length, the return value is a 2-D array; otherwise it is a 1-D array of type object, with each
element being an ndarray.

References

[1]

Examples

We’ll test the following data sets for differences in their variance.

>>> x = [10, 11, 13, 9, 7, 12, 12, 9, 10]
>>> y = [13, 21, 5, 10, 8, 14, 10, 12, 7, 15]

Apply the O’Brien transform to the data.

>>> from scipy.stats import obrientransform
>>> tx, ty = obrientransform(x, y)

Use scipy.stats.f_oneway to apply a one-way ANOVA test to the transformed data.

>>> from scipy.stats import f_oneway
>>> F, p = f_oneway(tx, ty)
>>> p
0.1314139477040335

If we require that p < 0.05 for significance, we cannot conclude that the variances are different.

scipy.stats.sigmaclip

scipy.stats.sigmaclip(a, low=4.0, high=4.0)
Iterative sigma-clipping of array elements.
Starting from the full sample, all elements outside the critical range are removed, i.e. all elements of the input array
c that satisfy either of the following conditions

c < mean(c) - std(c)*low
c > mean(c) + std(c)*high

The iteration continues with the updated sample until no elements are outside the (updated) range.
Parameters

a [array_like] Data array, will be raveled if not 1-D.
low [float, optional] Lower bound factor of sigma clipping. Default is 4.
high [float, optional] Upper bound factor of sigma clipping. Default is 4.

Returns

clipped [ndarray] Input array with clipped elements removed.
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lower [float] Lower threshold value use for clipping.
upper [float] Upper threshold value use for clipping.

Examples

>>> from scipy.stats import sigmaclip
>>> a = np.concatenate((np.linspace(9.5, 10.5, 31),
... np.linspace(0, 20, 5)))
>>> fact = 1.5
>>> c, low, upp = sigmaclip(a, fact, fact)
>>> c
array([ 9.96666667, 10. , 10.03333333, 10. ])
>>> c.var(), c.std()
(0.00055555555555555165, 0.023570226039551501)
>>> low, c.mean() - fact*c.std(), c.min()
(9.9646446609406727, 9.9646446609406727, 9.9666666666666668)
>>> upp, c.mean() + fact*c.std(), c.max()
(10.035355339059327, 10.035355339059327, 10.033333333333333)

>>> a = np.concatenate((np.linspace(9.5, 10.5, 11),
... np.linspace(-100, -50, 3)))
>>> c, low, upp = sigmaclip(a, 1.8, 1.8)
>>> (c == np.linspace(9.5, 10.5, 11)).all()
True

scipy.stats.trimboth

scipy.stats.trimboth(a, proportiontocut, axis=0)
Slices off a proportion of items from both ends of an array.
Slices off the passed proportion of items from both ends of the passed array (i.e., with proportiontocut = 0.1, slices
leftmost 10% and rightmost 10% of scores). The trimmed values are the lowest and highest ones. Slices off less if
proportion results in a non-integer slice index (i.e., conservatively slices off‘proportiontocut‘).

Parameters

a [array_like] Data to trim.
proportiontocut

[float] Proportion (in range 0-1) of total data set to trim of each end.
axis [int or None, optional] Axis along which to trim data. Default is 0. If None, compute over

the whole array a.
Returns

out [ndarray] Trimmed version of array a. The order of the trimmed content is undefined.
See also:
trim_mean

Examples
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>>> from scipy import stats
>>> a = np.arange(20)
>>> b = stats.trimboth(a, 0.1)
>>> b.shape
(16,)

scipy.stats.trim1

scipy.stats.trim1(a, proportiontocut, tail=’right’, axis=0)
Slices off a proportion from ONE end of the passed array distribution.
If proportiontocut = 0.1, slices off ‘leftmost’ or ‘rightmost’ 10% of scores. The lowest or highest values are trimmed
(depending on the tail). Slices off less if proportion results in a non-integer slice index (i.e., conservatively slices
off proportiontocut ).

Parameters

a [array_like] Input array
proportiontocut

[float] Fraction to cut off of ‘left’ or ‘right’ of distribution
tail [{‘left’, ‘right’}, optional] Defaults to ‘right’.
axis [int or None, optional] Axis along which to trim data. Default is 0. If None, compute over

the whole array a.
Returns

trim1 [ndarray] Trimmed version of array a. The order of the trimmed content is undefined.

scipy.stats.zmap

scipy.stats.zmap(scores, compare, axis=0, ddof=0)
Calculate the relative z-scores.
Return an array of z-scores, i.e., scores that are standardized to zero mean and unit variance, where mean and
variance are calculated from the comparison array.

Parameters

scores [array_like] The input for which z-scores are calculated.
compare [array_like] The input from which the mean and standard deviation of the normalization are

taken; assumed to have the same dimension as scores.
axis [int or None, optional] Axis over whichmean and variance of compare are calculated. Default

is 0. If None, compute over the whole array scores.
ddof [int, optional] Degrees of freedom correction in the calculation of the standard deviation.

Default is 0.
Returns

zscore [array_like] Z-scores, in the same shape as scores.

Notes

This function preserves ndarray subclasses, and works also with matrices and masked arrays (it uses asanyarray
instead of asarray for parameters).
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Examples

>>> from scipy.stats import zmap
>>> a = [0.5, 2.0, 2.5, 3]
>>> b = [0, 1, 2, 3, 4]
>>> zmap(a, b)
array([-1.06066017, 0. , 0.35355339, 0.70710678])

scipy.stats.zscore

scipy.stats.zscore(a, axis=0, ddof=0)
Calculate the z score of each value in the sample, relative to the sample mean and standard deviation.

Parameters

a [array_like] An array like object containing the sample data.
axis [int or None, optional] Axis along which to operate. Default is 0. If None, compute over the

whole array a.
ddof [int, optional] Degrees of freedom correction in the calculation of the standard deviation.

Default is 0.
Returns

zscore [array_like] The z-scores, standardized by mean and standard deviation of input array a.

Notes

This function preserves ndarray subclasses, and works also with matrices and masked arrays (it uses asanyarray
instead of asarray for parameters).

Examples

>>> a = np.array([ 0.7972, 0.0767, 0.4383, 0.7866, 0.8091,
... 0.1954, 0.6307, 0.6599, 0.1065, 0.0508])
>>> from scipy import stats
>>> stats.zscore(a)
array([ 1.1273, -1.247 , -0.0552, 1.0923, 1.1664, -0.8559, 0.5786,

0.6748, -1.1488, -1.3324])

Computing along a specified axis, using n-1 degrees of freedom (ddof=1) to calculate the standard deviation:

>>> b = np.array([[ 0.3148, 0.0478, 0.6243, 0.4608],
... [ 0.7149, 0.0775, 0.6072, 0.9656],
... [ 0.6341, 0.1403, 0.9759, 0.4064],
... [ 0.5918, 0.6948, 0.904 , 0.3721],
... [ 0.0921, 0.2481, 0.1188, 0.1366]])
>>> stats.zscore(b, axis=1, ddof=1)
array([[-0.19264823, -1.28415119, 1.07259584, 0.40420358],

[ 0.33048416, -1.37380874, 0.04251374, 1.00081084],
[ 0.26796377, -1.12598418, 1.23283094, -0.37481053],
[-0.22095197, 0.24468594, 1.19042819, -1.21416216],
[-0.82780366, 1.4457416 , -0.43867764, -0.1792603 ]])
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6.28.12 Statistical distances

wasserstein_distance(u_values, v_values[, …]) Compute the first Wasserstein distance between two 1D
distributions.

energy_distance(u_values, v_values[, …]) Compute the energy distance between two 1D distribu-
tions.

scipy.stats.wasserstein_distance

scipy.stats.wasserstein_distance(u_values, v_values, u_weights=None, v_weights=None)
Compute the first Wasserstein distance between two 1D distributions.
This distance is also known as the earth mover’s distance, since it can be seen as the minimum amount of “work”
required to transform u into v, where “work” is measured as the amount of distribution weight that must be moved,
multiplied by the distance it has to be moved.
New in version 1.0.0.

Parameters

u_values, v_values
[array_like] Values observed in the (empirical) distribution.

u_weights, v_weights
[array_like, optional] Weight for each value. If unspecified, each value is assigned the same
weight. u_weights (resp. v_weights) must have the same length as u_values (resp. v_values).
If the weight sum differs from 1, it must still be positive and finite so that the weights can be
normalized to sum to 1.

Returns

distance [float] The computed distance between the distributions.

Notes

The first Wasserstein distance between the distributions u and v is:

l1(u, v) = inf
π∈Γ(u,v)

∫
R×R

|x− y|dπ(x, y)

where Γ(u, v) is the set of (probability) distributions onR×R whose marginals are u and v on the first and second
factors respectively.
If U and V are the respective CDFs of u and v, this distance also equals to:

l1(u, v) =

∫ +∞

−∞
|U − V |

See [2] for a proof of the equivalence of both definitions.
The input distributions can be empirical, therefore coming from samples whose values are effectively inputs of the
function, or they can be seen as generalized functions, in which case they are weighted sums of Dirac delta functions
located at the specified values.

References

[1], [2]
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Examples

>>> from scipy.stats import wasserstein_distance
>>> wasserstein_distance([0, 1, 3], [5, 6, 8])
5.0
>>> wasserstein_distance([0, 1], [0, 1], [3, 1], [2, 2])
0.25
>>> wasserstein_distance([3.4, 3.9, 7.5, 7.8], [4.5, 1.4],
... [1.4, 0.9, 3.1, 7.2], [3.2, 3.5])
4.0781331438047861

scipy.stats.energy_distance

scipy.stats.energy_distance(u_values, v_values, u_weights=None, v_weights=None)
Compute the energy distance between two 1D distributions.
New in version 1.0.0.

Parameters

u_values, v_values
[array_like] Values observed in the (empirical) distribution.

u_weights, v_weights
[array_like, optional] Weight for each value. If unspecified, each value is assigned the same
weight. u_weights (resp. v_weights) must have the same length as u_values (resp. v_values).
If the weight sum differs from 1, it must still be positive and finite so that the weights can be
normalized to sum to 1.

Returns

distance [float] The computed distance between the distributions.

Notes

The energy distance between two distributions u and v, whose respective CDFs are U and V , equals to:

D(u, v) = (2E|X − Y | − E|X −X ′| − E|Y − Y ′|)1/2

whereX andX ′ (resp. Y and Y ′) are independent random variables whose probability distribution is u (resp. v).
As shown in [2], for one-dimensional real-valued variables, the energy distance is linked to the non-distribution-free
version of the Cramer-von Mises distance:

D(u, v) =
√
2l2(u, v) =

(
2

∫ +∞

−∞
(U − V )2

)1/2

Note that the common Cramer-von Mises criterion uses the distribution-free version of the distance. See [2]
(section 2), for more details about both versions of the distance.
The input distributions can be empirical, therefore coming from samples whose values are effectively inputs of the
function, or they can be seen as generalized functions, in which case they are weighted sums of Dirac delta functions
located at the specified values.

References

[1], [2], [3], [4]
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Examples

>>> from scipy.stats import energy_distance
>>> energy_distance([0], [2])
2.0000000000000004
>>> energy_distance([0, 8], [0, 8], [3, 1], [2, 2])
1.0000000000000002
>>> energy_distance([0.7, 7.4, 2.4, 6.8], [1.4, 8. ],
... [2.1, 4.2, 7.4, 8. ], [7.6, 8.8])
0.88003340976158217

6.28.13 Random variate generation

rvs_ratio_uniforms(pdf, umax, vmin, vmax[,
…])

Generate random samples from a probability density
function using the ratio-of-uniforms method.

scipy.stats.rvs_ratio_uniforms

scipy.stats.rvs_ratio_uniforms(pdf, umax, vmin, vmax, size=1, c=0, random_state=None)
Generate random samples from a probability density function using the ratio-of-uniforms method.

Parameters

pdf [callable] A function with signature pdf(x) that is the probability density function of the
distribution.

umax [float] The upper bound of the bounding rectangle in the u-direction.
vmin [float] The lower bound of the bounding rectangle in the v-direction.
vmax [float] The upper bound of the bounding rectangle in the v-direction.
size [int or tuple of ints, optional] Defining number of random variates (default is 1).
c [float, optional.] Shift parameter of ratio-of-uniforms method, see Notes. Default is 0.
random_state

[int or np.random.RandomState instance, optional] If already a RandomState instance, use
it. If seed is an int, return a new RandomState instance seeded with seed. If None, use
np.random.RandomState. Default is None.

Returns

rvs [ndarray] The random variates distributed according to the probability distribution defined
by the pdf.

Notes

Given a univariate probability density function pdf and a constant c, define the set A = {(u, v) : 0 < u
<= sqrt(pdf(v/u + c))}. If (U, V) is a random vector uniformly distributed over A, then V/U + c follows
a distribution according to pdf.
The above result (see [1], [2]) can be used to sample random variables using only the pdf, i.e. no inversion of the
cdf is required. Typical choices of c are zero or the mode of pdf. The set A is a subset of the rectangle R = [0,
umax] x [vmin, vmax] where

• umax = sup sqrt(pdf(x))

• vmin = inf (x - c) sqrt(pdf(x))
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• vmax = sup (x - c) sqrt(pdf(x))

In particular, these values are finite if pdf is bounded and x**2 * pdf(x) is bounded (i.e. subquadratic tails).
One can generate (U, V) uniformly on R and return V/U + c if (U, V) are also in A which can be directly verified.
Intuitively, the method works well if A fills up most of the enclosing rectangle such that the probability is high that
(U, V) lies in A whenever it lies in R as the number of required iterations becomes too large otherwise. To be
more precise, note that the expected number of iterations to draw (U, V) uniformly distributed on R such that (U,
V) is also in A is given by the ratio area(R) / area(A) = 2 * umax * (vmax - vmin), using the
fact that the area of A is equal to 1/2 (Theorem 7.1 in [1]). A warning is displayed if this ratio is larger than 20.
Moreover, if the sampling fails to generate a single random variate after 50000 iterations (i.e. not a single draw is
in A), an exception is raised.
If the bounding rectangle is not correctly specified (i.e. if it does not contain A), the algorithm samples from a
distribution different from the one given by pdf. It is therefore recommended to perform a test such as kstest as
a check.

References

[1], [2], [3]

Examples

>>> from scipy import stats

Simulate normally distributed random variables. It is easy to compute the bounding rectangle explicitly in that case.

>>> f = stats.norm.pdf
>>> v_bound = np.sqrt(f(np.sqrt(2))) * np.sqrt(2)
>>> umax, vmin, vmax = np.sqrt(f(0)), -v_bound, v_bound
>>> np.random.seed(12345)
>>> rvs = stats.rvs_ratio_uniforms(f, umax, vmin, vmax, size=2500)

The K-S test confirms that the random variates are indeed normally distributed (normality is not rejected at 5%
significance level):

>>> stats.kstest(rvs, 'norm')[1]
0.3420173467307603

The exponential distribution provides another example where the bounding rectangle can be determined explicitly.

>>> np.random.seed(12345)
>>> rvs = stats.rvs_ratio_uniforms(lambda x: np.exp(-x), umax=1,
... vmin=0, vmax=2*np.exp(-1), size=1000)
>>> stats.kstest(rvs, 'expon')[1]
0.928454552559516

Sometimes it can be helpful to use a non-zero shift parameter c, see e.g. [2] above in the case of the generalized
inverse Gaussian distribution.

6.28.14 Circular statistical functions
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circmean(samples[, high, low, axis]) Compute the circular mean for samples in a range.
circvar(samples[, high, low, axis]) Compute the circular variance for samples assumed to be

in a range
circstd(samples[, high, low, axis]) Compute the circular standard deviation for samples as-

sumed to be in the range [low to high].

scipy.stats.circmean

scipy.stats.circmean(samples, high=6.283185307179586, low=0, axis=None)
Compute the circular mean for samples in a range.

Parameters

samples [array_like] Input array.
high [float or int, optional] High boundary for circular mean range. Default is 2*pi.
low [float or int, optional] Low boundary for circular mean range. Default is 0.
axis [int, optional] Axis along which means are computed. The default is to compute the mean

of the flattened array.
Returns

circmean [float] Circular mean.

Examples

>>> from scipy.stats import circmean
>>> circmean([0.1, 2*np.pi+0.2, 6*np.pi+0.3])
0.2

>>> from scipy.stats import circmean
>>> circmean([0.2, 1.4, 2.6], high = 1, low = 0)
0.4

scipy.stats.circvar

scipy.stats.circvar(samples, high=6.283185307179586, low=0, axis=None)
Compute the circular variance for samples assumed to be in a range

Parameters

samples [array_like] Input array.
low [float or int, optional] Low boundary for circular variance range. Default is 0.
high [float or int, optional] High boundary for circular variance range. Default is 2*pi.
axis [int, optional] Axis along which variances are computed. The default is to compute the

variance of the flattened array.
Returns

circvar [float] Circular variance.

Notes

This uses a definition of circular variance that in the limit of small angles returns a number close to the ‘linear’
variance.
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Examples

>>> from scipy.stats import circvar
>>> circvar([0, 2*np.pi/3, 5*np.pi/3])
2.19722457734

scipy.stats.circstd

scipy.stats.circstd(samples, high=6.283185307179586, low=0, axis=None)
Compute the circular standard deviation for samples assumed to be in the range [low to high].

Parameters

samples [array_like] Input array.
low [float or int, optional] Low boundary for circular standard deviation range. Default is 0.
high [float or int, optional] High boundary for circular standard deviation range. Default is 2*pi.
axis [int, optional] Axis along which standard deviations are computed. The default is to compute

the standard deviation of the flattened array.
Returns

circstd [float] Circular standard deviation.

Notes

This uses a definition of circular standard deviation that in the limit of small angles returns a number close to the
‘linear’ standard deviation.

Examples

>>> from scipy.stats import circstd
>>> circstd([0, 0.1*np.pi/2, 0.001*np.pi, 0.03*np.pi/2])
0.063564063306

6.28.15 Contingency table functions

chi2_contingency(observed[, correction,
lambda_])

Chi-square test of independence of variables in a contin-
gency table.

contingency.expected_freq(observed) Compute the expected frequencies from a contingency ta-
ble.

contingency.margins(a) Return a list of the marginal sums of the array a.
fisher_exact(table[, alternative]) Performs a Fisher exact test on a 2x2 contingency table.

scipy.stats.chi2_contingency

scipy.stats.chi2_contingency(observed, correction=True, lambda_=None)
Chi-square test of independence of variables in a contingency table.
This function computes the chi-square statistic and p-value for the hypothesis test of independence of the observed
frequencies in the contingency table [1] observed. The expected frequencies are computed based on the marginal
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sums under the assumption of independence; see scipy.stats.contingency.expected_freq. The
number of degrees of freedom is (expressed using numpy functions and attributes):

dof = observed.size - sum(observed.shape) + observed.ndim - 1

Parameters

observed [array_like] The contingency table. The table contains the observed frequencies (i.e. number
of occurrences) in each category. In the two-dimensional case, the table is often described
as an “R x C table”.

correction [bool, optional] If True, and the degrees of freedom is 1, apply Yates’ correction for con-
tinuity. The effect of the correction is to adjust each observed value by 0.5 towards the
corresponding expected value.

lambda_ [float or str, optional.] By default, the statistic computed in this test is Pearson’s chi-squared
statistic [2]. lambda_ allows a statistic from the Cressie-Read power divergence family [3]
to be used instead. See power_divergence for details.

Returns

chi2 [float] The test statistic.
p [float] The p-value of the test
dof [int] Degrees of freedom
expected [ndarray, same shape as observed] The expected frequencies, based on the marginal sums of

the table.

See also:
contingency.expected_freq, fisher_exact, chisquare, power_divergence

Notes

An often quoted guideline for the validity of this calculation is that the test should be used only if the observed and
expected frequencies in each cell are at least 5.
This is a test for the independence of different categories of a population. The test is only meaningful when the
dimension of observed is two or more. Applying the test to a one-dimensional table will always result in expected
equal to observed and a chi-square statistic equal to 0.
This function does not handle masked arrays, because the calculation does not make sense with missing values.
Like stats.chisquare, this function computes a chi-square statistic; the convenience this function provides is to figure
out the expected frequencies and degrees of freedom from the given contingency table. If these were already known,
and if the Yates’ correction was not required, one could use stats.chisquare. That is, if one calls:

chi2, p, dof, ex = chi2_contingency(obs, correction=False)

then the following is true:

(chi2, p) == stats.chisquare(obs.ravel(), f_exp=ex.ravel(),
ddof=obs.size - 1 - dof)

The lambda_ argument was added in version 0.13.0 of scipy.

References

[1], [2], [3]
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Examples

A two-way example (2 x 3):

>>> from scipy.stats import chi2_contingency
>>> obs = np.array([[10, 10, 20], [20, 20, 20]])
>>> chi2_contingency(obs)
(2.7777777777777777,
0.24935220877729619,
2,
array([[ 12., 12., 16.],

[ 18., 18., 24.]]))

Perform the test using the log-likelihood ratio (i.e. the “G-test”) instead of Pearson’s chi-squared statistic.

>>> g, p, dof, expctd = chi2_contingency(obs, lambda_="log-likelihood")
>>> g, p
(2.7688587616781319, 0.25046668010954165)

A four-way example (2 x 2 x 2 x 2):

>>> obs = np.array(
... [[[[12, 17],
... [11, 16]],
... [[11, 12],
... [15, 16]]],
... [[[23, 15],
... [30, 22]],
... [[14, 17],
... [15, 16]]]])
>>> chi2_contingency(obs)
(8.7584514426741897,
0.64417725029295503,
11,
array([[[[ 14.15462386, 14.15462386],

[ 16.49423111, 16.49423111]],
[[ 11.2461395 , 11.2461395 ],
[ 13.10500554, 13.10500554]]],

[[[ 19.5591166 , 19.5591166 ],
[ 22.79202844, 22.79202844]],
[[ 15.54012004, 15.54012004],
[ 18.10873492, 18.10873492]]]]))

scipy.stats.contingency.expected_freq

scipy.stats.contingency.expected_freq(observed)
Compute the expected frequencies from a contingency table.
Given an n-dimensional contingency table of observed frequencies, compute the expected frequencies for the table
based on the marginal sums under the assumption that the groups associated with each dimension are independent.

Parameters

observed [array_like] The table of observed frequencies. (While this function can handle a 1-D array,
that case is trivial. Generally observed is at least 2-D.)
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Returns

expected [ndarray of float64] The expected frequencies, based on themarginal sums of the table. Same
shape as observed.

Examples

>>> observed = np.array([[10, 10, 20],[20, 20, 20]])
>>> from scipy.stats.contingency import expected_freq
>>> expected_freq(observed)
array([[ 12., 12., 16.],

[ 18., 18., 24.]])

scipy.stats.contingency.margins

scipy.stats.contingency.margins(a)
Return a list of the marginal sums of the array a.

Parameters

a [ndarray] The array for which to compute the marginal sums.
Returns

margsums [list of ndarrays] A list of length a.ndim. margsums[k] is the result of summing a over all
axes except k; it has the same number of dimensions as a, but the length of each axis except
axis k will be 1.

Examples

>>> a = np.arange(12).reshape(2, 6)
>>> a
array([[ 0, 1, 2, 3, 4, 5],

[ 6, 7, 8, 9, 10, 11]])
>>> from scipy.stats.contingency import margins
>>> m0, m1 = margins(a)
>>> m0
array([[15],

[51]])
>>> m1
array([[ 6, 8, 10, 12, 14, 16]])

>>> b = np.arange(24).reshape(2,3,4)
>>> m0, m1, m2 = margins(b)
>>> m0
array([[[ 66]],

[[210]]])
>>> m1
array([[[ 60],

[ 92],
[124]]])

(continues on next page)
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(continued from previous page)
>>> m2
array([[[60, 66, 72, 78]]])

scipy.stats.fisher_exact

scipy.stats.fisher_exact(table, alternative=’two-sided’)
Performs a Fisher exact test on a 2x2 contingency table.

Parameters

table [array_like of ints] A 2x2 contingency table. Elements should be non-negative integers.
alternative

[{‘two-sided’, ‘less’, ‘greater’}, optional] Which alternative hypothesis to the null hypothesis
the test uses. Default is ‘two-sided’.

Returns

oddsratio [float] This is prior odds ratio and not a posterior estimate.
p_value [float] P-value, the probability of obtaining a distribution at least as extreme as the one that

was actually observed, assuming that the null hypothesis is true.
See also:

chi2_contingency

Chi-square test of independence of variables in a contingency table.

Notes

The calculated odds ratio is different from the one R uses. This scipy implementation returns the (more common)
“unconditional Maximum Likelihood Estimate”, while R uses the “conditional Maximum Likelihood Estimate”.
For tables with large numbers, the (inexact) chi-square test implemented in the function chi2_contingency
can also be used.

Examples

Say we spend a few days counting whales and sharks in the Atlantic and Indian oceans. In the Atlantic ocean we
find 8 whales and 1 shark, in the Indian ocean 2 whales and 5 sharks. Then our contingency table is:

Atlantic Indian
whales 8 2
sharks 1 5

We use this table to find the p-value:

>>> import scipy.stats as stats
>>> oddsratio, pvalue = stats.fisher_exact([[8, 2], [1, 5]])
>>> pvalue
0.0349...

The probability that we would observe this or an even more imbalanced ratio by chance is about 3.5%. A commonly
used significance level is 5%–if we adopt that, we can therefore conclude that our observed imbalance is statistically
significant; whales prefer the Atlantic while sharks prefer the Indian ocean.
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6.28.16 Plot-tests

ppcc_max(x[, brack, dist]) Calculate the shape parameter that maximizes the PPCC
ppcc_plot(x, a, b[, dist, plot, N]) Calculate and optionally plot probability plot correlation

coefficient.
probplot(x[, sparams, dist, fit, plot, rvalue]) Calculate quantiles for a probability plot, and optionally

show the plot.
boxcox_normplot(x, la, lb[, plot, N]) Compute parameters for a Box-Cox normality plot, op-

tionally show it.
yeojohnson_normplot(x, la, lb[, plot, N]) Compute parameters for a Yeo-Johnson normality plot,

optionally show it.

scipy.stats.ppcc_max

scipy.stats.ppcc_max(x, brack=(0.0, 1.0), dist=’tukeylambda’)
Calculate the shape parameter that maximizes the PPCC
The probability plot correlation coefficient (PPCC) plot can be used to determine the optimal shape parameter for a
one-parameter family of distributions. ppcc_max returns the shape parameter that would maximize the probability
plot correlation coefficient for the given data to a one-parameter family of distributions.

Parameters

x [array_like] Input array.
brack [tuple, optional] Triple (a,b,c) where (a<b<c). If bracket consists of two numbers (a, c)

then they are assumed to be a starting interval for a downhill bracket search (see scipy.
optimize.brent).

dist [str or stats.distributions instance, optional] Distribution or distribution function name. Ob-
jects that look enough like a stats.distributions instance (i.e. they have a ppf method) are
also accepted. The default is 'tukeylambda'.

Returns

shape_value
[float] The shape parameter at which the probability plot correlation coefficient reaches its
max value.

See also:
ppcc_plot, probplot, boxcox

Notes

The brack keyword serves as a starting point which is useful in corner cases. One can use a plot to obtain a rough
visual estimate of the location for the maximum to start the search near it.

References

[1], [2]

Examples

First we generate some random data from a Tukey-Lambda distribution, with shape parameter -0.7:
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>>> from scipy import stats
>>> x = stats.tukeylambda.rvs(-0.7, loc=2, scale=0.5, size=10000,
... random_state=1234567) + 1e4

Now we explore this data with a PPCC plot as well as the related probability plot and Box-Cox normplot. A red
line is drawn where we expect the PPCC value to be maximal (at the shape parameter -0.7 used above):

>>> import matplotlib.pyplot as plt
>>> fig = plt.figure(figsize=(8, 6))
>>> ax = fig.add_subplot(111)
>>> res = stats.ppcc_plot(x, -5, 5, plot=ax)

We calculate the value where the shape should reach its maximum and a red line is drawn there. The line should
coincide with the highest point in the ppcc_plot.

>>> max = stats.ppcc_max(x)
>>> ax.vlines(max, 0, 1, colors='r', label='Expected shape value')

>>> plt.show()
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scipy.stats.ppcc_plot

scipy.stats.ppcc_plot(x, a, b, dist=’tukeylambda’, plot=None, N=80)
Calculate and optionally plot probability plot correlation coefficient.
The probability plot correlation coefficient (PPCC) plot can be used to determine the optimal shape parameter
for a one-parameter family of distributions. It cannot be used for distributions without shape parameters (like the
normal distribution) or with multiple shape parameters.
By default a Tukey-Lambda distribution (stats.tukeylambda) is used. A Tukey-Lambda PPCC plot interpolates
from long-tailed to short-tailed distributions via an approximately normal one, and is therefore particularly useful
in practice.

Parameters

x [array_like] Input array.
a, b: scalar

Lower and upper bounds of the shape parameter to use.
dist [str or stats.distributions instance, optional] Distribution or distribution function name. Ob-

jects that look enough like a stats.distributions instance (i.e. they have a ppf method) are
also accepted. The default is 'tukeylambda'.

plot [object, optional] If given, plots PPCC against the shape parameter. plot is an object that has
to have methods “plot” and “text”. The matplotlib.pyplot module or a Matplotlib
Axes object can be used, or a custom object with the same methods. Default is None, which
means that no plot is created.

N [int, optional] Number of points on the horizontal axis (equally distributed from a to b).
Returns

svals [ndarray] The shape values for which ppcc was calculated.
ppcc [ndarray] The calculated probability plot correlation coefficient values.

See also:
ppcc_max, probplot, boxcox_normplot, tukeylambda

References

J.J. Filliben, “The Probability Plot Correlation Coefficient Test for Normality”, Technometrics, Vol. 17, pp. 111-
117, 1975.

Examples

First we generate some random data from a Tukey-Lambda distribution, with shape parameter -0.7:

>>> from scipy import stats
>>> import matplotlib.pyplot as plt
>>> np.random.seed(1234567)
>>> x = stats.tukeylambda.rvs(-0.7, loc=2, scale=0.5, size=10000) + 1e4

Now we explore this data with a PPCC plot as well as the related probability plot and Box-Cox normplot. A red
line is drawn where we expect the PPCC value to be maximal (at the shape parameter -0.7 used above):
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>>> fig = plt.figure(figsize=(12, 4))
>>> ax1 = fig.add_subplot(131)
>>> ax2 = fig.add_subplot(132)
>>> ax3 = fig.add_subplot(133)
>>> res = stats.probplot(x, plot=ax1)
>>> res = stats.boxcox_normplot(x, -5, 5, plot=ax2)
>>> res = stats.ppcc_plot(x, -5, 5, plot=ax3)
>>> ax3.vlines(-0.7, 0, 1, colors='r', label='Expected shape value')
>>> plt.show()
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scipy.stats.probplot

scipy.stats.probplot(x, sparams=(), dist=’norm’, fit=True, plot=None, rvalue=False)
Calculate quantiles for a probability plot, and optionally show the plot.
Generates a probability plot of sample data against the quantiles of a specified theoretical distribution (the normal
distribution by default). probplot optionally calculates a best-fit line for the data and plots the results using
Matplotlib or a given plot function.

Parameters

x [array_like] Sample/response data from which probplot creates the plot.
sparams [tuple, optional] Distribution-specific shape parameters (shape parameters plus location and

scale).
dist [str or stats.distributions instance, optional] Distribution or distribution function name.

The default is ‘norm’ for a normal probability plot. Objects that look enough like a
stats.distributions instance (i.e. they have a ppf method) are also accepted.

fit [bool, optional] Fit a least-squares regression (best-fit) line to the sample data if True (de-
fault).

plot [object, optional] If given, plots the quantiles and least squares fit. plot is an object that has
to have methods “plot” and “text”. The matplotlib.pyplot module or a Matplotlib
Axes object can be used, or a custom object with the same methods. Default is None, which
means that no plot is created.

Returns

(osm, osr) [tuple of ndarrays] Tuple of theoretical quantiles (osm, or order statistic medians) and or-
dered responses (osr). osr is simply sorted input x. For details on how osm is calculated see
the Notes section.
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(slope, intercept, r)
[tuple of floats, optional] Tuple containing the result of the least-squares fit, if that is
performed by probplot. r is the square root of the coefficient of determination. If
fit=False and plot=None, this tuple is not returned.

Notes

Even if plot is given, the figure is not shown or saved by probplot; plt.show() or plt.
savefig('figname.png') should be used after calling probplot.
probplot generates a probability plot, which should not be confused with a Q-Q or a P-P plot. Statsmodels has
more extensive functionality of this type, see statsmodels.api.ProbPlot.
The formula used for the theoretical quantiles (horizontal axis of the probability plot) is Filliben’s estimate:

quantiles = dist.ppf(val), for

0.5**(1/n), for i = n
val = (i - 0.3175) / (n + 0.365), for i = 2, ..., n-1

1 - 0.5**(1/n), for i = 1

where i indicates the i-th ordered value and n is the total number of values.

Examples

>>> from scipy import stats
>>> import matplotlib.pyplot as plt
>>> nsample = 100
>>> np.random.seed(7654321)

A t distribution with small degrees of freedom:

>>> ax1 = plt.subplot(221)
>>> x = stats.t.rvs(3, size=nsample)
>>> res = stats.probplot(x, plot=plt)

A t distribution with larger degrees of freedom:

>>> ax2 = plt.subplot(222)
>>> x = stats.t.rvs(25, size=nsample)
>>> res = stats.probplot(x, plot=plt)

A mixture of two normal distributions with broadcasting:

>>> ax3 = plt.subplot(223)
>>> x = stats.norm.rvs(loc=[0,5], scale=[1,1.5],
... size=(nsample//2,2)).ravel()
>>> res = stats.probplot(x, plot=plt)

A standard normal distribution:

>>> ax4 = plt.subplot(224)
>>> x = stats.norm.rvs(loc=0, scale=1, size=nsample)
>>> res = stats.probplot(x, plot=plt)
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Produce a new figure with a loggamma distribution, using the dist and sparams keywords:

>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> x = stats.loggamma.rvs(c=2.5, size=500)
>>> res = stats.probplot(x, dist=stats.loggamma, sparams=(2.5,), plot=ax)
>>> ax.set_title("Probplot for loggamma dist with shape parameter 2.5")

Show the results with Matplotlib:

>>> plt.show()
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scipy.stats.boxcox_normplot

scipy.stats.boxcox_normplot(x, la, lb, plot=None, N=80)
Compute parameters for a Box-Cox normality plot, optionally show it.
A Box-Cox normality plot shows graphically what the best transformation parameter is to use in boxcox to obtain
a distribution that is close to normal.

Parameters

x [array_like] Input array.
la, lb [scalar] The lower and upper bounds for the lmbda values to pass to boxcox for Box-

Cox transformations. These are also the limits of the horizontal axis of the plot if that is
generated.

plot [object, optional] If given, plots the quantiles and least squares fit. plot is an object that has
to have methods “plot” and “text”. The matplotlib.pyplot module or a Matplotlib
Axes object can be used, or a custom object with the same methods. Default is None, which
means that no plot is created.

N [int, optional] Number of points on the horizontal axis (equally distributed from la to lb).
Returns

lmbdas [ndarray] The lmbda values for which a Box-Cox transform was done.
ppcc [ndarray] Probability Plot Correlelation Coefficient, as obtained from probplot when fit-

ting the Box-Cox transformed input x against a normal distribution.
See also:
probplot, boxcox, boxcox_normmax, boxcox_llf, ppcc_max

Notes

Even if plot is given, the figure is not shown or saved by boxcox_normplot; plt.show() or plt.
savefig('figname.png') should be used after calling probplot.

Examples

>>> from scipy import stats
>>> import matplotlib.pyplot as plt

Generate some non-normally distributed data, and create a Box-Cox plot:

>>> x = stats.loggamma.rvs(5, size=500) + 5
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> prob = stats.boxcox_normplot(x, -20, 20, plot=ax)

Determine and plot the optimal lmbda to transform x and plot it in the same plot:

>>> _, maxlog = stats.boxcox(x)
>>> ax.axvline(maxlog, color='r')

>>> plt.show()
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scipy.stats.yeojohnson_normplot

scipy.stats.yeojohnson_normplot(x, la, lb, plot=None, N=80)
Compute parameters for a Yeo-Johnson normality plot, optionally show it.
A Yeo-Johnson normality plot shows graphically what the best transformation parameter is to use in yeojohnson
to obtain a distribution that is close to normal.

Parameters

x [array_like] Input array.
la, lb [scalar] The lower and upper bounds for the lmbda values to pass to yeojohnson for

Yeo-Johnson transformations. These are also the limits of the horizontal axis of the plot if
that is generated.

plot [object, optional] If given, plots the quantiles and least squares fit. plot is an object that has
to have methods “plot” and “text”. The matplotlib.pyplot module or a Matplotlib
Axes object can be used, or a custom object with the same methods. Default is None, which
means that no plot is created.

N [int, optional] Number of points on the horizontal axis (equally distributed from la to lb).
Returns

lmbdas [ndarray] The lmbda values for which a Yeo-Johnson transform was done.
ppcc [ndarray] Probability Plot Correlelation Coefficient, as obtained from probplot when fit-

ting the Box-Cox transformed input x against a normal distribution.
See also:
probplot, yeojohnson, yeojohnson_normmax, yeojohnson_llf, ppcc_max

Notes

Even if plot is given, the figure is not shown or saved by boxcox_normplot; plt.show() or plt.
savefig('figname.png') should be used after calling probplot.
New in version 1.2.0.
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Examples

>>> from scipy import stats
>>> import matplotlib.pyplot as plt

Generate some non-normally distributed data, and create a Yeo-Johnson plot:

>>> x = stats.loggamma.rvs(5, size=500) + 5
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> prob = stats.yeojohnson_normplot(x, -20, 20, plot=ax)

Determine and plot the optimal lmbda to transform x and plot it in the same plot:

>>> _, maxlog = stats.yeojohnson(x)
>>> ax.axvline(maxlog, color='r')

>>> plt.show()
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6.28.17 Masked statistics functions

Statistical functions for masked arrays (scipy.stats.mstats)

This module contains a large number of statistical functions that can be used with masked arrays.
Most of these functions are similar to those in scipy.stats but might have small differences in the API or in the
algorithm used. Since this is a relatively new package, some API changes are still possible.

Summary statistics
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describe(a[, axis, ddof, bias]) Computes several descriptive statistics of the passed ar-
ray.

gmean(a[, axis, dtype]) Compute the geometric mean along the specified axis.
hmean(a[, axis, dtype]) Calculate the harmonic mean along the specified axis.
kurtosis(a[, axis, fisher, bias]) Computes the kurtosis (Fisher or Pearson) of a dataset.
mode(a[, axis]) Returns an array of the modal (most common) value in

the passed array.
mquantiles(a[, prob, alphap, betap, axis, limit]) Computes empirical quantiles for a data array.
hdmedian(data[, axis, var]) Returns the Harrell-Davis estimate of the median along

the given axis.
hdquantiles(data[, prob, axis, var]) Computes quantile estimates with the Harrell-Davis

method.
hdquantiles_sd(data[, prob, axis]) The standard error of the Harrell-Davis quantile estimates

by jackknife.
idealfourths(data[, axis]) Returns an estimate of the lower and upper quartiles.
plotting_positions(data[, alpha, beta]) Returns plotting positions (or empirical percentile points)

for the data.
meppf(data[, alpha, beta]) Returns plotting positions (or empirical percentile points)

for the data.
moment(a[, moment, axis]) Calculates the nth moment about the mean for a sample.
skew(a[, axis, bias]) Computes the skewness of a data set.
tmean(a[, limits, inclusive, axis]) Compute the trimmed mean.
tvar(a[, limits, inclusive, axis, ddof]) Compute the trimmed variance
tmin(a[, lowerlimit, axis, inclusive]) Compute the trimmed minimum
tmax(a[, upperlimit, axis, inclusive]) Compute the trimmed maximum
tsem(a[, limits, inclusive, axis, ddof]) Compute the trimmed standard error of the mean.
variation(a[, axis]) Computes the coefficient of variation, the ratio of the bi-

ased standard deviation to the mean.
find_repeats(arr) Find repeats in arr and return a tuple (repeats, re-

peat_count).
sem(a[, axis, ddof]) Calculates the standard error of the mean of the input ar-

ray.
trimmed_mean(a[, limits, inclusive, …])
trimmed_mean_ci(data[, limits, inclusive, …]) Selected confidence interval of the trimmed mean along

the given axis.
trimmed_std(a[, limits, inclusive, …])
trimmed_var(a[, limits, inclusive, …])

scipy.stats.mstats.describe

scipy.stats.mstats.describe(a, axis=0, ddof=0, bias=True)
Computes several descriptive statistics of the passed array.

Parameters

a [array_like] Data array
axis [int or None, optional] Axis along which to calculate statistics. Default 0. If None, compute

over the whole array a.
ddof [int, optional] degree of freedom (default 0); note that default ddof is different from the same

routine in stats.describe
bias [bool, optional] If False, then the skewness and kurtosis calculations are corrected for statis-

tical bias.
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Returns

nobs [int] (size of the data (discarding missing values)
minmax [(int, int)] min, max
mean [float] arithmetic mean
variance [float] unbiased variance
skewness [float] biased skewness
kurtosis [float] biased kurtosis

Examples

>>> from scipy.stats.mstats import describe
>>> ma = np.ma.array(range(6), mask=[0, 0, 0, 1, 1, 1])
>>> describe(ma)
DescribeResult(nobs=3, minmax=(masked_array(data=0,

mask=False,
fill_value=999999), masked_array(data=2,

mask=False,
fill_value=999999)), mean=1.0, variance=0.6666666666666666,
skewness=masked_array(data=0., mask=False, fill_value=1e+20),
kurtosis=-1.5)

scipy.stats.mstats.gmean

scipy.stats.mstats.gmean(a, axis=0, dtype=None)
Compute the geometric mean along the specified axis.
Return the geometric average of the array elements. That is: n-th root of (x1 * x2 * … * xn)

Parameters

a [array_like] Input array or object that can be converted to an array.
axis [int or None, optional] Axis along which the geometric mean is computed. Default is 0. If

None, compute over the whole array a.
dtype [dtype, optional] Type of the returned array and of the accumulator in which the elements

are summed. If dtype is not specified, it defaults to the dtype of a, unless a has an integer
dtype with a precision less than that of the default platform integer. In that case, the default
platform integer is used.

Returns

gmean [ndarray] see dtype parameter above
See also:

numpy.mean

Arithmetic average
numpy.average

Weighted average
hmean

Harmonic mean
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Notes

The geometric average is computed over a single dimension of the input array, axis=0 by default, or all values in
the array if axis=None. float64 intermediate and return values are used for integer inputs.
Use masked arrays to ignore any non-finite values in the input or that arise in the calculations such as Not a Number
and infinity because masked arrays automatically mask any non-finite values.

Examples

>>> from scipy.stats import gmean
>>> gmean([1, 4])
2.0
>>> gmean([1, 2, 3, 4, 5, 6, 7])
3.3800151591412964

scipy.stats.mstats.hmean

scipy.stats.mstats.hmean(a, axis=0, dtype=None)
Calculate the harmonic mean along the specified axis.
That is: n / (1/x1 + 1/x2 + … + 1/xn)

Parameters

a [array_like] Input array, masked array or object that can be converted to an array.
axis [int or None, optional] Axis along which the harmonic mean is computed. Default is 0. If

None, compute over the whole array a.
dtype [dtype, optional] Type of the returned array and of the accumulator in which the elements

are summed. If dtype is not specified, it defaults to the dtype of a, unless a has an integer
dtype with a precision less than that of the default platform integer. In that case, the default
platform integer is used.

Returns

hmean [ndarray] see dtype parameter above
See also:

numpy.mean

Arithmetic average
numpy.average

Weighted average
gmean

Geometric mean

Notes

The harmonic mean is computed over a single dimension of the input array, axis=0 by default, or all values in the
array if axis=None. float64 intermediate and return values are used for integer inputs.
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Use masked arrays to ignore any non-finite values in the input or that arise in the calculations such as Not a Number
and infinity.

Examples

>>> from scipy.stats import hmean
>>> hmean([1, 4])
1.6000000000000001
>>> hmean([1, 2, 3, 4, 5, 6, 7])
2.6997245179063363

scipy.stats.mstats.kurtosis

scipy.stats.mstats.kurtosis(a, axis=0, fisher=True, bias=True)
Computes the kurtosis (Fisher or Pearson) of a dataset.
Kurtosis is the fourth central moment divided by the square of the variance. If Fisher’s definition is used, then 3.0
is subtracted from the result to give 0.0 for a normal distribution.
If bias is False then the kurtosis is calculated using k statistics to eliminate bias coming from biased moment
estimators
Use kurtosistest to see if result is close enough to normal.

Parameters

a [array] data for which the kurtosis is calculated
axis [int or None, optional] Axis along which the kurtosis is calculated. Default is 0. If None,

compute over the whole array a.
fisher [bool, optional] If True, Fisher’s definition is used (normal ==> 0.0). If False, Pearson’s

definition is used (normal ==> 3.0).
bias [bool, optional] If False, then the calculations are corrected for statistical bias.

Returns

kurtosis [array] The kurtosis of values along an axis. If all values are equal, return -3 for Fisher’s
definition and 0 for Pearson’s definition.

Notes

For more details about kurtosis, see stats.kurtosis.

scipy.stats.mstats.mode

scipy.stats.mstats.mode(a, axis=0)
Returns an array of the modal (most common) value in the passed array.

Parameters

a [array_like] n-dimensional array of which to find mode(s).
axis [int or None, optional] Axis along which to operate. Default is 0. If None, compute over the

whole array a.
Returns
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mode [ndarray] Array of modal values.
count [ndarray] Array of counts for each mode.

Notes

For more details, see stats.mode.

Examples

>>> from scipy import stats
>>> from scipy.stats import mstats
>>> m_arr = np.ma.array([1, 1, 0, 0, 0, 0], mask=[0, 0, 1, 1, 1, 0])
>>> stats.mode(m_arr)
ModeResult(mode=array([0]), count=array([4]))
>>> mstats.mode(m_arr)
ModeResult(mode=array([1.]), count=array([2.]))

scipy.stats.mstats.mquantiles

scipy.stats.mstats.mquantiles(a, prob=[0.25, 0.5, 0.75], alphap=0.4, betap=0.4, axis=None,
limit=())

Computes empirical quantiles for a data array.
Samples quantile are defined by Q(p) = (1-gamma)*x[j] + gamma*x[j+1], where x[j] is the j-th
order statistic, and gamma is a function of j = floor(n*p + m), m = alphap + p*(1 - alphap -
betap) and g = n*p + m - j.
Reinterpreting the above equations to compare to R lead to the equation: p(k) = (k - alphap)/(n + 1
- alphap - betap)

Typical values of (alphap,betap) are:

• (0,1) : p(k) = k/n : linear interpolation of cdf (R type 4)
• (.5,.5) : p(k) = (k - 1/2.)/n : piecewise linear function (R type 5)
• (0,0) : p(k) = k/(n+1) : (R type 6)
• (1,1) : p(k) = (k-1)/(n-1): p(k) = mode[F(x[k])]. (R type 7, R default)
• (1/3,1/3): p(k) = (k-1/3)/(n+1/3): Then p(k) ~ median[F(x[k])]. The resulting quantile esti-
mates are approximately median-unbiased regardless of the distribution of x. (R type 8)

• (3/8,3/8): p(k) = (k-3/8)/(n+1/4): Blom. The resulting quantile estimates are approximately
unbiased if x is normally distributed (R type 9)

• (.4,.4) : approximately quantile unbiased (Cunnane)
• (.35,.35): APL, used with PWM

Parameters

a [array_like] Input data, as a sequence or array of dimension at most 2.
prob [array_like, optional] List of quantiles to compute.
alphap [float, optional] Plotting positions parameter, default is 0.4.
betap [float, optional] Plotting positions parameter, default is 0.4.
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axis [int, optional] Axis along which to perform the trimming. If None (default), the input array
is first flattened.

limit [tuple, optional] Tuple of (lower, upper) values. Values of a outside this open interval are
ignored.

Returns

mquantiles
[MaskedArray] An array containing the calculated quantiles.

Notes

This formulation is very similar toR except the calculation of m from alphap and betap, where inR m is defined
with each type.

References

[1], [2]

Examples

>>> from scipy.stats.mstats import mquantiles
>>> a = np.array([6., 47., 49., 15., 42., 41., 7., 39., 43., 40., 36.])
>>> mquantiles(a)
array([ 19.2, 40. , 42.8])

Using a 2D array, specifying axis and limit.

>>> data = np.array([[ 6., 7., 1.],
... [ 47., 15., 2.],
... [ 49., 36., 3.],
... [ 15., 39., 4.],
... [ 42., 40., -999.],
... [ 41., 41., -999.],
... [ 7., -999., -999.],
... [ 39., -999., -999.],
... [ 43., -999., -999.],
... [ 40., -999., -999.],
... [ 36., -999., -999.]])
>>> print(mquantiles(data, axis=0, limit=(0, 50)))
[[19.2 14.6 1.45]
[40. 37.5 2.5 ]
[42.8 40.05 3.55]]

>>> data[:, 2] = -999.
>>> print(mquantiles(data, axis=0, limit=(0, 50)))
[[19.200000000000003 14.6 --]
[40.0 37.5 --]
[42.800000000000004 40.05 --]]
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scipy.stats.mstats.hdmedian

scipy.stats.mstats.hdmedian(data, axis=-1, var=False)
Returns the Harrell-Davis estimate of the median along the given axis.

Parameters

data [ndarray] Data array.
axis [int, optional] Axis along which to compute the quantiles. If None, use a flattened array.
var [bool, optional] Whether to return the variance of the estimate.

Returns

hdmedian [MaskedArray] The median values. If var=True, the variance is returned inside the
masked array. E.g. for a 1-D array the shape change from (1,) to (2,).

scipy.stats.mstats.hdquantiles

scipy.stats.mstats.hdquantiles(data, prob=[0.25, 0.5, 0.75], axis=None, var=False)
Computes quantile estimates with the Harrell-Davis method.
The quantile estimates are calculated as a weighted linear combination of order statistics.

Parameters

data [array_like] Data array.
prob [sequence, optional] Sequence of quantiles to compute.
axis [int or None, optional] Axis along which to compute the quantiles. If None, use a flattened

array.
var [bool, optional] Whether to return the variance of the estimate.

Returns

hdquantiles
[MaskedArray] A (p,) array of quantiles (if var is False), or a (2,p) array of quantiles and
variances (if var is True), where p is the number of quantiles.

See also:
hdquantiles_sd

scipy.stats.mstats.hdquantiles_sd

scipy.stats.mstats.hdquantiles_sd(data, prob=[0.25, 0.5, 0.75], axis=None)
The standard error of the Harrell-Davis quantile estimates by jackknife.

Parameters

data [array_like] Data array.
prob [sequence, optional] Sequence of quantiles to compute.
axis [int, optional] Axis along which to compute the quantiles. If None, use a flattened array.

Returns

hdquantiles_sd
[MaskedArray] Standard error of the Harrell-Davis quantile estimates.

See also:
hdquantiles
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scipy.stats.mstats.idealfourths

scipy.stats.mstats.idealfourths(data, axis=None)
Returns an estimate of the lower and upper quartiles.
Uses the ideal fourths algorithm.

Parameters

data [array_like] Input array.
axis [int, optional] Axis along which the quartiles are estimated. If None, the arrays are flattened.

Returns

idealfourths
[{list of floats, masked array}] Returns the two internal values that divide data into four parts
using the ideal fourths algorithm either along the flattened array (if axis is None) or along
axis of data.

scipy.stats.mstats.plotting_positions

scipy.stats.mstats.plotting_positions(data, alpha=0.4, beta=0.4)
Returns plotting positions (or empirical percentile points) for the data.
Plotting positions are defined as (i-alpha)/(n+1-alpha-beta), where:

• i is the rank order statistics
• n is the number of unmasked values along the given axis
• alpha and beta are two parameters.

Typical values for alpha and beta are:

• (0,1) : p(k) = k/n, linear interpolation of cdf (R, type 4)
• (.5,.5) : p(k) = (k-1/2.)/n, piecewise linear function (R, type 5)
• (0,0) : p(k) = k/(n+1), Weibull (R type 6)
• (1,1) : p(k) = (k-1)/(n-1), in this case, p(k) = mode[F(x[k])]. That’s R default (R type
7)

• (1/3,1/3): p(k) = (k-1/3)/(n+1/3), then p(k) ~ median[F(x[k])]. The resulting quan-
tile estimates are approximately median-unbiased regardless of the distribution of x. (R type 8)

• (3/8,3/8): p(k) = (k-3/8)/(n+1/4), Blom. The resulting quantile estimates are approximately
unbiased if x is normally distributed (R type 9)

• (.4,.4) : approximately quantile unbiased (Cunnane)
• (.35,.35): APL, used with PWM
• (.3175, .3175): used in scipy.stats.probplot

Parameters

data [array_like] Input data, as a sequence or array of dimension at most 2.
alpha [float, optional] Plotting positions parameter. Default is 0.4.
beta [float, optional] Plotting positions parameter. Default is 0.4.

Returns
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positions [MaskedArray] The calculated plotting positions.

scipy.stats.mstats.meppf

scipy.stats.mstats.meppf(data, alpha=0.4, beta=0.4)
Returns plotting positions (or empirical percentile points) for the data.
Plotting positions are defined as (i-alpha)/(n+1-alpha-beta), where:

• i is the rank order statistics
• n is the number of unmasked values along the given axis
• alpha and beta are two parameters.

Typical values for alpha and beta are:

• (0,1) : p(k) = k/n, linear interpolation of cdf (R, type 4)
• (.5,.5) : p(k) = (k-1/2.)/n, piecewise linear function (R, type 5)
• (0,0) : p(k) = k/(n+1), Weibull (R type 6)
• (1,1) : p(k) = (k-1)/(n-1), in this case, p(k) = mode[F(x[k])]. That’s R default (R type
7)

• (1/3,1/3): p(k) = (k-1/3)/(n+1/3), then p(k) ~ median[F(x[k])]. The resulting quan-
tile estimates are approximately median-unbiased regardless of the distribution of x. (R type 8)

• (3/8,3/8): p(k) = (k-3/8)/(n+1/4), Blom. The resulting quantile estimates are approximately
unbiased if x is normally distributed (R type 9)

• (.4,.4) : approximately quantile unbiased (Cunnane)
• (.35,.35): APL, used with PWM
• (.3175, .3175): used in scipy.stats.probplot

Parameters

data [array_like] Input data, as a sequence or array of dimension at most 2.
alpha [float, optional] Plotting positions parameter. Default is 0.4.
beta [float, optional] Plotting positions parameter. Default is 0.4.

Returns

positions [MaskedArray] The calculated plotting positions.

scipy.stats.mstats.moment

scipy.stats.mstats.moment(a, moment=1, axis=0)
Calculates the nth moment about the mean for a sample.

Parameters

a [array_like] data
moment [int, optional] order of central moment that is returned
axis [int or None, optional] Axis along which the central moment is computed. Default is 0. If

None, compute over the whole array a.
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Returns

n-th central moment
[ndarray or float] The appropriate moment along the given axis or over all values if axis
is None. The denominator for the moment calculation is the number of observations, no
degrees of freedom correction is done.

Notes

For more details about moment, see stats.moment.

scipy.stats.mstats.skew

scipy.stats.mstats.skew(a, axis=0, bias=True)
Computes the skewness of a data set.

Parameters

a [ndarray] data
axis [int or None, optional] Axis along which skewness is calculated. Default is 0. If None,

compute over the whole array a.
bias [bool, optional] If False, then the calculations are corrected for statistical bias.

Returns

skewness [ndarray] The skewness of values along an axis, returning 0 where all values are equal.

Notes

For more details about skew, see stats.skew.

scipy.stats.mstats.tmean

scipy.stats.mstats.tmean(a, limits=None, inclusive=(True, True), axis=None)
Compute the trimmed mean.

Parameters

a [array_like] Array of values.
limits [None or (lower limit, upper limit), optional] Values in the input array less than the lower

limit or greater than the upper limit will be ignored. When limits is None (default), then
all values are used. Either of the limit values in the tuple can also be None representing a
half-open interval.

inclusive [(bool, bool), optional] A tuple consisting of the (lower flag, upper flag). These flags de-
termine whether values exactly equal to the lower or upper limits are included. The default
value is (True, True).

axis [int or None, optional] Axis along which to operate. If None, compute over the whole array.
Default is None.

Returns

tmean [float]
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Notes

For more details on tmean, see stats.tmean.

Examples

>>> from scipy.stats import mstats
>>> a = np.array([[6, 8, 3, 0],
... [3, 9, 1, 2],
... [8, 7, 8, 2],
... [5, 6, 0, 2],
... [4, 5, 5, 2]])
...
...
>>> mstats.tmean(a, (2,5))
3.3
>>> mstats.tmean(a, (2,5), axis=0)
masked_array(data=[4.0, 5.0, 4.0, 2.0],

mask=[False, False, False, False],
fill_value=1e+20)

scipy.stats.mstats.tvar

scipy.stats.mstats.tvar(a, limits=None, inclusive=(True, True), axis=0, ddof=1)
Compute the trimmed variance
This function computes the sample variance of an array of values, while ignoring values which are outside of given
limits.

Parameters

a [array_like] Array of values.
limits [None or (lower limit, upper limit), optional] Values in the input array less than the lower

limit or greater than the upper limit will be ignored. When limits is None, then all values
are used. Either of the limit values in the tuple can also be None representing a half-open
interval. The default value is None.

inclusive [(bool, bool), optional] A tuple consisting of the (lower flag, upper flag). These flags de-
termine whether values exactly equal to the lower or upper limits are included. The default
value is (True, True).

axis [int or None, optional] Axis along which to operate. If None, compute over the whole array.
Default is zero.

ddof [int, optional] Delta degrees of freedom. Default is 1.
Returns

tvar [float] Trimmed variance.

Notes

For more details on tvar, see stats.tvar.
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scipy.stats.mstats.tmin

scipy.stats.mstats.tmin(a, lowerlimit=None, axis=0, inclusive=True)
Compute the trimmed minimum

Parameters

a [array_like] array of values
lowerlimit [None or float, optional] Values in the input array less than the given limit will be ignored.

When lowerlimit is None, then all values are used. The default value is None.
axis [int or None, optional] Axis along which to operate. Default is 0. If None, compute over the

whole array a.
inclusive [{True, False}, optional] This flag determines whether values exactly equal to the lower limit

are included. The default value is True.
Returns

tmin [float, int or ndarray]

Notes

For more details on tmin, see stats.tmin.

Examples

>>> from scipy.stats import mstats
>>> a = np.array([[6, 8, 3, 0],
... [3, 2, 1, 2],
... [8, 1, 8, 2],
... [5, 3, 0, 2],
... [4, 7, 5, 2]])
...
>>> mstats.tmin(a, 5)
masked_array(data=[5, 7, 5, --],

mask=[False, False, False, True],
fill_value=999999)

scipy.stats.mstats.tmax

scipy.stats.mstats.tmax(a, upperlimit=None, axis=0, inclusive=True)
Compute the trimmed maximum
This function computes the maximum value of an array along a given axis, while ignoring values larger than a
specified upper limit.

Parameters

a [array_like] array of values
upperlimit

[None or float, optional] Values in the input array greater than the given limit will be ignored.
When upperlimit is None, then all values are used. The default value is None.

axis [int or None, optional] Axis along which to operate. Default is 0. If None, compute over the
whole array a.
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inclusive [{True, False}, optional] This flag determines whether values exactly equal to the upper limit
are included. The default value is True.

Returns

tmax [float, int or ndarray]

Notes

For more details on tmax, see stats.tmax.

Examples

>>> from scipy.stats import mstats
>>> a = np.array([[6, 8, 3, 0],
... [3, 9, 1, 2],
... [8, 7, 8, 2],
... [5, 6, 0, 2],
... [4, 5, 5, 2]])
...
...
>>> mstats.tmax(a, 4)
masked_array(data=[4, --, 3, 2],

mask=[False, True, False, False],
fill_value=999999)

scipy.stats.mstats.tsem

scipy.stats.mstats.tsem(a, limits=None, inclusive=(True, True), axis=0, ddof=1)
Compute the trimmed standard error of the mean.
This function finds the standard error of the mean for given values, ignoring values outside the given limits.

Parameters

a [array_like] array of values
limits [None or (lower limit, upper limit), optional] Values in the input array less than the lower

limit or greater than the upper limit will be ignored. When limits is None, then all values
are used. Either of the limit values in the tuple can also be None representing a half-open
interval. The default value is None.

inclusive [(bool, bool), optional] A tuple consisting of the (lower flag, upper flag). These flags de-
termine whether values exactly equal to the lower or upper limits are included. The default
value is (True, True).

axis [int or None, optional] Axis along which to operate. If None, compute over the whole array.
Default is zero.

ddof [int, optional] Delta degrees of freedom. Default is 1.
Returns

tsem [float]
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Notes

For more details on tsem, see stats.tsem.

scipy.stats.mstats.variation

scipy.stats.mstats.variation(a, axis=0)
Computes the coefficient of variation, the ratio of the biased standard deviation to the mean.

Parameters

a [array_like] Input array.
axis [int or None, optional] Axis along which to calculate the coefficient of variation. Default is

0. If None, compute over the whole array a.
Returns

variation [ndarray] The calculated variation along the requested axis.

Notes

For more details about variation, see stats.variation.

scipy.stats.mstats.find_repeats

scipy.stats.mstats.find_repeats(arr)
Find repeats in arr and return a tuple (repeats, repeat_count).
The input is cast to float64. Masked values are discarded.

Parameters

arr [sequence] Input array. The array is flattened if it is not 1D.
Returns

repeats [ndarray] Array of repeated values.
counts [ndarray] Array of counts.

scipy.stats.mstats.sem

scipy.stats.mstats.sem(a, axis=0, ddof=1)
Calculates the standard error of the mean of the input array.
Also sometimes called standard error of measurement.

Parameters

a [array_like] An array containing the values for which the standard error is returned.
axis [int or None, optional] If axis is None, ravel a first. If axis is an integer, this will be the axis

over which to operate. Defaults to 0.
ddof [int, optional] Delta degrees-of-freedom. How many degrees of freedom to adjust for bias

in limited samples relative to the population estimate of variance. Defaults to 1.
Returns

s [ndarray or float] The standard error of the mean in the sample(s), along the input axis.
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Notes

The default value for ddof changed in scipy 0.15.0 to be consistent with stats.sem as well as with the most common
definition used (like in the R documentation).

Examples

Find standard error along the first axis:

>>> from scipy import stats
>>> a = np.arange(20).reshape(5,4)
>>> print(stats.mstats.sem(a))
[2.8284271247461903 2.8284271247461903 2.8284271247461903
2.8284271247461903]

Find standard error across the whole array, using n degrees of freedom:

>>> print(stats.mstats.sem(a, axis=None, ddof=0))
1.2893796958227628

scipy.stats.mstats.trimmed_mean

scipy.stats.mstats.trimmed_mean(a, limits=(0.1, 0.1), inclusive=(1, 1), relative=True, axis=None)

scipy.stats.mstats.trimmed_mean_ci

scipy.stats.mstats.trimmed_mean_ci(data, limits=(0.2, 0.2), inclusive=(True, True), alpha=0.05,
axis=None)

Selected confidence interval of the trimmed mean along the given axis.
Parameters

data [array_like] Input data.
limits [{None, tuple}, optional] None or a two item tuple. Tuple of the percentages to cut on each

side of the array, with respect to the number of unmasked data, as floats between 0. and 1.
If n is the number of unmasked data before trimming, then (n * limits[0])th smallest
data and (n * limits[1])th largest data are masked. The total number of unmasked
data after trimming is n * (1. - sum(limits)). The value of one limit can be set
to None to indicate an open interval.
Defaults to (0.2, 0.2).

inclusive [(2,) tuple of boolean, optional] If relative==False, tuple indicating whether values exactly
equal to the absolute limits are allowed. If relative==True, tuple indicating whether the
number of data being masked on each side should be rounded (True) or truncated (False).
Defaults to (True, True).

alpha [float, optional] Confidence level of the intervals.
Defaults to 0.05.

axis [int, optional] Axis along which to cut. If None, uses a flattened version of data.
Defaults to None.

Returns

trimmed_mean_ci
[(2,) ndarray] The lower and upper confidence intervals of the trimmed data.
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scipy.stats.mstats.trimmed_std

scipy.stats.mstats.trimmed_std(a, limits=(0.1, 0.1), inclusive=(1, 1), relative=True, axis=None,
ddof=0)

scipy.stats.mstats.trimmed_var

scipy.stats.mstats.trimmed_var(a, limits=(0.1, 0.1), inclusive=(1, 1), relative=True, axis=None,
ddof=0)

Frequency statistics

scoreatpercentile(data, per[, limit, …]) Calculate the score at the given ‘per’ percentile of the se-
quence a.

scipy.stats.mstats.scoreatpercentile

scipy.stats.mstats.scoreatpercentile(data, per, limit=(), alphap=0.4, betap=0.4)
Calculate the score at the given ‘per’ percentile of the sequence a. For example, the score at per=50 is the median.
This function is a shortcut to mquantile

Correlation functions

f_oneway(*args) Performs a 1-way ANOVA, returning an F-value and
probability given any number of groups.

pearsonr(x, y) Calculates a Pearson correlation coefficient and the p-
value for testing non-correlation.

spearmanr(x[, y, use_ties, axis, nan_policy]) Calculates a Spearman rank-order correlation coefficient
and the p-value to test for non-correlation.

pointbiserialr(x, y) Calculates a point biserial correlation coefficient and its
p-value.

kendalltau(x, y[, use_ties, use_missing, method]) Computes Kendall’s rank correlation tau on two variables
x and y.

kendalltau_seasonal(x) Computes a multivariate Kendall’s rank correlation tau,
for seasonal data.

linregress(x[, y]) Linear regression calculation
siegelslopes(y[, x, method]) Computes the Siegel estimator for a set of points (x, y).
theilslopes(y[, x, alpha]) Computes the Theil-Sen estimator for a set of points (x,

y).
sen_seasonal_slopes(x)

scipy.stats.mstats.f_oneway

scipy.stats.mstats.f_oneway(*args)
Performs a 1-way ANOVA, returning an F-value and probability given any number of groups. From Heiman,
pp.394-7.
Usage: f_oneway(*args), where *args is 2 or more arrays, one per treatment group.

Returns

statistic [float] The computed F-value of the test.
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pvalue [float] The associated p-value from the F-distribution.

scipy.stats.mstats.pearsonr

scipy.stats.mstats.pearsonr(x, y)
Calculates a Pearson correlation coefficient and the p-value for testing non-correlation.
The Pearson correlation coefficient measures the linear relationship between two datasets. Strictly speaking, Pear-
son’s correlation requires that each dataset be normally distributed. Like other correlation coefficients, this one
varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relation-
ship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y
decreases.
The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson
correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but
are probably reasonable for datasets larger than 500 or so.

Parameters

x [1-D array_like] Input
y [1-D array_like] Input

Returns

pearsonr [float] Pearson’s correlation coefficient, 2-tailed p-value.

References

http://www.statsoft.com/textbook/glosp.html#Pearson%20Correlation

scipy.stats.mstats.spearmanr

scipy.stats.mstats.spearmanr(x, y=None, use_ties=True, axis=None, nan_policy=’propagate’)
Calculates a Spearman rank-order correlation coefficient and the p-value to test for non-correlation.
The Spearman correlation is a nonparametric measure of the linear relationship between two datasets. Unlike the
Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. Like
other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or
+1 imply a monotonic relationship. Positive correlations imply that as x increases, so does y. Negative correlations
imply that as x increases, y decreases.
Missing values are discarded pair-wise: if a value is missing in x, the corresponding value in y is masked.
The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman
correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but
are probably reasonable for datasets larger than 500 or so.

Parameters

x, y [1D or 2D array_like, y is optional] One or two 1-D or 2-D arrays containing multiple vari-
ables and observations. When these are 1-D, each represents a vector of observations of a
single variable. For the behavior in the 2-D case, see under axis, below.

use_ties [bool, optional] DO NOT USE. Does not do anything, keyword is only left in place for
backwards compatibility reasons.
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axis [int or None, optional] If axis=0 (default), then each column represents a variable, with
observations in the rows. If axis=1, the relationship is transposed: each row represents a
variable, while the columns contain observations. If axis=None, then both arrays will be
raveled.

nan_policy
[{‘propagate’, ‘raise’, ‘omit’}, optional] Defines how to handle when input contains nan. ‘prop-
agate’ returns nan, ‘raise’ throws an error, ‘omit’ performs the calculations ignoring nan values.
Default is ‘propagate’.

Returns

correlation
[float] Spearman correlation coefficient

pvalue [float] 2-tailed p-value.

References

[CRCProbStat2000] section 14.7

scipy.stats.mstats.pointbiserialr

scipy.stats.mstats.pointbiserialr(x, y)
Calculates a point biserial correlation coefficient and its p-value.

Parameters

x [array_like of bools] Input array.
y [array_like] Input array.

Returns

correlation
[float] R value

pvalue [float] 2-tailed p-value

Notes

Missing values are considered pair-wise: if a value is missing in x, the corresponding value in y is masked.
For more details on pointbiserialr, see stats.pointbiserialr.

scipy.stats.mstats.kendalltau

scipy.stats.mstats.kendalltau(x, y, use_ties=True, use_missing=False, method=’auto’)
Computes Kendall’s rank correlation tau on two variables x and y.

Parameters

x [sequence] First data list (for example, time).
y [sequence] Second data list.
use_ties [{True, False}, optional] Whether ties correction should be performed.
use_missing

[{False, True}, optional] Whether missing data should be allocated a rank of 0 (False) or the
average rank (True)
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method: {‘auto’, ‘asymptotic’, ‘exact’}, optional
Defines which method is used to calculate the p-value [1]. ‘asymptotic’ uses a normal ap-
proximation valid for large samples. ‘exact’ computes the exact p-value, but can only be
used if no ties are present. ‘auto’ is the default and selects the appropriate method based on
a trade-off between speed and accuracy.

Returns

correlation
[float] Kendall tau

pvalue [float] Approximate 2-side p-value.

References

[1]

scipy.stats.mstats.kendalltau_seasonal

scipy.stats.mstats.kendalltau_seasonal(x)
Computes a multivariate Kendall’s rank correlation tau, for seasonal data.

Parameters

x [2-D ndarray] Array of seasonal data, with seasons in columns.

scipy.stats.mstats.linregress

scipy.stats.mstats.linregress(x, y=None)
Linear regression calculation
Note that the non-masked version is used, and that this docstring is replaced by the non-masked docstring + some
info on missing data.

scipy.stats.mstats.siegelslopes

scipy.stats.mstats.siegelslopes(y, x=None, method=’hierarchical’)
Computes the Siegel estimator for a set of points (x, y).
siegelslopes implements a method for robust linear regression using repeated medians to fit a line to the
points (x, y). The method is robust to outliers with an asymptotic breakdown point of 50%.

Parameters

y [array_like] Dependent variable.
x [array_like or None, optional] Independent variable. If None, use arange(len(y)) in-

stead.
method [{‘hierarchical’, ‘separate’}] If ‘hierarchical’, estimate the intercept using the estimated slope

medslope (default option). If ‘separate’, estimate the intercept independent of the esti-
mated slope. See Notes for details.

Returns

medslope [float] Estimate of the slope of the regression line.
medintercept

[float] Estimate of the intercept of the regression line.
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See also:

theilslopes

a similar technique without repeated medians

Notes

For more details on siegelslopes, see scipy.stats.siegelslopes.

scipy.stats.mstats.theilslopes

scipy.stats.mstats.theilslopes(y, x=None, alpha=0.95)
Computes the Theil-Sen estimator for a set of points (x, y).
theilslopes implements a method for robust linear regression. It computes the slope as the median of all
slopes between paired values.

Parameters

y [array_like] Dependent variable.
x [array_like or None, optional] Independent variable. If None, use arange(len(y)) in-

stead.
alpha [float, optional] Confidence degree between 0 and 1. Default is 95% confidence. Note that

alpha is symmetric around 0.5, i.e. both 0.1 and 0.9 are interpreted as “find the 90% confi-
dence interval”.

Returns

medslope [float] Theil slope.
medintercept

[float] Intercept of the Theil line, as median(y) - medslope*median(x).
lo_slope [float] Lower bound of the confidence interval on medslope.
up_slope [float] Upper bound of the confidence interval on medslope.

See also:

siegelslopes

a similar technique with repeated medians

Notes

For more details on theilslopes, see stats.theilslopes.

scipy.stats.mstats.sen_seasonal_slopes

scipy.stats.mstats.sen_seasonal_slopes(x)
Continued on next page

2528 Chapter 6. API Reference



SciPy Reference Guide, Release 1.3.1

Table 270 – continued from previous page

Statistical tests

ttest_1samp(a, popmean[, axis]) Calculates the T-test for the mean of ONE group of
scores.

ttest_onesamp(a, popmean[, axis]) Calculates the T-test for the mean of ONE group of
scores.

ttest_ind(a, b[, axis, equal_var]) Calculates the T-test for the means of TWO INDEPEN-
DENT samples of scores.

ttest_rel(a, b[, axis]) Calculates the T-test on TWO RELATED samples of
scores, a and b.

chisquare(f_obs[, f_exp, ddof, axis]) Calculate a one-way chi square test.
ks_2samp(data1, data2[, alternative]) Computes the Kolmogorov-Smirnov test on two samples.
ks_twosamp(data1, data2[, alternative]) Computes the Kolmogorov-Smirnov test on two samples.
mannwhitneyu(x, y[, use_continuity]) Computes the Mann-Whitney statistic
rankdata(data[, axis, use_missing]) Returns the rank (also known as order statistics) of each

data point along the given axis.
kruskal(*args) Compute the Kruskal-Wallis H-test for independent sam-

ples
kruskalwallis(*args) Compute the Kruskal-Wallis H-test for independent sam-

ples
friedmanchisquare(*args) Friedman Chi-Square is a non-parametric, one-way

within-subjects ANOVA.
brunnermunzel(x, y[, alternative, distribution]) Computes the Brunner-Munzel test on samples x and y
skewtest(a[, axis]) Tests whether the skew is different from the normal dis-

tribution.
kurtosistest(a[, axis]) Tests whether a dataset has normal kurtosis
normaltest(a[, axis]) Tests whether a sample differs from a normal distribution.

scipy.stats.mstats.ttest_1samp

scipy.stats.mstats.ttest_1samp(a, popmean, axis=0)
Calculates the T-test for the mean of ONE group of scores.

Parameters

a [array_like] sample observation
popmean [float or array_like] expected value in null hypothesis, if array_like than it must have the

same shape as a excluding the axis dimension
axis [int or None, optional] Axis along which to compute test. If None, compute over the whole

array a.
Returns

statistic [float or array] t-statistic
pvalue [float or array] two-tailed p-value

Notes

For more details on ttest_1samp, see stats.ttest_1samp.
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scipy.stats.mstats.ttest_onesamp

scipy.stats.mstats.ttest_onesamp(a, popmean, axis=0)
Calculates the T-test for the mean of ONE group of scores.

Parameters

a [array_like] sample observation
popmean [float or array_like] expected value in null hypothesis, if array_like than it must have the

same shape as a excluding the axis dimension
axis [int or None, optional] Axis along which to compute test. If None, compute over the whole

array a.
Returns

statistic [float or array] t-statistic
pvalue [float or array] two-tailed p-value

Notes

For more details on ttest_1samp, see stats.ttest_1samp.

scipy.stats.mstats.ttest_ind

scipy.stats.mstats.ttest_ind(a, b, axis=0, equal_var=True)
Calculates the T-test for the means of TWO INDEPENDENT samples of scores.

Parameters

a, b [array_like] The arrays must have the same shape, except in the dimension corresponding to
axis (the first, by default).

axis [int or None, optional] Axis along which to compute test. If None, compute over the whole
arrays, a, and b.

equal_var [bool, optional] If True, perform a standard independent 2 sample test that assumes equal
population variances. If False, perform Welch’s t-test, which does not assume equal popula-
tion variance.
New in version 0.17.0.

Returns

statistic [float or array] The calculated t-statistic.
pvalue [float or array] The two-tailed p-value.

Notes

For more details on ttest_ind, see stats.ttest_ind.

scipy.stats.mstats.ttest_rel

scipy.stats.mstats.ttest_rel(a, b, axis=0)
Calculates the T-test on TWO RELATED samples of scores, a and b.

Parameters

a, b [array_like] The arrays must have the same shape.
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axis [int or None, optional] Axis along which to compute test. If None, compute over the whole
arrays, a, and b.

Returns

statistic [float or array] t-statistic
pvalue [float or array] two-tailed p-value

Notes

For more details on ttest_rel, see stats.ttest_rel.

scipy.stats.mstats.chisquare

scipy.stats.mstats.chisquare(f_obs, f_exp=None, ddof=0, axis=0)
Calculate a one-way chi square test.
The chi square test tests the null hypothesis that the categorical data has the given frequencies.

Parameters

f_obs [array_like] Observed frequencies in each category.
f_exp [array_like, optional] Expected frequencies in each category. By default the categories are

assumed to be equally likely.
ddof [int, optional] “Delta degrees of freedom”: adjustment to the degrees of freedom for the

p-value. The p-value is computed using a chi-squared distribution with k - 1 - ddof
degrees of freedom, where k is the number of observed frequencies. The default value of
ddof is 0.

axis [int or None, optional] The axis of the broadcast result of f_obs and f_exp along which to
apply the test. If axis is None, all values in f_obs are treated as a single data set. Default is
0.

Returns

chisq [float or ndarray] The chi-squared test statistic. The value is a float if axis is None or f_obs
and f_exp are 1-D.

p [float or ndarray] The p-value of the test. The value is a float if ddof and the return value
chisq are scalars.

See also:
scipy.stats.power_divergence

Notes

This test is invalid when the observed or expected frequencies in each category are too small. A typical rule is that
all of the observed and expected frequencies should be at least 5.
The default degrees of freedom, k-1, are for the case when no parameters of the distribution are estimated. If p
parameters are estimated by efficient maximum likelihood then the correct degrees of freedom are k-1-p. If the
parameters are estimated in a different way, then the dof can be between k-1-p and k-1. However, it is also possible
that the asymptotic distribution is not a chisquare, in which case this test is not appropriate.

References

[1], [2]
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Examples

When just f_obs is given, it is assumed that the expected frequencies are uniform and given by the mean of the
observed frequencies.

>>> from scipy.stats import chisquare
>>> chisquare([16, 18, 16, 14, 12, 12])
(2.0, 0.84914503608460956)

With f_exp the expected frequencies can be given.

>>> chisquare([16, 18, 16, 14, 12, 12], f_exp=[16, 16, 16, 16, 16, 8])
(3.5, 0.62338762774958223)

When f_obs is 2-D, by default the test is applied to each column.

>>> obs = np.array([[16, 18, 16, 14, 12, 12], [32, 24, 16, 28, 20, 24]]).T
>>> obs.shape
(6, 2)
>>> chisquare(obs)
(array([ 2. , 6.66666667]), array([ 0.84914504, 0.24663415]))

By setting axis=None, the test is applied to all data in the array, which is equivalent to applying the test to the
flattened array.

>>> chisquare(obs, axis=None)
(23.31034482758621, 0.015975692534127565)
>>> chisquare(obs.ravel())
(23.31034482758621, 0.015975692534127565)

ddof is the change to make to the default degrees of freedom.

>>> chisquare([16, 18, 16, 14, 12, 12], ddof=1)
(2.0, 0.73575888234288467)

The calculation of the p-values is done by broadcasting the chi-squared statistic with ddof.

>>> chisquare([16, 18, 16, 14, 12, 12], ddof=[0,1,2])
(2.0, array([ 0.84914504, 0.73575888, 0.5724067 ]))

f_obs and f_exp are also broadcast. In the following, f_obs has shape (6,) and f_exp has shape (2, 6), so the result
of broadcasting f_obs and f_exp has shape (2, 6). To compute the desired chi-squared statistics, we use axis=1:

>>> chisquare([16, 18, 16, 14, 12, 12],
... f_exp=[[16, 16, 16, 16, 16, 8], [8, 20, 20, 16, 12, 12]],
... axis=1)
(array([ 3.5 , 9.25]), array([ 0.62338763, 0.09949846]))

scipy.stats.mstats.ks_2samp

scipy.stats.mstats.ks_2samp(data1, data2, alternative=’two-sided’)
Computes the Kolmogorov-Smirnov test on two samples.
Missing values are discarded.
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Parameters

data1 [array_like] First data set
data2 [array_like] Second data set
alternative

[{‘two-sided’, ‘less’, ‘greater’}, optional] Indicates the alternative hypothesis. Default is ‘two-
sided’.

Returns

d [float] Value of the Kolmogorov Smirnov test
p [float] Corresponding p-value.

scipy.stats.mstats.ks_twosamp

scipy.stats.mstats.ks_twosamp(data1, data2, alternative=’two-sided’)
Computes the Kolmogorov-Smirnov test on two samples.
Missing values are discarded.

Parameters

data1 [array_like] First data set
data2 [array_like] Second data set
alternative

[{‘two-sided’, ‘less’, ‘greater’}, optional] Indicates the alternative hypothesis. Default is ‘two-
sided’.

Returns

d [float] Value of the Kolmogorov Smirnov test
p [float] Corresponding p-value.

scipy.stats.mstats.mannwhitneyu

scipy.stats.mstats.mannwhitneyu(x, y, use_continuity=True)
Computes the Mann-Whitney statistic
Missing values in x and/or y are discarded.

Parameters

x [sequence] Input
y [sequence] Input
use_continuity

[{True, False}, optional]Whether a continuity correction (1/2.) should be taken into account.
Returns

statistic [float] The Mann-Whitney statistics
pvalue [float] Approximate p-value assuming a normal distribution.
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scipy.stats.mstats.rankdata

scipy.stats.mstats.rankdata(data, axis=None, use_missing=False)
Returns the rank (also known as order statistics) of each data point along the given axis.
If some values are tied, their rank is averaged. If some values are masked, their rank is set to 0 if use_missing is
False, or set to the average rank of the unmasked values if use_missing is True.

Parameters

data [sequence] Input data. The data is transformed to a masked array
axis [{None,int}, optional] Axis along which to perform the ranking. If None, the array is first

flattened. An exception is raised if the axis is specified for arrays with a dimension larger
than 2

use_missing
[bool, optional] Whether the masked values have a rank of 0 (False) or equal to the average
rank of the unmasked values (True).

scipy.stats.mstats.kruskal

scipy.stats.mstats.kruskal(*args)
Compute the Kruskal-Wallis H-test for independent samples

Parameters

sample1, sample2, …
[array_like] Two or more arrays with the sample measurements can be given as arguments.

Returns

statistic [float] The Kruskal-Wallis H statistic, corrected for ties
pvalue [float] The p-value for the test using the assumption that H has a chi square distribution

Notes

For more details on kruskal, see stats.kruskal.

Examples

>>> from scipy.stats.mstats import kruskal

Random samples from three different brands of batteries were tested to see how long the charge lasted. Results
were as follows:

>>> a = [6.3, 5.4, 5.7, 5.2, 5.0]
>>> b = [6.9, 7.0, 6.1, 7.9]
>>> c = [7.2, 6.9, 6.1, 6.5]

Test the hypotesis that the distribution functions for all of the brands’ durations are identical. Use 5% level of
significance.

>>> kruskal(a, b, c)
KruskalResult(statistic=7.113812154696133, pvalue=0.028526948491942164)
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The null hypothesis is rejected at the 5% level of significance because the returned p-value is less than the critical
value of 5%.

scipy.stats.mstats.kruskalwallis

scipy.stats.mstats.kruskalwallis(*args)
Compute the Kruskal-Wallis H-test for independent samples

Parameters

sample1, sample2, …
[array_like] Two or more arrays with the sample measurements can be given as arguments.

Returns

statistic [float] The Kruskal-Wallis H statistic, corrected for ties
pvalue [float] The p-value for the test using the assumption that H has a chi square distribution

Notes

For more details on kruskal, see stats.kruskal.

Examples

>>> from scipy.stats.mstats import kruskal

Random samples from three different brands of batteries were tested to see how long the charge lasted. Results
were as follows:

>>> a = [6.3, 5.4, 5.7, 5.2, 5.0]
>>> b = [6.9, 7.0, 6.1, 7.9]
>>> c = [7.2, 6.9, 6.1, 6.5]

Test the hypotesis that the distribution functions for all of the brands’ durations are identical. Use 5% level of
significance.

>>> kruskal(a, b, c)
KruskalResult(statistic=7.113812154696133, pvalue=0.028526948491942164)

The null hypothesis is rejected at the 5% level of significance because the returned p-value is less than the critical
value of 5%.

scipy.stats.mstats.friedmanchisquare

scipy.stats.mstats.friedmanchisquare(*args)
FriedmanChi-Square is a non-parametric, one-waywithin-subjects ANOVA. This function calculates the Friedman
Chi-square test for repeated measures and returns the result, along with the associated probability value.
Each input is considered a given group. Ideally, the number of treatments among each group should be equal. If
this is not the case, only the first n treatments are taken into account, where n is the number of treatments of the
smallest group. If a group has some missing values, the corresponding treatments are masked in the other groups.
The test statistic is corrected for ties.
Masked values in one group are propagated to the other groups.
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Returns

statistic [float] the test statistic.
pvalue [float] the associated p-value.

scipy.stats.mstats.brunnermunzel

scipy.stats.mstats.brunnermunzel(x, y, alternative=’two-sided’, distribution=’t’)
Computes the Brunner-Munzel test on samples x and y
Missing values in x and/or y are discarded.

Parameters

x, y [array_like] Array of samples, should be one-dimensional.
alternative

[‘less’, ‘two-sided’, or ‘greater’, optional] Whether to get the p-value for the one-sided hy-
pothesis (‘less’ or ‘greater’) or for the two-sided hypothesis (‘two-sided’). Defaults value is
‘two-sided’ .

distribution: ‘t’ or ‘normal’, optional
Whether to get the p-value by t-distribution or by standard normal distribution. Defaults
value is ‘t’ .

Returns

statistic [float] The Brunner-Munzer W statistic.
pvalue [float] p-value assuming an t distribution. One-sided or two-sided, depending on the choice

of alternative and distribution.
See also:

mannwhitneyu

Mann-Whitney rank test on two samples.

Notes

For more details on brunnermunzel, see stats.brunnermunzel.

scipy.stats.mstats.skewtest

scipy.stats.mstats.skewtest(a, axis=0)
Tests whether the skew is different from the normal distribution.

Parameters

a [array] The data to be tested
axis [int or None, optional] Axis along which statistics are calculated. Default is 0. If None,

compute over the whole array a.
Returns

statistic [float] The computed z-score for this test.
pvalue [float] a 2-sided p-value for the hypothesis test
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Notes

For more details about skewtest, see stats.skewtest.

scipy.stats.mstats.kurtosistest

scipy.stats.mstats.kurtosistest(a, axis=0)
Tests whether a dataset has normal kurtosis

Parameters

a [array] array of the sample data
axis [int or None, optional] Axis along which to compute test. Default is 0. If None, compute

over the whole array a.
Returns

statistic [float] The computed z-score for this test.
pvalue [float] The 2-sided p-value for the hypothesis test

Notes

For more details about kurtosistest, see stats.kurtosistest.

scipy.stats.mstats.normaltest

scipy.stats.mstats.normaltest(a, axis=0)
Tests whether a sample differs from a normal distribution.

Parameters

a [array_like] The array containing the data to be tested.
axis [int or None, optional] Axis along which to compute test. Default is 0. If None, compute

over the whole array a.
Returns

statistic [float or array] s^2 + k^2, where s is the z-score returned by skewtest and k is the
z-score returned by kurtosistest.

pvalue [float or array] A 2-sided chi squared probability for the hypothesis test.

Notes

For more details about normaltest, see stats.normaltest.

Transformations

obrientransform(*args) Computes a transform on input data (any number of
columns).

trim(a[, limits, inclusive, relative, axis]) Trims an array by masking the data outside some given
limits.

trima(a[, limits, inclusive]) Trims an array by masking the data outside some given
limits.

Continued on next page
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Table 271 – continued from previous page
trimmed_stde(a[, limits, inclusive, axis]) Returns the standard error of the trimmed mean along the

given axis.
trimr(a[, limits, inclusive, axis]) Trims an array by masking some proportion of the data

on each end.
trimtail(data[, proportiontocut, tail, …]) Trims the data by masking values from one tail.
trimboth(data[, proportiontocut, inclusive, …]) Trims the smallest and largest data values.
winsorize(a[, limits, inclusive, inplace, axis]) Returns a Winsorized version of the input array.
zmap(scores, compare[, axis, ddof]) Calculate the relative z-scores.
zscore(a[, axis, ddof]) Calculate the z score of each value in the sample, relative

to the sample mean and standard deviation.

scipy.stats.mstats.obrientransform

scipy.stats.mstats.obrientransform(*args)
Computes a transform on input data (any number of columns). Used to test for homogeneity of variance prior to
running one-way stats. Each array in *args is one level of a factor. If an f_oneway() run on the transformed data
and found significant, variances are unequal. From Maxwell and Delaney, p.112.
Returns: transformed data for use in an ANOVA

scipy.stats.mstats.trim

scipy.stats.mstats.trim(a, limits=None, inclusive=(True, True), relative=False, axis=None)
Trims an array by masking the data outside some given limits.
Returns a masked version of the input array.

Parameters

a [sequence] Input array
limits [{None, tuple}, optional] If relative is False, tuple (lower limit, upper limit) in absolute val-

ues. Values of the input array lower (greater) than the lower (upper) limit are masked.
If relative is True, tuple (lower percentage, upper percentage) to cut on each side of the array,
with respect to the number of unmasked data.
Noting n the number of unmasked data before trimming, the (n*limits[0])th smallest data
and the (n*limits[1])th largest data are masked, and the total number of unmasked data after
trimming is n*(1.-sum(limits)) In each case, the value of one limit can be set to None to
indicate an open interval.
If limits is None, no trimming is performed

inclusive [{(bool, bool) tuple}, optional] If relative is False, tuple indicating whether values exactly
equal to the absolute limits are allowed. If relative is True, tuple indicating whether the
number of data being masked on each side should be rounded (True) or truncated (False).

relative [bool, optional] Whether to consider the limits as absolute values (False) or proportions to
cut (True).

axis [int, optional] Axis along which to trim.

Examples

>>> from scipy.stats.mstats import trim
>>> z = [ 1, 2, 3, 4, 5, 6, 7, 8, 9,10]
>>> print(trim(z,(3,8)))

(continues on next page)

2538 Chapter 6. API Reference



SciPy Reference Guide, Release 1.3.1

(continued from previous page)
[-- -- 3 4 5 6 7 8 -- --]
>>> print(trim(z,(0.1,0.2),relative=True))
[-- 2 3 4 5 6 7 8 -- --]

scipy.stats.mstats.trima

scipy.stats.mstats.trima(a, limits=None, inclusive=(True, True))
Trims an array by masking the data outside some given limits.
Returns a masked version of the input array.

Parameters

a [array_like] Input array.
limits [{None, tuple}, optional] Tuple of (lower limit, upper limit) in absolute values. Values of

the input array lower (greater) than the lower (upper) limit will be masked. A limit is None
indicates an open interval.

inclusive [(bool, bool) tuple, optional] Tuple of (lower flag, upper flag), indicating whether values
exactly equal to the lower (upper) limit are allowed.

scipy.stats.mstats.trimmed_stde

scipy.stats.mstats.trimmed_stde(a, limits=(0.1, 0.1), inclusive=(1, 1), axis=None)
Returns the standard error of the trimmed mean along the given axis.

Parameters

a [sequence] Input array
limits [{(0.1,0.1), tuple of float}, optional] tuple (lower percentage, upper percentage) to cut on

each side of the array, with respect to the number of unmasked data.
If n is the number of unmasked data before trimming, the values smaller than n *
limits[0] and the values larger than n * `limits[1] are masked, and the total
number of unmasked data after trimming is n * (1.-sum(limits)). In each case,
the value of one limit can be set to None to indicate an open interval. If limits is None, no
trimming is performed.

inclusive [{(bool, bool) tuple} optional] Tuple indicating whether the number of data being masked
on each side should be rounded (True) or truncated (False).

axis [int, optional] Axis along which to trim.
Returns

trimmed_stde
[scalar or ndarray]

scipy.stats.mstats.trimr

scipy.stats.mstats.trimr(a, limits=None, inclusive=(True, True), axis=None)
Trims an array by masking some proportion of the data on each end. Returns a masked version of the input array.

Parameters

a [sequence] Input array.
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limits [{None, tuple}, optional] Tuple of the percentages to cut on each side of the array, with
respect to the number of unmasked data, as floats between 0. and 1. Noting n the number
of unmasked data before trimming, the (n*limits[0])th smallest data and the (n*limits[1])th
largest data are masked, and the total number of unmasked data after trimming is n*(1.-
sum(limits)). The value of one limit can be set to None to indicate an open interval.

inclusive [{(True,True) tuple}, optional] Tuple of flags indicating whether the number of data being
masked on the left (right) end should be truncated (True) or rounded (False) to integers.

axis [{None,int}, optional] Axis along which to trim. If None, the whole array is trimmed, but
its shape is maintained.

scipy.stats.mstats.trimtail

scipy.stats.mstats.trimtail(data, proportiontocut=0.2, tail=’left’, inclusive=(True, True),
axis=None)

Trims the data by masking values from one tail.
Parameters

data [array_like] Data to trim.
proportiontocut

[float, optional] Percentage of trimming. If n is the number of unmasked values before
trimming, the number of values after trimming is (1 - proportiontocut) * n.
Default is 0.2.

tail [{‘left’,’right’}, optional] If ‘left’ the proportiontocut lowest values will be masked. If ‘right’
the proportiontocut highest values will be masked. Default is ‘left’.

inclusive [{(bool, bool) tuple}, optional] Tuple indicating whether the number of data being masked
on each side should be rounded (True) or truncated (False). Default is (True, True).

axis [int, optional] Axis along which to perform the trimming. If None, the input array is first
flattened. Default is None.

Returns

trimtail [ndarray] Returned array of same shape as data with masked tail values.

scipy.stats.mstats.trimboth

scipy.stats.mstats.trimboth(data, proportiontocut=0.2, inclusive=(True, True), axis=None)
Trims the smallest and largest data values.
Trims the data by masking the int(proportiontocut * n) smallest and int(proportiontocut *
n) largest values of data along the given axis, where n is the number of unmasked values before trimming.

Parameters

data [ndarray] Data to trim.
proportiontocut

[float, optional] Percentage of trimming (as a float between 0 and 1). If n is the num-
ber of unmasked values before trimming, the number of values after trimming is (1 -
2*proportiontocut) * n. Default is 0.2.

inclusive [{(bool, bool) tuple}, optional] Tuple indicating whether the number of data being masked
on each side should be rounded (True) or truncated (False).

axis [int, optional] Axis along which to perform the trimming. If None, the input array is first
flattened.
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scipy.stats.mstats.winsorize

scipy.stats.mstats.winsorize(a, limits=None, inclusive=(True, True), inplace=False, axis=None)
Returns a Winsorized version of the input array.
The (limits[0])th lowest values are set to the (limits[0])th percentile, and the (limits[1])th highest values are set to
the (1 - limits[1])th percentile. Masked values are skipped.

Parameters

a [sequence] Input array.
limits [{None, tuple of float}, optional] Tuple of the percentages to cut on each side of the ar-

ray, with respect to the number of unmasked data, as floats between 0. and 1. Noting n
the number of unmasked data before trimming, the (n*limits[0])th smallest data and the
(n*limits[1])th largest data are masked, and the total number of unmasked data after trim-
ming is n*(1.-sum(limits)) The value of one limit can be set to None to indicate an open
interval.

inclusive [{(True, True) tuple}, optional] Tuple indicating whether the number of data being masked
on each side should be truncated (True) or rounded (False).

inplace [{False, True}, optional] Whether to winsorize in place (True) or to use a copy (False)
axis [{None, int}, optional] Axis along which to trim. If None, the whole array is trimmed, but

its shape is maintained.

Notes

This function is applied to reduce the effect of possibly spurious outliers by limiting the extreme values.

scipy.stats.mstats.zmap

scipy.stats.mstats.zmap(scores, compare, axis=0, ddof=0)
Calculate the relative z-scores.
Return an array of z-scores, i.e., scores that are standardized to zero mean and unit variance, where mean and
variance are calculated from the comparison array.

Parameters

scores [array_like] The input for which z-scores are calculated.
compare [array_like] The input from which the mean and standard deviation of the normalization are

taken; assumed to have the same dimension as scores.
axis [int or None, optional] Axis over whichmean and variance of compare are calculated. Default

is 0. If None, compute over the whole array scores.
ddof [int, optional] Degrees of freedom correction in the calculation of the standard deviation.

Default is 0.
Returns

zscore [array_like] Z-scores, in the same shape as scores.

Notes

This function preserves ndarray subclasses, and works also with matrices and masked arrays (it uses asanyarray
instead of asarray for parameters).
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Examples

>>> from scipy.stats import zmap
>>> a = [0.5, 2.0, 2.5, 3]
>>> b = [0, 1, 2, 3, 4]
>>> zmap(a, b)
array([-1.06066017, 0. , 0.35355339, 0.70710678])

scipy.stats.mstats.zscore

scipy.stats.mstats.zscore(a, axis=0, ddof=0)
Calculate the z score of each value in the sample, relative to the sample mean and standard deviation.

Parameters

a [array_like] An array like object containing the sample data.
axis [int or None, optional] Axis along which to operate. Default is 0. If None, compute over the

whole array a.
ddof [int, optional] Degrees of freedom correction in the calculation of the standard deviation.

Default is 0.
Returns

zscore [array_like] The z-scores, standardized by mean and standard deviation of input array a.

Notes

This function preserves ndarray subclasses, and works also with matrices and masked arrays (it uses asanyarray
instead of asarray for parameters).

Examples

>>> a = np.array([ 0.7972, 0.0767, 0.4383, 0.7866, 0.8091,
... 0.1954, 0.6307, 0.6599, 0.1065, 0.0508])
>>> from scipy import stats
>>> stats.zscore(a)
array([ 1.1273, -1.247 , -0.0552, 1.0923, 1.1664, -0.8559, 0.5786,

0.6748, -1.1488, -1.3324])

Computing along a specified axis, using n-1 degrees of freedom (ddof=1) to calculate the standard deviation:

>>> b = np.array([[ 0.3148, 0.0478, 0.6243, 0.4608],
... [ 0.7149, 0.0775, 0.6072, 0.9656],
... [ 0.6341, 0.1403, 0.9759, 0.4064],
... [ 0.5918, 0.6948, 0.904 , 0.3721],
... [ 0.0921, 0.2481, 0.1188, 0.1366]])
>>> stats.zscore(b, axis=1, ddof=1)
array([[-0.19264823, -1.28415119, 1.07259584, 0.40420358],

[ 0.33048416, -1.37380874, 0.04251374, 1.00081084],
[ 0.26796377, -1.12598418, 1.23283094, -0.37481053],
[-0.22095197, 0.24468594, 1.19042819, -1.21416216],
[-0.82780366, 1.4457416 , -0.43867764, -0.1792603 ]])
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Other

argstoarray(*args) Constructs a 2D array from a group of sequences.
count_tied_groups(x[, use_missing]) Counts the number of tied values.
msign(x) Returns the sign of x, or 0 if x is masked.
compare_medians_ms(group_1, group_2[, axis]) Compares the medians from two independent groups

along the given axis.
median_cihs(data[, alpha, axis]) Computes the alpha-level confidence interval for the me-

dian of the data.
mjci(data[, prob, axis]) Returns the Maritz-Jarrett estimators of the standard er-

ror of selected experimental quantiles of the data.
mquantiles_cimj(data[, prob, alpha, axis]) Computes the alpha confidence interval for the selected

quantiles of the data, with Maritz-Jarrett estimators.
rsh(data[, points]) Evaluates Rosenblatt’s shifted histogram estimators for

each data point.

scipy.stats.mstats.argstoarray

scipy.stats.mstats.argstoarray(*args)
Constructs a 2D array from a group of sequences.
Sequences are filled with missing values to match the length of the longest sequence.

Parameters

args [sequences] Group of sequences.
Returns

argstoarray
[MaskedArray] A ( m x n ) masked array, where m is the number of arguments and n the
length of the longest argument.

Notes

numpy.ma.row_stack has identical behavior, but is called with a sequence of sequences.

scipy.stats.mstats.count_tied_groups

scipy.stats.mstats.count_tied_groups(x, use_missing=False)
Counts the number of tied values.

Parameters

x [sequence] Sequence of data on which to counts the ties
use_missing

[bool, optional] Whether to consider missing values as tied.
Returns

count_tied_groups
[dict] Returns a dictionary (nb of ties: nb of groups).
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Examples

>>> from scipy.stats import mstats
>>> z = [0, 0, 0, 2, 2, 2, 3, 3, 4, 5, 6]
>>> mstats.count_tied_groups(z)
{2: 1, 3: 2}

In the above example, the ties were 0 (3x), 2 (3x) and 3 (2x).

>>> z = np.ma.array([0, 0, 1, 2, 2, 2, 3, 3, 4, 5, 6])
>>> mstats.count_tied_groups(z)
{2: 2, 3: 1}
>>> z[[1,-1]] = np.ma.masked
>>> mstats.count_tied_groups(z, use_missing=True)
{2: 2, 3: 1}

scipy.stats.mstats.msign

scipy.stats.mstats.msign(x)
Returns the sign of x, or 0 if x is masked.

scipy.stats.mstats.compare_medians_ms

scipy.stats.mstats.compare_medians_ms(group_1, group_2, axis=None)
Compares the medians from two independent groups along the given axis.
The comparison is performed using the McKean-Schrader estimate of the standard error of the medians.

Parameters

group_1 [array_like] First dataset. Has to be of size >=7.
group_2 [array_like] Second dataset. Has to be of size >=7.
axis [int, optional] Axis along which the medians are estimated. If None, the arrays are flattened.

If axis is not None, then group_1 and group_2 should have the same shape.
Returns

compare_medians_ms
[{float, ndarray}] If axis is None, then returns a float, otherwise returns a 1-D ndarray of
floats with a length equal to the length of group_1 along axis.

scipy.stats.mstats.median_cihs

scipy.stats.mstats.median_cihs(data, alpha=0.05, axis=None)
Computes the alpha-level confidence interval for the median of the data.
Uses the Hettmasperger-Sheather method.

Parameters

data [array_like] Input data. Masked values are discarded. The input should be 1D only, or axis
should be set to None.

alpha [float, optional] Confidence level of the intervals.
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axis [int or None, optional] Axis along which to compute the quantiles. If None, use a flattened
array.

Returns

median_cihs
Alpha level confidence interval.

scipy.stats.mstats.mjci

scipy.stats.mstats.mjci(data, prob=[0.25, 0.5, 0.75], axis=None)
Returns the Maritz-Jarrett estimators of the standard error of selected experimental quantiles of the data.

Parameters

data [ndarray] Data array.
prob [sequence, optional] Sequence of quantiles to compute.
axis [int or None, optional] Axis along which to compute the quantiles. If None, use a flattened

array.

scipy.stats.mstats.mquantiles_cimj

scipy.stats.mstats.mquantiles_cimj(data, prob=[0.25, 0.5, 0.75], alpha=0.05, axis=None)
Computes the alpha confidence interval for the selected quantiles of the data, with Maritz-Jarrett estimators.

Parameters

data [ndarray] Data array.
prob [sequence, optional] Sequence of quantiles to compute.
alpha [float, optional] Confidence level of the intervals.
axis [int or None, optional] Axis along which to compute the quantiles. If None, use a flattened

array.
Returns

ci_lower [ndarray] The lower boundaries of the confidence interval. Of the same length as prob.
ci_upper [ndarray] The upper boundaries of the confidence interval. Of the same length as prob.

scipy.stats.mstats.rsh

scipy.stats.mstats.rsh(data, points=None)
Evaluates Rosenblatt’s shifted histogram estimators for each data point.
Rosenblatt’s estimator is a centered finite-difference approximation to the derivative of the empirical cumulative
distribution function.

Parameters

data [sequence] Input data, should be 1-D. Masked values are ignored.
points [sequence or None, optional] Sequence of points where to evaluate Rosenblatt shifted his-

togram. If None, use the data.

6.28.18 Univariate and multivariate kernel density estimation

6.28. Statistical functions (scipy.stats) 2545



SciPy Reference Guide, Release 1.3.1

gaussian_kde(dataset[, bw_method, weights]) Representation of a kernel-density estimate using Gaus-
sian kernels.

scipy.stats.gaussian_kde

class scipy.stats.gaussian_kde(dataset, bw_method=None, weights=None)
Representation of a kernel-density estimate using Gaussian kernels.
Kernel density estimation is a way to estimate the probability density function (PDF) of a random variable in a
non-parametric way. gaussian_kde works for both uni-variate and multi-variate data. It includes automatic
bandwidth determination. The estimation works best for a unimodal distribution; bimodal or multi-modal distri-
butions tend to be oversmoothed.

Parameters

dataset [array_like] Datapoints to estimate from. In case of univariate data this is a 1-D array,
otherwise a 2-D array with shape (# of dims, # of data).

bw_method
[str, scalar or callable, optional] The method used to calculate the estimator bandwidth. This
can be ‘scott’, ‘silverman’, a scalar constant or a callable. If a scalar, this will be used directly
as kde.factor. If a callable, it should take a gaussian_kde instance as only parameter and
return a scalar. If None (default), ‘scott’ is used. See Notes for more details.

weights [array_like, optional] weights of datapoints. This must be the same shape as dataset. If None
(default), the samples are assumed to be equally weighted

Notes

Bandwidth selection strongly influences the estimate obtained from the KDE (much more so than the actual shape
of the kernel). Bandwidth selection can be done by a “rule of thumb”, by cross-validation, by “plug-in methods” or
by other means; see [3], [4] for reviews. gaussian_kde uses a rule of thumb, the default is Scott’s Rule.
Scott’s Rule [1], implemented as scotts_factor, is:

n**(-1./(d+4)),

with n the number of data points and d the number of dimensions. In the case of unequally weighted points,
scotts_factor becomes:

neff**(-1./(d+4)),

with neff the effective number of datapoints. Silverman’s Rule [2], implemented as silverman_factor, is:

(n * (d + 2) / 4.)**(-1. / (d + 4)).

or in the case of unequally weighted points:

(neff * (d + 2) / 4.)**(-1. / (d + 4)).

Good general descriptions of kernel density estimation can be found in [1] and [2], the mathematics for this multi-
dimensional implementation can be found in [1].
With a set of weighted samples, the effective number of datapoints neff is defined by:

neff = sum(weights)^2 / sum(weights^2)

as detailed in [5].
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References

[1], [2], [3], [4], [5]

Examples

Generate some random two-dimensional data:

>>> from scipy import stats
>>> def measure(n):
... "Measurement model, return two coupled measurements."
... m1 = np.random.normal(size=n)
... m2 = np.random.normal(scale=0.5, size=n)
... return m1+m2, m1-m2

>>> m1, m2 = measure(2000)
>>> xmin = m1.min()
>>> xmax = m1.max()
>>> ymin = m2.min()
>>> ymax = m2.max()

Perform a kernel density estimate on the data:

>>> X, Y = np.mgrid[xmin:xmax:100j, ymin:ymax:100j]
>>> positions = np.vstack([X.ravel(), Y.ravel()])
>>> values = np.vstack([m1, m2])
>>> kernel = stats.gaussian_kde(values)
>>> Z = np.reshape(kernel(positions).T, X.shape)

Plot the results:

>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots()
>>> ax.imshow(np.rot90(Z), cmap=plt.cm.gist_earth_r,
... extent=[xmin, xmax, ymin, ymax])
>>> ax.plot(m1, m2, 'k.', markersize=2)
>>> ax.set_xlim([xmin, xmax])
>>> ax.set_ylim([ymin, ymax])
>>> plt.show()

Attributes

dataset [ndarray] The dataset with which gaussian_kde was initialized.
d [int] Number of dimensions.
n [int] Number of datapoints.
neff [int] Effective number of datapoints.

New in version 1.2.0.
factor [float] The bandwidth factor, obtained from kde.covariance_factor, with which the covari-

ance matrix is multiplied.
covariance [ndarray] The covariance matrix of dataset, scaled by the calculated bandwidth (kde.factor).
inv_cov [ndarray] The inverse of covariance.
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Methods

evaluate(points) Evaluate the estimated pdf on a set of points.
__call__(points) Evaluate the estimated pdf on a set of points.
integrate_gaussian(mean, cov) Multiply estimated density by a multivariate Gaussian

and integrate over the whole space.
integrate_box_1d(low, high) Computes the integral of a 1D pdf between two

bounds.
integrate_box(low_bounds, high_bounds[,
maxpts])

Computes the integral of a pdf over a rectangular in-
terval.

integrate_kde(other) Computes the integral of the product of this kernel
density estimate with another.

pdf(x) Evaluate the estimated pdf on a provided set of points.
logpdf(x) Evaluate the log of the estimated pdf on a provided set

of points.
resample([size]) Randomly sample a dataset from the estimated pdf.
set_bandwidth([bw_method]) Compute the estimator bandwidth with given method.
covariance_factor() Computes the coefficient (kde.factor) that multiplies

the data covariance matrix to obtain the kernel covari-
ance matrix.

scipy.stats.gaussian_kde.evaluate
gaussian_kde.evaluate(points)

Evaluate the estimated pdf on a set of points.
Parameters

points [(# of dimensions, # of points)-array] Alternatively, a (# of dimensions,) vector can be
passed in and treated as a single point.

Returns

values [(# of points,)-array] The values at each point.
Raises

ValueError
[if the dimensionality of the input points is different than] the dimensionality of the
KDE.

scipy.stats.gaussian_kde.__call__
gaussian_kde.__call__(points)

Evaluate the estimated pdf on a set of points.
Parameters

points [(# of dimensions, # of points)-array] Alternatively, a (# of dimensions,) vector can be
passed in and treated as a single point.

Returns

values [(# of points,)-array] The values at each point.
Raises

ValueError
[if the dimensionality of the input points is different than] the dimensionality of the
KDE.
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scipy.stats.gaussian_kde.integrate_gaussian
gaussian_kde.integrate_gaussian(mean, cov)

Multiply estimated density by a multivariate Gaussian and integrate over the whole space.
Parameters

mean [aray_like] A 1-D array, specifying the mean of the Gaussian.
cov [array_like] A 2-D array, specifying the covariance matrix of the Gaussian.

Returns

result [scalar] The value of the integral.
Raises

ValueError
If the mean or covariance of the input Gaussian differs from the KDE’s dimensionality.

scipy.stats.gaussian_kde.integrate_box_1d
gaussian_kde.integrate_box_1d(low, high)

Computes the integral of a 1D pdf between two bounds.
Parameters

low [scalar] Lower bound of integration.
high [scalar] Upper bound of integration.

Returns

value [scalar] The result of the integral.
Raises

ValueError
If the KDE is over more than one dimension.

scipy.stats.gaussian_kde.integrate_box
gaussian_kde.integrate_box(low_bounds, high_bounds, maxpts=None)

Computes the integral of a pdf over a rectangular interval.
Parameters

low_bounds
[array_like] A 1-D array containing the lower bounds of integration.

high_bounds
[array_like] A 1-D array containing the upper bounds of integration.

maxpts [int, optional] The maximum number of points to use for integration.
Returns

value [scalar] The result of the integral.

scipy.stats.gaussian_kde.integrate_kde
gaussian_kde.integrate_kde(other)

Computes the integral of the product of this kernel density estimate with another.
Parameters

other [gaussian_kde instance] The other kde.
Returns
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value [scalar] The result of the integral.
Raises

ValueError
If the KDEs have different dimensionality.

scipy.stats.gaussian_kde.pdf
gaussian_kde.pdf(x)

Evaluate the estimated pdf on a provided set of points.

Notes

This is an alias for gaussian_kde.evaluate. See the evaluate docstring for more details.

scipy.stats.gaussian_kde.logpdf
gaussian_kde.logpdf(x)

Evaluate the log of the estimated pdf on a provided set of points.

scipy.stats.gaussian_kde.resample
gaussian_kde.resample(size=None)

Randomly sample a dataset from the estimated pdf.
Parameters

size [int, optional] The number of samples to draw. If not provided, then the size is the same
as the effective number of samples in the underlying dataset.

Returns

resample [(self.d, size) ndarray] The sampled dataset.

scipy.stats.gaussian_kde.set_bandwidth
gaussian_kde.set_bandwidth(bw_method=None)

Compute the estimator bandwidth with given method.
The new bandwidth calculated after a call to set_bandwidth is used for subsequent evaluations of the
estimated density.

Parameters

bw_method
[str, scalar or callable, optional] The method used to calculate the estimator bandwidth.
This can be ‘scott’, ‘silverman’, a scalar constant or a callable. If a scalar, this will be
used directly as kde.factor. If a callable, it should take a gaussian_kde instance
as only parameter and return a scalar. If None (default), nothing happens; the current
kde.covariance_factor method is kept.

Notes

New in version 0.11.
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Examples

>>> import scipy.stats as stats
>>> x1 = np.array([-7, -5, 1, 4, 5.])
>>> kde = stats.gaussian_kde(x1)
>>> xs = np.linspace(-10, 10, num=50)
>>> y1 = kde(xs)
>>> kde.set_bandwidth(bw_method='silverman')
>>> y2 = kde(xs)
>>> kde.set_bandwidth(bw_method=kde.factor / 3.)
>>> y3 = kde(xs)

>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots()
>>> ax.plot(x1, np.ones(x1.shape) / (4. * x1.size), 'bo',
... label='Data points (rescaled)')
>>> ax.plot(xs, y1, label='Scott (default)')
>>> ax.plot(xs, y2, label='Silverman')
>>> ax.plot(xs, y3, label='Const (1/3 * Silverman)')
>>> ax.legend()
>>> plt.show()
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scipy.stats.gaussian_kde.covariance_factor
gaussian_kde.covariance_factor()

Computes the coefficient (kde.factor) that multiplies the data covariancematrix to obtain the kernel covariance
matrix. The default is scotts_factor. A subclass can overwrite this method to provide a different
method, or set it through a call to kde.set_bandwidth.

6.28.19 Warnings used in scipy.stats
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PearsonRConstantInputWarning([msg]) Warning generated by pearsonr when an input is con-
stant.

PearsonRNearConstantInputWarning([msg]) Warning generated by pearsonr when an input is
nearly constant.

scipy.stats.PearsonRConstantInputWarning

exception scipy.stats.PearsonRConstantInputWarning(msg=None)
Warning generated by pearsonr when an input is constant.
with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

scipy.stats.PearsonRNearConstantInputWarning

exception scipy.stats.PearsonRNearConstantInputWarning(msg=None)
Warning generated by pearsonr when an input is nearly constant.
with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.
For many more stat related functions install the software R and the interface package rpy.

6.29 Low-level callback functions

Some functions in SciPy take as arguments callback functions, which can either be python callables or low-level compiled
functions. Using compiled callback functions can improve performance somewhat by avoiding wrapping data in Python
objects.
Such low-level functions in SciPy are wrapped inLowLevelCallable objects, which can be constructed from function
pointers obtained from ctypes, cffi, Cython, or contained in Python PyCapsule objects.

LowLevelCallable Low-level callback function.

6.29.1 scipy.LowLevelCallable

class scipy.LowLevelCallable
Low-level callback function.

Parameters

function [{PyCapsule, ctypes function pointer, cffi function pointer}] Low-level callback function.
user_data [{PyCapsule, ctypes void pointer, cffi void pointer}] User data to pass on to the callback

function.
signature [str, optional] Signature of the function. If omitted, determined from function, if possible.

Notes

The argument function can be one of:
• PyCapsule, whose name contains the C function signature
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• ctypes function pointer
• cffi function pointer

The signature of the low-level callback must match one of those expected by the routine it is passed to.
If constructing low-level functions from a PyCapsule, the name of the capsule must be the corresponding signature,
in the format:

return_type (arg1_type, arg2_type, ...)

For example:

"void (double)"
"double (double, int *, void *)"

The context of a PyCapsule passed in as function is used as user_data, if an explicit value for user_data
was not given.

Attributes

function Callback function given.
user_data User data given.
signature Signature of the function.

Methods

from_cython(module, name[, user_data, signa-
ture])

Create a low-level callback function from an exported
Cython function.

scipy.LowLevelCallable.from_cython

classmethod LowLevelCallable.from_cython(module, name, user_data=None, signa-
ture=None)

Create a low-level callback function from an exported Cython function.
Parameters

module [module] Cython module where the exported function resides
name [str] Name of the exported function
user_data [{PyCapsule, ctypes void pointer, cffi void pointer}, optional] User data to pass on to

the callback function.
signature [str, optional] Signature of the function. If omitted, determined from function.

See also:
Functions accepting low-level callables:
scipy.integrate.quad, scipy.ndimage.generic_filter, scipy.ndimage.
generic_filter1d, scipy.ndimage.geometric_transform
Usage examples:
Extending scipy.ndimage in C, Faster integration using low-level callback functions
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broyden2() (in module scipy.optimize), 1401
brunnermunzel() (in module scipy.stats), 2460
brunnermunzel() (in module scipy.stats.mstats), 2536
brute() (in module scipy.optimize), 1304
BSpline (class in scipy.interpolate), 681
bspline() (in module scipy.signal), 1424
bsr_matrix (class in scipy.sparse), 1632
btdtr (in module scipy.special), 1954
btdtri (in module scipy.special), 1954
btdtria (in module scipy.special), 1955
btdtrib (in module scipy.special), 1956
burr (in module scipy.stats), 2128
burr12 (in module scipy.stats), 2130
buttap() (in module scipy.signal), 1495
butter() (in module scipy.signal), 1505
buttord() (in module scipy.signal), 1507

C
canberra() (in module scipy.spatial.distance), 1888
cascade() (in module scipy.signal), 1586
cauchy (in module scipy.stats), 2133
caxpy (in module scipy.linalg.blas), 866
cbrt (in module scipy.special), 2068
cc_diff() (in module scipy.fftpack), 576
ccopy (in module scipy.linalg.blas), 866
cdf() (scipy.stats.rv_continuous method), 2080
cdf() (scipy.stats.rv_discrete method), 2092
cdf() (scipy.stats.rv_histogram method), 2100
cdf2rdf() (in module scipy.linalg), 827
cdist() (in module scipy.spatial.distance), 1879
cdotc (in module scipy.linalg.blas), 867
cdotu (in module scipy.linalg.blas), 867
ceil() (scipy.sparse.bsr_matrix method), 1638
ceil() (scipy.sparse.coo_matrix method), 1656
ceil() (scipy.sparse.csc_matrix method), 1673
ceil() (scipy.sparse.csr_matrix method), 1690
ceil() (scipy.sparse.dia_matrix method), 1706
center_of_mass() (in module scipy.ndimage), 1221
central_diff_weights() (in module scipy.misc),

1170
centroid() (in module scipy.cluster.hierarchy), 509
cg() (in module scipy.sparse.linalg), 1784
cgbmv (in module scipy.linalg.blas), 897
cgbsv (in module scipy.linalg.lapack), 938
cgbtrf (in module scipy.linalg.lapack), 940
cgbtrs (in module scipy.linalg.lapack), 942
cgebal (in module scipy.linalg.lapack), 944
cgecon (in module scipy.linalg.lapack), 945
cgees (in module scipy.linalg.lapack), 947
cgeev (in module scipy.linalg.lapack), 950
cgeev_lwork (in module scipy.linalg.lapack), 951
cgegv() (in module scipy.linalg.lapack), 953
cgehrd (in module scipy.linalg.lapack), 955

cgehrd_lwork (in module scipy.linalg.lapack), 957
cgels (in module scipy.linalg.lapack), 958
cgels_lwork (in module scipy.linalg.lapack), 960
cgelsd (in module scipy.linalg.lapack), 961
cgelsd_lwork (in module scipy.linalg.lapack), 963
cgelss (in module scipy.linalg.lapack), 965
cgelss_lwork (in module scipy.linalg.lapack), 967
cgelsy (in module scipy.linalg.lapack), 969
cgelsy_lwork (in module scipy.linalg.lapack), 970
cgemm (in module scipy.linalg.blas), 919
cgemv (in module scipy.linalg.blas), 898
cgeqp3 (in module scipy.linalg.lapack), 972
cgeqrf (in module scipy.linalg.lapack), 973
cgerc (in module scipy.linalg.blas), 898
cgerqf (in module scipy.linalg.lapack), 975
cgeru (in module scipy.linalg.blas), 899
cgesdd (in module scipy.linalg.lapack), 977
cgesdd_lwork (in module scipy.linalg.lapack), 978
cgesv (in module scipy.linalg.lapack), 980
cgesvd (in module scipy.linalg.lapack), 982
cgesvd_lwork (in module scipy.linalg.lapack), 983
cgesvx (in module scipy.linalg.lapack), 986
cgetrf (in module scipy.linalg.lapack), 988
cgetri (in module scipy.linalg.lapack), 989
cgetri_lwork (in module scipy.linalg.lapack), 990
cgetrs (in module scipy.linalg.lapack), 991
cgges (in module scipy.linalg.lapack), 994
cggev (in module scipy.linalg.lapack), 997
cgglse (in module scipy.linalg.lapack), 999
cgglse_lwork (in module scipy.linalg.lapack), 1001
cgs() (in module scipy.sparse.linalg), 1785
cgtsv (in module scipy.linalg.lapack), 1003
chbevd (in module scipy.linalg.lapack), 1004
chbevx (in module scipy.linalg.lapack), 1005
chbmv (in module scipy.linalg.blas), 899
chdtr (in module scipy.special), 1975
chdtrc (in module scipy.special), 1976
chdtri (in module scipy.special), 1976
chdtriv (in module scipy.special), 1976
cheb1ap() (in module scipy.signal), 1495
cheb1ord() (in module scipy.signal), 1511
cheb2ap() (in module scipy.signal), 1495
cheb2ord() (in module scipy.signal), 1515
cheby1() (in module scipy.signal), 1509
cheby2() (in module scipy.signal), 1513
chebyc() (in module scipy.special), 2033
chebys() (in module scipy.special), 2034
chebyshev() (in module scipy.spatial.distance), 1888
chebyt() (in module scipy.special), 2032
chebyu() (in module scipy.special), 2033
check_COLA() (in module scipy.signal), 1628
check_format() (scipy.sparse.bsr_matrix method),

1638
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check_format() (scipy.sparse.csc_matrix method),
1673

check_format() (scipy.sparse.csr_matrix method),
1690

check_grad() (in module scipy.optimize), 1371
check_NOLA() (in module scipy.signal), 1630
checon (in module scipy.linalg.lapack), 1006
cheev (in module scipy.linalg.lapack), 1007
cheevd (in module scipy.linalg.lapack), 1007
cheevr (in module scipy.linalg.lapack), 1008
chegst (in module scipy.linalg.lapack), 1009
chegv (in module scipy.linalg.lapack), 1010
chegvd (in module scipy.linalg.lapack), 1011
chegvx (in module scipy.linalg.lapack), 1012
chemm (in module scipy.linalg.blas), 920
chemv (in module scipy.linalg.blas), 900
cher (in module scipy.linalg.blas), 900
cher2 (in module scipy.linalg.blas), 901
cher2k (in module scipy.linalg.blas), 920
cherk (in module scipy.linalg.blas), 921
chesv (in module scipy.linalg.lapack), 1013
chesv_lwork (in module scipy.linalg.lapack), 1014
chesvx (in module scipy.linalg.lapack), 1014
chesvx_lwork (in module scipy.linalg.lapack), 1016
chetrd (in module scipy.linalg.lapack), 1016
chetrd_lwork (in module scipy.linalg.lapack), 1017
chetrf (in module scipy.linalg.lapack), 1018
chetrf_lwork (in module scipy.linalg.lapack), 1018
chfrk (in module scipy.linalg.lapack), 1019
chi (in module scipy.stats), 2135
chi2 (in module scipy.stats), 2138
chi2_contingency() (in module scipy.stats), 2495
chirp() (in module scipy.signal), 1571
chisquare() (in module scipy.stats), 2447
chisquare() (in module scipy.stats.mstats), 2531
chndtr (in module scipy.special), 1977
chndtridf (in module scipy.special), 1977
chndtrinc (in module scipy.special), 1977
chndtrix (in module scipy.special), 1977
cho_factor() (in module scipy.linalg), 807
cho_solve() (in module scipy.linalg), 808
cho_solve_banded() (in module scipy.linalg), 808
cholesky() (in module scipy.linalg), 805
cholesky_banded() (in module scipy.linalg), 806
choose_conv_method() (in module scipy.signal),

1423
chpmv (in module scipy.linalg.blas), 901
chpr (in module scipy.linalg.blas), 902
chpr2 (in module scipy.linalg.blas), 902
circmean() (in module scipy.stats), 2494
circstd() (in module scipy.stats), 2495
circulant() (in module scipy.linalg), 848
circvar() (in module scipy.stats), 2494
cityblock() (in module scipy.spatial.distance), 1889

cKDTree (class in scipy.spatial), 1843
clange (in module scipy.linalg.lapack), 1021
clarf (in module scipy.linalg.lapack), 1022
clarfg (in module scipy.linalg.lapack), 1024
clarkson_woodruff_transform() (in module

scipy.linalg), 845
clartg (in module scipy.linalg.lapack), 1025
claswp (in module scipy.linalg.lapack), 1027
clauum (in module scipy.linalg.lapack), 1029
clear() (scipy.optimize.OptimizeResult method), 1277
clear() (scipy.sparse.dok_matrix method), 1719
close (scipy.spatial.ConvexHull attribute), 1859
close (scipy.spatial.Delaunay attribute), 1854
close (scipy.spatial.HalfspaceIntersection attribute), 1867
close (scipy.spatial.Voronoi attribute), 1862
close() (scipy.io.FortranFile method), 746
close() (scipy.io.netcdf_file method), 750
CloughTocher2DInterpolator (class in

scipy.interpolate), 671
clpmn() (in module scipy.special), 2010
ClusterNode (class in scipy.cluster.hierarchy), 528
cmplx_sort() (in module scipy.signal), 1496
coherence() (in module scipy.signal), 1614
comb() (in module scipy.special), 2053
combine_pvalues() (in module scipy.stats), 2461
companion() (in module scipy.linalg), 849
compare_medians_ms() (in module

scipy.stats.mstats), 2544
complete() (in module scipy.cluster.hierarchy), 505
complex_ode (class in scipy.integrate), 628
conj() (scipy.sparse.bsr_matrix method), 1638
conj() (scipy.sparse.coo_matrix method), 1656
conj() (scipy.sparse.csc_matrix method), 1673
conj() (scipy.sparse.csr_matrix method), 1690
conj() (scipy.sparse.dia_matrix method), 1706
conj() (scipy.sparse.dok_matrix method), 1720
conj() (scipy.sparse.lil_matrix method), 1732
conj() (scipy.sparse.spmatrix method), 1743
conjtransp() (scipy.sparse.dok_matrix method), 1720
conjugate() (scipy.sparse.bsr_matrix method), 1639
conjugate() (scipy.sparse.coo_matrix method), 1656
conjugate() (scipy.sparse.csc_matrix method), 1673
conjugate() (scipy.sparse.csr_matrix method), 1691
conjugate() (scipy.sparse.dia_matrix method), 1706
conjugate() (scipy.sparse.dok_matrix method), 1720
conjugate() (scipy.sparse.lil_matrix method), 1732
conjugate() (scipy.sparse.spmatrix method), 1743
connected_components() (in module

scipy.sparse.csgraph), 1811
ConstantWarning, 544
construct_dist_matrix() (in module

scipy.sparse.csgraph), 1830
construct_fast() (scipy.interpolate.BPoly class

method), 666
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construct_fast() (scipy.interpolate.BSpline class
method), 687

construct_fast() (scipy.interpolate.NdPPoly class
method), 681

construct_fast() (scipy.interpolate.PPoly class
method), 662

cont2discrete() (in module scipy.signal), 1567
convert_temperature() (in module

scipy.constants), 555
convex_hull_plot_2d() (in module scipy.spatial),

1868
ConvexHull (class in scipy.spatial), 1855
convolve (in module scipy.fftpack.convolve), 581
convolve() (in module scipy.ndimage), 1176
convolve() (in module scipy.signal), 1412
convolve1d() (in module scipy.ndimage), 1178
convolve2d() (in module scipy.signal), 1417
convolve_z (in module scipy.fftpack.convolve), 581
coo_matrix (class in scipy.sparse), 1650
cophenet() (in module scipy.cluster.hierarchy), 514
copy() (scipy.optimize.OptimizeResult method), 1277
copy() (scipy.sparse.bsr_matrix method), 1639
copy() (scipy.sparse.coo_matrix method), 1656
copy() (scipy.sparse.csc_matrix method), 1673
copy() (scipy.sparse.csr_matrix method), 1691
copy() (scipy.sparse.dia_matrix method), 1707
copy() (scipy.sparse.dok_matrix method), 1720
copy() (scipy.sparse.lil_matrix method), 1732
copy() (scipy.sparse.spmatrix method), 1743
correlate() (in module scipy.ndimage), 1179
correlate() (in module scipy.signal), 1414
correlate1d() (in module scipy.ndimage), 1180
correlate2d() (in module scipy.signal), 1419
correlation() (in module scipy.spatial.distance),

1890
correspond() (in module scipy.cluster.hierarchy), 538
cosdg (in module scipy.special), 2070
coshm() (in module scipy.linalg), 832
cosine (in module scipy.stats), 2140
cosine() (in module scipy.spatial.distance), 1890
cosm() (in module scipy.linalg), 830
cosm1 (in module scipy.special), 2071
cotdg (in module scipy.special), 2070
count_neighbors() (scipy.spatial.cKDTree method),

1845
count_neighbors() (scipy.spatial.KDTree method),

1839
count_nonzero() (scipy.sparse.bsr_matrix method),

1639
count_nonzero() (scipy.sparse.coo_matrix method),

1657
count_nonzero() (scipy.sparse.csc_matrix method),

1674

count_nonzero() (scipy.sparse.csr_matrix method),
1691

count_nonzero() (scipy.sparse.dia_matrix method),
1707

count_nonzero() (scipy.sparse.dok_matrix method),
1720

count_nonzero() (scipy.sparse.lil_matrix method),
1733

count_nonzero() (scipy.sparse.spmatrix method),
1743

count_tied_groups() (in module
scipy.stats.mstats), 2543

covariance_factor() (scipy.stats.gaussian_kde
method), 2551

cpbsv (in module scipy.linalg.lapack), 1035
cpbtrf (in module scipy.linalg.lapack), 1037
cpbtrs (in module scipy.linalg.lapack), 1039
cpftrf (in module scipy.linalg.lapack), 1040
cpftri (in module scipy.linalg.lapack), 1042
cpftrs (in module scipy.linalg.lapack), 1043
cpocon (in module scipy.linalg.lapack), 1045
cposv (in module scipy.linalg.lapack), 1046
cposvx (in module scipy.linalg.lapack), 1048
cpotrf (in module scipy.linalg.lapack), 1050
cpotri (in module scipy.linalg.lapack), 1051
cpotrs (in module scipy.linalg.lapack), 1053
cptsv (in module scipy.linalg.lapack), 1055
createDimension() (scipy.io.netcdf_file method),

750
createVariable() (scipy.io.netcdf_file method), 750
crot (in module scipy.linalg.lapack), 1056
crotg (in module scipy.linalg.blas), 868
crystalball (in module scipy.stats), 2143
cs_diff() (in module scipy.fftpack), 575
csc_matrix (class in scipy.sparse), 1667
cscal (in module scipy.linalg.blas), 868
csd() (in module scipy.signal), 1612
csgraph_from_dense() (in module

scipy.sparse.csgraph), 1831
csgraph_from_masked() (in module

scipy.sparse.csgraph), 1831
csgraph_masked_from_dense() (in module

scipy.sparse.csgraph), 1832
csgraph_to_dense() (in module

scipy.sparse.csgraph), 1833
csgraph_to_masked() (in module

scipy.sparse.csgraph), 1835
cspline1d() (in module scipy.signal), 1425
cspline1d_eval() (in module scipy.signal), 1426
cspline2d() (in module scipy.signal), 1426
csr_matrix (class in scipy.sparse), 1684
csrot (in module scipy.linalg.blas), 868
csscal (in module scipy.linalg.blas), 869
cswap (in module scipy.linalg.blas), 869
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csycon (in module scipy.linalg.lapack), 1067
csyconv (in module scipy.linalg.lapack), 1068
csymm (in module scipy.linalg.blas), 921
csyr (in module scipy.linalg.blas), 905
csyr2k (in module scipy.linalg.blas), 921
csyrk (in module scipy.linalg.blas), 922
csysv (in module scipy.linalg.lapack), 1076
csysv_lwork (in module scipy.linalg.lapack), 1078
csysvx (in module scipy.linalg.lapack), 1080
csysvx_lwork (in module scipy.linalg.lapack), 1081
csytf2 (in module scipy.linalg.lapack), 1083
csytrf (in module scipy.linalg.lapack), 1086
csytrf_lwork (in module scipy.linalg.lapack), 1087
ctbmv (in module scipy.linalg.blas), 903
ctbsv (in module scipy.linalg.blas), 903
ctfsm (in module scipy.linalg.lapack), 1088
ctfttp (in module scipy.linalg.lapack), 1090
ctfttr (in module scipy.linalg.lapack), 1091
ctgsen (in module scipy.linalg.lapack), 1094
ctpmv (in module scipy.linalg.blas), 903
ctpsv (in module scipy.linalg.blas), 904
ctpttf (in module scipy.linalg.lapack), 1096
ctpttr (in module scipy.linalg.lapack), 1097
ctrmm (in module scipy.linalg.blas), 922
ctrmv (in module scipy.linalg.blas), 904
ctrsm (in module scipy.linalg.blas), 923
ctrsv (in module scipy.linalg.blas), 905
ctrsyl (in module scipy.linalg.lapack), 1099
ctrtri (in module scipy.linalg.lapack), 1100
ctrtrs (in module scipy.linalg.lapack), 1102
ctrttf (in module scipy.linalg.lapack), 1103
ctrttp (in module scipy.linalg.lapack), 1105
ctzrzf (in module scipy.linalg.lapack), 1106
ctzrzf_lwork (in module scipy.linalg.lapack), 1107
cubic() (in module scipy.signal), 1424
CubicHermiteSpline (class in scipy.interpolate), 645
CubicSpline (class in scipy.interpolate), 653
cumfreq() (in module scipy.stats), 2413
cumtrapz() (in module scipy.integrate), 599
cunghr (in module scipy.linalg.lapack), 1108
cunghr_lwork (in module scipy.linalg.lapack), 1108
cungqr (in module scipy.linalg.lapack), 1109
cungrq (in module scipy.linalg.lapack), 1110
cunmqr (in module scipy.linalg.lapack), 1111
cunmrz (in module scipy.linalg.lapack), 1111
cunmrz_lwork (in module scipy.linalg.lapack), 1112
curve_fit() (in module scipy.optimize), 1329
cut_tree() (in module scipy.cluster.hierarchy), 532
cwt() (in module scipy.signal), 1589

D
dasum (in module scipy.linalg.blas), 869
Data (class in scipy.odr), 1264
daub() (in module scipy.signal), 1587

dawsn (in module scipy.special), 2005
daxpy (in module scipy.linalg.blas), 870
dblquad() (in module scipy.integrate), 587
dbode() (in module scipy.signal), 1557
dcopy (in module scipy.linalg.blas), 870
dct() (in module scipy.fftpack), 564
dctn() (in module scipy.fftpack), 567
ddot (in module scipy.linalg.blas), 871
decimate() (in module scipy.signal), 1446
deconvolve() (in module scipy.signal), 1439
deg2rad() (scipy.sparse.bsr_matrix method), 1639
deg2rad() (scipy.sparse.coo_matrix method), 1657
deg2rad() (scipy.sparse.csc_matrix method), 1674
deg2rad() (scipy.sparse.csr_matrix method), 1691
deg2rad() (scipy.sparse.dia_matrix method), 1707
Delaunay (class in scipy.spatial), 1851
delaunay_plot_2d() (in module scipy.spatial), 1868
dendrogram() (in module scipy.cluster.hierarchy), 524
dense_output() (scipy.integrate.BDF method), 614
dense_output() (scipy.integrate.LSODA method),

615
dense_output() (scipy.integrate.OdeSolver method),

617
dense_output() (scipy.integrate.Radau method), 612
dense_output() (scipy.integrate.RK23 method), 609
dense_output() (scipy.integrate.RK45 method), 610
DenseOutput (class in scipy.integrate), 617
depth_first_order() (in module

scipy.sparse.csgraph), 1822
depth_first_tree() (in module

scipy.sparse.csgraph), 1824
derivative() (in module scipy.misc), 1170
derivative() (scipy.interpolate.Akima1DInterpolator

method), 652
derivative() (scipy.interpolate.BPoly method), 665
derivative() (scipy.interpolate.BSpline method), 685
derivative() (scipy.interpolate.CubicHermiteSpline

method), 646
derivative() (scipy.interpolate.CubicSpline method),

656
derivative()

(scipy.interpolate.InterpolatedUnivariateSpline
method), 710

derivative() (scipy.interpolate.KroghInterpolator
method), 642

derivative() (scipy.interpolate.LSQUnivariateSpline
method), 716

derivative() (scipy.interpolate.PchipInterpolator
method), 649

derivative() (scipy.interpolate.PPoly method), 659
derivative() (scipy.interpolate.UnivariateSpline

method), 705
derivatives()

(scipy.interpolate.InterpolatedUnivariateSpline
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method), 711
derivatives() (scipy.interpolate.KroghInterpolator

method), 642
derivatives() (scipy.interpolate.LSQUnivariateSpline

method), 717
derivatives() (scipy.interpolate.UnivariateSpline

method), 705
describe() (in module scipy.stats), 2390
describe() (in module scipy.stats.mstats), 2509
destroy_convolve_cache (in module

scipy.fftpack.convolve), 582
det() (in module scipy.linalg), 769
detrend() (in module scipy.signal), 1447
dfreqresp() (in module scipy.signal), 1556
dft() (in module scipy.linalg), 850
dgamma (in module scipy.stats), 2145
dgbmv (in module scipy.linalg.blas), 891
dgbsv (in module scipy.linalg.lapack), 938
dgbtrf (in module scipy.linalg.lapack), 939
dgbtrs (in module scipy.linalg.lapack), 941
dgebal (in module scipy.linalg.lapack), 943
dgecon (in module scipy.linalg.lapack), 945
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dgehrd_lwork (in module scipy.linalg.lapack), 956
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dgelsd (in module scipy.linalg.lapack), 961
dgelsd_lwork (in module scipy.linalg.lapack), 963
dgelss (in module scipy.linalg.lapack), 965
dgelss_lwork (in module scipy.linalg.lapack), 966
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get_coeffs() (scipy.interpolate.RectBivariateSpline
method), 679

get_coeffs()
(scipy.interpolate.RectSphereBivariateSpline
method), 722

get_coeffs() (scipy.interpolate.SmoothBivariateSpline
method), 726

get_coeffs()
(scipy.interpolate.SmoothSphereBivariateSpline
method), 729

get_coeffs() (scipy.interpolate.UnivariateSpline
method), 706

get_count() (scipy.cluster.hierarchy.ClusterNode
method), 528

get_id() (scipy.cluster.hierarchy.ClusterNode method),
529

get_knots() (scipy.interpolate.BivariateSpline
method), 724

get_knots()
(scipy.interpolate.InterpolatedUnivariateSpline
method), 711

get_knots() (scipy.interpolate.LSQBivariateSpline
method), 731

get_knots()
(scipy.interpolate.LSQSphereBivariateSpline
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method), 734
get_knots() (scipy.interpolate.LSQUnivariateSpline

method), 717
get_knots() (scipy.interpolate.RectBivariateSpline

method), 679
get_knots()

(scipy.interpolate.RectSphereBivariateSpline
method), 722

get_knots() (scipy.interpolate.SmoothBivariateSpline
method), 726

get_knots()
(scipy.interpolate.SmoothSphereBivariateSpline
method), 729

get_knots() (scipy.interpolate.UnivariateSpline
method), 706

get_lapack_funcs() (in module scipy.linalg), 861
get_lapack_funcs() (in module

scipy.linalg.lapack), 927
get_left() (scipy.cluster.hierarchy.ClusterNode

method), 529
get_matrix() (scipy.optimize.BFGS method), 1297
get_matrix() (scipy.optimize.HessianUpdateStrategy

method), 1377
get_matrix() (scipy.optimize.SR1 method), 1299
get_residual() (scipy.interpolate.BivariateSpline

method), 724
get_residual()

(scipy.interpolate.InterpolatedUnivariateSpline
method), 711

get_residual() (scipy.interpolate.LSQBivariateSpline
method), 731

get_residual()
(scipy.interpolate.LSQSphereBivariateSpline
method), 734

get_residual()
(scipy.interpolate.LSQUnivariateSpline method),
717

get_residual() (scipy.interpolate.RectBivariateSpline
method), 679

get_residual()
(scipy.interpolate.RectSphereBivariateSpline
method), 722

get_residual()
(scipy.interpolate.SmoothBivariateSpline
method), 726

get_residual()
(scipy.interpolate.SmoothSphereBivariateSpline
method), 729

get_residual() (scipy.interpolate.UnivariateSpline
method), 706

get_return_code() (scipy.integrate.complex_ode
method), 629

get_return_code() (scipy.integrate.ode method),
626

get_right() (scipy.cluster.hierarchy.ClusterNode
method), 529

get_shape() (scipy.sparse.bsr_matrix method), 1641
get_shape() (scipy.sparse.coo_matrix method), 1658
get_shape() (scipy.sparse.csc_matrix method), 1675
get_shape() (scipy.sparse.csr_matrix method), 1693
get_shape() (scipy.sparse.dia_matrix method), 1709
get_shape() (scipy.sparse.dok_matrix method), 1722
get_shape() (scipy.sparse.lil_matrix method), 1734
get_shape() (scipy.sparse.spmatrix method), 1744
get_window() (in module scipy.signal), 1584
getcol() (scipy.sparse.bsr_matrix method), 1641
getcol() (scipy.sparse.coo_matrix method), 1658
getcol() (scipy.sparse.csc_matrix method), 1675
getcol() (scipy.sparse.csr_matrix method), 1693
getcol() (scipy.sparse.dia_matrix method), 1709
getcol() (scipy.sparse.dok_matrix method), 1722
getcol() (scipy.sparse.lil_matrix method), 1734
getcol() (scipy.sparse.spmatrix method), 1745
geterr() (in module scipy.special), 1902
getformat() (scipy.sparse.bsr_matrix method), 1641
getformat() (scipy.sparse.coo_matrix method), 1659
getformat() (scipy.sparse.csc_matrix method), 1676
getformat() (scipy.sparse.csr_matrix method), 1693
getformat() (scipy.sparse.dia_matrix method), 1709
getformat() (scipy.sparse.dok_matrix method), 1722
getformat() (scipy.sparse.lil_matrix method), 1734
getformat() (scipy.sparse.spmatrix method), 1745
getH() (scipy.sparse.bsr_matrix method), 1640
getH() (scipy.sparse.coo_matrix method), 1658
getH() (scipy.sparse.csc_matrix method), 1675
getH() (scipy.sparse.csr_matrix method), 1693
getH() (scipy.sparse.dia_matrix method), 1708
getH() (scipy.sparse.dok_matrix method), 1722
getH() (scipy.sparse.lil_matrix method), 1734
getH() (scipy.sparse.spmatrix method), 1744
getmaxprint() (scipy.sparse.bsr_matrix method),

1641
getmaxprint() (scipy.sparse.coo_matrix method),

1659
getmaxprint() (scipy.sparse.csc_matrix method),

1676
getmaxprint() (scipy.sparse.csr_matrix method),

1693
getmaxprint() (scipy.sparse.dia_matrix method),

1709
getmaxprint() (scipy.sparse.dok_matrix method),

1722
getmaxprint() (scipy.sparse.lil_matrix method), 1734
getmaxprint() (scipy.sparse.spmatrix method), 1745
getnnz() (scipy.sparse.bsr_matrix method), 1641
getnnz() (scipy.sparse.coo_matrix method), 1659
getnnz() (scipy.sparse.csc_matrix method), 1676
getnnz() (scipy.sparse.csr_matrix method), 1693
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getnnz() (scipy.sparse.dia_matrix method), 1709
getnnz() (scipy.sparse.dok_matrix method), 1722
getnnz() (scipy.sparse.lil_matrix method), 1734
getnnz() (scipy.sparse.spmatrix method), 1745
getrow() (scipy.sparse.bsr_matrix method), 1641
getrow() (scipy.sparse.coo_matrix method), 1659
getrow() (scipy.sparse.csc_matrix method), 1676
getrow() (scipy.sparse.csr_matrix method), 1694
getrow() (scipy.sparse.dia_matrix method), 1709
getrow() (scipy.sparse.dok_matrix method), 1723
getrow() (scipy.sparse.lil_matrix method), 1735
getrow() (scipy.sparse.spmatrix method), 1745
getrowview() (scipy.sparse.lil_matrix method), 1735
getValue() (scipy.io.netcdf_variable method), 752
gilbrat (in module scipy.stats), 2198
gmean() (in module scipy.stats), 2391
gmean() (in module scipy.stats.mstats), 2510
gmres() (in module scipy.sparse.linalg), 1786
golden() (in module scipy.optimize), 1396
gompertz (in module scipy.stats), 2200
grey_closing() (in module scipy.ndimage), 1254
grey_dilation() (in module scipy.ndimage), 1256
grey_erosion() (in module scipy.ndimage), 1258
grey_opening() (in module scipy.ndimage), 1259
griddata() (in module scipy.interpolate), 667
group_delay() (in module scipy.signal), 1471
gstd() (in module scipy.stats), 2404
gumbel_l (in module scipy.stats), 2205
gumbel_r (in module scipy.stats), 2203

H
h1vp() (in module scipy.special), 1941
h2vp() (in module scipy.special), 1941
hadamard() (in module scipy.linalg), 852
halfcauchy (in module scipy.stats), 2207
halfgennorm (in module scipy.stats), 2214
halflogistic (in module scipy.stats), 2210
halfnorm (in module scipy.stats), 2212
HalfspaceIntersection (class in scipy.spatial),

1864
hamming() (in module scipy.spatial.distance), 1896
hankel() (in module scipy.linalg), 853
hankel1 (in module scipy.special), 1923
hankel1e (in module scipy.special), 1924
hankel2 (in module scipy.special), 1925
hankel2e (in module scipy.special), 1925
hb_read() (in module scipy.io), 753
hb_write() (in module scipy.io), 753
hdmedian() (in module scipy.stats.mstats), 2515
hdquantiles() (in module scipy.stats.mstats), 2515
hdquantiles_sd() (in module scipy.stats.mstats),

2515
helmert() (in module scipy.linalg), 854
hermite() (in module scipy.special), 2036

hermitenorm() (in module scipy.special), 2036
hessenberg() (in module scipy.linalg), 826
HessianUpdateStrategy (class in scipy.optimize),

1376
hilbert() (in module scipy.fftpack), 574
hilbert() (in module scipy.linalg), 854
hilbert() (in module scipy.signal), 1443
hilbert2() (in module scipy.signal), 1445
histogram() (in module scipy.ndimage), 1224
hmean() (in module scipy.stats), 2392
hmean() (in module scipy.stats.mstats), 2511
hstack() (in module scipy.sparse), 1758
huber (in module scipy.special), 1990
hyp0f1 (in module scipy.special), 2040
hyp1f1 (in module scipy.special), 2040
hyp1f2() (in module scipy.special), 2040
hyp2f0() (in module scipy.special), 2040
hyp2f1 (in module scipy.special), 2039
hyp3f0() (in module scipy.special), 2041
hypergeom (in module scipy.stats), 2371
hyperu (in module scipy.special), 2040
hypsecant (in module scipy.stats), 2217

I
i0 (in module scipy.special), 1933
i0e (in module scipy.special), 1933
i1 (in module scipy.special), 1934
i1e (in module scipy.special), 1935
icamax (in module scipy.linalg.blas), 874
id_to_svd() (in module scipy.linalg.interpolative),

1162
idamax (in module scipy.linalg.blas), 875
idct() (in module scipy.fftpack), 566
idctn() (in module scipy.fftpack), 568
idealfourths() (in module scipy.stats.mstats), 2516
identity() (in module scipy.sparse), 1751
idst() (in module scipy.fftpack), 570
idstn() (in module scipy.fftpack), 572
ifft() (in module scipy.fftpack), 559
ifft2() (in module scipy.fftpack), 560
ifftn() (in module scipy.fftpack), 561
ifftshift() (in module scipy.fftpack), 578
ihilbert() (in module scipy.fftpack), 575
iirdesign() (in module scipy.signal), 1472
iirfilter() (in module scipy.signal), 1474
iirnotch() (in module scipy.signal), 1525
iirpeak() (in module scipy.signal), 1526
ilaver (in module scipy.linalg.lapack), 1113
impulse() (in module scipy.signal), 1541
impulse() (scipy.signal.dlti method), 1552
impulse() (scipy.signal.lti method), 1533
impulse2() (in module scipy.signal), 1542
inconsistent() (in module scipy.cluster.hierarchy),

517
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init_convolution_kernel (in module
scipy.fftpack.convolve), 581

initialize() (scipy.optimize.BFGS method), 1298
initialize() (scipy.optimize.HessianUpdateStrategy

method), 1377
initialize() (scipy.optimize.SR1 method), 1299
insert() (in module scipy.interpolate), 700
integral() (scipy.interpolate.BivariateSpline method),

724
integral()

(scipy.interpolate.InterpolatedUnivariateSpline
method), 711

integral() (scipy.interpolate.LSQBivariateSpline
method), 731

integral() (scipy.interpolate.LSQUnivariateSpline
method), 717

integral() (scipy.interpolate.RectBivariateSpline
method), 679

integral() (scipy.interpolate.SmoothBivariateSpline
method), 726

integral() (scipy.interpolate.UnivariateSpline
method), 706

integrate() (scipy.integrate.complex_ode method),
631

integrate() (scipy.integrate.ode method), 627
integrate() (scipy.interpolate.BPoly method), 665
integrate() (scipy.interpolate.BSpline method), 686
integrate() (scipy.interpolate.CubicHermiteSpline

method), 647
integrate() (scipy.interpolate.CubicSpline method),

657
integrate() (scipy.interpolate.PPoly method), 660
integrate_box() (scipy.stats.gaussian_kde method),

2549
integrate_box_1d() (scipy.stats.gaussian_kde

method), 2549
integrate_gaussian() (scipy.stats.gaussian_kde

method), 2549
integrate_kde() (scipy.stats.gaussian_kde method),

2549
IntegrationWarning, 597
interp1d (class in scipy.interpolate), 637
interp2d (class in scipy.interpolate), 673
interp_decomp() (in module

scipy.linalg.interpolative), 1160
interpn() (in module scipy.interpolate), 675
InterpolatedUnivariateSpline (class in

scipy.interpolate), 707
interval() (scipy.stats.rv_continuous method), 2085
interval() (scipy.stats.rv_discrete method), 2097
interval() (scipy.stats.rv_histogram method), 2104
inv() (in module scipy.linalg), 759
inv() (in module scipy.sparse.linalg), 1774
inv_boxcox (in module scipy.special), 1987

inv_boxcox1p (in module scipy.special), 1987
invgamma (in module scipy.stats), 2219
invgauss (in module scipy.stats), 2222
invhilbert() (in module scipy.linalg), 855
invpascal() (in module scipy.linalg), 858
invres() (in module scipy.signal), 1491
invresz() (in module scipy.signal), 1492
invweibull (in module scipy.stats), 2224
invwishart (in module scipy.stats), 2354
iqr() (in module scipy.stats), 2406
irfft() (in module scipy.fftpack), 563
is_isomorphic() (in module scipy.cluster.hierarchy),

536
is_leaf() (scipy.cluster.hierarchy.ClusterNode

method), 529
is_monotonic() (in module scipy.cluster.hierarchy),

537
is_valid_dm() (in module scipy.spatial.distance),

1885
is_valid_im() (in module scipy.cluster.hierarchy),

533
is_valid_linkage() (in module

scipy.cluster.hierarchy), 535
is_valid_y() (in module scipy.spatial.distance), 1886
isamax (in module scipy.linalg.blas), 875
isf() (scipy.stats.rv_continuous method), 2082
isf() (scipy.stats.rv_discrete method), 2094
isf() (scipy.stats.rv_histogram method), 2105
issparse() (in module scipy.sparse), 1764
isspmatrix() (in module scipy.sparse), 1764
isspmatrix_bsr() (in module scipy.sparse), 1766
isspmatrix_coo() (in module scipy.sparse), 1767
isspmatrix_csc() (in module scipy.sparse), 1765
isspmatrix_csr() (in module scipy.sparse), 1765
isspmatrix_dia() (in module scipy.sparse), 1767
isspmatrix_dok() (in module scipy.sparse), 1766
isspmatrix_lil() (in module scipy.sparse), 1766
istft() (in module scipy.signal), 1625
it2i0k0 (in module scipy.special), 1938
it2j0y0 (in module scipy.special), 1938
it2struve0 (in module scipy.special), 1948
itairy (in module scipy.special), 1909
itemfreq() (in module scipy.stats), 2415
items() (scipy.optimize.OptimizeResult method), 1277
items() (scipy.sparse.dok_matrix method), 1723
itemsize() (scipy.io.netcdf_variable method), 752
iterate_structure() (in module scipy.ndimage),

1260
iti0k0 (in module scipy.special), 1938
itilbert() (in module scipy.fftpack), 574
itj0y0 (in module scipy.special), 1938
itmodstruve0 (in module scipy.special), 1948
itstruve0 (in module scipy.special), 1947
iv (in module scipy.special), 1922
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ive (in module scipy.special), 1923
ivp() (in module scipy.special), 1941
izamax (in module scipy.linalg.blas), 875

J
j0 (in module scipy.special), 1930
j1 (in module scipy.special), 1931
jaccard() (in module scipy.spatial.distance), 1897
jacobi() (in module scipy.special), 2034
jarque_bera() (in module scipy.stats), 2462
jensenshannon() (in module scipy.spatial.distance),

1891
jn_zeros() (in module scipy.special), 1928
jnjnp_zeros() (in module scipy.special), 1927
jnp_zeros() (in module scipy.special), 1928
jnyn_zeros() (in module scipy.special), 1927
johnson() (in module scipy.sparse.csgraph), 1820
johnsonsb (in module scipy.stats), 2227
johnsonsu (in module scipy.stats), 2229
jv (in module scipy.special), 1915
jve (in module scipy.special), 1916
jvp() (in module scipy.special), 1939

K
k0 (in module scipy.special), 1935
k0e (in module scipy.special), 1936
k1 (in module scipy.special), 1936
k1e (in module scipy.special), 1937
kaiser_atten() (in module scipy.signal), 1477
kaiser_beta() (in module scipy.signal), 1478
kaiserord() (in module scipy.signal), 1479
kappa3 (in module scipy.stats), 2235
kappa4 (in module scipy.stats), 2232
KDTree (class in scipy.spatial), 1838
kei (in module scipy.special), 2051
kei_zeros() (in module scipy.special), 2052
keip (in module scipy.special), 2051
keip_zeros() (in module scipy.special), 2053
kelvin (in module scipy.special), 2050
kelvin_zeros() (in module scipy.special), 2050
kendalltau() (in module scipy.stats), 2432
kendalltau() (in module scipy.stats.mstats), 2526
kendalltau_seasonal() (in module

scipy.stats.mstats), 2527
ker (in module scipy.special), 2051
ker_zeros() (in module scipy.special), 2052
kerp (in module scipy.special), 2051
kerp_zeros() (in module scipy.special), 2052
keys() (scipy.optimize.OptimizeResult method), 1277
keys() (scipy.sparse.dok_matrix method), 1723
kl_div (in module scipy.special), 1990
kmeans() (in module scipy.cluster.vq), 491
kmeans2() (in module scipy.cluster.vq), 493
kn (in module scipy.special), 1919

kolmogi (in module scipy.special), 1982
kolmogorov (in module scipy.special), 1980
krogh_interpolate() (in module scipy.interpolate),

644
KroghInterpolator (class in scipy.interpolate), 641
kron() (in module scipy.linalg), 776
kron() (in module scipy.sparse), 1752
kronsum() (in module scipy.sparse), 1753
kruskal() (in module scipy.stats), 2458
kruskal() (in module scipy.stats.mstats), 2534
kruskalwallis() (in module scipy.stats.mstats), 2535
ks_2samp() (in module scipy.stats), 2451
ks_2samp() (in module scipy.stats.mstats), 2532
ks_twosamp() (in module scipy.stats.mstats), 2533
ksone (in module scipy.stats), 2237
kstat() (in module scipy.stats), 2396
kstatvar() (in module scipy.stats), 2397
kstest() (in module scipy.stats), 2446
kstwobign (in module scipy.stats), 2240
kulsinski() (in module scipy.spatial.distance), 1897
kurtosis() (in module scipy.stats), 2393
kurtosis() (in module scipy.stats.mstats), 2512
kurtosistest() (in module scipy.stats), 2474
kurtosistest() (in module scipy.stats.mstats), 2537
kv (in module scipy.special), 1920
kve (in module scipy.special), 1921
kvp() (in module scipy.special), 1940

L
label() (in module scipy.ndimage), 1225
labeled_comprehension() (in module

scipy.ndimage), 1227
lagrange() (in module scipy.interpolate), 736
laguerre() (in module scipy.special), 2035
lambda2nu() (in module scipy.constants), 556
lambertw() (in module scipy.special), 2054
laplace (in module scipy.stats), 2242
laplace() (in module scipy.ndimage), 1190
laplacian() (in module scipy.sparse.csgraph), 1812
LbfgsInvHessProduct (class in scipy.optimize),

1373
ldl() (in module scipy.linalg), 803
leaders() (in module scipy.cluster.hierarchy), 498
least_squares() (in module scipy.optimize), 1318
leastsq() (in module scipy.optimize), 1397
leaves_list() (in module scipy.cluster.hierarchy),

530
legendre() (in module scipy.special), 2032
leslie() (in module scipy.linalg), 856
levene() (in module scipy.stats), 2464
levy (in module scipy.stats), 2244
levy_l (in module scipy.stats), 2247
levy_stable (in module scipy.stats), 2249
lfilter() (in module scipy.signal), 1430
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lfilter_zi() (in module scipy.signal), 1433
lfiltic() (in module scipy.signal), 1432
lgmres() (in module scipy.sparse.linalg), 1787
lift_points (scipy.spatial.Delaunay attribute), 1855
lil_matrix (class in scipy.sparse), 1729
LinAlgError, 781
LinAlgWarning, 782
line_search() (in module scipy.optimize), 1372
linear_sum_assignment() (in module

scipy.optimize), 1368
LinearConstraint (class in scipy.optimize), 1295
linearmixing() (in module scipy.optimize), 1406
LinearNDInterpolator (class in scipy.interpolate),

669
LinearOperator (class in scipy.sparse.linalg), 1770
linkage() (in module scipy.cluster.hierarchy), 500
linprog() (in module scipy.optimize), 1357
linprog_verbose_callback() (in module

scipy.optimize), 1368
linregress() (in module scipy.stats), 2435
linregress() (in module scipy.stats.mstats), 2527
lmbda() (in module scipy.special), 1926
load_npz() (in module scipy.sparse), 1762
loadarff() (in module scipy.io.arff), 756
loadmat() (in module scipy.io), 739
lobpcg() (in module scipy.sparse.linalg), 1802
log1p (in module scipy.special), 2070
log1p() (scipy.sparse.bsr_matrix method), 1642
log1p() (scipy.sparse.coo_matrix method), 1659
log1p() (scipy.sparse.csc_matrix method), 1676
log1p() (scipy.sparse.csr_matrix method), 1694
log1p() (scipy.sparse.dia_matrix method), 1709
log_ndtr (in module scipy.special), 1976
logcdf() (scipy.stats.rv_continuous method), 2080
logcdf() (scipy.stats.rv_discrete method), 2092
logcdf() (scipy.stats.rv_histogram method), 2105
loggamma (in module scipy.special), 1993
loggamma (in module scipy.stats), 2255
logistic (in module scipy.stats), 2252
logit (in module scipy.special), 1983
loglaplace (in module scipy.stats), 2257
logm() (in module scipy.linalg), 829
lognorm (in module scipy.stats), 2259
logpdf() (scipy.stats.gaussian_kde method), 2550
logpdf() (scipy.stats.rv_continuous method), 2080
logpdf() (scipy.stats.rv_histogram method), 2105
logpmf() (scipy.stats.rv_discrete method), 2092
logser (in module scipy.stats), 2373
logsf() (scipy.stats.rv_continuous method), 2081
logsf() (scipy.stats.rv_discrete method), 2093
logsf() (scipy.stats.rv_histogram method), 2106
logsumexp() (in module scipy.special), 2072
lomax (in module scipy.stats), 2262
lombscargle() (in module scipy.signal), 1619

LowLevelCallable (class in scipy), 2552
lp2bp() (in module scipy.signal), 1497
lp2bp_zpk() (in module scipy.signal), 1498
lp2bs() (in module scipy.signal), 1499
lp2bs_zpk() (in module scipy.signal), 1499
lp2hp() (in module scipy.signal), 1500
lp2hp_zpk() (in module scipy.signal), 1501
lp2lp() (in module scipy.signal), 1502
lp2lp_zpk() (in module scipy.signal), 1504
lpmn() (in module scipy.special), 2011
lpmv (in module scipy.special), 2008
lpn() (in module scipy.special), 2011
lqmn() (in module scipy.special), 2012
lqn() (in module scipy.special), 2011
lsim() (in module scipy.signal), 1539
lsim2() (in module scipy.signal), 1540
lsmr() (in module scipy.sparse.linalg), 1794
LSODA (class in scipy.integrate), 614
lsq_linear() (in module scipy.optimize), 1326
LSQBivariateSpline (class in scipy.interpolate), 729
lsqr() (in module scipy.sparse.linalg), 1792
LSQSphereBivariateSpline (class in

scipy.interpolate), 731
LSQUnivariateSpline (class in scipy.interpolate),

712
lstsq() (in module scipy.linalg), 771
lti (class in scipy.signal), 1530
lu() (in module scipy.linalg), 795
lu_factor() (in module scipy.linalg), 796
lu_solve() (in module scipy.linalg), 797

M
mahalanobis() (in module scipy.spatial.distance),

1892
make_interp_spline() (in module

scipy.interpolate), 687
make_lsq_spline() (in module scipy.interpolate),

689
mannwhitneyu() (in module scipy.stats), 2454
mannwhitneyu() (in module scipy.stats.mstats), 2533
map_coordinates() (in module scipy.ndimage),

1214
margins() (in module scipy.stats.contingency), 2498
mathieu_a (in module scipy.special), 2043
mathieu_b (in module scipy.special), 2043
mathieu_cem (in module scipy.special), 2045
mathieu_even_coef() (in module scipy.special),

2043
mathieu_modcem1 (in module scipy.special), 2045
mathieu_modcem2 (in module scipy.special), 2045
mathieu_modsem1 (in module scipy.special), 2046
mathieu_modsem2 (in module scipy.special), 2046
mathieu_odd_coef() (in module scipy.special), 2044
mathieu_sem (in module scipy.special), 2045
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matmat() (scipy.optimize.LbfgsInvHessProduct method),
1374

matmat() (scipy.sparse.bsr_matrix method), 1642
matmat() (scipy.sparse.linalg.LinearOperator method),

1772
matrix_balance() (in module scipy.linalg), 779
matrix_normal (in module scipy.stats), 2348
MatrixRankWarning, 1782
matvec() (scipy.optimize.LbfgsInvHessProduct method),

1375
matvec() (scipy.sparse.bsr_matrix method), 1642
matvec() (scipy.sparse.linalg.LinearOperator method),

1773
max() (scipy.sparse.bsr_matrix method), 1642
max() (scipy.sparse.coo_matrix method), 1659
max() (scipy.sparse.csc_matrix method), 1676
max() (scipy.sparse.csr_matrix method), 1694
max_distance_point() (scipy.spatial.Rectangle

method), 1850
max_distance_rectangle()

(scipy.spatial.Rectangle method), 1850
max_len_seq() (in module scipy.signal), 1576
maxdists() (in module scipy.cluster.hierarchy), 520
maximum() (in module scipy.ndimage), 1228
maximum() (scipy.sparse.bsr_matrix method), 1642
maximum() (scipy.sparse.coo_matrix method), 1660
maximum() (scipy.sparse.csc_matrix method), 1677
maximum() (scipy.sparse.csr_matrix method), 1694
maximum() (scipy.sparse.dia_matrix method), 1710
maximum() (scipy.sparse.dok_matrix method), 1723
maximum() (scipy.sparse.lil_matrix method), 1735
maximum() (scipy.sparse.spmatrix method), 1745
maximum_bipartite_matching() (in module

scipy.sparse.csgraph), 1827
maximum_filter() (in module scipy.ndimage), 1191
maximum_filter1d() (in module scipy.ndimage),

1193
maximum_position() (in module scipy.ndimage),

1229
maxinconsts() (in module scipy.cluster.hierarchy),

518
maxRstat() (in module scipy.cluster.hierarchy), 521
maxwell (in module scipy.stats), 2264
mean() (in module scipy.ndimage), 1230
mean() (scipy.sparse.bsr_matrix method), 1643
mean() (scipy.sparse.coo_matrix method), 1660
mean() (scipy.sparse.csc_matrix method), 1677
mean() (scipy.sparse.csr_matrix method), 1695
mean() (scipy.sparse.dia_matrix method), 1710
mean() (scipy.sparse.dok_matrix method), 1723
mean() (scipy.sparse.lil_matrix method), 1735
mean() (scipy.sparse.spmatrix method), 1745
mean() (scipy.stats.rv_continuous method), 2085
mean() (scipy.stats.rv_discrete method), 2096

mean() (scipy.stats.rv_histogram method), 2106
medfilt() (in module scipy.signal), 1428
medfilt2d() (in module scipy.signal), 1429
median() (in module scipy.cluster.hierarchy), 511
median() (in module scipy.ndimage), 1231
median() (scipy.stats.rv_continuous method), 2084
median() (scipy.stats.rv_discrete method), 2096
median() (scipy.stats.rv_histogram method), 2106
median_absolute_deviation() (in module

scipy.stats), 2412
median_cihs() (in module scipy.stats.mstats), 2544
median_filter() (in module scipy.ndimage), 1194
median_test() (in module scipy.stats), 2469
meppf() (in module scipy.stats.mstats), 2517
MetaData (class in scipy.io.arff), 757
mielke (in module scipy.stats), 2267
min() (scipy.sparse.bsr_matrix method), 1643
min() (scipy.sparse.coo_matrix method), 1660
min() (scipy.sparse.csc_matrix method), 1677
min() (scipy.sparse.csr_matrix method), 1695
min_distance_point() (scipy.spatial.Rectangle

method), 1850
min_distance_rectangle()

(scipy.spatial.Rectangle method), 1850
minimize() (in module scipy.optimize), 1281
minimize_scalar() (in module scipy.optimize), 1278
minimum() (in module scipy.ndimage), 1231
minimum() (scipy.sparse.bsr_matrix method), 1644
minimum() (scipy.sparse.coo_matrix method), 1661
minimum() (scipy.sparse.csc_matrix method), 1678
minimum() (scipy.sparse.csr_matrix method), 1696
minimum() (scipy.sparse.dia_matrix method), 1710
minimum() (scipy.sparse.dok_matrix method), 1723
minimum() (scipy.sparse.lil_matrix method), 1735
minimum() (scipy.sparse.spmatrix method), 1746
minimum_filter() (in module scipy.ndimage), 1195
minimum_filter1d() (in module scipy.ndimage),

1197
minimum_phase() (in module scipy.signal), 1480
minimum_position() (in module scipy.ndimage),

1232
minimum_spanning_tree() (in module

scipy.sparse.csgraph), 1825
minkowski() (in module scipy.spatial.distance), 1892
minkowski_distance() (in module scipy.spatial),

1874
minkowski_distance_p() (in module

scipy.spatial), 1874
minres() (in module scipy.sparse.linalg), 1789
mjci() (in module scipy.stats.mstats), 2545
mminfo() (in module scipy.io), 743
mmread() (in module scipy.io), 743
mmwrite() (in module scipy.io), 744
mode() (in module scipy.stats), 2394
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mode() (in module scipy.stats.mstats), 2512
Model (class in scipy.odr), 1267
modfresnelm (in module scipy.special), 2007
modfresnelp (in module scipy.special), 2007
modstruve (in module scipy.special), 1947
moment() (in module scipy.stats), 2394
moment() (in module scipy.stats.mstats), 2517
moment() (scipy.stats.rv_continuous method), 2082
moment() (scipy.stats.rv_discrete method), 2094
moment() (scipy.stats.rv_histogram method), 2107
mood() (in module scipy.stats), 2472
morlet() (in module scipy.signal), 1587
morphological_gradient() (in module

scipy.ndimage), 1261
morphological_laplace() (in module

scipy.ndimage), 1263
moyal (in module scipy.stats), 2269
mquantiles() (in module scipy.stats.mstats), 2513
mquantiles_cimj() (in module scipy.stats.mstats),

2545
msign() (in module scipy.stats.mstats), 2544
multigammaln() (in module scipy.special), 1997
multilinear (in module scipy.odr), 1273
multinomial (in module scipy.stats), 2355
multiply() (scipy.sparse.bsr_matrix method), 1644
multiply() (scipy.sparse.coo_matrix method), 1661
multiply() (scipy.sparse.csc_matrix method), 1678
multiply() (scipy.sparse.csr_matrix method), 1696
multiply() (scipy.sparse.dia_matrix method), 1710
multiply() (scipy.sparse.dok_matrix method), 1724
multiply() (scipy.sparse.lil_matrix method), 1736
multiply() (scipy.sparse.spmatrix method), 1746
multivariate_normal (in module scipy.stats), 2346
mvsdist() (in module scipy.stats), 2410

N
nakagami (in module scipy.stats), 2272
names() (scipy.io.arff.MetaData method), 757
nbdtr (in module scipy.special), 1963
nbdtrc (in module scipy.special), 1964
nbdtri (in module scipy.special), 1964
nbdtrik (in module scipy.special), 1965
nbdtrin (in module scipy.special), 1966
nbinom (in module scipy.stats), 2375
ncf (in module scipy.stats), 2277
ncfdtr (in module scipy.special), 1967
ncfdtri (in module scipy.special), 1970
ncfdtridfd (in module scipy.special), 1968
ncfdtridfn (in module scipy.special), 1969
ncfdtrinc (in module scipy.special), 1971
nct (in module scipy.stats), 2279
nctdtr (in module scipy.special), 1972
nctdtridf (in module scipy.special), 1973
nctdtrinc (in module scipy.special), 1974

nctdtrit (in module scipy.special), 1973
ncx2 (in module scipy.stats), 2274
NdPPoly (class in scipy.interpolate), 680
ndtr (in module scipy.special), 1976
ndtri (in module scipy.special), 1977
NearestNDInterpolator (class in

scipy.interpolate), 670
NegativeCycleError, 1829
netcdf_file (class in scipy.io), 748
netcdf_variable (class in scipy.io), 751
newton() (in module scipy.optimize), 1339
newton_cotes() (in module scipy.integrate), 596
newton_krylov() (in module scipy.optimize), 1402
next_fast_len() (in module scipy.fftpack), 580
nnlf() (scipy.stats.rv_continuous method), 2088
nnlf() (scipy.stats.rv_histogram method), 2107
nnls() (in module scipy.optimize), 1326
NonlinearConstraint (class in scipy.optimize),

1294
nonzero() (scipy.sparse.bsr_matrix method), 1644
nonzero() (scipy.sparse.coo_matrix method), 1661
nonzero() (scipy.sparse.csc_matrix method), 1678
nonzero() (scipy.sparse.csr_matrix method), 1696
nonzero() (scipy.sparse.dia_matrix method), 1710
nonzero() (scipy.sparse.dok_matrix method), 1724
nonzero() (scipy.sparse.lil_matrix method), 1736
nonzero() (scipy.sparse.spmatrix method), 1746
norm (in module scipy.stats), 2282
norm() (in module scipy.linalg), 769
norm() (in module scipy.sparse.linalg), 1777
normalize() (in module scipy.signal), 1504
normaltest() (in module scipy.stats), 2475
normaltest() (in module scipy.stats.mstats), 2537
norminvgauss (in module scipy.stats), 2284
nquad() (in module scipy.integrate), 590
nrdtrimn (in module scipy.special), 1974
nrdtrisd (in module scipy.special), 1974
nu2lambda() (in module scipy.constants), 557
null_space() (in module scipy.linalg), 802
num_obs_dm() (in module scipy.spatial.distance), 1886
num_obs_linkage() (in module

scipy.cluster.hierarchy), 539
num_obs_y() (in module scipy.spatial.distance), 1887

O
obl_ang1 (in module scipy.special), 2047
obl_ang1_cv (in module scipy.special), 2049
obl_cv (in module scipy.special), 2048
obl_cv_seq() (in module scipy.special), 2048
obl_rad1 (in module scipy.special), 2047
obl_rad1_cv (in module scipy.special), 2049
obl_rad2 (in module scipy.special), 2047
obl_rad2_cv (in module scipy.special), 2050
obrientransform() (in module scipy.stats), 2485
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obrientransform() (in module scipy.stats.mstats),
2538

ode (class in scipy.integrate), 622
odeint() (in module scipy.integrate), 619
OdeSolution (class in scipy.integrate), 618
OdeSolver (class in scipy.integrate), 616
ODR (class in scipy.odr), 1268
odr() (in module scipy.odr), 1272
OdrError, 1272
OdrStop, 1273
OdrWarning, 1272
onenormest() (in module scipy.sparse.linalg), 1779
optimal_leaf_ordering() (in module

scipy.cluster.hierarchy), 532
OptimizeResult (class in scipy.optimize), 1276
OptimizeWarning, 1278
order_filter() (in module scipy.signal), 1427
ordqz() (in module scipy.linalg), 822
orth() (in module scipy.linalg), 802
ortho_group (in module scipy.stats), 2358
orthogonal_procrustes() (in module

scipy.linalg), 778
Output (class in scipy.odr), 1271
output() (scipy.signal.dlti method), 1552
output() (scipy.signal.lti method), 1533
owens_t (in module scipy.special), 1988

P
pade() (in module scipy.interpolate), 738
pareto (in module scipy.stats), 2287
ParseArffError, 758
pascal() (in module scipy.linalg), 857
pbdn_seq() (in module scipy.special), 2043
pbdv (in module scipy.special), 2041
pbdv_seq() (in module scipy.special), 2042
pbvv (in module scipy.special), 2041
pbvv_seq() (in module scipy.special), 2042
pbwa (in module scipy.special), 2041
pchip_interpolate() (in module scipy.interpolate),

644
PchipInterpolator (class in scipy.interpolate), 648
pdf() (scipy.stats.gaussian_kde method), 2550
pdf() (scipy.stats.rv_continuous method), 2079
pdf() (scipy.stats.rv_histogram method), 2107
pdist() (in module scipy.spatial.distance), 1876
pdtr (in module scipy.special), 1975
pdtrc (in module scipy.special), 1975
pdtri (in module scipy.special), 1975
pdtrik (in module scipy.special), 1975
peak_prominences() (in module scipy.signal), 1600
peak_widths() (in module scipy.signal), 1603
pearson3 (in module scipy.stats), 2289
pearsonr() (in module scipy.stats), 2427
pearsonr() (in module scipy.stats.mstats), 2525

PearsonRConstantInputWarning, 2552
PearsonRNearConstantInputWarning, 2552
percentile_filter() (in module scipy.ndimage),

1198
percentileofscore() (in module scipy.stats), 2416
periodogram() (in module scipy.signal), 1606
perm() (in module scipy.special), 2054
physical_constants (in module scipy.constants),

544
pinv() (in module scipy.linalg), 774
pinv2() (in module scipy.linalg), 774
pinvh() (in module scipy.linalg), 775
place_poles() (in module scipy.signal), 1568
planck (in module scipy.stats), 2377
plane_distance (scipy.spatial.Delaunay attribute),

1855
plotting_positions() (in module

scipy.stats.mstats), 2516
pmf() (scipy.stats.rv_discrete method), 2091
poch (in module scipy.special), 1999
pointbiserialr() (in module scipy.stats), 2431
pointbiserialr() (in module scipy.stats.mstats),

2526
poisson (in module scipy.stats), 2379
polar() (in module scipy.linalg), 809
polygamma() (in module scipy.special), 1997
polynomial (in module scipy.odr), 1273
pop() (scipy.optimize.OptimizeResult method), 1278
pop() (scipy.sparse.dok_matrix method), 1724
popitem() (scipy.optimize.OptimizeResult method),

1278
popitem() (scipy.sparse.dok_matrix method), 1724
power() (scipy.sparse.bsr_matrix method), 1644
power() (scipy.sparse.coo_matrix method), 1661
power() (scipy.sparse.csc_matrix method), 1678
power() (scipy.sparse.csr_matrix method), 1696
power() (scipy.sparse.dia_matrix method), 1711
power() (scipy.sparse.dok_matrix method), 1724
power() (scipy.sparse.lil_matrix method), 1736
power() (scipy.sparse.spmatrix method), 1746
power_divergence() (in module scipy.stats), 2449
powerlaw (in module scipy.stats), 2292
powerlognorm (in module scipy.stats), 2294
powernorm (in module scipy.stats), 2297
ppcc_max() (in module scipy.stats), 2500
ppcc_plot() (in module scipy.stats), 2502
ppf() (scipy.stats.rv_continuous method), 2081
ppf() (scipy.stats.rv_discrete method), 2093
ppf() (scipy.stats.rv_histogram method), 2107
PPoly (class in scipy.interpolate), 658
pprint() (scipy.odr.Output method), 1272
pre_order() (scipy.cluster.hierarchy.ClusterNode

method), 529
precision() (in module scipy.constants), 543
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prewitt() (in module scipy.ndimage), 1199
pro_ang1 (in module scipy.special), 2046
pro_ang1_cv (in module scipy.special), 2049
pro_cv (in module scipy.special), 2048
pro_cv_seq() (in module scipy.special), 2048
pro_rad1 (in module scipy.special), 2047
pro_rad1_cv (in module scipy.special), 2049
pro_rad2 (in module scipy.special), 2047
pro_rad2_cv (in module scipy.special), 2049
probplot() (in module scipy.stats), 2503
procrustes() (in module scipy.spatial), 1874
prune() (scipy.sparse.bsr_matrix method), 1644
prune() (scipy.sparse.csc_matrix method), 1679
prune() (scipy.sparse.csr_matrix method), 1696
pseudo_huber (in module scipy.special), 1991
psi (in module scipy.special), 1996

Q
qmf() (in module scipy.signal), 1588
qmr() (in module scipy.sparse.linalg), 1789
qr() (in module scipy.linalg), 810
qr_delete() (in module scipy.linalg), 816
qr_insert() (in module scipy.linalg), 817
qr_multiply() (in module scipy.linalg), 812
qr_update() (in module scipy.linalg), 813
qspline1d() (in module scipy.signal), 1425
qspline1d_eval() (in module scipy.signal), 1426
qspline2d() (in module scipy.signal), 1426
quad() (in module scipy.integrate), 582
quad_explain() (in module scipy.integrate), 596
quadratic (in module scipy.odr), 1273
quadratic() (in module scipy.signal), 1425
quadrature() (in module scipy.integrate), 593
query() (scipy.spatial.cKDTree method), 1846
query() (scipy.spatial.KDTree method), 1840
query_ball_point() (scipy.spatial.cKDTree

method), 1847
query_ball_point() (scipy.spatial.KDTree

method), 1841
query_ball_tree() (scipy.spatial.cKDTree method),

1848
query_ball_tree() (scipy.spatial.KDTree method),

1842
query_pairs() (scipy.spatial.cKDTree method), 1849
query_pairs() (scipy.spatial.KDTree method), 1843
qz() (in module scipy.linalg), 820

R
rad2deg() (scipy.sparse.bsr_matrix method), 1644
rad2deg() (scipy.sparse.coo_matrix method), 1662
rad2deg() (scipy.sparse.csc_matrix method), 1679
rad2deg() (scipy.sparse.csr_matrix method), 1696
rad2deg() (scipy.sparse.dia_matrix method), 1711
Radau (class in scipy.integrate), 610

radian (in module scipy.special), 2069
rand() (in module scipy.linalg.interpolative), 1165
rand() (in module scipy.sparse), 1759
randint (in module scipy.stats), 2381
random() (in module scipy.sparse), 1760
random_correlation (in module scipy.stats), 2360
rank_filter() (in module scipy.ndimage), 1201
rankdata() (in module scipy.stats), 2455
rankdata() (in module scipy.stats.mstats), 2534
ranksums() (in module scipy.stats), 2456
rayleigh (in module scipy.stats), 2304
Rbf (class in scipy.interpolate), 672
rdist (in module scipy.stats), 2299
read() (in module scipy.io.wavfile), 754
read_ints() (scipy.io.FortranFile method), 746
read_reals() (scipy.io.FortranFile method), 746
read_record() (scipy.io.FortranFile method), 746
readsav() (in module scipy.io), 742
RealData (class in scipy.odr), 1266
recipinvgauss (in module scipy.stats), 2308
reciprocal (in module scipy.stats), 2301
reconstruct_interp_matrix() (in module

scipy.linalg.interpolative), 1161
reconstruct_matrix_from_id() (in module

scipy.linalg.interpolative), 1161
reconstruct_path() (in module

scipy.sparse.csgraph), 1835
reconstruct_skel_matrix() (in module

scipy.linalg.interpolative), 1162
Rectangle (class in scipy.spatial), 1849
RectBivariateSpline (class in scipy.interpolate),

677
RectSphereBivariateSpline (class in

scipy.interpolate), 718
RegularGridInterpolator (class in

scipy.interpolate), 676
rel_entr (in module scipy.special), 1989
relfreq() (in module scipy.stats), 2418
remez() (in module scipy.signal), 1485
resample() (in module scipy.signal), 1447
resample() (scipy.stats.gaussian_kde method), 2550
resample_poly() (in module scipy.signal), 1449
reshape() (scipy.sparse.bsr_matrix method), 1645
reshape() (scipy.sparse.coo_matrix method), 1662
reshape() (scipy.sparse.csc_matrix method), 1679
reshape() (scipy.sparse.csr_matrix method), 1697
reshape() (scipy.sparse.dia_matrix method), 1711
reshape() (scipy.sparse.dok_matrix method), 1724
reshape() (scipy.sparse.lil_matrix method), 1736
reshape() (scipy.sparse.spmatrix method), 1747
residue() (in module scipy.signal), 1490
residuez() (in module scipy.signal), 1490
resize() (scipy.sparse.bsr_matrix method), 1645
resize() (scipy.sparse.coo_matrix method), 1662
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resize() (scipy.sparse.csc_matrix method), 1679
resize() (scipy.sparse.csr_matrix method), 1697
resize() (scipy.sparse.dia_matrix method), 1712
resize() (scipy.sparse.dok_matrix method), 1725
resize() (scipy.sparse.lil_matrix method), 1737
resize() (scipy.sparse.spmatrix method), 1747
restart() (scipy.odr.ODR method), 1270
reverse_cuthill_mckee() (in module

scipy.sparse.csgraph), 1826
rfft() (in module scipy.fftpack), 562
rfftfreq() (in module scipy.fftpack), 579
rgamma (in module scipy.special), 1997
riccati_jn() (in module scipy.special), 1945
riccati_yn() (in module scipy.special), 1945
rice (in module scipy.stats), 2306
ricker() (in module scipy.signal), 1588
ridder() (in module scipy.optimize), 1337
rint() (scipy.sparse.bsr_matrix method), 1645
rint() (scipy.sparse.coo_matrix method), 1663
rint() (scipy.sparse.csc_matrix method), 1680
rint() (scipy.sparse.csr_matrix method), 1697
rint() (scipy.sparse.dia_matrix method), 1712
RK23 (class in scipy.integrate), 608
RK45 (class in scipy.integrate), 609
rmatvec() (scipy.optimize.LbfgsInvHessProduct

method), 1375
rmatvec() (scipy.sparse.linalg.LinearOperator method),

1773
rogerstanimoto() (in module scipy.spatial.distance),

1898
romb() (in module scipy.integrate), 602
romberg() (in module scipy.integrate), 594
root() (in module scipy.optimize), 1348
root_scalar() (in module scipy.optimize), 1332
RootResults (class in scipy.optimize), 1344
roots() (scipy.interpolate.Akima1DInterpolator

method), 653
roots() (scipy.interpolate.CubicHermiteSpline method),

647
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struve (in module scipy.special), 1946
stzrzf (in module scipy.linalg.lapack), 1105
stzrzf_lwork (in module scipy.linalg.lapack), 1107
subspace_angles() (in module scipy.linalg), 780
successful() (scipy.integrate.complex_ode method),

632
successful() (scipy.integrate.ode method), 628
sum() (in module scipy.ndimage), 1234
sum() (scipy.sparse.bsr_matrix method), 1647
sum() (scipy.sparse.coo_matrix method), 1664
sum() (scipy.sparse.csc_matrix method), 1681
sum() (scipy.sparse.csr_matrix method), 1699
sum() (scipy.sparse.dia_matrix method), 1713
sum() (scipy.sparse.dok_matrix method), 1726
sum() (scipy.sparse.lil_matrix method), 1737
sum() (scipy.sparse.spmatrix method), 1748
sum_duplicates() (scipy.sparse.bsr_matrix method),

1647
sum_duplicates() (scipy.sparse.coo_matrix

method), 1664
sum_duplicates() (scipy.sparse.csc_matrix method),

1682
sum_duplicates() (scipy.sparse.csr_matrix method),

1699
SuperLU (class in scipy.sparse.linalg), 1807
support() (scipy.stats.rv_continuous method), 2088
support() (scipy.stats.rv_discrete method), 2098
support() (scipy.stats.rv_histogram method), 2109
svd() (in module scipy.linalg), 798
svd() (in module scipy.linalg.interpolative), 1163
svds() (in module scipy.sparse.linalg), 1804
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svdvals() (in module scipy.linalg), 799
sweep_poly() (in module scipy.signal), 1580
symiirorder1() (in module scipy.signal), 1429
symiirorder2() (in module scipy.signal), 1430
sync() (scipy.io.netcdf_file method), 751

T
t (in module scipy.stats), 2315
tan() (scipy.sparse.bsr_matrix method), 1647
tan() (scipy.sparse.coo_matrix method), 1664
tan() (scipy.sparse.csc_matrix method), 1682
tan() (scipy.sparse.csr_matrix method), 1699
tan() (scipy.sparse.dia_matrix method), 1714
tandg (in module scipy.special), 2070
tanh() (scipy.sparse.bsr_matrix method), 1648
tanh() (scipy.sparse.coo_matrix method), 1665
tanh() (scipy.sparse.csc_matrix method), 1682
tanh() (scipy.sparse.csr_matrix method), 1700
tanh() (scipy.sparse.dia_matrix method), 1714
tanhm() (in module scipy.linalg), 833
tanm() (in module scipy.linalg), 831
tf2sos() (in module scipy.signal), 1561
tf2ss() (in module scipy.signal), 1561
tf2zpk() (in module scipy.signal), 1559
theilslopes() (in module scipy.stats), 2438
theilslopes() (in module scipy.stats.mstats), 2528
tiecorrect() (in module scipy.stats), 2454
tilbert() (in module scipy.fftpack), 573
tklmbda (in module scipy.special), 1983
tmax() (in module scipy.stats), 2400
tmax() (in module scipy.stats.mstats), 2520
tmean() (in module scipy.stats), 2398
tmean() (in module scipy.stats.mstats), 2518
tmin() (in module scipy.stats), 2399
tmin() (in module scipy.stats.mstats), 2520
to_discrete() (scipy.signal.lti method), 1533
to_mlab_linkage() (in module

scipy.cluster.hierarchy), 522
to_ss() (scipy.signal.StateSpace method), 1535
to_ss() (scipy.signal.TransferFunction method), 1537
to_ss() (scipy.signal.ZerosPolesGain method), 1539
to_tf() (scipy.signal.StateSpace method), 1535
to_tf() (scipy.signal.TransferFunction method), 1537
to_tf() (scipy.signal.ZerosPolesGain method), 1539
to_tree() (in module scipy.cluster.hierarchy), 531
to_zpk() (scipy.signal.StateSpace method), 1535
to_zpk() (scipy.signal.TransferFunction method), 1538
to_zpk() (scipy.signal.ZerosPolesGain method), 1539
toarray() (scipy.sparse.bsr_matrix method), 1648
toarray() (scipy.sparse.coo_matrix method), 1665
toarray() (scipy.sparse.csc_matrix method), 1682
toarray() (scipy.sparse.csr_matrix method), 1700
toarray() (scipy.sparse.dia_matrix method), 1714
toarray() (scipy.sparse.dok_matrix method), 1726

toarray() (scipy.sparse.lil_matrix method), 1738
toarray() (scipy.sparse.spmatrix method), 1748
tobsr() (scipy.sparse.bsr_matrix method), 1648
tobsr() (scipy.sparse.coo_matrix method), 1665
tobsr() (scipy.sparse.csc_matrix method), 1682
tobsr() (scipy.sparse.csr_matrix method), 1700
tobsr() (scipy.sparse.dia_matrix method), 1714
tobsr() (scipy.sparse.dok_matrix method), 1727
tobsr() (scipy.sparse.lil_matrix method), 1738
tobsr() (scipy.sparse.spmatrix method), 1749
tocoo() (scipy.sparse.bsr_matrix method), 1648
tocoo() (scipy.sparse.coo_matrix method), 1665
tocoo() (scipy.sparse.csc_matrix method), 1683
tocoo() (scipy.sparse.csr_matrix method), 1700
tocoo() (scipy.sparse.dia_matrix method), 1715
tocoo() (scipy.sparse.dok_matrix method), 1727
tocoo() (scipy.sparse.lil_matrix method), 1739
tocoo() (scipy.sparse.spmatrix method), 1749
tocsc() (scipy.sparse.bsr_matrix method), 1648
tocsc() (scipy.sparse.coo_matrix method), 1665
tocsc() (scipy.sparse.csc_matrix method), 1683
tocsc() (scipy.sparse.csr_matrix method), 1700
tocsc() (scipy.sparse.dia_matrix method), 1715
tocsc() (scipy.sparse.dok_matrix method), 1727
tocsc() (scipy.sparse.lil_matrix method), 1739
tocsc() (scipy.sparse.spmatrix method), 1749
tocsr() (scipy.sparse.bsr_matrix method), 1649
tocsr() (scipy.sparse.coo_matrix method), 1666
tocsr() (scipy.sparse.csc_matrix method), 1683
tocsr() (scipy.sparse.csr_matrix method), 1701
tocsr() (scipy.sparse.dia_matrix method), 1715
tocsr() (scipy.sparse.dok_matrix method), 1727
tocsr() (scipy.sparse.lil_matrix method), 1739
tocsr() (scipy.sparse.spmatrix method), 1749
todense() (scipy.optimize.LbfgsInvHessProduct

method), 1375
todense() (scipy.sparse.bsr_matrix method), 1649
todense() (scipy.sparse.coo_matrix method), 1666
todense() (scipy.sparse.csc_matrix method), 1683
todense() (scipy.sparse.csr_matrix method), 1701
todense() (scipy.sparse.dia_matrix method), 1715
todense() (scipy.sparse.dok_matrix method), 1727
todense() (scipy.sparse.lil_matrix method), 1739
todense() (scipy.sparse.spmatrix method), 1749
todia() (scipy.sparse.bsr_matrix method), 1649
todia() (scipy.sparse.coo_matrix method), 1666
todia() (scipy.sparse.csc_matrix method), 1683
todia() (scipy.sparse.csr_matrix method), 1701
todia() (scipy.sparse.dia_matrix method), 1715
todia() (scipy.sparse.dok_matrix method), 1728
todia() (scipy.sparse.lil_matrix method), 1739
todia() (scipy.sparse.spmatrix method), 1750
todok() (scipy.sparse.bsr_matrix method), 1649
todok() (scipy.sparse.coo_matrix method), 1667
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todok() (scipy.sparse.csc_matrix method), 1684
todok() (scipy.sparse.csr_matrix method), 1701
todok() (scipy.sparse.dia_matrix method), 1716
todok() (scipy.sparse.dok_matrix method), 1728
todok() (scipy.sparse.lil_matrix method), 1740
todok() (scipy.sparse.spmatrix method), 1750
toeplitz() (in module scipy.linalg), 859
tolil() (scipy.sparse.bsr_matrix method), 1649
tolil() (scipy.sparse.coo_matrix method), 1667
tolil() (scipy.sparse.csc_matrix method), 1684
tolil() (scipy.sparse.csr_matrix method), 1701
tolil() (scipy.sparse.dia_matrix method), 1716
tolil() (scipy.sparse.dok_matrix method), 1728
tolil() (scipy.sparse.lil_matrix method), 1740
tolil() (scipy.sparse.spmatrix method), 1750
toms748() (in module scipy.optimize), 1342
tplquad() (in module scipy.integrate), 588
TransferFunction (class in scipy.signal), 1536
transpose() (scipy.optimize.LbfgsInvHessProduct

method), 1376
transpose() (scipy.sparse.bsr_matrix method), 1650
transpose() (scipy.sparse.coo_matrix method), 1667
transpose() (scipy.sparse.csc_matrix method), 1684
transpose() (scipy.sparse.csr_matrix method), 1702
transpose() (scipy.sparse.dia_matrix method), 1716
transpose() (scipy.sparse.dok_matrix method), 1728
transpose() (scipy.sparse.lil_matrix method), 1740
transpose() (scipy.sparse.linalg.LinearOperator

method), 1773
transpose() (scipy.sparse.spmatrix method), 1750
trapz (in module scipy.stats), 2318
trapz() (in module scipy.integrate), 598
tri() (in module scipy.linalg), 860
triang (in module scipy.stats), 2320
tril() (in module scipy.linalg), 777
tril() (in module scipy.sparse), 1755
trim() (in module scipy.stats.mstats), 2538
trim1() (in module scipy.stats), 2488
trim_mean() (in module scipy.stats), 2404
trima() (in module scipy.stats.mstats), 2539
trimboth() (in module scipy.stats), 2487
trimboth() (in module scipy.stats.mstats), 2540
trimmed_mean() (in module scipy.stats.mstats), 2523
trimmed_mean_ci() (in module scipy.stats.mstats),

2523
trimmed_std() (in module scipy.stats.mstats), 2524
trimmed_stde() (in module scipy.stats.mstats), 2539
trimmed_var() (in module scipy.stats.mstats), 2524
trimr() (in module scipy.stats.mstats), 2539
trimtail() (in module scipy.stats.mstats), 2540
triu() (in module scipy.linalg), 777
triu() (in module scipy.sparse), 1756
trunc() (scipy.sparse.bsr_matrix method), 1650
trunc() (scipy.sparse.coo_matrix method), 1667

trunc() (scipy.sparse.csc_matrix method), 1684
trunc() (scipy.sparse.csr_matrix method), 1702
trunc() (scipy.sparse.dia_matrix method), 1716
truncexpon (in module scipy.stats), 2322
truncnorm (in module scipy.stats), 2325
tsearch() (in module scipy.spatial), 1872
tsem() (in module scipy.stats), 2402
tsem() (in module scipy.stats.mstats), 2521
tstd() (in module scipy.stats), 2401
ttest_1samp() (in module scipy.stats), 2441
ttest_1samp() (in module scipy.stats.mstats), 2529
ttest_ind() (in module scipy.stats), 2442
ttest_ind() (in module scipy.stats.mstats), 2530
ttest_ind_from_stats() (in module scipy.stats),

2443
ttest_onesamp() (in module scipy.stats.mstats), 2530
ttest_rel() (in module scipy.stats), 2445
ttest_rel() (in module scipy.stats.mstats), 2530
tukeylambda (in module scipy.stats), 2327
tvar() (in module scipy.stats), 2399
tvar() (in module scipy.stats.mstats), 2519
typecode() (scipy.io.netcdf_variable method), 753
types() (scipy.io.arff.MetaData method), 757

U
uniform (in module scipy.stats), 2329
uniform_filter() (in module scipy.ndimage), 1203
uniform_filter1d() (in module scipy.ndimage),

1204
unilinear (in module scipy.odr), 1273
unique_roots() (in module scipy.signal), 1489
unit() (in module scipy.constants), 543
unit_impulse() (in module scipy.signal), 1583
unitary_group (in module scipy.stats), 2359
UnivariateSpline (class in scipy.interpolate), 701
update() (scipy.optimize.BFGS method), 1298
update() (scipy.optimize.HessianUpdateStrategy

method), 1377
update() (scipy.optimize.OptimizeResult method), 1278
update() (scipy.optimize.SR1 method), 1300
update() (scipy.sparse.dok_matrix method), 1729
upfirdn() (in module scipy.signal), 1451
use_solver() (in module scipy.sparse.linalg), 1782

V
value() (in module scipy.constants), 542
values() (scipy.optimize.OptimizeResult method), 1278
values() (scipy.sparse.dok_matrix method), 1729
var() (scipy.stats.rv_continuous method), 2085
var() (scipy.stats.rv_discrete method), 2097
var() (scipy.stats.rv_histogram method), 2109
variance() (in module scipy.ndimage), 1235
variation() (in module scipy.stats), 2402
variation() (in module scipy.stats.mstats), 2522
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vectorstrength() (in module scipy.signal), 1621
volume() (scipy.spatial.Rectangle method), 1851
vonmises (in module scipy.stats), 2331
vonmises_line (in module scipy.stats), 2334
Voronoi (class in scipy.spatial), 1859
voronoi_plot_2d() (in module scipy.spatial), 1869
vq() (in module scipy.cluster.vq), 490
vstack() (in module scipy.sparse), 1759

W
wald (in module scipy.stats), 2336
ward() (in module scipy.cluster.hierarchy), 512
wasserstein_distance() (in module scipy.stats),

2490
watershed_ift() (in module scipy.ndimage), 1236
WavFileWarning, 755
weibull_max (in module scipy.stats), 2341
weibull_min (in module scipy.stats), 2339
weighted() (in module scipy.cluster.hierarchy), 508
weightedtau() (in module scipy.stats), 2433
welch() (in module scipy.signal), 1609
white_tophat() (in module scipy.ndimage), 1263
whiten() (in module scipy.cluster.vq), 489
whosmat() (in module scipy.io), 741
wiener() (in module scipy.signal), 1429
wilcoxon() (in module scipy.stats), 2456
winsorize() (in module scipy.stats.mstats), 2541
wishart (in module scipy.stats), 2352
with_traceback() (scipy.constants.ConstantWarning

method), 544
with_traceback()

(scipy.integrate.IntegrationWarning method), 597
with_traceback() (scipy.io.arff.ArffError method),

758
with_traceback() (scipy.io.arff.ParseArffError

method), 758
with_traceback() (scipy.io.wavfile.WavFileWarning

method), 755
with_traceback() (scipy.linalg.LinAlgError

method), 781
with_traceback() (scipy.linalg.LinAlgWarning

method), 782
with_traceback() (scipy.odr.OdrError method),

1272
with_traceback() (scipy.odr.OdrStop method), 1273
with_traceback() (scipy.odr.OdrWarning method),

1272
with_traceback() (scipy.optimize.OptimizeWarning

method), 1278
with_traceback() (scipy.signal.BadCoefficients

method), 1493
with_traceback()

(scipy.sparse.csgraph.NegativeCycleError
method), 1829

with_traceback() (scipy.sparse.linalg.ArpackError
method), 1810

with_traceback()
(scipy.sparse.linalg.ArpackNoConvergence
method), 1809

with_traceback()
(scipy.sparse.linalg.MatrixRankWarning
method), 1782

with_traceback()
(scipy.sparse.SparseEfficiencyWarning method),
1768

with_traceback() (scipy.sparse.SparseWarning
method), 1768

with_traceback()
(scipy.special.SpecialFunctionError method),
1905

with_traceback()
(scipy.special.SpecialFunctionWarning method),
1905

with_traceback()
(scipy.stats.PearsonRConstantInputWarning
method), 2552

with_traceback()
(scipy.stats.PearsonRNearConstantInputWarning
method), 2552

wminkowski() (in module scipy.spatial.distance), 1894
wofz (in module scipy.special), 2004
wrapcauchy (in module scipy.stats), 2343
wrightomega (in module scipy.special), 2056
write() (in module scipy.io.wavfile), 755
write_record() (scipy.io.FortranFile method), 747

X
xlog1py (in module scipy.special), 2071
xlogy (in module scipy.special), 2071

Y
y0 (in module scipy.special), 1932
y0_zeros() (in module scipy.special), 1929
y1 (in module scipy.special), 1932
y1_zeros() (in module scipy.special), 1929
y1p_zeros() (in module scipy.special), 1930
yeojohnson() (in module scipy.stats), 2481
yeojohnson_llf() (in module scipy.stats), 2483
yeojohnson_normmax() (in module scipy.stats),

2482
yeojohnson_normplot() (in module scipy.stats),

2507
yn (in module scipy.special), 1917
yn_zeros() (in module scipy.special), 1928
ynp_zeros() (in module scipy.special), 1928
yule() (in module scipy.spatial.distance), 1901
yulesimon (in module scipy.stats), 2387
yv (in module scipy.special), 1917
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yve (in module scipy.special), 1918
yvp() (in module scipy.special), 1939

Z
zaxpy (in module scipy.linalg.blas), 880
zcopy (in module scipy.linalg.blas), 881
zdotc (in module scipy.linalg.blas), 881
zdotu (in module scipy.linalg.blas), 881
zdrot (in module scipy.linalg.blas), 882
zdscal (in module scipy.linalg.blas), 882
ZerosPolesGain (class in scipy.signal), 1538
zeta() (in module scipy.special), 2066
zetac (in module scipy.special), 2067
zgbmv (in module scipy.linalg.blas), 906
zgbsv (in module scipy.linalg.lapack), 939
zgbtrf (in module scipy.linalg.lapack), 940
zgbtrs (in module scipy.linalg.lapack), 942
zgebal (in module scipy.linalg.lapack), 944
zgecon (in module scipy.linalg.lapack), 945
zgees (in module scipy.linalg.lapack), 948
zgeev (in module scipy.linalg.lapack), 950
zgeev_lwork (in module scipy.linalg.lapack), 952
zgegv() (in module scipy.linalg.lapack), 954
zgehrd (in module scipy.linalg.lapack), 956
zgehrd_lwork (in module scipy.linalg.lapack), 957
zgels (in module scipy.linalg.lapack), 959
zgels_lwork (in module scipy.linalg.lapack), 960
zgelsd (in module scipy.linalg.lapack), 962
zgelsd_lwork (in module scipy.linalg.lapack), 964
zgelss (in module scipy.linalg.lapack), 966
zgelss_lwork (in module scipy.linalg.lapack), 967
zgelsy (in module scipy.linalg.lapack), 969
zgelsy_lwork (in module scipy.linalg.lapack), 971
zgemm (in module scipy.linalg.blas), 923
zgemv (in module scipy.linalg.blas), 906
zgeqp3 (in module scipy.linalg.lapack), 972
zgeqrf (in module scipy.linalg.lapack), 974
zgerc (in module scipy.linalg.blas), 907
zgerqf (in module scipy.linalg.lapack), 975
zgeru (in module scipy.linalg.blas), 907
zgesdd (in module scipy.linalg.lapack), 977
zgesdd_lwork (in module scipy.linalg.lapack), 979
zgesv (in module scipy.linalg.lapack), 980
zgesvd (in module scipy.linalg.lapack), 982
zgesvd_lwork (in module scipy.linalg.lapack), 984
zgesvx (in module scipy.linalg.lapack), 986
zgetrf (in module scipy.linalg.lapack), 988
zgetri (in module scipy.linalg.lapack), 989
zgetri_lwork (in module scipy.linalg.lapack), 990
zgetrs (in module scipy.linalg.lapack), 992
zgges (in module scipy.linalg.lapack), 995
zggev (in module scipy.linalg.lapack), 998
zgglse (in module scipy.linalg.lapack), 1000
zgglse_lwork (in module scipy.linalg.lapack), 1001

zgtsv (in module scipy.linalg.lapack), 1003
zhbevd (in module scipy.linalg.lapack), 1004
zhbevx (in module scipy.linalg.lapack), 1005
zhbmv (in module scipy.linalg.blas), 908
zhecon (in module scipy.linalg.lapack), 1006
zheev (in module scipy.linalg.lapack), 1007
zheevd (in module scipy.linalg.lapack), 1008
zheevr (in module scipy.linalg.lapack), 1009
zhegst (in module scipy.linalg.lapack), 1010
zhegv (in module scipy.linalg.lapack), 1010
zhegvd (in module scipy.linalg.lapack), 1011
zhegvx (in module scipy.linalg.lapack), 1012
zhemm (in module scipy.linalg.blas), 923
zhemv (in module scipy.linalg.blas), 908
zher (in module scipy.linalg.blas), 909
zher2 (in module scipy.linalg.blas), 909
zher2k (in module scipy.linalg.blas), 924
zherk (in module scipy.linalg.blas), 924
zhesv (in module scipy.linalg.lapack), 1013
zhesv_lwork (in module scipy.linalg.lapack), 1014
zhesvx (in module scipy.linalg.lapack), 1015
zhesvx_lwork (in module scipy.linalg.lapack), 1016
zhetrd (in module scipy.linalg.lapack), 1017
zhetrd_lwork (in module scipy.linalg.lapack), 1017
zhetrf (in module scipy.linalg.lapack), 1018
zhetrf_lwork (in module scipy.linalg.lapack), 1019
zhfrk (in module scipy.linalg.lapack), 1019
zhpmv (in module scipy.linalg.blas), 910
zhpr (in module scipy.linalg.blas), 910
zhpr2 (in module scipy.linalg.blas), 911
zipf (in module scipy.stats), 2385
zlange (in module scipy.linalg.lapack), 1021
zlarf (in module scipy.linalg.lapack), 1023
zlarfg (in module scipy.linalg.lapack), 1024
zlartg (in module scipy.linalg.lapack), 1025
zlaswp (in module scipy.linalg.lapack), 1028
zlauum (in module scipy.linalg.lapack), 1029
zmap() (in module scipy.stats), 2488
zmap() (in module scipy.stats.mstats), 2541
zoom() (in module scipy.ndimage), 1219
zpbsv (in module scipy.linalg.lapack), 1036
zpbtrf (in module scipy.linalg.lapack), 1037
zpbtrs (in module scipy.linalg.lapack), 1039
zpftrf (in module scipy.linalg.lapack), 1040
zpftri (in module scipy.linalg.lapack), 1042
zpftrs (in module scipy.linalg.lapack), 1044
zpk2sos() (in module scipy.signal), 1562
zpk2ss() (in module scipy.signal), 1564
zpk2tf() (in module scipy.signal), 1562
zpocon (in module scipy.linalg.lapack), 1045
zposv (in module scipy.linalg.lapack), 1046
zposvx (in module scipy.linalg.lapack), 1049
zpotrf (in module scipy.linalg.lapack), 1050
zpotri (in module scipy.linalg.lapack), 1052
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zpotrs (in module scipy.linalg.lapack), 1053
zptsv (in module scipy.linalg.lapack), 1055
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