SciPy

scipy.interpolate.LSQBivariateSpline

class scipy.interpolate.LSQBivariateSpline(x, y, z, tx, ty, w=None, bbox=[None, None, None, None], kx=3, ky=3, eps=None)[source]

Weighted least-squares bivariate spline approximation.

Parameters
x, y, zarray_like

1-D sequences of data points (order is not important).

tx, tyarray_like

Strictly ordered 1-D sequences of knots coordinates.

warray_like, optional

Positive 1-D array of weights, of the same length as x, y and z.

bbox(4,) array_like, optional

Sequence of length 4 specifying the boundary of the rectangular approximation domain. By default, bbox=[min(x,tx),max(x,tx), min(y,ty),max(y,ty)].

kx, kyints, optional

Degrees of the bivariate spline. Default is 3.

epsfloat, optional

A threshold for determining the effective rank of an over-determined linear system of equations. eps should have a value between 0 and 1, the default is 1e-16.

See also

bisplrep

an older wrapping of FITPACK

bisplev

an older wrapping of FITPACK

UnivariateSpline

a similar class for univariate spline interpolation

SmoothBivariateSpline

create a smoothing BivariateSpline

Notes

The length of x, y and z should be at least (kx+1) * (ky+1).

Methods

__call__(x, y[, dx, dy, grid])

Evaluate the spline or its derivatives at given positions.

ev(xi, yi[, dx, dy])

Evaluate the spline at points

get_coeffs()

Return spline coefficients.

get_knots()

Return a tuple (tx,ty) where tx,ty contain knots positions of the spline with respect to x-, y-variable, respectively.

get_residual()

Return weighted sum of squared residuals of the spline approximation: sum ((w[i]*(z[i]-s(x[i],y[i])))**2,axis=0)

integral(xa, xb, ya, yb)

Evaluate the integral of the spline over area [xa,xb] x [ya,yb].