SciPy

scipy.sparse.dok_matrix

class scipy.sparse.dok_matrix(arg1, shape=None, dtype=None, copy=False)[source]

Dictionary Of Keys based sparse matrix.

This is an efficient structure for constructing sparse matrices incrementally.

This can be instantiated in several ways:
dok_matrix(D)

with a dense matrix, D

dok_matrix(S)

with a sparse matrix, S

dok_matrix((M,N), [dtype])

create the matrix with initial shape (M,N) dtype is optional, defaulting to dtype=’d’

Notes

Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and matrix power.

Allows for efficient O(1) access of individual elements. Duplicates are not allowed. Can be efficiently converted to a coo_matrix once constructed.

Examples

>>> import numpy as np
>>> from scipy.sparse import dok_matrix
>>> S = dok_matrix((5, 5), dtype=np.float32)
>>> for i in range(5):
...     for j in range(5):
...         S[i, j] = i + j    # Update element
Attributes
dtypedtype

Data type of the matrix

shape2-tuple

Get shape of a matrix.

ndimint

Number of dimensions (this is always 2)

nnz

Number of stored values, including explicit zeros.

Methods

__len__()

Return len(self).

__mul__(other)

interpret other and call one of the following

asformat(format[, copy])

Return this matrix in the passed format.

asfptype()

Upcast matrix to a floating point format (if necessary)

astype(dtype[, casting, copy])

Cast the matrix elements to a specified type.

clear()

conj([copy])

Element-wise complex conjugation.

conjtransp()

Return the conjugate transpose.

conjugate([copy])

Element-wise complex conjugation.

copy()

Returns a copy of this matrix.

count_nonzero()

Number of non-zero entries, equivalent to

diagonal([k])

Returns the k-th diagonal of the matrix.

dot(other)

Ordinary dot product

fromkeys($type, iterable[, value])

Returns a new dict with keys from iterable and values equal to value.

get(key[, default])

This overrides the dict.get method, providing type checking but otherwise equivalent functionality.

getH()

Return the Hermitian transpose of this matrix.

get_shape()

Get shape of a matrix.

getcol(j)

Returns a copy of column j of the matrix, as an (m x 1) sparse matrix (column vector).

getformat()

Format of a matrix representation as a string.

getmaxprint()

Maximum number of elements to display when printed.

getnnz([axis])

Number of stored values, including explicit zeros.

getrow(i)

Returns a copy of row i of the matrix, as a (1 x n) sparse matrix (row vector).

items()

keys()

maximum(other)

Element-wise maximum between this and another matrix.

mean([axis, dtype, out])

Compute the arithmetic mean along the specified axis.

minimum(other)

Element-wise minimum between this and another matrix.

multiply(other)

Point-wise multiplication by another matrix

nonzero()

nonzero indices

pop(k[,d])

If key is not found, d is returned if given, otherwise KeyError is raised

popitem()

2-tuple; but raise KeyError if D is empty.

power(n[, dtype])

Element-wise power.

reshape(self, shape[, order, copy])

Gives a new shape to a sparse matrix without changing its data.

resize(*shape)

Resize the matrix in-place to dimensions given by shape

set_shape(shape)

See reshape.

setdefault(k[,d])

setdiag(values[, k])

Set diagonal or off-diagonal elements of the array.

sum([axis, dtype, out])

Sum the matrix elements over a given axis.

toarray([order, out])

Return a dense ndarray representation of this matrix.

tobsr([blocksize, copy])

Convert this matrix to Block Sparse Row format.

tocoo([copy])

Convert this matrix to COOrdinate format.

tocsc([copy])

Convert this matrix to Compressed Sparse Column format.

tocsr([copy])

Convert this matrix to Compressed Sparse Row format.

todense([order, out])

Return a dense matrix representation of this matrix.

todia([copy])

Convert this matrix to sparse DIAgonal format.

todok([copy])

Convert this matrix to Dictionary Of Keys format.

tolil([copy])

Convert this matrix to LInked List format.

transpose([axes, copy])

Reverses the dimensions of the sparse matrix.

update([E, ]**F)

If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values()

__getitem__

Previous topic

scipy.sparse.dia_matrix.trunc

Next topic

scipy.sparse.dok_matrix.__len__