# scipy.special.yv¶

scipy.special.yv(v, z) = <ufunc 'yv'>

Bessel function of the second kind of real order and complex argument.

Parameters
varray_like

Order (float).

zarray_like

Argument (float or complex).

Returns
Yndarray

Value of the Bessel function of the second kind, $$Y_v(x)$$.

yve

$$Y_v$$ with leading exponential behavior stripped off.

Notes

For positive v values, the computation is carried out using the AMOS [1] zbesy routine, which exploits the connection to the Hankel Bessel functions $$H_v^{(1)}$$ and $$H_v^{(2)}$$,

$Y_v(z) = \frac{1}{2\imath} (H_v^{(1)} - H_v^{(2)}).$

For negative v values the formula,

$Y_{-v}(z) = Y_v(z) \cos(\pi v) + J_v(z) \sin(\pi v)$

is used, where $$J_v(z)$$ is the Bessel function of the first kind, computed using the AMOS routine zbesj. Note that the second term is exactly zero for integer v; to improve accuracy the second term is explicitly omitted for v values such that v = floor(v).

References

1

Donald E. Amos, “AMOS, A Portable Package for Bessel Functions of a Complex Argument and Nonnegative Order”, http://netlib.org/amos/

scipy.special.yn

#### Next topic

scipy.special.yve