scipy.special.hyp2f1¶
-
scipy.special.
hyp2f1
(a, b, c, z) = <ufunc 'hyp2f1'>¶ Gauss hypergeometric function 2F1(a, b; c; z)
- Parameters
- a, b, carray_like
Arguments, should be real-valued.
- zarray_like
Argument, real or complex.
- Returns
- hyp2f1scalar or ndarray
The values of the gaussian hypergeometric function.
See also
Notes
This function is defined for \(|z| < 1\) as
\[\mathrm{hyp2f1}(a, b, c, z) = \sum_{n=0}^\infty \frac{(a)_n (b)_n}{(c)_n}\frac{z^n}{n!},\]and defined on the rest of the complex z-plane by analytic continuation. Here \((\cdot)_n\) is the Pochhammer symbol; see
poch
. When \(n\) is an integer the result is a polynomial of degree \(n\).The implementation for complex values of
z
is described in [1].References
- 1
Zhang and J.M. Jin, “Computation of Special Functions”, Wiley 1996
- 2
Cephes Mathematical Functions Library, http://www.netlib.org/cephes/
- 3
NIST Digital Library of Mathematical Functions https://dlmf.nist.gov/