SciPy

scipy.sparse.spmatrix

class scipy.sparse.spmatrix(maxprint=50)[source]

This class provides a base class for all sparse matrices. It cannot be instantiated. Most of the work is provided by subclasses.

Attributes
nnz

Number of stored values, including explicit zeros.

shape

Get shape of a matrix.

Methods

asformat(self, format[, copy])

Return this matrix in the passed format.

asfptype(self)

Upcast matrix to a floating point format (if necessary)

astype(self, dtype[, casting, copy])

Cast the matrix elements to a specified type.

conj(self[, copy])

Element-wise complex conjugation.

conjugate(self[, copy])

Element-wise complex conjugation.

copy(self)

Returns a copy of this matrix.

count_nonzero(self)

Number of non-zero entries, equivalent to

diagonal(self[, k])

Returns the k-th diagonal of the matrix.

dot(self, other)

Ordinary dot product

getH(self)

Return the Hermitian transpose of this matrix.

get_shape(self)

Get shape of a matrix.

getcol(self, j)

Returns a copy of column j of the matrix, as an (m x 1) sparse matrix (column vector).

getformat(self)

Format of a matrix representation as a string.

getmaxprint(self)

Maximum number of elements to display when printed.

getnnz(self[, axis])

Number of stored values, including explicit zeros.

getrow(self, i)

Returns a copy of row i of the matrix, as a (1 x n) sparse matrix (row vector).

maximum(self, other)

Element-wise maximum between this and another matrix.

mean(self[, axis, dtype, out])

Compute the arithmetic mean along the specified axis.

minimum(self, other)

Element-wise minimum between this and another matrix.

multiply(self, other)

Point-wise multiplication by another matrix

nonzero(self)

nonzero indices

power(self, n[, dtype])

Element-wise power.

reshape(self, shape[, order, copy])

Gives a new shape to a sparse matrix without changing its data.

resize(self, shape)

Resize the matrix in-place to dimensions given by shape

set_shape(self, shape)

See reshape.

setdiag(self, values[, k])

Set diagonal or off-diagonal elements of the array.

sum(self[, axis, dtype, out])

Sum the matrix elements over a given axis.

toarray(self[, order, out])

Return a dense ndarray representation of this matrix.

tobsr(self[, blocksize, copy])

Convert this matrix to Block Sparse Row format.

tocoo(self[, copy])

Convert this matrix to COOrdinate format.

tocsc(self[, copy])

Convert this matrix to Compressed Sparse Column format.

tocsr(self[, copy])

Convert this matrix to Compressed Sparse Row format.

todense(self[, order, out])

Return a dense matrix representation of this matrix.

todia(self[, copy])

Convert this matrix to sparse DIAgonal format.

todok(self[, copy])

Convert this matrix to Dictionary Of Keys format.

tolil(self[, copy])

Convert this matrix to LInked List format.

transpose(self[, axes, copy])

Reverses the dimensions of the sparse matrix.

Previous topic

scipy.sparse.lil_matrix.transpose

Next topic

scipy.sparse.spmatrix.asformat