This is documentation for an old release of SciPy (version 1.2.3). Read this page in the documentation of the latest stable release (version 1.15.0).
scipy.linalg.interpolative.svd¶
-
scipy.linalg.interpolative.
svd
(A, eps_or_k, rand=True)[source]¶ Compute SVD of a matrix via an ID.
An SVD of a matrix A is a factorization:
A = numpy.dot(U, numpy.dot(numpy.diag(S), V.conj().T))
where U and V have orthonormal columns and S is nonnegative.
The SVD can be computed to any relative precision or rank (depending on the value of eps_or_k).
See also
interp_decomp
andid_to_svd
.- Parameters
- A
numpy.ndarray
orscipy.sparse.linalg.LinearOperator
Matrix to be factored, given as either a
numpy.ndarray
or ascipy.sparse.linalg.LinearOperator
with the matvec and rmatvec methods (to apply the matrix and its adjoint).- eps_or_kfloat or int
Relative error (if eps_or_k < 1) or rank (if eps_or_k >= 1) of approximation.
- randbool, optional
Whether to use random sampling if A is of type
numpy.ndarray
(randomized algorithms are always used if A is of typescipy.sparse.linalg.LinearOperator
).
- A
- Returns
- U
numpy.ndarray
Left singular vectors.
- S
numpy.ndarray
Singular values.
- V
numpy.ndarray
Right singular vectors.
- U