SciPy

This is documentation for an old release of SciPy (version 1.2.1). Search for this page in the documentation of the latest stable release (version 1.15.1).

Boltzmann (truncated Planck) Distribution

\begin{eqnarray*} p\left(k;N,\lambda\right) & = & \frac{1-e^{-\lambda}}{1-e^{-\lambda N}}\exp\left(-\lambda k\right)\quad k\in\left\{ 0,1,\ldots,N-1\right\} \\ F\left(x;N,\lambda\right) & = & \left\{ \begin{array}{cc} 0 & x<0\\ \frac{1-\exp\left[-\lambda\left(\left\lfloor x\right\rfloor +1\right)\right]}{1-\exp\left(-\lambda N\right)} & 0\leq x\leq N-1\\ 1 & x\geq N-1\end{array}\right.\\ G\left(q,\lambda\right) & = & \left\lceil -\frac{1}{\lambda}\log\left[1-q\left(1-e^{-\lambda N}\right)\right]-1\right\rceil \end{eqnarray*}

Define \(z=e^{-\lambda}\)

\begin{eqnarray*} \mu & = & \frac{z}{1-z}-\frac{Nz^{N}}{1-z^{N}}\\ \mu_{2} & = & \frac{z}{\left(1-z\right)^{2}}-\frac{N^{2}z^{N}}{\left(1-z^{N}\right)^{2}}\\ \gamma_{1} & = & \frac{z\left(1+z\right)\left(\frac{1-z^{N}}{1-z}\right)^{3}-N^{3}z^{N}\left(1+z^{N}\right)}{\left[z\left(\frac{1-z^{N}}{1-z}\right)^{2}-N^{2}z^{N}\right]^{3/2}}\\ \gamma_{2} & = & \frac{z\left(1+4z+z^{2}\right)\left(\frac{1-z^{N}}{1-z}\right)^{4}-N^{4}z^{N}\left(1+4z^{N}+z^{2N}\right)}{\left[z\left(\frac{1-z^{N}}{1-z}\right)^{2}-N^{2}z^{N}\right]^{2}}\end{eqnarray*}
\[M\left(t\right)=\frac{1-e^{N\left(t-\lambda\right)}}{1-e^{t-\lambda}}\frac{1-e^{-\lambda}}{1-e^{-\lambda N}}\]

Implementation: scipy.stats.boltzmann

Previous topic

Binomial Distribution

Next topic

Planck (discrete exponential) Distribution