SciPy

Wald DistributionΒΆ

Special case of the Inverse Normal with shape parameter set to \(1.0\) . Defined for \(x>0\) .

\begin{eqnarray*} f\left(x\right) & = & \frac{1}{\sqrt{2\pi x^{3}}}\exp\left(-\frac{\left(x-1\right)^{2}}{2x}\right).\\ F\left(x\right) & = & \Phi\left(\frac{x-1}{\sqrt{x}}\right)+\exp\left(2\right)\Phi\left(-\frac{x+1}{\sqrt{x}}\right)\\ G\left(q;\mu\right) & = & F^{-1}\left(q;\mu\right)\end{eqnarray*}
\begin{eqnarray*} \mu & = & 1\\ \mu_{2} & = & 1\\ \gamma_{1} & = & 3\\ \gamma_{2} & = & 15\\ m_{d} & = & \frac{1}{2}\left(\sqrt{13}-3\right)\end{eqnarray*}

Implementation: scipy.stats.wald

Previous topic

Von Mises Distribution

Next topic

Weibull Maximum Extreme Value Distribution