This is documentation for an old release of SciPy (version 1.2.1). Read this page in the documentation of the latest stable release (version 1.15.0).
scipy.stats.tukeylambda¶
-
scipy.stats.
tukeylambda
= <scipy.stats._continuous_distns.tukeylambda_gen object>[source]¶ A Tukey-Lamdba continuous random variable.
As an instance of the
rv_continuous
class,tukeylambda
object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.Notes
A flexible distribution, able to represent and interpolate between the following distributions:
- Cauchy (\(lambda = -1\))
- logistic (\(lambda = 0\))
- approx Normal (\(lambda = 0.14\))
- uniform from -1 to 1 (\(lambda = 1\))
tukeylambda
takes a real number \(lambda\) (denotedlam
in the implementation) as a shape parameter.The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc
andscale
parameters. Specifically,tukeylambda.pdf(x, lam, loc, scale)
is identically equivalent totukeylambda.pdf(y, lam) / scale
withy = (x - loc) / scale
.Examples
>>> from scipy.stats import tukeylambda >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(1, 1)
Calculate a few first moments:
>>> lam = 3.13 >>> mean, var, skew, kurt = tukeylambda.stats(lam, moments='mvsk')
Display the probability density function (
pdf
):>>> x = np.linspace(tukeylambda.ppf(0.01, lam), ... tukeylambda.ppf(0.99, lam), 100) >>> ax.plot(x, tukeylambda.pdf(x, lam), ... 'r-', lw=5, alpha=0.6, label='tukeylambda pdf')
Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen
pdf
:>>> rv = tukeylambda(lam) >>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
Check accuracy of
cdf
andppf
:>>> vals = tukeylambda.ppf([0.001, 0.5, 0.999], lam) >>> np.allclose([0.001, 0.5, 0.999], tukeylambda.cdf(vals, lam)) True
Generate random numbers:
>>> r = tukeylambda.rvs(lam, size=1000)
And compare the histogram:
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2) >>> ax.legend(loc='best', frameon=False) >>> plt.show()
Methods
rvs(lam, loc=0, scale=1, size=1, random_state=None) Random variates. pdf(x, lam, loc=0, scale=1) Probability density function. logpdf(x, lam, loc=0, scale=1) Log of the probability density function. cdf(x, lam, loc=0, scale=1) Cumulative distribution function. logcdf(x, lam, loc=0, scale=1) Log of the cumulative distribution function. sf(x, lam, loc=0, scale=1) Survival function (also defined as 1 - cdf
, but sf is sometimes more accurate).logsf(x, lam, loc=0, scale=1) Log of the survival function. ppf(q, lam, loc=0, scale=1) Percent point function (inverse of cdf
— percentiles).isf(q, lam, loc=0, scale=1) Inverse survival function (inverse of sf
).moment(n, lam, loc=0, scale=1) Non-central moment of order n stats(lam, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’). entropy(lam, loc=0, scale=1) (Differential) entropy of the RV. fit(data, lam, loc=0, scale=1) Parameter estimates for generic data. expect(func, args=(lam,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds) Expected value of a function (of one argument) with respect to the distribution. median(lam, loc=0, scale=1) Median of the distribution. mean(lam, loc=0, scale=1) Mean of the distribution. var(lam, loc=0, scale=1) Variance of the distribution. std(lam, loc=0, scale=1) Standard deviation of the distribution. interval(alpha, lam, loc=0, scale=1) Endpoints of the range that contains alpha percent of the distribution