scipy.stats.mstats.kendalltau¶
-
scipy.stats.mstats.
kendalltau
(x, y, use_ties=True, use_missing=False, method='auto')[source]¶ Computes Kendall’s rank correlation tau on two variables x and y.
Parameters: - x : sequence
First data list (for example, time).
- y : sequence
Second data list.
- use_ties : {True, False}, optional
Whether ties correction should be performed.
- use_missing : {False, True}, optional
Whether missing data should be allocated a rank of 0 (False) or the average rank (True)
- method: {‘auto’, ‘asymptotic’, ‘exact’}, optional
Defines which method is used to calculate the p-value [1]. ‘asymptotic’ uses a normal approximation valid for large samples. ‘exact’ computes the exact p-value, but can only be used if no ties are present. ‘auto’ is the default and selects the appropriate method based on a trade-off between speed and accuracy.
Returns: - correlation : float
Kendall tau
- pvalue : float
Approximate 2-side p-value.
References
[1] (1, 2) Maurice G. Kendall, “Rank Correlation Methods” (4th Edition), Charles Griffin & Co., 1970.