scipy.special.mathieu_even_coef¶
-
scipy.special.
mathieu_even_coef
(m, q)[source]¶ Fourier coefficients for even Mathieu and modified Mathieu functions.
The Fourier series of the even solutions of the Mathieu differential equation are of the form
\[\mathrm{ce}_{2n}(z, q) = \sum_{k=0}^{\infty} A_{(2n)}^{(2k)} \cos 2kz\]\[\mathrm{ce}_{2n+1}(z, q) = \sum_{k=0}^{\infty} A_{(2n+1)}^{(2k+1)} \cos (2k+1)z\]This function returns the coefficients \(A_{(2n)}^{(2k)}\) for even input m=2n, and the coefficients \(A_{(2n+1)}^{(2k+1)}\) for odd input m=2n+1.
Parameters: - m : int
Order of Mathieu functions. Must be non-negative.
- q : float (>=0)
Parameter of Mathieu functions. Must be non-negative.
Returns: - Ak : ndarray
Even or odd Fourier coefficients, corresponding to even or odd m.
References
[1] Zhang, Shanjie and Jin, Jianming. “Computation of Special Functions”, John Wiley and Sons, 1996. https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html [2] NIST Digital Library of Mathematical Functions https://dlmf.nist.gov/28.4#i