scipy.sparse.linalg.cgs¶
-
scipy.sparse.linalg.
cgs
(A, b, x0=None, tol=1e-05, maxiter=None, M=None, callback=None, atol=None)¶ Use Conjugate Gradient Squared iteration to solve
Ax = b
.Parameters: - A : {sparse matrix, dense matrix, LinearOperator}
The real-valued N-by-N matrix of the linear system.
- b : {array, matrix}
Right hand side of the linear system. Has shape (N,) or (N,1).
Returns: - x : {array, matrix}
The converged solution.
- info : integer
- Provides convergence information:
0 : successful exit >0 : convergence to tolerance not achieved, number of iterations <0 : illegal input or breakdown
Other Parameters: - x0 : {array, matrix}
Starting guess for the solution.
- tol, atol : float, optional
Tolerances for convergence,
norm(residual) <= max(tol*norm(b), atol)
. The default foratol
is'legacy'
, which emulates a different legacy behavior.Warning
The default value for atol will be changed in a future release. For future compatibility, specify atol explicitly.
- maxiter : integer
Maximum number of iterations. Iteration will stop after maxiter steps even if the specified tolerance has not been achieved.
- M : {sparse matrix, dense matrix, LinearOperator}
Preconditioner for A. The preconditioner should approximate the inverse of A. Effective preconditioning dramatically improves the rate of convergence, which implies that fewer iterations are needed to reach a given error tolerance.
- callback : function
User-supplied function to call after each iteration. It is called as callback(xk), where xk is the current solution vector.