SciPy

scipy.ndimage.grey_dilation

scipy.ndimage.grey_dilation(input, size=None, footprint=None, structure=None, output=None, mode='reflect', cval=0.0, origin=0)[source]

Calculate a greyscale dilation, using either a structuring element, or a footprint corresponding to a flat structuring element.

Grayscale dilation is a mathematical morphology operation. For the simple case of a full and flat structuring element, it can be viewed as a maximum filter over a sliding window.

Parameters:
input : array_like

Array over which the grayscale dilation is to be computed.

size : tuple of ints

Shape of a flat and full structuring element used for the grayscale dilation. Optional if footprint or structure is provided.

footprint : array of ints, optional

Positions of non-infinite elements of a flat structuring element used for the grayscale dilation. Non-zero values give the set of neighbors of the center over which the maximum is chosen.

structure : array of ints, optional

Structuring element used for the grayscale dilation. structure may be a non-flat structuring element.

output : array, optional

An array used for storing the output of the dilation may be provided.

mode : {‘reflect’,’constant’,’nearest’,’mirror’, ‘wrap’}, optional

The mode parameter determines how the array borders are handled, where cval is the value when mode is equal to ‘constant’. Default is ‘reflect’

cval : scalar, optional

Value to fill past edges of input if mode is ‘constant’. Default is 0.0.

origin : scalar, optional

The origin parameter controls the placement of the filter. Default 0

Returns:
grey_dilation : ndarray

Grayscale dilation of input.

Notes

The grayscale dilation of an image input by a structuring element s defined over a domain E is given by:

(input+s)(x) = max {input(y) + s(x-y), for y in E}

In particular, for structuring elements defined as s(y) = 0 for y in E, the grayscale dilation computes the maximum of the input image inside a sliding window defined by E.

Grayscale dilation [1] is a mathematical morphology operation [2].

References

[1](1, 2) https://en.wikipedia.org/wiki/Dilation_%28morphology%29
[2](1, 2) https://en.wikipedia.org/wiki/Mathematical_morphology

Examples

>>> from scipy import ndimage
>>> a = np.zeros((7,7), dtype=int)
>>> a[2:5, 2:5] = 1
>>> a[4,4] = 2; a[2,3] = 3
>>> a
array([[0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0],
       [0, 0, 1, 3, 1, 0, 0],
       [0, 0, 1, 1, 1, 0, 0],
       [0, 0, 1, 1, 2, 0, 0],
       [0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0]])
>>> ndimage.grey_dilation(a, size=(3,3))
array([[0, 0, 0, 0, 0, 0, 0],
       [0, 1, 3, 3, 3, 1, 0],
       [0, 1, 3, 3, 3, 1, 0],
       [0, 1, 3, 3, 3, 2, 0],
       [0, 1, 1, 2, 2, 2, 0],
       [0, 1, 1, 2, 2, 2, 0],
       [0, 0, 0, 0, 0, 0, 0]])
>>> ndimage.grey_dilation(a, footprint=np.ones((3,3)))
array([[0, 0, 0, 0, 0, 0, 0],
       [0, 1, 3, 3, 3, 1, 0],
       [0, 1, 3, 3, 3, 1, 0],
       [0, 1, 3, 3, 3, 2, 0],
       [0, 1, 1, 2, 2, 2, 0],
       [0, 1, 1, 2, 2, 2, 0],
       [0, 0, 0, 0, 0, 0, 0]])
>>> s = ndimage.generate_binary_structure(2,1)
>>> s
array([[False,  True, False],
       [ True,  True,  True],
       [False,  True, False]], dtype=bool)
>>> ndimage.grey_dilation(a, footprint=s)
array([[0, 0, 0, 0, 0, 0, 0],
       [0, 0, 1, 3, 1, 0, 0],
       [0, 1, 3, 3, 3, 1, 0],
       [0, 1, 1, 3, 2, 1, 0],
       [0, 1, 1, 2, 2, 2, 0],
       [0, 0, 1, 1, 2, 0, 0],
       [0, 0, 0, 0, 0, 0, 0]])
>>> ndimage.grey_dilation(a, size=(3,3), structure=np.ones((3,3)))
array([[1, 1, 1, 1, 1, 1, 1],
       [1, 2, 4, 4, 4, 2, 1],
       [1, 2, 4, 4, 4, 2, 1],
       [1, 2, 4, 4, 4, 3, 1],
       [1, 2, 2, 3, 3, 3, 1],
       [1, 2, 2, 3, 3, 3, 1],
       [1, 1, 1, 1, 1, 1, 1]])

Previous topic

scipy.ndimage.grey_closing

Next topic

scipy.ndimage.grey_erosion