SciPy

This is documentation for an old release of SciPy (version 1.2.1). Read this page in the documentation of the latest stable release (version 1.15.0).

scipy.ndimage.geometric_transform

scipy.ndimage.geometric_transform(input, mapping, output_shape=None, output=None, order=3, mode='constant', cval=0.0, prefilter=True, extra_arguments=(), extra_keywords={})[source]

Apply an arbitrary geometric transform.

The given mapping function is used to find, for each point in the output, the corresponding coordinates in the input. The value of the input at those coordinates is determined by spline interpolation of the requested order.

Parameters:
input : array_like

The input array.

mapping : {callable, scipy.LowLevelCallable}

A callable object that accepts a tuple of length equal to the output array rank, and returns the corresponding input coordinates as a tuple of length equal to the input array rank.

output_shape : tuple of ints, optional

Shape tuple.

output : array or dtype, optional

The array in which to place the output, or the dtype of the returned array. By default an array of the same dtype as input will be created.

order : int, optional

The order of the spline interpolation, default is 3. The order has to be in the range 0-5.

mode : {‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, optional

The mode parameter determines how the input array is extended beyond its boundaries. Default is ‘constant’. Behavior for each valid value is as follows:

‘reflect’ (d c b a | a b c d | d c b a)

The input is extended by reflecting about the edge of the last pixel.

‘constant’ (k k k k | a b c d | k k k k)

The input is extended by filling all values beyond the edge with the same constant value, defined by the cval parameter.

‘nearest’ (a a a a | a b c d | d d d d)

The input is extended by replicating the last pixel.

‘mirror’ (d c b | a b c d | c b a)

The input is extended by reflecting about the center of the last pixel.

‘wrap’ (a b c d | a b c d | a b c d)

The input is extended by wrapping around to the opposite edge.

cval : scalar, optional

Value to fill past edges of input if mode is ‘constant’. Default is 0.0.

prefilter : bool, optional

Determines if the input array is prefiltered with spline_filter before interpolation. The default is True, which will create a temporary float64 array of filtered values if order > 1. If setting this to False, the output will be slightly blurred if order > 1, unless the input is prefiltered, i.e. it is the result of calling spline_filter on the original input.

extra_arguments : tuple, optional

Extra arguments passed to mapping.

extra_keywords : dict, optional

Extra keywords passed to mapping.

Returns:
output : ndarray

The filtered input.

Notes

This function also accepts low-level callback functions with one the following signatures and wrapped in scipy.LowLevelCallable:

int mapping(npy_intp *output_coordinates, double *input_coordinates,
            int output_rank, int input_rank, void *user_data)
int mapping(intptr_t *output_coordinates, double *input_coordinates,
            int output_rank, int input_rank, void *user_data)

The calling function iterates over the elements of the output array, calling the callback function at each element. The coordinates of the current output element are passed through output_coordinates. The callback function must return the coordinates at which the input must be interpolated in input_coordinates. The rank of the input and output arrays are given by input_rank and output_rank respectively. user_data is the data pointer provided to scipy.LowLevelCallable as-is.

The callback function must return an integer error status that is zero if something went wrong and one otherwise. If an error occurs, you should normally set the python error status with an informative message before returning, otherwise a default error message is set by the calling function.

In addition, some other low-level function pointer specifications are accepted, but these are for backward compatibility only and should not be used in new code.

Examples

>>>
>>> import numpy as np
>>> from scipy.ndimage import geometric_transform
>>> a = np.arange(12.).reshape((4, 3))
>>> def shift_func(output_coords):
...     return (output_coords[0] - 0.5, output_coords[1] - 0.5)
...
>>> geometric_transform(a, shift_func)
array([[ 0.   ,  0.   ,  0.   ],
       [ 0.   ,  1.362,  2.738],
       [ 0.   ,  4.812,  6.187],
       [ 0.   ,  8.263,  9.637]])
>>>
>>> b = [1, 2, 3, 4, 5]
>>> def shift_func(output_coords):
...     return (output_coords[0] - 3,)
...
>>> geometric_transform(b, shift_func, mode='constant')
array([0, 0, 0, 1, 2])
>>> geometric_transform(b, shift_func, mode='nearest')
array([1, 1, 1, 1, 2])
>>> geometric_transform(b, shift_func, mode='reflect')
array([3, 2, 1, 1, 2])
>>> geometric_transform(b, shift_func, mode='wrap')
array([2, 3, 4, 1, 2])

Previous topic

scipy.ndimage.affine_transform

Next topic

scipy.ndimage.map_coordinates