SciPy

scipy.interpolate.BivariateSpline

class scipy.interpolate.BivariateSpline[source]

Base class for bivariate splines.

This describes a spline s(x, y) of degrees kx and ky on the rectangle [xb, xe] * [yb, ye] calculated from a given set of data points (x, y, z).

This class is meant to be subclassed, not instantiated directly. To construct these splines, call either SmoothBivariateSpline or LSQBivariateSpline.

See also

UnivariateSpline
a similar class for univariate spline interpolation
SmoothBivariateSpline
to create a BivariateSpline through the given points
LSQBivariateSpline
to create a BivariateSpline using weighted least-squares fitting
SphereBivariateSpline
bivariate spline interpolation in spherical cooridinates
bisplrep
older wrapping of FITPACK
bisplev
older wrapping of FITPACK

Methods

__call__(x, y[, dx, dy, grid]) Evaluate the spline or its derivatives at given positions.
ev(xi, yi[, dx, dy]) Evaluate the spline at points
get_coeffs() Return spline coefficients.
get_knots() Return a tuple (tx,ty) where tx,ty contain knots positions of the spline with respect to x-, y-variable, respectively.
get_residual() Return weighted sum of squared residuals of the spline approximation: sum ((w[i]*(z[i]-s(x[i],y[i])))**2,axis=0)
integral(xa, xb, ya, yb) Evaluate the integral of the spline over area [xa,xb] x [ya,yb].

Previous topic

scipy.interpolate.RectSphereBivariateSpline.get_residual

Next topic

scipy.interpolate.BivariateSpline.__call__