SciPy

scipy.cluster.hierarchy.weighted

scipy.cluster.hierarchy.weighted(y)[source]

Perform weighted/WPGMA linkage on the condensed distance matrix.

See linkage for more information on the return structure and algorithm.

Parameters:
y : ndarray

The upper triangular of the distance matrix. The result of pdist is returned in this form.

Returns:
Z : ndarray

A linkage matrix containing the hierarchical clustering. See linkage for more information on its structure.

See also

linkage
for advanced creation of hierarchical clusterings.
scipy.spatial.distance.pdist
pairwise distance metrics

Examples

>>> from scipy.cluster.hierarchy import weighted, fcluster
>>> from scipy.spatial.distance import pdist

First we need a toy dataset to play with:

x x    x x
x        x

x        x
x x    x x
>>> X = [[0, 0], [0, 1], [1, 0],
...      [0, 4], [0, 3], [1, 4],
...      [4, 0], [3, 0], [4, 1],
...      [4, 4], [3, 4], [4, 3]]

Then we get a condensed distance matrix from this dataset:

>>> y = pdist(X)

Finally, we can perform the clustering:

>>> Z = weighted(y)
>>> Z
array([[ 0.        ,  1.        ,  1.        ,  2.        ],
       [ 6.        ,  7.        ,  1.        ,  2.        ],
       [ 3.        ,  4.        ,  1.        ,  2.        ],
       [ 9.        , 11.        ,  1.        ,  2.        ],
       [ 2.        , 12.        ,  1.20710678,  3.        ],
       [ 8.        , 13.        ,  1.20710678,  3.        ],
       [ 5.        , 14.        ,  1.20710678,  3.        ],
       [10.        , 15.        ,  1.20710678,  3.        ],
       [18.        , 19.        ,  3.05595762,  6.        ],
       [16.        , 17.        ,  3.32379407,  6.        ],
       [20.        , 21.        ,  4.06357713, 12.        ]])

The linkage matrix Z represents a dendrogram - see scipy.cluster.hierarchy.linkage for a detailed explanation of its contents.

We can use scipy.cluster.hierarchy.fcluster to see to which cluster each initial point would belong given a distance threshold:

>>> fcluster(Z, 0.9, criterion='distance')
array([ 7,  8,  9,  1,  2,  3, 10, 11, 12,  4,  6,  5], dtype=int32)
>>> fcluster(Z, 1.5, criterion='distance')
array([3, 3, 3, 1, 1, 1, 4, 4, 4, 2, 2, 2], dtype=int32)
>>> fcluster(Z, 4, criterion='distance')
array([2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1], dtype=int32)
>>> fcluster(Z, 6, criterion='distance')
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=int32)

Also scipy.cluster.hierarchy.dendrogram can be used to generate a plot of the dendrogram.

Previous topic

scipy.cluster.hierarchy.average

Next topic

scipy.cluster.hierarchy.centroid