scipy.special.ellipkinc¶
-
scipy.special.
ellipkinc
(phi, m) = <ufunc 'ellipkinc'>¶ Incomplete elliptic integral of the first kind
This function is defined as
\[K(\phi, m) = \int_0^{\phi} [1 - m \sin(t)^2]^{-1/2} dt\]This function is also called F(phi, m).
Parameters: - phi : array_like
amplitude of the elliptic integral
- m : array_like
parameter of the elliptic integral
Returns: - K : ndarray
Value of the elliptic integral
See also
Notes
Wrapper for the Cephes [1] routine ellik. The computation is carried out using the arithmetic-geometric mean algorithm.
The parameterization in terms of \(m\) follows that of section 17.2 in [2]. Other parameterizations in terms of the complementary parameter \(1 - m\), modular angle \(\sin^2(\alpha) = m\), or modulus \(k^2 = m\) are also used, so be careful that you choose the correct parameter.
References
[1] (1, 2) Cephes Mathematical Functions Library, http://www.netlib.org/cephes/ [2] (1, 2) Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover, 1972.