Weibull Maximum Extreme Value Distribution#
Defined for \(x<0\) and \(c>0\) .
 \begin{eqnarray*} f\left(x;c\right) & = & c\left(-x\right)^{c-1}\exp\left(-\left(-x\right)^{c}\right)\\ F\left(x;c\right) & = & \exp\left(-\left(-x\right)^{c}\right)\\ G\left(q;c\right) & = & -\left(-\log q\right)^{1/c}\end{eqnarray*}
The mean is the negative of the right-skewed Frechet distribution given above, and the other statistical parameters can be computed from
\[\mu_{n}^{\prime}=\left(-1\right)^{n}\Gamma\left(1+\frac{n}{c}\right).\]
 \begin{eqnarray*}
     \mu & = & -\Gamma\left(1+\frac{1}{c}\right) \\
     \mu_{2} & = & \Gamma\left(1+\frac{2}{c}\right) -
                   \Gamma^{2}\left(1+\frac{1}{c}\right) \\
     \gamma_{1} & = & -\frac{\Gamma\left(1+\frac{3}{c}\right) -
                             3\Gamma\left(1+\frac{2}{c}\right)\Gamma\left(1+\frac{1}{c}\right) +
                             2\Gamma^{3}\left(1+\frac{1}{c}\right)}
                            {\mu_{2}^{3/2}} \\
     \gamma_{2} & = & \frac{\Gamma\left(1+\frac{4}{c}\right) -
                            4\Gamma\left(1+\frac{1}{c}\right)\Gamma\left(1+\frac{3}{c}\right) +
                            6\Gamma^{2}\left(1+\frac{1}{c}\right)\Gamma\left(1+\frac{2}{c}\right) -
                            3\Gamma^{4}\left(1+\frac{1}{c}\right)}
                           {\mu_{2}^{2}} - 3 \\
     m_{d} & = & \begin{cases}
                     -\left(\frac{c-1}{c}\right)^{\frac{1}{c}} & \text{if}\; c > 1 \\
                     0 & \text{if}\; c <= 1
                 \end{cases} \\
     m_{n} & = & -\ln\left(2\right)^{\frac{1}{c}}
 \end{eqnarray*}
\[h\left[X\right]=-\frac{\gamma}{c}-\log\left(c\right)+\gamma+1\]
where \(\gamma\) is Euler’s constant and equal to
\[\gamma\approx0.57721566490153286061.\]
Implementation: scipy.stats.weibull_max