Double Gamma Distribution#
The double gamma is the signed version of the Gamma distribution. For \(\alpha>0:\)
 \begin{eqnarray*} f\left(x;\alpha\right) & = & \frac{1}{2\Gamma\left(\alpha\right)}\left|x\right|^{\alpha-1}e^{-\left|x\right|}\\
 F\left(x;\alpha\right) & = & \left\{
   \begin{array}{ccc}
     \frac{1}{2}-\frac{\gamma\left(\alpha,\left|x\right|\right)}{2\Gamma\left(\alpha\right)} &  & x\leq0\\
     \frac{1}{2}+\frac{\gamma\left(\alpha,\left|x\right|\right)}{2\Gamma\left(\alpha\right)} &  & x>0
   \end{array}
 \right.\\
 G\left(q;\alpha\right) & = & \left\{
   \begin{array}{ccc}
     -\gamma^{-1}\left(\alpha,\left|2q-1\right|\Gamma\left(\alpha\right)\right) &  & q\leq\frac{1}{2}\\
     \gamma^{-1}\left(\alpha,\left|2q-1\right|\Gamma\left(\alpha\right)\right) &  & q>\frac{1}{2}
   \end{array}
 \right.\end{eqnarray*}
\[M\left(t\right)=\frac{1}{2\left(1-t\right)^{a}}+\frac{1}{2\left(1+t\right)^{a}}\]
 \begin{eqnarray*} \mu=m_{n} & = & 0\\
 \mu_{2} & = & \alpha\left(\alpha+1\right)\\
 \gamma_{1} & = & 0\\
 \gamma_{2} & = & \frac{\left(\alpha+2\right)\left(\alpha+3\right)}{\alpha\left(\alpha+1\right)}-3\\
 m_{d} & = & \mathrm{NA}\end{eqnarray*}
Implementation: scipy.stats.dgamma