svd#
- scipy.linalg.interpolative.svd(A, eps_or_k, rand=True, rng=None)[source]#
Compute SVD of a matrix via an ID.
An SVD of a matrix A is a factorization:
A = U @ np.diag(S) @ V.conj().T
where U and V have orthonormal columns and S is nonnegative.
The SVD can be computed to any relative precision or rank (depending on the value of eps_or_k).
See also
interp_decompandid_to_svd.- Parameters:
- A
numpy.ndarrayorscipy.sparse.linalg.LinearOperator Matrix to be factored, given as either a
numpy.ndarrayor ascipy.sparse.linalg.LinearOperatorwith the matvec and rmatvec methods (to apply the matrix and its adjoint).- eps_or_kfloat or int
Relative error (if
eps_or_k < 1) or rank (ifeps_or_k >= 1) of approximation.- randbool, optional
Whether to use random sampling if A is of type
numpy.ndarray(randomized algorithms are always used if A is of typescipy.sparse.linalg.LinearOperator).- rng
numpy.random.Generator, optional Pseudorandom number generator state. When rng is None, a new
numpy.random.Generatoris created using entropy from the operating system. Types other thannumpy.random.Generatorare passed tonumpy.random.default_rngto instantiate aGenerator. IfrandisFalse, the argument is ignored.
- A
- Returns:
- U
numpy.ndarray 2D array of left singular vectors.
- S
numpy.ndarray 1D array of singular values.
- V
numpy.ndarray 2D array right singular vectors.
- U