scipy.sparse.

dia_matrix#

class scipy.sparse.dia_matrix(arg1, shape=None, dtype=None, copy=False, *, maxprint=None)[source]#

Sparse matrix with DIAgonal storage.

This can be instantiated in several ways:
dia_matrix(D)

where D is a 2-D ndarray

dia_matrix(S)

with another sparse array or matrix S (equivalent to S.todia())

dia_matrix((M, N), [dtype])

to construct an empty matrix with shape (M, N), dtype is optional, defaulting to dtype=’d’.

dia_matrix((data, offsets), shape=(M, N))

where the data[k,:] stores the diagonal entries for diagonal offsets[k] (See example below)

Notes

Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and matrix power. Sparse matrices with DIAgonal storage do not support slicing.

Examples

>>> import numpy as np
>>> from scipy.sparse import dia_matrix
>>> dia_matrix((3, 4), dtype=np.int8).toarray()
array([[0, 0, 0, 0],
       [0, 0, 0, 0],
       [0, 0, 0, 0]], dtype=int8)
>>> data = np.array([[1, 2, 3, 4]]).repeat(3, axis=0)
>>> offsets = np.array([0, -1, 2])
>>> dia_matrix((data, offsets), shape=(4, 4)).toarray()
array([[1, 0, 3, 0],
       [1, 2, 0, 4],
       [0, 2, 3, 0],
       [0, 0, 3, 4]])
>>> from scipy.sparse import dia_matrix
>>> n = 10
>>> ex = np.ones(n)
>>> data = np.array([ex, 2 * ex, ex])
>>> offsets = np.array([-1, 0, 1])
>>> dia_matrix((data, offsets), shape=(n, n)).toarray()
array([[2., 1., 0., ..., 0., 0., 0.],
       [1., 2., 1., ..., 0., 0., 0.],
       [0., 1., 2., ..., 0., 0., 0.],
       ...,
       [0., 0., 0., ..., 2., 1., 0.],
       [0., 0., 0., ..., 1., 2., 1.],
       [0., 0., 0., ..., 0., 1., 2.]])
Attributes:
dtypedtype

Data type of the matrix

shape2-tuple

Shape of the matrix

ndimint

Number of dimensions (this is always 2)

nnz

Number of stored values, including explicit zeros.

size

Number of stored values.

data

DIA format data array of the matrix

offsets

DIA format offset array of the matrix

T

Transpose.

Methods

__len__()

__mul__(other)

arcsin()

Element-wise arcsin.

arcsinh()

Element-wise arcsinh.

arctan()

Element-wise arctan.

arctanh()

Element-wise arctanh.

asformat(format[, copy])

Return this array/matrix in the passed format.

asfptype()

Upcast matrix to a floating point format (if necessary)

astype(dtype[, casting, copy])

Cast the array/matrix elements to a specified type.

ceil()

Element-wise ceil.

conj([copy])

Element-wise complex conjugation.

conjugate([copy])

Element-wise complex conjugation.

copy()

Returns a copy of this array/matrix.

count_nonzero([axis])

Number of non-zero entries, equivalent to

deg2rad()

Element-wise deg2rad.

diagonal([k])

Returns the kth diagonal of the array/matrix.

dot(other)

Ordinary dot product

expm1()

Element-wise expm1.

floor()

Element-wise floor.

getH()

Return the Hermitian transpose of this matrix.

get_shape()

Get the shape of the matrix

getcol(j)

Returns a copy of column j of the matrix, as an (m x 1) sparse matrix (column vector).

getformat()

Matrix storage format

getmaxprint()

Maximum number of elements to display when printed.

getnnz([axis])

Number of stored values, including explicit zeros.

getrow(i)

Returns a copy of row i of the matrix, as a (1 x n) sparse matrix (row vector).

log1p()

Element-wise log1p.

maximum(other)

Element-wise maximum between this and another array/matrix.

mean([axis, dtype, out])

Compute the arithmetic mean along the specified axis.

minimum(other)

Element-wise minimum between this and another array/matrix.

multiply(other)

Point-wise multiplication by another array/matrix.

nonzero()

Nonzero indices of the array/matrix.

power(n[, dtype])

This function performs element-wise power.

rad2deg()

Element-wise rad2deg.

reshape(self, shape[, order, copy])

Gives a new shape to a sparse array/matrix without changing its data.

resize(*shape)

Resize the array/matrix in-place to dimensions given by shape

rint()

Element-wise rint.

set_shape(shape)

Set the shape of the matrix in-place

setdiag(values[, k])

Set diagonal or off-diagonal elements of the array/matrix.

sign()

Element-wise sign.

sin()

Element-wise sin.

sinh()

Element-wise sinh.

sqrt()

Element-wise sqrt.

sum([axis, dtype, out])

Sum the array/matrix elements over a given axis.

tan()

Element-wise tan.

tanh()

Element-wise tanh.

toarray([order, out])

Return a dense ndarray representation of this sparse array/matrix.

tobsr([blocksize, copy])

Convert this array/matrix to Block Sparse Row format.

tocoo([copy])

Convert this array/matrix to COOrdinate format.

tocsc([copy])

Convert this array/matrix to Compressed Sparse Column format.

tocsr([copy])

Convert this array/matrix to Compressed Sparse Row format.

todense([order, out])

Return a dense representation of this sparse matrix.

todia([copy])

Convert this array/matrix to sparse DIAgonal format.

todok([copy])

Convert this array/matrix to Dictionary Of Keys format.

tolil([copy])

Convert this array/matrix to List of Lists format.

trace([offset])

Returns the sum along diagonals of the sparse array/matrix.

transpose([axes, copy])

Reverses the dimensions of the sparse array/matrix.

trunc()

Element-wise trunc.