white_tophat#
- scipy.ndimage.white_tophat(input, size=None, footprint=None, structure=None, output=None, mode='reflect', cval=0.0, origin=0, *, axes=None)[source]#
 Multidimensional white tophat filter.
- Parameters:
 - inputarray_like
 Input.
- sizetuple of ints
 Shape of a flat and full structuring element used for the filter. Optional if footprint or structure is provided.
- footprintarray of ints, optional
 Positions of elements of a flat structuring element used for the white tophat filter.
- structurearray of ints, optional
 Structuring element used for the filter. structure may be a non-flat structuring element. The structure array applies offsets to the pixels in a neighborhood (the offset is additive during dilation and subtractive during erosion)
- outputarray, optional
 An array used for storing the output of the filter may be provided.
- mode{‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, optional
 The mode parameter determines how the array borders are handled, where cval is the value when mode is equal to ‘constant’. Default is ‘reflect’
- cvalscalar, optional
 Value to fill past edges of input if mode is ‘constant’. Default is 0.0.
- originscalar, optional
 The origin parameter controls the placement of the filter. Default is 0.
- axestuple of int or None
 The axes over which to apply the filter. If None, input is filtered along all axes. If an origin tuple is provided, its length must match the number of axes.
- Returns:
 - outputndarray
 Result of the filter of input with structure.
See also
Examples
Subtract gray background from a bright peak.
>>> from scipy.ndimage import generate_binary_structure, white_tophat >>> import numpy as np >>> square = generate_binary_structure(rank=2, connectivity=3) >>> bright_on_gray = np.array([[2, 3, 3, 3, 2], ... [3, 4, 5, 4, 3], ... [3, 5, 9, 5, 3], ... [3, 4, 5, 4, 3], ... [2, 3, 3, 3, 2]]) >>> white_tophat(input=bright_on_gray, structure=square) array([[0, 0, 0, 0, 0], [0, 0, 1, 0, 0], [0, 1, 5, 1, 0], [0, 0, 1, 0, 0], [0, 0, 0, 0, 0]])