Rbf#
- class scipy.interpolate.Rbf(*args, **kwargs)[source]#
A class for radial basis function interpolation of functions from N-D scattered data to an M-D domain.
Legacy
This class is considered legacy and will no longer receive updates. While we currently have no plans to remove it, we recommend that new code uses more modern alternatives instead.
Rbf
is legacy code, for new usage please useRBFInterpolator
instead.- Parameters:
- *argsarrays
x, y, z, …, d, where x, y, z, … are the coordinates of the nodes and d is the array of values at the nodes
- functionstr or callable, optional
The radial basis function, based on the radius, r, given by the norm (default is Euclidean distance); the default is ‘multiquadric’:
'multiquadric': sqrt((r/self.epsilon)**2 + 1) 'inverse': 1.0/sqrt((r/self.epsilon)**2 + 1) 'gaussian': exp(-(r/self.epsilon)**2) 'linear': r 'cubic': r**3 'quintic': r**5 'thin_plate': r**2 * log(r)
If callable, then it must take 2 arguments (self, r). The epsilon parameter will be available as self.epsilon. Other keyword arguments passed in will be available as well.
- epsilonfloat, optional
Adjustable constant for gaussian or multiquadrics functions - defaults to approximate average distance between nodes (which is a good start).
- smoothfloat, optional
Values greater than zero increase the smoothness of the approximation. 0 is for interpolation (default), the function will always go through the nodal points in this case.
- normstr, callable, optional
A function that returns the ‘distance’ between two points, with inputs as arrays of positions (x, y, z, …), and an output as an array of distance. E.g., the default: ‘euclidean’, such that the result is a matrix of the distances from each point in
x1
to each point inx2
. For more options, see documentation of scipy.spatial.distances.cdist.- modestr, optional
Mode of the interpolation, can be ‘1-D’ (default) or ‘N-D’. When it is ‘1-D’ the data d will be considered as 1-D and flattened internally. When it is ‘N-D’ the data d is assumed to be an array of shape (n_samples, m), where m is the dimension of the target domain.
See also
Examples
>>> import numpy as np >>> from scipy.interpolate import Rbf >>> rng = np.random.default_rng() >>> x, y, z, d = rng.random((4, 50)) >>> rbfi = Rbf(x, y, z, d) # radial basis function interpolator instance >>> xi = yi = zi = np.linspace(0, 1, 20) >>> di = rbfi(xi, yi, zi) # interpolated values >>> di.shape (20,)
- Attributes:
- Nint
The number of data points (as determined by the input arrays).
- dindarray
The 1-D array of data values at each of the data coordinates xi.
- xindarray
The 2-D array of data coordinates.
- functionstr or callable
The radial basis function. See description under Parameters.
- epsilonfloat
Parameter used by gaussian or multiquadrics functions. See Parameters.
- smoothfloat
Smoothing parameter. See description under Parameters.
- normstr or callable
The distance function. See description under Parameters.
- modestr
Mode of the interpolation. See description under Parameters.
- nodesndarray
A 1-D array of node values for the interpolation.
- Ainternal property, do not use
Methods
__call__
(*args)Call self as a function.