Skip to main content
Ctrl+K
This is documentation for an old version (1.14.0).Switch to stable version

SciPy

  • Installing
  • User Guide
  • API reference
  • Building from source
  • Development
  • Release notes
development1.16.1 (stable)1.16.01.15.31.15.21.15.11.15.01.14.11.14.01.13.11.13.01.12.01.11.41.11.31.11.21.11.11.11.01.10.11.10.01.9.31.9.21.9.11.9.01.8.11.8.01.7.11.7.01.6.31.6.21.6.11.6.01.5.41.5.31.5.21.5.11.5.01.4.11.4.01.3.31.3.21.3.11.3.01.2.31.2.11.2.01.1.01.0.00.19.00.18.10.18.00.17.10.17.00.16.10.16.00.15.10.15.00.14.10.14.00.13.00.12.00.11.00.10.10.10.00.9.00.80.7
  • GitHub
  • Twitter
  • Installing
  • User Guide
  • API reference
  • Building from source
  • Development
  • Release notes
development1.16.1 (stable)1.16.01.15.31.15.21.15.11.15.01.14.11.14.01.13.11.13.01.12.01.11.41.11.31.11.21.11.11.11.01.10.11.10.01.9.31.9.21.9.11.9.01.8.11.8.01.7.11.7.01.6.31.6.21.6.11.6.01.5.41.5.31.5.21.5.11.5.01.4.11.4.01.3.31.3.21.3.11.3.01.2.31.2.11.2.01.1.01.0.00.19.00.18.10.18.00.17.10.17.00.16.10.16.00.15.10.15.00.14.10.14.00.13.00.12.00.11.00.10.10.10.00.9.00.80.7
  • GitHub
  • Twitter

Section Navigation

User guide

  • Special functions (scipy.special)
  • Integration (scipy.integrate)
  • Optimization (scipy.optimize)
  • Interpolation (scipy.interpolate)
  • Fourier Transforms (scipy.fft)
  • Signal Processing (scipy.signal)
  • Linear Algebra (scipy.linalg)
  • Sparse Arrays (scipy.sparse)
  • Sparse eigenvalue problems with ARPACK
  • Compressed Sparse Graph Routines (scipy.sparse.csgraph)
  • Spatial data structures and algorithms (scipy.spatial)
  • Statistics (scipy.stats)
    • Probability distributions
    • Sample statistics and hypothesis tests
    • Universal Non-Uniform Random Number Sampling in SciPy
    • Kernel density estimation
    • Multiscale Graph Correlation (MGC)
    • Quasi-Monte Carlo
  • Multidimensional image processing (scipy.ndimage)
  • File IO (scipy.io)
  • SciPy User Guide
  • Statistics...

Statistics (scipy.stats)#

In this tutorial, we discuss many, but certainly not all, features of scipy.stats. The intention here is to provide a user with a working knowledge of this package. We refer to the reference manual for further details.

Note: This documentation is work in progress.

  • Probability distributions
    • Continuous Statistical Distributions
    • Discrete Statistical Distributions
    • Getting help
    • Common methods
    • Random number generation
    • Shifting and scaling
    • Shape parameters
    • Freezing a distribution
    • Broadcasting
    • Specific points for discrete distributions
    • Fitting distributions
    • Performance issues and cautionary remarks
    • Remaining issues
    • Building specific distributions
  • Sample statistics and hypothesis tests
    • Analysing one sample
    • Comparing two samples
    • Resampling and Monte Carlo Methods
  • Universal Non-Uniform Random Number Sampling in SciPy
    • Introduction
    • Basic concepts of the Interface
    • Generators in scipy.stats.sampling
  • Kernel density estimation
    • Univariate estimation
    • Multivariate estimation
  • Multiscale Graph Correlation (MGC)
  • Quasi-Monte Carlo
    • Calculate the discrepancy
    • Using a QMC engine
    • Making a QMC engine, i.e., subclassing QMCEngine
    • Guidelines on using QMC

previous

Spatial data structures and algorithms (scipy.spatial)

next

Probability distributions

© Copyright 2008-2024, The SciPy community.

Created using Sphinx 7.3.7.

Built with the PyData Sphinx Theme 0.15.3.