SR1#
- class scipy.optimize.SR1(min_denominator=1e-08, init_scale='auto')[source]#
Symmetric-rank-1 Hessian update strategy.
- Parameters:
- min_denominatorfloat
This number, scaled by a normalization factor, defines the minimum denominator magnitude allowed in the update. When the condition is violated we skip the update. By default uses
1e-8
.- init_scale{float, np.array, ‘auto’}, optional
This parameter can be used to initialize the Hessian or its inverse. When a float is given, the relevant array is initialized to
np.eye(n) * init_scale
, wheren
is the problem dimension. Alternatively, if a precisely(n, n)
shaped, symmetric array is given, this array will be used. Otherwise an error is generated. Set it to ‘auto’ in order to use an automatic heuristic for choosing the initial scale. The heuristic is described in [1], p.143. The default is ‘auto’.
Notes
The update is based on the description in [1], p.144-146.
References
Methods
dot
(p)Compute the product of the internal matrix with the given vector.
Return the current internal matrix.
initialize
(n, approx_type)Initialize internal matrix.
update
(delta_x, delta_grad)Update internal matrix.