scipy.special.betaincc#
- scipy.special.betaincc(a, b, x, out=None) = <ufunc 'betaincc'>#
 Complement of the regularized incomplete beta function.
Computes the complement of the regularized incomplete beta function, defined as [1]:
\[\bar{I}_x(a, b) = 1 - I_x(a, b) = 1 - \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \int_0^x t^{a-1}(1-t)^{b-1}dt,\]for \(0 \leq x \leq 1\).
- Parameters:
 - a, barray_like
 Positive, real-valued parameters
- xarray_like
 Real-valued such that \(0 \leq x \leq 1\), the upper limit of integration
- outndarray, optional
 Optional output array for the function values
- Returns:
 - scalar or ndarray
 Value of the regularized incomplete beta function
See also
betaincregularized incomplete beta function
betaincinvinverse of the regularized incomplete beta function
betainccinvinverse of the complement of the regularized incomplete beta function
betabeta function
scipy.stats.betabeta distribution
Notes
Added in version 1.11.0.
References
[1]NIST Digital Library of Mathematical Functions https://dlmf.nist.gov/8.17
Examples
>>> from scipy.special import betaincc, betainc
The naive calculation
1 - betainc(a, b, x)loses precision when the values ofbetainc(a, b, x)are close to 1:>>> 1 - betainc(0.5, 8, [0.9, 0.99, 0.999]) array([2.0574632e-09, 0.0000000e+00, 0.0000000e+00])
By using
betaincc, we get the correct values:>>> betaincc(0.5, 8, [0.9, 0.99, 0.999]) array([2.05746321e-09, 1.97259354e-17, 1.96467954e-25])