scipy.stats.genexpon#
- scipy.stats.genexpon = <scipy.stats._continuous_distns.genexpon_gen object>[source]#
A generalized exponential continuous random variable.
As an instance of the
rv_continuous
class,genexpon
object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.Notes
The probability density function for
genexpon
is:\[f(x, a, b, c) = (a + b (1 - \exp(-c x))) \exp(-a x - b x + \frac{b}{c} (1-\exp(-c x)))\]for \(x \ge 0\), \(a, b, c > 0\).
genexpon
takes \(a\), \(b\) and \(c\) as shape parameters.The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc
andscale
parameters. Specifically,genexpon.pdf(x, a, b, c, loc, scale)
is identically equivalent togenexpon.pdf(y, a, b, c) / scale
withy = (x - loc) / scale
. Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.References
H.K. Ryu, “An Extension of Marshall and Olkin’s Bivariate Exponential Distribution”, Journal of the American Statistical Association, 1993.
N. Balakrishnan, Asit P. Basu (editors), The Exponential Distribution: Theory, Methods and Applications, Gordon and Breach, 1995. ISBN 10: 2884491929
Examples
>>> import numpy as np >>> from scipy.stats import genexpon >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(1, 1)
Calculate the first four moments:
>>> a, b, c = 9.13, 16.2, 3.28 >>> mean, var, skew, kurt = genexpon.stats(a, b, c, moments='mvsk')
Display the probability density function (
pdf
):>>> x = np.linspace(genexpon.ppf(0.01, a, b, c), ... genexpon.ppf(0.99, a, b, c), 100) >>> ax.plot(x, genexpon.pdf(x, a, b, c), ... 'r-', lw=5, alpha=0.6, label='genexpon pdf')
Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen
pdf
:>>> rv = genexpon(a, b, c) >>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
Check accuracy of
cdf
andppf
:>>> vals = genexpon.ppf([0.001, 0.5, 0.999], a, b, c) >>> np.allclose([0.001, 0.5, 0.999], genexpon.cdf(vals, a, b, c)) True
Generate random numbers:
>>> r = genexpon.rvs(a, b, c, size=1000)
And compare the histogram:
>>> ax.hist(r, density=True, bins='auto', histtype='stepfilled', alpha=0.2) >>> ax.set_xlim([x[0], x[-1]]) >>> ax.legend(loc='best', frameon=False) >>> plt.show()
Methods
rvs(a, b, c, loc=0, scale=1, size=1, random_state=None)
Random variates.
pdf(x, a, b, c, loc=0, scale=1)
Probability density function.
logpdf(x, a, b, c, loc=0, scale=1)
Log of the probability density function.
cdf(x, a, b, c, loc=0, scale=1)
Cumulative distribution function.
logcdf(x, a, b, c, loc=0, scale=1)
Log of the cumulative distribution function.
sf(x, a, b, c, loc=0, scale=1)
Survival function (also defined as
1 - cdf
, but sf is sometimes more accurate).logsf(x, a, b, c, loc=0, scale=1)
Log of the survival function.
ppf(q, a, b, c, loc=0, scale=1)
Percent point function (inverse of
cdf
— percentiles).isf(q, a, b, c, loc=0, scale=1)
Inverse survival function (inverse of
sf
).moment(order, a, b, c, loc=0, scale=1)
Non-central moment of the specified order.
stats(a, b, c, loc=0, scale=1, moments=’mv’)
Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’).
entropy(a, b, c, loc=0, scale=1)
(Differential) entropy of the RV.
fit(data)
Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.
expect(func, args=(a, b, c), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)
Expected value of a function (of one argument) with respect to the distribution.
median(a, b, c, loc=0, scale=1)
Median of the distribution.
mean(a, b, c, loc=0, scale=1)
Mean of the distribution.
var(a, b, c, loc=0, scale=1)
Variance of the distribution.
std(a, b, c, loc=0, scale=1)
Standard deviation of the distribution.
interval(confidence, a, b, c, loc=0, scale=1)
Confidence interval with equal areas around the median.