scipy.spatial.distance.yule#
- scipy.spatial.distance.yule(u, v, w=None)[source]#
Compute the Yule dissimilarity between two boolean 1-D arrays.
The Yule dissimilarity is defined as
\[\frac{R}{c_{TT} * c_{FF} + \frac{R}{2}}\]where \(c_{ij}\) is the number of occurrences of \(\mathtt{u[k]} = i\) and \(\mathtt{v[k]} = j\) for \(k < n\) and \(R = 2.0 * c_{TF} * c_{FT}\).
- Parameters:
- u(N,) array_like, bool
Input array.
- v(N,) array_like, bool
Input array.
- w(N,) array_like, optional
The weights for each value in u and v. Default is None, which gives each value a weight of 1.0
- Returns:
- yuledouble
The Yule dissimilarity between vectors u and v.
Examples
>>> from scipy.spatial import distance >>> distance.yule([1, 0, 0], [0, 1, 0]) 2.0 >>> distance.yule([1, 1, 0], [0, 1, 0]) 0.0